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ABSTRACT 
 
 
Wireless networking is an emerging technology that will allow users to access 
information and services regardless of their geographic position.  In contrast to 
infrastructure based networks, in wireless ad hoc networks, all nodes are mobile and can 
be connected dynamically in an arbitrary manner.  All nodes of these networks behave as 
routers and take part in discovery and maintenance of routes to other nodes in the 
network. This feature presents a great challenge to the design of a routing scheme since 
link bandwidth is very limited and the network topology changes as users roam.  This 
thesis investigates the behavior of existing traditional routing algorithms and proposes 
and implements a new routing approach for ad hoc wireless networks: Fisheye Routing.  
Fisheye Routing is similar to Link State routing, but uses a fisheye technique to reduce 
the consumption of bandwidth by control overhead. 
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1 Introduction 
 

1.1 Background 
 

Wireless networking is an emerging technology that will allow users to access 

information and services electronically, regardless of their geographic position.  The use 

of wireless communication between mobile users has become increasingly popular due to 

recent performance advancements in computer and wireless technologies.  This has led to 

lower prices and higher data rates, which are the two main reasons why mobile 

computing is expected to see increasingly widespread use and applications. 

There are two distinct approaches for enabling wireless communications between 

mobile hosts.  The first approach is to use a fixed network infrastructure that provides 

wireless access points.  In this network, a mobile host communicates to the network 

through an access point within its communication radius.  When it goes out of range of 

one access point, it connects with a new access point within its range and starts 

communicating through it.  An example of this type of network is the cellular network 

infrastructure. A major problem of this approach is handoff, which tries to handle the 

situation when a connection should be smoothly handed over from one access point to 

another access point without noticeable delay or packet loss  Another issue is that 

networks based on a fixed infrastructure are limited to places where there exists such 

network infrastructure. 

The second approach is to form an ad-hoc network among users wanting to 

communicate with each other.  This means that all nodes of these networks behave as 

routers and take part in discovery and maintenance of routes to other nodes in the 
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network.  This form of networking is limited in range by the individual nodes 

transmission ranges and is typically smaller compared to the range of cellular systems.  

However, ad-hoc networks have several advantages compared to traditional cellular 

systems.  The advantages include ‘on-demand’ setup, fault tolerance, and unconstrained 

connectivity. 

A key feature that sets ad-hoc wireless networks apart from the more traditional 

cellular radio systems is the ability to operate without a fixed wired communications 

infrastructure and can therefore be deployed in places with no infrastructure.  This is 

useful in disaster recovery, military situations, and places with non-existing or damaged 

communication infrastructure where rapid deployment of a communication network is 

needed.  

A fundamental assumption in ad-hoc networks is that any node can be used to 

forward packets between arbitrary sources and destinations.  Some sort of  routing 

protocol is needed to make the routing decisions.  A wireless ad-hoc environment 

introduces many problems such as mobility and limited bandwidth which makes routing 

difficult. 

This thesis researches existing traditional routing protocols, examines current 

proposed mobile ad-hoc routing protocols, and then designs and implements a functional 

link-state routing protocol employing a novel “fish-eye” updating mechanism specific for 

a wireless infrastructure.  This mechanism is then analyzed to evaluate its effectiveness 

and the advantages it can offer. 
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1.2 Scope of Research 
 

The objective for this master thesis was to design and implement a routing protocol 

for wireless ad-hoc networks.  In this environment, the routing strategy must scale well to 

large populations and handle mobility.  In addition, the routing protocol must perform 

well in terms of fast convergence, low routing delay, and low control overhead traffic.   

This first involved researching existing routing protocols to determine their 

strengths and weaknesses.  Using this analysis, a new mechanism was developed that 

enhances routing in the mobile ad-hoc environment.  This mechanism was then 

implemented in a software environment. Once the implementation was completed, 

simulation and analysis of the protocol was performed to evaluate the advantages of the 

new mechanism. 

The goals are of this thesis are as follows: 

• Get a general understanding of ad-hoc networks 

• Study existing and proposed routing protocols. 

• Develop a new mechanism that offer advantages for routing in wireless ad-hoc 

networks. 

• Implement the routing protocol. 

• Analyze the protocol theoretically and through simulation. 

 

Section 2 explains ad-hoc networks and routing in general.  Section 3 describes 

current proposed ad hoc routing protocols.  Section 4 describes the design and 

implementation of a new routing protocol and performance analysis.  Section 5 gives 
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summary and conclusions.  Section 6 includes references used and section 7 

(Appendices) include the listing for the code. 
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2 Routing in Wireless Networks- General Concepts 
 

2.1 Wireless Ad-Hoc Networks 
 

A wireless ad-hoc network is a collection of mobile nodes with no pre-established 

infrastructure.  Each of the nodes has a wireless interface and communicates with others 

over either radio or infrared channels.  Laptop computers and personal digital assistants 

that communicate directly with each other are some examples of nodes in an ad-hoc 

network.  Nodes in the ad-hoc network are often mobile, but can also consist of stationary 

nodes. 

Figure 1 shows a simple ad-hoc network with three nodes.  The outermost nodes 

are not within reception range of each other and thus cannot communicate directly.  

However, the middle node can be used to forward packets between the outermost nodes.  

This enables all three nodes to share information and results in an ad-hoc network. 

 

Figure 1: Example of simple ad-hoc network. 

 
An ad-hoc network uses no centralized administration.  This ensures that the 

network will not cease functioning just because one of the mobile nodes moves out of the 

range of the others.  Nodes should be able to enter and leave the network as they wish.  

Because of the limited transmitter range of the nodes, multiple hops are generally needed 
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to reach other nodes.  Every node in an ad-hoc network must be willing to forward 

packets for other nodes.  Thus every node acts both as a host and as a router. 

The topology of ad-hoc networks varies with time as nodes move, join, or leave 

the network.  This topological instability requires a routing protocol to run on each node 

to create and maintain routes among the nodes. 

2.1.1 Usage 
 

There is a plethora of applications for wireless ad-hoc networks.  Wireless ad-hoc 

networks can be deployed in areas where a wired network infrastructure may be 

undesirable due to reasons such as cost or convenience.  It can be rapidly deployed to 

support emergency requirements, short-term needs, and coverage in undeveloped areas.  

Examples of such situations include disaster recovery, search and rescues, or military 

applications [RT99]. 

Other usage includes convenience, such as allowing conference members or 

business associates to exchange documents, or accessing the Internet or resources such as 

printers.  The applications are boundless. 

2.1.2 Characteristics 
 

Ad-hoc networks are often characterized by a dynamic topology due to the fact 

that nodes change their physical location by moving around.  Another characteristic is 

that a node have limited CPU capacity, storage capacity, battery power, and bandwidth.  

This means that power usage must be limited thus leading to a limited transmitter range. 

The access medium, usually a radio environment, also has special characteristics 

that must be considered when designing protocols for ad-hoc networks.  One example of 
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this may be uni-directional links.  These links arise when two nodes have different 

strengths on their transmitters (allowing only one of the host to hear the other) or from 

disturbances from the surroundings.   Multi-hop in a radio environment may result in an 

overall transmit capacity gain and power gain due to the squared relation between 

coverage and required output power.  By using multi-hop, nodes can transmit the packets 

with much lower output power (by transmitting to closer neighbors). 

2.2 Routing 
 

Routing is a function in the network layer which determines the path from a source 

to a destination for the traffic flow.  A routing protocol is needed because it may be 

necessary to traverse several nodes (multi-hops) before a packet reaches the destination. 

The routing protocol’s main functions are the selection of routes for various source-

destination pairs and the delivery of messages to their correct destination. In wireless 

networks, due to host mobility, network topology may change from time to time.  It is 

critical for the routing protocol to deliver packets efficiently between source and 

destination.  Routing protocols can be divided based on when and how the routes are 

discovered into two categories: Table-Driven and On-Demand routing [RT99]. 

In table-driven routing protocols, each node maintains one or more tables 

containing routing information to every other node in the network.  All nodes update 

these tables so as to maintain a consistent and up-to-date view of the network.  When the 

network topology changes the nodes propagate update messages throughout the network 

in order to maintain a consistent and up-to-date routing information about the whole 

network.  Routing protocols in this category differ in the method by which the topology 

change information is distributed across the network and the number of necessary 
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routing-related tables.   The two main types of table-driven routing are: Distance Vector 

and Link State [PB96]. 

In on-demand routing,  all up-to-date routes are not maintained at every node, 

instead the routes are created when required. When a source wants to send to a 

destination, it invokes a route discovery mechanisms to find the path to the destination. 

The route remains valid util the destination is unreachable or until the route is no longer 

needed.  A typical type of on-demand routing is Source Routing [BJ98]. 

