MASTER’S PROJECT

(Computer Science)

AN INDEPTH STUDY OF

RMI

EJB &

SERVLETS

AND RECOMMENDATIONS THEREOF

ADVISOR

Dr. Richard Wiener

COMMITTEE MEMBERS

Dr. Edward Chow

Dr. Dushan Badal

STUDENT

Rama Devi

CONTENTS

SUMMARY

5

 REF Summary \h

SECTION I – RMI

7
1.1 Network Programming Fundamentals

8
1.2 What is RMI?

8
1.3 RMI Architecture

9
Remote Call Semantics

10
Application Layer

11
The Stub and Skeleton Layers

11
The Remote Reference Layer

12
The Transport Layer

12
1.4 Other Relevant Information

12
More on the Name Service/RMI Registry

12
Garbage Collection

13
Class Loaders

13
Security

13
Dynamic Code Loading

13
Performance

13
Implementation Details

14
1.5 RMI Registry

14

Using the Registry

14

Locating Stub and Skeleton Classes

14

URL Conventions

14

Binding an Object to a Registry

14

Removing an Object from the Registry

15

Requesting Objects from the Registry

16

Implementing the Registry

17
1.6 Passing and Returning Parameters on a Network

17
1.7 Object Serialization

17
1.8 Steps involved in creating RMI Applications

20
1.9 Comparison of RMI and CORBA

21
1.10 RMI – Pros

23
1.11 RMI – Cons

23
1.12 Recommendations for the Technology / Future Prospects

23
1.13 Ecstasies, Trials and Tribulations experienced during Development
24
1.14 Sample Implementation

24

Class Diagram

25
SECTION II – SERVLETS

27
2.1 What are Servlets?

28
2.2 Some Relevant Definitions

29

Web Servers

29

Web Browser

29

Uniform Resource Identifier

30

URL Encoding

30

HTTP

30

The GET Method

30

The POST Method

30
2.3 HTTP Servlets

31
2.4 HTML and Servlets

34
2.5 Applet – Servlet Communication

36

The Servlet

37

The Applet

37
2.6 Session Management

40

Managing Session Data

42

Persistent Cookies

43

URL Rewriting

44

Hidden Values

44
2.7 Security

45

HTTP Authentication

45

Custom Authentication

45

HTML Form Authentication

46

Applet Authentication

46

Secure Sockets Layer

46
2.8 Servlet Life Cycle, Persistence

46

Servlet Reloading

47

Init and Destroy

47

Thread-Safe Servlets

47
2.9 Other Relevant Information

47

Servlet Chaining

47

Triggering a Servlet Chain

47

Inter-Servlet Communication

48

Server Side Includes

48
2.10 Servlets – Pros

49
2.11 Servlets – Cons

49
2.12 Recommendations for the Technology / Future Prospects

49
2.13 Ecstasies, Trials and Tribulations experienced during Development
49
2.14 Sample Implementation

50

Class Diagram

54
SECTION III – EJBs

57
3.1 Different Client Server Architectures

58
3.2 EJB Architecture

58
3.3 EJB Container

59
3.4 Main Interfaces

60

The Home Interface

60

The Remote Interface

60
3.5 Deployment Descriptor

61
3.6 Deployment Tool

61
3.7 Helper Classes

61
3.8 Types of EJBs

61

Session Enterprise Java Beans

61

Stateful Session Beans

63

Stateless Session Beans

63

Life Cycle of Session Beans

64

Entity Enterprise Java Beans

64

Bean Managed Persistence

65

Container Managed Persistence

65

Primary Key

66

Rules for Entity Beans

66

Entity Bean Implementation Details

66
3.9 Security

70
3.10 Persistence

70
3.11 Session Management

71
3.12 Resource Pooling

71
3.13 Transaction Management

72
3.14 Bean Development and Deployment

73
3.15 Other Relevant Information

75

EJB Specification

75

EJB enabled Servers in the Market

75
3.16 EJB Clients

76
3.17 EJB – Pros

77
3.18 EJB – Cons

77
3.19 Recommendations for the Technology / Future Prospects

77
3.20 Ecstasies, Trials and Tribulations experienced during Development
77
3.21 Sample Implementation

78

Class Diagram

78
References

80
Sample Implementations – Environment Details

80
Appendix

81
Sample Implementation Code

RMI

82

Servlets

92

EJBs

105
Java API Excerpts

RMI

122

Servlets

126

EJBs

134
Summary

This section summarizes the pros and cons for each technology and also lists the recommendations that were made after conducting the study.

Technology
Pros
Cons

RMI
· It is very easy to develop distributed applications with RMI.

· The architecture is clean and simple.

· Data is passed between machines in the form of objects.

· It is object-oriented.

· Dynamic code loading.

· No special IDL (Interface Definition Language) is required to build RMI applications. Everything is written in Java and javac and rmic compilers generate the bytecode(class files) required for execution.
· RMI technology can be used only with Java

· RMI can only use objects to talk to remote objects.

· For large applications where performance is of concern, methodologies like object pooling, database connection pooling, thread synchronization etc. have to be taken care of by the programmer. The RMI infrastructure does not provide this.

Servlets
· Servlets are such a simple and elegant solution to extending server side functionality.

· They are faster than CGI because there is no process creation overhead.

· They are very easy to develop.

· They are portable and are platform independent.
· You need a java enabled web server.

· Web server configurations vary widely and can be tiring. There are no standards in configuring web servers for servlets.

EJBs
· It is very easy to build an EJB because most of the underlying infrastructure code is generated by the deployment tool provided by the vendor. The developer needs to only focus on the business aspects of his application.

· The architecture is easily scalable. Session management, transaction management, resource pooling etc. are all provided transparently by the EJB server.
· Deployment is vendor specific.

· Deployment tools are not standardized.

· EJBs can be slow because the underlying technology is RMI.

· Not all EJB vendors support all of the EJB specification.

· It is an evolving technology.

· Total EJB portability across multiple vendors has yet to be tested and realized.

Technology
Recommendations

RMI
RMI is the underlying technology for EJB. EJB looks very promising and there are many application servers in the market today that have implemented EJB technology and provided containers for the same. So though not very much in use directly as a technology, it provides a basis for other technologies and hence is here to stay. The latest JDK also provides API to talk to CORBA. With this API Java becomes CORBA compliant and non-Java objects will also be able to talk to Java’s Remote Objects and vice versa. This will also be of great help in promoting the technology.

Servlets
Servlets are persistent. They are loaded once by a server and can maintain services between requests.

Servlets are fast and performance is much better because of the point stated above.

Servlets are written in Java. So they are platform independent.

Servlets are extensible(object oriented, robust).

Servlets are secure. They can only be invoked using a web server.

Servlets can be used with a variety of clients like applets and html.

Servlets provide in-built session management.

For all of the above reasons, use of servlets for server side functionality is highly recommended.

EJBs
EJB is an evolving technology. It looks promising. It has many positive features like the ease of development, automatic infrastructure code generation and deployment, scalability, transaction management and resource management. These features are primarily provided by the Deployment Tool and the EJB Container that each Vendor supplies for the EJB Server implementation. It provides a reliable and reusable architecture for distributed computing on the server side.

As for performance, I have heard that it does not look very promising as yet. If vendors provide optimizations for performance and also standardize processes for deployment, the technology will be sure to take off in the near future. The other concerns I have are related to entity beans. Entity beans are supposed to be in-memory reflections of the underlying data store. It is like duplicating the DBMS layer. The exact use and performance especially for a large number of clients needs to be thoroughly investigated.

SECTION I

RMI

Acknowledgements

Materials in this section were referenced from the following books and websites.

Java RMI – Troy Bryan Downing

Java Programming with CORBA – Andreas Vogel, Keith Duddy

Client/ServerProgramming with Java and CORBA – Robert Orfali, Dan Harkey

www.java.sun.com
1.1 Network Programming Fundamentals

A network is a collection of computers and communication devices such as gateways and routers. Each computer on the network is called a node. Each node has a unique identifier, which is also called its address. Computers on a network communicate with each other. Computers on a network can also communicate with computers on other networks besides its own leading to inter-networking. Communications between computers /networks must adhere to certain rules related to sending and receiving data in the form of messages, message formats, data formats, handshake signals etc. These rules are called protocols. A very popular and commonly used set of protocols is TCP/IP. TCP/IP has four layers. The application layer, the transport layer, the Internet layer, and the network interface layer. All these layers work together and provide services to transfer data across networks. The application layer provides services that can be used by other applications such as RMI. This layer incorporates the functionality of the top 3 layers of the 7 layer OSI Model. The transport layer provides two types of services namely TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). TCP is a reliable connection oriented transfer of byte streams and provides mechanisms for error recovery. UDP is a connection-less best-effort transfer of messages and has no error-recovery mechanism. The Internet layer handles the transfer of information across networks using routers and gateways. It deals with routing of packets across networks and congestion control. Packets are exchanged between routers without a connection setup. Packets are routed independently and may traverse different paths. The network interface layer is concerned with network specific aspects of packet transfer. It includes functionality of the network and data link layers in the OSI Model. At each gateway, the network access protocol encapsulates the packet into a packet or frame of the underlying network. This provides independence from the underlying details of each network.

RMI works over TCP/IP.

1.2 What is RMI?

RMI is a pure Java solution to Remote Procedure Calls. It rivals DCOM and CORBA. It is an abstraction for distributing programs across memory address spaces on a single machine, across multiple processors in a single machine or across many machines on a network. RMI helps to easily build client-server applications. The programmer need not worry about sending data or translating objects into byte streams or any of the underlying communication details. This is all taken care of by the RMI infrastructure. Instead the programmer can concentrate on the application design and business aspects that his application needs to support. RMI abstracts the communication elements to seem local even though the objects may be distributed over several machines.

1.3 RMI Architecture

[image: image1.emf]RMIServer

RMIServer()

executeTransaction()

main()

(from rmiserver)

RMIMsgDialog

RMIMsgDialog()

actionPerformed()

paint()

windowActivated()

windowClosed()

windowClosing()

windowDeactivated()

windowDeiconified()

windowIconified()

windowOpened()

(from rmiclient)

RMIClient

RMIClient()

paint()

actionPerformed()

locateRMIServer()

getUserInfo()

getCountryList()

windowActivated()

windowClosed()

windowClosing()

windowDeactivated()

windowDeiconified()

windowIconified()

windowOpened()

main()

(from rmiclient)

RMIRemote

executeTransaction()

(from rmiserver)

-rmiServerRef

GetCountries

execute()

(from rmitransactions)

GetUserInfo

setUserId()

execute()

(from rmitransactions)

User

User()

User()

setFirstName()

setLastName()

setAddress()

setPhone()

setEmail()

getFirstName()

getLastName()

getAddress()

getPhone()

getEmail()

(from rmidata)

user

RMITransaction

execute()

executeQuery()

executeUpdate()

connectToDB()

disconnectFromDB()

(from rmitransactions)

RMITransactionImpl

RMITransactionImpl()

connectToDB()

disconnectFromDB()

execute()

executeQuery()

executeUpdate()

setDBDriver()

setDBURL()

setDBUser()

setDBPassword()

(from rmitransactions)

[image: image2.png]23 http://localhost:8080/5 ampleServlets/serviets/

rosoft Internet Explorer I [=] B
|
J & Al ‘ Q@ &@ 3

B " | S Gtn oo | o5 R 6 G |MSem
| Acttess [E7 it st S0 S ey = [Juss
USER INFORMATION

First Name Last Name

Address

Telephone Number GetUser nfo

Email

Clear User Info =

LIST OF COUNTRIES

Get Countries

Clear Countries
&] ()

R

(25 Localnvenet zore

[image: image3.png]23 http://localhost:8080/5 ampleServlets/serviets/

I

rosoft Intemet Explorer

[_[CIx]

J¢-.

Back foped | Sop Refiesh Home

Q‘@@G

Seach Faviles History Charnels

Fulsoreen M

| Acttess [E7 it st S0 S ey

= [Juss

FEREE Session 1d is #+++* : To1010mC7672583400573176 A

USER INFORMATION

First Name [Rama Last Name Devi

Address [2424

Telephone Nurber [719)535-6417

Email [Rama Devi@weom.com

GetUsernfo

Clear User Info

wwE Secsion Id is *¥** : To1010mC7672583400573176 At
#EEE Yoy have accessed this serviet : 0 fimes.

FEEEE Coole FEFE javas servlet hitp. Cookie@570d7a
HEEEE Cookie name : JSESSIONID

HEEEE Coolie value : To1010mCT672583400573176A1
HEEEE Coolie comment : mill

#REE Coolie domain : null

HEEEE Coolie age -1

HEEEE Coolie path : null

HEEEE Coolie version : 0

LIST OF COUNTRIES

USA
trlia

&] [[

[[[E5 Losalmuanetzone

R

 Naming.lookup()

[image: image4.emf]CountryListServlet

CountryListServlet()

dispatch()

doGet()

doPost()

generateOutput()

generateErrorOutput()

clearOutput()

UserInfoServlet

UserInfoServlet()

dispatch()

doGet()

doPost()

generateOutput()

generateErrorOutput()

clearOutput()

GetCountries

GetCountries()

execute()

(from transactions)

GetUserInfo

GetUserInfo()

setUserId()

execute()

(from transactions)

User

User()

User()

setFirstName()

setLastName()

setAddress()

setPhone()

setEmail()

getFirstName()

getLastName()

getAddress()

getPhone()

getEmail()

(from data)

user

Transaction

execute()

executeQuery()

executeUpdate()

connectToDB()

disconnectFromDB()

(from transactions)

TransactionImpl

TransactionImpl()

connectToDB()

disconnectFromDB()

execute()

executeQuery()

executeUpdate()

setDBDriver()

setDBURL()

setDBUser()

setDBPassword()

(from transactions)

HttpServlet

(from http)

 Naming.bind()

[image: image5.png][Applet Viewer: Testapplet [-1o[x]

Applet

Time of Day Sun Oct 28 20:41:58 MST 2000
Reffesh

Applet started

[image: image6.png]Progross:
B O [Contacted Server.
eplcation SampleEJB ransferred
[SamploEJB has 2 ejbs, 0 web camponenis o deploy
Deploying Ejos
Pracessing beans
(Generating wrapper cod for Userlnfo
(Generating wrapper cod for CountyList
(Compilng wrapper code
(Compiing RMLIOP code
Making clent JARs
Making server JARS
eployment of SarpleEJB i complete
(Cllnt code for the dployed appication SampleEJB saved 1o CAUCCSIMSProjectEJBISampleEJBCTentjar

[ox |

 RemoteObject.execute()

The RMI architecture typically consists of the following components.

RMI Registry

RMI Server

Remote Objects and

RMI Clients.

The RMI Registry is a naming service, a kind of a bootstrap server used to register Remote Objects. Clients can query the registry for remote objects by specifying their associated names. The java runtime environment comes with the registry and it can be started as a service from the command line. The RMI server as discussed in the following section can also start it.

The RMI Server uses the Registry to bind names to remote objects and register them with the registry. The server can kick-off the RMI registry when it starts up. Enabling an RMI server application to start the registry and control access to it gives more control to the developer and also enables logging of whatever goes on.

Remote Objects are those objects that can be exported and made available to clients. Clients usually query for a remote object using the RMI registry directly or using the server thereby getting a reference. Using this reference, clients then call remote methods. Objects that have methods that can be called across virtual machines are remote objects.

RMI clients are applications that query the registry for remote objects and using the reference obtained call remote methods on them for various services that the remote object provides.

Remote Call Semantics

A remote call in RMI is identical to a local call except for the following.

An object passed to a remote method or returned from the method must be serializable.

The object is passed by value instead of reference (except for references to remote objects themselves).

A client always refers to a remote object through one of the remote interfaces that it implements. A remote object can be cast to any of the interfaces that it implements.

A remote method invocation is made through a reference or handle to a remote object. The reference or handle to the remote object is obtained from a server application that exports the referenced remote object. The client looks up the registry for a remote object by name or by checking the return value from another remote method call.

When a reference to a remote object is obtained, the remote object is not sent over the network to the client requesting it. In its place a proxy object or stub is sent. This stub is the client side proxy for the remote object. All interactions by the client will be performed with this stub class. The stub is responsible for handing off data between the local system and the remote system. Many clients can hold references to a single remote object. Each client will have its own stub object that represents the remote object but the remote object will not be replicated.

On the server side the skeleton class is responsible for handing off the method calls and data to the actual object being referenced. This is the server side proxy for the object being exported.

The RMI system can be thought of as a four-layer model.

Layer 1: This is the application layer, the actual implementation of the client and server applications. Here high-level calls are made to access and export remote objects.

Layer2: This is the proxy layer, the skeleton and stub layer. The application deals with this layer directly. All calls to remote methods and marshalling of parameters and return objects are done through these proxies.

Layer3: This is the remote reference layer. It is responsible for dealing with the semantics of the remote invocations. This layer is responsible for handling replicated objects and for performing implementation specific tasks with remote objects.

Layer4: This is the transport layer. This layer is responsible for actually setting up connections and handling the transport of data from one machine to another.

Application Layer

An application that makes available some of its methods to its remote clients must declare such methods in an interface that extends the java.rmi.Remote interface. This interface is coded the same way any other interface is coded with the addition that exception handling must be provided to handle RemoteExceptions. These are specific to remote calls and can be thrown if a problem arises in contacting or interacting with a remote application. Once the methods described in the remote interfaces have been implemented, the object must be exported. This can be done implicitly if the object extends the UnicastRemoteObject class or it can be done explicitly with a call to exportObject () in the package java.rmi.server. Then the application will register itself with a name server, or registry. This is used to make first contact with the application and obtain a reference to its remote objects. Once the first contact is made, any other remote object references that the server may want to export may be returned by method calls from the first object. Usually the name service is generally necessary only upon startup.

On the client side, the client simply requests a remote object from either a registry or a remote object that it has already obtained. The reference to the remote object is cast to one of its Remote interfaces, and any calls to remote methods can be made directly through this interface.

The Stub and Skeleton layers

The skeleton and stub classes are generated using the RMIC compiler. The RMIC compiler comes with the Java Development Kit. The stub and skeletons are class files that do the client and server side representations of a remote object.

The stub is the client side proxy for the remote object. It is the application’s interface to the remote object. It initiates a call to the remote object that it represents by way of the remote reference layer. The stub is also responsible for marshalling method arguments to a marshall stream that is also acquired through the remote reference layer. A marshal stream is nothing but a stream object that is used to transport parameters, exceptions and errors. The stub and skeleton classes use these streams to communicate with each other. The stub unmarshals values that are returned by the remote object via the marshal stream. Finally the stub informs the remote reference layer that the call is complete. The stub class also implements all the interfaces that the remote object it represents implements. Therefore it can be cast to any of those remote interfaces. Hence the design allows for the stub class to have type equivalency to any of the remote interfaces of a remote object. However, this also means that only those methods defined in a remote interface are available to be called in the receiving virtual machine.

The skeleton class also marshals parameters to and from the marshal stream. The skeleton class stays on the server side. It deals directly with the implementation classes of the Remote methods being exported. The skeleton is responsible for sending parameters to the method implementation and for sending return values and exceptions back to the client that made the call. The skeleton is responsible for receiving method calls from the client stub, marshaling any necessary parameters and patching the actual methods being exported. The skeleton is the server side proxy for the remote object.

Remote Reference Layer

This layer is the abstraction between the skeleton and the stub classes. It also represents the communication protocols that are handled by the transport layer. The remote reference layer expects to get a stream-oriented connection from the transport layer. The actual transport may take place using a non-connection-based protocol, but interaction between the remote reference layer and the transport layer will take place as if it involved a stream, or connection-based protocol. This layer is also responsible for establishing persistence semantics and strategies for recovery of lost connections.

The Transport Layer

The transport layer handles the actual machine to machine connections and communications. Because this communication is abstracted it allows system implementers to replace the low-level communications protocols with alternatives. Default communication is through a standard TCP/IP connection. The transport layer creates a stream that is accessed by the remote reference layer to send and receive data to and from other machines. The transport layer sets up connections to remote machines, manages the connections, monitors the connections to make sure that they are all live and listens for connections from other machines. The transport layer can be modified to handle encrypted streams, compression algorithms and a number of other security or performance related enhancements. Because this layer is independent of the reference layer, the stub/skeleton layer and the application layer, an RMI application does not need to know the specifics of any changes made to the transport layer.

1.4 Other relevant information

More on the Name Service / RMI Registry

RMI requires a name server, which is also called a registry. Any remote object must be registered with the registry to be accessible by clients. When a client wishes to obtain a reference to a remote object, it is accessed by specifying a URL based lookup on a well-known registry, and a reference to the remote object is returned if the lookup succeeds. There are two ways of designing registry services. In the first case a registry is run on a well-known port. Applications that export objects and run on the same physical machine, then register their remote objects with this registry. A client can then query this registry for the remote objects. In the second case, an application can run its own registry service on its own defined port. One remote object can be registered with the registry. This remote object can define methods to return references to other remote objects. With this approach, the client will need to lookup the registry only once to get the reference to the initial remote object. With this reference, the client can call methods to get references to other remote objects.

Garbage Collection

Garbage collection in a standalone environment is very different from garbage collection in a distributed environment. The garbage collector must check for references to remote objects across distributed machines before picking objects for deletion. The distributed garbage collection algorithm is based on reference counting. When a client first receives a reference to a remote object a referenced message is sent to the server that exports the object. Every subsequent reference to the object by the client within the client’s machine causes the reference counter to be incremented. As a local reference is finalized, the reference count is decremented. And when the count goes to zero, an unreferenced message is sent to the server. Once the server has no more references to the object including local references, the object is free to be finalized and garbage collected. An object can also be collected prematurely if network connections break.

Class Loaders

RMI uses the RMIClassLoader to load the stub and skeleton classes as well as any utility classes that the stub and skeletons need. The class loader first tries to load the required classes from the local file system using the classpath variable. If it does not find the class, it extracts a URL that is included in a marshaled stream of serialized objects. The URL is then used as a codebase to locate the required classes.

Security

RMI requires that a security manager be explicitly set. RMISecurityManager is a class that can be used to set security. Security must be set before any stub classes are loaded over the network. The RMI security manager does not allow stub classes to do anything except load necessary class files over the network. For more security, SSL and encryption can be used to create new transport mechanisms.

Dynamic Code Loading

One of the unique features of RMI is its ability to download the bytecodes of an object's class if the class is not defined in the receiver's virtual machine. The types and the behavior of an object, previously available only in a single virtual machine, can be transmitted to another, possibly remote, virtual machine. RMI passes objects by their true type, so the behavior of those objects is not changed when they are sent to another virtual machine. This allows new types to be introduced into a remote virtual machine, thus extending the behavior of an application dynamically.

Performance

RMI is slow. Especially compared to local procedure calls and optimized special purpose communications protocols that are built directly over the transport layer. Sending objects back and forth can slow down the system. It is simple, easy to develop and use.

Implementation Details

A distributed application built using Java RMI is made up of interfaces and classes. The interfaces define methods, and the classes implement the methods defined in the interfaces and may define additional methods as well. In a distributed application some of the implementations are assumed to reside on different virtual machines.

1.5 RMI Registry

Using the Registry

As already mentioned the RMI registry is a server running on a specific port listening to client requests for remote object references. The registry keeps references to remote objects that are being exported by applications. Applications can add, remove and access remote objects in the registry by using the Registry interface and the naming class. The default RMI registry can be used which runs on port 1099. To run the default registry, we need to type rmiregistry on the command prompt. Another way to start the registry is to add registry services to an application and start the application. The sample implementation that I have provided uses this method.

Locating Stub and Skeleton Classes

When the RMI registry starts it looks at the classpath variable to locate all classes that are needed in order to serve remote objects. Another way is to set the codebase property to point to the URL where the classes are located. The registry then looks at this URL to load the classes it needs.

URL Conventions

The URL (Uniform Resource Locator) is a naming convention. It allows for the specification of a protocol, a machine name, a port number, a file and other parameters. For RMI the URL convention to be used will be as follows.

Rmi://myMachine.com/MyRemoteObject.

If the Naming class is used for lookup, the protocol assumed is RMI. If the default registry is used, then the port number is 1099. And if the local machine is used, the URL can simply be specified as MyRemoteObject.

Binding an Object to a Registry

The base object of all remote objects is java.rmi.RemoteObject. This class in-turn is derived from java.lang.Object. RemoteObject implements the Remote interface. This class overrides certain methods in the java.lang.Object class in order to make sense in the context of distributed objects. These include equals(), hashcode() and toString(). The equals() method checks if two object references are equal, not if the contents are equal. The hashcode() returns the same key for any references that refer to the same remote object. The toString() method returns information about the transport of the object, such as the underlying network protocol, host name and port number that the object is coming from. The UnicastRemoteObject class indirectly subclasses the RemoteObject class via the java.rmi.Server class.

