
Cooperative, Autonomous Anti-
DDoS Network (A2D2V2)

Design and Implementation of a Cooperative,
Autonomous Anti-DDoS Network using Intruder

Detection and Isolation Protocol

Sarah Jelinek
Masters Project Defense
University of Colorado, Colorado Springs
sjjelinek@gmail.com
Committee:
Dr. C. Edward Chow
Dr. Jugal Kalita
Dr. Xiaobo Zhou

mailto:sjjelinek@gmail.com

Sarah Jelinek A2D2V2 2

Outline

Motivation and Goals for A2D2V2
DoS and DDoS
What is it?
Mitigation strategies

A2D2V2 Cooperative Detection and Mitigation
Research
Cooperative Intrusion Response:

 IDIP, CITRA, IDMEF, IDXL and CISL Protocols
 Intrusion Detection – Dynamic Tracing

TCP link level headers, tcpdump
A2D2 Overview

Sarah Jelinek A2D2V2 3

Outline

A2D2V2
Features
Communication architecture
Implementation – IDIP components

A2D2V2 Test Bed, Data Gathering and Results
A2D2V2 Cooperative Defense Highlights
A2D2V2 Conclusions
Lessons Learned
Future work recommendations

Sarah Jelinek A2D2V2 4

Motivation for A2D2V2

DDoS and network security in general are still
big areas of research

Expand on initial A2D2 work
No enterprise wide automated cooperative intru-

sion detection and response systems available

Sarah Jelinek A2D2V2 5

Goals for A2D2V2
Expand on A2D2 ideas to provide cooperative

defense against attacks
To validate the enterprise effectiveness of the

IDIP software implementation
Show clients that are in non-IDIP enabled

subnets reap benefits of enterprise network
attack response cooperation

Show that IDIP can provide a cooperative
defense that efficiently notifies upstream routers
of an attack

Sarah Jelinek A2D2V2 6

What is DoS/DDoS

Yahoo

Amazon

CERT

Stacheldraht

Trinoo

Tribal Flood Network (TFN)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Handler
(Middleman)

Agent
(Attacker)

Handler
(Middleman)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Client
(Attack Commander)

Mastermind
Intruder

●DoS – Denial of Service Attack
●DDoS Distributed Denial of Service Attack

Sarah Jelinek A2D2V2 7

IDIP

 Intruder Detection and Isolation Protocol(IDIP)
 Initially developed by DARPA, Boeing and NAI labs
 Intended to be published, standard protocol. No

longer open protocol.
Developed to support real-time tracking and

containment of DDoS attacks that cross network
boundaries. 2 stage response.
Initial response harsh and coarse grained,short lived
Subsequent response is more reasoned

Supports damage assessment and recovery in local
environment

Provides network based response as well

Sarah Jelinek A2D2V2 8

IDIP

 IDIP guiding principles
Response to intrusions in real-time
Support of environments that span multiple

administrative domains
Minimal impact on systems performance
Autonomous & continued operation even under attack

Sarah Jelinek A2D2V2 9

IDIP Protocols and Layering

IDIP Message Layer
 Reliable Delivery
 Duplicate Removal
 Multicast Support
 Time Management
 Message class
 subscription

Neighborhood Management
 Node status

Key Management

IDIP Cryptographic Services
 Authentication
 Integrity
 Privacy

User Datagram Protocol

Internet Protocol

IDIP Application

IDIP Backplane

Sarah Jelinek A2D2V2 10

IDIP Enterprise Architecture
Community

Boundary
Controllers

Discovery
Coordinator

Intrusion Detection
System

Neighborhood 2

Intrusion Detection
System

Neighborhood 1

Neighborhood 3

Boundary
Controllers

Boundary
Controller

Sarah Jelinek A2D2V2 11

Cooperative Intrusion Detection Traceback
Architecture, Common Intrusion

Specification Language(CITRA and CISL)
CITRA
Framework for integration of IDS, firewalls, routers,

and other components in an IDIP system.
Allows for a global response via IDIP node

cooperation
Designed to facilitate low-cost integration of

independently developed components
 IDIP defines the format of and information

specification that CITRA enabled components
exchange

CISL
Language developed to support CITRA
Used to disseminate data among IDS and response

systems

Sarah Jelinek A2D2V2 12

CITRA

Sarah Jelinek A2D2V2 13

Intrusion Detection Message
Exchange Format(IDMEF)

