Design and Implementation of Fisheye Routing Protocol
for Mobile Ad Hoc Networks

by
Allen C. Sun

Submitted to the Department of Electrica and Computer Science
in Partid Fulfillment of the Requirements for the Degrees of
Bachdlor of Science in Electrical Engineering and Computer Science
and Magter of Engineering in Electrica Engineering and Computer Science
at the Massachusetts Ingtitute of Technology
May 14, 2000

Copyright 2000 M.1.T. All rights reserved.

Author

Department of Electrical Engineering and Computer Science
May 14, 2000

Certified by

Amar Gupta
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Design and Implementation of a Fisheye Routing Protocol
For Mobile Wireless Ad Hoc Networks
by Allen C. Sun

Submitted to the
Department of Electrica Engineering and Computer Science

May 14, 2000

In Partid Fulfillment of the Requirements for the Degree of
Bachelor of Science in Electrica Engineering and Computer Science
and Magter of Engineering in Electrica Engineering and Computer Science

ABSTRACT

Wirdess neworking is an emerging technology that will dlow users to access
information and services regardless of their geogrgphic podtion. In contrast to
infrastructure based networks, in wireless ad hoc networks, al nodes are mobile and can
be connected dynamicaly in an arbitrary manner. All nodes of these networks behave as
routers and teke pat in discovery and mantenance of routes to other nodes in the
network. This feature presents a great chdlenge to the design of a routing scheme snce
link bandwidth is very limited and the network topology changes as users roam. This
thess invedigaies the behavior of exiding traditiond routing agorithms and proposes
and implements a new routing gpproach for ad hoc wirdess networks: Fisheye Routing.
Fisheye Routing is gmilar to Link State routing, but uses a fisheye technique to reduce
the consumption of bandwidth by control overhead.

Thes's Supervisor: Amar Gupta
Title Co-Director, Productivity from Information Technology(PROFIT) Initictive

Table of Contents

TABLE OF CONTENTS ...ttt b bbb 1

LINTRODUCTION. ...ttt b b bbb 3
11 BACKGROUNDcerteuierisiesesesesiestesessesestssssssesesessesesessssssesessesessssssssenessssssesessssssessnssseseneseesesasesssesenssssssenesessens 3
12 SCOPE OF RESEARCH.citsttrtristststresesesesesesesesesesesesesesssesesesssssesesssssesssssssesssssssesesssssesesssssssesssssesssssssesssssssenenes 5

2 ROUTING IN WIRELESSNETWORKS- GENERAL CONCEPTS.....ccerreeeereererereneenns 7
21

211
2.1.2
22 [LU I 1N
221 Distance Vector....
222 [T 01 = L (T
223 SOUICE ROULINGcvcviiirtetieciete et ssss s st se s ss s st ss s bt sse s st s s e ses s s ssb et s s sssesesssansessanas
23 S LY LY = 2T

31 DESTINATION SEQUENCED DISTANCE VECTOR — DSDV ..ottt neieisessesessesessessssessseseens 17
311 1S o] TP
312 PrOPEITIES......couecet ettt s s bbb

32 THE WIRELESS ROUTING PROTOCOL- WRP
321 DIESCI LI ON....vueeateeet et s e
322 PrOPEITIES......cooiecetteeet e e s

33 CLUSTERHEAD GATEWAY SWITCHING ROUTING- CGSR
331 (DTS Tor T o] o] P
332 0] (1= TP

34 ZONE-BASED HIERARCHICAL LINK STATE- ZHLS
34.1 1S o] PR TSTR
34.2 L 0] 07 (=TT

35 AD Hoc ON DEMAND DISTANCE VECTOR- AODV
351 1S o] TR
352 PrOPEITIES......couecet ettt s e

36 TEMPORALLY-ORDERED ROUTING ALGORITHM- TORA
361 DIESCI LI ON....vueeateeet et s e
362 PrOPEITIES......ouecet ettt e bbb

37 DYNAMIC SOURCE ROUTING- DSR
371 L 0] 01 1=
372 L 0] (=TT TTTTT

38 ASSOCIATIVITY-BASED ROUTING- ABR
381 1S o] TR
382 L 0] (=TT

39 SIGNAL STABILITY-BASED ROUTING- SSR
391 1S o] TP
392 PrOPEITIES.....oueeet ettt s bbb

310 SUMMARY AND COMPARISON.....ccurueeermsrerseressresseressessssssssessssessssessessssesnss

4 FISHEYE WIRELESS ROUTING PROTOCOL ..couviririrereererrererseressesessesessesesssssssssssssssssessssessssesssssssenes 37

41 PROTOCOL OVERVIEWtuiierercerescesesseseassssassssssssssessssessssesssssssssesesssssssssssssssssssassnsassesssssssssssssssssssssssssesnes 37

4.2 TABLE-DRIVEN DESIGNccottriitreuetreueireeeiseeseseesessesessesessessssssssessnsesnes 37

A3 A LGORITHM .ecuteiureiueereeeeeteesseeesstsessssessssesessesesseseessssessssessssesessssessssessssasassasssssssssssssssessssesassssssssssssssassessnsesnnes 39

431 NEIGNDOT QISCOVENY......vieieeeririceeirisesieis st sessssse s s s ssssssesess st essesssssessssssssssenssnsessnens
432 Information Dissemination
433 Route Computation
44 IMPLEMENTATION ...cetreceeeeesesseseseesessesseeessssessssessssssssssssssssssssssessssessens
441 DOWOIK() FIOWCHAIT ..o
442 DoCosume() Flowchart
45 PERFORMANCE ANALYSIS
451 SMUIAtion MOE] ..o
452 Smulation Results.
453 SMUIAtiON SUMIMAIYcoveeecreirercsierreeee s ssesens
4.6 COMPARISON WITH OTHER AD HOC ROUTING PROTOCOLS.
4.7 SUMMARY

5 CONCLUSIONS ... bbb bbb 59
51 CONTRIBUTIONS .. cueteueeserseseesesseseesessesesessesesesssssessssssessassessessnssssssensssssesensssesensssnsessssssssesensssssesenssensesssnsns 59
52 FUTURE W ORKcctiiirieereesesieseesesassessses e sesesessesasessssssenssessessssssnssssssnssssssnsssssenssensesssssensessnssnsssensssnsessnssensens 59

6 REFERENGCESo ot e e 61

7 APPENDIX- CODE LISTING ...t s 64
71 ROUTER.C ...ttt bbb 64
7.2 ROUTERH ettt ettt b et st b et b b et b e b e st b sttt ens 78

1 Introduction

1.1 Background

Wirdess networking is an emerging technology that will adlow users to access
information and services dectronicdly, regardiess of their geogrgphic postion. The use
of wirdess communication between mobile users has become increasngly popular due to
recent performance advancements in computer and wireless technologies. This has led to
lower prices and higher data rates, which are the two man reasons why mobile
computing is expected to see increasingly widespread use and gpplications.

There are two distinct approaches for enabling wirdess communications between
mobile hosts. The first gpproach is to use a fixed network infrastructure that provides
wirdless access points. In this network, a mobile host communicates to the network
through an access point within its communication radius. When it goes out of range of
one access point, it connects with a new access point within its range and darts
communicating through it. An example of this type of network is the cdlular network
infrastructure. A mgor problem of this gpproach is handoff, which tries to handle the
dtuation when a connection should be smoothly handed over from one access point to
another access point without noticesble ddlay or packet loss Another issue is that
networks based on a fixed infrastructure are limited to places where there exists such
network infrastructure.

The second approach is to form an ad-hoc network among users wanting to
communicate with each other. This means that &l nodes of these networks behave as

routers and teke part in discovery and mantenance of routes to other nodes in the

network. This form of neworking is limited in range by the individua nodes
tranamisson ranges and is typicdly smdler compared to the range of cdlular systems.
However, ad-hoc networks have severd advantages compared to traditiond cdlular
gysdems. The advantages include ‘on-demand setup, fault tolerance, and unconstrained
connectivity.

A key feature that sets ad-hoc wirdess networks gpart from the more traditiona
cdlular radio sysgems is the ability to operate without a fixed wired communications
infrastructure and can therefore be deployed in places with no infrastructure. This is
useful in disaster recovery, military Stuaions, and places with non-exising or damaged
communication infrasructure where rapid deployment of a communication network is
needed.

A fundamentd assumption in ad-hoc networks is that any node can be used to
forward packets between arbitrary sources and dedtinations. Some sort of routing
protocol is needed to make the routing decisons. A wirdess ad-hoc environment
introduces many problems such as mohility and limited bandwidth which makes routing
difficult.

This thess researches exiging traditiond routing protocols, examines current
proposed mobile ad-hoc routing protocols, and then desgns and implements a functiond
link-state routing protocol employing a nove “fisheye’ updating mechanism specific for
a wirdess infradructure. This mechanism is then andyzed to evauate its effectiveness

and the advantagesiit can offer.

1.2 Scope of Research

The objective for this magter thess was to desgn and implement a routing protocol
for wirdess ad-hoc networks. In this environment, the routing strategy must scade wel to
large populations and handle mobility. In addition, the routing protocol must perform
well in terms of fast convergence, low routing delay, and low control overhead treffic.

This fird involved researching exising routing protocols to determine ther
drengths and weeknesses. Using this andyds, a new mechanism was developed that
enhances routing in the mobile ad-hoc environment. This mechanisn was then
implemented in a software environment. Once the implementation was completed,
smulatiion and andyss of the protocol was performed to evauate the advantages of the
new mechanism.

The gods are of thisthess are asfollows:
Get agenerd understanding of ad-hoc networks
Study existing and proposed routing protocols.
Develop a new mechanism tha offer advantages for routing in wirdess ad-hoc
networks.
Implement the routing protocol.

Andyze the protocol theoretically and through smulation.

Section 2 explans ad-hoc networks and routing in general. Section 3 describes
current proposed ad hoc routing protocols. Section 4 describes the desgn and

implementation of a new routing protocol and performance anadlyss. Section 5 gives

summary and conclusons. Section 6 includes references used and section 7

(Appendices) include the listing for the code.

2 Routing in Wireless Networks- General Concepts

2.1 Wireless Ad-Hoc Networks

A wirdless ad-hoc network is a collection of mobile nodes with no pre-established
infrastructure. Each of the nodes has a wirdess interface and communicates with others
over ether radio or infrared channels. Laptop computers and persond digital assgtants
that communicate directly with each other are some examples of nodes in an ad-hoc
network. Nodes in the ad-hoc network are often mobile, but can aso consst of dtationary

nodes.

Figure 1 shows a smple ad-hoc network with three nodes. The outermost nodes
are not within reception range of each other and thus cannot communicate directly.
However, the middie node can be used to forward packets between the outermost nodes.

This enables dll three nodes to share information and results in an ad-hoc network.

Figure 1: Example of smple ad-hoc network.

An ad-hoc network uses no centrdized adminigtration. This ensures that the
network will not cease functioning just because one of the mobile nodes moves out of the
range of the others. Nodes should be able to enter and leave the network as they wish.

Because of the limited transmitter range of the nodes, multiple hops are generdly needed

to reach other nodes. Every node in an ad-hoc network mugt be willing to forward
packets for other nodes. Thus every node acts both as a host and as arouter.

The topology of ad-hoc networks varies with time as nodes move, join, or leave
the network. This topologicd ingability requires a routing protocol to run on each node

to create and maintain routes among the nodes.

2.1.1 Usage

There is a plethora of gpplications for wirdess ad-hoc networks. Wireless ad-hoc
networks can be deployed in areas where a wired network infrastructure may be
undesirable due to reasons such as cost or convenience. It can be rapidly deployed to
support emergency requirements, short-term needs, and coverage in undeveloped aress.
Examples of such gtuations include disaster recovery, search and rescues, or military
goplications[RT99].

Other usage includes convenience, such as dlowing conference members or
business associates to exchange documents, or accessing the Internet or resources such as

printers. The gpplications are boundless.

2.1.2 Characteristics
Ad-hoc networks are often characterized by a dynamic topology due to the fact
that nodes change their physcd location by moving around. Another characteridtic is
that a node have limited CPU capacity, storage capacity, battery power, and bandwidth.
This means that power usage must be limited thus leading to a limited transmitter range.
The access medium, usudly a radio environment, dso has specid characterigtics

that must be consdered when designing protocols for ad-hoc networks. One example of

this may be uni-directiond links. These links arise when two nodes have different
drengths on ther trangmitters (allowing only one of the host to hear the other) or from
disurbances from the surroundings. Multi-hop in a radio environment may result in an
ovedl tranamit cagpacity gan and power gan due to the squared reation between
coverage and required output power. By using multi-hop, nodes can transmit the packets

with much lower output power (by tranamitting to closer neighbors).

2.2 Routing

Routing is a function in the network layer which determines the path from a source
to a dedination for the traffic flow. A routing protocol is needed because it may be
necessary to traverse severad nodes (multi-hops) before a packet reaches the destination.
The routing protocol’s main functions are the sdlection of routes for various source-
dedtination pars and the delivery of messages to their correct destination. In wireless
networks, due to host mobility, network topology may change from time to time. It is
citicd for the routing protocol to ddiver packets efficiently between source and
dedtination. Routing protocols can be divided based on when and how the routes are
discovered into two categories. Table-Driven and On-Demand routing [RT99].

In table-driven routing protocols, each node mantans one or more tables
containing routing information to every other node in the network. All nodes update
these tables s0 as to maintain a conagtent and up-to-date view of the network. When the
network topology changes the nodes propagate update messages throughout the network
in order to maintan a condgent and up-to-date routing information about the whole
network. Routing protocols in this category differ in the method by which the topology

change information is didributed across the network and the number of necessary

routing-related tables. The two main types of table-driven routing are: Distance Vector
and Link State [PB96].

In ondemand routing, dl up-to-date routes are not maintained a every node,
instead the routes are created when required. When a source wants to send to a
degtination, it invokes a route discovery mechaniams to find the path to the dedtination.
The route remains vdid util the dedtination is unreachable or until the route is no longer

needed. A typical type of on-demand routing is Source Routing [BJO8].