An application can register or bind a remote object to a registry only if the remote object extends the UnicastRemoteObject or extends a Remote interface and is exported with the UnicastRemoteObject.exportObject() method. The application can register objects only in the registry running on the same machine as itself. The application needs three things to register a remote object. The registry’s address, the remote object reference and a name for the remote object. The remote object is usually accessed by this name. Remote object names in the registry must be unique. Methods used for this purpose can be found in the Naming class and are called bind() and rebind(). Sample code is shown below.

try

{

//Create an instance of this server

RMIRemote rmiObj = new RMIServer();

System.out.println("Starting the RMI Registry on port 1099...");

//Start the default registry process

Registry customRegistry = LocateRegistry.createRegistry(1099);

//Bind this server to the Registry

// RMIServer.RMI_SERVER is a name string

customRegistry.bind(RMIServer.RMI_SERVER, rmiObj);

}

catch(RemoteException e)

{

System.out.println("A remote exception has been caught");

e.printStackTrace();

}

catch(Exception e)

{

e.printStackTrace();

}

The rebind() method is used to bind an already existing name to a new remote object reference.

//Rebind this server to the Registry

try

{

customRegistry.rebind(“SomeName”, rmiObj);

}

Removing an Object from the Registry

An application can remove an object only from a registry that is running on the same machine as itself. The unbind() method is used to remove a remote object from the registry. This method checks if an object by the given name is bound in the registry and remove it if bound. The following code segment shows how unbind() is used. This method is also found in the java.rmi.Naming class.

//Unbind this server to the Registry

try

{

customRegistry.unbind(RMIServer.RMI_SERVER);

}

Requesting Objects from the Registry

Clients first obtain a reference to the registry using the LocateRegistry.getRegistry() method in the java.rmi.registry package. Clients can then request remote object references from a registry using the lookup() method in the Naming class and the registry reference obtained previously. This method checks if the requested remote object exists in the registry and if so returns the actual stub class that is associated with the remote object as a Remote reference. This Remote reference can be typecast to the appropriate Remote interface by the client. Code is as shown below.

//Locate the remote RMI Server using the default registry

//running on port 1099.

public void locateRMIServer() throws Exception

{

if(rmiServerRef == null)

{

 try

 {

// RMIServer.RMI_SERVER is a string, a name for the remote object.

rmiServerRef=(RMIRemote)Naming.lookup(RMIServer.RMI_SERVER);

System.out.println("Successfully obtained reference to RMI Server");

 }

 catch(Exception e)

 {

throw e;

 }

 }

 }

After successfully obtaining a remote reference, the client can call methods on the remote reference which will be executed on the remote machine. The communications involved are transparent to the user.

Implementing the Registry

This deals with an application running its own registry service. The other way to run the registry is to start the default registry server that comes with the Java Development Kit. The application can start the registry on any port higher that 1024. The default is 1099. The createRegistry() method in the LocateRegistry class is used to create the registry on the specified port. Upon success a Registry object is returned. Code for this is shown below.

public RMIRegistryProcess()

{

try

{

System.out.println("Starting the RMI Registry on port 1099...");

customRegistry = LocateRegistry.createRegistry(1099);

//customRegistry.bind(REGISTRY_OBJECT_NAME, this);

}

catch(RemoteException e)

{

e.printStackTrace();

}

}

1.6 Passing and Returning Parameters on a Network

RMI depends on sending and receiving objects to and from remote methods distributed across several machines. RMI is based on an object-oriented architecture. When a client invokes a method on a remote machine, it asks for the address of the method and also asks for a handle to the actual object that implements the method. In RMI any object that is sent as a parameter to a remote method or return objects returned by remote methods are all passed by value. When a client makes a request for a remote object, a reference to the remote object is returned in the form of the client side proxy or the stub. The stub represents an object on the server side. Any client requests are forwarded by the stub to the actual remote object on the server.

RMI is based on java objects. For transmission, a protocol must be developed to handle the disassembly, transmission and reconstruction of data. This is facilitated by object serialization. Serialization tags an object as fit for sending data over a data stream.

1.7 Object Serialization

Serialized objects are always copies of the original object. All classes in the core java class library are serializable. A class that contains only static and/or transient fields is not serializable. Only those classes that implement the Serializable interface or derive from a class that implements the Serializable interface are serializable. When default serialization is used, the static and transient fields are not serialized. This is one way to prevent sensitive data from getting across the network.

The object stream for an object contains header information that is used to rebuild the object along with data for the object. To transmit an object across, the sender writes the type of the object and the values of each of its fields to the stream. The receiver then reads the type of the object from the stream. Then it constructs a new object of that type. Then reads the values of the fields for the object from the stream and initializes the new object with those values. So the receiver must have knowledge of the type of object. When the receiver recreates the object the bytecode for the object’s class must be available to the receiver. The runtime environment in which the receiver runs first tries to load the class from the local system. If the class is not found, the class loader then tries to load the class based on a URL from the sender’s site. If still the class is not found, the class loader will then throw a ClassNotFoundException. In RMI, all this is done automatically. Example code for serializing the object follows.

public class User implements Serializable

{

private String firstName = "";

private String lastName = "";

private String address = "";

private String phone = "";

private String email = "";

……

} //End of class definition

Using default serialization, the system uses reflection to figure out the composition of the object and sends its values along with header information. The following code shows how the receiver then deserializes the object. We will also need to cast the retrieved object to the correct type.

Custom serialization can be done by implementing the Serializable interface. The class must define a default constructor and must also override the readObject() and writeObject() methods. Example code follows.

public class User implements Serializable

{

private String firstName = "";

private double dVar = 0.0;

private int nVar = 0;

private long lVar = 0;

private boolean bVar = false;

……

private void writeObject(java.io.ObjectOutputStream out) throws IOException

{

out.writeObject(firstName);

out.writeDouble(dVar);

out.writeInt(nVar);

out.writeLong(lVar);

out.writeBoolean(bVar);

}

private void readObject(java.io.ObjectInputStream in) throws IOException,

ClassNotFoundException

{

firstName = (String) in.readObject();

dVar = in.readDouble();

nVar = in.readInt();

lVar = in.readLong();

bVar = in.readBoolean();

}

} //End of class definition

The readObject() is passed an ObjectInputStream while the writeObject() method is passed an ObjectOutputStream object. Overriding these methods helps to provide specialized processing of data if needed. When objects are embedded within objects, we must make sure that all objects are serializable. In such cases, the system constructs a graph of the object and its references and this graph is traversed for the serialization.

Marking a field as transient will not serialize the field. Marking the field static will not serialize the field either, but will change the meaning of the field. So if we don’t want to serialize a field, we could make it transient as opposed to static.

The ObjectInputStream and ObjectOutputStream classes abstract all the functionality of constructing and deconstructing objects.

Many of the core classes, including those in the packages java.lang and java.util, implement the Serializable interface. Objects such as a file descriptor that encapsulate information that makes sense only within a single address space are not serializable.

A sample of a serialized is object is given below. The object contained data as follows.

public class User implements Serializable

{

private String firstName = “Rama”;

private String lastName = “Devi”;

private String address = “2424 GOG, COS, CO – 80919”;

private String phone = “(719)535-6417”;

private String email = “Rama.Devi@wcom.com”;

}

Serialized data follows.

¬í
t
Ramat
Devit
2424 GOG, COS, CO - 80919t

(719)535-6417t
Rama.Devi@wcom.com

Samples of stub and skeleton classes generated by the rmic compiler follow. These samples were obtained for the RMIServer.class using the javap utility. For the code sample for RMIServer class please refer to the Appendix that lists the code for sample implementation.

Compiled from RMIServer_Stub.java

public final synchronized class RMIServer_Stub extends java.rmi.server.RemoteStu

b implements RMIRemote , java.rmi.Remote

 /* ACC_SUPER bit set */

{

 public RMIServer_Stub();

 public RMIServer_Stub(java.rmi.server.RemoteRef);

 public java.lang.Object executeTransaction(RMITransaction);

 static static {};

}

Compiled from RMIServer_Skel.java

public final synchronized class RMIServer_Skel extends java.lang.Object implements java.rmi.server.Skeleton

 /* ACC_SUPER bit set */

{

 public java.rmi.server.Operation getOperations()[];

 public void dispatch(java.rmi.Remote, java.rmi.server.RemoteCall, int, long)

;

 public RMIServer_Skel();

 static static {};

}

1.8 Steps Involved in creating RMI Applications

Define all remote interfaces : These remote interfaces will define all the methods that can be invoked by a client. Any local objects that will be used by the remote interfaces must also be defined.

Implement the Remote Objects : This step involves implementing the remote classes. These classes will implement one or more remote interfaces identified in the above step.

Implement clients : This step involves implementing the client pieces. These client pieces will in turn call methods on the remote objects identified and implemented thus far.

Compile source code and generate stubs and skeletons : This step involves compiling all source files to generate corresponding class files. It then involves running the rmic compiler to generate the stub and skeleton files for the remote objects.

Make classes accessible : This step involves making classes available for downloading for clients if they don’t have it on their machines. This is usually done via a web server.

Start the RMI applications : This step involves starting the RMI registry, the RMI server and the client.

1.9 Comparison of RMI and CORBA

RMI
CORBA

RMI is a pure Java solution to distributed computing. Servers and clients developed with Java RMI can be deployed anywhere on a network on any platform that supports the Java runtime environment.
Corba is a language and platform independent solution to distributed computing. Corba objects can be written in Java, C, C++, COBOL etc. Key feature here is a language neutral IDL (Interface Definition Language) and each language that supports Corba has its own IDL mapping. Java also provides such a mapping called Java IDL. OMG (Object management Group – the consortium of industry giants that conceived CORBA) specifies a mapping from IDL to several different programming languages, including C, C++, Smalltalk, COBOL, Ada, and Java. When mapped, each statement in OMG IDL is translated to a corresponding statement in the programming language of choice. The CORBA IDL is just declarations. The IDL grammar is a subset of C++. Both client and server objects use ORBs (Object Request Brokers). The ORB is a message bus that lets objects transparently make requests to and receive responses from other objects (local or remote).

RMI is a Java specific distributed object model.
Corba is an industry standard distributed object model.

RMI is slower (from established statistics)
Corba is faster. (from established statistics)

For RMI the server provides a remote interface, and the client calls a remote interface. Client and Server here define object level interaction. Stubs and Skeletons are used as client and server side proxies. The stub deals with binding to remote objects and client-side data marshalling. The skeleton handles incoming invocations from clients and does the server side marshalling
For Corba the server provides a remote interface, and the client calls a remote interface. Client and Server here define object level interaction. Stubs and Skeletons are used as client and server side proxies. They also take care of data marshalling on their respective sides.

RMI uses the JRMP (Java Remote Messaging Protocol). This in turn is based on the TCP/IP protocol.
Corba uses IIOP (Internet-Inter ORB Protocol). This in turn is based on the TCP/IP protocol.

RMI has a registry service, which by default runs on port 1099. Remote Objects register themselves with this registry using a name (String). URL based naming can also be specified.
Corba has a naming service, which by default runs on port 900. Corba objects register with this naming service using a name (String). In addition remote objects also connect to an ORB (Object Request Broker). No URL based naming is possible.

Clients query the registry for a remote object. After obtaining a reference to the remote object, clients then call methods on this remote object.
Clients query the naming service for a remote object. After obtaining a reference to the remote object, clients then call methods on this remote object.

RMI enables a client to interact with a remote object by reference, or to download it and manipulate it in the local runtime environment by value. This is because all objects in RMI are Java objects. RMI uses the object serialization capabilities of the Java language to transport objects from the server to the client. So RMI can dynamically download stubs and classes.
The client never gets an actual copy of the server object. Instead, the client uses stubs in the local environment to manipulate the server object residing on the remote platform. Objects cannot be passed by value.

RMI uses the rmic compiler to generate the stub and skeleton classes.
Each language provides its own IDL compiler to generate the stubs, skeletons and other supporting classes.

RMI does not support self-describing objects, dynamic invocations and interface repositories.
Corba supports all this.

RMI objects can only talk to other RMI objects in Java. It cannot talk to legacy systems if they are written in a language other than Java.
Corba objects can talk to any other type of Corba objects. (C, C++, COBOL). Can easily interface with legacy systems.

RMI does not have services to serve as a backbone for Internet applications.
Corba’s IIOP provides services that makes it very suitable for large scale distributed applications like the Internet. Some of the services that CORBA provides are as follows.

Naming Service(allows for locating Corba components, binding components)

Event Service(allows components to register their interest for specific events)

Concurrency Control Service(provides a lock manager that can obtain locks on behalf of transactions or threads)

Transaction Service(provides 2-phase commit coordination among recoverable components)

Relationship Service(provides a way to create dynamic associations between components that know nothing about each other)

Trader Service(Yellow Pages for objects)

StartUp Service(enables requests to automatically start when an ORB is invoked)

Security Service(provides a framework for distributed object security)

1.10 RMI - Pros

It is very easy to develop distributed applications with RMI.

The architecture is clean and simple.

Data is passed between machines in the form of objects.

It is object-oriented.

Dynamic code loading.

No special IDL (Interface Definition Language) is required to build RMI applications. Everything is written in Java and javac and rmic compilers generate the bytecode(class files) required for execution.

1.11 RMI - Cons

RMI technology can be used only with Java

RMI can only use objects to talk to remote objects.

For large applications where performance is of concern, methodologies like object pooling, database connection pooling, thread synchronization etc. have to be taken care of by the programmer. The RMI infrastructure does not provide this.

1.12 Recommendations for the Technology / Future Prospects

RMI is the underlying technology for EJB. EJB looks very promising and there are many application servers in the market today that have implemented EJB technology and provided containers for the same. So though not very much in use directly as a technology, it provides a basis for other technologies and hence is here to stay. The latest JDK also provides API to talk to CORBA. With this API Java becomes CORBA compliant and non-Java objects will also be able to talk to Java’s Remote Objects and vice versa. This will also be of great help in promoting the technology.

1.13 Ecstasies, Trials and Tribulations experienced during

 Development

Overall I had a wonderful experience developing the sample implementation. I found that it was very easy to develop distributed applications using RMI. It also scaled well but was slow. It was a very fulfilling experience. Following were some of the trials and tribulations I faced during the learning process.

· In JDK 1.3 you don’t have to set the classpath. But rmic requires the classpath to be set in order to find a class.

· If your remote object just extends the UnicastRemoteObject, it compiles but when u try to run it, it always gives you the annoying exception as below.

Exception in thread "main" java.lang.NoClassDefFoundError: RMIServer/java

It took me a long time to figure out that I had to implement the Remote Interface. So it is not enough if you just extend the UnicastRemoteObject.

We also need to run rmic on this class in order to generate the skeleton and the stub files. To run the server you only need the stub class.

· GetRegistry() call does not actually make a connection to the remote host. It simply creates a local reference to the remote registry and will succeed even if no registry is running on the remote host. Only subsequent calls to the registry will create problems.

· You can run the executable rmiregistry.exe to run the default registry. But this does not display any comments or indicate what is happenning in terms of message logging. So I implemented my own server which started up the registry.

· All programs using RMI must install a security manager, or RMI will not download classes

· All objects passed via remote calls must be serializable. I forgot this initially and ran into java.rmi.MarshalException exceptions.

1.14 Sample Implementation

The communications infrastructure for the sample implementation is very simple. The class diagram is depicted below. On the client side I have the RMIClient class which provides a GUI to set off RMI transactions. Two queries can be performed. One to get user information and the other to get a list of countries. These queries are initiated by clicking the appropriate buttons on the GUI. When either query is initiated, the client contacts the registry running on the default port 1099 to get a reference to the remote object RMIServer. With this remote object reference, the client calls a method on it to run the query and then processes the returned results.

Before initiating queries from the client GUI, the RMIServer application must be started. This application starts the RMI Registry on the default port 1099 and also registers itself to be accessible by clients.

The executeTransaction() method in the RMIServer class is responsible for processing client requests and returning results back to the client. Client requests are in the form of RMITransaction objects. Each object clearly defines what queries to execute and what results to pass back. These transaction objects also make use of data objects like the User to encapsulate data resulting from the queries to pass back to the client.

The above architecture is flexible in that when a new query or transaction needs to be added, a new RMITransaction class needs be created and code added to the client to initiate the new query or transaction and process the results.

Source Code for the above classes are provided in the Appendix.

Class Diagram

The sample implementation is grouped under four packages as follows.

Rmiclient

Rmiserver

Rmidata

Rmitransactions

RMIRemote is an interface defined in the rmiserver package. It declares a method called executeTransaction() and extends the java.rmi.Remote interface. The RMIServer class also part of the same package implements the RMIRemote interface and provides a definition for the executeTransaction() method.

RMITransaction is another interface defined in the rmitransactions package. It declares methods to connect to the database, disconnect from the database, execute queries and updates. The RMITransactionImpl class in the same package implements the RMITransaction interface providing definitions for all the methods defined in the RMITransaction interface. It also defines methods to set the database url, user id and password. The GetUserInfo class and the GetCountries class also in the same package extend the RMITransactionImpl class. They each override the execute() method to conduct database queries for obtaining the user information and the list of countries. The GetUserInfo class in addition has a set method to set the user id for the query. The GetUserInfo class also has a reference to a User object defined in the rmidata package.

The User class encapsulates user information such as first and last names, address, phone and email. It is part of the rmidata package.

The rmiclient package has two classes RMIClient and RMIMsgDialog. The RMIClient class encapsulates the client GUI. The GUI is composed of user information and a list of countries. The RMIClient has a reference to the remote RMIServer. It uses this reference to call the executeTransaction() method on the RMIServer to get user information and list of countries. The RMIMsgDialog class encapsulates a GUI for a message dialog. It is used by the RMIClient class to display messages to the user.

[image: image7.emf]EJBHome

(from ejb)

EJBObject

(from ejb)

SessionBea

n

(from ejb)

EJBClient

EJBClient()

paint()

actionPerformed()

getUserInfo()

getCountryList()

windowActivated()

windowClosed()

windowClosing()

windowDeactivated()

windowDeiconified()

windowIconified()

windowOpened()

main()

StatelessCLEJB

getCountryList()

StatelessCLEJB()

ejbCreate()

ejbRemove()

ejbActivate()

ejbPassivate()

setSessionContext()

StatelessCLH

omeInterface

create()

StatelessCLRemot

eInterface

getCountryList()

StatelessUIEJB

getUserInfo()

StatelessUIEJB()

ejbCreate()

ejbRemove()

ejbActivate()

ejbPassivate()

setSessionContext()

StatelessUIH

omeInterface

create()

StatelessUIRe

moteInterface

getUserInfo()

GetCountries

GetCountries()

execute()

(from transactions)

GetUserInfo

GetUserInfo()

setUserId()

execute()

(from transactions)

User

User()

User()

setFirstName()

setLastName()

setAddress()

setPhone()

setEmail()

getFirstName()

getLastName()

getAddress()

getPhone()

getEmail()

(from data)

user

Transaction

execute()

executeQuery()

executeUpdate()

connectToDB()

disconnectFromDB()

(from transactions)

TransactionImpl

TransactionImpl()

connectToDB()

disconnectFromDB()

execute()

executeQuery()

executeUpdate()

setDBDriver()

setDBURL()

setDBUser()

setDBPassword()

(from transactions)

SECTION II

SERVLETS

Acknowledgements

Materials in this section were referenced from the following books and websites.

Inside Servlets – Dustin Callaway

Java Servlets – Karl Moss

Java Servlet Programming – Jason Hunter, William Crawford

www.java.sun.com
2.1 What are Servlets?

A servlet is a server side applet. It is loaded and run by a web server and is very similar to how a web browser loads and runs applets. A servlet accepts requests from clients and returns results. A web server must be equipped with a servlet engine in order to load and run servlets.

A servlet is a Java solution to CGI Scripts. The client usually is a web browser. The client initiates a request. The web browser forwards the request to the web server. The web server in turn forwards this request to the specified servlet. If the servlet is not loaded, the web server loads the servlet into the VM and calls its methods to execute the request and return a response. This response is returned back to the client via the web server.

A servlet extends server side functionality of Java enabled servers. A servlet is a Java class. Servlets are most of the time used with web servers and they are used in place of CGI scripts. A servlet runs inside a Java Virtual Machine (JVM). As opposed to CGI where the scripts are loaded each time a client request comes in and a separate process is spawned off for each CGI invocation, Servlets are handled by separate threads within the web server process. Hence they are faster and are more scalable. Since they are written in Java they are also portable across operating systems and web servers. As already mentioned a web server must be equipped with a servlet engine in order to load and run servlets. Servlets can harness the full power of the Java API including Networking, JDBC, multi-threading, internationalization, RMI, serialization, EJBs etc.

Once a servlet is loaded, it remains in the web server’s memory as a single object instance. When a client request comes in, the server invokes the servlet to handle the request by a simple method invocation. No new process is spawned, as is the case with CGI. Separate threads handle multiple concurrent requests. So servlets are scalable. The web server usually is configured for the number of instances of a servlet that needs to be invoked simultaneously. Servlets are persistent and can maintain state and can also hold onto resources like database connections.

Servlets enable two way communications between client and server. A servlet works on the server side and only its results are returned back to the client. Any server that supports the servlet API can invoke and execute servlets, not just the web servers. Applications that use servlets usually adhere to a request/response paradigm.

Servlets run in the same space as the server process. Since servlets are written in Java, they are more robust and less prone to memory related errors. The Java language also enforces exception handling, hence the servlets better handle exceptions.

As for security, since servlets are written in Java, illegal memory accesses and typing violations are not possible. Servlets also use the server’s security manager to enforce certain security policies.

Following are some of the things servlets can do.

Servlets can dynamically build html and return it to the client for display purposes.

Servlets can process user input passed in via requests and return appropriate responses.

Servlets can provide user authentication.

Servlets can provide load balancing, dispatching etc.

Servlets are much faster than CGI because CGI has the overhead of spawning a new process for each request.

2.2 Some Relevant Definitions

Web Servers

A web server is a server application that services client requests coming from the world wide web/internet/intranet and delivers documents or content in response to these requests. The web server and its clients use the http/https protocols to communicate. The web server software is known as httpd - the hypertext transport protocol daemon.

Web servers are available from many vendors. Some of them are the Netscape Web Server, Microsoft’s Internet Information Server, Apache Web Server etc.

A web server must be Java enabled and must also have a servlet engine in order to run servlets. A servlet engine, loads servlets and executes them in the Java Virtual Machine.

Web Browser

A web browser is a client application that requests, receives and displays information (content). Content may include html, audio clips, images and video clips. A web browser communicates with a web server. When a web server receives a request from a client browser, it processes the request and returns what the client requested. A web server listens on a port for a connection and a request from a client. The web server interprets the request according to the HTTP protocol specification and fulfills the request accordingly.

Uniform Resource Identifier (URI)

A URI identifies an object on the Internet. There are two types of URIs. Uniform Resource Name (URN) and URL (Uniform Resource Locator)

A URN is a method for referencing an object without declaring the full path to the object. Using URN, objects on the Internet are referenced using aliases.

A URL is a specification for identifying an object such as a file, servlet, cgi program, image files, audio and video files etc. URL is the most common type of URI used today. The syntax for URL depends upon the protocol used and has this general form.

Protocol://host[:port]/url-path

As an example http://www.uccs.edu. The http url has a host name and an optional port number, path, filename, section and query string. The query string is a set of parameters listed as key-value pairs with each pair separated by the “&” character. In the example URL, http is the protocol used, www.uccs.edu is the host name, the port is the default one, which in the case of http is 80. There is no query string.

URL Encoding

URL strings are comprised of printable characters. Any non-printable character must be URL encoded. This means replacing all non-printable characters with a % sign followed by the character’s equivalent ASCII value in hex.

HTTP

HTTP is a connectionless protocol. The client opens a connection with the server, sends a request to the server, receives a response from the server and then closes the connection. HTTP is also a stateless protocol. This means that there is no memory of previous connections.

Some HTTP methods

The GET method.

GET is the most common HTTP method. It is used to request a resource from the server.

GET /index.html HTTP/1.0

The above example uses GET to request the file index.html using the HTTP version 1.0 protocol. Any user input is passed in the method statement as follows.

GET /index.html?param1=userid¶m2=password HTTP/1.0

The POST method

The POST method is used to send user input from the client to the server. An example is as follows.

POST /index.html HTTP/1.0

User input is passed in the body of the request rather than the method statement, as is the case with GET.