Purpose to define formats and exchange
procedures for sharing information

 Intended to standardize data format that
automated IDS's can use to report alerts

Enables interoperability among commercial and
opensource IDS's.

OO representation of alert data
Data model allows for natural differences
Goal is to provide a standardization of alerts in

an unambiguous manner
 Implemented in XML

Sarah Jelinek A2D2V2 14

Intrusion Detection and Exchange
Protocol(IDXP)

Another protocol to exchange data between IDS
entities

Supports mutual authentication, integrity and
confidentiality

Provides for exchange of IDMEF messages,
unstructured data between IDS systems

Open, published standard

Sarah Jelinek A2D2V2 15

Dynamic Tracing

 IP Link Level Headers and ARP
Parsing the IP Packet link level header for MAC

address

Use arp/rarp for resolving this to real IP address
ARP and RARP limitations

 tcpdump
Allows for fined grained control of monitoring

interfaces
Is promiscuous

Sarah Jelinek A2D2V2 16

A2D2

Attack

Attack Attack

Private Subnet
192.168.0

Attack Network
128.198.61

IP: 128.198.61.12
NM: 255.255.255.128

GW: 128.198.61.1

eth0

Pluto

Titan

DMZ

Multi-Level
Rate Limiting

Class-Based
Queuing

(CBQ)

as Linux Router

Firewall
(iptables)

Security Policy

IP: 192.168.0.1
NM: 255.255.0.0

GW: 128.198.61.12

eth1

RealServer

R
e
a
lS

e
rv

e
r

T
ra

ff
ic

ID
S

 A
le

rt
s

tr
ig

g
e

r
M

u
lt
i-

L
e

ve
l

R
a
te

-L
im

iti
n
g

IDS

 7
0%

 H
TT

P
, R

ea
lP

la
ye

r

 1

5%
 S

M
T

P
, P

O
P

3

 1

0%
 S

S
H

,
S

F
T

P

 5
%

 S
Y

N
,

IC
M

P
, D

N
S

10 Mbps Hub

eth0

IP: 192.168.0.2
NM: 255.255.0.0
GW: 192.168.0.1

Public Network
128.198

Internet

Alpha
128.198.61.15

DDoS
Agent

Gamma
128.198.61.17

DDoS
Agent

Beta
128.198.61.16

DDoS
Agent

Delta
128.198.61.18

DDoS
Agent

Simulated
Internet

100Mpbs Switch

Master Client
& Handler

DDoS

Saturn
128.198.61.11

NM: 255.255.255.128
GW: 128.198.61.1

Autonomous Anti-DDoS Network
(A2D2)

Client1
128.198.a.195

Real Player Client

Client2
128.198.b.82

Real Player Client

Client3
128.198.c.31

Real Player Client

100Mpbs Switch

Sarah Jelinek A2D2V2 17

A2D2V2 Features

7 key feature additions from A2D2
IDIP Additions to Snort IDS

 report_idip and preprocessor changes
IDIP Enabled firewall/routers

 idip_firewall_receiver
Earlier detection and pushback of attack via traffic

monitoring
 tcpdump.sh, dumper.sh awk scripts

Notification of upstream routers of attack
Static router configuration table

Notification to upstream routers of attack
mitigation strategies taken by surrounding
neighborhoods and subsequent response