2.2.1 Distance Vector

Digtance vector routing is sometimes referred to as Bellman-Ford, after the people
who invented the dgorithm. In the digributed BellmanFord agorithm [PerO0], every
node i mantans a rouing table which is a mairix containing distance and successor
information for every dedindion j, where distance is the length of the shortest distance
from i to j and successor is a node that is next to i on the shortest path to j. To keep the
shortest path information up to date, each node periodicaly exchanges its routing table
with neighbors. Based on the routing table received with respect to its neighbors, node |
learns the chortest digtances to dl dedtination from its neighbors. Thus for esch
dedtination j, node i sdects a node k from its neighbor as the successor to this
degtination(or the next hop) such tha the distance from i through k to j will be the
minimum. This newly computed information will then be sored in node i’s routing teble
and will be exchanged in the next routing update cycle.

Fgure 2 shows an example of Distance Vector Routing. This example focuses on
everyone's digance to dedination D. D tranamits its distance vector (next(D)=D) with

cost 0 (ist(D)=0) to node 1. Now, Node 1 caculates its distance vector to D as one

10

(digt(D)=1) through D (next(D)=D) and transmits this information to nodes 2 and 3. This
process continues until al the nodes have a cost and next hop information to D.

dist(D}=0 @

next{D)=0
- dist(DJ:‘I

dist{Dy=1
next(D}=D ' dist(D)=2
dist(D]=2 next(D] =1

nextf D] 1

d|sth . /St(DJ =3

rext{Dj=1 @ next{D)=3
v
dist{D)=3
next{D)=5

Figure 2: Example of Distance Vector Routing

The advantages of Didance Vector are its amplicity and computation. However, the
chief problem with distance vector routing is its dow convergence when topology
changes [BG87]. The primary reason for this is that the nodes choose their next-hopsin a
completely digributed manner based on information that can be stde. While routing
information has only partidly propagated through the network, routing can be serioudy
disupted. This may lead to formations of both short-lived and long-lived routing loops
[Per00].

An example of a routing loop is shown in Figure 3. This example will focus on
everyone's distance to degtination C. B caculates its distance to C as 1 (Dist(C)=1) and
A cdculaes its digance to C as 2 (Dig(C)=2) through B (Next(C)=B). When the link
between B and C bresks, B must recdculate its distance vector to C. Unfortunately, B
does not conclude at this point that C is unreachable. Instead, B decides that it is 3 from

C, based on disance vector information from A. Because B's distance vector has now

11

changed, it transmits the changed vector back to A. A receives this modified distance
vector from B and concludes that C is now 4 away. Both A and B conclude that the best

path to C is through the other node and continue this process until they count to infinity.

Dist(C)=2 Dist(C)=1 Dist(C)=2 Dist(C)=3
Mext(C9=B MNext(C)=C Next(=B Nest{C)=4

OaOn0LA0R0L0

Figure 3: Example of Routing Loop in Distance Vector Routing
Patid remedies for these routing loops have been developed such as poison-
reverse and split-horizon [Per00]. Poison-reverse means reporting a vaue of infinity to
explicitly report thet you can't reach a node rather than smply not mentioning the node.
It is usudly used together with split horizon. The rule in split horizon is that if A
forwards traffic to destination C through B, then A reports to B that A’s distance to C is
infinity. Because A is routing traffic to C through B, A’s red digance to B cannot

possibly matter to B. B’sdistance to C cannot depend on A’sdistanceto C

However, split horizon does not work in some cases. Condgder the topology in

Figure4: Count-to-infinity with split horizon

Figure 4.

When the Link to D bresks, A concludes that D is unreachable because both B and C
have reported to A that D is unreachable because of the split horizon rule. A reports D's
unreachability to B and C. However, when B receives A’s report that D is unreachable,
B concludes that the best path to D is now through C. B concludes that 1) it is now 3
from D, 2)reports D as being unreachable to C because of split horizon, and 3) reports D
as being reachable to A at cost 3. A now thinks that D is reachable through B at a cost of

4. The counting to infinity problem gill exigs

2.2.2 Link State

Ancther dass of dgorithms that is dso widdy used in many exiding routing
protocols, such as OSPF [Moy93], is link-date routing. The main difference between
link-state and distance vector is that in link-gtate, paths are computed based on the global
network topology as opposed to the abgtracted network view reported by neighboring
nodes.

In link-state routing, each node maintans a complete view of the network
topology with a cost for each link. To keep these costs consstent, each node
(periodicaly and when it detects a link change) broadcasts the link costs of its outgoing
links to al other nodes through specia Link State Packety(LSP). These LSPs are flooded
to al the other nodes in the network. As each node receives this information, it updates
its view of the network and applies a shortest path agorithm(such as Djikstra § Sed33]
shortest path) to choose the next-hop for each destination.

Figure 5 shows an example of link state routing. Each node broadcasts to every

other node its immediate neighbors and an associated cost(to keep things smple, in this

13

example, the cost metric is just hops so dl the codts are the same). Node 1 will broadcast

itsneighbors{ D, 2,3}, node 2 will broadcast its neighbors { S,1,4}, and so on.

/,@

D23]® \

/ @{1 4
S14}@\®/
15.2.3}

®/

2.4}

Figure5: Exampleof Link State Routing

Inconsgtent topology views can aise due to the dday in ddivering an updated
LSP across the entire network. Such inconsistent network topology views can lead to
formation of routing loops. However, these loops are short-lived, because they disappear

in the time it takes amessage to traverse the diameter of the network [Jaf86].

2.2.3 Source Routing

In source routing, a node builds up a route by flooding a query to dl nodes in the
network for a given dedtination. The query packet dores the information of the
intermediate nodes in a path fidd. On detecting the destination or any other node who
has dready learned the path to the dedtination, answers the query by sending a “source
routed” response packet back to the sender. Since multiple responses may be produced,
multiple paths may be computed and maintained. After the paths are computed, any link
fallure will trigger another query/response so the routing can aways be kept up to date.

An example of Source routing is shown is Figure 6. This example focuses on

node S finding a route to node D. S floods the network with a query to degtination D. As

14

each node receives the query, it stores the information of the intermediate nodes. Once D

receives the query, it sends a* source routed” reply(reply(D)) back to S.

query(D) @ reply(V,@
@5, -_-% @:%
: : reply(D) /| p
query{D} / , * / ;
{ { query(D) / freply(D)

quem\ O < Aery() repm\ ®,;7repmo;

]

Figure 6: Example of On-Demand Sour ce Routing
The advantage of this gpproach is that it minimizes overhead routing traffic as only
routes that are needed are maintained. The disadvantage is that each packet requires an
overhead containing the source route of the packet. This overhead grows when the
packet has to go through more hops to reach the dedtination. In addition, every new
destination from a source receives a latency hit as the route is discovered or needed. This
does not scale wel with mobility when topology changes and more route requests are

generated as links break.

2.3 Summary

Conventiond routing protocols for wired networks are ill-suited for ad-hoc wirdess
networks. Table-driven routing such as distance vector and link state have high overhead
traffic caused by periodic exchange of control messages On-Demand Routing suffers
high initid latency hits and adds sze to each packet to contain the source route. It does
not scde wel with traffic source/dedtingtion pair densty and mobility. Clearly, new

mechanisms must be introduced for effective ad hoc wirdess routing.

15

3 Ad Hoc Routing Protocols
Snce the advent of the Defense Advanced Research Projects Agency(DARPA)
packet radio networks in the ealy 1970s [JT87], numerous protocols have been
developed for ad hoc mobile networks. These routing protocols must ded with the
typical limitations of these networks, which include low bandwidth and high error rates.
Thefollowing isalist of desirable properties for an ad hoc wireless routing protocol :
Distributed operation: The protocol should be distributed, meaning that it should
not be dependent on a centrdized controlling node. This makes the system more
robust to failure and growth.
Fast convergence: Routes should be quickly determined in the presence of network
changes. This means that when topology changes occur, the protocol should be able
to quickly determine optima new routes.
Loop free: To have good overdl performance, the routing protocol should supply
routes that are loop-free. This avoids wasting bandwidth and CPU resources.
Optimal routes: It is important for the protocol to find routes with the least number
of hops. This reduces bandwidth and CPU consumption. In addition, it leads to
lower overdl routing delay.
Low overhead control trafficc Bandwidth in a wirdess network is a limited
resource. The protocol should minimize the amount of overhead control messages for
routing.
There are many research groups both in industry and in academia that are atempting
to provide solutions to routing in ad hoc wirdess networks. Much of the research is

brought together by the Internet Engineering Task Force (IETF), which is a large open

16

internationd community of designers, operators, vendors, and researchers concerned with
the evolution of the Internet architecture and the smooth operation of the Internet. IETF
has a working group named MANET (Mobile Ad-hoc Networks) that is working in the
fidld of ad-hoc networks [Man00]. MANET and independent research groups have
produced many different ad hoc routing protocols. Among them, the following proposed
protocols will be andyzed in the next sections:

Dynamic Dedtination Sequenced Distance Vector (DSDV)

Wireless Routing Protocol (WRP)

Clugterhead Gateway Switch Routing (CGSR)

Zone-based Hierarchicd Link State (ZHLS)

Ad Hoc On Demand Distance Vector (AODV)

Tempordly-Ordered Routing Algorithm(TORA)

Dynamic Source Routing (DSR)

Asociativity-Based Routing (ABR)

Sgna Stability Routing (SSR)

These protocols have been sdected to be andyzed because they conditute a good

representation of current proposed Table-Drive and On-Demand techniques as applied to
mobile ad hoc networks. DSDV, WRP, CGSR, and ZHLS are table driven routing

protocols and AODV, TORA, DSR, ABR, and SSR are on-demand routing protocols.

3.1 Destination Sequenced Distance Vector — DSDV

3.1.1 Description

17

DSDV[Per94] is a hop-by-hop distance vector routing protocol where each node
has a routing table that stores next-hop and number of hops for al reachable detinations.
Like distance-vector, DSDV requires that each node periodicaly broadcast routing
updates. The advantage with DSDV over traditional distance vector protocols is that
DSDV guarantees |oop-free routes.

To guarantee loop-free routes, DSDV uses a sequence number to tag each route.
The sequence number shows the freshness of a route and routes with higher sequence
numbers are favorable. A route R is consdered more favorable than S if R has a greater
sequence number, or, if the routes have the same sequence number, but R has a lower hop
count. The sequence number is increased when node A detects that a route destination D
has broken. So the next time node A advertises its routes, it will advertise the route to D
with an infinite hop-count and a sequence number thet islarger than before.

DSDV bascdly is disance vector with smal adjusments to make it better suited
for ad-hoc networks. These adjustments consst of triggered updates that will take care of
topology changes in the time between broadcasts. To reduce the amount of information
in these packets, there are two types of update messages defined: full and incrementd.
The full broadcast carries dl avalable routing information and the incrementa broadcast

only carries the information that has changed since the last broadcast.

3.1.2 Properties

Because DSDV is dependent on periodic broadcasts, it needs some time to
converge before a route can be used. This convergence time can probably be considered
negligible in a satic wired network, where topology changes are infrequent. However, in

an ad-hoc network, the topology is expected to be very dynamic, thus causng a dow

18

convergence of routes as packets are dropped and nodes move about. Periodic and
triggered broadcasts dso add a large amount of overhead into the network, especidly

when there is high mobility in the network.

3.2 The Wireless Routing Protocol- WRP

3.2.1 Description

The Wirdess Routing Protocol (WRP) [MG96] is a table-based distance-vector
routing protocol. Each node in the network maintains a Distance table, a Routing table, a
Link-Cost table and a Message Retransmission lis.

The Digtance table of a node x contains the distance of each degtination node y via
esch neighbor z of x. It aso contains the downsream neighbor of z through which this
path is redized. The Routing table of node x contains the distance of each dedtination
node y from node x, the predecessor and the successor of node x on this path. It aso
contans a tag to identify if the entry is a dmple path, a loop or invdid. Storing
predecessor and successor in the table is beneficia in detecting loops and avoiding
counting-to-infinity problems. The Link-Cogt table contains cost of link to each neighbor
of the node and the number of timeouts snce an error-free message was received from
that neighbor. The Message Retransmisson lis (MRL) contains informetion to let a
node know which of its neighbor has not acknowledged its update message and to
retransmit update message to that neighbor.

Node exchange routing tables with ther neighbors usng update messages
periodicaly as wel as on link changes. The nodes present on the response list of update

message (formed usng MRL) are required to acknowledge the receipt of update message.

19

If there is no change in routing table since last update, the node is required to send an idle
Hello message to emsure connectivity. On recelving an updaie message, the node
modifies its disance table and looks for better paths usng new information. Any new
path so found is relayed back to the origina nodes so that they can update ther tables.
The node also updates its routing table if the new peth is better than the existing path. On
recelving an ACK, the mode updates its MRL. A unique feeture of this dgorithm is tha
it checks the consstency of dl its neighbors every time it detects a change in link of any

of its neighbors.

3.2.2 Properties

Pat of the novety of WRP sems from the way in which it achieves loop freedom.
In WRP, routing nodes communicate the distance and second-to-last hop information for
each dedination in the wirdess networks. It avoids the “coount-to-infinity” problem by
forcing each node to perform consistency checks of predecessor information reported by
dl its neghbors This diminates looping dtuations and provides faster route
convergence when a link falure event occurs. However, to achieve this loop freedom,
WRP suffers from high overhead control traffic caused by the periodic and triggered
exchange of routing tables and the reliance on ACK and HELLO responses (caused by

spurious retransmission of route tablesif ACKs or HELLOs arelost).

3.3 Clusterhead Gateway Switching Routing- CGSR

3.3.1 Description
Clusterhead Gateway Switch Routing (CGSR) [Chi97] uses as basis the DSDV

Routing dgorithm described in the previous section. The protocol differs in the type of

20

addressng and network organizetion scheme employed. Ingead of a “flat” network,
CGSR is a clustered multihop mobile wirdess network. It routes traffic from source to
degtination usng a hierarchicd clugter-head-to-gateway routing approach. Mobile nodes
are aggregated into clusters and a cluster-head is dected. All nodes that are in the
communication range of the cluster-head belong to its cluster. A gateway node is a node
that is in the communication range of two or more cluster-heads.