2.3 HTTP Servlets

As mentioned earlier, HTTP is a simple stateless protocol. A client such as a web browser makes a request, the web server responds with content and this content is displayed in the client browser. The client request is made in the form of an HTTP command called a method. This method tells the server the type of action it wants performed. The request along with the method also specifies the address of a document (a URL). As an example

GET /index.html HTTP/1.0

The above example uses the GET method to ask for the document called index.html using the HTTP protocol version 1.0. After sending the request, the client can then send information such as the software it is running, the content types it understands etc. After the headers, the client sends a blank line indicating the end of the header section. If the method being used is POST, the client will then begin sending data. For a GET method, data is sent along with the request. The request anyway ends with an empty line.

The server then processes the request and sends back a response. The first line of the response is a status line specifying the version of the http protocol the server is using, a status code and a description of the status code. As an example

HTTP/1.0 200 OK

200 is a status code that indicates that the request was processed ok.

404 is a status code that indicates that the requested document was not found.

After the status line, the server sends response headers that tell the client what software the server is running and the content type of the server’s response. The header also has the content length. The server sends a blank line to indicate that the header is over and then sends the data in the response.

A client invokes an http servlet by specifying a URL along with the name of the servlet that will process its request. When the web server receives such a request, it is forwarded to the servlet engine. The servlet engine loads the servlet if not already loaded, and calls the servlet’s service () method passing the request and response objects to this method. The service() method dispatches the request to other methods in the servlet depending upon the type of request (GET, POST etc).

Servlets use classes and interfaces from two packages. The javax.servlet and javax.servlet.http packages. The javax.servlet package contains classes to support generic protocol independent servlets. The javax.servlet.http package extends these classes to add HTTP specific functionality.

Every Servlet must implement the javax.servlet.Servlet interface. Most servlets do so by extending either the javax.servlet.GenericServlet or the javax.servlet.http.HttpServlet classes. A servlet does not have a main() method. The server while handling requests invokes certain well-known methods of the servlet class. Each time the server dispatches a request to a servlet, it invokes the servlet’s service() method. An HTTP servlet usually does not override the service() method. Instead it overrides the doGet() method to handle the GET requests. The doPost() method is overridden to handle POST requests. The service() method of the HttpServlet class does the appropriate dispatching of requests to the do..() methods. The HTTP servlet can also override the doPut() and doDelete() methods to handle the PUT and DELETE requests. The doHead(), doTrace() and doOptions() methods are not generally overridden because their default implementations are sufficient in most cases. The service() and the doGet() and doPost() methods accept two parameters, the request and response objects.

The request and response objects are instances of javax.ServletRequest or javax.servlet.http.HttpServletRequest and javax.servlet.ServletResponse or javax.servlet.http.HttpServletResponse classes. The http request object is an encapsulation of the client’s request. It contains headers that provide useful information such as cookies, user information, client machine information, content type, request type etc. The same goes for the http response object. It is an encapsulation of the response from the web server. The servlet writes the content it needs to return into this response object.

The javax.servlet.http package also has a class called HttpSession. This class represents a http session object. More about the use of session objects is discussed in the section on sessions.

The servlet in most cases generates an HTML page as output for the client. It can also send data across as objects especially when communicating with applets.

Below is some code from the sample implementation that indicates how a servlet is created, and how it processes requests.

The UserInfoServlet class extends HttpServlet. It overrides the doGet() method to process GET requests. The doGet() method queries the database for information for the user “rdevi”. The code for this is not shown here. JDBC is used to talk to the database. If the database transaction was successful, the user information is returned in the response as HTML content. If not error HTML content is returned.

public class UserInfoServlet extends HttpServlet

{

public UserInfoServlet()

{

}

protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, java.io.IOException

{

resp.setContentType("text/html");

PrintWriter out = resp.getWriter();

//Get user information from database

GetUserInfo trans = new GetUserInfo("rdevi");

User user = null;

try

{

user = (User)trans.execute();

}

catch(Exception ex)

{

//Generate Error HTML output

generateErrorOutput(out);

return;

}

//Generate User Info HTML output

generateOutput(out, user);

}

private void generateOutput(PrintWriter out, User user)

{

out.println("<HTML>");

out.println("<HEAD>");

out.println("<META NAME=\"GENERATOR\" Content=\"Microsoft

Visual Studio 98\">");

out.println("<META HTTP-EQUIV=\"Content-Type\"

content=\"text/html\">");

out.println("<TITLE>Sample Servlet Implementation</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

//User Info Form

out.println("<FORM ACTION=\"../servlet/UserInfoServlet\"

METHOD=GET>");

out.println("<P>USER

INFORMATION</P>");

out.println("<P>First Name ");

out.println("<INPUT id=text1 name=text1 style=\"LEFT: 86px; TOP:

55px\" value=" + user.getFirstName() + ">");

out.println("Last

Name ");

out.println("<INPUT id=text2 name=text2 style=\"HEIGHT: 22px;

WIDTH: 138px\" value=" + user.getLastName()+ "></P>");

out.println("<P>Address ");

out.println("<INPUT id=text3 name=text3 style=\"HEIGHT: 22px;

WIDTH: 422px\" value=" + user.getAddress() + "></P>");

out.println("<P>Telephone Number ");

out.println("<INPUT id=text4 name=text4");

out.println("style=\"HEIGHT: 22px; WIDTH: 171px\" value=" +

user.getPhone() +

"> ");

out.println("<INPUT id=button1 name=button1 style=\"HEIGHT: 24px;

WIDTH: 127px\" type=submit value=\"Get User Info\"> </P>");

out.println("<P>Email

 ");

out.println("<INPUT id=text5 name=text5 ");

out.println("style=\"HEIGHT: 22px; WIDTH: 231px\" value=" +

user.getEmail() +

"> &nbs

p; ");

out.println("<INPUT id=button2 name=button2 style=\"HEIGHT: 24px;

WIDTH: 129px\" type=reset value=\"Clear User Info\"></P>");

out.println("<P> </P>");

out.println("</FORM>");

}

}// End of servlet

The servlet classes also provide many methods to query for attributes like initialization parameters, request parameters, user information, client machine information, server information, header information etc. These classes also provide methods to set these attributes. Relevant methods are detailed in the Java API section.

2.4 HTML and Servlets

There are several ways in which Servlets can be invoked from HTML. The most common way of providing a GUI through which the user can query for information and also submit information is by using HTML Forms. The ACTION attribute of the FORM tag specifies what needs to happen when a SUBMIT is done on the form. This can point to a servlet URL indicating to the web server that the client would like its request processed by the indicated servlet. HTML code from the sample implementation is included below.

The <FORM ACTION="../servlet/UserInfoServlet" METHOD=GET> line of code tells the server that when the form is submitted, the request needs to be processed by the UserInfoServlet which can be found at the path specified (the path in this case is ../servlet). The METHOD attribute tells the servlet’s service() method that the request needs to be dispatched to the servlet’s doGet() method. The rest of the code generates the User Information form which has fields for the User’s first and last names, address, telephone number and email address along with two buttons, one to Get User Info and the other to Clear User Info. The Get User Info button is the one that triggers the SUBMIT for the form.

The code below is part of the UserInfo.html file which comes up initially.

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 98">

<META HTTP-EQUIV="Content-Type" content="text/html">

<TITLE>Sample Servlet Implementation</TITLE>

</HEAD>

<BODY>

<FORM ACTION="../servlet/UserInfoServlet" METHOD=GET>

<P>USER INFORMATION</P>

<P>First Name

<INPUT id=text1 name=text1 style="LEFT: 86px; TOP: 55px">

Last Name

<INPUT id=text2 name=text2 style="HEIGHT: 22px; WIDTH: 138px"></P>

<P>Address

<INPUT id=text3 name=text3 style="HEIGHT: 22px; WIDTH: 422px"></P>

<P>Telephone Number

<INPUT id=text4 name=text4

style="HEIGHT: 22px; WIDTH: 171px">

<INPUT id=button1 name=button1 style="HEIGHT: 24px; WIDTH: 127px" type=submit value="Get User Info"> </P>

<P>Email

<INPUT id=text5 name=text5

style="HEIGHT: 22px; WIDTH: 231px">

<INPUT id=button2 name=button2 style="HEIGHT: 24px; WIDTH: 129px" type=reset value="Clear User Info"></P>

<P> </P>

</FORM>

</BODY>

</HTML>

Any parameters that need to be passed to the servlet can be specified as follows.

<FORM ACTION="../servlet/CountryListServlet?param=userinfo"

METHOD=POST>

The servlet then uses the getParameter(String ParamName) method to retrieve the parameter it is interested in. Code is shown below.

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

……

String query = req.getParameter("param");

……

}

2.5 Applet – Servlet Communication

There are more than one ways in which applets can communicate with servlets. The first one is to have the applet establish an HTTP connection to a servlet on the server machine. The second way is to open a raw socket connection with the servlet. In this case the servlet acts as a server and listens to incoming client requests. The third way would be to use RMI to talk to the servlet. In this case the servlet must be a remote object and must be registered with the RMI registry.

In this section I preferred to use the first method(HTTP connection) and developed my sample implementation for the same. This approach is easy to write, works for applets running behind a firewall, works with browsers and allows secure communication(using https).

The sample implementation has an applet which opens a URL connection to the webserver/servlet. The servlet in turn responds by sending a date object across to the applet. The applet reads the date object and displays its string form in a textfield. The sample is very simple and is used only to demonstrate the communication aspects between an applet and a servlet.

How the applet communicates with the servlet using HTTP is explained below using code from the sample implementation.

The Servlet

The doGet() method of the servlet understands that the data as part of the communication is in the form of objects(serialization is used here). So ObjectOutputStream for the response is obtained and the data objects to be sent to the client are written to this output stream using the writeObject() method. The doPost() method in turn passes the request and invokes the doGet() method. The code is as shown below. All objects written to the stream must be serializable. The servlet does not set a content type because there is currently no mime type for serialized objects. But this does not matter because the applet knows that it is using objects for communication.

public class AppServlet extends HttpServlet

{

public Date getDate()

{

return new Date();

}

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

{

//Send the date object

ObjectOutputStream oos = new

ObjectOutputStream(res.getOutputStream());

oos.writeObject(getDate());

}

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

doGet(req, resp);

}

} //End of class definition

The Applet

The applet is embedded in a browser web page and is downloaded onto the client machine when the page is requested. The html code is as below.

<HTML>

<HEAD>

<TITLE> APPLET TO SERVLET COMMUNICATIONS </TITLE>

</HEAD>

<BODY>

<HR>

<APPLET

WIDTH=300

HEIGHT=200

NAME="APPLETSERVLET"

CODE=TestApplet>

</APPLET>

</BODY>

</HTML>

Such downloading and local execution of the applet can be of concern with respect to security. But the security manager on the client makes sure that the applet can only do this much on the client machine if the applet is un-trusted.

An applet can be signed digitally in order to make it trusted. The signature authenticates the applet’s origin and guarantees integrity during the transfer. So the client can rest assured that the applet has not changed. Signing also gives the applet certain privileges like writing to the client’s disk, reading files etc. Of course, the final decision of whether to let the applet do these things is still left to the discretion of the user. The user can refuse to download the applet.

The sample implementation applet does the following. Code is shown below.

The applet GUI is as shown in the screen shot.

When the applet starts, it invokes the servlet and displays the returned date as a string in the text box. When the refresh button is clicked, the applet invokes the servlet to get the latest date/time value which again is displayed in the text box.

The getDate() method opens a URL connection to the servlet.
URL URL = new URL("http://localhost:8080/SampleServlets/servlet/AppServlet");

URLConnection con = URL.openConnection();

con.setUseCaches(false);

It then obtains the input stream for this connection and blocks until data arrives in the form of the serialized Date object.

InputStream is = con.getInputStream();

ObjectInputStream ois = new ObjectInputStream(is);

The applet then reads the date object from the stream
Date dateObj = (Date)ois.readObject();

The code for the entire applet follows.

public class TestApplet extends Applet implements ActionListener

{

TextField txtDate = new TextField();

Button btnRefresh = new Button("Refresh");

public void init()

{

//Construct the user interface

setLayout(new BorderLayout());

Panel pApp = new Panel();

pApp.setLayout(new GridLayout(2,1));

pApp.add(new Label("Time of Day"));

pApp.add(txtDate);

pApp.add(new Label(""));

pApp.add(btnRefresh);

add("Center", pApp);

btnRefresh.addActionListener(this);

}

public void start()

{

refresh();

}

private void refresh()

{

txtDate.setText(getDate());

}

private String getDate()

{

try

{

URL URL = new

URL("http://localhost:8080/SampleServlets/servlet/AppServlet");

URLConnection con = URL.openConnection();

con.setUseCaches(false);

InputStream is = con.getInputStream();

ObjectInputStream ois = new ObjectInputStream(is);

Date dateObj = (Date)ois.readObject();

return dateObj.toString();

}

catch(Exception e)

{

e.printStackTrace();

}

return "";

}

public void actionPerformed(ActionEvent e)

{

refresh();

}

} //End of class definition

2.6 Session Management

A session is a persistent network connection between two hosts that facilitates the exchange of information. When the connection is closed, the session is over. A session consists of all requests made during a single invocation of a browser. HTTP is a stateless protocol. So there is no way of knowing that a sequence of requests are coming from the same client. The HTTP session is a virtual connection between the client and the server. A session id is used to achieve this virtual connection. This id is generated by the server and passed back to the client. The client then sends this session id for all subsequent requests. Session management is both state and identity management. Large amounts of state information can be stored in the session object because it is stored on the server side and the only thing passed between the client and the server is the session id.

The Servlet API provides classes and methods to manage sessions. Servlets have built-in session tracking. All servlets running on the same server have access to the same session object from the client. All session data are maintained at the servlet engine level and can be shared between servlets.

The web server holds only a certain number of session objects in memory. This number can be configured. Beyond this number the session objects are written to disk and retrieved when necessary. For this reason, session objects must be serializable. Session objects can also be written to disk when the web server shuts down.

Every user of a site is associated with a javax.servlet.http.HttpSession object. Servlets use this object to store or retrieve information about that user. In the sample implementation a counter is stored in the session object to indicate how many times the servlet was invoked. Any set of Java objects can be stored in the session object.

A servlet uses the getSession(boolean create) method to retrieve the current session object associated with a client request. If the user has no valid session, this method creates one if the create flag is true. To ensure that the session is properly maintained, it must be called before any content is written to the response object. Objects can be added to the session object and retrieved from it using the putValue() and getValue() methods. Example code is shown below. In the example a counter is maintained in the client’s session object that indicates how many times the client accessed the servlet. This count value is updated in the session object for every request.

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

…….

//Session Management

//Get the user's session

HttpSession session = req.getSession(true);

Integer count = (Integer)session.getValue(COUNTRY_SERVLET_COUNT);

 if(count == null)

 {

//If session object does not have count

//put one in.

count = new Integer(0);

session.putValue(COUNTRY_SERVLET_COUNT, count);

 }

 else

 {

//If session object already has count

//increment it.

int nCnt = count.intValue() + 1;

count = new Integer(nCnt);

session.putValue(COUNTRY_SERVLET_COUNT, count);

 }

……

}

Sessions do not last forever. A session automatically expires after a set time of inactivity. Or explicitly when the session is invalidated by a servlet as shown below.

session.invalidate();
When a session expires, the http session object and the data values it has are removed from the system. Methods are available in the HttpSession class that are used to invalidate sessions, get their creation times, get the time that the client last accessed the site etc. These are listed in the Java API section.

When a user first accesses a site, the user is assigned a new HttpSession object and a unique session id that identifies the user. Behind the scenes, the session ID is usually saved on the client in a cookie or sent as part of the rewritten URL. These methods are discussed in detail in the following sections. A servlet can get the session id by calling the getId() method on the session object. The session object is obtained as indicated in the preceding code sample.

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

……..

resp.setContentType("text/html");

PrintWriter out = resp.getWriter();

out.println("***** Session Id is ***** : " + session.getId());

…….

}

Managing Session Data

There are three aspects to session management. Session swapping, session relocation and session persistence.

All servlet engines have limited amount of resources. All session objects cannot be stored in memory. When the maximum number is exceeded, the session objects are written to disk and this is called swapping. This is done using an LRU algorithm. For this reason session objects must be serialized. The session can be reloaded when requested. This process is called session swapping. Servlet engines can also use load balancing between several virtual machines to process client requests as soon as possible. Servlet Engines may relocate session objects from one virtual machine to the other. Servlet engines can also facilitate persistence by writing all its active sessions to disk when it is shut down and reload these when it comes back up.

When a session is invalidated, it is signaled for garbage collection.

There are many ways in which session information can be exchanged between a client and the server/servlet. They are discussed below.

Persistent Cookies

This is the most popular form of session management. The client browser must be enabled for cookies.

A cookie is a piece of information sent to a web browser by a web server that can be later read back from that browser. When a browser receives a cookie, it saves the cookie and sends the cookie every time that server is accessed. The cookie is not sent to any other server. Each cookie has a value. In the case of session tracking, the cookie’s value is unique and is called the session id.

A cookie is an HTTP mechanism used for maintaining user specific settings and managing state. Once a user issues a request and receives a response, the server has no memory of the transaction. When the same user makes another request, the server has no way to distinguish this user from any other. Cookies therefore are used by the servlet to identify a client for all requests pertaining to a session.

When an HTTP server receives a request, in addition to the requested document, the server may choose to return some state information that is stored by a cookie enabled client. The state information includes a URL range within which the information should be returned to the server. The URL range consists of the server’s domain and some path information. When the client issues an HTTP request, it checks the URL of the request against the URL ranges of all stored cookies. If a match is found the state information is included in the client’s request.

Cookies provide a simple and efficient way to manage state on the web. They enable users to customize web sites to their own preferences and enable other features like virtual shopping carts, web site tracking and statistics etc.

A servlet can send a cookie to the client by passing a Cookie object to the addCookie() method in the HttpServletResponse. Sample code is indicated below.

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

…..

//Set a new cookie

Cookie countryCookie = new Cookie("COUNTRYCOOKIE",

"listofcountries");

countryCookie.setComment("This cookie is for testing purposes");

countryCookie.setMaxAge(-1);

resp.addCookie(countryCookie);

….

}

Cookies are sent using http headers. So they are added to the response before any content is added. Browsers accept 20 cookies per site, 300 total per user and limit each cookie’s size to 4096 bytes.

Many attributes can be set for a cookie such as the following.

Version (Cookie Version)

Domain (Where this cookie came from)

Comment (What this cookie is used for)

Max Age (Maximum lifetime for the cookie)

Path (Server Path)

Secure (

Value (Cookie’s value)

Methods are available in the Cookie class to get and set the above attributes.

URL Rewriting

This method is used when browsers do not support cookies or if cookies are turned down by the client browser/user. With URL re-writing every local URL that the user might click on is dynamically modified or rewritten to include extra information by the server. The extra information in this case is a unique session id. When the user clicks on a URL, the session identifier is sent as part of the URL in the request to the server. Sample code follows.

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

…..

out.println("<FORM ACTION =

\"../servlet/CountryListServlet?param=userinfo\"

+ sessionid + “\” METHOD=POST>");

…..

}

Hidden Values

The servlet can also write out hidden input values as part of the client HTML which are then sent by the client to the server when a request is made. Sample code follows.

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

…..

out.println(“<INPUT TYPE=hidden NAME=item VALUE=\”” + itemvalue

+ “\”>’);

…..

}

2.7 Security

Security is the process of making sensitive information available only to authorized users. Security involves authentication, confidentiality and integrity of information. These are ensured using digital certificates. These certificates allow web servers and clients to use advanced encryption techniques to ensure security.

HTTP Authentication

HTTP has built in authentication features. When a client makes a request for a protected resource from the server, the server responds with a special request header and status code. This causes the browser to pop up a dialog prompting the user to enter a user id and password. This is otherwise called a challenge response system. Once the client responds, the server validates this information against its database of users and either grants or denies access.

There are two types of HTTP authentication called basic and digest. Basic uses Base64 encoding. This means that the user information entered by the user is base64 encoded and sent to the server. The server decodes this information and performs the validation against its database. In the digest method a digest of the password is created using the user name, password, URL and a random value generated by the server. The resulting password is difficult to decode. Many web servers do not support digests. Basic is not very secure and can be easily cracked. Moreover the server itself stores passwords in the clear. Sites should not rely on basic authentication. In the digest method both sides know the password and compute the digests. If the digests match, the user passes authentication. Digests are valid only for a single URL request and hash value. HTTP authentication is good only for low security applications.

Custom Authentication

If you want more control over the user authentication process, custom authentication can be used. It still uses the challenge-response system but instead of the web server doing the authentication, you will provide code to do it. Custom authentication also uses base64 encoding. The servlet uses the AUTHORIZATION header in the http request to retrieve the user id, password and authentication scheme and validates the user info.

The getRemoteUser() and getAuthType() functions in the HttpRequest class can be used by servlets to retrieve authentication information. The server administrator tells which resources are protected and who are all the users authorized to use these resources. This method does not provide enough security either because it is still based on base64 encoding.

HTML Form Authentication

Here an HTML form is used to gather information for user authentication. This information is then processed by a servlet which in turn does the authentication. Here you have more control over the authentication process.

Applet Authentication

Applet authentication provides you with control over how the authentication information is transmitted across to the web server. An applet can encrypt the data and transmit this to the servlet. The applet opens a URL connection to the servlet, creates a standard output stream and writes data. It then waits for a response from the servlet. The servlet on the other side of the connection opens an input stream to read the data sent from the applet , validates the data and returns a response to the applet. A sample implementation for authentication is provided and is explained in greater detail in the associated section.

Secure Sockets Layer (SSL)

This is a very reliable way to transmit information. SSL is a layer above socket communications. It encrypts all data before transmission and decrypts data at the receiving end. Digital certificates are used for this purpose and the web server must also be enabled for SSL. With SSL the protocol used is https. SSL provides transparent encryption and decryption of data. SSL uses public key cryptography.

2.8 Servlet Life Cycle, Persistence

A Servlet engine may execute all its servlets in a single virtual machine. In this case Servlets can efficiently share data with each other. They can also be made to persist between requests as objects, taking up less memory than processes. The life of a servlet can be configured and varies from web server to web server. Servlet engines must support the following for servlets.

Create and initialize the servlet

Handle zero or more client requests

Destroy the servlet and garbage collect it.

The servlet engine can be embedded within the server process or it can be standalone and linked to the web server. Servlets persist between requests. So resources like database connections can also persist. This eliminates object creation overheads, large memory footprints and servlet loading and creation overheads for every request.

Servlet Reloading

Most web servers reload servlets when the associated class files change. Custom class loaders are used for this purpose. When a server dispatches a request to a servlet, it first checks if the servlet’s class file has changed. If it has changed, the server abandons the class loader used to load the old version and creates a new instance of the custom class loader to load the new version.

Init and Destroy

Servlets can define init() and destroy(). The init(ServletConfig) method is called when the server creates an instance of the servlet. It is called before the servlet services its first request. The init method is used to perform servlet initialization. The ServletConfig object supplies the servlet with its initialization parameters. It also has the ServletContext instance which the servlet can use to get information about its environment. The destroy method is called when the servlet is about to be unloaded. This method can be used to release all resources.

Thread Safe Servlets

The web server can be configured to have a pool of servlet instances for the same servlet. Such servlets implement the javax.servlet.SingleThreadModel interface. A server that loads such a servlet must ensure that no two threads or requests call the service() method of the servlet at the same time. To accomplish this each thread uses a free servlet instance from the pool. So such servlets can be assured to be thread safe.

2.9 Other Relevant Information

Servlet Chaining

Servlet chaining is a process where many servlets work together to produce a result that is ultimately sent to the client in response to a request. The request is received by the first servlet in the chain and the output from this servlet is passed as input to the second and so on. Finally the last servlet delivers content to the client.

A key aspect to chaining servlets is to get all headers set by the previous servlet and echo them (set these for the response object). This includes information such as content type, calling URL, remote host etc. The servlets can read the input stream and if the content is something that they are interested in and they can parse, they can do so and pass their results to the next servlet. If not they can simply pass it on to the next servlet.

Triggering a Servlet Chain

Triggering a servlet chain can be done in three ways. Aliasing, mime types and HTML requests. Servlet aliasing sets up a single servlet name or alias that represents one or more servlets. A servlet chain is given as a comma separated list of servlets in the order in which they should be invoked. Using mime types, a servlet is associated with a particular mime type. When a response is generated using this mime type, the output is sent to the associated servlet. Using HTTP requests, a servlet chain is specified as part of the HTTP request. The URL specifies the servlet chain to be invoked as a comma separated list.

In all of the above cases for triggering, the web server must be configured to support servlet chaining.

Servlet chaining can be used to distribute tasks among several servlets. For example, they can be used in displaying tables as part of html content. In this case servlets can generate the data to be displayed as comma separated strings. These data strings can be passed to another servlet that does the formatting and display of data in the forma of a table.