Response policy is accept

Sarah Jelinek A2D2V2 18

A2D2V2 IDIP Communication and
Neighborhoods Design

11.x subnet 16.x subnet

13.x subnet
15.x subnet

Neighborhood 1

I

Neighborhood 2

Neighborhood 3

BC
IDIP Messaging
IDIP Application(rate limiter)
IDIP Discovery Coordinator

BC
IDIP Messaging
IDIP Application(rate limiter)
IDIP Discovery Coordinator

BC
IDIP Messaging
IDIP Application(rate limiter)
IDIP Discovery Coordinator

IDIP Messaging
IDIP Application(IDS)

A2D2V2 Community

IDIP Messages IDIP Messages

IDIP Messages

Sarah Jelinek A2D2V2 19

A2D2V2 IDIP Modifications

 IDIP Messaging Protocol
IDIP Neighborhood management via the DC
Message creation and formatting
Protocol initialization
Message forwarding
Socket communication pieces

 IDIP Application Protocol
Snort modifications for IDIP support
IDIP enabled firewall/router application

Sarah Jelinek A2D2V2 20

A2D2V2 IDIP Communication
Flow

Snort IDS ->generates flood report when attack is detected
report_idip -> intercepts flood report message
report_idip->creates three classes of IDIP messages:

IDIP DO
IDIP UNDO
IDIP TRACE

report_idip->forwards IDIP message to next immediate
upstream firewall/router

idip_firewall_receiver->receives IDIP message and processes
 according to request

Sarah Jelinek A2D2V2 21

A2D2V2 IDIP Communication
Flow

idip_firewall_receiver -> either:
performs trace using tcpdump
 performs do(applies rate limiting to itself)
performs undo(undoes rate limiting as per request

notifies upstream routers of mitigation action taken
Recommends same action to be taken by upstream routers

idip_firewall_receiver on upstream router applies recommended
action of rate limiting

Sarah Jelinek A2D2V2 22

A2D2V2 Implementation
 Key software modules:
firewall/routers:

idip_firewall_receiver – IDIP Application and Message
Subsystem
tcpdump.sh, dumper.sh – IDIP Application
trace_kill – IDIP Application
topo.txt – DC Static configuration tables
A2D2 class based queueing and rate limiter modules

Server:
Snort with spp_flood preprocessor
report_idip – IDIP Application and Message subsystem
tcp_snd

Client:
tcp_rcv
A2D2 attack tool and packet counting modules

Sarah Jelinek A2D2V2 23

A2D2V2
C1 A1 A2

192.168.11.1 192.168.11.2 192.168.11.3

192.168.15.1

C2 A3

192.168.16.1 192.168.16.2

192.168.13.1

Eth2: 192.168.12.97

Eth0: 192.168.11.97

100 m
Switch

Eth0: 192.168.12.99

Eth1: 192.168.13.99

Eth3: 192.168.14.99
100 m
Switch

Eth0: 192.168.14.98

Eth2: 192.168.15.98

Eth2: 192.168.16.102

Eth1: 192.168.14.102

100 m
Switch

100 m
Switch

100 m
Switch

10 m
Switch

A2D2V2 Test Bed Setup

R97
IDIP Enabled

R102
IDIP Enabled

R99
IDIP Enabled

Firewall

R98

Server 1
snort ids

idip enabled
Server 2

Sarah Jelinek A2D2V2 24

A2D2V2 Full Attack and
Response Test Scenario

Normal tcp_rcv traffic running on C1 and C2,
tcp_snd running on S1 and S2 with non-stop TCP
SYN flood attack on A1, A2 and A3 targeting both S1
and S2 for 3 ½ minutes. A2D2V2 IDIP enabled Snort
running on S1, IDIP firewall/router software running
on R97, R99, R102. Class based queueing and other
QoS techniques as per A2D2 implementation are
applied to firewall/routers.

