System Monitoring, Alarming, Reporting, and Tracking System (SMARTS)
Project Final Report

Ronald A. Bueler

CS-701

University of Colorado, Colorado Springs

25 Apr 2001
TABLE OF CONTENTS

21.0 Introduction

1.1 Problem
2
1.2 Solution
5
2.0 Project Summary
6
2.1 Design Goals
6
2.2 Responsibilities
7
2.2.1 Reporting
7
2.2.2 Data Collection
8
2.3 Schedule
8
2.4 Project Management
12
2.5 Development Approach
13
2.6 Project Phases
13
2.6.1 Proposal/initial analysis
13
2.6.2 Requirements
14
2.6.3 Design
14
2.6.4 Implementation
15
2.6.5 Test
20
3.0 Project Evaluation
21
3.1 Findings
21
3.1.1 Application of Software Engineering Skills
21
3.1.2 Expansion of Software Engineering Knowledge
22
3.2 Challenges
22
3.3 Self evaluation
23
3.4 Usefulness
24
4.0 Conclusion
25

TABLE OF ATTACHMENTS

Project Proposal/Initial Analysis

Tab 1

Project Software Requirements Document

Tab 2

Software Design Document

Tab 3

Software Test Plan

Tab 4

Software Test Report

Tab 5

Sample Code

Tab 6

Sample Text Email with Output

Tab 7

Sample Graphics Email with Output

Tab 8

Sample Source Code Web Report

Tab 9

Database Schemas

 Tab 10

Project Final Report Briefing Slides

 Tab 11

Project Status Table (From Web Page)

 Tab 12

TABLE OF FIGURES

11Figure 1: Project Plan with Milestones

Figure 2: Project Web page
12
Figure 3: SMARTS Development Model
13
Figure 4: SMARTS Report
16
Figure 5: High-Level Design
17
Figure 6: Detailed Design
17
Figure 7: Reporting Implementation
19

1.0 Introduction

The purpose of this project was to develop a network-based performance, monitoring, and alarming suite. Fittingly, it was decided to name this project SMARTS—short for System Monitoring, Alarming, Reporting, and Tracking System. The concept for SMARTS originated out of necessity at Cable & Wireless USA, Inc (CWUSA). As a system, SMARTS is designed to provide alarms, reports, and track performance for approximately 20 computer systems. A comprehensive list of system requirements are described in the software requirements document.

This project involved more than just developing a software product for the commercial sector. SMARTS is a graduate exercise in software engineering processes to advance my hands-on knowledge of software development, software project management, and software engineering principles. The project marks the culmination of two and a half years of study and the final milestone towards fulfillment of graduation requirements for a Masters Degree in Software Engineering at University of Colorado, Colorado Springs (UCCS).

Based on initial analysis and research, the level of effort required to develop SMARTS during the short semester required more than one student. Because of this it was proposed, that the project be co-developed by myself and another UCCS Masters Degree student, Joe Hall.

Although handled as a joint project, we made clear divisions of responsibilities and efforts. To clearly identify each member’s project areas, a section is included which identifies each member’s unique responsibilities.

The rest of this report provides background on the problem domain, our solution, some project summary, a project evaluation, and conclusion.

1.1 Problem

In the fast-paced, real-time network environments of many businesses today, keeping an eye on network performance, loads, service statistics, and network health is paramount to success. It is critical for many system administrators and information technology (IT) specialists to quickly obtain this data without resorting to many “piece-meal” applications that provide a limited view of data about the overall network or individual hardware components. Moreover, to get a complete understanding of what’s happening, it is essential to have access to near real-time network statistics, host performance, CPU loads, available disk space, and memory utilization, among others.

Our review of commercial systems offering similar capabilities shows some shortfalls that helped to inspire CWUSA’s initiative towards an alternative solution. As our research has shown, the shortfalls with existing systems include one or more of the following: high cost, proprietary databases, difficulty in integrating with existing reporting applications, and lack of flexibility and customization. Based on some of their own analysis into these existing systems, CWUSA requested that we develop a “highly custom” software suite that uniquely solves their requirements.

The first step in analysis was to examine the product’s CWUSA had initially considered purchasing. The table below provides a list of those systems and more. A review of these systems was conducted prior to beginning any development on SMARTS:

Product Name
Company Name/Institute
URL

Topper
Bear Mountain Software
http://www.re-software.com

NetHealth
Concord Communications
http://www.concord.com

Unicenter
Computer Associates
http://www.computerassociates.com

Openview
HP
http://www.openview.hp.com

Distributed Monitoring
Tivoli
http://www.tivoli.com

Sun Management Center
Sun Microsystems
http://www.sun.com

Table 1: Comparison of Existing Systems
Using CWUSA’s requirements (basic in nature and high level), a matrix was compiled listing each of these systems along with capabilities. This information was compiled from data available on the Internet, from some of Joe Hall’s personal experience with them, and publicly available product literature.

In our review it was determined that most of these systems also offer “suites” of products that compliment the base system. However, these additional products are often extremely costly, large, and substantially more complex to implement. During research for this project, the characteristics of each “foundation” product were examined to simplify the comparison. The table below presents this matrix in summary format.