2.2.1 Distance Vector 
 

Distance vector routing is sometimes referred to as Bellman-Ford, after the people 

who invented the algorithm.  In the distributed Bellman-Ford algorithm [Per00], every 

node i maintains a routing table which is a matrix containing distance and successor 

information for every destination j, where distance is the length of the shortest distance 

from i to j and successor is a node that is next to i on the shortest path to j.  To keep the 

shortest path information up to date, each node periodically exchanges its routing table 

with neighbors.  Based on the routing table received with respect to its neighbors, node i 

learns the shortest distances to all destination from its neighbors.  Thus, for each 

destination j, node i selects a node k from its neighbor as the successor to this 

destination(or the next hop) such that the distance from i through k to j will be the 

minimum.  This newly computed information will then be stored in node i’s routing table 

and will be exchanged in the next routing update cycle.   

Figure 2 shows an example of Distance Vector Routing.  This example focuses on 

everyone’s distance to destination D.  D transmits its distance vector (next(D)=D) with 

cost 0 (dist(D)=0) to node 1.  Now, Node 1 calculates its distance vector to D as one 
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(dist(D)=1) through D (next(D)=D) and transmits this information to nodes 2 and 3.  This 

process continues until all the nodes have a cost and next hop information to D. 

 

 

Figure 2: Example of Distance Vector Routing 

 
The advantages of Distance Vector are its simplicity and computation.  However, the 

chief problem with distance vector routing is its slow convergence when topology 

changes [BG87].  The primary reason for this is that the nodes choose their next-hops in a 

completely distributed manner based on information that can be stale.  While routing 

information has only partially propagated through the network, routing can be seriously 

disrupted.  This may lead to formations of both short-lived and long-lived routing loops 

[Per00].   

An example of a routing loop is shown in Figure 3.  This example will focus on 

everyone’s distance to destination C.  B calculates its distance to C as 1 (Dist(C)=1) and 

A calculates its distance to C as 2 (Dist(C)=2) through B (Next(C)=B).  When the link 

between B and C breaks, B must recalculate its distance vector to C.  Unfortunately, B 

does not conclude at this point that C is unreachable.  Instead, B decides that it is 3 from 

C, based on distance vector information from A.  Because B’s distance vector has now 
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changed, it transmits the changed vector back to A.  A receives this modified distance 

vector from B and concludes that C is now 4 away.  Both A and B conclude that the best 

path to C is through the other node and continue this process until they count to infinity. 

 

Figure 3: Example of Routing Loop in Distance Vector Routing 

 
 Partial remedies for these routing loops have been developed such as poison-

reverse and split-horizon [Per00].  Poison-reverse means reporting a value of infinity to 

explicitly report that you can’t reach a node rather than simply not mentioning the node.  

It is usually used together with split horizon.  The rule in split horizon is that if A 

forwards traffic to destination C through B, then A reports to B that A’s distance to C is 

infinity.  Because A is routing traffic to C through B, A’s real distance to B cannot 

possibly matter to B.  B’s distance to C cannot depend on A’s distance to C 

 However, split horizon does not work in some cases.  Consider the topology in 

Figure 4.  

 

Figure 4: Count-to-infinity with split horizon 
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 When the Link to D breaks, A concludes that D is unreachable because both B and C 

have reported to A that D is unreachable because of the split horizon rule.  A reports D’s 

unreachability to B and C.  However, when B receives A’s report that D is unreachable, 

B concludes that the best path to D is now through C.  B concludes that 1) it is now 3 

from D, 2)reports D as being unreachable to C because of split horizon, and 3) reports D 

as being reachable to A at cost 3.  A now thinks that D is reachable through B at a cost of 

4.  The counting to infinity problem still exists. 

2.2.2 Link State 
 

Another class of algorithms that is also widely used in many existing routing 

protocols, such as OSPF [Moy93], is link-state routing.  The main difference between 

link-state and distance vector is that in link-state, paths are computed based on the global 

network topology as opposed to the abstracted network view reported by neighboring 

nodes. 

In link-state routing, each node maintains a complete view of the network 

topology with a cost for each link.  To keep these costs consistent, each node 

(periodically and when it detects a link change) broadcasts the link costs of its outgoing 

links to all other nodes through special Link State Packets(LSP).  These LSPs are flooded 

to all the other nodes in the network.  As each node receives this information, it updates 

its view of the network and applies a shortest path algorithm(such as Djikstra’s[Sed83]  

shortest path) to choose the next-hop for each destination.   

Figure 5 shows an example of link state routing.  Each node broadcasts to every 

other node its immediate neighbors and an associated cost(to keep things simple, in this 
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example, the cost metric is just hops so all the costs are the same).  Node 1 will broadcast 

its neighbors {D,2,3}, node 2 will broadcast its neighbors {S,1,4}, and so on. 

 

 

Figure 5: Example of Link State Routing 

 
Inconsistent topology views can arise due to the delay in delivering an updated 

LSP across the entire network.  Such inconsistent network topology views can lead to 

formation of routing loops.  However, these loops are short-lived, because they disappear 

in the time it takes a message to traverse the diameter of the network [Jaf86]. 

2.2.3 Source Routing 
 

In source routing, a node builds up a route by flooding a query to all nodes in the 

network for a given destination.  The query packet stores the information of the 

intermediate nodes in a path field.  On detecting the destination or any other node who 

has already learned the path to the destination, answers the query by sending a “source 

routed” response packet back to the sender.  Since multiple responses may be produced, 

multiple paths may be computed and maintained.  After the paths are computed, any link 

failure will trigger another query/response so the routing can always be kept up to date.   

An example of Source routing is shown is Figure 6.  This example focuses on 

node S finding a route to node D.  S floods the network with a query to destination D.  As 



 15 
 
 

each node receives the query, it stores the information of the intermediate nodes.  Once D 

receives the query, it sends a “source routed” reply(reply(D)) back to S. 

 

 

Figure 6: Example of On-Demand Source Routing 

 
The advantage of this approach is that it minimizes overhead routing traffic as only 

routes that are needed are maintained.  The disadvantage is that each packet requires an 

overhead containing the source route of the packet.  This overhead grows when the 

packet has to go through more hops to reach the destination.  In addition, every new 

destination from a source receives a latency hit as the route is discovered or needed.  This 

does not scale well with mobility when topology changes and more route requests are 

generated as links break. 

2.3 Summary 
 

Conventional routing protocols for wired networks are ill-suited  for ad-hoc wireless 

networks.  Table-driven routing such as distance vector and link state have high overhead 

traffic caused by periodic exchange of control messages.  On-Demand Routing suffers 

high initial latency hits and adds size to each packet to contain the source route.  It does 

not scale well with traffic source/destination pair density and mobility.  Clearly, new 

mechanisms must be introduced for effective ad hoc wireless routing. 
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3 Ad Hoc Routing Protocols 
 

Since the advent of the Defense Advanced Research Projects Agency(DARPA) 

packet radio networks in the early 1970s [JT87], numerous protocols have been 

developed for ad hoc mobile networks.  These routing protocols must deal with the 

typical limitations of these networks, which include low bandwidth and high error rates.   

The following is a list of desirable properties for an ad hoc wireless routing protocol: 

• Distributed operation: The protocol should be distributed, meaning that it should 

not be dependent on a centralized controlling node.  This makes the system more 

robust to failure and growth. 

• Fast convergence:  Routes should be quickly determined in the presence of network 

changes.  This means that when topology changes occur, the protocol should be able 

to  quickly determine optimal new routes. 

• Loop free: To have good overall performance, the routing protocol should supply 

routes that are loop-free.  This avoids wasting bandwidth and CPU resources. 

• Optimal routes: It is important for the protocol to find routes with the least number 

of hops.  This reduces bandwidth and CPU consumption.  In addition, it leads to 

lower overall routing delay. 

• Low overhead control traffic: Bandwidth in a wireless network is a limited 

resource.  The protocol should minimize the amount of overhead control messages for 

routing. 

There are many research groups both in industry and in academia that are attempting 

to provide solutions to routing in ad hoc wireless networks.  Much of the research is 

brought together by the Internet Engineering Task Force (IETF), which is a large open 



 17 
 
 

international community of designers, operators, vendors, and researchers concerned with 

the evolution of the Internet architecture and the smooth operation of the Internet.  IETF 

has a working group named MANET (Mobile Ad-hoc Networks) that is working in the 

field of ad-hoc networks [Man00].  MANET and independent research groups have 

produced many different ad hoc routing protocols.  Among them, the following proposed 

protocols will be analyzed in the next sections: 

• Dynamic Destination-Sequenced Distance Vector (DSDV) 

• Wireless Routing Protocol (WRP) 

• Clusterhead Gateway Switch Routing (CGSR) 

• Zone-based Hierarchical Link State (ZHLS) 

• Ad Hoc On Demand Distance Vector (AODV)  

• Temporally-Ordered Routing Algorithm(TORA) 

• Dynamic Source Routing  (DSR) 

• Associativity-Based Routing (ABR) 

• Signal Stability Routing (SSR) 

These protocols have been selected to be analyzed because they constitute a good 

representation of current proposed Table-Drive and On-Demand techniques as applied to 

mobile ad hoc networks.   DSDV, WRP, CGSR, and ZHLS are table driven routing 

protocols and AODV, TORA, DSR, ABR, and SSR are on-demand routing protocols. 