A packet sent by a node is first routed to its cluster head, and then the packet is
routed from the cluster head to a gateway to another cluster head, and so on until the
cluser head of the dedtination node is reached. The packet is then transmitted to the
destination.

Figure 7 illugrates an example of this routing scheme. Usng this method, each
node must keep a “cluster member table” where it stores the destination cluster head for
each mobile node in the network. These cluser member tables are broadcast by each
node periodicdly usng the DSDV dgorithm. Nodes update their cluster member tables

on reception of such atable from aneighbor.

O Gateway
O Cluster head

Figure 7: CGSR: Routing from node 1 to node 8.

21

In addition to the cluster member table, each node must dso mantan a routing
table which is used to determine the next hop in order to reach the degtination. On
recalving a packet, a node will consault its cluser member table and routing table to
determine the nearest cluster head aong the route to the dedtination. Next, the node will
check its routing table to determine the next hop used to reach the sdlected cluster head. It

then tranamits the packet to this node.

3.3.2 Properties

CGSR achieves a framework among clusters for code separation, channel access,
routing, and bandwidth by having a cluster head controlling a group of ad hoc nodes.
This is a good approach when deding with large ad-hoc networks. It is very scdable
because it uses the clustering gpproach that limits the number of messages that need to be
sent. However, the cluster design is vulnerable to point falures. If a cluser head goes
down, then routing in the entire cluster is disturbed. Frequent cluster head changes can
adversdy affect routing protocol performance snce nodes are busy in cluster head
sdection rather than packet relaying. In addition, routes between nodes in different

clusters do not result in shortest hop paths.

3.4 Zone-based Hierarchical Link State- ZHLS

3.4.1 Description

In Zone-based Hierarchicd Link State [NL99], the network is divided into non
overlapping zones. ZHLS defines two levels of topologies 1) node levd and 2) zone
level. A node level topology describes how nodes of a zone are connected to each other

physcdly. A virtud link between two zones exids if & least one node of a zone is

physically connected to some node of the other zone. Zone levd topology tells how
zones are connected together. Unlike other hierarchica protocols, there are no zone
heads. The zone leve topologica information is distributed to al nodes.

There are two types of Link State Packets (LSP) as well: node LSP and zone LSP.
A node LSP of a node contains its neighbor node information and is propagated within
the zone whereas a zone LSP contains the zone information and is propagated globaly.
Each node only knows the node connectivity within its zone and the zone connectivity of
the whole network. So given the zone id and the node id of a destination, the packet is
routed based on the zone id till it reaches the correct zone. Then in that zone, it is routed
based on node id. A <zone id, node id> of the dedtination is sufficient for routing so it is

adaptable to changing topologies.

3.4.2 Properties

ZHLS can be adjusted of its operation to the current network operationa
conditions (ie. change the routing zone radius). However this is not done dynamicdly,
but ingtead the zone radius is set by the adminigrator of the network. The performance
of this protocol depends greetly on this parameter.

ZHLS dso limits the propagation of information about topologica changes to the
zone of the change(as opposed to flooding the entire network). This causes a reduction of
overhead control traffic, however, a an expense of creating unoptima routes (routes
between zones are not necessarily minimum cost paths).

In the hierarchica gpproach, ZHLS mitigates traffic bottleneck and avoids sngle

point fallures by avoiding cluster heads. However, because of this, a node has to keep

23

track of its physca location continuoudy in order to determine its affiliste zone. This

requires some a complicated geo-location agorithm and device for each node.

3.5 Ad Hoc On Demand Distance Vector- AODV

3.5.1 Description

Ad hoc Ondemand Distance Vector Routing (AODV) [PR98, PR99] is an
improvement on the DSDV dgorithm. AODV minimizes the number of broadcasts by
cresting routes on-demand as opposed to DSDV that maintainsthe list of al the routes.

To find a path to the destination, the source broadcasts a route request (RREQ)
packet. The neighbors in turn broadcast the packet to their neighbors until it reaches an
intermediate node that has a recent route information about the destination or until it
reaches the destination. A node discards a route request packet that it has aready seen.
The route request packet uses sequence numbers to ensure that the routes are loop free
and that the intermediate node replies to route requests are the most recent.

When a node forwards a route request packet to its neighbors, it also records in its
tables the node from which the frst copy of the request came. This information is used to
condruct the reverse path for the route reply packet. AODV uses only symmetric links
because the route reply packet follows the reverse path of route request packet. As the
route reply packet traverses back to the source, the nodes adong the path enter the forward
route into their tables.

If the source moves then it can reinitiate route discovery to the destination. If one

of the intermediate nodes move then the moved nodes neighbor redizes the link falure

24

and sends a link failure natification to its upstream neighbors and so on until it reaches
the source upon which the source can reinitiate route discovery if needed.

The protocol aso uses HELLO messages that are broadcast periodicaly to the
immediate neighbors. These HELLO messages are locd advertisements for the
continued presence of the node to its neighbors. If HELLO messages stop coming from a
particular node, the neighbor can assume tha the node has moved away and notify the

affected st of nodes by sending them alink falure notification.

3.5.2 Properties

The advantage with AODV compared to classcal routing protocols like distance
vector and link-gate is that AODV has greatly reduced the number of routing messages
inthe network. AODV achieves this by using a reactive approach.

AODV only supports one route for each dedtination. This causes a node to
reinitiate a route request query when it's only route bresks. This does not scade well as
the number of route requests incresse as mobility increases(topology changes in the
network and links break).

AODV dso does not support unidirectiond links. When a node receives a RREQ,
it will setup a reverse route to the source by using the node that forwarded the RREQ as
the next hop. This mears that the route reply is unicasted back the same way the route

request used.

3.6 Temporally-Ordered Routing Algorithm- TORA

3.6.1 Description

25

Tempordly Ordered Routing Algorithm (TORA) is a digtributed source-initiated
on-demand routing protocol [PC97]. The basc underlying dgorithm is one in a family
referred to as link reversd dgorithms. TORA is desgned to minimize reaction to
topological changes. A key concept in this desgn is tha control messages are typicaly
locaized to a very smal sat of nodes. It guarantees that al routes are loop-free (dthough
temporay loops may form), and typicdly provides multiple routes for any
source/destination pair.

TORA can be separated into three basc functions. 1) credting routes, 2)
marinaing routes, and 3) erasng routes. The credtion of routes badcdly assgns
directions to links in an unidirected network or portion of the network, building a directed
acyclic graph (DAG) rooted at the destination.

TORA asociates a height with each node in the network. All messages in the
network flow downgream, from a node with higher height to a node with lower height.
Routes are discovered using Query (QRY) and Update (UPD) packets. When a node
with no downstream links needs a route to a dedtination, it will broadcast a QRY packet.
This QRY packet will propagate through the network until it reaches a node that has a
route or the dedtination itsdf. Such a node will then broadcast a UPD packet that
contains the node height. Every node receiving this UPD packet will set its own heght to
a larger height than specified in the UPD message. The node will then broadcast its own
UPD packet. This will result in a number of directed links from the originator of the
QRY packet to the destination. This process can result in multiple routes.

Maintaining routes refers to reacting to topologica changes in the network in a

manner such that routes to destination are re-edablished within a finite time, meaning

26

that its directed portions return to a destination-oriented graph within a finite time. Upon
detection of a network partition, dl links in the portion of the network that has become
partitioned from the degtination are marked as undirected to erase invdid routes. The

erasure of routesis done using clear (CLR) messages.

3.6.2 Properties

The protocols underlying link reversal dgorithm will react to link changes
through a smple locdized sngle pass of the didributed dgorithm. However, there is
potentia for oscillations to occur, especidly when multiple sets of coordinating nodes are
concurrently detecting partitions, erasing routes, and building new routes based on each
other. Because TORA uses internodd coordination, its ingtability problem is smilar to
the count-to-infinity problem in distance vector routing protocols, except that such
oscillations are temporary and route convergence will eventualy occur.

There are dtuations where multiple routes are possble from the source to the
destination, but only one route will be discovered. This is caused because the graph is
rooted a the degtination(which has the lowest height) but the source originating the QRY
does not necessrily have the highest height. The reason for this is that the height is

initidly based on the digance in number of hops from the destination

3.7 Dynamic Source Routing- DSR

3.7.1 Properties
Dynamic Source Routing (DSR) [IM98, IM99] is a source-routed on-demand
routing protocol. Source routing means that each packet in its header caries the

complete ordered lit of nodes through which the packet must passs. DSR uses no

27

periodic routing messages (ie. no router advertisements), thereby reducing network
bandwidth overheed and avoiding large routing updates throughout the ad-hoc network.
Instead, DSR maintains a route cache, containing the source routes that it is aware of. It
updates entries in the routes cache when it learns about new routes. The two basic modes
of operationin DSR are 1) route discovery and 2) route maintenance.

When the source node wants to send a packet to a destination, it looks up its route
cache to determine if it dready contains a route to the dedtination. If it finds that an
unexpired route to the destination exists, then it uses this route to send the packet. But if
the node does not have such a route, then it initiates the route discovery process by
broadcasting a route request packet. The route request packet contains the address of the
source and the dedtination and a unique identification number. Each intermediate node
checks whether it knows of a route to the destination. If it does not, it appends its address
to the route record of the packet and forwards the packet to its neighbors. To limit the
number of route requests propagated, a node processes the route request packet only if it
has not dready seen the packet and it's address is not present in the route record of the
packet.

A route reply is generated when either the dedtination or an intermediate node
with current information about the detination recelves the route request packet. A route
request packet reaching a such node contains the sequence of hops taken from the source
to this node in its route record.

As the route request packet propagates through the network, the route record is
formed. If the route reply is generated by the dedtination then it places the route record

from route request packet into the route reply packet. On the other hand, if the node

28

generating the route reply is an intermediate node then it appends its cached route for the
destination to the route record of route request packet and puts that into the route reply
packet. To send the route reply packet, the responding node must have a route to the
source. If it has a route to the source in its route cache, it can use that route. The reverse
of route record can be usad if symmetric links are supported. In case symmetric links are
not supported, the node can initiate route discovery to source and piggyback the route
reply on this new route request.

DSRP uses two types of packets for route maintenance: Route Error packet and
Acknowledgements. When a node encounters a fata transmisson problem at its data link
layer, it generates a Route Error packet. When a node receives a route error packet, it
removes the hop in error from it's route cache. All routes that contain the hop in error are
truncated at that point. Acknowledgment packets are used to verify the correct operation
of the route links. This dso includes passve acknowledgments in which a node hears the

next hop forwarding the packet aong the route.

3.7.2 Properties
DSR uses the key advantage of source routing. Nodes do not need to maintain a
complete view of the network in order to route the packets they forward. There is dso no

need for periodic routing advertisement messages, which will lead to reduced routing

overhead.
This protocol has the advantage of learning routes by scanning for informetion in
packets that are received. A route from A to C through B means that A learns the route to

C, but dso that it will learn the route to B. The source route will dso mean that B learns

29

the route to A and C and that C learns the route to A and B. This form of active learning
isvery good and reduces overhead in the network.

However, each packet caries an overhead containing the source route of the
packet. This overhead grows when the packet has to go through more hops to reach the
detination. This does not scade well to large networks when packets have to traverse
through many hops to reach a detination. In addition, nodes only hold one route to their
destination. When the route becomes invaid (due to topology change), a new route must
be discovered. This does not scale well to mobility as overhead (due to route requests)

and latency (due to finding new routes) increase as mobility increases.

3.8 Associativity-Based Routing- ABR

3.8.1 Description

The Asociativity Based Routing (ABR) protocol is a new gpproach for routing
proposed in [Toh96,Toh99]. ABR defines a new metric for routing known as the degree
of association stability. It is free from loops, deadlock, and packet duplicates. In ABR, a
route is selected based on associativity states of nodes. The routes thus sdlected are liked
to be long-lived. All node generate periodic beacons to dgnify its existence. When a
neighbor node receives a beacon, it updates its associdivity tables. For every beacon
received, a node increments its associativity tick with respect to the node from which it
received the beacon. Association dtability means connection dability of one node with
respect to another node over time and space. A high value of asodidivity tick with
repect to a node indicates a low dtate of node mobility, while a low vaue of associativity

tick may indicate a high state of node mohility. Associativity ticks are resst when the

neighbors of a node or the node itsdf move out of proximity. The fundamentd objective
of ABR is to find longer-lived routes for ad hoc mobile networks. The three phases of
ABR are Route discovery, Route reconstruction (RRC) and Route deletion.

The route discovery phase is a broadcast query and await-reply (BQ-REPLY)
cycle. The source node broadcasts a BQ message in search of nodes that have a route to
the degtination. A node does not forward a BQ request more than once. On recelving a
BQ message, an intermediate node appends its address and its associativity ticks to the
query packet. The next succeeding node erases its upstream node neighbors associativity
tick entries and retains only the entry concerned with itsdf and its upstream node. Each
packet ariving a the dedination will contain the associativity ticks of the nodes dong
the route from source to the destination. The destination can now sdect the best route by
examining the associativity ticks dong eech of the paths. If multiple paths have the same
overdl degree of association dability, the route with the minimum number of hops is
selected. Once a path has been chosen, the destination sends a REPLY packet back to the
source dong this path. The nodes on the path that the REPLY packet follows mark their
routes as vaid. All other routes remain inactive, thus avoiding the chance of duplicate
packets arriving a the destination.

RRC phase consgs of patid route discovery, invdid route erasure, vaid route
updates, and new route discovery, depending on which node(s) dong the route move.
Source node movement results in a new BQ-REPLY process because the routing protocol
is source-initiated. The route notification (RN) message is used to erase the route entries
asociated with downstream nodes. When the dedtination moves, the dedtination's

immediate upstream node erases its route. A locdized query (LQ [H]) process, where H

31

refers to the hop count from the upstream node to the degtination, is initiated to determine
if the node is gill reachable. If the destination receives the LQ packet, it sdlects the best
partia route and REPLYs, otherwise, the initiating node times out and backtracks to the
next upstream node. An RN message is sent to the next upstream node to erase the
invaid route and inform this node that it should invoke the LQ [H] process. If this
process results in backtracking more than halfway to the source, the LQ process is
discontinued and the source initiates a new BQ process.

