
System Monitoring, Alarming, Reporting, and Tracking System (SMARTS)

Software Design Document

Ronald A. Bueler

CS-701

University of Colorado, Colorado Springs

March 24, 2001

TABLE OF CONTENTS

11.0 Purpose

1.1 Purpose of the SDD
1
1.2 Scope of the product
1
1.3 Definitions
1
1.4 References
2
2.0 General Description
2
3.0 Preliminary Design
2
3.1 Introduction
2
4.0 Detailed Design
5
4.1 Database Design
5
4.2 Database Schema/Architecture
6
4.3 SMART Dataflow
7
4.4 System Architecture
8

TABLE OF FIGURES

3Figure 1 – High-level System Architecture

4Figure 2 – High-level Software Architecture

4Figure 3 – Mid-level Software Architecture

6Figure 4 – Database Architecture

7Figure 5 - SMART Dataflow

8Figure 6 - System Architecture

1.0 Purpose

This is the Software Design Document (SDD) for the System Monitoring, Alarming, Reporting and Tracking (SMARTS) being developed in partial fulfillment of a Masters of Engineering in Software Systems Engineering degree at the University of Colorado, Colorado Springs. The object of SMARTS is a low cost, flexible computer monitoring package that will monitor a suite of computer systems, critical system components and applications, provide automatic escalation of alarms, record all collected data in a standardized RDBMS, and generate reports based on the data. General background information on the overall project, problem being solved, how the program described in this document addresses the problem, and information on the platform the program is being developed for are online at http://cs.uccs.edu/~rabueler.

1.1 Purpose of the SDD

The purpose of this document is to describe the software design and software architecture of SMARTS.

1.2 Scope of the product

The product under development will be very focused in nature and purpose. It shall primarily consist of a set of applications that interface and query a database. It is assumed the database will contain all necessary fields to produce the reports and end-user interfaces.

1.3 Definitions

IMAP - Internet Message Access Protocol. A protocol used to transfer messages between a message store (mail server) and an end-user’s email client software.

POP3 - Post Office Protocol - Version 3. A protocol used to transfer messages from a message store (mail server) to an end-user's email client software.

SMTP - Simple Mail Transport Protocol. A protocol used to transfer messages from an end-user's email client software to a message transport agent (MTA); or between different MTA's

MTA - Message Transport Agent. A server that receives and transmits SMTP messages.

TLS - Transport Layer Security. Commonly known as Secure Socket Layer. Provides an authentication and encryption of data between the client and the server.

HTTP - Hypertext Transport Protocol. The default protocol used by Web browsers such as Netscape Navigator and Microsoft Internet Exporer.

LDAP - Lightweight Directory Access Protocol. A protocol used to communicate between an end-user's client software and the LDAP database.

1.4 References

SMARTS Project Proposal, 23 Jan 01

SMARTS Software Requirements Document, 31 Jan 01

2.0 General Description

The overall objective of SMARTS is a low cost, flexible computer monitoring package that will monitor a suite of computer systems, critical system components and applications, provide automatic escalation of alarms, record all collected data in a standardized RDBMS, and generate reports based on the data. SMARTS will report on many network performance characteristics including service response times, system availability, concurrent connections, average disk space used for each server, mailbox size for customers, etc. This SDD only describes the design of the reporting component of the whole system. The creation and collection of the server side data is described in another SDD being developed by Joe Hall.

3.0 Preliminary Design

3.1 Introduction

Recalling the overall design description in the project proposal (see figure below) all data is stored in an Oracle database (referred here also as data store) separate from the collector agents.

[image: image4.jpg]High-Level Architecture
O O W e

Directory White Pages Instant Messaging ~ Calendar
Relays Message Servers Servers Servers Servers
Stores
Raw Data
v
Alarms; Oracle Database/

Netscape Web Server

Query Results

v) '
LI

S,
Customer Service Engineering Management
Web Pages Weh Pages Reports Reports

Figure 1 – High-level System Architecture

This architecture follows the client-server database model. A database engine sits on a central computer and serves data to multiple Web-based clients (perhaps lots of customers using Netscape Navigator).

Because of the Web-based clients however, the system must also have a Web server that handles requests from Web-browsers and then forwards them to the database. Likewise, the Web server will wait for the database to respond and then pass on that response to the waiting Web browsers. The whole interaction is much simpler as a picture.

[image: image5.wmf]Web

Browser

Web

Browser

Web

Server

Web

Server

Database

Database

Web

Browser

Web

Browser

Web

Server

Web

Server

Database

Database

Figure 2 – High-level Software Architecture

The problem with this previous model is that it does not exactly describe the whole process. Since Web servers are built to talk to Web browsers, they are not built to talk to databases. Thus in order for the Web server to talk to a database it requires a helper.

The “helper” is a Common Gateway Interface (CGI) script that is written to translate requests from the Web server to a format that the database can understand and to translate database responses into something the Web server can send back out to the Web browser and that person using the Web browser can understand.