Capabilities
SMARTS
Topper
Concord Nethealth
CA Unicenter
HP Openview
Tivoli Dist Monitoring
Sun Mgmt Center

Cost/Server
$0
$12,000
$5,000
$4,163
$1,775
$5,800
$3,000

Reporting

- Text
Yes
Yes
Yes
Yes
Yes
Yes
Yes

- Graphics
Yes
Yes
Yes
Via export
Yes
Yes
Yes

- Web Pages
Yes
Yes
Yes
Via export
Yes
Yes
Yes

- Canned Queries
Yes
No
Yes
Yes
Yes
Yes
Yes

- Ad Hoc Queries
Yes
No
Yes
Yes
Yes
Yes
Yes

Alarming

- via Web Page
Yes
Yes
Yes
Yes
Yes
Yes
Yes

- via Email
Yes
Yes
Yes
Yes
Yes
Yes
Yes

- via pager
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Monitoring

- Hardware variables
Yes
No
Yes
Yes
Yes
Yes
Yes

- O/S variables
Yes
No
Yes
Yes
Yes
Yes
Yes

- Application variables
Yes
No
Yes
Yes
Yes
Yes
Yes

- Services
Yes
Yes
No
Yes
Yes
Yes
Yes

Data Storage

- RDBMS
Yes
No
No
No
No
No
No

- Propietary DB
No
Yes
Yes
Yes
Yes
Yes
Yes

- Data import
Easy
No
Yes
No
No
No
No

- Data export
Easy
Yes
Yes
Yes
Yes
Yes
Yes

- Ease of modification
Easy
N/A
N/A
N/A
N/A
N/A
N/A

- Ease of computations
Easy
N/A
N/A
N/A
N/A
N/A
N/A

- Canned Queries
Easy
Yes
Yes
Yes
Yes
Yes
Yes

- Ad Hoc Queries
Easy
No
Yes
Yes
Yes
Yes
Yes

Auto Escalation Notification
Yes
Yes
No
Yes
Yes
Yes
Yes

Auto Response
Yes
No
No
Yes
Yes
Yes
Yes

Table 2: Comparison Matrix

There were approximately eight categories of functionality provided by the products in the chart. Many of the products have enormous price tags depending on the quantity of hosts monitored. Some of these categories map directly to the basic set of SMARTS requirements.

1.2 Solution

Based on available hardware and software at CWUSA, a set of lightweight applications to monitor, alarm, report, and track the health and performance of their network and host computers was proposed.

The solution originally proposed has undergone some modification. Likewise implementation has changed somewhat with development focus moving towards reducing costs and relying more on open source software products and freely distributable libraries. The shift towards an open source software foundation is examined in the implementation section of this report

The architecture of the system was influence by several system stakeholders. The principle set of stakeholders is the customers (CWUSA management and engineers). A big architectural influence on SMARTS was the current CWUSA network configuration/layout. Selection of several COTS packages became part of the proposed solution since CWUSA had these products on hand before design and development of SMARTS. These COTS products were not installed nor operational before the start of this project.

The design and implementation are presented in the next several sections of this report.

2.0 Project Summary

2.1 Design Goals

The SMARTS design approach offers several advantages over existing systems including automatic response to system faults, automatic notification escalation to other email addresses/pagers, ease of data sharing, ease of data import/export, ease of generating graphs and trending information, email alarms, low system utilization (less than 2% of total CPU/memory/disk space), non-proprietary based components, definable data output and customization based on end-user roles, reusable software modules, and open source software components. The key design goal of SMARTS from an implementation point of view is its customized collection of lightweight applications tailored to CWUSA’s unique needs.

In summary, the SMARTS design offers:

· Automatic response to system faults

· Automatic notification escalation to other email addresses/pagers

· Ease of data sharing

· Ease of data import/export

· Ease of generating graphs and trending information

· Email/pager based alarms

· Low system utilization

· Non-proprietary based components

· Definable data output and customization based on end-user roles

· Reusable software components

· Low cost

· Open source software components

There were three criteria that guided the data collection portion of the system. First, the data had to be accurate. This was self-evident as there is no reason to collect inaccurate which CWUSA management might base decisions for future hardware and software purchases on.

Second, the data collection mechanism had to be reliable. All data collection programs run on each specific host system separately from the central SMARTS host. A separate program executes periodically to read and insert the data into the Oracle database.

Finally, the monitoring functions were required to have minimal impact on the overall performance of the computer system/host undergoing monitoring. SMARTS was designed to use less than 2% CPU resources and less than 5 MBs of memory.

Each host and respective application/service is monitored and the data evaluated for alarm conditions. A key requirement is the capability of each data collection process to “intelligently” notify users of alarm conditions. To ensure that alarm conditions will not be impacted by a failed system that is currently being monitored by SMARTS, all alarm notifications will use a separate, non-CWUSA network to notify the system administrator via pager.