When a discovered route is no longer needed, the source node initiates a route
delete (RD) broadcast. All nodes dong the route delete the route entry from their routing
tables. The RD message is propagated by a full broadcast, as opposed to a directed
broadcast, because the source node may not be aware of any route node changes that

occurred during RRCs

3.8.2 Properties

ABR is a compromise between broadcast and point-to-point routing, and uses the
connection-oriented packet forwarding approach. Route sdection is primarily based on
the aggregate associativity ticks of nodes dong the path. Although this may not produce
shortest hop routes, the path tends to be longer-lived. Long lived routes result in fewer
route recondructions and therefore yidd higher throughput. However, to mantan the
asociaivity of a path, ABR relies on the fact that each node is beaconing periodicaly.

This beaconing creates additional routing overheed.

3.9 Signal Stability-Based Routing- SSR

3.9.1 Description

32

Sgnd Sability-Based Routing protocol (SSR) presented in [Dub97] is an on
demand routing protocol that selects routes based on the sgnd strength between nodes
and a node's location dtability. This route sdection criterion has the effect of choosng
routes that have "stronger™ connectivity. SSR comprises of two cooperative protocols.

the Dynamic Routing Protocol (DRP) and the Static Routing Protocol (SRP).

The DRP maintains the Signd Stability Table (SST) and Routing Table (RT).
The SST dores the sgnd strength of neighboring nodes obtained by periodic beacons
from the link layer of each neighboring node. Signd drength is ether recorded as a
gsrong or weak channd. All transmissons are received by DRP and processed. After
updating the appropriate table entries, the DRP passes the packet to the SRP.

The SRP passes the packet up the stack if it is the intended receiver. If nat, it
looks up the degtination in the RT and forwards the packet. If there is no entry for the
degtination in the RT, it initiates a route-search process to find a route. Route-request
packets are forwarded to the next hop only if they are received over strong channels and
have not been previoudy processed (to avoid looping). The dedtination chooses the first
arriving route-search packet to send back as it is highly likely that the packet arrived over
the shortest and/or least congested path. The DRP reverses the selected route and sends a
route-reply message back to the initiator of route-request. The DRP of the nodes adong
the path update their RTs accordingly.

Route-search packets arriving at the destination have chosen the path of strongest
sgna dability because the packets ariving over a wesk channd are dropped at

intermediate nodes. If the source times out before recelving a reply then it changes the

PREF fidld in the header to indicate that weak channds are acceptable, since these may
be the only links over which the packet can be propagated.

When a link falure is detected within the network, the intermediate nodes send an
error message to the source indicating which channd has failed. The source then sends an
erase message to notify dl nodes of the broken link and initiates a new route-search

process to find a new path to the destination.

3.9.2 Properties

SSR sdects routes based on the sgnd srength and location stability of nodes aong
the path. While the paths sdected by this agorithm are not necessarily shortest in hop
count, they do tend to be more stable and longer-lived. One of the drawbacks of SSR is
that intermediate nodes cannot reply to route requests sent toward a destination. No
atempt is made to use partid route recovery to dlow intermediate nodes to atempt to
rebuild the routes themsdves. This may lead to longer route recongruction times since

link failures cannot be resolved locdly.

3.10 Summary and Comparison

The routing protocols can be generaly categorized into two groups. Table-Driven
and On-Demand. DSDV, WRP, CGSR, and ZHLS utilize Table-Driven routing. AODV,
TORA, DSR, ABR, and SSR utilized On-Demand routing.

DSDV routing is essentidly a modification of the basc BedlmanFord routing
dgorithm. DSDV provides one path to any given detination and selects the shortest path

based on the number of hops to the dedtination. However, DSDV is inefficient because

of the requirement of periodic update transmissons, regardless of the number of changes
in the network topology.

In CGSR, DSDV is used as the underlying routing protocol. Routing in CGSR
occurs over cluster heads and gateways. One advantage of CGSR is that severd heuristic
methods can be employed to improve the protocol’s performance. These methods
include priority token scheduling, gateway code scheduling, and path reservation[XXX].
However, CGSR is vulnerable to point falures and cluster head assgnment is difficult to
do.

ZHLS is a very interesting proposa that divides the network into severd zones. This
approach is probably a very good solution for large networks as it reduces overhead
control traffic by limiting topology updates within each zone. However it produces
unoptima (routes that are not shortest hop) for nodes between ones. In addition, there is
overhead in maintaining the status of the zone anodeisin.

WRP protocol avoids the problem of cresting temporary routing loops through the
verification of predecessor information. This requires each node to maintain four routing
tables, which can lead to substantid memory requirements, especidly when number of
nodes in the network is large. In addition, the use of HELLO packets whenever there are
no recent packet transmissions from a given node consumes bandwidth.

Of the reactive on-demand protocols, AODV and DSR are smilar in that they have a
route discovery mode that uses request messages to find new routes. The difference is
that DSR is based on source routing and will learn more routes than AODV. DSR dso
has the advantage that it supports unidirectiona links. DSR has the mgor drawback that

the source route must be carried in each packet. The can be quite codtly, especidly with

network size becomes very lage. TORA uses a link-reversd dgorithm to minimize
reaction to topologica changes. However, it suffers dow route convergence due to
oscillations.

ABR and SSR create routes based on route stability instead of shortest number of
hops. The idea is that long-lived routes require fewer route recongtructions, therefore
yidding higher overdl throughput. ABR and SSR differ on how route gability is
measured. ABR route sdlection is primarily based on the aggregate associativity ticks of
nodes adong a path, whereas SSR sdects routes based on the signd strengths and location
gability of nodes along the path. A drawback of these protocols is that because routes
are sdected based on an aggregate metric for route stability, when a link falure occurs
dong a path, the route discovery agorithm must be reinvoked from the source to find a
new path to the dedtination. This may lead to longer route recongtruction times since link
falures cannot be resolved localy. In addition, it remains to be seen whether creating
routes that are longer-lived rather than shortest hop produces better performance.

These protocols offer different solutions for routing in the ad hoc mobile network,
however, they dso come with drawbacks. By sudying current proposed routing
protocols, a good understanding of tradeoffs in routing in ad hoc mobile networks is
achieved. By weghing the advantages and disadvantages of certain routing protocol
features, a new protocol will be presented in the next section that provides good routing
performance, and a the same time, mitigates the drawbacks incurred to achieve such

performance.

4 Fisheye Wireless Routing Protocol

4.1 Protocol Overview
In this chapter, a new routing scheme for ad-hoc wireless networks is presented.

The god is to provide an accurate routing solution while the control overhead is kept low.
The proposed scheme is named “Fisheye Routing” due to the novd ‘fisheye updating
mechanism. Smilar to Link State Routing, Fisheye Routing generates accurate routing
decigons by taking advantage of the globd network information. However, this
information is disseminated in a method to reduce overhead control traffic caused by
traditional flooding. Ingtead, it exchanges information about closr nodes more
frequently than it does about farther nodes. So, each node gets accurate information
about neighbors and the detaill and accuracy of information decreases as the distance from

the node increasess.

4.2 Table-Driven Design

Fisheye Routing determines routing decisons usng a table-driven routing
mechanism smilar to link date. The table-driven ad hoc routing approach uses a
connectionless approach of forwarding packets, with no regad to when and how
frequently such routes are dedred. It relies on an underlying routing table update
mechaniam that involves the congdant propagation of routing informetion. A table-driven

mechanism was sdected over an ondemand mechanism based on the following

properties:

37

On-Demand routing protocols on the average create longer routes than table
driven routing protocols [ICP99)].

On-Demand routing protocols are more sendtive to traffic load than Table-
Driven in that routing overhead traffic and latency increese as daa traffic
source/destination pairsincrease.

On-Demand Routing incurs higher average packet dday than Table Driving
routing which results from latency caused by route discovery from new
destinations and less optima routes.

Table-Driven routing accuracy is less sendtive to topology changes. Since
every node has a ‘view' of the entire network, routes are less disrupted when
thereislink breakage (route reconstruction can be resolved locdly).

Table-Driven protocols are easer to debug and to account for routes since the
entire network topology and route tables are stored at each node, whereas On+
Demand routing only contain routes that are source initiated and these routes

are difficult to track over time.

For these reasons, a table driven scheme for the ad hoc routing protocol was
chosen. Link date was chosen over distance vector because of faster speed of
convergence and shorter-lived routing loops [ZA91]. Link date topology information is
disssminated in gpecid link-gate packets where each node receives a global view of the
network rather than the view seen by each node's neighbor. Fisheye routing tekes
advantage of this feature by implementing a novel updating mechanism to reduce control

overheed traffic. The agorithm for Fisheye routing is described in the next sections.

4.3 Algorithm

There are 3 main tasks in the routing protocol:

1) Neighbor Discovery: respondble for edablishing and mantaning neighbor
relationships.

2) Information Dissemination: responsble for disseminating Link State PacketS(LSP),
which contain neighbor link information, to other nodes in the network.

3) Route Computation: responsible for computing routes to each dedinaion using the
information of the LSPs.

Each node initidly starts with an empty neighbor lig and an empty topology table.
After its locd varidbles are initidized, it invokes the Neighbor Discovery mechanism to
acquire neighbors and maintain current neighbor rdationships. LSPs in the network are
digributed usng the Information Dissemination mechanism. Each node has a database
conggting of the collection of LSPs originated by each node in the network. From this
database, the node uses the Route Computation mechaniam to yield a routing table for the

protocol. Thisprocessis periodicaly repested.

4.3.1 Neighbor discovery

This mechanism is regponsble for edablishing and mantaning neghbor
relationships. Neighbors can meet each other amply by trangmitting a specid packet(a
HELLO packet) over the broadcast medium. In the wireless network, HELLO packets
are periodicaly broadcasted and nodes within the transmisson range of the sending node
will hear these specid packets and record them as neighbors. Each node associates a
TIMEOUT vaue in the node's database for each neighbor. When it does not hear a

HELLO packet from a paticular neighbor within the TIMEOUT period, it will remove

39

that neighbor from the neighbor lis. TIMEOUT vdues ae resst when a HELLO
message is heard.

HELLO Packets also contain the list of routers whose HELLO Packets have been
seen recently. Nodes can use this information to detect the presence of uni-directiona or

bi-directiond links by checking if it seesitsdf listed in the neighbor’ s HELLO Packets.

4.3.2 Information Dissemination

This mechaniam is respongble for didributing LSPs to the nodes in the network.
It'stwo main functions are to handle the LSP integrity and updeting interva.

L SP Integrity

After the router generates a new LSP, the new LSP must be transmitted to al the
other routers. A smple scheme is flooding, in which each packet received is transmitted
to each neighbor except the one from which the packet was received. Because each
router retains the most recently generated LSP from other nodes, the router can recognize
when it isreceiving a duplicate L SP and refrain from flooding the packet more than once.

The problem with this flooding is that a router cannot assume that the LSP most
recently received is the one most recently generated by that node. Two LSPs could travel
dong different paths and might not be recaved in the order in which they were
generated. A solution to this is to use a scheme involving a combination of a sequence
number and an estimated age for each LSP.

A sequence number is a counter. Each router keeps track of the sequence number
it used the last time it generated an LSP and uses the next sequence number when it needs
to generate a new LSP. When a router recelves a LSP, it compares the sequence number

of the received LSP with the one stored in memory (for that originating node) and only

accepts the LSP if it has a higher sequence number. The higher the sequence number, the

more recently generated.

However, a sequence number done is not sufficient. The sequence number
gpproach has various problems:

1) The sequence number fied is of finite Sze. A problem arises when a node creates a
LSP to case the fidd to reach the maximum vaue. Making the sequence number
fidd wrap around is not a good idea because it causes ambiguity on the reation of the
sequence numbers.

2) Sequence number on an LSP becomes corrupt. If the sequence fidd is corrupted to a
very large sequence number, it will prevent vaid, newer LSPs (with smaler sequence
numbers) to be accepted.

3) Sequence number is reset. When a router goes down or forgets the sequence number
it was using, newer LSPs cannot be distinguished from older LSPs
To solve the preceding problems, an age field is added to each LSP. It darts at some

vaue and is decremented by routers as it is hed in memory. When an LSP's age reaches

0, the LSP can be considered too old and an LSP with a nonzero age is accepted as new,

regardless of its sequence number.

Update Interval

The key difference between fisheye and traditiond Link-date is the intervd in
which the routing information is disseminated. In Link State, the link date packets are
generated and flooded into the network whenever a node detects topology changes.

Fisheye uses a new approach to reduce the number of L SP messages.

a4

In [KS71], Kleinroch and Stevens proposed the fisheye technique to reduce the
Sze of information required to represent graphicad data. The origind idea of fisheye was
to mantan high resolution information within a range of a certan point of interest and
lower resolution further away from the point of interes. For routing, this fisheye
aoproach can be interpreted as maintaining a highly accurate network information about
the immediate neighborhood of a node and becomes progressvely less detaled as it
moves away from the node.

Figure 8 illudrates the gpplication of fisheye in a mobile wirdess network. The
figure defines the scope of fisheye for the center node. The scope is defined in terms of
the nodes that can be reached in a certain number of hops. The center node has most
accurate information about al nodes in the first circle, and becomes less accurate with
each outer circle. Even though a node does not have accurate information about distance
nodes, the packets are routed correctly because the route information becomes more and

more accurate as the packet moves closer to the destination.

Figure8: Application of fisheyein a network.

V)

The reduction of routing messages is achieved by updaing the network
information for nearby nodes a a higher frequency and remote nodes a a lower
frequency. As a result, consderable amount of LSPs are suppressed. When a node
receives a LSP, it caculaes a time to wait before sending out the LSP from the following
equation:

Updatelnterva = CongtantTime * hopcount”dpha
ConstantTime is the user defined default refresh period to send out LSPS(in the firgt
scope), hopcount is the number of hops the LSP has traversed, dpha is a parameter that
determines how much effect each scope has on the Updatelnterval. Vaues for dpha are
zero(same as no fisheye) and grester than or equa to one(fisheye). A maximum vaue of
Updatelnterval is edtablished to prevent an effective complete suppression of LSP
messages(when calculated Updatel nterval istoo large).