Figure 3[image: image6.wmf]Web

Browser

Web

Browser

Web

Server

Web

Server

CGI

CGI

Database

Database

HTTP

Protocol

Common

Gateway

Interface

SQL

Web

Browser

Web

Browser

Web

Server

Web

Server

CGI

CGI

Database

Database

HTTP

Protocol

Common

Gateway

Interface

SQL

 – Mid-level Software Architecture

The CGI script will be responsible for understanding what the Web server is saying and will also be responsible for knowing how to talk to the database. This type of CGI script is fairly platform independent and can be written in any computer programming language and can use all sorts of inventive or proprietary methods to talk to the database. Since this system is supposed to be as non-proprietary as possible Perl will be used.

In addition, the Oracle database software includes an application developer called WebDB that will also be used to bridge the gap between the Web server and data store. Oracle WebDB can be used for building, deploying, and monitoring Web database applications and content-driven Web sites. WebDB provides a way to "Web-enable" Oracle databases.

4.0 Detailed Design

4.1 Database Design

The database contains two high-level categories of data:

· Data which periodically streams in from the collector agents running on the various platforms and nodes

· Tables which contain data that has been processed and stored on the Oracle database server

Within the Oracle database tables there are several categories of functionally related data:

· Hardware specific data (CPU performance data, disk utilization data, etc.)

· Operating system (OS) specific data

· Service specific data (SMTP, POP, IMAP, LDAP, etc.)

· Application specific data (iPlanet SMTP performance, iPlanet Webserver performance, etc.)

Data placed into the database tables will contain a limited number of fields. Primarily of which will be Date-Time-Group (DTG), host, and functionally related values. The Oracle database will contain tables corresponding to the data sent from each host computer system. All data collected will be populated in these Oracle database tables. Once there, Oracle triggers will fire and process the data according to stored procedures for each host or service. Records are to be added and/or updated based on the DTG along with other fields that make up the primary keys for each table. These tables are to be the foundation tables for reports, viewing tables, and queries containing accumulated data based on end-user needs.

Again, the primary method of pushing data between Oracle tables will be through the use of Oracle’s database table trigger function. As the contents of the tables change, automatic triggers will be launched to pass fields as required. In some cases data from the tables may be averaged or summed as it’s pushed to other tables. The purpose of doing this is to provide more meaningful data to the user and to reduce the amount of data collected and stored in the Oracle tables.

4.2 Database Schema/Architecture

[image: image1.wmf]Message_Store

PK

DTG

PK,FK1,I1

Host

Connections

In_Msgs

Out_Msgs

In_MBs

Out_MBs

Directory

PK

DTG

PK,FK1,I1

Host

Connections

Adds

Lookups

Changes

Deletes

Alarms

PK

DTG

PK,FK1,I1

Host

PK

Class

PK

Variable

Op

Threshold

Action

Networks

PK

DTG

PK,FK1,I1

Host

PK

Card

In_KB

Out_KB

BW%10

Disks

PK

DTG

PK,FK1,I1

Host

PK

Domain

Total

Free

Used

Calendar

PK

DTG

PK,FK1,I1

Host

Connections

In_Msgs

Out_Msgs

In_MBs

Out_MBs

Relays

PK

DTG

PK,FK1,I1

Host

In_Msgs

Out_Msgs

In_MBs

Out_MBs

Instant_Messaging

PK

DTG

PK,FK1,I1

Host

Connections

In_Msgs

Out_Msgs

In_MBs

Out_MBs

Configurations

PK

DTG

PK,FK1,I1

Host

OS_Version

CPUs

Memory

Disks

Responses

PK

DTG

PK,FK1,I1

Host

PK

Server

Port

Service

Response

Memory

PK

DTG

PK,FK1,I1

Host

Free

Swap

Active

Inactive

Wire

CPUs

PK

DTG

PK,FK1,I1

Host

Users

System

Idle

Util

Systems

PK

Host

SerialNumber

POC

Address

City

State

Zip

Figure 4 – Database Architecture

The benefit of building SMART using a database is apparent in that data can be more efficiently stored, controlled, and shared among users. The database enables the user to find and retrieve just the data desired by using queries; and analyze or print data in a specific layout by using reports.

4.3 SMART Dataflow

[image: image2.wmf]SMART Dataflow

Collector

Config

File

Collector Program

Step 1

Step 2

Step 4

Step 5

Transport Program

Oracle

Tables

Stored Procedures

Processed

Tables

Report Generation

Email/Web File

Collector Output File

Step 3

Database Loader

SMART Host

Figure 5 - SMART Dataflow

4.4 System Architecture

[image: image3.wmf]Compaq Alpha Server

CGI

Oracle Tables

End User's Browser

HTML

Server

Oracle

WebDB

Collectors Running

On Network Hosts

Direct Chart

Generation

CGI

Figure 6 - System Architecture

PAGE
8

_1046982789.vsd

_1046983201.vsd

_1046980489.ppt

SMART Dataflow

Collector Config File

Collector Program

Step 1

Step 2

Step 4

Step 5

Transport Program

Stored Procedures

Report Generation

Email/Web File

Collector Output File

Step 3

Database Loader

SMART Host

Oracle

Tables

Processed

Tables