Analysis revealed four performance areas to monitor: 1) Hardware component variables out of normal range; 2) Operating system process abnormalities; 3) Service oriented interruptions; and 4) Application process abnormalities. The next table briefly summaries the four categories.

Monitor Category
Data Collected

Hardware System Variables
CPU Utilization, Disk Space, Memory Utilization, etc.

Operating System Variables
Process/program performance information

Software Services Provided
SMTP, POP, IMAP, LDAP, HTTP, XML

Application Process Variables
Various applications and supporting daemons specific to each service provided, Number of concurrent connections to each service

Table 3: Monitoring Categories

2.2 Responsibilities

Because of the sheer size and level of effort required to develop SMARTS, the project was divided into two sections: data collection and reporting. This report and project development work focus primarily on SMARTS data reporting functions.

2.2.1 Reporting

- Data reporting focused on the extraction and presentation of the data to the end user.

- The SMARTS database stores all performance data collected from the network nodes. The SMARTS database uses Oracle 8.1 Relational Database Management System (RDBMS) and is hosted on a separate server from the monitored computers.

- The outputs of SMARTS consist of four major types. First, SMARTS reports any alarming conditions directly to the system administrator’s pager. These pages contain a brief message with a Date Time Group (DTG), the system or service variable affected, and the data triggering value. The system administrator’s pager has a limit of 240 characters.

- The second set of outputs is Internet/Web-based and available as a query result by SMARTS users. The information output is the most current, near real-time data available.

- The third major category is standardized daily reports for the engineering group. These reports are sent via email to the various engineering subscribers and contain daily summaries by hour of the performance and conditions of each of the servers.

- The fourth and final type of output is management reports. The reports contain generalized data such as number of customers, service response times, and overall system utilization. These reports are sent via email to the management subscribers.

2.2.2 Data Collection

Joe Hall developed the majority of the SMARTS performance data collection applications. An overview of his work follows and is only touched on lightly here for background information.

In collecting SMARTS data, a combination of methods was employed. Where possible, the tools and capabilities provided by the various applications themselves were used. This provided the most accurate information since each is specific to the application itself and a good way to collect it. In addition, it is hoped that future upgrades to the product will not require rewriting the data collectors. Perl and Unix scripts were used as the development languages for the majority of code written. It was decided to use these languages since the current hardware environment includes both Compaq and Sun Microsystems hardware.

The format for the raw data files was based on a DTG for the query, a host name, and the data value collected. All data collected was written immediately to disk to preserve the information in case of a power failure. A separate, generic data-reporting program runs periodically which reads the raw data files, connects to the Oracle database, inserts the records in the respective table, and then saves a copy as archive information. If for any reason this program is unable to connect to the Oracle database, it sends an alarm to the system administrator’s pager, no files are moved, and the data-reporting program exits gracefully.

That’s basically the concept for data collection. For more information including analysis, design, and implementation see Joe Hall’s final project report.

2.3 Schedule

The project was carefully planned based on the semester long schedule provided in the project proposal. The schedule provided time for a proposal and preliminary analysis, requirements collection/capture, system design, implementation, test/evaluation, and administrative time for writing reports, preparing documentation, and attending meetings.

At approximately one month into the project a project review was held and there it was determined that development would not proceed with a three-phased delivery approach as was originally planned (see Table 5). Many delays and complications in installing Oracle, Seagate’s Crystal Reports software, as well as Netscape Enterprise Web Server software were the largest contributing factors to this change. Instead of the three-phase approach, development moved towards a single-phase effort with one major delivery at the conclusion of the semester.

Date
Event
Topic

Jan 23
Meeting
Initial Proposal Briefing

Jan 30
Web Page Update
Phase I – Requirements Document Due

Feb 6
Meeting
Phase I – Analysis/Design

Feb 13
Web Page Update
Phase I – Code/Test/Evaluation

Feb 20
Meeting
Phase I – Release Due

Feb 27
Web Page Update
Phase II – Requirements Document Due

Mar 6
Meeting
Phase II – Analysis/Design

Mar 13
Web Page Update
Phase II – Code/Test/Evaluation

Mar 20
Meeting
Phase II – Release Due

Mar 27
Web Page Update
Spring Break

Apr 3
Meeting
Phase III – Requirements Document Due

Apr 10
Web Page Update
Phase III – Analysis/Design

Apr 17
Meeting
Phase III – Code/Test/Evaluation

Apr 24
Web Page Update
Phase III – Release Due

May 1
Meeting
Project Self Evaluation/Preparation

May 3
Meeting
Project Presentation

Table 4: Original Schedule

With a new schedule and delivery methodology in mind, it was decided to conduct the detailed design and implementation phases in an overlapped fashion for the distinct purpose of prototyping and feasibility analysis. To distinguish between the two scheduling approaches, both the original schedule (Table 4) as well as the final one (Table 5) is included.