When a router accepts a LSP from a faraway node, and has not yet sent out the
LSP in memory, the next time it will send out the LSP will be the minimum of the time
left to wait in memory and the new caculated Updatel nterval based on the new LSP

Updatel nterva (new) = MIN(Updatel nterva (memory), Updatel nterva (LSP))

This is to prevent a router from waiting indefinitdly to send out a LSP when a new LSP

arives before the one in memory is sent out for that node.

4.3.3 Route Computation

Once the router has a database of LSPs, it computes the routes based on the Djikstra's
[Sed83] dgorithm which computes al shortest paths from a dngle vertex. The link
metric used for path cost is the hop count. The agorithm uses 3 databases:

1) Link State Database- Contains the L SPs the node received.

2) PATH- contains ID, path codt, forwarding direction tuples. Holds the best path
found.

3) TENT- contains D, path cog, forwarding direction tuples. Holds possible best paths.

The Djikstra dgorithm is asfollows:

1) Statwith“sdf” astheroot of atree by putting (mylD, 0, 0) in PATH.

2) For node N just place in PATH, examine N's LSP. For each of N’s neighbors, add
the total path cost a N to the cost path of each neighbor. If the new tota path of the
node is better than the vaue for that nodein PATH or TENT, put into TENT.

3) If TENT is empty, terminate the dgorithm. Otherwise, find the minima cod in

TENT, moveinto PATH, and go to Step 2.

One the dgorithm completes, PATH now contains the shortest next-hop information
for each destination. The protocol can now use the PATH database as a routing table to

forward packets toward their destinations.

4.4 Implementation

The Fisheye routing protocol was implemented in the Composable Network
Software(CNS) environment developed by the Digitd Communication Networks Group
a MITRE Corporation. CNS is a scdable design environment for network systems.
Since mogt network systems are being built usng a layered approach smilar to the OS
layer network architecture, CNS uses the same gpproach. Modules can be built between

the different smulaion layers. This will dlow rapid integration of modes developed a

different layers by different people. The protocol stack supports models for the channd,
radio, MAC, network, transport, and application layers.

CNS is programmed in C++ to teke advantage of the Object Orientated
Progranming paradigm. Each module developed in the CNS environment has a wdl-
defined interface to pass data between modules. Modules in CNS can aso be used to
generate traffic, setup network topologies, introduce link/transmisson characterigtics,
debugging, or any other function.

The composable network stack for the Fisheye routing protocol is shown in Figure

Flelnierface fi 2llows access to STDIY and STDOUT

T

String

Pz Tolfring PsIn Correrts between String and Packet fonmats.

Packet

Pachket

Foufer Filier Filter: Filter's packets to sirnlate network topologies.

Packet

Fig Tolfring PsOut: Cornertsbetween String and Packet formats.

T

String

LidpInderface ether: Simulates a radio broadeast medinm.

Figure 9: Composable Network Stack for Fisheye Routing Protocol

The routing protocol is entirdy implemented in the Router Fisheye module. The
other modules offer a smulated network environment to test the functiondity of the
routing protocol. Filelnterface fi dlows user to insat packets into the Router
module(such as test and data packets). RouterFilter Filter smulates a network topology.

Udplnterface ether smulaies a radio broadcast transmisson medium. PktToString

PsOut and Psl n dlows interface between different modules.

In the Router Fisheye module, there are two top levd man functions that are
cdled to handle routing. They are DoWork() and DoConsume(). DoWork() is cdled
periodicaly based on a series of event timers. DoConsume() is invoked when the router
receives a packet on it's interface. The flowchart for these functions will be shown in the

next two sections.

47

4.4.1 DoWork() Flowchart

DoWork Flowchart

Do¥Work: Executes penodically

and updates event timers.
Triggers Triggers Triggers Triggers
Update DwnL3P SecanlSPdb Decrementfge SerdHELLO
Event Timer Event Timer Event Timer Ewerit Timer

N

Updaie OwnLSP: ScanLSPdh: Scans Decrementige: SendHELLO: Constructs
Set ronter's LSP datahase for LSPs Decrernent HELLO HELLC packets(broadcast)
flagz tobe sent. needing to be sent. and L5F tirners. P '
Send Fla HELLO ar LEP
Datects timer times-out.

)

ComputeRoute: Corputes
routes bebween nodes.

HELLD timer
times-out.

¥

SendLSP: Constrcts L5F
packets and deternires
address destinations.
{uricast or broadeast)

3

ToBelow: Sends
packet to lower Jaser.

The DoWork() function is caled periodically based on four event timers:
1) UpdateOwnLSP
2) ScanlLSPdb
3) DecrementAge

4) SendHELLO.

UpdateOwnLSP event timer controls when that node should send out its own LSP
to neighbor nodes. This is necessary to propagate the current node's LSP to the other
nodes in the network.

ScanLSPdb event timer scans the LSP database to check when a LSP received
from another node should be sent out. This is necessxry for the Fisheye update
mechanism since LSPs received a different scopes will have different times to send. It
checks the Updatelnterval (as described in section 4.3.2) values associated with each LSP
and only sendsthe LSP out if the Updatelnterval for that L SP has been exceeded.

DecrementAge event timer decrements the HELLO and LSP timeout timers.
HELLO timeout timers are needed to check if node x is gill a vaid neighbor of node y.
Node y needs to periodicaly hear HELLO messages within a certain period of time from
node x or node x to be conddered a valid neighbor of node y. The LSP timeout timers
ae to decrement the AGE fidd of the LSP while it dts in memory to insure LSP
integrity. When a neighbor becomes invdid, it will invoke ComputeRoutes() to compute
anew routing table because it has detected a topology change.

SendHELLO event timer is used to periodicdly send HELLO messages to
neighboring nodes. This is needed for other nodes to detect and maintain the presence of

neighboring nodes.

49

4.4.2 DoCosume() Flowchart

DoConsume Flowchart

DoConsume: Executes when

a packet armves on a port.
Packet Jecehred Pachet neceivead
from lower layver Trom upper [ayer
FromBelow: Processes FromAhove: Pmocesses
packet from loarer layrer. packet from upper layer.
| I
L5P HELLO DT FI‘J'&'I;
achet Packet Packet a
Handle LSF: Checls if walid Handle HFLLO: Processes HandleDATA: Processes
L=F, processes L5P, and HELLOD packet and updates DAETE Packet and deterraines
updates L5P datdbase. teighhor database. Lixk; Laver destination addresses.
valid LER Mew Meighbor
ComputeRoute: Computes ComputeRoute: Computes
routes between nodes, routes between nodes, Packet netmork detingtion, Facket natwor destination

address 1= nod address address == node addrass

.

ToBelow: Sends ToAbove: Sends
packet to lower laser. packet to upper layer.

DoConsume() is cdled whenever a packet is received at it's interface. It utilizes the CNS
environment's network stack to determine which interface a packet was received on.
Packets received from a the upper layer are handled by FromAbove(). These packets are
usudly data packets from a application or debug packets. Packets received the lower
layer are handled by FromBelow(). These packets can both be routing packets and data

packets.

All data packets are processed by HandleData() with determines where the packet
should be forwarded to based on the protocol’s routing table. If the packet is intended for
the current node, it forwards the packet toward the upper (gpplication) layer to be
processed. If the packet is intended for another destination, it forwards the packet toward
that node.

Routing packets are processed by HandleLSP() or HandleHELLO() based upon
the type of packet. HandleLSP() processes LSPs. It checks to see if the fidds in the LSP
ae vdid, deermines if the node should accept the LSP, and records the relevant
information of the LSP into the LSP database including cdculating the Updatelnterval
time. HandleHELLO() processes HELLO packets received from neighboring nodes and
it updates the node's neighbor list in the database. |If either a new LSP or HELLO packet
with a new neighbor is accepted, then ComputeRoutes() is invoked which cdculates a
new routing table. This is needed to maintain an up-to-date routing table when it detects

changes in the network topology.

4.5 Performance Analysis

The Fisheye routing protocol was smulated in a mobile environment to determine
the connectivity among mobile hogs. The smulaor for evduating the protocol is the
Globa Mobile Smulation (GloMoSm) environment [ZBG98] from UCLA. GloMoSm
is desgned usng the Padld Smulaion Environment for Complex Systems (PARSEC)

[Bag98] to provide a discrete-even smulation environment for wirdess network systems.

51

4.5.1 Simulation Model

The amulation modds a network of 30 mobile nodes migrating within a 20m X
20m spaces with a transmisson radius of 5 meters. Every node in the network moves in
a Random-waypoint fashion. In Random-waypoint, each node cdculates a random
destination and moves towards it at a fixed rate. Once the destination has been reached, it
sdects another random location and repests the process. The raw channd wireess
capacity is 2Mbitgsec. A traffic generator was developed to smulate congtant bit rate
sources between two nodes. Simulaion runs of 200,000,000,000 smulation ticks(equa
to 200 seconds of smulated time) were peformed multiple times and the results

averaged.

4.5.2 Simulation Results

Different values of alpha were tested to compare ther reative effects on (@)
Control Overhead and (b) Successful Packet Deliveries. Alpha affects the interva of
LSP updates at different scopes. As previoudy dated, the update interva when
propagating LSPs a each node is cdculated as. Updatelnterval = CongantTime *
hopcount®alpha. As alpha increases, the Updatelnterval increases (at each hop).
ConstantTimein these Smulations was set at 3 seconds.

The effect of latency was consdered but did not yidd good information. This is
because the computation of average latency is hindered by packet drops. |If packet drops
are excluded from the computation, then average latency appears to decrease as packet
loss increases. This is because the dropped packets are mogt likely the ones going
through greater number of hops. If dropped packets are included in the computation, they

must be assgned an abitraily large congant deay. Unfortunately, this arbitrary

52

congtant skews the average latency and prevents one from knowing the average latency
of packets that were not dropped.

Figure 10 shows the control overhead incurred by different vadues of alpha as a
function of mohility. As one would expect, control overhead goes down as the vaue of
apha incresses. This occurs because nodes wait a longer time before transmitting LSPs
it received from other nodes at each successive scope. This results in lower control
overhead traffic. The reduction of overhead traffic a higher vaues of dpha are very

ggnificant.

Control Overhead as a function of Mobility

200000

150000 ——— [—apha=00

/ —alpha=1.0

100000 alpha=1.5
/ alpha=2.0

50000 A —alpha=2.25
0 T T T T T
0O 005 01 015 0.2 025 03

Mobility (m/sec)

Total Control Overhea
(bits)

Figure 10: Overhead as a function of Mobility

Figure 11 shows the number of successful packet delivery over different alphas as
a function of mobility. Overdl, higher mobility causes a decrease in successful packet
deiveries for dl vadues of dpha However, as this figure shows, there are more
successfully delivered packets a lower vaues of dpha This is because LSPs ae
refreshed more frequently and therefore route tables are more reflective of the actud

network topology, thus producing greater number of valid routes.

In the figure, mobility has a greater affect on higher vaues of dpha As mobility
increases from 0 to 0.5 m/s, packets are dropped at a higher rate at higher values of apha
This is a result of less accurate routing tables a each node because network topology
changes are not propagated as frequently. At higher vaues of dpha, when refresh rates
arelessfrequent, routing table accuracy is more sengtive to network topology changes.

One can dso notice that the successful packet ddiveries over different vaues of
dpha seem to converge a high values of mobility. This is caused by a second order
effect where the nodes are moving s0 fadt, that only the minima hop(1l hop) routes are

present, regardless on how fast the routing tables are updated.

Packets Received as a Function of Mobility
1000 \
900 -
\
o 800 |
(5]
2 \ \ —alpha=0
g 700
] \ \ alpha=1.0
T 600 \ \ alpha=1.5
% 500 s alpha=2.0
o] \ A\ —alpha=2.25
& 400 —
300 —
200 T T T T T
0 005 01 015 02 025 03
Mobility (m/sec)

Figure 11: Successful Packet Received as a Function of Mobility

4.5.3 Simulation Summary
The smulations of the Fisheye protocol implementation has shown that fisheye does

work in routing packets and reducing overhead traffic in a mobile environment. By

increasing the update interva time of LSPs a different scopes, tremendous amounts of
overhead control traffic can be suppressed. However, there is a trade-off. As the update
interva time increases, the routing tables a each node become less accurate, causing a
reduction of the number of successful packet ddiveriess One must baance mohility,

routing accuracy, and overhead traffic to achieve an optimal vaue for the update

interva(alpha).

4.6 Comparison with other Ad Hoc Routing Protocols

This section provides comparisons of previoudy described routing agorithms

(section 3) with Fisheye routing. Table 1 summarizes and compares properties of the ad

hoc routing protocoals.

Fisheye DSDV WRP CGSR ZHLS
Loop-free Yes Yes Y es, but not Yes Yes
instantaneous
Distributed Yes Yes Yes Yes Yes
Routing Philosophy Table-Driven | Table-Driven | Table-Driven | Table-Driven | Table-Driven
Periodic Broadcasts Varying over Periodic Periodic and Periodic Different by
scopes triggered zone level
Topology Philosophy Flat Flat Flat Hierarchical Hierarchical
Critical Nodes No No No Yes Yes
Routing Metric Shortest path | Shortest path | Shortest path | Shortest path | Shortest path
AODV TORA DSR ABR SSR
Loop-free Yes No, short Yes Yes Yes
lived loops
Distributed Yes Yes Yes Yes Yes
Routing Philosophy On-Demand On-Demand On-Demand On-Demand On-Demand
Periodic Broadcasts Periodic and Periodic No Periodic on No
when needed associativity
Topology Philosophy Flat Flat Flat Flat Flat
Critical Nodes No No No No No
Routing Metric Freshest and | Shortest path | Shortest path | Associativity/ Signa
shortest path route stability strength
stability

Table 1: Comparison between ad-hoc protocols.