Inter-Servlet Communication

There are a few ways in which servlets can communicate with each other. One way is for a servlet to directly call the methods of another servlet. For this the servlet needs to get a reference to the other servlet. Methods getServletNames() and getServlet(String name) are used. The servlet must know the name of the servlet whose methods it wishes to call.

Examples follow.

public void doGet (HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException

{

...

UserInfoServlet uiServlet = (UserInfoServlet)

 getServletConfig().getServletContext().getServlet("UserInfoServlet");

 ...

}

Another way is for a servlet to use the services of another servlet. The challenge here is for the first servlet to load the second servlet that it wishes to use. The servlet must get the web server to do this loading. This can be done by making an http request to the web server for the servlet which will cause it to be loaded and then call the getServlet() method to get a reference to it. Servlet API does not support direct loading of a servlet.

Another way is for servlets to share information using system properties by putting and getting key – value pairs into the property list, using shared objects like singletons and also through inheritance where the superclass has static variables and methods which can be accessed by all the child classes.

Server Side Includes (SSI)

Servlets can also be embedded inside HTML pages with server side include functionality. In servers that support servlets, a page can be preprocessed by the server to include output from servlets at certain points inside the page. The tags used for server side includes is similar to those used for applets. Following is a sample.

<SERVLET CODE=ServletName CODEBASE=http://server:port/dir initparam1=initvalue1 initparam2=initvalue2>

<PARAM NAME=param1 VALUE=value1>

<PARAM NAME=param1 VALUE=value1>

</SERVLET>

A server that supports the SSI tag, detects the <SERVLET> tag and substitutes in its place the output from the servlet.

2.10 Servlet - Pros

Servlets are such a simple and elegant solution to extending server side functionality.

They are faster than CGI because there is no process creation overhead.

They are very easy to develop.

They are portable and are platform independent.

2.11 Servlet - Cons

You need a java enabled web server.

Web server configurations vary widely and can be tiring. There are no standards in configuring web servers for servlets.

2.12 Recommendations for the Technology / Future Prospects

Servlets are persistent. They are loaded once by a server and can maintain services between requests.

Servlets are fast and performance is much better because of the point stated above.

Servlets are written in Java. So they are platform independent.

Servlets are extensible(object oriented, robust).

Servlets are secure. They can only be invoked using a web server.

Servlets can be used with a variety of clients like applets and html.

Servlets provide in-built session management.

For all of the above reasons, use of servlets for server side functionality is highly recommended.

2.13 Ecstasies, Trials and Tribulations experienced during

 Development

Configuring web servers to enable them for running servlets was not easy or straight forward. In fact this took more time than the development of the servlet itself. I used Tomcat(servlet engine) along with the Apache Web Server. I also used the J2EE reference implementation from Sun.

HTML was new to me. So I had some fun writing my first HTML programs.

The other interesting aspect I noticed is that whenever I changed the servlet classes, I had to stop and restart the servlet engines/web servers in order for the new servlet classes to be loaded again. This I felt was cumbersome.

The request on the client side was a POST, but I provided handling the request in the doGet() method. It took me some time to realize that there was no response because I was doing a POST.

Overall it was a joyous learning experience.

2.14 Sample Implementation

The Apache Web Server with the add-on servlet engine called TomCat was used for the sample implementation. The sample implementation explores the following.

Servlets (creation, deployment, execution)

Session Management & State Storage (cookies)

HTML to Servlet communication

Applet to Servlet Communication

The sample consists of an index.html file. This defines a frameset consisting of two frames. The top frame for the User Information and the bottom frame for the Country List. The initial content for these frames is provided by the UserInfo.html and CountryList.html files.

The code for index.html is provided below.

<FRAMESET ROWS="50%,50%">

 <FRAME NAME="userinfo" SRC="UserInfo.html">

 <FRAME NAME="countrylist" SRC="CountryList.html">

</FRAMESET>

The UserInfo frame defines two forms. One to do the submit represented by the “Get User Info” action and the other to do the “Clear User Info” action. The first form calls the UserInfoServlet with the “userinfo” parameter to indicate to the servlet that it needs to return user information. The other form calls the UserInfoServlet with the “clearinfo” parameter telling the servlet to return blank information for the user. POST methods are used in all cases.

The same applies to the Country List forms. Sample code for the country list frame is provided below.

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 98">

<META HTTP-EQUIV="Content-Type" content="text/html">

<TITLE>Sample Servlet Implementation</TITLE>

</HEAD>

<BODY>

<FORM ACTION="../servlet/CountryListServlet?param=countrylist"

METHOD=POST>

<P>LIST OF COUNTRIES</P>

<P><SELECT id=select1 name=select1 size=2 style="HEIGHT: 198px; WIDTH: 261px">

<OPTION selected></SELECT>

 <INPUT id=button3 name=button3 style="HEIGHT: 24px; WIDTH: 134px" type=submit value="Get Countries">

</FORM>

<FORM ACTION="../servlet/CountryListServlet?param=clearinfo"

METHOD=POST>

<INPUT id=button4 name=button4 style="HEIGHT: 24px; WIDTH: 133px" type=submit value="Clear Countries"> </P>

<P> </P>

</FORM>

</BODY>

</HTML>

The sample implementation has two servlets. These are represented by the UserInfoServlet and CountryListServlet classes.

The UserInfoServlet class overrides the doPost() method. The doPost() method first checks if the parameter passed in the request is “userinfo” or “clearinfo”. If the parameter is “userinfo”, it creates an instance of the GetUserInfo class and calls the execute() method on it. The GetUserInfo class connects to the database using JDBC to retrieve user information. If successful it returns a User object. The User class encapsulates user information. The servlet then dynamically constructs the HTML with the user information obtained and returns it in the response object. If the query was not successful, then an error html is returned in the response. If the parameter is “clearinfo”, the servlet constructs the user info html with blank data and returns this in the response.

The CountryListServlet class overrides the doPost() method. The doPost() method first checks if the parameter passed in the request is “countrylist” or “clearinfo”. If the parameter is “countrylist”, it creates an instance of the GetCountryList class and calls the execute() method on it. The GetCountryList class connects to the database using JDBC to retrieve the list of countries. If successful it returns a Vector object containing the list of countries. The servlet then constructs the HTML with the country list and returns it in the response object. If the query was not successful, then an error html is returned in the response. If the parameter is “clearinfo”, the servlet constructs the country list html with blank data and returns this in the response.

Both servlets query for the session id and display it. The Country List servlet also saves a count of the number of times the servlet was accessed in the session object for each client. This count is also displayed on the Country List form.

The CountryListServlet also adds a country list cookie, queries for all cookies that have been set and displays a few of their attributes. The cookie list should display two cookies, one for the session and one for the country list.

For testing purposes the GetUserInfo and GetCountryList classes return default data when the database transactions fail.

Sample Runs

The web server you use must be configured to run servlets and the servlets and html files must be placed in the appropriate directories (Since web server configurations for servlets vary widely with each web server, the details for the same are not included). After the web server is enabled for servlets and the files placed in the appropriate directories, type in the URL to the sample index.html file. Here is an example (my web server was running on port 8080 and my index.html file was in the SampleServlets/servlets directory under the web root.)

http://localhost:8080/SampleServlets/servlets/

This should bring up the User Info and Country List frames. You can then click on the various buttons to get the associated data or clear the associated data. Notice that the session id indicated in the two frames is the same. This shows that both the servlets share the same session object for the client. The session id remains the same for all requests from the client for that browser session. You can also experiment by opening two instances of the browser and observing the session ids. The session ids in the two instances should be different because they are two different clients.

Also notice the two cookies in the country list frame. One is for the session id and the other is for the country list. The session object in the country list frame has a counter set for the number of times the client invoked the CountryListServlet. This count value is also printed out.

Sample Screen shots are provided below.

Class Diagram

The class diagram shows the relationship between all the classes that are used in the Sample Servlet Implementation.

The UserInfoServlet and CountryListServlet classes derive from the javax.servlet.http.HttpServlet class. They override the doPost() methods to respond to POST requests. These are the sample implementation servlets.

Transaction is an interface defined in the transactions package. This interface declares methods to connect to the database, disconnect from the database and execute queries and updates. The TransactionImpl class implements the Transaction interface and also defines

set methods to set database attributes like the user id, password, the JDBC Driver and the database URL. These classes are all part of the transactions package.

The transactions package has two other classes called GetUserInfo and GetCountries. These classes extend the TransactionImpl class. They each override the execute() method to conduct their respective queries. The GetUserInfo class to request for user information given a user id and the GetCountries class to request for the list of countries. The GetUserInfo class has a reference to a User object.

The User class is part of the data package. It encapsulates user data such as first name, last name, address, phone and email. It also defines methods to get and set these attributes.

SECTION III

EJB

Acknowledgements

Materials in this section were referenced from the following books and websites.

Enterprise Java Beans by Example – Henri Jubin, Jurgen Friedrichs

Enterprise JavaBeans – Tom Valesky

Java Enterprise in a Nutshell – David Flanagan, Jim Farley, William Crawford & Kris Magnusson

www.java.sun.com
3.1 Different Client Server Architectures (2 tier, 3 tier)

Client/Server Systems have exploited the power of the client workstations to provide systems that perform better and that are user friendly. The client is normally a Graphical User Interface that presents and manipulates data, allows for user interaction and encapsulates business logic. The server generally is either a database management system or an application that talks to a database and services requests from clients. In the former case you have a two-tier client server architecture and in the latter case you have the three tier architecture. Multi-tier systems are easily scalable, reliable, secure and reusable.

The EJB component model uses the three-tier architecture. The first tier is the client which is either a Web Browser, Applet or a Stand-Alone Application. The middle tier is an EJB enabled Application Server. This could include a Web Server and Servlet Engine. The third tier is the Data Store which is the Database Management System. More on the EJB architecture follows.

3.2 EJB Architecture

The EJB architecture is a Java solution to distributed server side computing. It is scalable and reliable. It is built over RMI. The EJB server is at the heart of the EJB architecture making up the EJB environment. The server manages one or more EJB containers. It provides services such as Transaction Management, Persistence, Client Access and a JNDI Naming Service for clients to locate EJBs. The server also provides resources such as processes and execution threads, memory, networking facilities etc. for the containers and their elements. The EJB server can also provide vendor specific features such as optimized database access drivers, CORBA accessibility etc.

As already mentioned, the EJB model is a three-tier architecture. The client makes calls to remote EJBs. For this the client needs to find the EJB server and also know how to interact with the objects in the EJB server. The EJB components live in the middle tier. They reside in the EJB container. The container in turn resides in the EJB server. EJBs access the database, the third tier via JDBC or they can allow the container to handle their data storage for them.

Sun has defined a Specification for EJB that explains the EJB architecture, lists the rules and regulations for creating EJB applications and the roles and responsibilities of the different components of the architecture.

3.3 The EJB Container

The EJB container manages one or more EJB classes and their instances. The container makes required services accessible to the beans through interfaces defined in the specification. An EJB instance is created and managed at runtime by its container. Client access to the bean is mediated by the container and the EJB server on which the bean is deployed. The container provides services such as transaction management, security enforcement, resource pooling, life cycle management and persistence on behalf of the bean. Because an enterprise bean runs inside an EJB container, a client cannot directly instantiate the bean. Only the EJB container can instantiate an enterprise bean.

EJBs

Enterprise Java Beans are the entities that encapsulate the business functionality for an Enterprise. EJBs need to be provided by the developer and installed.

During instantiation and execution, the following takes place.

1. The client invokes a create method on the home object:

2. The EJB container instantiates the enterprise bean.

3. The EJB container invokes the appropriate ejbCreate method.

4. The client obtains a reference to the bean.

5. The client calls methods on the bean.

6. The client then removes the bean.

7. The EJB container then either deletes the bean or moves it into its pool for another client request. This depends on the type of the bean.

An enterprise bean may have one or more ejbCreate methods. The signatures of the methods meet the following requirements:

· The access control modifier must be public.

· The return type must be void.

· The arguments must be legal types for Java RMI.

· The modifier cannot be static or final.

The throws clause may include the javax.ejb.CreateException and other exceptions that are specific to the application. The ejbCreate method usually throws a CreateException if an input parameter is invalid.

The javax.ejb.EnterpriseBean is the parent class for both session and entity beans(these are discussed in later sections). It is serializable in order for the container to activate and passivate the beans.

3.4 Main Interfaces

There are two main interfaces defined for EJBs. The home interface and the remote interface.

The Home Interface

The home interface lists the available methods for creating, destroying and locating EJBs in the container. The home object is the implementation of the home interface that is specific to a container. The home interface must extend the javax.ejb.EJBHome interface, and define the enterprise Bean type specific create and finder methods (session Beans do not have finders). The remove() method in the EJBHome interface can be used only for an entity bean. An attempt to call this method on a session bean will result in RemoteException.

Every create method in the home interface corresponds to an ejbCreate method in the bean class. The signatures of the ejbCreate and create methods are similar, but differ in important ways. The rules for defining the signatures of the create methods of a home interface follow:

· The number and types of arguments in a create method must match those of its corresponding ejbCreate method.

· The arguments and return type of the create method must be valid RMI types.

· A create method returns the remote interface type of the enterprise bean. (But an ejbCreate method returns void.)

The throws clause of the create method must include the java.rmi.RemoteException and the javax.ejb.CreateException.

The Remote Interface

The remote interface defines the business methods offered by the EJB class. This interface is not directly implemented by the Bean class but by an EJBObject class that mediates the client’s calls to a Bean object. The remote interface extends javax.ejb.EJBObject. The method definitions in a remote interface must follow these rules:

· Each method in the remote interface must match a method implemented in the enterprise bean class.

· The signatures of the methods in the remote interface must be identical to the signatures of the corresponding methods in the enterprise bean class.

· The arguments and return values must be valid RMI types.

· The throws clause must include the java.rmi.RemoteException.
Additional interfaces defined in the EJB specification allow Beans to interact with the transaction service and control persistence.

3.5 Deployment Descriptor

Bean customization is provided through a deployment descriptor which is an integral part of the bean’s packaging information. The deployment descriptor provides environment properties for a bean class and contains detailed information about its type, transaction modes, security attributes, which specify how a bean will execute with respect to transactions and security. The deployment descriptor is written in XML. XML descriptors provide the advantage of not having to recompile the bean every time one of its properties has changed.

3.6 Deployment Tool

All vendors provide a deployment tool. At deployment time, the tool is used to generate the appropriate EJB proxy objects that delegate and mediate calls from the client between the container and the deployed Enterprise Java Bean. The necessary information is extracted from the EJB jar’s manifest file. This helps the developer to focus on the business aspects of the application and not worry about deployment, communications etc. All the developer needs to do is to create the EJB class, the home and remote interfaces and the EJB client, compile them and then use the tool to deploy them onto the EJB server. All required .ear and .jar files are created and deployed by the tool in the EJB server environment.

3.7 Helper Classes

Helper classes should reside in the EJB .jar file that contains the enterprise bean class. These are classes that your application defines and that the bean uses in order to service a client request.

3.8 Types of EJBs

There are two types of Enterprise Java Beans. They are the session beans and the entity beans.

Session Enterprise Java Beans

The session bean is an entity that represents a client on the EJB Server. It performs operations such as executing a business function or manipulating data on behalf of the client. A session bean is private to a client and cannot be shared with any other client. This means the bean can hold information specific to the client for that session called conversational state. A session bean that maintains conversational state is called a stateful session bean. A session bean that does not hold conversational state across multiple invocations on behalf of the client is called a stateless session bean.

The bean is created through its home interface and exists only for the duration of a client session. Session Beans can be transactional. When you specify the deployment descriptor of a session bean, you must choose between two state management modes: stateful or stateless.

A session bean implements the javax.ejb.SessionBean interface. This interface declares four methods.

EjbActivate() – the container uses this method to notify the session bean that it is about to be activated (restored from secondary storage to memory)

EjbPassivate() – the container uses this method to notify the session bean that it is about to be passivated (evicted from main memory)

EjbRemove() – the container uses this method to notify the session bean that it is about to be removed and that it should free its resources.

SetSessionContext() – passes the reference to the bean’s session context for later use. The container sets this information so that the bean can have access to its context.

The primary purpose of a session bean is to run business tasks for the client. The client invokes business methods on the remote object reference that is returned by the create method. From the client's perspective, the business methods appear to run locally, but they actually run remotely in the session bean.

A session bean class must adhere to the following rules.

It implements the SessionBean interface.
The class is defined as public.
The class cannot be defined as abstract or final.
It implements one or more ejbCreate methods.
It implements the business methods.
It contains a public constructor with no parameters.
It must not define the finalize method.

The container is responsible for serializing calls to methods of session beans(includes client calls and container calls). This makes bean development very easy.

The signature of a business method must conform to these rules:

· The method name must not conflict with one defined by the EJB architecture. For example, you cannot call a business method ejbCreate or ejbActivate.

· The access control modifier must be public.

· The arguments and return types must be legal types for Java RMI.

· The modifier must not be static or final.

The throws clause may include exceptions that you define for your application.

To indicate a system-level problem, such as the inability to connect to a database, a business method should throw the javax.ejb.EJBException. When a business method throws an EJBException, the container wraps it in a RemoteException, which is caught by the client. The container will not wrap application exceptions. Because EJBException is a subclass of RuntimeException, you do not need to include it in the throws clause of the business method.

Stateful Session Beans

Stateful Session beans as mentioned before maintain conversational state pertaining to a client. The conversational state includes the bean’s field values and the transitive closure. The transitive closure includes all referenced objects that would be stored by serializing the bean’s instance. Some examples of conversational state elements are open files, socket descriptors, database connections. These cannot be saved when a bean is evicted from memory. So the ejbActivate() and ejbPassivate() methods of the bean must take care of closing and re-opening these resources. You must also ensure that all conversational state elements are serializable. At times, the EJB container may write a stateful session bean out to secondary storage(passivate).

The state is retained for the duration of the client-bean session. When the client removes the bean, the session ends and the state disappears. Stateless session beans are never written out to secondary storage. Therefore, stateless beans may offer better performance than stateful beans.

You should consider using a stateful session bean if any of the following conditions are true:

· The bean's state must be initialized when it is created.

· The bean needs to hold information about the client across method invocations.

· The client is an interactive application.

Stateless Session Beans

Stateless session beans do not maintain any conversational state on behalf of the client. This means that any bean instance can be used by any client. Here the container needs to maintain only that many beans that are accessed simultaneously by clients. The container can effectively manage a small number of stateless session beans to serve a large group of clients by making clients transparently share stateless session bean instances. There are some restrictions that apply when creating stateless session beans. They are as follows.

The home interface must have only the create() method with no arguments.

The session bean class must define a single ejbCreate() method with no arguments.

The javax.ejb.SessionSynchronization interface must not be implemented.

There is no fixed association between a client and a stateless session bean. The container delegates the client request to a stateless session bean instance that is not in use by another client. The create and remove methods that are called by the client will be ignored by the container.

When a client invokes the method of a stateless bean, the beans's instance variables may contain a state, but only for the duration of the invocation. When the method is finished, the state is no longer retained. Except during method invocation, all instances of a stateless bean are equivalent, allowing the EJB container to assign an instance to any client. Because stateless session beans can support multiple clients, they can offer better scalability for applications that require large numbers of clients. Typically, an application requires fewer stateless session beans than stateful session beans to support the same number of clients.

You may want to use stateless session beans:

· The bean performs a task that is not tailored to the needs of a particular client. For example, you might use a stateless session bean to fetch from a database a commonly used set of data.

· The bean doesn't need to hold information about the client across method invocations.

Life Cycle of Session Beans

A session bean goes through various stages during its lifetime, or life cycle. The life cycle is managed by the EJB container, not by your applications.

The client initiates the life cycle by invoking the create method. The EJB container instantiates the bean and then invokes the setSessionContext and ejbCreate methods in the session bean. The bean is now ready to have its business methods invoked.

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by moving it from memory to secondary storage. (Typically, the EJB container uses a least-recently-used algorithm to select a bean for passivation.) The EJB container invokes the bean's ejbPassivate method immediately before passivating it. If a client invokes a business method on the bean while it is in the passive stage, the EJB container activates the bean, moving it back to the ready stage, and then calls the bean's ejbActivate method.

At the end of the life cycle, the client invokes the remove method and the EJB container calls the bean's ejbRemove method. The bean's instance is ready for garbage collection.

Your code controls the invocation of only two life cycle methods-- the create and remove methods in the client. All other methods are invoked by the EJB container. The ejbCreate method, for example, is inside the bean class, allowing you to perform certain operations right after the bean is instantiated. For instance, you may wish to connect to a database in the ejbCreate method.

Because a stateless session bean is never passivated, its life cycle has just two stages: non-existent and ready for the invocation of business methods.

Entity Enterprise Java Beans

An entity bean represents an entity kept in a persistent storage mechanism, usually a database. A business application, for example, might use a database to store business entity objects such as accounts, users, customers, orders, and products. Because the state of an entity bean is saved in a storage mechanism, it is persistent. Persistence means that the entity bean exists beyond the lifetime of the application or the EJB server process.

The most common use for entity beans is to represent persistent data that is maintained in a database or accessed through a back-end application as an object. A simple entity bean could be defined to represent a row in a database table. Complex entity beans could be views of joined tables in a database.

Each entity object is identified by a unique identifier. This is implemented by the container using the entity’s primary key. Entity bean instances can be created either by a create() method or by insertion of data directly into the underlying data source. Entity objects are transactional and they are recoverable following a crash.

The container again is responsible to synchronize access to entity bean methods. The beans deployment descriptor can indicate that the bean is reentrant which means that their methods are able to share the current transaction, security and execution contexts.

An entity bean is considered implicitly persistent if it either manages its own persistence or delegates its persistence to the container. If an entity bean provides for its own persistence, it is called bean managed persistence. If the entity bean delegates the persistence to the container, then it is called container managed persistence.

Bean Managed Persistence

In the bean managed persistence case, the bean provider directly puts the database access code into the bean methods ejbCreate(), ejbRemove(), ejbLoad(), ejbStore() and ejbFind(). This method makes it very easy to deploy beans in different containers. The containers in this case need not generate the database access calls. The disadvantage is that persistence is hardcoded into the bean and may not be easy to adapt to different data stores.

Container Managed Persistence

In the container managed persistence case, the bean’s methods do not have any persistence code. The container’s tools generate the necessary functions at deployment time and implement them in the container. All fields requiring persistence must be defined in the deployment descriptor. The main advantage is that the bean in this case is completely independent of the data store and the code is also less. The disadvantage is that the tools must be equipped to generate code for a variety of data sources.

Limitations of Container managed Persistence

The implementation of container-managed persistence for entity beans does not provide a full set of features for mapping objects to relational databases:

· The entity bean class may be mapped to only one table in the database.

· A container-managed field may be mapped to only one column in the table.

· When the container loads the container-managed fields from the underlying database, it loads all of them. If the amount of data loaded is large, this approach may be inefficient because a business method may not need all of the container-managed fields.

· If the container-managed fields of multiple entity beans map to the same data item in a database, and if these beans are invoked in the same transaction, they may see an inconsistent view of the data item.

· The Application Deployment Tool generates SQL statements for the ejbCreate, ejbRemove, ejbLoad, and ejbStore methods. You may modify only the table and column names of these SQL statements. You may not modify the number and order of the question marks, which are place holders for the input parameters.

· You cannot call stored procedures in the generated SQL statements.

· The table and column names in all of the SQL statements must be consistent.

Entity beans may be shared by multiple clients. Because the clients might want to change the same data, it's important that entity beans work within transactions. Typically, the EJB container provides transaction management. You specify the transaction attributes in the bean's deployment descriptor. You do not have to code the transaction boundaries in the bean-- the container marks the boundaries for you.

Primary Key

Each entity bean has a unique object identifier. The unique identifier, or primary key, enables the client to locate a particular entity bean.

Rules for Entity Beans

It implements the EntityBean interface.
The class is defined as public.
The class cannot be defined as abstract or final.
It implements zero or more ejbCreate and ejbPostCreate methods.
It implements the finder methods (only for bean-managed persistence).
It implements the business methods.
It contains an empty constructor.
It does not implement the finalize method.

Entity Bean Implementation Details

To write an entity bean you must provide the following classes.

The Entity Bean class

The Home Interface

The Remote Interface

Helper classes if required.

The EntityBean interface extends the EnterpriseBean interface, which extends the Serializable interface. The EntityBean interface declares a number of methods, such as ejbActivate and ejbLoad, which you must implement in your entity bean class.

When the client invokes a create method, the EJB container invokes the corresponding ejbCreate method. Typically, an ejbCreate method in an entity bean performs the following tasks:

· Inserts the entity state into the database.

· Initializes the instance variables.

· Returns the primary key.

When writing an ejbCreate method for an entity bean, you must follow these rules:

· The access control modifier must be public.

· The return type must be the primary key (only for bean-managed persistence).

· The arguments must be legal types for Java RMI.