Date
Event
Topic
Notes

Jan 23, 2001
Meeting
Start - Project Proposal
Proposal Signed

Jan 30, 2001
SRR & Web Page Update
Requirements - Requirements Document
Emailed on Feb 2, 2001

Feb 6, 2001
Meeting
Analysis/Design

Feb 13, 2001
Web Page Update
Design

Feb 20, 2001
Meeting
Design

Feb 27, 2001
PDR/CDR & Web Page Update
Software Design Document
Draft Copy Posted

Mar 6, 2001
Meeting
Design
Implementation Started

Mar 13, 2001
Web Page Update
Code/Test

Mar 20, 2001
Meeting
Interim Release Due
Major Web Page Overhaul. Index

Mar 24, 2001
Release
Document Posted
Software Design Document Posted

Mar 26, 2001
Web Page Update
Spring Break

Apr 3, 2001
Meeting
Update - Requirements Document
Draft Software Test Plan Posted

Apr 10, 2001
CDR
Update - Analysis/Design

Apr 17, 2001
Meeting
Update - Code/Test

Apr 24, 2001
Web Page Update
Interim - Release Due

May 1, 2001
Demo/Meeting
Project Self Evaluation/Preparation

May 3, 2001
Meeting
Project Presentation

Table 5: Revised Project Schedule

Following the revised schedule, delivery of a foundation set of applications that fulfilled most of the original SMARTS requirements was accomplished. Overlap in the design and implementation phases enabled redesign of some components as limitations were encountered. As coding experience was gained, implementation know-how from prototype development used, and feasibility work was conducted, more functionality was completed.

To compliment the basic schedule above, a project plan was put together. It was used to plan deliveries and ensured milestones and deliveries were followed/met. The plan was jointly developed and is captured in Figure 1. It lays out the general approach followed while developing SMARTS.

[image: image1.png]©s @ uoneasaldjaug poday

*M uoneIedald UoNeISIIC .

P ————
aﬂoe.zuguz <o Syuawnaog sipdn
52rt® sosipy 0y ofoid somton

B viodou otosa doronon
oyt ieva

1oL
1w $ disusiang

T wnia o1 wowdoronon
B ey
P —

aos awpdn
ubisag awepdn

Bupod
12Z5# 00s wen usang
ubsag waysAs Areuosd
sishieuy wiojiog
97 $ abed qom wafosd Aoidag
9604 gaph wal01d dojanag
@5 ustiang
Swawanbay WRSAS 19UIS
EEE ouzomid uo aroes
uopeasaigsoLg

odosa
R p—

R buojsueig wafoid

1alo1d avws

UofjEIESAIIEUE Hoday JeUld
o etaig UoRsasaAg ULy
‘Sisquap sapuIE) 0} PO ARG
Aisssasan se spaunsoq apepen
oSy o siold 1910
wodkay pafoid dofpsaq
Vot 1531 ysing
oL
als using
s e oo
Bupos
aas U usieng
aas sepin
usaq appn
Bupos
aas Beiq vty
e uaishs Aeuusig
SisAeuy wiopsg
S ca psloig dodaq
ofisq oA PBl01q doIoASG
Qs ustng
SwaBibay WaISAS 1BUED
ouzONg U0 3910 1Y
uonpssa yjoug fesodold
S04 Psloiq doioA3q
Buusueg R0

¥alo1d Lvws

2=

@

£

[

o

z

13

o

6

ot

o

ar

st

o

o

o

W

o

Ve |zl L]k

ARG

© 78 [ecler o] 8] b+ selon |o selarl v AR

10, K| 70, iy TN 10,684 5,081 05, 53]

e e

Figure 1: Project Plan with Milestones

2.4 Project Management

As a means to manage SMARTS development, a project management Web site was developed. It became a repository of information and helped maintain configuration control, version control, and enabled me (as a developer) to always know where the most up-to-date documents could be found. All primary copies of files were stored and maintained on this site.

Although there was initially some neglect keeping the contents up-to-date, it quickly became a central point of reference for project schedules, deliverables, status information, as well as a repository for design, requirements, and test documents.

Furthermore, the page itself became an exercise in learning some Hyper Text Markup Language (HTML). Creating a project Web paged tied in well with the project’s Web/Internet implementation work. As the figure below depicts, it included links to an overview of the project, schedule, introduction, status, and architecture.

[image: image2.jpg]rosoft Internet Explorer

s Tools

| Gosck - = - @D B)| Qsearch Gairavorss Bristory | By 5 B - 2 R
| Address [http:jcs.uccs.edujerabueter] = P
| [Links @]custorize ks @]rres Hotmal &]windons

Ron Bueler's Masters Degree Project (SSE-701) ;&?}3
<

University of Colorado, Colorado Springs (UCCS)

System Monitoring, Alarming, Reporting, and Tracking (SMART)

t Recent News
Introduction
— Apr 6, 2001 - Updated Software Test Plan posted

Overview Apr 3, 2001 - Draft Software Test Plan posted

Apr 2, 2001 - Updated status page on Web page

Mar 24, 2001 - Posted updated system design document

1
:|s~tatus Mar 23, 2001 - Major overall to web page layout

Architectur 0ld News

Mar 22, 2001 - Redesigned SMART database table architecture

| E-Mail Mel

Feb 1, 2001 - Requirements Document Published

) Apr6 200 Tan 22, 2001 - SMART Proposal Approved

CHART
_APDLET

-

€l [@ memet
o] AE W B SE AR HEEDE || Bydocments |[Eicommorven | @smarrse, e er. | Wypantshop .| [EE M HODI wamm

Figure 2: Project Web page

Both the status page and schedule include links to project deliverables. All project documents were published in PDF format because of its widespread use and acceptance as the format of choice for Internet publishing. The link to the page is http://cs.uccs.edu/~rabueler.