Among the table driven protocols, Fisheye, DSDV, and WRP use ‘fla’ network
addressing. Because Fisheye uses link-date, it has the advantage over DSDV in terms of
faster route convergence. However, Link-dtate requires more computation complexity
than Distance-vector, in tha Link-state requires more computation steps for a node to
perform routing computations from the update messages [Per00]. WRP uses consistency
checks of predecessor information to avoid routing loops. This requires that it maintain
severd routing tables which lead to much higher memory requirements than Fisheye.
Fisheye dso has the advantage over DSDV and WRP in lower overhead control traffic
resulting from the periodic broadcast of routing messages. However, the suppresson of
routing messages a success Ve scopes used by Fisheye may degrade routing accuracy.

CGSR and ZHLS differ among the other table-driven protocols, in that they use a
hierarchical addressing scheme such that nodes are grouped into clusters (or zones).
Nodes can be locdized for channd access, routing, bandwidth dlocation separation
among clugers. This has the advantage that it can scae wel to high network sizes.
However, this relies on criticad nodes to control routing between regions and to maintain
node asociation. This is a difficult problem to solve, but may be necessary for large
networks. While flat addressng schemes may be less complicated and esser to use,
there are doubts as to its scdability [DaA97]. Fisheye partidly circumvents the problem
of scdability of flat addressng schemes by using different updating scopes. This has the
effect of localizing routing messages to nodes that are close to each other.

Among the on-demand routing schemes, AODV, DSR, and TORA find shortest-
hop routes only when routes to new destinations are desred. ABR and SSR are on+

demand routing schemes that find routes that are longer-lived (which are not necessarily

shortest hop) based on some metric. It is uncertain weather shortest hop routes or longer-
lived routes are better. Since longer-lived routes do not necessarily result in smalest
number of hops, it may incur higher latency. However, longer-lived routes require fewer
route recondruction and therefore may yiedd higher throughput. In addition, network
conditions will affect the performance of each method. Long-lived routes will be favored
in presence of high mobility when there are higher number of link changes, and shortest-
hop routes will be favored when there is low mobility. Thus it remains to be seen
whether longer-lived routes are more optimal than shortest-hop routes.

Ondemand routing schemes have an advantage over the table-driven fisheye scheme
in that they do not rdy on an undelying routing table update mechaniam that involves
the congtant propagetion of routing information. Routing information in Fisheye is
congtantly propagated, and a route to every other node in the network is available. This
feature incurs subdantid sgnding trafficc. However, in onrdemand routing, routing
traffic grows with increesng mobility of active routes and with increesng
source/destingtion traffic pairs. Thus, in a lage dense network with high number of
traffic pars, on-demand routing may incur higher overhead traffic than the fisheye
scheme. Since network conditions are not known a priori, it is favorable to have a

mechaniam that isinsengtive to traffic conditions.

4.7 Summary

Each of the proposed schemes have certain features to ded with certain problems of
routing in ad hoc networks. Because inherently, network conditions (such as traffic
dengty, network sze, and mohility) in an ad hoc network are not known, it is preferable

to desgn a protocol that is not sendtive to network conditions. This is why Fisheye

57

opted for a table-driven approach. The table-driven approach makes the protocol
insengtive to traffic source/dedtination par dendty. The fisheye update mechanism
ggnificantly reduces the overhead traffic that plagues conventiond and proposed table-
driven schemes. This results in good scalability to network sze. However, routing
performance is affected by the update interval between scopes, which is partidly
determined based on the mohility of the sysem. In the presence of high mohility, routing
updates must be propagated more frequently to reflect the current network topology.
However, when there is low mobility, routing updates do not need to be propagated as
frequently as the topology does not change as much. The trade-off is between overhead

traffic verses routing accurecy.

5 Conclusions
The ad hoc wirdess network presents many chalenges in routing protocol design.
The god of this theds is to study traditiond routing schemes and design and implement a

new routing approach for ad hoc wireless networks.

5.1 Contributions

A new routing scheme udng a link-gtate foundation and employing a nove fisheye
updating mechanism was desgned and implemented. Cdled Fisheye routing, this
mechanism reduces the control overhead by disseminating topology information using
the fisheye technique, where routing information is updated at different rates depending
on the distance from the source.

Through smulation, Fisheye routing has exhibited good peformance in reducing
overhead control traffic. It dso performs well in terms of successful packet delivery in
the presence of low mobility. Proper sdection of the update interva time is necessary for
good successful packet ddivery in the presence of high mobility.

This thess has given indght into the problems that arise when desgning routing
protocols in an ad hoc wirdess network, shown correct implementation functiondity, and

demondtrated functiondity and performance of the Fisheye Routing Protocol

5.2 Future Work

Current ad hoc routing approaches have introduced severa new paradigms, such as
exploiting user demand, the use of location, association parameters, and updating
mechanisms. However, it is not clear that any particular dgorithm or class of dgorithm

is the best for dl scenarios, each protocol has definite advantages and disadvantages, and

59

is wel suited for certain Stuations. A key characterigtic to the success of widespread use
of a ad hoc wirdess routing protocol is flexibility. A flexible ad hoc routing protocol
could responsively invoke table-driven and/or on-demand approaches based on Stuations
and communication requirements. The “toggle’ between these two approaches may not
be trivid gnce concerned nodes must be “in sync” with the toggling. Coexistence of
both agpproaches may dso exis in gspatidly clustered ad hoc groups, with intracluster
employing teble-driven gpproach and intercluster employing the demand-driven
approach, or vice-versa Further work is necessry to investigate the feeshility and
performance of hybrid ad hoc routing approaches.

Other festures of ad hoc networks that can be examined not addressed in this
research are 1) Multicast routing [GCZ98] and 2) Quality of Service(QoS) support.
Multicast is desrable to support multiparty wirdess communications. Since the multicast
tree B no longer ddic, the multicast routing protocol must be adle to copy with mobility,
including multicas membership dynamics. In terms of QoS, given the problems
asociated with the dynamics of nodes hidden terminds and fluctuating link
characterigtics, support end-to-end QoS is a nontrivid issue that requires in-dept
invedigation.

The fidd of ad hoc mobile networks is rgpidly growing and changing, and while
there are gill many chalenges that need to be met, it is likdy that such networks will ®e

widespread use within the next few years.

6 References

[Bak97] D. Baker, e d. “Ha vs Hiearchicd Network Control Architecture”
ARP/DARPA Workshop on Mobile Ad-Hoc Networking, March 1997.

[Bag98] R. Bagrodia and e. d, “Parsecc A Padld Smulation Environment for
Complex Systems’, Computer, Vol. 31, October 1998, pp. 78-85.

[BIM98] J. Broch, D. Johnson, and D. Madltz, “The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks,” IETF Internet draft, Dec. 1998.

[BG87] D. Bertsekas and R. Gdlager. Routing in Data Networks, chapter 5., Prentice
Hall, second edition, 1987.

[BJ9G] J Broch, D. John Johnson, and D. Mdtz, “The Dynamic Source Routing
Protocol for Mobile Ad Hoc Networks’, 1ETF Internet-Draft, draft-ietf-manet-
dsr-00.txt, Mar. 1998

[Chi97] C. Chiang, “Routing in Clustered Multihop, Mobile Wirdess Networks with
Fading Channel,” Proceedings of IEEE SICON '97, April 1997, pp. 197-211.

[Dub97] R. Dube, “Sgnd Sability based Adeptive Routing for Ad-Hoc Mobile
Networks,” |EEE Persond Communication, Feb. 1997, pp. 36-45.

[GCZ98] M. Gerla, C. Chiang, and L. Zhang, “Tree Multicast Strategies in Mobile,
Multihop Wirdess Networks” ACM Mobile Networks and Applications,
January 1998.

[HP98] Z. Haas and M. Pearlman, “The Performance of Query Control Schemes for the
Zone Routing Protocol”, ACM SIGCOMM ’98.

[ICP99] A. Iwata, C.-C. Chiang, G. Pd, M. Gerla, and T.-W. Chen, “Scaable Routing
Strategies for Ad Hoc Wireless Networks’, IEEE Journa on Selected Aress in
Communications, Aug. 1999, pp. 1369-79.

[Jaf86] JM. Jdffer and e d. “Subtle Desgn Issues in the implementation of
Didributed, Dynamic Routing Algorithms’, Computer Networks and ISDN
systems, 1986, pp. 147-68

[JLT99] M. Jang, J. Li, and Y. Tay, “Cluster Based Routing Protocol”, August 1999,
|ETF Internet- Draft.

[OJM96] D. Johnson and D. Madtz, “Dynamic Source Routing in Ad Hoc Networks’,
Mobile Computing, Kulwer, 1996, pp. 152-81.

61

[JM99] D. Johnson and D. Madtz, “The Dynamic Source Routing Protocol for Mobile
Ad Hoc Networks’, October 1999 |ETF Internet- Draft.

[JN99] M. JoaNg and I. Lu, “A Peer-to-Peer zone-based two-levd link dtae routing
for mobile Ad Hoc Networks” IEEE Journal on Sedected Aress in
Communications, Specid Issue on Ad-Hoc Networks, Aug. 1999, pp.1415-25.

[JT87] J Jdubin and J. Tornow, “The DARPA Packet Radio Network Protocols,”
Proceedings of IEEE, val. 75, no. 1, 1987, pp. 21-32

[KS71] L. Kleinrock and K. Stevens, “Fisheye A Lendike Computer Display
Transformation,” Computer Science Department, UCLA, CA Tech. Report,
1971.

[Man00] Mobile Ad-hoc Networks (MANET). URL:www.ietf.org/html.chartersS'manet-
charter.ntml. February 2000. Work in progress.

[MG96] S. Murthy and JJ. Garcia-Luna-Aceves, “An Efficent Routing Protocol for
Wirdess Networks” ACM Mobile Networks and Applications, Routing in
Mobile Communication Networks, Oct. 1996, pp. 183-97.

[Mis99] P. Misa, “Routing Protocols for Ad Hoc Mobile Wirdess Networks’,
Computer Science Department, Ohio State University, 1999.

[Moy98]J. Moy, OSPF: Anatomy of an Internet Routing Protocol. Reading,
Massachusetts, Addison Wedey Longman, Inc., 1998.

[PB94] C. Peakins and P. Bhagwat, “Highly Dynamic DedtinationSequenced Distance
Vector Routing(DSDV) for Mobile Computers’, Computer Communication
Review, October 1994, pp.234-244.

[PB96] L. Peterson and B. Davie, Computer Networks — A Systems Approach. San
Francisco, Morgan Kaufmann Publishers Inc., 1996.

[PC97] V. Park and M. Corson, “A Highly Adaptive Didributed Routing Algorithm for
Mobile Wireless Networks,” Proceedings of INFOCOM *97, Apr. 1997.

[PR99] C.E. Perkins and E.M. Royer, “Ad-hoc On-Demand Distance Vector Routing,”
Proceedings of 2" IEEE Workshop of Mobile Computer Systems and
Applications, Feb. 1999, pp. 90-100.

[PC97] V. Pak and M. Corson, “A Highly Adaptive Digributed Routing Algorithm for
Mobile Wireless Networks’, Proceeedings of INFOCOM '97, April 1997.

62

[Per00] R. Perlman, Interconnections. Bridges, Routers, Switches, and Internetworking
Protocolss 2" Edition. Reading, Massachusetts, Addison Wedey Longman,
Inc., 2000.

[PR98] C. Perkinsand E. Royer, “Ad Hoc On Demand Distance Vector(AODV)
Routing,” IETF Internet draft, Nov. 1998.

[PRD99]C. Pekins, E. Royer, and S. Das, “Ad Hoc On-demand Distance Vector
Routing”, October 1999 IETF Internet-Draft.

[RT99] R. Royer and C. Toh, “A Review of Current Routing Protocols for Ad Hoc
Mobile Wireess Networks’, IEEE Persond Communications, Vol. 6, No.2,
pp.46-55, April 1999.

[Sed83] R. Sedgewick. Weighted Graphs, chapter 31. Addison-Wedey, 1983.

[Toh96] C. Toh, “A Nove Didributed Routing Protocol to Support Ad-Hoc Mobile
Computing,” Proceedings of 1996 IEEE 15" Annua International Conference
on Computing and Communication, Mar. 1996, pp. 480-86.

[Toh97] C. Toh, “Associativity-Based Routing for Ad-Hoc Mobile Networks,” Wireless
Persona Communication, vol. 4, no.2, Mar. 1997, pp. 1-36.

[ZA91] W. Zaumen and J Aceves, “Dynamics of Didributed Shortest-path Routing
Algorithms’, Proceedings on Communication Architecture and Protocols,
September 1991, pp 31-42.

[ZBG98]X.Zeng, R. Bagrodia, and M.Gerla, “GloMoSm: A libray for the padld
smulaion of lage-scale wirdless networks” in Proc. 12" Workshop Parald
and Didributed Smulations- PADS 98, pp. 154-161.