3.1 Destination Sequenced Distance Vector – DSDV 
 

3.1.1 Description 
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DSDV[Per94] is a hop-by-hop distance vector routing protocol where each node 

has a routing table that stores next-hop and number of hops for all reachable destinations.  

Like distance-vector, DSDV requires that each node periodically broadcast routing 

updates.  The advantage with DSDV over traditional distance vector protocols is that 

DSDV guarantees loop-free routes. 

To guarantee loop-free routes, DSDV uses a sequence number to tag each route.  

The sequence number shows the freshness of a route and routes with higher sequence 

numbers are favorable.   A route R is considered more favorable than S if R has a greater 

sequence number, or, if the routes have the same sequence number, but R has a lower hop 

count.  The sequence number is increased when node A detects that a route destination D 

has broken.  So the next time node A advertises its routes, it will advertise the route to D 

with an infinite hop-count and a sequence number that is larger than before. 

DSDV basically is distance vector with small adjustments to make it better suited 

for ad-hoc networks.  These adjustments consist of triggered updates that will take care of 

topology changes in the time between broadcasts.  To reduce the amount of information 

in these packets, there are two types of update messages defined: full and incremental.  

The full broadcast carries all available routing information and the incremental broadcast 

only carries the information that has changed since the last broadcast. 

3.1.2 Properties 
 

Because DSDV is dependent on periodic broadcasts, it needs some time to 

converge before a route can be used.  This convergence time can probably be considered 

negligible in a static wired network, where topology changes are infrequent.  However, in 

an ad-hoc network, the topology is expected to be very dynamic, thus causing a slow 
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convergence of routes as packets are dropped and nodes move about.  Periodic and 

triggered broadcasts also add a large amount of overhead into the network, especially 

when there is high mobility in the network. 

 

3.2 The Wireless Routing Protocol- WRP 

3.2.1 Description 
 
The Wireless Routing Protocol (WRP) [MG96] is a table-based distance-vector 

routing protocol. Each node in the network maintains a Distance table, a Routing table, a 

Link-Cost table and a Message Retransmission list.  

The Distance table of a node x contains the distance of each destination node y via 

each neighbor z of x. It also contains the downstream neighbor of z through which this 

path is realized. The Routing table of node x contains the distance of each destination 

node y from node x, the predecessor and the successor of node x on this path. It also 

contains a tag to identify if the entry is a simple path, a loop or invalid. Storing 

predecessor and successor in the table is beneficial in detecting loops and avoiding 

counting-to-infinity problems.  The Link-Cost table contains cost of link to each neighbor 

of the node and the number of timeouts since an error-free message was received from 

that neighbor.  The Message Retransmission list (MRL) contains information to let a 

node know which of its neighbor has not acknowledged its update message and to 

retransmit update message to that neighbor.  

Node exchange routing tables with their neighbors using update messages 

periodically as well as on link changes.  The nodes present on the response list of update 

message (formed using MRL) are required to acknowledge the receipt of update message. 
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If there is no change in routing table since last update, the node is required to send an idle 

Hello message to ensure connectivity. On receiving an update message, the node 

modifies its distance table and looks for better paths using new information. Any new 

path so found is relayed back to the original nodes so that they can update their tables. 

The node also updates its routing table if the new path is better than the existing path. On 

receiving an ACK, the mode updates its MRL.  A unique feature of this algorithm is that 

it checks the consistency of all its neighbors every time it detects a change in link of any 

of its neighbors.  

3.2.2 Properties 
 

Part of the novelty of WRP stems from the way in which it achieves loop freedom.  

In WRP, routing nodes communicate the distance and second-to-last hop information for 

each destination in the wireless networks.  It avoids the “count-to-infinity” problem by 

forcing each node to perform consistency checks of predecessor information reported by 

all its neighbors.  This eliminates looping situations and provides faster route 

convergence when a link failure event occurs.  However, to achieve this loop freedom, 

WRP suffers from high overhead control traffic caused by the periodic and triggered 

exchange of routing tables and the reliance on ACK and HELLO responses (caused by 

spurious retransmission of route tables if ACKs or HELLOs are lost). 

3.3 Clusterhead Gateway Switching Routing- CGSR 

3.3.1 Description 
 

Clusterhead Gateway Switch Routing (CGSR) [Chi97] uses as basis the DSDV 

Routing algorithm described in the previous section. The protocol differs in the type of 
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addressing and network organization scheme employed.  Instead of a “flat” network, 

CGSR is a clustered multihop mobile wireless network.  It routes traffic from source to 

destination using a hierarchical cluster-head-to-gateway routing approach. Mobile nodes 

are aggregated into clusters and a cluster-head is elected.  All nodes that are in the 

communication range of the cluster-head belong to its cluster.  A gateway node is a node 

that is in the communication range of two or more cluster-heads.   

A packet sent by a node is first routed to its cluster head, and then the packet is 

routed from the cluster head to a gateway to another cluster head, and so on until the 

cluster head of the destination node is reached. The packet is then transmitted to the 

destination.  

Figure 7 illustrates an example of this routing scheme. Using this method, each 

node must keep a “cluster member table” where it stores the destination cluster head for 

each mobile node in the network. These cluster member tables are broadcast by each 

node periodically using the DSDV algorithm.  Nodes update their cluster member tables 

on reception of such a table from a neighbor.  

 

Figure 7: CGSR: Routing from node 1 to node 8. 
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In addition to the cluster member table, each node must also maintain a routing 

table which is used to determine the next hop in order to reach the destination. On 

receiving a packet, a node will consult its cluster member table and routing table to 

determine the nearest cluster head along the route to the destination.  Next, the node will 

check its routing table to determine the next hop used to reach the selected cluster head. It 

then transmits the packet to this node.  

3.3.2 Properties 
 

CGSR achieves a framework among clusters for code separation, channel access, 

routing, and bandwidth by having a cluster head controlling a group of ad hoc nodes.  

This is a good approach when dealing with large ad-hoc networks.  It is very scalable 

because it uses the clustering approach that limits the number of messages that need to be 

sent.  However, the cluster design is vulnerable to point failures.  If a cluster head goes 

down, then routing in the entire cluster is disturbed.  Frequent cluster head changes can 

adversely affect routing protocol performance since nodes are busy in cluster head 

selection rather than packet relaying.  In addition, routes between nodes in different 

clusters do not result in shortest hop paths. 

 

3.4 Zone-based Hierarchical Link State- ZHLS 

3.4.1 Description 
 

In Zone-based Hierarchical Link State [NL99], the network is divided into non-

overlapping zones.  ZHLS defines two levels of topologies: 1) node level and 2) zone 

level. A node level topology describes how nodes of a zone are connected to each other 

physically. A virtual link between two zones exists if at least one node of a zone is 
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physically connected to some node of the other zone.  Zone level topology tells how 

zones are connected together. Unlike other hierarchical protocols, there are no zone 

heads.  The zone level topological information is distributed to all nodes.   

There are two types of Link State Packets (LSP) as well: node LSP and zone LSP.  

A node LSP of a node contains its neighbor node information and is propagated within 

the zone whereas a zone LSP contains the zone information and is propagated globally.  

Each node only knows the node connectivity within its zone and the zone connectivity of 

the whole network.  So given the zone id and the node id of a destination, the packet is 

routed based on the zone id till it reaches the correct zone. Then in that zone,  it is routed 

based on node id. A <zone id, node id> of the destination is sufficient for routing so it is 

adaptable to changing topologies.  

3.4.2 Properties 
 

ZHLS can be adjusted of its operation to the current network operational 

conditions (ie. change the routing zone radius).  However this is not done dynamically, 

but instead the zone radius is set by the administrator of the network.  The performance 

of this protocol depends greatly on this parameter. 

ZHLS also limits the propagation of information about topological changes to the 

zone of the change(as opposed to flooding the entire network).  This causes a reduction of 

overhead control traffic, however, at an expense of creating unoptimal routes (routes 

between zones are not necessarily minimum cost paths).   

In the hierarchical approach, ZHLS mitigates traffic bottleneck and avoids single 

point failures by avoiding cluster heads.  However, because of this, a node has to keep 
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track of its physical location continuously in order to determine its affiliate zone.  This 

requires some a complicated geo-location algorithm and device for each node. 