Sarah Jelinek A2D2V2 25

A2D2V2 Full Attack and
Response Results, C1

Sarah Jelinek A2D2V2 26

A2D2V2 Full Attack and
Response Results, C2

Sarah Jelinek A2D2V2 27

A2D2V2 Full Attack and Router
Response Times

Event Time

R99 Receives First Attack
notification and starts tracing 0

R99 Sends out first attack
notification to upstream router R102

T + 6 seconds

R102 Receives first attack
notification from R99

T + 9 seconds

R97 Receives first attack notification
from R99 T + 62 seconds

R99 Applies first attack rule to itself T + 65 seconds

Sarah Jelinek A2D2V2 28

A2D2V2 IDIP Communication
Between IDIP firewall/routers

idip_firewall_receiver.c do_trace_request: UNDER ATTACK:<-- trace request being processed
idip_firewall_receiver.c do_trace_request: from source 192.168.16.133
idip_firewall_receiver.c do_trace_request: on interface eth3
idip_firewall_receiver.c do_trace_request: number of packets 308
idip_firewall_receiver.c do_request: message received FLOOD DETECTED on r993 from 192.168.16.133
(THRESHOLD 50 connections exceeded in 10 seconds)<--creation of IDIP FLOOD message
idip_firewall_receiver.c do_request: Connected to rate limiter
idip_firewall_receiver.c do_request: Sent msg FLOOD DETECTED on r993 from 192.168.16.133
(THRESHOLD 50 connections exceeded in 10 seconds) to rate limiter
idip_firewall_receiver.c do_trace_request: alertmsg sent to 192.168.14.102: FLOOD DETECTED on r993
from 192.168.16.133 (THRESHOLD 50 connections exceeded in 10 <-- alertmsg sent to upstream router,
14.102
seconds)
idip_firewall_receiver.c do_trace_request : Checking for other upstream routers
to notify
idip_firewall_receiver.c do_trace_request(): alertmsg sent to 192.168.12.97: FLOOD DETECTED on r993
from 192.168.16.133 <--same message sent to other upstream router, 12.97

Sarah Jelinek A2D2V2 29

A2D2V2 Cooperative Defense
Highlights

Without cooperative defense of A2D2V2 C2 would
starved out during the attack

Local attack response of A2D2 in place doesn't stop
this situation. A2D2V2 provides additional levels of
attack detection and response.

16.x and 11.x subnets have no attack detection
mechanism. Rely on notification from 13.x subnet
attack detection to stop attack traffic

 IDS in 13.x had much less work to do since attack
was pushed upstream, closer to source

Multi-administrative domain(A2D2V2 neighborhoods)
response is much faster than if human intervention is
required

Sarah Jelinek A2D2V2 30

A2D2V2 Conclusions

Cooperative, multi-network intrusion detection and
response system

A2D2V2 clients on IDIP enabled networks
experience reasonable network throughput(packets
per second measured for A2D2V2) during the attack

A2D2V2 clients on Non-IDIP enabled networks
experience benefits of IDIP cooperative detection
and response in other networks during attack

Allows victim networks to identify and stop attack at
source

Sarah Jelinek A2D2V2 31

Lessons Learned

So many...
How to setup an enterprise network test bed
How to setup static routing tables on routers for networks

not within 1 link
 Iptables with multiple input/output interfaces
 IP forwarding and how it works
Linux firewall security
Linux
Remote management of test bed
Hardware setup and configuration
Stacheldraht attack tools quirks
SSH and X11 forwarding

Sarah Jelinek A2D2V2 32

Future work

Correlation Engine
 IDIP Enhancements
Redundant/cooperative discovery coordinators
OpenSLP
 IDMEF, IDXP, CISL and IDIP
CIDF
Performance Enhancements
Tracing and locating of other IDIP networks

Sarah Jelinek A2D2V2 33

Backup Slides

Sarah Jelinek A2D2V2 34

Pieces of IDIP Implementation for
A2D2V2

IDIP Message Header:
struct idip_header {

 uint18_t version;
uint8_t flags;
uint16_t length;
uint8_t next_type;
uint8_t pad;
uint16_t checksum;
uint32_t seq_num;
uint32_t time_stamp;
uint32_t priority;
uint32_t dest_addr;
uint32_t dest_proc_id;
uint32_t dest_boot_time;
uint32_t pad_extra;
};