7 Appendix- Code Listing

7.1 Router.C

#i ncl ude <Router. h>
#i ncl ude <IntfUdp. h>

Rout er:: Router(const String& address) : MiltiPort("Router", 2)
{
/] Initialization
cNext Ti me_SCAN DB = Ti nme: : Now() + EV_TI MER_SCAN_ DB
cNext Ti ne_UPDATE_LSP = Ti ne: : Now() + EV_TI MER_UPDATE_LSP
cNext Ti mne_SEND HELLO = Ti ne: : Now() + EV_TI MER_SEND HELLQ
cNext Ti mne_ DECREMENT_AGE = Ti ne: : Now() + EV_TI MER_DECREMENT _AGE;
cNext Ti mne_FORWARD DB = Tine:: Now() + EV_TI MER_FORWARD_ DB
cLocal Node = address;

/1 Init self in LSP Database
Router _DB_Entry i ndex;

i ndex.cSrc = clLocal Node;
ndex. cHops = O;

ndex. cSequence = O;

ndex. cAge = COUNTER_AGE;
ndex.cValid = 1;

ndex. cSend_Flag = O;
ndex. cl s_Nei ghbor = 0;

cDB[cLocal Node] = index;

}

void Router::PrintEntry(String s) {

Router _DB Entry entry;
entry = cDB[s];

cout << "------ >FOR ENTRY: "<< s << "<-------- \n";
cout << "cSrc: " << entry.cSrc <<endl!

cout << "cHops: << entry. cHops <<endl

cout << "cSequence: " << entry.cSequence <<endl
cout << "cAge: " << entry.cAge <<endl

cout << "cValid: " << entry.cValid <<endl

cout << "cNeighbor_list:\n";

typedef map<String, int>::const_iterator Cl

for (Cl p =
entry. cNei ghbor _|ist. begin(); p!=entry.cNeighbor_list.end();
++p) {
cout << "Node:"<< p->first << "\tCost:" << p->second << endl
}
cout << "cTTS: " << entry.cTTS <<end|

cout << "cSend_Fl ag: << entry.cSend_Fl ag <<endl

cout << "cHELLO timer: " << entry.cHELLO tiner <<endl
cout << "cls_Neighbor: " << entry.cls_Neighbor <<endl
COUt << M-mmmm i e e \n";

}

voi d Rout er:: Conput eRout e(void) {

i f (Debug("Router. ConputeRoute")) {
cout << "ConputeRoute: Running at Tine:" << Tinme::Now)<<endl;
}

map<String, Route_info> PATH

map<String, Route_info> TENT;

map<String, String> tenp_DB;

Rout e_i nfo index;

String current_node;

int path_cost;

String node;

int cost;

typedef map<String, int>::const_iterator Cl
typedef map<String, Route_info>::const_iterator R

/'l Fl ags

int store_tent = O;
int enpty_tent = O;
int mn_cost = O;
String | owest _node;

/!l Begin with "self' as root
i ndex. cost = O0;

i ndex. forw = cLocal Node;
PATH[cLocal Node] = i ndex;
current _node = cLocal Node;

do {

/* Look at PATH s LSPs and store better paths into TENT */

i f (Debug("Router. ConmputeRoute")) {
cout << "Current Node: " << current_node <<endl

}

if (cDB[current_node].cValid == 1) {
map<String, int> &neighbors = cDB[current_node].cNei ghbor _Iist;
for (CI p = neighbors. begin(); p!=neighbors.end(); ++p) {
node = p->first;
cost = p->second;
pat h_cost = PATH[current_node]. cost +cost;
// Check if cost is shorter than value stored in TENT
store_tent = O;

if (PATH. find(node) !'= PATH. end()) store_tent = O;
el se {
if (TENT.find(node) == TENT.end()) store_tent = 1;
el se {
if (path_cost < TENT[node].cost) store_tent = 1;
}
}
[l Store into TENT
if (store_tent == 1) {

i ndex. cost = path_cost;
i f (PATH[current _node].forw ==cLocal Node) {
i ndex. forw = node
} else index.forw = PATH current_node].forw,
i f (Debug("Router. ConputeRoute")) {
cout << "Store node into TENT: " << node << ", " <<
"Forward: "<< index.forw <<endl
}

TENT[node] = i ndex;
}
}
}

/1 Find node in TENT with m ni mal cost and nove to PATH
enpty_tent = 1;
for (RI p = TENT.begin(); p!= TENT.end(); ++p) {
enpty_tent = 0;
m n_cost = 9999999;
node = p->first;
cost = p->second. cost;
if (cost < mn_cost) |owest_node = node;
}
/1 Move entry from TENT into PATH
if (enpty_tent == 0) {
PATH[| owest _node] = TENT[| owest node];
i f (Debug("Router. ConputeRoute")) {
cout << "MOVI NG ENTRY FROM TENT TO PATH: "<< | owest _node <<
", FOMRD:" << TENT[I| owest_node].forw << ", COST:" <<
TENT[| owest _node] . cost << endl

}
TENT. er ase(| owest _node) ;
current _node = | owest node;

b
} while (enpty_tent == 0);

/1 Copy over forwardi ng database

for (RI p = PATH. begin(); p!= PATH end(); ++p) {
tenmp_DB[p->first] = p->second.forw,
i f (Debug("Router. ConmputeRoute")) {

cout << "Route: "<< p->first << ", Forward: "<< p->second.forw
<<end|

}
}
Forward_DB = tenp_DB;

i f (Debug("Router.ConmputeRoute")) {
cout << "ConputeRoute: Ending at Tinme:" << Tine::Now)<<endl;

}

voi d Router:: Handl eLSP(const Packet & p) {

i f (Debug("Router.Handl eLSP")) {

cout << "Handl eLSP: Running at Tine:" << Time::Now()<<endl;

}

/'l Extract val ues

String source = p["src"];

String node = p["node"];

i nt hops = p["hops"]. Convert((int*)0);

int age = p["age"].Convert((long*)O0);

i nt sequence = p["sequence"].Convert((long*)O0);
String payload = p["payl oad"];

String d = ":#: ",

Rout er _DB _Entry i ndex;
map<String, int> List;
String tenp;

int cost;

int new entry = 0;

/1 Need to de-serialize payl oad

do {
tenmp = payl oad. Split(d, &ayl oad);
cost = payl oad. Split(d, &oayl oad). Convert((int*)O0);

if (temp.length()) List[tenp] = cost;
} while (tenp.length());

if (cDB.find(node) == cDB.end()) { // New Entry
new entry = 1;

}

i ndex = cDB[node];
if ((index.cSequence < sequence) || (index.cAge == 0) |
(new entry == 1)) {
/1 Valid LSP, update into database
i ndex.cSrc = source;
i ndex. cHops = hops;
i ndex. cSequence = sequence;
i ndex. cAge = age;
i ndex.cvalid = 1;
i ndex. cNei ghbor _|ist = List;
/'l Fisheye update cal cul ation
i ndex.cTTS = Tine::Now() + EV_TI MER UPDATE LSP * pow(hops, ALPHA)
i ndex.cSend_Flag = 1
if (new.entry == 1) {

i ndex. cHELLO tiner = 0;
i ndex. cl s_Nei ghbor = 0;
}
/1 Store back in database
cDB[node] = index;

i f (Debug("Router.Handl eLSP")) {
cout << "Store Packet in Database:\n"
Print Entry(node),

}

/1 Reconpute Routes

67

Conput eRout e() ;
} else {
i f (Debug("Router.Handl eLSP")) {

cout << "Handl eLSP: LSP Rejected from node:
}
}
}
voi d Router:: Handl eHELLO(const Packet & p) {
i nt new_nei ghbor = 0;
String Source = p["src"];

i f (Debug("Router.Handl eHELLO")) {
cout << "Handl eHELLO Running at Tine:"
", from node: " << Source << endl;

<< Ti

if (cDB.find(Source)
new_nei ghbor = 1;
} else if (cDB[Source].cls_Neighbor

/1 Initialize entries
i f (new_nei ghbor 1) {
i f (Debug("Router.Handl eHELLO")) {
cout << "Handl eHELLO: New Nei ghbor:

}

cDB[Source].cSrc = ;
cDB[Sour ce] . cHops 0;
cDB[Sour ce] . cSequence
cDB[Sour ce] . cAge 0;
cDB[Source].cValid = 0;
cDB[Source] . cSend_Fl ag = 0;
cDB[Sour ce] . cAck_Fl ag 0;

0,

}

/1 Reset HELLO ti mer
cDB[Sour ce] . cl s_Nei ghbor
cDB[Source] . cHELLO ti nmer
/1 Update nei ghbor 1|i st

cDB[cLocal Node] . cNei ghbor _| i st[Sour ce]

1) {
new LSP for

and update into LSP Dat abase
1;

= COUNTER_HELLG,

i n Local Node entry

i f (new_nei ghbor

// Must send out sel f

/'l Currently suppress event triggered LSPs because of

overhead traffic.
/1 SendLSP(cLocal Node);
/'l Reconput e Routes
Conmput eRout e() ;

}

i f (Debug("Router.Handl eHELLO")) {
cout << "Store HELLO Information in Database:\n"
Print Entry(Source);

0) new_nei ghbor

<< node << endl ;

me: : Now() <<

cDB.end()) { // New Nei ghbor

1;

<< Source << endl;

COST_ROUTE;

t oo nuch

voi d Rout er:: Handl eDATA(const Packet & q) {

Packet p = q;

String SRC = p["src"];

String DST = p["dst"];

String Net _SRC = p["net_src"];
String Net DST = p["net_dst"];
String Data = p["data"];
String Next_ SRC,

String Next DST,

i f (Debug("Router.Handl eDATA")) {
cout << "Handl eDATA: Running at Tinme:" << Time:: Now) <<endl ;
cout << "Received DATA: SRC:."<<SRC<<", DST:"<<DST<<
", NET_SRC: "<<Net SRC<<", NET_DST: "<<Net DST<< endl ;

}

if (cLocal Node == Net _DST) { // Final Destination
/1 cout << "Data packet reached final destination:\n"<< p <<
endl ;
ToAbove(p);
} else { [/ Internedi ate Node

if (Forward_DB.find(Net_DST) == Forward_DB.end()) ({

cout << "Router does not have path to destination: "
<< Net DST << "!'ll Packet discarded!\n";

return;

} else {
Next SRC = clLocal Node;
Next _DST = Forwar d_DB[Net _DST] ;

}

/1 Update fields

p["src"] = Next_SRC,

p["dst"] = Next DST;

/1 Pass it back down.
i f (Debug("Router.Handl eDATA")) {
cout << "Forwardi ng Packet to node: " << Next_ DST << endl;

}
ToBel owm(p) ;
}

return;

}

voi d Rout er:: Handl eACK(const Packet & p) {

i f (Debug("Router.Handl eACK")) {
cout << "Handl eACK: Running at Time:" << Tine::Now)<<endl;

}
[XXX Unfinished
cout << "Received ACK packet.. yippy!\n";

69

return,;

}

voi d Router::SendLSP(String node) {

i f(Debug("Router.SendLSP")) {
cout << "SendLSP: Node: "<< node << " at:" << Tinme:: Now) <<endl ;

}

/1 Sends out LSP Packet
Rout er _DB _Entry i ndex;
Packet p;

String ListNeighbors;
String d B

String h ;

i ndex = cDB[node];

if (index.cvValid == 0) { // XXX node not valid in cDB
cout << "FATAL ERROR SendLSP: Node not valid in LSP Database!\n";
exit(0);

}

/1l Extract LSP information and turn into String

typedef map<String, int>::const_iterator Cl

for (Cl

i =i ndex. cNei ghbor _l'i st. begin();i!=index.cNeighbor_list.end();++i) {

h=h+i->first + d + String::Convert(i->second) + d;

}

/] Construct LSP Packet

p[" opcode"] = OP_LSP;

p["src"] = cLocal Node;

p[" node"] = node;

p[" hops"] = String:: Convert (index.cHops+1);
p[" sequence"] = String:: Convert (i ndex.cSequence);
p["age"] = String::Convert (i ndex. cAge);

p[" payl oad"] = h;

if (SWTCH BROADCAST == 0) { // Send uni cast
t ypedef map<String, Router_DB Entry>::iterator IT,

for (ITi = cDB.begin(); i !=cDB.end(); ++i) {
i ndex = i->second;
if ((index.cls_Neighbor == 1) && (i->first !'= cDB[node].cSrc)) {
p["dst"] = i->first;
ToBel ow(p) ;
}
}

}

if (SWTCH BROADCAST == 1) { // Send Broadcast
p["dst"] = BROADCAST,
ToBel owm(p) ;
}
}

70

voi d Router::SendHELLQ(voi d) {
Packet p;

i f (Debug("Router.SendHELLO")) {
cout << "SendHELLO Running at Time:" << Tinme::Now)<<endl;

}

p[" opcode”] = OP_HELLO
p["tinmestanmp"] = String:: Convert(Tine::Now));
p["src”] = cLocal Node;

p["dst"] = BROADCAST;

ToBel owm(p) ;

}
voi d Router:: Updat eOMmLSP(voi d) {

i f (Debug("Router.UpdateOmLSP")) {
cout << "Updat eOMmLSP: Running at Tine:" << Tinme::Now)<<endl;

}

/'l increment sequence nunber

cDB[cLocal Node] . cSequence++;

/'l reset age

cDB[cLocal Node] . cAge = COUNTER_AGE;
/1 Set send flag

cDB[cLocal Node] . cSend_Fl ag = 1;
cDB[cLocal Node] . cTTS = Ti ne:: Now();
cDB[cLocal Node] .cValid = 1;

}

voi d Router::Decrenent Age(void) {
Router _DB_Entry i ndex;
i nt need_Conput eRoute = 0;
i nt need_SendLSP = 0;

i f (Debug("Router.DecrenentAge")) {
cout << "Decrenent Age: Running at Time:" << Tine::Now)<<endl;

}
typedef map<String, Router DB Entry>::iterator Cl;
for (CI i = cDB.begin(); i !=cDB.end(); ++i) {

i ndex = i->second;
/1 only ook at valid entries for decrenenting ages
if (index.cvalid == 1) {

/| Decrenent Age

i ndex. cAge- - ;

if (index.cAge <= 0) {

i f (Debug("Router.DecrenentAge")) {

cout << "DECREMENT_AGE: Entry:"<< i->first << " LSP age is
zero!l\n";

}

i ndex.cvalid = 0;

i ndex. cSend_Fl ag = O;

i ndex. cAge = O;

71

need_Conput eRoute = 1;

}
}
/1 Only | ook at Nei ghbors for decrenenting hello tiners
i f (index.cls_Neighbor == 1) {

i ndex. cHELLO ti ner--;

i f(index.cHELLO tinmer <= 0) {

i f (Debug("Router.DecrenentAge")) {

cout << "DECREMENT_AGE: Entry:"<< i->first <<
" HELLO age is zero!\n";
}

i ndex. cl s_Nei ghbor = 0;
i ndex. cHELLO ti ner = O0;
/1 Renove Entry from Local Node neighbor list entry
cDB[cLocal Node] . cNei ghbor | ist.erase(i->first);
need_SendLSP = 1;
need_Conput eRoute = 1;
}
}
/1 Wite back entry into Master database
i ->second = index;

}

/1 Print out
if ((need_SendLSP == 1) || (need_ConputeRoute == 1)) {
i f (Debug("Router.DecrenentAge")) {
typedef map<String, Router_ DB Entry>::iterator Cl;

for (Cl i = cDB.begin(); i !'=cDB.end(); ++i) {
PrintEntry(i->first);
}

}
}

/1 Check if we need to reconpute Routes
if (need_ConputeRoute == 1) {
i f (Debug("Router.DecrenentAge")) {
cout << "DECREMENT_AGE: Reconputing Routes!\n";
}

Comput eRout e() ;
}
if (need_SendLSP == 1) {
i f (Debug("Router.DecrenentAge")) {
cout << "DECREMENT_AGE: Sending out LSP!'\n";
}

/1 Send out own LSP because of neighbor change
SendLSP(cLocal Node) ;

}
}

voi d Router:: ScanLSPdb(void) {

Router _DB_Entry i ndex;
String Node;

i f (Debug("Router.ScanLSPdb")) {

72

/1 cout << "ScanLSPdb: Running at Tinme:" << Tinme:: Now)<<endl;

}

typedef map<String, Router_DB Entry>::iterator Cl;

for (CI i = cDB.begin(); i !=cDB.end(); ++i) {
Node = i->first;
i ndex = i->second;
if (index.cvValid == 0) continue; // only look at valid entries

/1 Check for SEND FLAG
i f (Debug("Router.ScanLSPdb")) {
cout << "ScanLSPdb: Node:" << Node << ", TTS:" << index.cTTS <<
", TimeNow. " << Tine::Now() << endl;
}
if (index.cSend_Flag == 1) {
if (index.cTTS <= Tinme::Now()) {
SendLSP(Node) ;
i ndex. cSend_Fl ag = O;
i ->second = index;
}
}

/] Check for ACK FLAG

if (index.cAck _Flag == 1) {
/1 XXX No ACKS for now...