 

3.5 Ad Hoc On Demand Distance Vector- AODV 
 

3.5.1 Description 
 

Ad hoc On-demand Distance Vector Routing (AODV) [PR98, PR99] is an 

improvement on the DSDV algorithm. AODV minimizes the number of broadcasts by 

creating routes on-demand as opposed to DSDV that maintains the list of all the routes.  

To find a path to the destination, the source broadcasts a route request (RREQ) 

packet. The neighbors in turn broadcast the packet to their neighbors until it reaches an 

intermediate node that has a recent route information about the destination or until it 

reaches the destination. A node discards a route request packet that it has already seen. 

The route request packet uses sequence numbers to ensure that the routes are loop free 

and that the intermediate node replies to route requests are the most recent.  

When a node forwards a route request packet to its neighbors, it also records in its 

tables the node from which the first copy of the request came. This information is used to 

construct the reverse path for the route reply packet. AODV uses only symmetric links 

because the route reply packet follows the reverse path of route request packet. As the 

route reply packet traverses back to the source, the nodes along the path enter the forward 

route into their tables.  

If the source moves then it can reinitiate route discovery to the destination. If one 

of the intermediate nodes move then the moved nodes neighbor realizes the link failure 
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and sends a link failure notification to its upstream neighbors and so on until it reaches 

the source upon which the source can reinitiate route discovery if needed. 

The protocol also uses HELLO messages that are broadcast periodically to the 

immediate neighbors.  These HELLO messages are local advertisements for the 

continued presence of the node to its neighbors.  If HELLO messages stop coming from a 

particular node, the neighbor can assume that the node has moved away and notify the 

affected set of nodes by sending them a link failure notification. 

3.5.2 Properties 
 

The advantage with AODV compared to classical routing protocols like distance 

vector and link-state is that AODV has greatly reduced the number of routing messages 

in the network.   AODV achieves this by using a reactive approach. 

AODV only supports one route for each destination.  This causes a node to 

reinitiate a route request query when it’s only route breaks.  This does not scale well as 

the number of route requests increase as mobility increases(topology changes in the 

network and links break). 

AODV also does not support unidirectional links.  When a node receives a RREQ, 

it will setup a reverse route to the source by using the node that forwarded the RREQ as 

the next hop.  This means that the route reply is unicasted back the same way the route 

request used.   

3.6 Temporally-Ordered Routing Algorithm-  TORA 

3.6.1 Description 
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Temporally Ordered Routing Algorithm (TORA) is a distributed source-initiated 

on-demand routing protocol [PC97].  The basic underlying algorithm is one in a family 

referred to as link reversal algorithms.  TORA is designed to minimize reaction to 

topological changes.  A key concept in this design is that control messages are typically 

localized to a very small set of nodes.  It guarantees that all routes are loop-free (although 

temporary loops may form), and typically provides multiple routes for any 

source/destination pair.  

TORA can be separated into three basic functions: 1) creating routes, 2) 

marinating routes, and 3) erasing routes.  The creation of routes basically assigns 

directions to links in an unidirected network or portion of the network, building a directed 

acyclic graph (DAG) rooted at the destination. 

TORA associates a height with each node in the network.  All messages in the 

network flow downstream, from a node with higher height to a node with lower height.  

Routes are discovered using Query (QRY) and Update (UPD) packets.  When a node 

with no downstream links needs a route to a destination, it will broadcast a QRY packet.  

This QRY packet will propagate through the network until it reaches a node that has a 

route or the destination itself.  Such a node will then broadcast a UPD packet that 

contains the node height.  Every node receiving this UPD packet will set its own height to 

a larger height than specified in the UPD message.  The node will then broadcast its own 

UPD packet.  This will result in a number of directed links from the originator of the 

QRY packet to the destination.  This process can result in multiple routes. 

Maintaining routes refers to reacting to topological changes in the network in a 

manner such that routes to destination are re-established within a finite time, meaning 



 27 
 
 

that its directed portions return to a destination-oriented graph within a finite time.  Upon 

detection of a network partition, all links in the portion of the network that has become 

partitioned from the destination are marked as undirected to erase invalid routes.  The 

erasure of routes is done using clear (CLR) messages. 

3.6.2 Properties 
 

The protocols underlying link reversal algorithm will react to link changes 

through a simple localized single pass of the distributed algorithm.  However,  there is 

potential for oscillations to occur, especially when multiple sets of coordinating nodes are 

concurrently detecting partitions, erasing routes, and building new routes based on each 

other.  Because TORA uses internodal coordination, its instability problem is similar to 

the count-to-infinity problem in distance vector routing protocols, except that such 

oscillations are temporary and route convergence will eventually occur. 

There are situations where multiple routes are possible from the source to the 

destination, but only one route will be discovered.  This is caused because the graph is 

rooted at the destination(which has the lowest height) but the source originating the QRY 

does not necessarily have the highest height.  The reason for this is that the height is 

initially based on the distance in number of hops from the destination. 

3.7 Dynamic Source Routing- DSR 

3.7.1 Properties 
 

Dynamic Source Routing (DSR) [JM98, JM99] is a source-routed on-demand 

routing protocol.  Source routing means that each packet in its header carries the 

complete ordered list of nodes through which the packet must pass.  DSR uses no 
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periodic routing messages (ie. no router advertisements), thereby reducing network 

bandwidth overhead and avoiding large routing updates throughout the ad-hoc network.  

Instead, DSR maintains a route cache, containing the source routes that it is aware of.  It 

updates entries in the routes cache when it learns about new routes.  The two basic modes 

of operation in DSR are 1) route discovery and 2) route maintenance.   

When the source node wants to send a packet to a destination, it looks up its route 

cache to determine if it already contains a route to the destination. If it finds that an 

unexpired route to the destination exists, then it uses this route to send the packet. But if 

the node does not have such a route, then it initiates the route discovery process by 

broadcasting a route request packet. The route request packet contains the address of the 

source and the destination and a unique identification number. Each intermediate node 

checks whether it knows of a route to the destination. If it does not, it appends its address 

to the route record of the packet and forwards the packet to its neighbors. To limit the 

number of route requests propagated, a node processes the route request packet only if it 

has not already seen the packet and it's address is not present in the route record of the 

packet.  

A route reply is generated when either the destination or an intermediate node 

with current information about the destination receives the route request packet. A route 

request packet reaching a such node contains the sequence of hops taken from the source 

to this node in its route record.  

As the route request packet propagates through the network, the route record is 

formed.  If the route reply is generated by the destination then it places the route record 

from route request packet into the route reply packet. On the other hand, if the node 
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generating the route reply is an intermediate node then it appends its cached route for the 

destination to the route record of route request packet and puts that into the route reply 

packet. To send the route reply packet, the responding node must have a route to the 

source. If it has a route to the source in its route cache, it can use that route. The reverse 

of route record can be used if symmetric links are supported. In case symmetric links are 

not supported, the node can initiate route discovery to source and piggyback the route 

reply on this new route request.  

DSRP uses two types of packets for route maintenance: Route Error packet and 

Acknowledgements. When a node encounters a fatal transmission problem at its data link 

layer, it generates a Route Error packet. When a node receives a route error packet, it 

removes the hop in error from it's route cache. All routes that contain the hop in error are 

truncated at that point. Acknowledgment packets are used to verify the correct operation 

of the route links. This also includes passive acknowledgments in which a node hears the 

next hop forwarding the packet along the route. 

3.7.2 Properties 
 

DSR uses the key advantage of source routing.  Nodes do not need to maintain a 

complete view of the network in order to route the packets they forward.  There is also no 

need for periodic routing advertisement messages, which will lead to reduced routing 

overhead.   

This protocol has the advantage of learning routes by scanning for information in 

packets that are received.  A route from A to C through B means that A learns the route to 

C, but also that it will learn the route to B.  The source route will also mean that B learns 
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the route to A and C and that C learns the route to A and B.  This form of active learning 

is very good and reduces overhead in the network. 

However, each packet carries an overhead containing the source route of the 

packet.  This overhead grows when the packet has to go through more hops to reach the 

destination.  This does not scale well to large networks when packets have to traverse 

through many hops to reach a destination.  In addition, nodes only hold one route to their 

destination.  When the route becomes invalid (due to topology change), a new route must 

be discovered.  This does not scale well to mobility as overhead (due to route requests) 

and latency (due to finding new routes) increase as mobility increases. 

 

3.8 Associativity-Based Routing- ABR 

3.8.1 Description 
 

The Associativity Based Routing (ABR) protocol is a new approach for routing 

proposed in [Toh96,Toh99]. ABR defines a new metric for routing known as the degree 

of association stability. It is free from loops, deadlock, and packet duplicates. In ABR, a 

route is selected based on associativity states of nodes. The routes thus selected are liked 

to be long-lived. All node generate periodic beacons to signify its existence. When a 

neighbor node receives a beacon, it updates its associativity tables. For every beacon 

received, a node increments its associativity tick with respect to the node from which it 

received the beacon. Association stability means connection stability of one node with 

respect to another node over time and space. A high value of associativity tick with 

respect to a node indicates a low state of node mobility, while a low value of associativity 

tick may indicate a high state of node mobility. Associativity ticks are reset when the 
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neighbors of a node or the node itself move out of proximity. The fundamental objective 

of ABR is to find longer-lived routes for ad hoc mobile networks. The three phases of 

ABR are Route discovery, Route reconstruction (RRC) and Route deletion.  