· The method modifier cannot be final or static.

The throws clause may include the javax.ejb.CreateException and other exceptions that are specific to your application. An ejbCreate method usually throws a CreateException if an input parameter is invalid. If an ejbCreate method cannnot create an entity because another entity with the same primary key already exists, it should throw a javax.ejb.DuplicateKeyException (a subclass of CreateException). If a client receives a CreateException or a DuplicateKeyException, it should assume that the entity was not created.

For each ejbCreate method, you must write an ejbPostCreate method in the entity bean class. The EJB container invokes ejbPostCreate immediately after it calls ejbCreate. Unlike the ejbCreate method, the ejbPostCreate method can invoke the getPrimaryKey and getEJBObject methods of the EntityContext interface.

The signature of an ejbPostCreate must meet the following requirements:

· The number and types of arguments must match a corresponding ejbCreate method.

· The access control modifier must be public.

· The method modifier cannot be final or static.

· The return type must be void.

The throws clause may include the javax.ejb.CreateException, and other exceptions that are specific to your application.

A client removes an entity bean by invoking the remove method. This invocation causes the EJB client to call the ejbRemove method, which deletes the entity state from the database.

If the ejbRemove method encounters a system problem, it should throw the javax.ejb.EJBException. If it encounters an application error, it should throw a javax.ejb.RemoveException.

If the EJB container needs to synchronize the instance variables of an entity bean with the corresponding values stored in a database, it invokes the ejbLoad and ejbStore methods. The ejbLoad method refreshes the instance variables from the database, and the ejbStore method writes the variables to the database. The client may not call ejbLoad and ejbStore.

If a business method is associated with a transaction, the container invokes ejbLoad before the business method executes. Immediately after the business method executes, the container calls ejbStore. Because the container invokes ejbLoad and ejbStore, you do not have to refresh and store the instance variables in your business methods, the container performs these functions for you.

If the ejbLoad and ejbStore methods cannot locate an entity in the underlying database, they should throw the javax.ejb.NoSuchEntityException. This exception is a subclass of EJBException. Because EJBException is a subclass of RuntimeException, you do not have to include it in the throws clause. When NoSuchEntityException is thrown, the EJB container wraps it in a RemoteException before returning it to the client.

The finder methods allow clients to locate entity beans. For every finder method available to a client, the entity bean class must implement a corresponding method that begins with the prefix ejbFind.

The finder methods specific to your application, such as ejbFindByLastName and ejbFindByFirstName, are optional, but the ejbFindByPrimaryKey method is required. As its name infers, the ejbFindByPrimaryKey method accepts as an argument the primary key, which it uses to locate an entity bean. The client does not call ejbFindByPrimaryKey directly. It is the EJB container that calls the ejbFindByPrimaryKey method. The client invokes the findByPrimaryKey method, which is defined in the home interface.

The following list summarizes the rules for the finder methods that you implement in an entity bean class with bean-managed persistence:

· The ejbFindByPrimaryKey method must be implemented.

· A finder method name must start with the prefix ejbFind.

· The access control modifier must be public.

· The method modifier cannot be final or static.

· The arguments and return type must be legal types for Java RMI.

· The return type must be the primary key or a collection of primary keys.

The throws clause may include the javax.ejb.FinderException, and other exceptions that are specific to your application. If a finder method returns a single primary key, it should throw the javax.ejb.ObjectNotFoundException if the requested entity does not exist. The ObjectNotFoundException is a subclass of FinderException. If a finder method returns a collection of primary keys, it should throw a FinderException.

The business methods contain the business logic that you want to encapsulate within the entity bean. Usually, the business methods do not access the database, allowing you to separate business logic from the database access code.

The requirements for the signature of a business method are the same for both session and entity beans:

· The method name must not conflict with a method name defined by the EJB architecture. For example, you cannot call a business method ejbCreate or ejbActivate.

· The access control modifier must be public.

· The method modifier cannot be final or static.

· The arguments and return types must be legal types for Java RMI.

The throws clause may include the exceptions that you define for your application. To indicate a system-level problem, a business method should throw the javax.ejb.EJBException.

The home interface defines the methods that allow a client to create and find an entity bean.

The create methods in the home interface must conform to these requirements:

· It has the same number and types of arguments as its matching ejbCreate method in the enterprise bean class.

· It returns the remote interface type of the enterprise bean.

· The throws clause includes the exceptions specified by the throws clause of the corresponding ejbCreate and ejbPostCreate methods.

The throws clause contains the java.rmi.RemoteException and the javax.ejb.CreateException.

Every finder method in the home interface corresponds to a finder method in the entity bean class. The name of a finder method in the home interface begins with find, whereas the name of one in the entity bean class begins with ejbFind.

The rules for defining the signatures of the finder methods of a home interface follow:

· The number and types of arguments must match those of the corresponding method in the entity bean class.

· The return type is the entity bean's remote interface type, or a collection of those types.

· The exceptions in the throws clause include those of the corresponding method in the entity bean class.

· The throws clause contains the javax.ejb.FinderException and the javax.ejb.RemoteException.

The remote interface extends javax.ejb.EJBObject and defines the business methods that a client may invoke.

The requirements for the method definitions in a remote interface are the same for both session and entity beans:

· Each method in the remote interface must match a method in the enterprise bean class.

· The signatures of the methods in the remote interface must be identical to the signatures of the corresponding methods in the enterprise bean class.

· The arguments and return values must be valid RMI types.

· The throws clause must include java.rmi.RemoteException
1.9 Security

The Java language provides many security features as detailed below.

Strong Type Casting.

No pointer based memory access.

Automatic garbage collection.

Array bounds checking

Checking for Null pointer references.

Forcing programs to handle errors and exceptions.

The Java VM also provides security as follows.

Bytecode Verifier – Before any Java byte code is executed, the verifier checks that it has not been tampered with and the code does not violate access restrictions.

The class loader – This controls how and when applets can add classes to the Java environment. Typically there are many class loaders, one for each namespace. Namespaces keep classes originating from different sources separate to ensure that they do not interfere with each other.

Security Manager – This limits the way in which classes can use resources. The security manger can disallow any dangerous operation by creating and throwing security exceptions.

The EJB architecture builds on the security features provided by the Java language and the Java Virtual Machine. It supports the following.

Authenticating the caller

Defining level of access for individual methods or Beans (part of the deployment descriptor).

Encryption of client messages using HTTPS.

Managing access to resources according to security policy definitions.

1.10 Persistence

Persistence with respect to EJBs means that the instance of the object remains even when the EJB server is brought down and back up again. Persistence is achieved using data stores. There are two ways of achieveing persistence. Beans either provide the persistence themselves or they delegate this responsibility to the container. The first case is called bean managed persistence and the second one is called container managed persistence. These have already been detailed in the above sections.

An entity bean must implement the following methods.

EjbCreate()

EjbRemove()

EjbLoad()

EjbStore() and

EjbFindxxx().

The ejbCreate() method is used to first load data from the datastore when the bean is created. The ejbRemove() method is used to write data back to the data store when the bean is deleted. The ejbFindxxx() methods are used to search the data store by some given search criteria. At a minimum the ejbFindByPrimaryKey() method must be implemented to search by primary key. The ejbLoad() and ejbStore() methods synchronize states between the entity bean and the data store.

With bean managed persistence, the bean developer is responsible for providing code for all of the above mentioned methods. The advantage to this is that the bean can be deployed in any container and the container needs not provide the calls. The disadvantage is that the persistence is hard coded into the bean and needs to change if the data store changes.

In the container managed persistence approach, the bean developer uses the EJB vendor’s tools to generate the database calls. These calls are generated during deployment time. The deployment descriptor is used to specify the fields in the datastore that map to instances in the bean. The advantage here is that the bean is not tightly coupled to the data source. Since the container generates the calls a wide variety of datastores can be supported.

1.11 Session Management

Session Management can be achieved with stateful session beans. A stateful session bean is one that holds the state of a client by defining instance variables. The container creates a stateful session bean instance for each client that requests the bean. Each such stateful bean instance can be used only by one client. The session bean instance exists only for that client and ends when the client disconnects or logs off. The session beans are detailed in the associated sections above.

1.12 Resource Pooling

A container has to manage its working set of beans instances effectively. The working set is defined as the set of beans that the container has to keep active in memory at any given time. The specification defines an activation and de-activation mechanism to write beans to secondary storage and bring back to main memory as needed thereby giving other beans a chance to be activated. If beans hold resources such as database connections, open files, sockets etc., the developer must take care to see that these resources are released in the passivate method and are re-established in the activate method.

At deployment time, the tool allows the developer to specify the number of beans to maintain in the pool, number of session bean instances to allow before the container begins to passivate beans and the also the time interval after which inactive beans will be passivated.

The container pools stateless session beans and leases them to clients as needed. When new stateless session beans are required, the container creates them and destroys them when they are no longer needed.

The pooling of entity beans automatically provides database connection pooling. If stateless session beans connect to the database, then pooling again is provided indirectly.

The javax.sql package is a standard extension for JDBC 2.0 and facilitates database connection pooling and also lets you use JNDI to connect to the database.

1.13 Transaction Management

A transaction is an indivisible unit of work. It defines a set of operations on some data.

Transactions are characterized by four properties.

Atomicity – All actions that are part of a transaction are executed as one logical unit. Either all will complete successfully or the transaction will be rolled back.

Consistency – The database will always be in a reasonable state. If a transaction fails mid-way, the database will not be left in a partially modified state.

Isolation – Each transaction executes independently of other transactions.

Durability – Once a transaction is committed, the resulting changes in the database are permanent.

EJBs are transactional. The EJB containers and servers implement the necessary APIs and low level transaction services and protocols to support the transaction processing requirements. The EJB developers in most cases delegate the transaction processing requirements to the container and server. In case developers need to access the Java Transaction API, they can do so using the javax.transaction package.

The EJB model is designed to support distributed transactions that span multiple databases on multiple systems. The model also ensures that its transactions can operate with multiple EJB servers.

Each entity bean must specify in its deployment descriptor the transaction isolation level which can be one of

TX_READ_UNCOMMITTED

TX_READ_COMMITTED

TRANSACTION_REPEATABLE_READ

TRANSACTION_SERIALIZABLE

The Isolation levels can either be specified at the bean level or at the individual method level.

1.14 Bean Development and Deployment

Most of the implementation details for beans have already been mentioned in the previous sections. This section will concentrate more on the deployment details. I used the J2EE reference implementation for the sample implementation. Following are the steps I followed in deploying the sample implementation which is a crucial part of the EJB application building process.

1. Created the home interface extending the EJBHome interface for the sample bean.

2. Created the remote interface extending the EJBObject interface for the sample bean

3. Created the EJB class extending from SessionBean for the sample bean

4. Created the client class.

5. Compiled all of the above and thereby generated the bytecode for them.

6. Started the J2EE server.

7. Ran the deployment tool that is provided with the J2EE reference implementation

8. Created a New Application called SampleEJB (sampleEJB.ear file is created)

9. For each bean, specified a JAR file name for the EJB classes and also specified their associated properties like the type of bean(session or entity) etc. (UserInfo.jar and CountryList.jar files were created. Each JAR file has the class files that are required for the EJB to work. The JAR files also have the XML deployment descriptor file and the manifest file that are automatically generated by the deployment descriptor).

10. After this was done, deployed the application (told the tool where the J2EE server was running) and specified that the client JAR needed to be returned the c:\uccs\msproject\EJB directory and the name of the file was to be SampleEJBClient.jar The deployment phase created all the proxy files, the jar files and war files and the deployment descriptor XML files for each of the beans and the application and placed these files into the appropriate J2EE server directories for execution.

11. Then ran the client with a classpath that included the SampleEJBClient.jar just returned from the above step.

A screen shot of the last step in the deployment process is shown below.

Sample Deployment Descriptors for the application and the beans are shown below.

Application

<?xml version="1.0" encoding="Cp1252"?>

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN' 'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>

 <display-name>SampleEJB</display-name>

 <description>Application description</description>

 <module>

 <ejb>ejb-jar-ic.jar</ejb>

 </module>

 <module>

 <ejb>ejb-jar-ic7.jar</ejb>

 </module>

</application>

UserInfo Bean

<?xml version="1.0" encoding="Cp1252"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>

 <description>no description</description>

 <display-name>UserInfo</display-name>

 <enterprise-beans>

 <session>

 <description>no description</description>

 <display-name>UserInfo</display-name>

 <ejb-name>UserInfo</ejb-name>

 <home>StatelessUIHomeInterface</home>

 <remote>StatelessUIRemoteInterface</remote>

 <ejb-class>StatelessUIEJB</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Bean</transaction-type>

 </session>

 </enterprise-beans>

</ejb-jar>

1.15 Other Relevant Information

EJB Specification

The EJB specification details the EJB architecture and lays down the rules and restrictions that pertain to the EJB architecture that need to be followed in order to build EJB applications. It explains the roles of the EJB components and also specifies what the vendors need to provide in order to comply with the specification. The latest version of the specification is 2.0 and this is still in the final draft stages. A document containing the entire specification is available at the Sun Website.

EJB Enabled Servers in the Market

The following table summarizes the various application server products that support the EJB technology today or sometime in the near future. The Vendors and associated URLs where more information can be found about them is also listed.

PRIVATE
Company Name

Product Name

URL

Application Servers

Allaire Corporation

Jrun Server

www.allaire.com

ATG

Dynamo Application Server

www.atg.com

BEA Systems

BEA WebLogic

www.weblogic.com

BEA Systems

M3

www.beasys.com

Bluestone Software, Inc.

Sapphire/Web 5.1

www.bluestone.com

BROKAT Infosystems, Inc.

BROKAT Twister

www.brokat.com

Evidian

JonAS

www.evidian.com/ejb

Sun's Forte Software

SynerJ/Server

www.sun.com/forte/

Fujitsu Software Corporation

Interstage

www.fsc.fujitsu.com/

Gemstone Systems, Inc.

GemStone/J

www.gemstone.com

Haht Software

HAHTsite Application Server

www.haht.com

IBM Corporation

CICS Transaction Server

www.software.ibm.com/ts/cics

IBM Corporation

Component Broker

www.software.ibm.com/ad/cb/

IBM Corporation

TXSeries

www.software.ibm.com/ts/txseries/

IBM Corporation

WebSphere Application Server

www.software.ibm.com/websphere

Information Builders, Inc.

Parlay Application Server

www.ibi.com/ejbshow

Inprise Corporation

Inprise Application Server

www.inprise.com/appserver

IONA Technologies PLC

The IONA iPortal Application Server

www.iona.com

Luna Information Systems

The Agile E-Business Product Suite

www.luna.com

Netscape Communications Corporation

Netscape Application Server

www.netscape.com

Novera Software, Inc.

jBusiness 4

www.novera.com

ObjectSpace

Voyager

www.objectspace.com/products/
voyager1.htm

Oracle Corporation

Oracle Application Server 4.0

www.oracle.com

Persistence Software

PowerTier for EJB

www.persistence.com

Pramati Technologies

Proton 4.0

www.pramati.com

Progress Software

Apptivity

www.apptivity.com

ProSyst

EnterpriseBeans Server

www.prosyst.com

Secant Technologies

Secant Extreme Enterprise Server

www.secant.com

SIEMENS

Siemens Enterprise Application Server

www.siemens.com/servers/outm/
outm_de/ann_ejb.htm

Silverstream

SilverStream Application Server 3.0

www.silverstream.com

Sun Microsystems

NetDynamics Application Server

www.netdynamics.com

Sybase, Inc.

Sybase Enterprise Application Server

www.sybase.com/products/eastudio

Unify

Unify eWave Engine

www.ewavecommerce.com

Valto Systems

Ejipt

www.valto.com

Visient

Arabica

www.visient.com

Vision Software

Vision Jade

www.vision-soft.com

1.16 EJB Clients

EJB clients can be web browsers, applets, stand-alone applications, servlets or other EJBs. In the sample implementation I preferred to use a standalone Java Application for the client. There are several ways to architect an EJB server portion of your application depending on what your business needs are. As an example, combinations of servlets and EJBs can be used to service a client request.

1.17 EJB - Pros

It is very easy to build an EJB because most of the underlying infrastructure code is generated by the deployment tool provided by the vendor. The developer needs to only focus on the business aspects of his application.

The architecture is easily scalable. Session management, transaction management, resource pooling etc. are all provided transparently by the EJB server.

1.18 EJB - Cons

Deployment is vendor specific. Deployment tools are not standardized.

EJBs can be slow because the underlying technology is RMI.

Not all EJB vendors support all of the EJB specification.

It is an evolving technology.

Total EJB portability across multiple vendors has yet to be tested and realized.

1.19 Recommendation/Future Prospects for the Technology

EJB is an evolving technology. It looks promising. It has many positive features like the ease of development, automatic infrastructure code generation and deployment, scalability, transaction management and resource management. These features are primarily provided by the Deployment Tool and the EJB Container that each Vendor supplies for the EJB Server implementation. It provides a reliable and reusable architecture for distributed computing on the server side.

As for performance, I have heard that it does not look very promising as yet. If vendors provide optimizations for performance and also standardize processes for deployment, the technology will be sure to take off in the near future. The other concerns I have are related to entity beans. Entity beans are supposed to be in-memory reflections of the underlying data store. It is like duplicating the DBMS layer. The exact use and performance especially for a large number of clients needs to be thoroughly investigated.

1.20 Ecstasies, Trials and Tribulations experienced during

 Development.

The building of EJBs was very simple and easy. The deployment was very easy too. The really neat thing about EJBs is that every vendor provides a deployment tool that deploys the EJBs and also generates all the proxies and dependent files required to run the EJBs making them available to client programs. The developer can concentrate on the business needs of his application rather than the details of communication, transactions, resource management and pooling etc. These are transparently provided by the EJB server. I really enjoyed learning about EJBs.

1.21 Sample Implementation

The sample implementation again is for a client that retrieves user information and country list information. I decided to keep the client interface the same throughout this project. The implementation includes two stateless session beans called the StatelessUIEJB and StatelessCLEJB that service each of the client requests for user information and list of countries. These stateless session beans are transactional in that they talk to a database using JDBC. The source code for the implementation is listed in the Appendix.

Class Diagram
The StatelessUIEJB class implements the SessionBean Interface. The StatelessCLEJB class also implements the SessionBean interface. These two classes are the bean classes. Both the bean classes provide default constructors and default implementations for the ejbCreate(), ejbRemove(), ejbActivate(), ejbPassivate() and setSessionContext() methods
The StatelessUIEJB class also defines the getUserInfo() method. This method uses the

GetUserInfo class to talk to the database and get information for a specific user. The StatelessCLEJB class also defines a method called getCountryList(). This method uses theGetCountries class to connect to the database using JDBC and get the list of countries.

The EJBClient class encapsulates the client GUI. This is very similar to the RMI and Servlet implementations as far as look and feel and functionality are concerned. But when the user requests for User Info or list of Countries, the client locates the appropriate EJB and calls its methods to retrieve the appropriate information.

The GetUserInfo and GetCountries classes extend the TransactionImpl class. They provide implementations for the execute() method to call their respective queries. The TransactionImpl class implements the Transaction Interface and defines methods to connect to the database, disconnect from the database, execute queries and updates, set database driver, user id and password. All these are part of the transactions package.

The GetUserInfo class also has an instance of the User class. The User class is part of the data package and encapsulates user information such as first name, last name, address, telephone number and email address.

REFERENCES

Java RMI – Troy Bryan Downing

Java Programming with CORBA – Andreas Vogel, Keith Duddy

Client/ServerProgramming with Java and CORBA – Robert Orfali, Dan Harkey

Inside Servlets – Dustin Callaway

Java Servlets – Karl Moss

Java Servlet Programming – Jason Hunter, William Crawford

Enterprise Java Beans by Example – Henri Jubin, Jurgen Friedrichs

Enterprise JavaBeans – Tom Valesky

Java Enterprise in a Nutshell – David Flanagan, Jim Farley, William Crawford & Kris Magnusson

Java Thin Client Programming – Jurgen Friedrichs, Henri Jubin

Java Network Programming – Elliotte Rusty Harold

Dynamic HTML – Microsoft Press

www.java.sun.com
Sample Implementations – Environment Details

Implementation
Environment

RMI
JDK 1.3

Servlets
JDK 1.3, J2EE Reference Implementation, Apache Web Server with TomCat Servlet Engine

EJB
JDK 1.3, J2EE Reference Implementation

APPENDIX

Sample Implementation Code – RMI

//***

// NAME : RMIClient

// DESCRIPTION :

// This class is a sample RMI Client class. It defines a user

// interface which enables two queries to be conducted namely

// Get User Info and Get Countries in order to demonstrate the

// RMI technology. The results of the query are also displayed.

// If there is an error getting an RMI Server reference, the

// same is conveyed to the user in the form of a message dialog.

//***

package rmiclient;

import java.awt.*;

import java.awt.event.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.util.*;

import rmiserver.RMIRemote;

import rmiserver.RMIServer;

import rmitransactions.RMITransaction;

import rmitransactions.GetUserInfo;

import rmitransactions.GetCountries;

import rmidata.User;

public class RMIClient extends Frame implements ActionListener, WindowListener

{

private RMIRemote rmiServerRef = null;

private Label lblUserInfo = new Label("USER INFORMATION");

private Label lblFirstName = new Label("First Name");

private TextField tfFirstName = new TextField();

private Label lblLastName = new Label("Last Name");

private TextField tfLastName = new TextField();

private Label lblAddress = new Label("Address");

private TextField tfAddress = new TextField();

private Label lblTelephone = new Label("Telephone Number");

private TextField tfTelephone = new TextField();

private Label lblEmail = new Label("Email");

private TextField tfEmail = new TextField();

private Button btnUserInfo = new Button("GET USER INFO");

private Label lblCountryList = new Label("LIST OF COUNTRIES");

private List lstCountries = new List();

private Button btnCountries = new Button("GET COUNTRIES");

private Button btnClearUserInfo = new Button("Clear User Info");

private Button btnClearCountries = new Button("Clear User Info");

private static final String RMI_SERVER_ERROR = "Could not get a reference to RMI Server. Make sure" +

 "\nthe RMI Server is running. If not, run the server" +

 "\nby typing the following at the command prompt." +

 "\n\njava.rmiserver.RMIServer";

private static final String RMI_TRANSACTION_ERROR = "There was a problem with executing the RMI" +

"\ntransaction. Please refer stack trace.";

/**

RMIClient - Constructor

@param - None

@return None

*/

public RMIClient()

{

super("Sample Implementation for RMI");

setSize(600, 500);

setLayout(null);

lblUserInfo.setFont(new Font("Times New Roman", Font.BOLD, 16));

lblCountryList.setFont(new Font("Times New Roman", Font.BOLD, 16));

lblUserInfo.setForeground(Color.blue);

lblCountryList.setForeground(Color.blue);

btnUserInfo.setForeground(Color.red);

btnCountries.setForeground(Color.red);

btnClearUserInfo.setForeground(new Color(0,255,0).darker());

btnClearCountries.setForeground(new Color(0,255,0).darker());

lblFirstName.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfFirstName.setFont(new Font("Times New Roman", Font.BOLD, 12));

lblLastName.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfLastName.setFont(new Font("Times New Roman", Font.BOLD, 12));

lblAddress.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfAddress.setFont(new Font("Times New Roman", Font.BOLD, 12));

lblTelephone.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfTelephone.setFont(new Font("Times New Roman", Font.BOLD, 12));

lblEmail.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfEmail.setFont(new Font("Times New Roman", Font.BOLD, 12));

btnUserInfo.setFont(new Font("Times New Roman", Font.BOLD, 12));

lstCountries.setFont(new Font("Times New Roman", Font.BOLD, 12));

btnCountries.setFont(new Font("Times New Roman", Font.BOLD, 12));

btnClearUserInfo.setFont(new Font("Times New Roman", Font.BOLD, 12));

btnClearCountries.setFont(new Font("Times New Roman", Font.BOLD, 12));

add(lblUserInfo);

add(lblFirstName);

add(tfFirstName);

add(lblLastName);

add(tfLastName);

add(lblAddress);

add(tfAddress);

add(lblTelephone);

add(tfTelephone);

add(lblEmail);

add(tfEmail);

add(btnUserInfo);

add(btnClearUserInfo);

add(lblCountryList);

add(lstCountries);

add(btnCountries);

add(btnClearCountries);

//Enable event handling

btnUserInfo.addActionListener(this);

btnCountries.addActionListener(this);

btnClearUserInfo.addActionListener(this);

btnClearCountries.addActionListener(this);

addWindowListener(this);

show();

}

/**

paint - Method that lays out the visual components.