}

Ti me Router::DoWork() {

i f (Debug("Router.DoWrk")) {
cout << "DoWwbrk: Running at Tine:" << Tine::Now)<<endl;
}

i f (Debug("Router.PrintForwardDB")) {
i f(Time::Now() >= cNextTi me_FORWARD DB) {
cNext Ti ne_FORWARD DB = Ti ne: : Now() + EV_TI MER_FORWARD DB;
typedef map<String, String>::const_iterator Cl;
cout <<"---------- FORWARDI NG DATABASE- - ----------- \n";
for (CI p = Forward_DB. begi n(); p!=Forward_DB. end(); ++p) {
cout << "Node:"<< p->first << "\tForward:" << p->second << endl;
}
COUl <M mmmmm e oo \n";
}
}

i f(Tinme::Now() >= cNextTi me_UPDATE_LSP) {
Updat eOWMLSP() ;
cNext Ti ne_UPDATE_LSP = Time:: Now() + EV_TI MER_UPDATE_LSP;
}
i f(Time::Now() >= cNextTime_SEND HELLO) {
/1 Send HELLO Messages
SendHELLQ() ;

73

cNext Time_SEND HELLO = Tine:: Now() + EV_TIMER SEND HELLG
}
i f(Time::Now() >= cNextTi me_ DECREMENT_AGE) {
/1 1) Decrenment Age and 2) Check for neighbor livetinme
Decr enent Age() ;
cNext Ti me_ DECREMENT_AGE = Tine:: Now() + EV_TI MER_DECREMENT_AGE;
/1 Can do some type of trick here for power-saving features
}
i f(Tinme::Now() >= cNextTi me_SCAN_DB) ({
/1 LSP Check for send
ScanLSPdb() ;
cNext Ti me_SCAN DB = Tinme:: Now() + EV_TI MER_SCAN_DB;
/'l Can do sone type of trick here for power-saving features
}
return(Time:: Now()-Tinme::Now) + 1);
}

bool Router::DoConsune(const Packet& p, size_t port) {

switch(port) {
case top: FromAbove(p); break;

case bot:
if (((p["dst"] == cLocal Node) || (p["dst"] == BROADCAST)) &&
(p["src"] !'= cLocal Node)) {

i f (Debug("Router.DoConsunme")) {
cout << "DoConsune: PACKET with OPCODE:"<< p["opcode"]
<< " received from SRC." << p["src"] << endl;

}
FronmBel ow p); break;

} else {
i f (Debug("Router.DoConsune")) {
cout << "DoConsune: SRC of Packet:"<< p["src"] <<". lgnored Packet
for node:" << p["dst"] << endl;
}
}
defaul t: break;
}
return(true);

}

voi d Router:: FromAbove(const Packet& q) {
Packet p = q;

i f (Debug("Router.FromAbove")) {
cout << "FROM ABOVE:\n" << p;

}

if (!p.Has("opcode")) { cout << "No OPCODE!\n"; }
if (!'p.Has("net_src")) p["net_src"] = cLocal Node;

const String opcode = p["opcode"];
if (opcode == OP_DATA) {

Handl eDATA(p) ;
}

74

bool Router::ValidPacket (const Packet& p) {

/* Verifies integrity of packet- checks for valid fields
for now Could add checksum and other things later. */

bool valid;

if (!p.Has("opcode")) {
cout << "ValidPacket(): Packet recieved has no OPCODE!\n";
cout << p;
return O;

}

if (!'p.Has("dst")) {
cout << "ValidPacket(): Packet recieved has no LINK

DESTI NATI ON(dst) !\ n";

cout << p;
return O;

}

const String opcode = p["opcode"];
valid = 1;
if (opcode == OP_LSP) {
/1l Fields: src, dst, node, hops, sequence, age, payl oad
if (!p.Has("node")) {
cout << "ValidPacket(): LSP Packet recieved has no NODE(node)!\n";
valid = 0O;
1
if (!p.Has("sequence")) {
cout << "ValidPacket(): LSP Packet recieved has no SEQUENCE
Nunber (sequence) !\ n";
valid = 0;
1
if (!p.Has("age")) {
cout << "ValidPacket(): LSP Packet recieved has no AGE(age)!\n";
valid = 0O;
1

if (valid == 0) { cout << p; };
return valid;
}
if (opcode == OP_HELLO {
/1l Fields: src, dst, tinestanp
return valid;
}
if (opcode == OP_DATA) {
/'l Fields: src, dst, net_src, net_dst, data
if (!'p.Has("net _dst")) {
cout << "ValidPacket(): DATA Packet recieved has no NETWORK
Destination(net_dst)\n";
valid = 0;
1
if (valid == 0) { cout << p; };
return valid;

}

75

cout << "Invalid OPCODE!\n" << p;
return O,

}

voi d Router:: FronmBel ow const Packet& q) {
Packet p = q;

/1l Error Checking Packets here for key fields

if (!p.Has("opcode")) {
cout << "FronBel ow. Packet recieved has no OPCODE!\n";
cout << p;
return;

}

if (!'p.Has("src")) {
cout << "FronBel ow. Packet recieved has no SRC'\n";
cout << p;
return,;

}

const String opcode = p["opcode"];

if (opcode == OP_LSP) {
Handl eLSP(p) ;

}
if (opcode == OP_HELLO {
Handl eHELLQ(p) ;

}
if (opcode == OP_DATA) {
Handl eDATA(p) ;

}
if (opcode == OP_ACK) {
Handl eACK(p) ;
}
}

bool Router::ToBel ow const Packet & p) {

i f (Debug("Router.ToBelow')) {
cout << "TO _BELOW EXECUTED! Sendi ng Packet:\n";
cout << p;

}
r et ur n(DoPr oduce(p, bot));
/1l return(true);

}

bool Router::ToAbove(const Packet & p) {

i f (Debug("Router.ToAbove")) {
cout << "TO_ABOVE EXECUTED! Sending Packet:\n";
cout << p;

}
ret ur n(DoPr oduce(p, top));
/1l return(true);

}

76

#include <IntfFile.h>

#i ncl ude <IntfPi pe. h>
#include <IntfTty. h>

#i ncl ude <IntfUdp. h>

#i ncl ude <IntfChild. h>

#i ncl ude <User Core. h>

#i ncl ude <ProdTi ner. h>

#i ncl ude <M rCore. h>

#i ncl ude <RouterFilter. h>

int main(int argc, char* argv[]) {
/* Handl e command |ine options..
Valid options are:
-router=<String>

- pi pe=<0: 1>

/

* % F X X

String RouterOpt("-router=");
String RouterName("Allen's Router");
String PipeOpt("-pipe=");
String Pipe("1");
for (int i=1; i<argc; i++) {
String a = argv[i];
if(strncnp(RouterOpt.c_str(), a.c_str(), RouterOpt.length()) == 0) {
Rout er Nane = a. substr(RouterOpt.length());

}
else if (strncnp(PipeOpt.c_str(), a.c_str(), PipeOpt.length()) == 0)

{

Pi pe = a. substr (Pi peOpt.length());

}

el se {
cout << "lInvalid Options\n";
return(l);

}

}

Debug: : Load(" Debug-route. flags");

Filelnterface fi (STDI N_FILENO, STDOUT_FI LENO);

Pkt ToStri ng psln; /! From STDIN to Router String->Packet
Pkt ToString psQut; // From Router to Pipe Packet-> String
Rout er LSR(Rout er Nane) ;

RouterFilter Filter("Router-Network.filter", RouterName);
String inpipe = ((Pipe == "1") ? "/tnp/in" = "/tnp/out");
String outpipe = ((Pipe == "1") ? "/tnp/out" : "/tnp/in");
/1 Pipelnterface ether(inpipe, outpipe);

i nt noCheck=fal se
int ncast = true;
i nt ncastLoop = true

i nt broadcast = fal se;
int reuse = true;
Udpl nterface ether("239.0.0.1:1024", "239.0.0.1:1024",
noCheck,
ncast,
ncast Loop,
br oadcast,
reuse);

fi.Connect To(psln.Port(String()));

psln. Port (Packet ()). Connect To(LSR Port (M rLayer::top));

LSR. Port (M rLayer: :bot). Connect To(Filter.Port(MrLayer::top));
Filter.Port(MrLayer::bot).Connect To(psQut. Port(Packet()));

/1 LSR Port(MrLayer::bot). Connect To(psQut. Port(Packet()));
et her. Connect To(psQut. Port(String()));

/1 Set Manager and Run

Manager m

m Bui | dEnpi re(); /'l Collect any strays...
OrgChart chart;

cout << chart.Build(m << endl;

cout << Worker::Payroll () << endl;

m TakeChar ge();

7.2 Router.h

#i ncl ude <stdlib. h>

#i ncl ude <i ostream h>
#include <UtString. h>
#i ncl ude <Ut Ti ne. h>

#i ncl ude <Ut Debug. h>
#i ncl ude <M r Packet. h>
#i ncl ude <M rLayer. h>
#i ncl ude <User Core. h>
/1 Opcodes for packets

#define OP_LSP "LSP"
#define OP_HELLO "HELLO'
#def i ne OP_DATA " DATA"
#def i ne OP_ACK " ACK"

/] Broadcast address

#def i ne BROADCAST " BROADCAST"

/1 Timer definitions: in seconds
#define EV_TI MER_SEND HELLO

#def i ne EV_TI MER_SCAN_DB

#defi ne EV_TI MER UPDATE_ LSP
#def i ne ALPHA

#defi ne EV_TI MER _DECREMENT AGE
#define EV_TI MER_FORWARD DB

/] Router Swtches

#defi ne SW TCH_BROADCAST 0

WrRrPRPWRPR

78

/1 COUNTER VALUES

#def i ne COUNTER _HELLO 60
#def i ne COUNTER_AGE 60
/1 COSTS

#defi ne COST_ROUTE 1

struct Router DB Entry {
String cSrc;
i nt cHops;
| ong cSequence;
| ong cAge;
int cvalid; // determ ned by age
map<String, int> cNeighbor Iist;
Time cTTS
i nt cSend_Fl ag;
int cAck_Fl ag;
| ong cHELLO ti ner;
i nt cls_Neighbor;
| ong cTi me_st anp;
Router_DB Entry() : [// Constuctor
cSrc(""),
cHops(0),
cSequence(0),
CAge(0),
cvalid(0), // determ ned by age
cNei ghbor _list(),
cTTS(0.0),
cSend_Fl ag(0),
cAck_Fl ag(0),
CHELLO ti nmer (0),
cl s_Nei ghbor (0),
cTi me_stanp(0)
{}
b

struct Route_info {
i nt cost;
String forw,

b

class Router : public MiltiPort<Packet> {

prot ect ed:
map<String, Router_ DB Entry> cDB
map<String, String> Forward_DB;

Ti me cNext Ti me_SCAN_DB;

Ti me cNext Ti me_UPDATE_LSP;

Ti me cNext Ti me_SEND _HELLO,

Ti me cNext Ti me_DECREMENT _AGE;
Ti me cNext Ti me_FORWARD DB

String cLocal Node;
/1 Bunch of other global type variables here

79

/1] DoConsune() - Place where all packets arrive..
virtual bool DoConsune(const Packet& p, size_t port);

/1l FromAbove() - Handl e packets from above
virtual void FromAbove(const Packeté& p);

/1l FromBel owm() - Handl e packets from bel ow
virtual void FromBel ow const Packet& p);

/1] ToAbove() - Send packet above
virtual bool ToAbove(const Packet & p);

/1] ToBelow() - Send packet bel ow
virtual bool ToBel ow(const Packet & p);

/1l Al'lows us to schedul e tineouts
virtual Tinme DoWwsrk();

virtual void SendHELLQ(void);

virtual void SendLSP(String);

virtual void Updat eOMmLSP(void);

virtual void Decrenment Age(void);

virtual void ScanLSPdb(void);

virtual void Handl eLSP(const Packet & p);

virtual void Handl eHELLO(const Packet & p);

virtual void Handl eDATA(const Packet & q);

virtual void Handl eACK(const Packet & p);

virtual void ConputeRoute(void);

virtual void PrintEntry(String s);

virtual bool ValidPacket(const Packet &p);
publi c:

enum { top, bot };

Rout er (const String& address);
virtual ~Router() {};

b