The route discovery phase is a broadcast query and await-reply (BQ-REPLY) 

cycle. The source node broadcasts a BQ message in search of nodes that have a route to 

the destination. A node does not forward a BQ request more than once. On receiving a 

BQ message, an intermediate node appends its address and its associativity ticks to the 

query packet. The next succeeding node erases its upstream node neighbors' associativity 

tick entries and retains only the entry concerned with itself and its upstream node. Each 

packet arriving at the destination will contain the associativity ticks of the nodes along 

the route from source to the destination. The destination can now select the best route by 

examining the associativity ticks along each of the paths. If multiple paths have the same 

overall degree of association stability, the route with the minimum number of hops is 

selected. Once a path has been chosen, the destination sends a REPLY packet back to the 

source along this path. The nodes on the path that the REPLY packet follows mark their 

routes as valid. All other routes remain inactive, thus avoiding the chance of duplicate 

packets arriving at the destination.  

RRC phase consists of partial route discovery, invalid route erasure, valid route 

updates, and new route discovery, depending on which node(s) along the route move. 

Source node movement results in a new BQ-REPLY process because the routing protocol 

is source-initiated. The route notification (RN) message is used to erase the route entries 

associated with downstream nodes. When the destination moves, the destination's 

immediate upstream node erases its route. A localized query (LQ [H]) process, where H 
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refers to the hop count from the upstream node to the destination, is initiated to determine 

if the node is still reachable. If the destination receives the LQ packet, it selects the best 

partial route and REPLYs; otherwise, the initiating node times out and backtracks to the 

next upstream node. An RN message is sent to the next upstream node to erase the 

invalid route and inform this node that it should invoke the LQ [H] process. If this 

process results in backtracking more than halfway to the source, the LQ process is 

discontinued and the source initiates a new BQ process.  

When a discovered route is no longer needed, the source node initiates a route 

delete (RD) broadcast. All nodes along the route delete the route entry from their routing 

tables. The RD message is propagated by a full broadcast, as opposed to a directed 

broadcast, because the source node may not be aware of any route node changes that 

occurred during RRCs. 

3.8.2 Properties 
 

ABR is a compromise between broadcast and point-to-point routing, and uses the 

connection-oriented packet forwarding approach.  Route selection is primarily based on 

the aggregate associativity ticks of nodes along the path.  Although this may not produce 

shortest hop routes, the path tends to be longer-lived.  Long lived routes result in fewer 

route reconstructions and therefore yield higher throughput.  However, to maintain the 

associativity of a path, ABR relies on the fact that each node is beaconing periodically.  

This beaconing creates additional routing overhead.  

3.9  Signal Stability-Based Routing- SSR 

3.9.1 Description 
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Signal Stability-Based Routing protocol (SSR) presented in [Dub97] is an on-

demand routing protocol that selects routes based on the signal strength between nodes 

and a node's location stability.  This route selection criterion has the effect of choosing 

routes that have "stronger" connectivity.  SSR comprises of two cooperative protocols: 

the Dynamic Routing Protocol (DRP) and the Static Routing Protocol (SRP).  

 
The DRP maintains the Signal Stability Table (SST) and Routing Table (RT).  

The SST stores the signal strength of neighboring nodes obtained by periodic beacons 

from the link layer of each neighboring node.  Signal strength is either recorded as a 

strong or weak channel.  All transmissions are received by DRP and processed. After 

updating the appropriate table entries, the DRP passes the packet to the SRP.  

The SRP passes the packet up the stack if it is the intended receiver.  If not, it 

looks up the destination in the RT and forwards the packet.  If there is no entry for the 

destination in the RT, it initiates a route-search process to find a route.  Route-request 

packets are forwarded to the next hop only if they are received over strong channels and 

have not been previously processed (to avoid looping).  The destination chooses the first 

arriving route-search packet to send back as it is highly likely that the packet arrived over 

the shortest and/or least congested path. The DRP reverses the selected route and sends a 

route-reply message back to the initiator of route-request. The DRP of the nodes along 

the path update their RTs accordingly.  

Route-search packets arriving at the destination have chosen the path of strongest 

signal stability because the packets arriving over a weak channel are dropped at 

intermediate nodes.  If the source times out before receiving a reply then it changes the 
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PREF field in the header to indicate that weak channels are acceptable, since these may 

be the only links over which the packet can be propagated.  

When a link failure is detected within the network, the intermediate nodes send an 

error message to the source indicating which channel has failed. The source then sends an 

erase message to notify all nodes of the broken link and initiates a new route-search 

process to find a new path to the destination. 

3.9.2 Properties 
 

SSR selects routes based on the signal strength and location stability of nodes along 

the path.  While the paths selected by this algorithm are not necessarily shortest in hop 

count, they do tend to be more stable and longer-lived.  One of the drawbacks of SSR is 

that intermediate nodes cannot reply to route requests sent toward a destination.  No 

attempt is made to use partial route recovery to allow intermediate nodes to attempt to 

rebuild the routes themselves.  This may lead to longer route reconstruction times since 

link failures cannot be resolved locally. 

3.10  Summary and Comparison 
 

The routing protocols can be generally categorized into two groups:  Table-Driven 

and On-Demand.  DSDV, WRP, CGSR, and ZHLS utilize Table-Driven routing.  AODV, 

TORA, DSR, ABR, and SSR utilized On-Demand routing. 

DSDV routing is essentially a modification of the basic Bellman-Ford routing 

algorithm.  DSDV provides one path to any given destination and selects the shortest path 

based on the number of hops to the destination.  However, DSDV is inefficient because 
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of the requirement of periodic update transmissions, regardless of the number of changes 

in the network topology.  

In  CGSR, DSDV is used as the underlying routing protocol.  Routing in CGSR 

occurs over cluster heads and gateways.  One advantage of CGSR is that several heuristic 

methods can be employed to improve the protocol’s performance.  These methods 

include priority token scheduling, gateway code scheduling, and path reservation[XXX].  

However, CGSR is vulnerable to point failures and cluster head assignment is difficult to 

do. 

ZHLS is a very interesting proposal that divides the network into several zones.  This 

approach is probably a very good solution for large networks as it reduces overhead 

control traffic by limiting topology updates within each zone.  However it produces 

unoptimal (routes that are not shortest hop) for nodes between zones.  In addition, there is 

overhead in maintaining the status of the zone a node is in.   

WRP protocol avoids the problem of creating temporary routing loops through the 

verification of predecessor information.  This requires each node to maintain four routing 

tables, which can lead to substantial memory requirements, especially when  number of 

nodes in the network is large.  In addition, the use of HELLO packets whenever there are 

no recent packet transmissions from a given node consumes bandwidth. 

Of the reactive on-demand protocols, AODV and DSR are similar in that they have a 

route discovery mode that uses request messages to find new routes.  The difference is 

that DSR is based on source routing and will learn more routes than AODV.  DSR also 

has the advantage that it supports unidirectional links.  DSR has the major drawback that 

the source route must be carried in each packet.  The can be quite costly, especially with 
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network size becomes very large.  TORA uses a link-reversal algorithm to minimize 

reaction to topological changes.  However, it suffers slow route convergence due to 

oscillations. 

ABR and SSR create routes based on route stability instead of shortest number of 

hops.  The idea is that long-lived routes require fewer route reconstructions, therefore 

yielding higher overall throughput.  ABR and SSR differ on how route stability is 

measured.  ABR route selection is primarily based on the aggregate associativity ticks of 

nodes along a path, whereas SSR selects routes based on the signal strengths and location 

stability of nodes along the path.  A drawback of these protocols is that because routes 

are selected based on an aggregate metric for route stability, when a link failure occurs 

along a path, the route discovery algorithm must be reinvoked from the source to find a 

new path to the destination.  This may lead to longer route reconstruction times since link 

failures cannot be resolved locally.  In addition, it remains to be seen whether creating 

routes that are longer-lived rather than shortest hop produces better performance. 

These protocols offer different solutions for routing in the ad hoc mobile network, 

however, they also come with drawbacks.  By studying current proposed routing 

protocols, a good understanding of tradeoffs in routing in ad hoc mobile networks is 

achieved.  By weighing the advantages and disadvantages of certain routing protocol 

features, a new protocol will be presented in the next section that provides good routing 

performance, and at the same time, mitigates the drawbacks incurred to achieve such 

performance.   
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4 Fisheye Wireless Routing Protocol 

4.1 Protocol Overview 
 

In this chapter, a new routing scheme for ad-hoc wireless networks is presented.   