@param Graphics - Graphics Object

@return None

*/

public void paint(Graphics g)

{

lblUserInfo.setBounds(24,24,264,23);

lblFirstName.setBounds(24,54,96,24);

tfFirstName.setBounds(138,56,144,20);

lblLastName.setBounds(288,54,64, 23);

tfLastName.setBounds(370,56,144,20);

lblAddress.setBounds(24,86,96,24);

tfAddress.setBounds(138,88,376,20);

lblTelephone.setBounds(24,126,110,23);

tfTelephone.setBounds(138,128,248,20);

lblEmail.setBounds(24,166,100,23);

tfEmail.setBounds(138,168,248,20);

btnUserInfo.setBounds(416,126,112,23);

btnClearUserInfo.setBounds(416,166,112,23);

lblCountryList.setBounds(24,236,200,24);

lstCountries.setBounds(24,268,264,199);

btnCountries.setBounds(336,340,120,23);

btnClearCountries.setBounds(336,370,120,23);

}

/**

actionPerformed - Action Event Handler

@param ActionEvent - Event Object

@return None

*/

public void actionPerformed(ActionEvent evt)

{

if(evt.getSource().equals(btnUserInfo))

{

System.out.println("Getting User Info...");

//for(int i = 0; i < 500; i++)

getUserInfo();

}

else if(evt.getSource().equals(btnCountries))

{

System.out.println("Getting Country List...");

getCountryList();

}

else if(evt.getSource().equals(btnClearUserInfo))

{

tfFirstName.setText("");

tfLastName.setText("");

tfAddress.setText("");

tfTelephone.setText("");

tfEmail.setText("");

}

else if(evt.getSource().equals(btnClearCountries))

{

lstCountries.removeAll();

}

}

/**

locateRMIServer - Method to locate the remote RMI Server

using the default registry running on port 1099.

@param None

@return None

*/

public void locateRMIServer() throws Exception

{

if(rmiServerRef == null)

{

try

 {

rmiServerRef = (RMIRemote)Naming.lookup(RMIServer.RMI_SERVER);

System.out.println("Successfully obtained reference to RMI Server");

 }

 catch(Exception e)

 {

throw e;

 }

 }

 }

/**

getUserInfo - Method to get user info from the RMI Server/Database.

@param None

@return None

*/

public void getUserInfo()

{

setCursor(new Cursor(WAIT_CURSOR));

GetUserInfo trans = new GetUserInfo();

//Obtain a reference to the RMIServer. If RMI Server

//not found display error.

try

{

locateRMIServer();

}

catch(Exception e)

{

e.printStackTrace();

RMIMsgDialog dlg = new RMIMsgDialog(this, "RMI SERVER ERROR", RMI_SERVER_ERROR);

dlg.show();

}

if(rmiServerRef != null)

{

try

{

User user = (User)rmiServerRef.executeTransaction(trans);

if(user != null)

{

//Populate user info

tfFirstName.setText(user.getFirstName());

tfLastName.setText(user.getLastName());

tfAddress.setText(user.getAddress());

tfTelephone.setText(user.getPhone());

tfEmail.setText(user.getEmail());

}

}

catch(Exception e)

{

e.printStackTrace();

RMIMsgDialog dlg = new RMIMsgDialog(this, "RMI TRANSACTION ERROR", RMI_TRANSACTION_ERROR);

dlg.show();

}

}

setCursor(new Cursor(DEFAULT_CURSOR));

 }

 /**

getCountryList - Method to get list of countries

from the RMI Server/Database.

@param None

@return None

*/

 public void getCountryList()

 {

setCursor(new Cursor(WAIT_CURSOR));

GetCountries trans = new GetCountries();

lstCountries.removeAll();

//Obtain a reference to the RMIServer. If RMI Server

//not found display error.

try

{

locateRMIServer();

}

catch(Exception e)

{

e.printStackTrace();

RMIMsgDialog dlg = new RMIMsgDialog(this, "RMI SERVER ERROR", RMI_SERVER_ERROR);

dlg.show();

}

if(rmiServerRef != null)

{

try

{

Vector vResult = (Vector)rmiServerRef.executeTransaction(trans);

if(vResult != null)

{

int nSize = vResult.size();

for(int i = 0; i < nSize; i++)

{

//Add elements to the list box

lstCountries.add((String)vResult.elementAt(i));

}

}

}

catch(Exception e)

{

e.printStackTrace();

RMIMsgDialog dlg = new RMIMsgDialog(this, "RMI TRANSACTION ERROR", RMI_TRANSACTION_ERROR);

dlg.show();

}

}

setCursor(new Cursor(DEFAULT_CURSOR));

 }

/**

Window Event Handlers

@param WindowEvent - event object

@return None

*/

public void windowActivated(WindowEvent e)

{ }

public void windowClosed(WindowEvent evt)

{ }

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

public void windowDeactivated(WindowEvent e)

{ }

public void windowDeiconified(WindowEvent e)

{ }

public void windowIconified(WindowEvent e)

{ }

public void windowOpened(WindowEvent e)

{ }

/**

main - Client application entry point.

@param String[] - list of command line parameters

@return None

*/

public static void main(String args[])

{

//Create an instance of the RMI Client application

new RMIClient();

}

} //End of class definition

//***

// NAME : RMIMsgDialog

// DESCRIPTION :

// This class is used to display messages. It is used by the

// RMI Client class in case there are errors connecting to the

// RMI server or if there was an error in transaction

// processing.

//***

package rmiclient;

import java.awt.*;

import java.awt.event.*;

public class RMIMsgDialog extends Dialog implements ActionListener, WindowListener

{

private TextArea taMsg = new TextArea(15, 50);

private Button btnOK = new Button("OK");

/**

RMIMsgDialog - Constructor

@param - None

@return None

*/

public RMIMsgDialog(Frame parent, String title, String msg)

{

super(parent);

setModal(true);

setTitle(title);

taMsg.setText(msg);

taMsg.setEditable(false);

add(taMsg);

add(btnOK);

setSize(350, 230);

btnOK.addActionListener(this);

addWindowListener(this);

btnOK.requestFocus();

}

/**

actionPerformed - Action Event Handler

@param ActionEvent - Event Object

@return None

*/

public void actionPerformed(ActionEvent e)

{

if(e.getSource().equals(btnOK))

{

this.dispose();

}

}

/**

paint - Method that lays out the visual components.

@param Graphics - Graphics Object

@return None

*/

public void paint(Graphics g)

{

taMsg.setBounds(10,30,330,150);

btnOK.setBounds(110,190,122,23);

}

/**

Window Event Handlers

@param WindowEvent - event object

@return None

*/

public void windowActivated(WindowEvent e)

{ }

public void windowClosed(WindowEvent evt)

{ }

public void windowClosing(WindowEvent e)

{

dispose();

}

public void windowDeactivated(WindowEvent e)

{ }

public void windowDeiconified(WindowEvent e)

{ }

public void windowIconified(WindowEvent e)

{ }

public void windowOpened(WindowEvent e)

{ }

}//End of class definition

//***

// NAME : RMIRemote

// DESCRIPTION :

// This interface encapsulates methods that remote objects

// must implement.

//***

package rmiserver;

import java.rmi.Remote;

import java.rmi.RemoteException;

import rmitransactions.RMITransaction;

public interface RMIRemote extends Remote

{

/**

executeTransaction - Method that conducts transactions on the

client's behalf.

@param RMITransaction - Transaction Object

@return Object Results

*/

public Object executeTransaction(RMITransaction trans) throws RemoteException;

} //End of interface definition

//***

// NAME : RMIServer

// DESCRIPTION :

// This class encapsulates the RMI Server component. It starts

// up the RMI Registry process on the default port 1099. It then

// registers/exports itself in the RMI registry making itself

// available for clients to access. It also has a very generic

// method to execute transactions for client requests and return

// the results. The transactions are expected to be of type

// RMITransaction.

//***

package rmiserver;

import java.rmi.server.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.util.*;

import rmitransactions.RMITransaction;

public class RMIServer extends UnicastRemoteObject

 implements RMIRemote

{

public static final String RMI_SERVER = "RMIServer";

/**

RMIServer - Constructor

@param - None

@return None

*/

 public RMIServer() throws Exception

 {

 super();

 }

 /**

executeTransaction - Methods that conducts transactions for

clients

@param RMITransaction - Transaction object

@return Object - Results

*/

 public Object executeTransaction(RMITransaction trans) throws RemoteException

 {

System.out.println("Received Client Request for transaction execution");

Object result = null;

try

{

 result = trans.execute();

}

catch(Exception e)

{

throw new RemoteException("Could not execute requested transaction");

}

return result;

 }

 /**

main - Server application entry point

@param String[] - Command Line arguments

@return None

*/

 public static void main(String args[])

 {

try

{

//Create an instance of this server

RMIRemote rmiObj = new RMIServer();

System.out.println("Starting the RMI Registry on port 1099...");

//Start the default registry process

Registry customRegistry = LocateRegistry.createRegistry(1099);

//Bind this server to the Registry

customRegistry.bind(RMIServer.RMI_SERVER, rmiObj);

}

catch(RemoteException e)

{

System.out.println("A remote exception has been caught");

e.printStackTrace();

}

catch(Exception e)

{

e.printStackTrace();

}

//System.exit(0);

 }

}//End of class definition

For the rmidata and rmitransactions packages, the classes are listed at the end of the sample code section.

Sample Implementation Code - SERVLETS

//***

// NAME : UserInfoServlet

// DESCRIPTION :

// This class encapsulates functionality for the UserInfo Servlet

//***

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.util.*;

import java.security.Principal;

import data.*;

import transactions.*;

public class UserInfoServlet extends HttpServlet

{

/**

Constructor

*/

public UserInfoServlet()

{

}

public Object dispatch(Object queryObj)

{

return null;

}

/**

doGet

@param HttpServletRequest - Request Object

@param HttpServletResponse - Response Object

*/

protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, java.io.IOException

{

}

/**

doPost - Override the POST method handler

@param HttpServletRequest - Request Object

@param HttpServletResponse - Response Object

*/

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

// Get the user's session

 HttpSession session = req.getSession(true);

resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();

 out.println("***** Session Id is ***** : " + session.getId());

 String query = req.getParameter("param");

 if(query != null && query.trim().equals("clearinfo"))

 {

 clearOutput(out);

 return;

}

 GetUserInfo trans = new GetUserInfo("rdevi");

 User user = null;

 try

 {

user = (User)trans.execute();

 }

 catch(Exception ex)

 {

//Generate Error

generateErrorOutput(out);

return;

 }

 //Generate User Info HTML

 generateOutput(out, user);

}

/**

generateOutput - Generate user info html

@param PrintWriter - the response writer object

@param User - user object

*/

private void generateOutput(PrintWriter out, User user)

{

out.println("<HTML>");

out.println("<HEAD>");

out.println("<META NAME=\"GENERATOR\" Content=\"Microsoft Visual Studio 98\">");

out.println("<META HTTP-EQUIV=\"Content-Type\" content=\"text/html\">");

out.println("<TITLE>Sample Servlet Implementation</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

//User Info Form

out.println("<FORM ACTION=\"../servlet/UserInfoServlet?param=userinfo\" METHOD=POST>");

out.println("<P>USER INFORMATION</P>");

out.println("<P>First Name ");

out.println("<INPUT id=text1 name=text1 style=\"LEFT: 86px; TOP: 55px\" value=" + user.getFirstName() + ">");

out.println("Last Name ");

out.println("<INPUT id=text2 name=text2 style=\"HEIGHT: 22px; WIDTH: 138px\" value=" + user.getLastName()+ "></P>");

out.println("<P>Address ");

out.println("<INPUT id=text3 name=text3 style=\"HEIGHT: 22px; WIDTH: 422px\" value=" + user.getAddress() + "></P>");

out.println("<P>Telephone Number ");

out.println("<INPUT id=text4 name=text4");

out.println("style=\"HEIGHT: 22px; WIDTH: 171px\" value=" + user.getPhone() + "> ");

out.println("<INPUT id=button1 name=button1 style=\"HEIGHT: 24px; WIDTH: 127px\" type=submit value=\"Get User Info\"> </P>");

out.println("<P>Email ");

out.println("<INPUT id=text5 name=text5 ");

out.println("style=\"HEIGHT: 22px; WIDTH: 231px\" value=" + user.getEmail() + "> ");

out.println("</FORM>");

out.println("<FORM ACTION=\"../servlet/UserInfoServlet?param=clearinfo\" METHOD=POST>");

out.println("<INPUT id=button2 name=button2 style=\"HEIGHT: 24px; WIDTH: 129px\" type=submit value=\"Clear User Info\"></P>");

out.println("<P> </P>");

out.println("</FORM>");

}

/**

generateErrorOutput - Generate error html

@param PrintWriter - the response writer object

*/

private void generateErrorOutput(PrintWriter out)

{

out.println("<HTML>");

out.println("<HEAD>");

out.println("<META NAME=\"GENERATOR\" Content=\"Microsoft Visual Studio 98\">");

out.println("<META HTTP-EQUIV=\"Content-Type\" content=\"text/html\">");

out.println("<TITLE>Sample Servlet Implementation</TITLE>");

out.println("</HEAD>");

out.println("<H1> ERROR GETTING USER INFO </H1>");

out.println("<BODY>");

//User Info Form

out.println("<FORM ACTION=\"../servlet/UserInfoServlet?param=userinfo\" METHOD=POST>");

out.println("<P>USER INFORMATION</P>");

out.println("<P>First Name ");

out.println("<INPUT id=text1 name=text1 style=\"LEFT: 86px; TOP: 55px\">");

out.println("Last Name ");

out.println("<INPUT id=text2 name=text2 style=\"HEIGHT: 22px; WIDTH: 138px\"></P>");

out.println("<P>Address ");

out.println("<INPUT id=text3 name=text3 style=\"HEIGHT: 22px; WIDTH: 422px\"></P>");

out.println("<P>Telephone Number ");

out.println("<INPUT id=text4 name=text4");

out.println("style=\"HEIGHT: 22px; WIDTH: 171px\"> ");

out.println("<INPUT id=button1 name=button1 style=\"HEIGHT: 24px; WIDTH: 127px\" type=submit value=\"Get User Info\"> </P>");

out.println("<P>Email ");

out.println("<INPUT id=text5 name=text5 ");

out.println("style=\"HEIGHT: 22px; WIDTH: 231px\"> ");

out.println("</FORM>");

out.println("<FORM ACTION=\"../servlet/UserInfoServlet?param=clearinfo\" METHOD=POST>");

out.println("<INPUT id=button2 name=button2 style=\"HEIGHT: 24px; WIDTH: 129px\" type=submit value=\"Clear User Info\"></P>");

out.println("<P> </P>");

out.println("</FORM>");

}

/**

clearOutput - Generate html to clear form

@param PrintWriter - the response writer object

*/

private void clearOutput(PrintWriter out)

{

out.println("<HTML>");

out.println("<HEAD>");

out.println("<META NAME=\"GENERATOR\" Content=\"Microsoft Visual Studio 98\">");

out.println("<META HTTP-EQUIV=\"Content-Type\" content=\"text/html\">");

out.println("<TITLE>Sample Servlet Implementation</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

//User Info Form

out.println("<FORM ACTION=\"../servlet/UserInfoServlet?param=userinfo\" METHOD=POST>");

out.println("<P>USER INFORMATION</P>");

out.println("<P>First Name ");

out.println("<INPUT id=text1 name=text1 style=\"LEFT: 86px; TOP: 55px\">");

out.println("Last Name ");

out.println("<INPUT id=text2 name=text2 style=\"HEIGHT: 22px; WIDTH: 138px\"></P>");

out.println("<P>Address ");

out.println("<INPUT id=text3 name=text3 style=\"HEIGHT: 22px; WIDTH: 422px\"></P>");

out.println("<P>Telephone Number ");

out.println("<INPUT id=text4 name=text4");

out.println("style=\"HEIGHT: 22px; WIDTH: 171px\"> ");

out.println("<INPUT id=button1 name=button1 style=\"HEIGHT: 24px; WIDTH: 127px\" type=submit value=\"Get User Info\"> </P>");

out.println("<P>Email ");

out.println("<INPUT id=text5 name=text5 ");

out.println("style=\"HEIGHT: 22px; WIDTH: 231px\"> ");

out.println("</FORM>");

out.println("<FORM ACTION=\"../servlet/UserInfoServlet?param=clearinfo\" METHOD=POST>");

out.println("<INPUT id=button2 name=button2 style=\"HEIGHT: 24px; WIDTH: 129px\" type=submit value=\"Clear User Info\"></P>");

out.println("<P> </P>");

out.println("</FORM>");

}

} //End of class definition

//***

// NAME : CountryListServlet

// DESCRIPTION :

// This class encapsulates functionality for the

// CountryListServlet Servlet

//***

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.util.*;

import java.security.Principal;

import transactions.*;

public class CountryListServlet extends HttpServlet

{

private static final String COUNTRY_SERVLET_COUNT = "CountryServletCount";

/**

Constructor

*/

public CountryListServlet()

{

}

public Object dispatch(Object queryObj)

{

return null;

}

/**

doGet

@param HttpServletRequest - Request Object

@param HttpServletResponse - Response Object

*/

protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, java.io.IOException

{

}

/**

doPost - Override the POST method handler

@param HttpServletRequest - Request Object

@param HttpServletResponse - Response Object

*/

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

//Session Management

//Get the user's session

 HttpSession session = req.getSession(true);

 Integer count = (Integer)session.getValue(COUNTRY_SERVLET_COUNT);

 if(count == null)

 {

//If session object does not have count

//put one in.

count = new Integer(0);

session.putValue(COUNTRY_SERVLET_COUNT, count);

 }

 else

 {

//If session object already has count

//increment it.

int nCnt = count.intValue() + 1;

count = new Integer(nCnt);

session.putValue(COUNTRY_SERVLET_COUNT, count);

 }

 //Cookies

 //Get all cookies and search for the one

 //this servlet sets.

 Cookie[] cookieList = req.getCookies();

 //Set a new cookie

 Cookie countryCookie = new Cookie("COUNTRYCOOKIE", "listofcountries");

countryCookie.setComment("This cookie is for testing purposes");

countryCookie.setMaxAge(-1);

resp.addCookie(countryCookie);

//If an input parameter is passed to clear

 //the screen just send html output with

 //blank values.

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();

out.println("***** Session Id is ***** : " + session.getId());

out.println("
");

out.println("***** You have accessed this servlet : " + session.getValue(COUNTRY_SERVLET_COUNT) + " times.");

out.println("
");

if(cookieList != null)

{

for(int i = 0; i < cookieList.length; i++)

{

out.println("***** cookie **** : " + cookieList[i]);

out.println("
");

out.println("***** cookie name : " + cookieList[i].getName());

out.println("
");

out.println("***** cookie value : " + cookieList[i].getValue());

out.println("
");

out.println("***** cookie comment : " + cookieList[i].getComment());

out.println("
");

out.println("***** cookie domain : " + cookieList[i].getDomain());

out.println("
");

out.println("***** cookie age : " + cookieList[i].getMaxAge());

out.println("
");

out.println("***** cookie path : " + cookieList[i].getPath());

out.println("
");

out.println("***** cookie version : " + cookieList[i].getVersion());

out.println("
");

}

}

 String query = req.getParameter("param");

 if(query != null && query.trim().equals("clearinfo"))

 {

 clearOutput(out);

 return;

}

GetCountries trans = new GetCountries();

Vector countries = null;

 try

 {

countries = (Vector)trans.execute();

 }

 catch(Exception ex)

 {

//Generate Error

generateErrorOutput(out);

return;

 }

 //Generate User Info HTML

 generateOutput(out, countries);

}

/**

generateOutput - Generate user info html

@param PrintWriter - the response writer object

@param Vector - list of countries

*/

private void generateOutput(PrintWriter out, Vector countries)

{

out.println("<HTML>");

out.println("<HEAD>");

out.println("<META NAME=\"GENERATOR\" Content=\"Microsoft Visual Studio 98\">");

out.println("<META HTTP-EQUIV=\"Content-Type\" content=\"text/html\">");

out.println("<TITLE>Sample Servlet Implementation</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

//Country List Form

out.println("<FORM ACTION=\"../servlet/CountryListServlet?param=userinfo\" METHOD=POST>");

out.println("<P>LIST OF ");

out.println("COUNTRIES</P>");

out.println("<P><SELECT id=select1 name=select1 size=2 ");

out.println("style=\"HEIGHT: 198px; WIDTH: 261px\">");

int nCount = countries.size();

String ctry = (String)countries.elementAt(0);

out.println("<option VALUE=\"0\">" + ctry);

for(int i = 1; i < nCount; i++)

{

ctry = (String)countries.elementAt(i);

out.println("<option VALUE=\"" + i + "\">" + ctry);

}

out.println("</SELECT>");

out.println(" <INPUT id=button3 name=button3 style=\"HEIGHT: 24px; WIDTH: 134px\" type=submit value=\"Get Countries\"> ");

out.println("</FORM>");

out.println("<FORM ACTION=\"../servlet/CountryListServlet?param=clearinfo\" METHOD=POST>");

out.println("<INPUT id=button4 name=button4 style=\"HEIGHT: 24px; WIDTH: 133px\" type=submit value=\"Clear Countries\"> </P>");

out.println("<P> </P>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

/**

generateErrorOutput - Generate error html

@param PrintWriter - the response writer object

*/

private void generateErrorOutput(PrintWriter out)

{

out.println("<HTML>");

out.println("<HEAD>");

out.println("<META NAME=\"GENERATOR\" Content=\"Microsoft Visual Studio 98\">");

out.println("<META HTTP-EQUIV=\"Content-Type\" content=\"text/html\">");

out.println("<TITLE>Sample Servlet Implementation</TITLE>");

out.println("</HEAD>");

out.println("<H1> ERROR GETTING LIST OF COUNTRIES</H1>");

out.println("<BODY>");

//Country List Form

out.println("<FORM ACTION=\"../servlet/CountryListServlet?param=userinfo\" METHOD=POST>");

out.println("<P>LIST OF ");

out.println("COUNTRIES</P>");

out.println("<P><SELECT id=select1 name=select1 size=2 ");

out.println("style=\"HEIGHT: 198px; WIDTH: 261px\">");

out.println("<OPTION selected></SELECT>");

out.println(" <INPUT id=button3 name=button3 style=\"HEIGHT: 24px; WIDTH: 134px\" type=submit value=\"Get Countries\"> ");

out.println("</FORM>");

out.println("<FORM ACTION=\"../servlet/CountryListServlet?param=clearinfo\" METHOD=POST>");

out.println("<INPUT id=button4 name=button4 style=\"HEIGHT: 24px; WIDTH: 133px\" type=submit value=\"Clear Countries\"> </P>");

out.println("<P> </P>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

/**

clearOutput - Generate html to clear form

@param PrintWriter - the response writer object

*/

private void clearOutput(PrintWriter out)

{

out.println("<HTML>");

out.println("<HEAD>");

out.println("<META NAME=\"GENERATOR\" Content=\"Microsoft Visual Studio 98\">");

out.println("<META HTTP-EQUIV=\"Content-Type\" content=\"text/html\">");

out.println("<TITLE>Sample Servlet Implementation</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

//Country List Form

out.println("<FORM ACTION=\"../servlet/CountryListServlet?param=userinfo\" METHOD=POST>");

out.println("<P>LIST OF ");

out.println("COUNTRIES</P>");

out.println("<P><SELECT id=select1 name=select1 size=2 ");

out.println("style=\"HEIGHT: 198px; WIDTH: 261px\">");

out.println("<OPTION selected></SELECT>");

out.println(" <INPUT id=button3 name=button3 style=\"HEIGHT: 24px; WIDTH: 134px\" type=submit value=\"Get Countries\"> ");

out.println("</FORM>");

out.println("<FORM ACTION=\"../servlet/CountryListServlet?param=clearinfo\" METHOD=POST>");

out.println("<INPUT id=button4 name=button4 style=\"HEIGHT: 24px; WIDTH: 133px\" type=submit value=\"Clear Countries\"> </P>");

out.println("<P> </P>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

} //End of class definition

import java.applet.*;

import java.awt.*;

import java.io.*;

import java.util.*;

import java.awt.event.*;

import java.net.*;

public class TestApplet extends Applet implements ActionListener

{

TextField txtDate = new TextField();

Button btnRefresh = new Button("Refresh");

public void init()

{

//Construct the user interface

setLayout(new BorderLayout());

Panel pApp = new Panel();

pApp.setLayout(new GridLayout(2,1));

pApp.add(new Label("Time of Day"));

pApp.add(txtDate);

pApp.add(new Label(""));

pApp.add(btnRefresh);

add("Center", pApp);

btnRefresh.addActionListener(this);

}

public void start()

{

refresh();

}

private void refresh()

{

txtDate.setText(getDate());

}

private String getDate()

{

try

{

URL URL = new URL("http://localhost:8080/SampleServlets/servlet/AppServlet");

URLConnection con = URL.openConnection();

con.setUseCaches(false);

InputStream is = con.getInputStream();

ObjectInputStream ois = new ObjectInputStream(is);

Date dateObj = (Date)ois.readObject();

return dateObj.toString();

}

catch(Exception e)

{

e.printStackTrace();

}

return "";

}

public void actionPerformed(ActionEvent e)

{

refresh();

}

} //End of class definition

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class AppServlet extends HttpServlet

{

public Date getDate()

{

return new Date();

}

/**

doGet

@param HttpServletRequest - Request Object

@param HttpServletResponse - Response Object

*/

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

{

//Print the date as a string

ObjectOutputStream oos = new ObjectOutputStream(res.getOutputStream());

oos.writeObject(getDate());

}

/**

doPost

@param HttpServletRequest - Request Object

@param HttpServletResponse - Response Object

*/

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, java.io.IOException

{

doGet(req, resp);

}

};

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 98">

<META HTTP-EQUIV="Content-Type" content="text/html">

<TITLE>Sample Servlet Implementation</TITLE>

</HEAD>

<BODY>

<FORM ACTION="../servlet/UserInfoServlet?param=userinfo" METHOD=POST>

<P>USER INFORMATION</P>

<P>First Name

<INPUT id=text1 name=text1 style="LEFT: 86px; TOP: 55px">

Last Name

<INPUT id=text2 name=text2 style="HEIGHT: 22px; WIDTH: 138px"></P>

<P>Address

<INPUT id=text3 name=text3 style="HEIGHT: 22px; WIDTH: 422px"></P>

<P>Telephone Number

<INPUT id=text4 name=text4

style="HEIGHT: 22px; WIDTH: 171px">

<INPUT id=button1 name=button1 style="HEIGHT: 24px; WIDTH: 127px" type=submit value="Get User Info"> </P>

<P>Email

<INPUT id=text5 name=text5

style="HEIGHT: 22px; WIDTH: 231px">

</FORM>

<FORM ACTION="../servlet/UserInfoServlet?param=clearinfo" METHOD=POST>

<INPUT id=button2 name=button2 style="HEIGHT: 24px; WIDTH: 129px" type=submit value="Clear User Info"></P>

<P> </P>

</FORM>

</BODY>

</HTML>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 98">

<META HTTP-EQUIV="Content-Type" content="text/html">

<TITLE>Sample Servlet Implementation</TITLE>

</HEAD>

<BODY>

<FORM ACTION="../servlet/CountryListServlet?param=countrylist" METHOD=POST>

<P>LIST OF COUNTRIES</P>

<P><SELECT id=select1 name=select1 size=2 style="HEIGHT: 198px; WIDTH: 261px">

<OPTION selected></SELECT>

 <INPUT id=button3 name=button3 style="HEIGHT: 24px; WIDTH: 134px" type=submit value="Get Countries">

</FORM>

<FORM ACTION="../servlet/CountryListServlet?param=clearinfo" METHOD=POST>

<INPUT id=button4 name=button4 style="HEIGHT: 24px; WIDTH: 133px" type=submit value="Clear Countries"> </P>

<P> </P>

</FORM>

</BODY>

</HTML>

<HTML>

<FRAMESET ROWS="50%,50%">

<FRAME NAME="userinfo" SRC="UserInfo.html">

 <FRAME NAME="countrylist" SRC="CountryList.html">

</FRAMESET>

</HTML>

<HTML>

<HEAD>

<TITLE> APPLET TO SERVLET COMMUNICATIONS </TITLE>

</HEAD>

<BODY>

<HR>

<APPLET WIDTH=300 HEIGHT=200 NAME="APPLETSERVLET" CODE=TestApplet> </APPLET>

</BODY>

</HTML>

Sample Implementation Code - EJB

/**

Stateless User Info Bean Interface. This

is the business interface that clients call.