Sarah Jelinek A2D2V2 35

Pieces of IDIP Implementation for
A2D2V2

IDIP App Header:
struct idip_app_msg_hdr {
 uint8_t version;
 uint8_t class_id;
 uint32_t length;
 uint32_t timestamp;
 uint32_t thread_id;
 struct idip_app_orig_addr orig_addr;
 uint8_t flags;
 uint8_t pad[3];
};

Sarah Jelinek A2D2V2 36

IDIP vs. IDMEF
 IDMEF defines data formats and exchange

procedures for sharing data from IDS system to other
IDS systems and to mgt systems interacting with
them

Two open source IDMEF libraries available for
IDMEF, libidmef and a Java IDMEF classes

Both IDMEF and IDIP enable interoperability among
opensource commercial and research IDS systems

 IDMEF is XML based, makes it highly interoperable.
IDIP uses a message protocol

 IDIP requires additional software infrastructure on
IDIP nodes. IDMEF only requires use of the lib/java
class to generate the appropriate message.

Sarah Jelinek A2D2V2 37

IDIP vs. IDMEF
 IDIP and IDMEF require knowledgeable party to help

correlate data
 IDMEF has some correlation protocol definitions
 IDIP relies on trace message data to determine

appropriate responses
 IDMEF is an open, fully available protocol
 IDIP documentation is not fully available. The IDIP

Key distribution and Crypotgraphic extensions are
not available

Sarah Jelinek A2D2V2 38

IDMEF Model

Sarah Jelinek A2D2V2 39

IDIP and CISL
CISL is IDIP information specification language
 It is used in IDIP to communication trace and report

information
CISL uses S- expression syntax to form sentences

describing events and responses
CISL provides reasonably rich vocabulary for the

structure and instances of a set of events involving
only networked computers.

CISL has some limitations

Sarah Jelinek A2D2V2 40

IDIP and CISL
Example CISL expression for a simple event:
Delete
 (When
 (Time '12:24 15 Mar 1999 UTC')
)
 (Initiator
 (UserName 'joe')
 (UserID 1234)
 (HostName 'foo.example.com')
)
 (FileSource
 (FullPathName '/etc/passwd')
 (HostName 'foo.example.com')
)
)

Sarah Jelinek A2D2V2 41

IDIP and IDMEF
CISL seems a bit cumbersome
Using IDMEF(XML) to transfer data in a compatible

way might be more lightweight

Sarah Jelinek A2D2V2 42

IDIP and CIDF
Effort to develop protocols and application

programming interfaces so that IDS research
projects can share information and resources to
enable sharing of IDS components

Utilizes CISL for data format
CIDF's primary goal is to represent intrusion

detection data in a Global Intrusion Detection
Object(GIDO) format

Last substantial work done for CIDF in 1999
CIDF is intended for use in conjunction with IDIP

Sarah Jelinek A2D2V2 43

IDIP vs. IDXP
 IDXP is Intrusion Detection Exchange Protocol used

for exchanging data between IDS entities
Supports mutual authentication, integrity and

confidentiality over a connection-oriented protocol
Specified as a Blocks Extensible Exchange

Protocol(BEEP)
Provides for the exchange of IDMEF messages
 IDXP is an open, published standard
 IDIP protocol spec is only partially available
Both allow for proxy of intermediate nodes to pass

along data
Both provide for a security protocol. IDIP's security

protocol is not available at this time.

Sarah Jelinek A2D2V2 44

A2D2V2 Test Scenarios
1. Normal tcp_rcv traffic running on C1 and C2 and

tcp_snd running on S2 with no attack. And, no CBQ
applied to firewall/routers. This was used for baseline
packet performance data.