The goal is to provide an accurate routing solution while the control overhead is kept low.  

The proposed scheme is named “Fisheye Routing” due to the novel ‘fisheye’ updating 

mechanism.  Similar to Link State Routing, Fisheye Routing generates accurate routing 

decisions by taking advantage of the global network information.  However, this 

information is disseminated in a method to reduce overhead control traffic caused by 

traditional flooding.  Instead, it exchanges information about closer nodes more 

frequently than it does about farther nodes.  So, each node gets accurate information 

about neighbors and the detail and accuracy of information decreases as the distance from 

the node increases. 

 

4.2 Table-Driven Design 
 

Fisheye Routing determines routing decisions using a table-driven routing 

mechanism similar to link state.  The table-driven ad hoc routing approach uses a 

connectionless approach of forwarding packets, with no regard to when and how 

frequently such routes are desired.  It relies on an underlying routing table update 

mechanism that involves the constant propagation of routing information.  A table-driven 

mechanism was selected over an on-demand mechanism based on the following 

properties: 
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• On-Demand routing protocols on the average create longer routes than table 

driven routing protocols [ICP99].  

• On-Demand routing protocols are more sensitive to traffic load than Table-

Driven in that routing overhead traffic and latency increase as data traffic 

source/destination pairs increase.  

• On-Demand Routing incurs higher average packet delay than Table Driving 

routing which results from latency caused by route discovery from new 

destinations and less optimal routes. 

• Table-Driven routing accuracy is less sensitive to topology changes.  Since 

every node has a ‘view’ of the entire network,  routes are less disrupted when 

there is link breakage (route reconstruction can be resolved locally). 

• Table-Driven protocols are easier to debug and to account for routes since the 

entire network topology and route tables are stored at each node, whereas On-

Demand routing only contain routes that are source initiated and these routes 

are difficult to track over time. 

 

For these reasons,  a table driven scheme for the ad hoc routing protocol was 

chosen.  Link state was chosen over distance vector because of faster speed of 

convergence and shorter-lived routing loops [ZA91].  Link state topology information is 

disseminated in special link-state packets where each node receives a global view of the 

network rather than the view seen by each node’s neighbor.  Fisheye routing takes 

advantage of this feature by implementing a novel updating mechanism to reduce control 

overhead traffic.  The algorithm for Fisheye routing is described in the next sections. 
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4.3 Algorithm 
 

There are 3 main tasks in the routing protocol: 

1) Neighbor Discovery: responsible for establishing and maintaining neighbor 

relationships. 

2) Information Dissemination: responsible for disseminating Link State Packets(LSP), 

which contain neighbor link information, to other nodes in the network. 

3) Route Computation: responsible for computing routes to each destination using the 

information of the LSPs. 

Each node initially starts with an empty neighbor list and an empty topology table.  

After its local variables are initialized, it invokes the Neighbor Discovery mechanism to 

acquire neighbors and maintain current neighbor relationships.  LSPs in the network are 

distributed using the Information Dissemination mechanism.  Each node has a database 

consisting of the collection of LSPs originated by each node in the network.  From this 

database, the node uses the Route Computation mechanism to yield a routing table for the 

protocol.  This process is periodically repeated. 

4.3.1 Neighbor discovery 
 

This mechanism is responsible for establishing and maintaining neighbor 

relationships. Neighbors can meet each other simply by transmitting a special packet(a 

HELLO packet) over the broadcast medium.  In the wireless network,  HELLO packets 

are periodically broadcasted and nodes within the transmission range of the sending node 

will hear these special packets and record them as neighbors. Each node associates a 

TIMEOUT value in the node’s database for each neighbor.  When it does not hear a 

HELLO packet from a particular neighbor within the TIMEOUT period, it will remove 
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that neighbor from the neighbor list.  TIMEOUT values are reset when a HELLO 

message is heard. 

HELLO Packets also contain the list of routers whose HELLO Packets have been 

seen recently.  Nodes can use this information to detect the presence of uni-directional or 

bi-directional links by checking if it sees itself listed in the neighbor’s HELLO Packets.   

4.3.2 Information Dissemination  
 

This mechanism is responsible for distributing LSPs to the nodes in the network. 

It’s two main functions are to handle the LSP integrity and updating interval. 

LSP Integrity 

After the router generates a new LSP, the new LSP must be transmitted to all the 

other routers.  A simple scheme is flooding, in which each packet received is transmitted 

to each neighbor except the one from which the packet was received.  Because each 

router retains the most recently generated LSP from other nodes, the router can recognize 

when it is receiving a duplicate LSP and refrain from flooding the packet more than once.   

The problem with this flooding is that a router cannot assume that the LSP most 

recently received is the one most recently generated by that node.  Two LSPs could travel 

along different paths and might not be received in the order in which they were 

generated.  A solution to this is to use a scheme involving a combination of a sequence 

number and an estimated age for each LSP.   

A sequence number is a counter.  Each router keeps track of the sequence number 

it used the last time it generated an LSP and uses the next sequence number when it needs 

to generate a new LSP.  When a router receives a LSP, it compares the sequence number 

of the received LSP with the one stored in memory (for that originating node) and only 
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accepts the LSP if it has a higher sequence number.  The higher the sequence number, the 

more recently generated. 

  However, a sequence number alone is not sufficient.  The sequence number 

approach has various problems: 

1) The sequence number field is of finite size.  A problem arises when a node creates a 

LSP to case the field to reach the maximum value.  Making the sequence number 

field wrap around is not a good idea because it causes ambiguity on the relation of the 

sequence numbers. 

2) Sequence number on an LSP becomes corrupt.  If the sequence field is corrupted to a 

very large sequence number, it will prevent valid, newer LSPs (with smaller sequence 

numbers) to be accepted. 

3) Sequence number is reset.  When a router goes down or forgets the sequence number 

it was using, newer LSPs cannot be distinguished from older LSPs 

To solve the preceding problems, an age field is added to each LSP.  It starts at some 

value and is decremented by routers as it is held in memory.  When an LSP’s age reaches 

0, the LSP can be considered too old and an LSP with a nonzero age is accepted as new, 

regardless of its sequence number.   

 

Update Interval 

The key difference between fisheye and traditional Link-state is the interval in 

which the routing information is disseminated.  In Link State, the link state packets are 

generated and flooded into the network whenever a node detects topology changes.  

Fisheye uses a new approach to reduce the number of LSP messages. 
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In [KS71], Kleinroch and Stevens proposed the fisheye technique to reduce the 

size of information required to represent graphical data.  The original idea of fisheye was 

to maintain high resolution information within a range of a certain point of interest and 

lower resolution further away from the point of interest.  For routing, this fisheye 

approach can be interpreted as maintaining a highly accurate network information about 

the immediate neighborhood of a node and becomes progressively less detailed as it 

moves away from the node.  

Figure 8 illustrates the application of fisheye in a mobile wireless network.  The 

figure defines the scope of fisheye for the center node.  The scope is defined in terms of 

the nodes that can be reached in a certain number of hops.  The center node has most 

accurate information about all nodes in the first circle, and becomes less accurate with 

each outer circle.  Even though a node does not have accurate information about distance 

nodes, the packets are routed correctly because the route information becomes more and 

more accurate as the packet moves closer to the destination. 

 

 

Figure 8:  Application of fisheye in a network. 
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The reduction of routing messages is achieved by updating the network 

information for nearby nodes at a higher frequency and remote nodes at a lower 

frequency. As a result, considerable amount of LSPs are suppressed.  When a node 

receives a LSP, it calculates a time to wait before sending out the LSP from the following 

equation: 

 UpdateInterval = ConstantTime * hopcount^alpha 

ConstantTime is the user defined default refresh period to send out LSPs(in the first 

scope), hopcount is the number of hops the LSP has traversed, alpha is a parameter that 

determines how much effect each  scope has on the UpdateInterval.  Values for alpha are 

zero(same as no fisheye) and greater than or equal to one(fisheye).  A maximum value of 

UpdateInterval is established to prevent an effective complete suppression of LSP 

messages(when calculated UpdateInterval is too large). 

When a router accepts a LSP from a faraway node, and has not yet sent out the 

LSP in memory, the next time it will send out the LSP will be the minimum of the time 

left to wait in memory and the new calculated UpdateInterval based on the new LSP: 

UpdateInterval(new) = MIN(UpdateInterval(memory), UpdateInterval(LSP)) 

This is to prevent a router from waiting indefinitely to send out a LSP when a new LSP 

arrives before the one in memory is sent out for that node. 