2.5 Development Approach

From a software development view, an evolutionary approach was followed. It can be best summarized using the following figure.

[image: image3.png]Project Managamant

Qusiity Assursnos

E2ch Applcation

Project Intation

Project Plan

23

Feadbak

!

Exoh Evalution

Desion

Test

Requirement)-4»
Contrustion].—.

s

Prototypes

Figure 3: SMARTS Development Model

This approach allowed for some amount of design uncertainty to be resolved as prototypes were produced. Developing prototypes and small component applications allowed feedback to be brought back into the design. The feedback also influenced the SMARTS project plan and project management decisions. This approach worked well during development as early designs were frequently modified as more programming experience and design skills were acquired.

2.6 Project Phases

2.6.1 Proposal/initial analysis

The first deliverable was the proposal and initial analysis document (Tab 1). The proposal was purposely combined with the initial analysis document once it became clear that a good proposal should include detailed research into the project. This work could also be viewed somewhat like a feasibility study. Several sections and additional detail also came out of the initial proposal briefing to Dr Robert Sebasta and Dr Bill Ayen. Both suggested more research into existing monitoring systems before development started.

Originally, the intent was to use Oracle provided tools for developing stored and ad-hoc queries along with Seagate’s Crystal Reports to produce Web pages viewable from standard Web browsers such as Netscape Navigator and Microsoft Internet Explorer. However during development, the approach was shifted towards using Perl routines and methods that offered lower overhead, were simpler to implement, and required less client application software components.

The proposal contains an in depth introduction, background, problem, high-level design goals, a fairly detailed solution, data collection and storage issues, data reporting requirements, benefits of our approach verses those of similar systems, developer responsibilities, activities involved, product (deliverables), and a schedule.

A great deal of effort was put into this phase of the project. Although the software products delivered at the conclusion of this semester are not enough to satisfy all project requirements, the initial analysis laid the groundwork and foundation for the project.

The additional analysis provided good insight into the strengths and weaknesses of similar monitoring systems. Also, since so much time was spent going over system analysis and preliminary design development was more easily adaptive to implementation changes as time progressed.

2.6.2 Requirements

The requirements for the project were written in the Software Requirements Document (Tab 2). Even though most requirements aspects of the project started with data flow diagrams, standard sentences to describe the requirements and external behavior of the system were used.

The Software Requirements Document describes the functionality of the reports and overall SMARTS reporting functionality. It includes interface and general requirements sections.

A set of scenarios concerning interaction between an end-user and the system were discussed and used to develop the requirements document. In addition, a description of the state of SMARTS after completion of a scenario was covered.

Specifically, the functional requirements focused on alarm reporting, near real-time queries, standardized daily reports, and standardized management reports.

2.6.3 Design

The draft Software Design Document (Tab 3) was developed during initial analysis and updated during the implementation phase. The software design and software architecture of SMARTS are described in more detail in the Software Design Document (SDD).

The SDD defines the database table layout as well as the architecture of the entire program. The SDD also contains the database design central to SMARTS implementation.

This design was implemented in the second half of the semester and included updates to the original designs. The primary reasons for making changes to the design were to accommodate an improved understanding of Oracle and Perl development, especially the Oracle connections, and database interface design.

As the database architecture is central to SMARTS implementation, Joe Hall and I collaborated on this design frequently. The original design strategy was for each collector to push its data from its own host into “raw data” tables, which contain the Date-Time Group (DTG) and key-value pair data tokens. Initially, the database was going to contain three classes of tables. The first would be a raw database table that contained only a date-time group (DTG), a host name, a key and a value. The second class of table would be a consolidated table of all data related to that host. The third table class would contain summarized data of the second class of table.

However, we redesigned the table structure significantly after more analysis, and then pushed forward with a new layout that took more advantage of a relational database architecture. The redesign also adds robustness and eliminates redundant table fields in the SMARTS database. This modification caused a ripple effect in code that had already been developed, as well as requiring updates to documentation.

The redesigned database contains initial tables corresponding to the raw data file format for each data item collected. All raw data collected populates the database tables and is available for immediate retrieval. For long-term, summarized data storage, an Oracle stored procedure will summarize the data into an monthly by hour format and insert the data into a corresponding table with similar fields.

From a physical aspect the SMARTS architecture follows the client-server model and uses a central database repository. A relational database engine sits on a host server. Either on that same machine or anywhere else sits a http Web server which interacts with multiple Web-based clients (perhaps lots of customers using Netscape Navigator).