2. Normal tcp_rcv traffic running on C1 and C2,tcp_snd
running on S1 with the TCP SYN flood attack
running on A1, A2 and A3 targeting S1, 192.168.13.1
 and S2, 192.168.15.1. No IDIP or IDS software
running nor class based queueing has been applied.
This is to show the affect on the clients with no
DDoS attack mitigation. Results shown are for C1
only. C2 exhibited exact symptoms as C1 in this test
scenario, that is the near total loss of packet
transmission.

Sarah Jelinek A2D2V2 45

A2D2V2 Test Scenarios
3. Normal tcp_rcv traffic running on C1 and tcp_snd

running on S1 with a 3 1/2 minute non-stop TCP
SYN attack running on A1 and A2 with R97 and R99
running IDIP enabled software, and S1 running IDIP
enabled Snort IDS. Class based queueing and other
QoS techniques have been applied to each
participating router/firewall as discussed in Section
8.1.2. This scenario is intended to show the attack
response within 2 LAN's only. Cooperation happens
between the R97 and R99 firewall/routers.

Sarah Jelinek A2D2V2 46

A2D2V2 Test Scenarios
4. Normal tcp_rcv raffic running on C1 and C2, tcp_snd

running on S1 and S2 with the non-stop TCP SYN
flood attack running on A1, A2 and A3 targeting both
S1 and S2 for 3 ½ minutes, along with the A2D2V2
IDIP enabled Snort running on S1, and IDIP
firewall/router software running on R97, R99 and
R102. Class based queueing and other QoS
techniques have been applied to each participating
A2D2V2 router/firewall as discussed in Section 8.1.2.
 This is to show the results of a full enterprise wide
cooperative DDoS attack response and mitigation
scenario. This test was run several times, with 2
graphs per client being displayed to show the
consistency of response for each client.

Sarah Jelinek A2D2V2 47

Client C1 Baseline Packet Rate

Sarah Jelinek A2D2V2 48

Client C2 Baseline Packet Rate

Sarah Jelinek A2D2V2 49

Client C1 Test 2 data

Sarah Jelinek A2D2V2 50

Client C1 Test 3 data

Sarah Jelinek A2D2V2 51

A2D2V2 R99 iptables After Attack
and Mitigation

Chain INPUT (policy DROP 25 packets, 3604 bytes)

pkts bytes target prot opt in out source destination
0 0 level3 all -- any any 192.168.11.72 anywhere
0 0 level3 all -- any any 192.168.11.48 anywhere
0 0 level3 all -- any any 192.168.11.114 anywhere
0 0 level3 all -- any any 192.168.11.51 anywhere
0 0 level3 all -- any any 192.168.11.18 anywhere
0 0 level3 all -- any any 192.168.11.134 anywhere
512K 134M ACCEPT all -- any any anywhere anywhere

Chain FORWARD (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
0 0 level3 all -- any any 192.168.11.72 anywhere
0 0 level3 all -- any any 192.168.11.48 anywhere
0 0 level3 all -- any any 192.168.11.114 anywhere
0 0 level3 all -- any any 192.168.11.51 anywhere
0 0 level3 all -- any any 192.168.11.18 anywhere
0 0 level3 all -- any any 192.168.11.134 anywhere
894K 170M ACCEPT all -- any any anywhere anywhere

Chain OUTPUT (policy DROP 1 packets, 52 bytes)
pkts bytes target prot opt in out source destination
286K 102M ACCEPT all -- any any anywhere anywhere

Sarah Jelinek A2D2V2 52

A2D2V2 R99 iptables After Attack
and Mitigation

Chain level0 (0 references)
pkts bytes target prot opt in out source anywhere
0 0 DROP all -- any any anywhere anywhere

Chain level1 (0 references)
pkts bytes target prot opt in out source destination
0 0 DROP all -- any any anywhere anywhere

Chain level2 (0 references)
pkts bytes target prot opt in out source destination
0 0 ACCEPT all -- any any anywhere anywhere
 limit: avg 50/sec burst 5
0 0 DROP all -- any any anywhere anywhere