4.3.3 Route Computation 
 

Once the router has a database of LSPs, it computes the routes based on the Djikstra’s 

[Sed83] algorithm which computes all shortest paths from a single vertex.  The link 

metric used for path cost is the hop count.  The algorithm uses 3 databases: 

1) Link State Database- Contains the LSPs the node received. 
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2) PATH- contains ID, path cost, forwarding direction tuples.  Holds the best path 

found. 

3) TENT- contains ID, path cost, forwarding direction tuples.  Holds possible best paths. 

The Djikstra algorithm is as follows: 

1) Start with “self” as the root of a tree by putting  (myID, 0, 0) in PATH. 

2) For node N just place in PATH, examine N’s LSP.  For each of N’s neighbors, add 

the total path cost at N to the cost path of each neighbor.  If the new total path of the 

node is better than the value for that node in PATH or TENT, put into TENT. 

3) If TENT is empty, terminate the algorithm.  Otherwise, find the minimal cost in 

TENT, move into PATH, and go to Step 2. 

 

One the algorithm completes, PATH now contains the shortest next-hop information 

for each destination.  The protocol can now use the PATH database as a routing table to 

forward packets toward their destinations. 

 

4.4 Implementation 
 

The Fisheye routing protocol was implemented in the Composable Network 

Software(CNS) environment developed by the Digital Communication Networks Group 

at MITRE Corporation.  CNS is a scalable design environment for network systems.  

Since most network systems are being built using a layered approach similar to the OSI 

layer network architecture,  CNS uses the same approach.  Modules can be built between 

the different simulation layers.  This will allow rapid integration of models developed at 
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different layers by different people.  The protocol stack supports models for the channel, 

radio, MAC, network, transport, and application layers. 

CNS is programmed in C++ to take advantage of the Object Orientated 

Programming paradigm.  Each module developed in the CNS environment has a well-

defined interface to pass data between modules.  Modules in CNS can also be used to 

generate traffic, setup network topologies, introduce link/transmission characteristics, 

debugging, or any other function. 

The composable network stack for the Fisheye routing protocol is shown in Figure 

9. 
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Figure 9: Composable Network Stack for Fisheye Routing Protocol 

 
 

The routing protocol is entirely implemented in the Router Fisheye module.  The 

other modules offer a simulated network environment to test the functionality of the 

routing protocol.   FileInterface fi allows user to insert packets into the Router 

module(such as test and data packets).  RouterFilter Filter simulates a network topology.  

UdpInterface ether simulates a radio broadcast transmission medium.  PktToString 

PsOut and PsIn allows interface between different modules. 
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In the Router Fisheye module, there are two top level main functions that are 

called to handle routing.  They are DoWork() and DoConsume().  DoWork() is called 

periodically based on a series of event timers.  DoConsume() is invoked when the router 

receives a packet on it’s interface.  The flowchart for these functions will be shown in the 

next two sections. 
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4.4.1 DoWork() Flowchart 
 
 

 
 
 

The DoWork() function is called periodically based on four event timers:  

1) UpdateOwnLSP 

2) ScanLSPdb 

3) DecrementAge 

4) SendHELLO. 
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UpdateOwnLSP event timer controls when that node should send out its own LSP 

to neighbor nodes.  This is necessary to propagate the current node’s LSP to the other 

nodes in the network.   

ScanLSPdb event timer scans the LSP database to check when a LSP received 

from another node should be sent out.  This is necessary for the Fisheye update 

mechanism since LSPs received at different scopes will have different times to send.  It 

checks the UpdateInterval (as described in section 4.3.2) values associated with each LSP 

and only sends the LSP out if the UpdateInterval for that LSP has been exceeded.   

DecrementAge event timer decrements the HELLO and LSP timeout timers.  

HELLO timeout timers are needed to check if node x is still a valid neighbor of node y.  

Node y needs to periodically hear HELLO messages within a certain period of time from 

node x for node x to be considered a valid neighbor of node y.  The LSP timeout timers 

are to decrement the AGE field of the LSP while it sits in memory to insure LSP 

integrity.  When a neighbor becomes invalid, it will invoke ComputeRoutes() to compute 

a new routing table because it has detected a topology change. 

SendHELLO event timer is used to periodically send HELLO messages to 

neighboring nodes.  This is needed for other nodes to detect and maintain the presence of 

neighboring nodes. 
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4.4.2 DoCosume() Flowchart 
 
 

 
 
 
 
 
DoConsume() is called whenever a packet is received at it’s interface.  It utilizes the CNS 

environment’s network stack to determine which interface a packet was received on.  

Packets received from a the upper layer are handled by FromAbove().  These packets are 

usually data packets from a application or debug packets.  Packets received the lower 

layer are handled by FromBelow().  These packets can both be routing packets and data 

packets.   
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All data packets are processed by HandleData() with determines where the packet 

should be forwarded to based on the protocol’s routing table.  If the packet is intended for 

the current node, it forwards the packet toward the upper (application) layer to be 

processed.  If the packet is intended for another destination, it forwards the packet toward 

that node. 

. Routing packets are processed by HandleLSP() or HandleHELLO() based upon 

the type of packet.  HandleLSP() processes LSPs.  It checks to see if the fields in the LSP 

are valid, determines if the node should accept the LSP, and records the relevant 

information of the LSP into the LSP database including calculating the UpdateInterval 

time.  HandleHELLO() processes HELLO packets received from neighboring nodes and 

it updates the node’s neighbor list in the database.  If either a new LSP or HELLO packet 

with a new neighbor is accepted, then ComputeRoutes() is invoked which calculates a 

new routing table.  This is needed to maintain an up-to-date routing table when it detects 

changes in the network topology. 

4.5 Performance Analysis 
 

The Fisheye routing protocol was simulated in a mobile environment to determine 

the connectivity among mobile hosts.  The simulator for evaluating the protocol is the 

Global Mobile Simulation (GloMoSim) environment [ZBG98] from UCLA.  GloMoSim 

is designed using the Parallel Simulation Environment for Complex Systems (PARSEC) 

[Bag98] to provide a discrete-even simulation environment for wireless network systems.   
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4.5.1 Simulation Model 
 

The simulation models a network of 30 mobile nodes migrating within a 20m x 

20m spaces with a transmission radius of 5 meters.  Every node in the network moves in 

a Random-waypoint fashion.  In Random-waypoint, each node calculates a random 

destination and moves towards it at a fixed rate.  Once the destination has been reached, it 

selects another random location and repeats the process. The raw channel wireless 

capacity is 2Mbits/sec.  A traffic generator was developed to simulate constant bit rate 

sources between two nodes.  Simulation runs of 200,000,000,000 simulation ticks(equal 

to 200 seconds of simulated time) were performed multiple times and the results 

averaged. 

4.5.2 Simulation Results 
 

Different values of alpha were tested to compare their relative effects on (a) 

Control Overhead and (b) Successful Packet Deliveries.   Alpha affects the interval of 

LSP updates at different scopes.  As previously stated, the update interval when 

propagating LSPs at each node is calculated as: UpdateInterval = ConstantTime * 

hopcount^alpha.  As alpha increases, the UpdateInterval increases (at each hop).  

ConstantTime in these simulations was set at 3 seconds. 

The effect of latency was considered but did not yield good information.  This is 

because the computation of average latency is hindered by packet drops.  If packet drops 

are excluded from the computation, then average latency appears to decrease as packet 

loss increases.  This is because the dropped packets are most likely the ones going 

through greater number of hops.  If dropped packets are included in the computation, they 

must be assigned an arbitrarily large constant delay.  Unfortunately, this arbitrary 
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constant skews the average latency and prevents one from knowing the average latency 

of packets that were not dropped. 

Figure 10 shows the control overhead incurred by different values of alpha as a 

function of mobility.  As one would expect, control overhead goes down as the value of 

alpha increases.  This occurs because nodes wait a longer time before transmitting LSPs 

it received from other nodes at each successive scope.  This results in lower control 

overhead traffic.  The reduction of overhead traffic at higher values of alpha are very 

significant. 

Control Overhead as a function of Mobility
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Figure 10: Overhead as a function of Mobility 

 
Figure 11 shows the number of successful packet delivery over different alphas as 

a function of mobility.  Overall, higher mobility causes a decrease in successful packet 

deliveries for all values of alpha.  However, as this figure shows, there are more 

successfully delivered packets at lower values of alpha.  This is because LSPs are 

refreshed more frequently and therefore route tables are more reflective of the actual 

network topology, thus producing greater number of valid routes. 



 54 
 
 

In the figure, mobility has a greater affect on higher values of alpha.  As mobility 

increases from 0 to 0.5 m/s, packets are dropped at a higher rate at higher values of alpha.  

This is a result of less accurate routing tables at each node because network topology 

changes are not propagated as frequently.  At higher values of alpha, when refresh rates 

are less frequent,  routing table accuracy is more sensitive to network topology changes. 