2.6.4 Implementation

Implementation of SMARTS reporting included installation and configuration of several COTS packages including:

· Installation and configuration of Netscape Enterprise Server

· Installation and configuration of Perl Graphics Device (GD) Module

· Implementation of report graphics using Perl GD

· Research & evaluation of Web-based access to Oracle Database

· Design, development, and implementation of Internet/Web pages

· Design, development, and implementation of Crystal Reports Interface

· Design, development, and implementation of email based report generation and delivery

· Design & implementation of a list server for report subscription services

· Design, development and implementation of Oracle Database tables (joint developer effort)

The most significant product of SMARTS reporting implementation was the Web-based near-real time query. A screen shot of the SMARTS main Web page follows.

[image: image4.jpg]@
o)
]
a~
c]
s
)
£

MART Report

Duration in Days

@1
€7
©30

€ memory.
© disk

Reports
@ cpu.
C network

Figure 4: SMARTS Report

Because of the Web-based clients, SMARTS employs a Web server that handles requests from Web-browsers and then forwards them to the database. Likewise, the Web server will wait for the database to respond and then pass on that response to the waiting Web browsers. The whole interaction is much simpler as a picture.

[image: image6.wmf]Web

Browser

Web

Browser

Web

Server

Web

Server

Database

Database

Web

Browser

Web

Browser

Web

Server

Web

Server

Database

Database

Figure 5: High-Level Design

However, the previous model does not exactly describe the whole process. Since Web servers are built to talk to Web browsers, they are not built to talk to databases. Thus in order for the Web server to talk to a database it requires a helper.

Figure 6: Detailed Design[image: image7.wmf]Web

Browser

Web

Browser

Web

Server

Web

Server

CGI

CGI

Database

Database

HTTP

Protocol

Common

Gateway

Interface

SQL

Web

Browser

Web

Browser

Web

Server

Web

Server

CGI

CGI

Database

Database

HTTP

Protocol

Common

Gateway

Interface

SQL

The “helper” is a Common Gateway Interface (CGI) script that is written to translate requests from the Web server to a format that the database can understand and to translate database responses into something the Web server can send back out to the Web browser and that person using the Web browser can understand.

The CGI scripts are responsible for understanding what the Web server is saying and will also be responsible for knowing how to talk to the database. This type of CGI script is fairly platform independent and can be written in any computer programming language. Since this system is supposed to be as non-proprietary as possible Perl was used for SMARTS.

During analysis and design high expectations for functionality were placed on the Crystal Reports package to implement this design above. It was anticipated that custom, near real-time queries could easily be implemented against the SMARTS database. Once it was determined that this was not going to work, all my effort shifted to an alternative. Using lightweight Perl applications, requirements could be met and development continued—though slower.

As mentioned, the SMARTS reporting Web page was a primary milestone in development. Using Perl GD with Perl DBI for the database interface, queries are possible with results being near-real time. Since the collector agents push data into the SMARTS database every five minutes, the graph depicted in Figure 5 is only a few minutes old.

The reports.cgi (see Attachment 9) program handles the user inputs and presents the interface. Clicking on the “Run report” button initiates another program called host_cpu.cgi. Host_cpu.cgi connects to the SMARTS database via the method shown in the code snippet below.

$sql = <<ENDSQL;

 SELECT

 TO_CHAR(dtg, 'yyyy-mm-dd hh24:mi'),

 utilization

 FROM

 smart.cpus

 WHERE

 TO_CHAR(dtg, 'yyyy-mm-dd hh24:mi') >= '$yesterday'

 AND host like '$host'

 ORDER BY

 dtg

ENDSQL
On returning with the rows of data from the SMARTS database, another sequence of code sets up the values for display in the Portable Network Graphics (PNG) format. This can be seen in the next code snippet.

print STDOUT "Content-type: image/png\n\n";

$graph->set(

x_label

=> 'All date/times are in GMT',

x_label_position
=> 1/2,

x_label_skip
=> 12,

x_labels_vertical
=> 1,

y_label

=> 'Percent Utilized',

y_min_value

=> 0,

y_max_value

=> 100,

title

=> 'CPU Utilization over the past 24 hours',

transparent

=> 0,

bgclr

=> 'lgray',

) || warn "Error setting graph attributes: $graph->error\n";

$graph->set_legend($host)

|| warn "Error setting graph_legend attributes: $graph->error\n";

$graph->plot($data);

binmode STDOUT;

print STDOUT $graph->gd->png;

This implementation method works well and does not bring a lot of overhead with it.

The use of CGI can be more easily seen in Figure 7.

[image: image5.wmf]CGI

End User's Browser

Direct Chart

Generation

CGI

Compaq Alpha Server

Oracle Tables

HTML

Server

Oracle

WebDB

Collectors Running

On Network Hosts

Figure 7: Reporting Implementation

WebDB is a component wrapped with the Oracle software suite and enables users to browse database tables with output being sent to the user’s browser in HTML. It was not used during SMARTS development except to check the contents of the SMARTS tables via the Internet.