Chain level3 (14 references)
pkts bytes target prot opt in out source anywhere 0 0 ACCEPT all -- any any

anywhere anywhere
limit: avg 151/sec burst 5

0 0 DROP all -- any any anywhere anywhere

Sarah Jelinek A2D2V2 53

A2D2V2 R102 iptables After Attack
and Mitigation

Chain INPUT (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
0 0 level3 all -- any any 192.168.11.72 anywhere
0 0 level3 all -- any any 192.168.11.48 anywhere
0 0 level3 all -- any any 192.168.11.114 anywhere
0 0 level3 all -- any any 192.168.11.51 anywhere
0 0 level3 all -- any any 192.168.11.18 anywhere
0 0 level3 all -- any any 192.168.11.134 anywhere
3544 450K ACCEPT all -- any any anywhere anywhere

Chain FORWARD (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
0 0 level3 all -- any any 192.168.11.72 anywhere
0 0 level3 all -- any any 192.168.11.48 anywhere
0 0 level3 all -- any any 192.168.11.114 anywhere
0 0 level3 all -- any any 192.168.11.51 anywhere
0 0 level3 all -- any any 192.168.11.18 anywhere
0 0 level3 all -- any any 192.168.11.134 anywhere
1799K 253M ACCEPT all -- any any anywhere anywhere

Chain OUTPUT (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
3487 363K ACCEPT all -- any any anywhere anywhere

Sarah Jelinek A2D2V2 54

A2D2V2 R102 iptables After Attack
and Mitigation

 Chain level0 (0 references)
pkts bytes target prot opt in out source destination
0 0 DROP all -- any any anywhere anywhere

Chain level1 (0 references)
pkts bytes target prot opt in out source destination
0 0 DROP all -- any any anywhere anywhere

Chain level2 (0 references)
pkts bytes target prot opt in out source destination
0 0 ACCEPT all -- any any anywhere anywhere
 limit: avg 50/sec burst 5
0 0 DROP all -- any any anywhere anywhere

Chain level3 (14 references)
pkts bytes target prot opt in out source
destination
1243 1861K ACCEPT all -- any any anywhere anywhere

limit: avg 151/sec burst 5
500 749K DROP

Sarah Jelinek A2D2V2 55

A2D2V2 iptraf Data From S2
During Attack Run

Wed Jul 5 14:13:05 2006; ******** Detailed interface statistics started ********

*** Detailed statistics for interface eth0, generated Wed Jul 5 14:18:52 2006

Total: 1565701 packets, 210432861 bytes
 (incoming: 716189 packets, 45786214 bytes; outgoing: 849512 packets, 164646647 bytes)
IP: 1565701 packets, 186996595 bytes
 (incoming: 716189 packets, 34243116 bytes; outgoing: 849512 packets, 152753479 bytes)
TCP: 1565433 packets, 186978371 bytes
 (incoming: 715921 packets, 34224892 bytes; outgoing: 849512 packets, 152753479 bytes)
UDP: 0 packets, 0 bytes
 (incoming: 0 packets, 0 bytes; outgoing: 0 packets, 0 bytes)
ICMP: 268 packets, 18224 bytes
 (incoming: 268 packets, 18224 bytes; outgoing: 0 packets, 0 bytes)
Other IP: 0 packets, 0 bytes
 (incoming: 0 packets, 0 bytes; outgoing: 0 packets, 0 bytes)
Non-IP: 0 packets, 0 bytes
 (incoming: 0 packets, 0 bytes; outgoing: 0 packets, 0 bytes)
Broadcast: 0 packets, 0 bytes

Sarah Jelinek A2D2V2 56

A2D2V2 iptraf Data From S2
During Attack Run

Average rates:
 Total: 4851.48 kbits/s, 4512.11 packets/s
 Incoming: 1055.59 kbits/s, 2063.95 packets/s
 Outgoing: 3795.89 kbits/s, 2448.16 packets/s

Peak total activity: 7028.49 kbits/s, 8184.80 packets/s
Peak incoming rate: 2118.14 kbits/s, 4075.20 packets/s
Peak outgoing rate: 5706.25 kbits/s, 4901.00 packets/s
IP checksum errors: 0