*/

import javax.ejb.*;

import java.rmi.*;

import data.User;

public interface StatelessUIRemoteInterface extends EJBObject

{

public User getUserInfo(String userId) throws RemoteException;

}

/**

Stateless session bean home interface for the

UserInfo Bean.

*/

import javax.ejb.*;

import java.rmi.*;

public interface StatelessUIHomeInterface extends EJBHome

{

//The create method with no arguments because

//this bean is a stateless bean.

public StatelessUIRemoteInterface create() throws RemoteException, CreateException;

} //End of class definition

/**

Stateless User Info Bean. This

is the EJB class. It implements the

associated remote interface for the bean

*/

import javax.ejb.*;

import data.*;

import transactions.*;

public class StatelessUIEJB implements SessionBean

{

public User getUserInfo(String userId) throws Exception

{

//Create a GetUserInfo instance and call its

//execute method to send off a query to the database.

GetUserInfo getObj = new GetUserInfo(userId);

User user = (User)getObj.execute();

return user;

}

public StatelessUIEJB() {}

public void ejbCreate() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void setSessionContext(SessionContext sc) {}

}

/**

Stateless Country List Bean Remote Interface. This

is the business interface that clients call.

*/

import javax.ejb.*;

import java.rmi.*;

import java.util.Vector;

public interface StatelessCLRemoteInterface extends EJBObject

{

public Vector getCountryList() throws RemoteException;

}

/**

Stateless session bean home interface for the

CountryList Bean.

*/

import javax.ejb.*;

import java.rmi.*;

public interface StatelessCLHomeInterface extends EJBHome

{

//The create method with no arguments because

//this bean is a stateless bean.

public StatelessCLRemoteInterface create() throws RemoteException, CreateException;

} //End of class definition

/**

Stateless Country List Bean. This

is the EJB class. It implements the

associated remote interface for the bean

*/

import javax.ejb.*;

import data.*;

import transactions.*;

import java.util.Vector;

public class StatelessCLEJB implements SessionBean

{

public Vector getCountryList() throws Exception

{

//Create a GetCountries instance and call its

//execute method to send off a query to the database.

GetCountries getObj = new GetCountries();

Vector cl = (Vector)getObj.execute();

return cl;

}

public StatelessCLEJB() {}

public void ejbCreate() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void setSessionContext(SessionContext sc) {}

}

/**

This is the client class for the EJB sample

implementation.

*/

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

import data.User;

public class EJBClient extends Frame implements ActionListener, WindowListener

{

private Label lblUserInfo = new Label("USER INFORMATION");

private Label lblFirstName = new Label("First Name");

private TextField tfFirstName = new TextField();

private Label lblLastName = new Label("Last Name");

private TextField tfLastName = new TextField();

private Label lblAddress = new Label("Address");

private TextField tfAddress = new TextField();

private Label lblTelephone = new Label("Telephone Number");

private TextField tfTelephone = new TextField();

private Label lblEmail = new Label("Email");

private TextField tfEmail = new TextField();

private Button btnUserInfo = new Button("GET USER INFO");

private Label lblCountryList = new Label("LIST OF COUNTRIES");

private List lstCountries = new List();

private Button btnCountries = new Button("GET COUNTRIES");

private Button btnClearUserInfo = new Button("Clear User Info");

private Button btnClearCountries = new Button("Clear User Info");

/**

EJBClient - Constructor

@param - None

@return None

*/

public EJBClient()

{

super("Sample Implementation for EJB");

setSize(600, 500);

setLayout(null);

lblUserInfo.setFont(new Font("Times New Roman", Font.BOLD, 16));

lblCountryList.setFont(new Font("Times New Roman", Font.BOLD, 16));

lblUserInfo.setForeground(Color.blue);

lblCountryList.setForeground(Color.blue);

btnUserInfo.setForeground(Color.red);

btnCountries.setForeground(Color.red);

btnClearUserInfo.setForeground(new Color(0,255,0).darker());

btnClearCountries.setForeground(new Color(0,255,0).darker());

lblFirstName.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfFirstName.setFont(new Font("Times New Roman", Font.BOLD, 12));

lblLastName.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfLastName.setFont(new Font("Times New Roman", Font.BOLD, 12));

lblAddress.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfAddress.setFont(new Font("Times New Roman", Font.BOLD, 12));

lblTelephone.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfTelephone.setFont(new Font("Times New Roman", Font.BOLD, 12));

lblEmail.setFont(new Font("Times New Roman", Font.BOLD, 12));

tfEmail.setFont(new Font("Times New Roman", Font.BOLD, 12));

btnUserInfo.setFont(new Font("Times New Roman", Font.BOLD, 12));

lstCountries.setFont(new Font("Times New Roman", Font.BOLD, 12));

btnCountries.setFont(new Font("Times New Roman", Font.BOLD, 12));

btnClearUserInfo.setFont(new Font("Times New Roman", Font.BOLD, 12));

btnClearCountries.setFont(new Font("Times New Roman", Font.BOLD, 12));

add(lblUserInfo);

add(lblFirstName);

add(tfFirstName);

add(lblLastName);

add(tfLastName);

add(lblAddress);

add(tfAddress);

add(lblTelephone);

add(tfTelephone);

add(lblEmail);

add(tfEmail);

add(btnUserInfo);

add(btnClearUserInfo);

add(lblCountryList);

add(lstCountries);

add(btnCountries);

add(btnClearCountries);

//Enable event handling

btnUserInfo.addActionListener(this);

btnCountries.addActionListener(this);

btnClearUserInfo.addActionListener(this);

btnClearCountries.addActionListener(this);

addWindowListener(this);

show();

}

/**

paint - Method that lays out the visual components.

@param Graphics - Graphics Object

@return None

*/

public void paint(Graphics g)

{

lblUserInfo.setBounds(24,24,264,23);

lblFirstName.setBounds(24,54,96,24);

tfFirstName.setBounds(138,56,144,20);

lblLastName.setBounds(288,54,64, 23);

tfLastName.setBounds(370,56,144,20);

lblAddress.setBounds(24,86,96,24);

tfAddress.setBounds(138,88,376,20);

lblTelephone.setBounds(24,126,110,23);

tfTelephone.setBounds(138,128,248,20);

lblEmail.setBounds(24,166,100,23);

tfEmail.setBounds(138,168,248,20);

btnUserInfo.setBounds(416,126,112,23);

btnClearUserInfo.setBounds(416,166,112,23);

lblCountryList.setBounds(24,236,200,24);

lstCountries.setBounds(24,268,264,199);

btnCountries.setBounds(336,340,120,23);

btnClearCountries.setBounds(336,370,120,23);

}

/**

actionPerformed - Action Event Handler

@param ActionEvent - Event Object

@return None

*/

public void actionPerformed(ActionEvent evt)

{

if(evt.getSource().equals(btnUserInfo))

{

System.out.println("Getting User Info...");

//for(int i = 0; i < 500; i++)

getUserInfo();

}

else if(evt.getSource().equals(btnCountries))

{

System.out.println("Getting Country List...");

getCountryList();

}

else if(evt.getSource().equals(btnClearUserInfo))

{

tfFirstName.setText("");

tfLastName.setText("");

tfAddress.setText("");

tfTelephone.setText("");

tfEmail.setText("");

}

else if(evt.getSource().equals(btnClearCountries))

{

lstCountries.removeAll();

}

}

/**

getUserInfo - Method to get user info from the EJB Server/Database.

@param None

@return None

*/

public void getUserInfo()

{

setCursor(new Cursor(WAIT_CURSOR));

//Obtain a reference to the EJB.

User user = null;

try

{

Context initial = new InitialContext();

Object objref = initial.lookup("UserInfoBean");

StatelessUIHomeInterface home =

(StatelessUIHomeInterface)PortableRemoteObject.narrow(objref,

 StatelessUIHomeInterface.class);

StatelessUIRemoteInterface UIObj = home.create();

 user = UIObj.getUserInfo("rdevi");

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 }

if(user != null)

{

//Populate user info

tfFirstName.setText(user.getFirstName());

tfLastName.setText(user.getLastName());

tfAddress.setText(user.getAddress());

tfTelephone.setText(user.getPhone());

tfEmail.setText(user.getEmail());

}

setCursor(new Cursor(DEFAULT_CURSOR));

 }

 /**

getCountryList - Method to get list of countries

from the EJB Server/Database.

@param None

@return None

*/

 public void getCountryList()

 {

setCursor(new Cursor(WAIT_CURSOR));

lstCountries.removeAll();

Vector cl = null;

try

{

Context initial = new InitialContext();

Object objref = initial.lookup("CountryListBean");

StatelessCLHomeInterface home =

(StatelessCLHomeInterface)PortableRemoteObject.narrow(objref,

 StatelessCLHomeInterface.class);

StatelessCLRemoteInterface CLObj = home.create();

 cl = CLObj.getCountryList();

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 }

if(cl != null)

{

int nSize = cl.size();

for(int i = 0; i < nSize; i++)

{

//Add elements to the list box

lstCountries.add((String)cl.elementAt(i));

}

}

setCursor(new Cursor(DEFAULT_CURSOR));

 }

/**

Window Event Handlers

@param WindowEvent - event object

@return None

*/

public void windowActivated(WindowEvent e)

{ }

public void windowClosed(WindowEvent evt)

{ }

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

public void windowDeactivated(WindowEvent e)

{ }

public void windowDeiconified(WindowEvent e)

{ }

public void windowIconified(WindowEvent e)

{ }

public void windowOpened(WindowEvent e)

{ }

/**

main - Client application entry point.

@param String[] - list of command line parameters

@return None

*/

public static void main(String args[])

{

//Create an instance of the EJB Client application

new EJBClient();

}

} //End of class definition

Common Classes used by RMI, Servlets and EJB

(RMI sample defines the same classes in a different packages)

//***

// NAME : User

// DESCRIPTION :

// This class encapsulates user data.

//***

package data;

import java.io.*;

public class User implements Serializable

{

private String firstName = "";

private String lastName = "";

private String address = "";

private String phone = "";

private String email = "";

/**

User - Constructor

@param - None

@return None

*/

public User()

{

}

/**

User - Constructor

@param String - First Name

@param String - Last Name

@param String - Address

@param String - Phone Number

@param String - Email

@return None

*/

public User(String fName, String lName,

String addr, String phone,

String email)

{

firstName = fName;

lastName = lName;

address = addr;

this.phone = phone;

this.email = email;

}

/**

Set Methods

*/

public void setFirstName(String fName)

{

firstName = fName;

}

public void setLastName(String lName)

{

lastName = lName;

}

public void setAddress(String addr)

{

address = addr;

}

public void setPhone(String phone)

{

this.phone = phone;

}

public void setEmail(String email)

{

this.email = email;

}

/**

Get Methods

*/

public String getFirstName()

{

return firstName;

}

public String getLastName()

{

return lastName;

}

public String getAddress()

{

return address;

}

public String getPhone()

{

return phone;

}

public String getEmail()

{

return email;

}

} //End of class definition

//***

// NAME : Transaction

// DESCRIPTION :

// This interface defines methods to connect to the

// database, disconnect from database, conduct execute insert

// update, delete and query transactions.

//***

package transactions;

import java.io.Serializable;

import java.sql.SQLException;

import java.sql.ResultSet;

public interface Transaction extends Serializable

{

//Methods that a transaction class must implement.

public Object execute() throws Exception;

public ResultSet executeQuery(String sqlStmt) throws Exception;

public int executeUpdate(String sqlStmt) throws Exception;

public void connectToDB() throws Exception;

public void disconnectFromDB() throws Exception;

} //End of interface definition

//***

// NAME : TransactionImpl

// DESCRIPTION :

// This class encapsulates functionality to connect to the

// database, disconnect from database, conduct execute insert

// update, delete and query transactions.

//***

package transactions;

import java.sql.*;

public class TransactionImpl implements Transaction

{

private String dbDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

private String dbURL = "jdbc:odbc:new_orderentry";

private String dbUser = "rdevi";

private String dbPassword = "Changeme1st";

private Connection con = null;

private Statement stmt = null;

/**

TransactionImpl - Constructor

@param None

@return None

*/

public TransactionImpl()

{

}

/**

connectToDB - Method to connect to the database

@param None

@return None

*/

public void connectToDB() throws Exception

{

try

{

Class.forName(dbDriver);

}

catch(ClassNotFoundException e)

{

throw new Exception("Database Driver not found.");

}

try

{

con = DriverManager.getConnection(dbURL, dbUser, dbPassword);

stmt = con.createStatement();

}

catch(SQLException e)

{

throw new Exception("Could not connect to the database.");

}

}

/**

disconnectFromDB - Method to disconnect from the database

@param None

@return None

*/

public void disconnectFromDB() throws Exception

{

//Close the statement object

if(stmt != null)

{

stmt.close();

stmt = null;

}

//Close the connection object

if(con != null)

{

con.close();

con = null;

}

}

/**

execute - Child classes must override this function.

*/

public Object execute() throws Exception

{

return null;

}

/**

executeQuery - Method to execute a query

@param String - SQL Query

@return ResultSet Results

*/

public ResultSet executeQuery(String sqlStmt) throws Exception

{

//This returns an object of type ResultSet

if(stmt != null)

{

return stmt.executeQuery(sqlStmt);

}

else

return null;

}

/**

executeQuery - Method to execute updates or deletes

@param String - SQL Query

@return int Result of update

*/

public int executeUpdate(String sqlStmt) throws Exception

{

//This returns an object of type ResultSet

if(stmt != null)

{

return stmt.executeUpdate(sqlStmt);

}

else

return -1;

}

/**

setDBDriver - Method to set the database driver

@param String - Driver

@return None

*/

public void setDBDriver(String strDriver)

{

dbDriver = strDriver;

}

/**

setDBDriver - Method to set the database URL

@param String - Database URL

@return None

*/

public void setDBURL(String strURL)

{

dbURL = strURL;

}

/**

setDBDriver - Method to set the database user id.

@param String - Database User Id

@return None

*/

public void setDBUser(String strUser)

{

dbUser = strUser;

}

/**

setDBDriver - Method to set the database user password

@param String - Database User Password

@return None

*/

public void setDBPassword(String strPassword)

{

dbPassword = strPassword;

}

} //End of class definition

//***

// NAME : GetUserInfo

// DESCRIPTION :

// This class encapsulates functionality to query for user

// information.

//***

package transactions;

import java.util.Hashtable;

import java.sql.*;

import data.User;

public class GetUserInfo extends TransactionImpl

{

//Query string

private String sqlStmt = "SELECT * from users where user_id = ";

//Input parameters for query

private String userId = "";

User user = new User();

/**

Constructor

*/

public GetUserInfo(String userId)

{

this.userId = userId;

}

/**

setUserId - Method to set user id.

@param String - User Id

@return None

*/

public void setUserId(String userId)

{

this.userId = userId;

}

/**

execute - Method to obtain user information

@param None

@return Object Results of the query

*/

public Object execute() throws Exception

{

try

{

connectToDB();

ResultSet rs = executeQuery(sqlStmt + "\"" + userId + "\"");

while (rs.next())

{

String fName = rs.getString("FIRST_NAME");

String lName = rs.getString("LAST_NAME");

String addr = rs.getString("ADDRESS");

String phone = rs.getString("PHONE");

String email = rs.getString("EMAIL");

user.setFirstName(fName);

user.setLastName(lName);

user.setAddress(addr);

user.setPhone(phone);

user.setEmail(email);

}

}

catch(Exception e)

{

//e.printStackTrace();

//In case database transaction fails, return

//some default values. This is used for demo

//and testing purposes only.

System.out.println(" ********* Could not connect to database : Returning DEFAULT DATA");

user.setFirstName("Rama");

user.setLastName("Devi");

user.setAddress("2424 GOG Colorado Springs CO - 80919");

user.setPhone("(719)535-6417");

user.setEmail("Rama.Devi@wcom.com");

}

try

{

disconnectFromDB();

}

catch(Exception e)

{

throw new Exception("Could not close database connection");

}

return user;

}

} //End of class definition

//***

// NAME : GetCountries

// DESCRIPTION :

// This class encapsulates functionality to query for the

// list of countries.

//***

package transactions;

import java.util.Vector;

import java.sql.*;

public class GetCountries extends TransactionImpl

{

//Query string

String sqlStmt = "SELECT * from countries";

//Result Vector

Vector countries = new Vector();

/**

Constructor

*/

public GetCountries()

{

}

/**

execute - Method that extablishes a connection with the

database and conducts the transaction.

@param None

@return None

*/

public Object execute() throws Exception

{

try

{

connectToDB();

ResultSet rs = executeQuery(sqlStmt);

while (rs.next())

{

String s = rs.getString("COUNTRY_NAME");

countries.addElement(s);

}

}

catch(Exception e)

{

//If getting countries from the database fails

//return dummy values. This is for testing and

//demo purposes.

System.out.println(" ********* Could not connect to database : Returning DEFAULT DATA");

countries.addElement("USA");

countries.addElement("Australia");

countries.addElement("Korea");

countries.addElement("China");

countries.addElement("India");

countries.addElement("Russia");

countries.addElement("Turkey");

countries.addElement("France");

countries.addElement("Greece");

countries.addElement("England");

countries.addElement("Scotland");

countries.addElement("Spain");

}

try

{

disconnectFromDB();

}

catch(Exception e)

{

throw new Exception("Could not close database connection");

}

return countries;

}

} //End of class definition

Java API for RMI

A few of the packages and classes corresponding to RMI are listed and detailed below. These are excerpts from the documentation on the site java.sun.com

Package java.rmi

Interfaces
Classes
Exceptions

Remote
MarshalledObject

Naming

RMISecurityManager
AccessException
AlreadyBoundException
ConnectException
ConnectIOException
MarshalException
NoSuchObjectException
NotBoundException
RemoteException

RMISecurityException
ServerError
ServerException
ServerRuntimeException
StubNotFoundException
UnexpectedException
UnknownHostException
UnmarshalException

Class Naming

Java.lang.Object

 |

 +--java.rmi.Naming

public final class Naming

extends Object

The Naming class provides methods for storing and obtaining references to remote objects in the remote object registry. The Naming class's methods take, as one of their arguments, a name that is a URL formatted java.lang.String of the form:

 //host:port/name

where host is the host (remote or local) where the registry is located, port is the port number on which the registry accepts calls, and where name is a simple string uninterpreted by the registry. Both host and port are optional. If host is omitted, the host defaults to the local host. If port is omitted, then the port defaults to 1099, the "well-known" port that RMI's registry, rmiregistry, uses.

Binding a name for a remote object is associating or registering a name for a remote object that can be used at a later time to look up that remote object. A remote object can be associated with a name using the Naming class's bind or rebind methods.

Once a remote object is registered (bound) with the RMI registry on the local host, callers on a remote (or local) host can lookup the remote object by name, obtain its reference, and then invoke remote methods on the object. A registry may be shared by all servers running on a host or an individual server process may create and use its own registry if desired (see java.rmi.registry.LocateRegistry.createRegistry method for details).

PRIVATE
Method Summary

static void
bind(String name, Remote obj)
Binds the specified name to a remote object.

static String[]
list(String name)
Returns an array of the names bound in the registry.

static Remote
lookup(String name)
Returns a reference, a stub, for the remote object associated with the specified name.

static void
rebind(String name, Remote obj)
Rebinds the specified name to a new remote object.

static void
unbind(String name)
Destroys the binding for the specified name that is associated with a remote object.

Package java.rmi.registry

Interfaces
Classes
Exceptions

Registry
RegistryHandler
LocateRegistry

Interface Registry

All Superinterfaces:

Remote

public interface Registry

extends Remote

For obtaining references to remote objects, RMI provides a simple remote object registry interface, implemented by RMI's rmiregistry, that provides methods for storing and retrieving remote object references. The java.rmi.Naming class provides methods to access a remote object registry using URL-formatted names to specify in a compact format both the remote registry along with the name for the remote object.

Typically a "registry" exists on every node that allows RMI connections to servers on that node. A registry on a particular node contains a transient database that maps names to remote objects. When a registry starts up, the registry database is empty. The names stored in the registry are pure and are not parsed. A service storing itself in the registry may want to prefix its name of the service by a package name (although not required), to reduce name collisions in the registry.

To create a registry that runs in an application, use one of the LocateRegistry.createRegistry methods. To obtain a reference to a remote object registry, use one of the LocateRegistry.getRegistry methods.

PRIVATE
Method Summary

void
bind(String name, Remote obj)
Binds the specified name to a remote object.

String[]
list()
Returns an array of the names bound in the registry.

Remote
lookup(String name)
Returns a reference, a stub, for the remote object associated with the specified name.

void
rebind(String name, Remote obj)
Rebinds the specified name to a new remote object.

void
unbind(String name)
Destroys the binding for the specified name that is associated with a remote object.

Class LocateRegistry

java.lang.Object

 |

 +--java.rmi.registry.LocateRegistry

public final class LocateRegistry

extends Object

LocateRegistry is used to obtain a reference to a bootstrap remote object registry on a particular host (including the local host), or to create a remote object registry that accepts calls on a specific port.