For the Perl coding, the following libraries and support software shown in Table 6 had to be installed and configured:

Software
Purpose

Perl DBI version 1.15
Database access module for Perl

Perl::Graphics Driver (GD), version 1.32
Graph Plotting Module for Perl 5

PNG graphics library, version 1.0.3
Module to create and display PNG output for a graph.

MIME version 5.404
For parsed and decoded MIME message

Table 6: Implementation Software

2.6.5 Test

Formal testing (Tab 4) was done at the system level. Unit and integration testing was done informally during development. The test plan was developed corresponding to implementation, with results published in the test report.

Testing was based on the requirements. Individual requirements paragraphs were inserted into tables, that included test method and test results. The test was documented using the same tables, as well as additional comments. These tests served mainly to point out requirements features that were partially implemented or missing.

SMARTS was tested on the development and operational platform, as they are the same. The CWUSA operational environment is stable enough and has enough built in redundancy such that risk was minimal. Test results were based on running in the operational environment to the maximum extent possible. Further, a dedicated host was available to implement SMARTS on.

SMARTS was operationally tested on the CWUSA internal network. Data on SMARTS and the network were synchronized for the testing, with varying initial conditions matching the requirements statements.

In summary: SMARTS met basic reporting functionality and passed two of three critical areas.

· “Does SMARTS support the engineering, trending, and managerial staff’s needs?”

· “Does SMARTS support system monitoring, tracking, and trending requirements?”

Although far from complete, SMARTS reporting MARGINALLY fulfilled the user’s basic set of requirements. SMARTS achieved most of the user’s design goals. Refer to the SMARTS Software Test Report for more detailed findings.

3.0 Project Evaluation

3.1 Findings

- A great deal of software engineering knowledge was obtained through my work on this project. I’m confident a lot of what I learned will influence how I approach future software development and I hope to apply these skills on similar projects.

- Because I encountered numerous obstacles, I believe I learned more because I’ve now had the unhappy experience of trying to implement a large COTS suite in a custom environment unsuccessfully. Plus I’ve been able to us an free product like Perl successfully

- Since not all SMARTS requirements have been met (see Software Test Report, Tab 5) features are to be added with the highest priority on maintaining accurate data (error checking, accurate display), followed by maintenance features, and finally convenience functions. Also, once the initial set of requirements are completed, and the program is used, more requirements will be identified and added to the requirements list.

- I believe it’s important here to mention that as an exercise in software engineering, I spent quite a bit of time installing, configuring, and implementing commercial off-the-shelf software COTS. I think this played an important role in my learning process, as the subject itself was only lightly touched upon during the course of my software engineering studies. However, I feel it is something that has significant impact on software engineering topics such as risk analysis, schedule estimation, system architecture, requirements definition, design, and testing.

3.1.1 Application of Software Engineering Skills

- The program management course helped me considerably during the initial portion of this project. I was able to select a development lifecycle approach more effectively and apply it to this project. Furthermore, I used various aspects of project management in much the same way as a mechanic selects one of many tools from his toolbox. I now appreciate the program management activity of estimating time, resources, and risk analysis much more. After some initial difficulty with the original project schedule, more flexible project milestones were developed. I was able to recognize this quickly and make effective changes.

- Although, this project had few quality assurance evaluations (QA), I used the fundamental underpinnings in much of my work. In the limited time available, that was probably enough. However in more formal development settings, source code peer reviews and design evaluation is called for. Recognizing the importance of QA, I had a self-awareness approach to all my work on this project.

- Our approach was a modified “evolutionary” approach, including several iterations spent in the design phase. This allowed more ideas and findings uncovered during implementation to be fed back into the design processes. Information gained during analysis and comparison of software lifecycle development methods brought huge returns here and the best approach to this project.

- It’ tough to determine where requirement definition stops and the design phase begins. At times I found myself trying to define requirements targeted more on my own design goals. In a more formal software development project, requirements would be based more on the user’s requested functionality. After learning how must cost goes into maintenance, I approached this development with the mindset that software maintenance starts with the first piece of design work and ends once the system is retired.

3.1.2 Expansion of Software Engineering Knowledge

- I’ve gained considerable experience in the area of prototyping. In the development of SMARTS reporting, most applications took several prototypes resulting in my own evolution of expectations. This area was not focused on much during my courses at UCCS. However, it was a crucial area of focus for me as I had little development experience with Perl or Internet applications.

- Ironically, there were times when the simplest coding problem wasted countless hours of development time. While some things I had perceived to be very difficult to implement ended up almost trivial (i.e., embedding SQL in Perl). Even with a good set of software engineering skills, it’s still tough to overcome code implementation hurdles. I found that I had overlooked this factor in my schedule estimation. In the future, more consideration must be taken into account for the level of experience of the developer and how that influences scheduling.

- There is still a certain amount of creativity required to implement even carefully written detailed designs. Taking into account time for this creativity is difficult and bound to be incorrect. Planning for it is very tough and accurate scheduling even more so. Personally, I don’t think the task of scheduling is even an engineering process. I tend to believe the process of developing software is an art form—some have it while others don’t.