Running time: 347 seconds
Wed Jul 5 14:18:52 2006; ******** Detailed interface statistics

stopped

Sarah Jelinek A2D2V2 57

A2D2V2 idip_firewall_receiver
main()

/*
 * The backplane listens on a socket and determines the type of request
 * being sent to it. From there it invokes the appropriate processing.
 */

void
main() {

 int length;
 int n;
 idip_message_t i_message;
 struct sockaddr_in toaddr;

 /* Set up our listening socket */
 if ((gen_mbx = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
 fprintf(stderr, "Unable to set up receiver socket.\n");
 perror(strerror(errno));
 return;
 } * Listen for messages from any host, on the IDIP_APP_PORT
 */
 (void) memset(&gen_from, 0, sizeof (gen_from));
 gen_from.sin_family = AF_INET;
 gen_from.sin_addr.s_addr = INADDR_ANY;

Sarah Jelinek A2D2V2 58

A2D2V2 idip_firewall_receiver
main()

 Gen_from.sin_port = htons(IDIP_APP_PORT);

 if (bind(gen_mbx, (struct sockaddr *) &gen_from,
 sizeof (struct sockaddr_in)) < 0) {
 fprintf(stderr, "%s", "Could not bind to port\n");
 perror(strerror(errno));
 }

 length = sizeof (gen_from);

 if (getsockname(gen_mbx, (struct sockaddr *) &gen_from,
&length)) {

 perror("getting socket name");
 exit(1);
 }

while (1) {
 n = recvfrom(gen_mbx, &i_message,
 sizeof (idip_message_t),
 0, (struct sockaddr *)&gen_from, &length);
 if (n < 0) {
 perror("receiving datagram messages");
 continue;

}

Sarah Jelinek A2D2V2 59

A2D2V2 idip_firewall_receiver
main()

 /*
 * Process this message. It is possible that there has
 * been a transmission problem or data is garbled.
 * Move on
 * if this is the case.
 */
 if (process_idip_message(&i_message) != 0) {
 perror("error processing idip message");
 continue;
 }
 }

 /*NOTREACHED*/
}

Sarah Jelinek A2D2V2 60

A2D2V2 tcpdump.sh

set time limit based on what caller specified. Exec script that will send
SIGTERM to tcpdump to force this script to run the END block. Background
this so it doesn't interrupt gawk processing below.

Invoke tcpdump with options and pipe through gawk to gather data. The
running of tcpdump is limited to the time specified by the caller. I
am only interested in the ip protocol packets. I will get the source
and destination addresses with the ''ip' specifier at $3 and $5 respectively.
Do not track outgoing packets from this host as part of tracing data. This is
achieved by the 'src host not loghost' qualifier.

#
I need to dump on every interface I find on system. so, call ifconfig -a
first, to get interface name. Call tcpdump on these.

INTERFACES=`/sbin/ifconfig | gawk ' {
 # Get the interface name
 x = split($1, ifname)
 newif[i]=ifname[1]
 if (match(newif[i], "eth") && newif[i] != "lo") {
 printf("%s ", newif[i])
 }

Sarah Jelinek A2D2V2 61

A2D2V2 tcpdump.sh
 # I need to dump on every interface I find on system. so, call ifconfig -a

first, to get interface name. Call tcpdump on these.

INTERFACES=`/sbin/ifconfig | gawk ' {
 # Get the interface name
 x = split($1, ifname)
 newif[i]=ifname[1]
 if (match(newif[i], "eth") && newif[i] != "lo") {
 printf("%s ", newif[i])
 }
 i = i + 1
} '`
for i in $INTERFACES
do
for each interface check number of packets , if over threshold, report
./dumper.sh $i $1 > /tmp/o_$i &
done
kill this process in $1 amount of time
./trace_kill $2
sleep 3
/bin/cat /tmp/o_*