Note that a getRegistry call does not actually make a connection to the remote host. It simply creates a local reference to the remote registry and will succeed even if no registry is running on the remote host. Therefore, a subsequent method invocation to a remote registry returned as a result of this method may fail.

PRIVATE
Method Summary

static Registry
createRegistry(int port)
Creates and exports a Registry on the local host that accepts requests on the specified port.

static Registry
createRegistry(int port, RMIClientSocketFactory csf, RMIServerSocketFactory ssf)
Creates and exports a Registry on the local host that uses custom socket factories for communication with that registry.

static Registry
getRegistry()
Returns a reference to the the remote object Registry for the local host on the default registry port of 1099.

static Registry
getRegistry(int port)
Returns a reference to the the remote object Registry for the local host on the specified port.

static Registry
getRegistry(String host)
Returns a reference to the remote object Registry on the specified host on the default registry port of 1099.

static Registry
getRegistry(String host, int port)
Returns a reference to the remote object Registry on the specified host and port.

static Registry
getRegistry(String host, int port, RMIClientSocketFactory csf)
Returns a locally created remote reference to the remote object Registry on the specified host and port.

Package java.rmi.server

Interfaces
Classes
Exceptions

LoaderHandler
RemoteCall
RemoteRef
RMIClientSocketFactory
RMIFailureHandler
RMIServerSocketFactory
ServerRef
Skeleton
Unreferenced
LogStream
ObjID
Operation
RemoteObject
RemoteServer
RemoteStub
RMIClassLoader
RMISocketFactory
UID
UnicastRemoteObject
ExportException
ServerCloneException
ServerNotActiveException
SkeletonMismatchException
SkeletonNotFoundException
SocketSecurityException

Class UnicastRemoteObject

java.lang.Object

 |

 +--java.rmi.server.RemoteObject

 |

 +--java.rmi.server.RemoteServer

 |

 +--java.rmi.server.UnicastRemoteObject
All Implemented Interfaces:

Remote, Serializable

public class UnicastRemoteObject

extends RemoteServer

The UnicastRemoteObject class defines a non-replicated remote object whose references are valid only while the server process is alive. The UnicastRemoteObject class provides support for point-to-point active object references (invocations, parameters, and results) using TCP streams.

Objects that require remote behavior should extend RemoteObject, typically via UnicastRemoteObject. If UnicastRemoteObject is not extended, the implementation class must then assume the responsibility for the correct semantics of the hashCode, equals, and toString methods inherited from the Object class, so that they behave appropriately for remote objects.

PRIVATE
Constructor Summary

protected
UnicastRemoteObject()
Create and export a new UnicastRemoteObject object using an anonymous port.

protected
UnicastRemoteObject(int port)
Create and export a new UnicastRemoteObject object using the particular supplied port.

protected
UnicastRemoteObject(int port, RMIClientSocketFactory csf, RMIServerSocketFactory ssf)
Create and export a new UnicastRemoteObject object using the particular supplied port and socket factories.

PRIVATE
Method Summary

Object
clone()
Returns a clone of the remote object that is distinct from the original.

static RemoteStub
exportObject(Remote obj)
Export the remote object to make it available to receive incoming calls, using an anonymous port.

static Remote
exportObject(Remote obj, int port)
Export the remote object to make it available to receive incoming calls, using the particular supplied port.

static Remote
exportObject(Remote obj, int port, RMIClientSocketFactory csf, RMIServerSocketFactory ssf)
Export the remote object to make it available to receive incoming calls, using a transport specified by the given socket factory.

static boolean
unexportObject(Remote obj, boolean force)
Remove the remote object, obj, from the RMI runtime.

Java API for Servlets

The following lists all the relevant APIs for Servlets. These are excerpts from the documentation on the site java.sun.com

Package javax.servlet

PRIVATE
Interface Summary

RequestDispatcher
Defines an object that receives requests from the client and sends them to any resource (such as a servlet, HTML file, or JSP file) on the server.

Servlet
Defines methods that all servlets must implement.

ServletConfig
A servlet configuration object used by a servlet container used to pass information to a servlet during initialization.

ServletContext
Defines a set of methods that a servlet uses to communicate with its servlet container, for example, to get the MIME type of a file, dispatch requests, or write to a log file.

ServletRequest
Defines an object to provide client request information to a servlet.

ServletResponse
Defines an object to assist a servlet in sending a response to the client.

SingleThreadModel
Ensures that servlets handle only one request at a time.

PRIVATE
Class Summary

GenericServlet
Defines a generic, protocol-independent servlet.

ServletInputStream
Provides an input stream for reading binary data from a client request, including an efficient readLine method for reading data one line at a time.

ServletOutputStream
Provides an output stream for sending binary data to the client.

PRIVATE
Exception Summary

ServletException
Defines a general exception a servlet can throw when it encounters difficulty.

UnavailableException
Defines an exception that a servlet throws to indicate that it is permanently or temporarily unavailable.

Package javax.servlet.http

PRIVATE
Interface Summary

HttpServletRequest
Extends the ServletRequest interface to provide request information for HTTP servlets.

HttpServletResponse
Extends the ServletResponse interface to provide HTTP-specific functionality in sending a response.

HttpSession
Provides a way to identify a user across more than one page request or visit to a Web site and to store information about that user.

HttpSessionBindingListener
Causes an object to be notified when it is bound to or unbound from a session.

HttpSessionContext
Deprecated. As of Java(tm) Servlet API 2.1 for security reasons, with no replacement.

PRIVATE
Class Summary

Cookie
Creates a cookie, a small amount of information sent by a servlet to a Web browser, saved by the browser, and later sent back to the server.

HttpServlet
Provides an abstract class to be subclassed to create an HTTP servlet suitable for a Web site.

HttpSessionBindingEvent
Sent to an object that implements HttpSessionBindingListener when the object is bound to or unbound from the session.

HttpUtils
Provides a collection of methods that are useful in writing HTTP servlets.

javax.servlet
Interface ServletRequest

All Known Subinterfaces:

HttpServletRequest

public interface ServletRequest
Defines an object to provide client request information to a servlet. The servlet container creates a ServletRequest object and passes it as an argument to the servlet's service method.

A ServletRequest object provides data including parameter name and values, attributes, and an input stream. Interfaces that extend ServletRequest can provide additional protocol-specific data (for example, HTTP data is provided by HttpServletRequest.

PRIVATE
Method Summary

Java.lang.Object
getAttribute(java.lang.String name)
Returns the value of the named attribute as an Object, or null if no attribute of the given name exists.

Java.util.Enumeration
getAttributeNames()
Returns an Enumeration containing the names of the attributes available to this request.

int
getContentLength()
Returns the length, in bytes, of the request body and made available by the input stream, or -1 if the length is not known.

Java.lang.String
getContentType()
Returns the MIME type of the body of the request, or null if the type is not known.

ServletInputStream
getInputStream()
Retrieves the body of the request as binary data using a ServletInputStream.

java.lang.String
getParameter(java.lang.String name)
Returns the value of a request parameter as a String, or null if the parameter does not exist.

java.util.Enumeration
getParameterNames()
Returns an Enumeration of String objects containing the names of the parameters contained in this request.

java.lang.String[]
getParameterValues(java.lang.String name)
Returns an array of String objects containing all of the values the given request parameter has, or null if the parameter does not exist.

java.lang.String
getProtocol()
Returns the name and version of the protocol the request uses in the form protocol/majorVersion.minorVersion, for example, HTTP/1.1.

java.io.BufferedReader
getReader()
Retrieves the body of the request as character data using a BufferedReader.

java.lang.String
getRemoteAddr()
Returns the Internet Protocol (IP) address of the client that sent the request.

java.lang.String
getRemoteHost()
Returns the fully qualified name of the client that sent the request, or the IP address of the client if the name cannot be determined.

void
setAttribute(java.lang.String name, java.lang.Object o)
Stores an attribute in this request.

javax.servlet
Interface ServletResponse

All Known Subinterfaces:

HttpServletResponse

public interface ServletResponse
Defines an object to assist a servlet in sending a response to the client. The servlet container creates a ServletResponse object and passes it as an argument to the servlet's service method.

To send binary data in a MIME body response, use the ServletOutputStream returned by getOutputStream(). To send character data, use the PrintWriter object returned by getWriter(). To mix binary and text data, for example, to create a multipart response, use a ServletOutputStream and manage the character sections manually.

The charset for the MIME body response can be specified with setContentType(java.lang.String). For example, "text/html; charset=Shift_JIS". The charset can alternately be set using setLocale(java.util.Locale). If no charset is specified, ISO-8859-1 will be used. The setContentType or setLocale method must be called before getWriter for the charset to affect the construction of the writer.

See the Internet RFCs such as RFC 2045 for more information on MIME. Protocols such as SMTP and HTTP define profiles of MIME, and those standards are still evolving.

PRIVATE
Method Summary

ServletOutputStream
getOutputStream()
Returns a ServletOutputStream suitable for writing binary data in the response.

java.io.PrintWriter
getWriter()
Returns a PrintWriter object that can send character text to the client.

void
reset()
Clears any data that exists in the buffer as well as the status code and headers.

void
setBufferSize(int size)
Sets the preferred buffer size for the body of the response.

void
setContentLength(int len)
Sets the length of the content body in the response In HTTP servlets, this method sets the HTTP Content-Length header.

void
setContentType(java.lang.String type)
Sets the content type of the response being sent to the client.

javax.servlet.http
Interface HttpServletRequest

public interface HttpServletRequest

extends ServletRequest

Extends the ServletRequest interface to provide request information for HTTP servlets.

The servlet container creates an HttpServletRequest object and passes it as an argument to the servlet's service methods (doGet, doPost, etc).

PRIVATE
Method Summary

Cookie[]
getCookies()
Returns an array containing all of the Cookie objects the client sent with this request.

java.lang.String
getHeader(java.lang.String name)
Returns the value of the specified request header as a String.

java.util.Enumeration
getHeaderNames()
Returns an enumeration of all the header names this request contains.

java.util.Enumeration
getHeaders(java.lang.String name)
Returns all the values of the specified request header as an Enumeration of String objects.

java.lang.String
getMethod()
Returns the name of the HTTP method with which this request was made, for example, GET, POST, or PUT.

java.lang.String
getPathInfo()
Returns any extra path information associated with the URL the client sent when it made this request.

java.lang.String
getQueryString()
Returns the query string that is contained in the request URL after the path.

java.lang.String
getRemoteUser()
Returns the login of the user making this request, if the user has been authenticated, or null if the user has not been authenticated.

java.lang.String
getRequestedSessionId()
Returns the session ID specified by the client.

java.lang.String
getRequestURI()
Returns the part of this request's URL from the protocol name up to the query string in the first line of the HTTP request.

java.lang.String
getServletPath()
Returns the part of this request's URL that calls the servlet.

HttpSession
getSession()
Returns the current session associated with this request, or if the request does not have a session, creates one.

HttpSession
getSession(boolean create)
Returns the current HttpSession associated with this request or, if if there is no current session and create is true, returns a new session.

boolean
isRequestedSessionIdValid()
Checks whether the requested session ID is still valid.

javax.servlet.http
Interface HttpServletResponse

public interface HttpServletResponse

extends ServletResponse

Extends the ServletResponse interface to provide HTTP-specific functionality in sending a response. For example, it has methods to access HTTP headers and cookies.

The servlet container creates an HttpServletRequest object and passes it as an argument to the servlet's service methods (doGet, doPost, etc).

PRIVATE
Method Summary

void
addCookie(Cookie cookie)
Adds the specified cookie to the response.

void
addHeader(java.lang.String name, java.lang.String value)
Adds a response header with the given name and value.

boolean
containsHeader(java.lang.String name)
Returns a boolean indicating whether the named response header has already been set.

java.lang.String
encodeRedirectURL(java.lang.String url)
Encodes the specified URL for use in the sendRedirect method or, if encoding is not needed, returns the URL unchanged.

void
setHeader(java.lang.String name, java.lang.String value)
Sets a response header with the given name and value.

void
setStatus(int sc)
Sets the status code for this response.

javax.servlet.http
Class HttpServlet

java.lang.Object

 |

 +--javax.servlet.GenericServlet

 |

 +--javax.servlet.http.HttpServlet

public abstract class HttpServlet

extends GenericServlet

implements java.io.Serializable

Provides an abstract class to be subclassed to create an HTTP servlet suitable for a Web site. A subclass of HttpServlet must override at least one method, usually one of these:

· doGet, if the servlet supports HTTP GET requests

· doPost, for HTTP POST requests

· doPut, for HTTP PUT requests

· doDelete, for HTTP DELETE requests

· init and destroy, to manage resources that are held for the life of the servlet

· getServletInfo, which the servlet uses to provide information about itself

There's almost no reason to override the service method. service handles standard HTTP requests by dispatching them to the handler methods for each HTTP request type (the doXXX methods listed above).

Likewise, there's almost no reason to override the doOptions and doTrace methods.

Servlets typically run on multithreaded servers, so be aware that a servlet must handle concurrent requests and be careful to synchronize access to shared resources. Shared resources include in-memory data such as instance or class variables and external objects such as files, database connections, and network connections
PRIVATE
Constructor Summary

HttpServlet()
Does nothing, because this is an abstract class.

PRIVATE
Method Summary

protected void
doDelete(HttpServletRequest req, HttpServletResponse resp)
Called by the server (via the service method) to allow a servlet to handle a DELETE request.

protected void
doGet(HttpServletRequest req, HttpServletResponse resp)
Called by the server (via the service method) to allow a servlet to handle a GET request.

protected void
doOptions(HttpServletRequest req, HttpServletResponse resp)
Called by the server (via the service method) to allow a servlet to handle a OPTIONS request.

protected void
doPost(HttpServletRequest req, HttpServletResponse resp)
Called by the server (via the service method) to allow a servlet to handle a POST request.

protected void
doPut(HttpServletRequest req, HttpServletResponse resp)
Called by the server (via the service method) to allow a servlet to handle a PUT request.

protected void
doTrace(HttpServletRequest req, HttpServletResponse resp)
Called by the server (via the service method) to allow a servlet to handle a TRACE request.

protected long
getLastModified(HttpServletRequest req)
Returns the time the HttpServletRequest object was last modified, in milliseconds since midnight January 1, 1970 GMT.

protected void
service(HttpServletRequest req, HttpServletResponse resp)
Receives standard HTTP requests from the public service method and dispatches them to the doXXX methods defined in this class.

void
service(ServletRequest req, ServletResponse res)
Dispatches client requests to the protected service method.

javax.servlet.http
Interface HttpSession

public interface HttpSession
Provides a way to identify a user across more than one page request or visit to a Web site and to store information about that user.

The servlet container uses this interface to create a session between an HTTP client and an HTTP server. The session persists for a specified time period, across more than one connection or page request from the user. A session usually corresponds to one user, who may visit a site many times. The server can maintain a session in many ways such as using cookies or rewriting URLs.

This interface allows servlets to

· View and manipulate information about a session, such as the session identifier, creation time, and last accessed time

· Bind objects to sessions, allowing user information to persist across multiple user connections

When an application stores an object in or removes an object from a session, the session checks whether the object implements HttpSessionBindingListener. If it does, the servlet notifies the object that it has been bound to or unbound from the session.

A servlet should be able to handle cases in which the client does not choose to join a session, such as when cookies are intentionally turned off. Until the client joins the session, isNew returns true. If the client chooses not to join the session, getSession will return a different session on each request, and isNew will always return true.

Session information is scoped only to the current web application (ServletContext), so information stored in one context will not be directly visible in another.

PRIVATE
Method Summary

java.lang.Object
getAttribute(java.lang.String name)
Returns the object bound with the specified name in this session, or null if no object is bound under the name.

java.util.Enumeration
getAttributeNames()
Returns an Enumeration of String objects containing the names of all the objects bound to this session.

long
getCreationTime()
Returns the time when this session was created, measured in milliseconds since midnight January 1, 1970 GMT.

java.lang.String
getId()
Returns a string containing the unique identifier assigned to this session.

long
getLastAccessedTime()
Returns the last time the client sent a request associated with this session, as the number of milliseconds since midnight January 1, 1970 GMT.

int
getMaxInactiveInterval()
Returns the maximum time interval, in seconds, that the servlet container will keep this session open between client accesses.

HttpSessionContext
getSessionContext()
Deprecated. As of Version 2.1, this method is deprecated and has no replacement. It will be removed in a future version of the Java Servlet API.

java.lang.Object
getValue(java.lang.String name)
Deprecated. As of Version 2.2, this method is replaced by getAttribute(java.lang.String).

java.lang.String[]
getValueNames()
Deprecated. As of Version 2.2, this method is replaced by getAttributeNames()

void
invalidate()
Invalidates this session and unbinds any objects bound to it.

boolean
isNew()
Returns true if the client does not yet know about the session or if the client chooses not to join the session.

void
putValue(java.lang.String name, java.lang.Object value)
Deprecated. As of Version 2.2, this method is replaced by setAttribute(java.lang.String, java.lang.Object)

void
removeAttribute(java.lang.String name)
Removes the object bound with the specified name from this session.

void
removeValue(java.lang.String name)
Deprecated. As of Version 2.2, this method is replaced by setAttribute(java.lang.String, java.lang.Object)

void
setAttribute(java.lang.String name, java.lang.Object value)
Binds an object to this session, using the name specified.

void
setMaxInactiveInterval(int interval)
Specifies the time, in seconds, between client requests before the servlet container will invalidate this session.

javax.servlet.http
Class Cookie

java.lang.Object

 |

 +--javax.servlet.http.Cookie

public class Cookie

extends java.lang.Object

implements java.lang.Cloneable

Creates a cookie, a small amount of information sent by a servlet to a Web browser, saved by the browser, and later sent back to the server. A cookie's value can uniquely identify a client, so cookies are commonly used for session management.

A cookie has a name, a single value, and optional attributes such as a comment, path and domain qualifiers, a maximum age, and a version number. Some Web browsers have bugs in how they handle the optional attributes, so use them sparingly to improve the interoperability of your servlets.

The servlet sends cookies to the browser by using the HttpServletResponse.addCookie(javax.servlet.http.Cookie) method, which adds fields to HTTP response headers to send cookies to the browser, one at a time. The browser is expected to support 20 cookies for each Web server, 300 cookies total, and may limit cookie size to 4 KB each.

The browser returns cookies to the servlet by adding fields to HTTP request headers. Cookies can be retrieved from a request by using the HttpServletRequest.getCookies() method. Several cookies might have the same name but different path attributes.

Cookies affect the caching of the Web pages that use them. HTTP 1.0 does not cache pages that use cookies created with this class. This class does not support the cache control defined with HTTP 1.1.

This class supports both the Version 0 (by Netscape) and Version 1 (by RFC 2109) cookie specifications. By default, cookies are created using Version 0 to ensure the best interoperability.

PRIVATE
Constructor Summary

Cookie(java.lang.String name, java.lang.String value)
Constructs a cookie with a specified name and value.

PRIVATE
Method Summary

java.lang.Object
clone()
Overrides the standard java.lang.Object.clone method to return a copy of this cookie.

java.lang.String
getComment()
Returns the comment describing the purpose of this cookie, or null if the cookie has no comment.

java.lang.String
getDomain()
Returns the domain name set for this cookie.

int
getMaxAge()
Returns the maximum age of the cookie, specified in seconds, By default, -1 indicating the cookie will persist until browser shutdown.

java.lang.String
getName()
Returns the name of the cookie.

java.lang.String
getPath()
Returns the path on the server to which the browser returns this cookie.

boolean
getSecure()
Returns true if the browser is sending cookies only over a secure protocol, or false if the browser can send cookies using any protocol.

java.lang.String
getValue()
Returns the value of the cookie.

int
getVersion()
Returns the version of the protocol this cookie complies with.

void
setComment(java.lang.String purpose)
Specifies a comment that describes a cookie's purpose.

void
setDomain(java.lang.String pattern)
Specifies the domain within which this cookie should be presented.

void
setMaxAge(int expiry)
Sets the maximum age of the cookie in seconds.

void
setPath(java.lang.String uri)
Specifies a path for the cookie to which the client should return the cookie.

void
setSecure(boolean flag)
Indicates to the browser whether the cookie should only be sent using a secure protocol, such as HTTPS or SSL.

void
setValue(java.lang.String newValue)
Assigns a new value to a cookie after the cookie is created.

void
setVersion(int v)
Sets the version of the cookie protocol this cookie complies with.

Java API for EJBs

Package javax.ejb

PRIVATE
Interface Summary

EJBContext
The EJBContext interface provides an instance with access to the container-provided runtime context of an enterprise Bean instance.

EJBHome
The EJBHome interface is extended by all enterprise Bean's home interfaces.

EJBMetaData
The EJBMetaData interface allows a client to obtain the enterprise Bean's meta-data information.

EJBObject
The EJBObject interface is extended by all enterprise Bean's remote interface.

EnterpriseBean
The EnterpriseBean interface must be implemented by every enterprise Bean class.

EntityBean
The EntityBean interface is implemented by every entity enterprise Bean class.

EntityContext
The EntityContext interface provides an instance with access to the container-provided runtime context of an entity enterprise Bean instance.

Handle
The Handle interface is implemented by all EJB object handles.

HomeHandle
The HomeHandle interface is implemented by all home object handles.

SessionBean
The SessionBean interface is implemented by every session enterprise Bean class.

SessionContext
The SessionContext interface provides access to the runtime session context that the container provides for a session enterprise Bean instance.

SessionSynchronization
The SessionSynchronization interface allows a session Bean instance to be notified by its container of transaction boundaries.

javax.ejb
Interface EJBHome

public interface EJBHome

extends java.rmi.Remote

The EJBHome interface is extended by all enterprise Bean's home interfaces. An enterprise Bean's home interface defines the methods that allow a client to create, find, and remove EJB objects.

Each enterprise Bean has a home interface. The home interface must extend the javax.ejb.EJBHome interface, and define the enterprise Bean type specific create and finder methods (session Beans do not have finders).

The home interface is defined by the enterprise Bean provider and implemented by the enterprise Bean container.

PRIVATE
Method Summary

EJBMetaData
getEJBMetaData()
Obtain the EJBMetaData interface for the enterprise Bean.

HomeHandle
getHomeHandle()
Obtain a handle for the home object.

void
remove(Handle handle)
Remove an EJB object identified by its handle.

void
remove(java.lang.Object primaryKey)
Remove an EJB object identified by its primary key.

javax.ejb
Interface EJBObject

public interface EJBObject

extends java.rmi.Remote

The EJBObject interface is extended by all enterprise Bean's remote interface. An enterprise Bean's remote interface provides the client's view of an EJB object. An enterprise Bean's remote interface defines the business methods callable by a client.

Each enterprise Bean has a remote interface. The remote interface must extend the javax.ejb.EJBObject interface, and define the enterprise Bean specific business methods.

The enterprise Bean's remote interface is defined by the enterprise Bean provider and implemented by the enterprise Bean container.

PRIVATE
Method Summary

EJBHome
getEJBHome()
Obtain the enterprise Bean's home interface.

Handle
getHandle()
Obtain a handle for the EJB object.

java.lang.Object
getPrimaryKey()
Obtain the primary key of the EJB object.

boolean
isIdentical(EJBObject obj)
Test if a given EJB object is identical to the invoked EJB object.

void
remove()
Remove the EJB object.

javax.ejb
Interface EntityBean

public interface EntityBean

extends EnterpriseBean

The EntityBean interface is implemented by every entity enterprise Bean class. The container uses the EntityBean methods to notify the enterprise Bean instances of the instance's life cycle events.

PRIVATE
Method Summary

void
ejbActivate()
A container invokes this method when the instance is taken out of the pool of available instances to become associated with a specific EJB object.

void
ejbLoad()
A container invokes this method to instruct the instance to synchronize its state by loading it state from the underlying database.

void
ejbPassivate()
A container invokes this method on an instance before the instance becomes disassociated with a specific EJB object.

void
ejbRemove()
A container invokes this method before it removes the EJB object that is currently associated with the instance.

void
ejbStore()
A container invokes this method to instruct the instance to synchronize its state by storing it to the underlying database.

void
setEntityContext(EntityContext ctx)
Set the associated entity context.

void
unsetEntityContext()
Unset the associated entity context.

javax.ejb
Interface SessionBean

public interface SessionBean

extends EnterpriseBean

The SessionBean interface is implemented by every session enterprise Bean class. The container uses the SessionBean methods to notify the enterprise Bean instances of the instance's life cycle events.

PRIVATE
Method Summary

void
ejbActivate()
The activate method is called when the instance is activated from its "passive" state.

void
ejbPassivate()
The passivate method is called before the instance enters the "passive" state.

void
ejbRemove()
A container invokes this method before it ends the life of the session object.

void
setSessionContext(SessionContext ctx)
Set the associated session context.

RMI Client

RMI Registry

RMI Server

PAGE
3