- There has to be better ways of letting implementation influence the design. I learned that much of the design is influenced by the implementer’s abilities as well as the influences of COTS based development schemes on the project schedule.

- I learned not to under estimate the wealth of development and implementation information on the Internet. Utilizing the Internet was crucial to this development. Freeware is very powerful and should not be underestimated as a development resource.

- I learned first hand just how much work design changes have on project schedules. When the database architecture was changed, the “ripple effect” set development back at least one week.

3.2 Challenges

- Not every SMARTS reporting requirement was implemented. This was primarily due to my lack of Perl programming skills, some database redesign work, and overwhelmingly the short semester. Implementation was the biggest hurdle in this project.

- To compound the previous problems the huge effect of not being able to get Seagate’s Crystal Reports (COTS) implemented was a huge challenge. Complications with this COTS package prevented me from getting it properly implemented on the host server. Additionally, my initial analysis did not bring to light the level of effort required to get it working correctly. And, rather than wasting time trying to install and customize this product, it was decided implementation time could be better spent working on a minimal set of Perl applications that would do the job, solve the basic reporting requirements, and provide the academic experience of developing a project. Moreover, it was felt that developing this functionality with a programming language like Perl provided more software development experience than implementation of Seagate’s Crystal Reports suite. The Crystal Reports software proved much more involved than was originally anticipated. Learning and implementing the software could easily be a semester project in itself. Once it was determined that using this complex product was so involved, focus shifted to implementing as much as possible using Perl applications.

- As CWUSA did not have a Web/HTTP server, I installed and configured Netscape Enterprise Server. Since this software runs on a Compaq Tru64 operating system, the installation and configuration were quite complicated and took up considerable time. This seemed to be a common trend among most of the COTS products used with SMARTS.

- A primary challenge was my limited knowledge of Perl and overcoming Oracle implementation difficulties on a Unix platform using cryptic documentation, complex installation scripts, and troublesome configuration settings.

- Synchronizing developer schedules and project milestones proved to be a challenge.

- Although extensive work was conducted early in the design phase of the project jointly, development and implementation of the two halves was conducted concurrently. Since some milestones influenced the start of other development work, coordination of deliverables was crucial.

3.3 Self evaluation

Overall, I feel the project was very successful. I drew extensively on all facets of software engineering. That, along with a lot of hard work, resulted in a foundation of components that make up SMARTS and have led to a useful product. I’ve compiled and listed below some personal thoughts that came out of this project.

- A great deal of time was spent building and extending my knowledge of Perl, Oracle, Web servers, and Unix.

- There are several cases when I had come up with a fairly elegant solution, but could not bring the design to fruition and implement it.

- Though a lot of effort, working with Joe Hall on the entire SMARTS project led to a good progression from initial problem/solution formulation, to requirements, to design, and finally through implementation.

- Collaboration between developers during analysis helped prevent flaws/problems from getting into the design and ultimately implementation.

- If I could change one thing I would probably spend more time on implementation studies and prototypes earlier in the analysis phase. I spent a lot of time worrying about some intermediate designs instead of using my time more effectively doing prototypes.

3.4 Usefulness

As previously stated, the implementation solved the problem and is useful. Joe Hall and some engineers at CWUSA have started using SMARTS even before it was finished. This has helped me catch errors and influenced design for the next iteration of development. Looking down the road, I recommend the following initiatives:

· More effort should be put into completing all SMARTS requirements. Additional features should be implemented.

· More error checking should be completed. Likewise the robustness of SMARTS will have to be addressed and improved.

· The Web reporting functionality needs to utilize more HTML formatting and layout work including completion of the other report types using Perl.

· Alarm reporting was not implemented. Alarm reports and summaries are very useful to management. These reports should be automated and sent via email to the users.

· SMARTS management reports have not been implemented. These need to provide the number of connections for each of the following major service types: SMTP, IMAP, POP, HTTP, LDAP, XML

· The web-based queries need to be protected and only accessible to users with an authorized user identification (UserID) and valid password.

· For long-term, summarized data storage, an Oracle stored procedure needs to be developed that will summarize the data into an monthly by hour format and insert the data into a corresponding table with similar fields.

· Since CWUSA has purchased Crystal Reports, a complete installation and implementation should be conducted.

I think the design is a great initiative and made a very good academic project. I would encourage the UCCS graduate staff to consider similar projects for future students.

4.0 Conclusion

This project fulfilled most requirements specified in the SMARTS proposal. It presented a unique approach to solving a commercial problem.

I made effectively use of software engineering techniques, knowledge, skills, and put into practice nearly everything I learned during my graduate course work.

I produced a foundation set of SMARTS reporting functionality, all documentation was delivered on time and accurate, the project was completed on schedule, the design led to an effective implementation, and overall the project proved successful. Furthermore, I overcame numerous obstacles, such as my limited programming abilities and complications with COTS.

Finally, SMARTS provided a meaningful learning experience in an area that is becoming increasingly important.

25
2

_1049743909.vsd