 One can also notice that the successful packet deliveries over different values of 

alpha seem to converge at high values of mobility.  This is caused by a second order 

effect where the nodes are moving so fast, that only the minimal hop(1 hop) routes are 

present, regardless on how fast the routing tables are updated. 

 

Packets Received as a Function of Mobility
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Figure 11: Successful Packet Received as a Function of Mobility 

4.5.3 Simulation Summary 
 

The simulations of the Fisheye protocol implementation has shown that fisheye does 

work in routing packets and reducing overhead traffic in a mobile environment.  By 
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increasing the update interval time of LSPs at different scopes, tremendous amounts of 

overhead control traffic can be suppressed.   However, there is a trade-off.  As the update 

interval time increases, the routing tables at each node become less accurate, causing a 

reduction of the number of successful packet deliveries.   One must balance mobility, 

routing accuracy, and overhead traffic to achieve an optimal value for the update 

interval(alpha). 

4.6 Comparison with other Ad Hoc Routing Protocols 
 

This section provides comparisons of previously described routing algorithms 

(section 3) with Fisheye routing.  Table 1 summarizes and compares properties of the ad 

hoc routing protocols. 

 

 Fisheye DSDV WRP CGSR ZHLS 
Loop-free Yes Yes Yes, but not 

instantaneous 
Yes Yes 

Distributed Yes Yes Yes Yes Yes 
Routing Philosophy Table-Driven Table-Driven Table-Driven Table-Driven Table-Driven 
Periodic Broadcasts Varying over 

scopes  
Periodic Periodic and 

triggered 
Periodic Different by 

zone level 
Topology Philosophy Flat Flat Flat Hierarchical Hierarchical 
Critical Nodes No No No Yes Yes 
Routing Metric Shortest path Shortest path Shortest path Shortest path Shortest path 
 

 AODV TORA DSR ABR SSR 
Loop-free Yes No, short 

lived loops 
Yes Yes Yes 

Distributed Yes Yes Yes Yes Yes 
Routing Philosophy On-Demand On-Demand On-Demand On-Demand On-Demand 
Periodic Broadcasts Periodic and 

when needed 
Periodic No Periodic on 

associativity 
No 

Topology Philosophy Flat Flat Flat Flat Flat 
Critical Nodes No No No No No 
Routing Metric Freshest and 

shortest path 
Shortest path Shortest path Associativity/

route stability 
Signal 

strength 
stability 

Table 1: Comparison between ad-hoc protocols. 
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 Among the table driven protocols, Fisheye, DSDV, and WRP use ‘flat’ network 

addressing.  Because Fisheye uses link-state, it has the advantage over DSDV in terms of 

faster route convergence.  However, Link-state requires more computation complexity 

than Distance-vector, in that Link-state requires more computation steps for a node to 

perform routing computations from the update messages [Per00].  WRP uses consistency 

checks of predecessor information to avoid routing loops.  This requires that it maintain 

several routing tables which lead to much higher memory requirements than Fisheye.  

Fisheye also has the advantage over DSDV and WRP in lower overhead control traffic 

resulting from the periodic broadcast of routing messages.  However, the suppression of 

routing messages at successive scopes used by Fisheye may degrade routing accuracy. 

 CGSR and ZHLS differ among the other table-driven protocols, in that they use a 

hierarchical addressing scheme such that nodes are grouped into clusters (or zones). 

Nodes can be localized for channel access, routing, bandwidth allocation separation 

among clusters. This has the advantage that it can scale well to high network sizes.  

However, this relies on critical nodes to control routing between regions and to maintain 

node association.  This is a difficult problem to solve, but may be necessary for large 

networks.  While flat addressing schemes may be less complicated and easier to use, 

there are doubts as to its scalability [Dal97].  Fisheye partially circumvents the problem 

of scalability of  flat addressing schemes by using different updating scopes.  This has the 

effect of localizing routing messages to nodes that are close to each other. 

 Among the on-demand routing schemes, AODV, DSR, and TORA find shortest-

hop routes only when routes to new destinations are desired.  ABR and SSR are on-

demand routing schemes that find routes that are longer-lived (which are not necessarily 



 57 
 
 

shortest hop) based on some metric.  It is uncertain weather shortest hop routes or longer-

lived routes are better.  Since longer-lived routes do not necessarily result in smallest 

number of hops, it may incur higher latency.  However, longer-lived routes require fewer 

route reconstruction and therefore may yield higher throughput. In addition, network 

conditions will affect the performance of each method.  Long-lived routes will be favored 

in presence of high mobility when there are higher number of link changes, and shortest-

hop routes will be favored when there is low mobility.  Thus, it remains to be seen 

whether longer-lived routes are more optimal than shortest-hop routes. 

On-demand routing schemes have an advantage over the table-driven fisheye scheme 

in that they do not rely on an underlying routing table update mechanism that involves 

the constant propagation of routing information.  Routing information in Fisheye is 

constantly propagated, and a route to every other node in the network is available.  This 

feature incurs substantial signaling traffic.  However, in on-demand routing, routing 

traffic grows with increasing mobility of active routes and with increasing 

source/destination traffic pairs.  Thus, in a large dense network with high number of 

traffic pairs, on-demand routing may incur higher overhead traffic than the fisheye 

scheme.  Since network conditions are not known a priori, it is favorable to have a 

mechanism that is insensitive to traffic conditions.     

4.7 Summary 
 

Each of the proposed schemes have certain features to deal with certain problems of 

routing in ad hoc networks.  Because inherently, network conditions (such as traffic 

density, network size, and mobility) in an ad hoc network are not known, it is preferable 

to design a protocol that is not sensitive to network conditions.  This is why Fisheye 
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opted for a table-driven approach.  The table-driven approach makes the protocol 

insensitive to traffic source/destination pair density.  The fisheye update mechanism 

significantly reduces the overhead traffic that plagues conventional and proposed table-

driven schemes.  This results in good scalability to network size.  However, routing 

performance is affected by the update interval between scopes, which is partially 

determined based on the mobility of the system.  In the presence of high mobility, routing 

updates must be propagated more frequently to reflect the current network topology.  

However, when there is low mobility, routing updates do not need to be propagated as 

frequently as the topology does not change as much.  The trade-off is between overhead 

traffic verses routing accuracy.    
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5 Conclusions 
 

The ad hoc wireless network presents many challenges in routing protocol design.  

The goal of this thesis is to study traditional routing schemes and design and implement a 

new routing approach for ad hoc wireless networks.   

5.1 Contributions 
 

A new routing scheme using a link-state foundation and employing a novel fisheye 

updating mechanism was designed and implemented.  Called Fisheye routing, this 

mechanism reduces the control overhead by disseminating topology information using 

the fisheye technique, where routing information is updated at different rates depending 

on the distance from the source. 

Through simulation, Fisheye routing has exhibited good performance in reducing 

overhead control traffic.  It also performs well in terms of successful packet delivery in 

the presence of low mobility.  Proper selection of the update interval time is necessary for 

good successful packet delivery in the presence of high mobility.   

This thesis has given insight into the problems that arise when designing routing 

protocols in an ad hoc wireless network, shown correct implementation functionality, and 

demonstrated functionality and performance of the Fisheye Routing Protocol 

5.2 Future Work 
 

Current ad hoc routing approaches have introduced several new paradigms, such as 

exploiting user demand, the use of location, association parameters, and updating 

mechanisms.  However, it is not clear that any particular algorithm or class of algorithm 

is the best for all scenarios, each protocol has definite advantages and disadvantages, and 
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is well suited for certain situations.  A key characteristic to the success of widespread use 

of a ad hoc wireless routing protocol is flexibility.  A flexible ad hoc routing protocol 

could responsively invoke table-driven and/or on-demand approaches based on situations 

and communication requirements.  The “toggle” between these two approaches may not 

be trivial since concerned nodes must be “in sync” with the toggling.  Coexistence of 

both approaches may also exist in spatially clustered ad hoc groups, with intracluster 

employing table-driven approach and intercluster employing the demand-driven 

approach, or vice-versa.  Further work is necessary to investigate the feasibility and 

performance of hybrid ad hoc routing approaches.   

Other features of ad hoc networks that can be examined not addressed in this 

research are 1) Multicast routing [GCZ98] and 2) Quality of Service(QoS) support.  

Multicast is desirable to support multiparty wireless communications.  Since the multicast 

tree is no longer static, the multicast routing protocol must be able to copy with mobility, 

including multicast membership dynamics.  In terms of QoS, given the problems 

associated with the dynamics of nodes, hidden terminals, and fluctuating link 

characteristics, support end-to-end QoS is a nontrivial issue that requires in-dept 

investigation. 

The field of ad hoc mobile networks is rapidly growing and changing, and while 

there are still many challenges that need to be met, it is likely that such networks will see 

widespread use within the next few years. 

 



 61 
 
 

6 References 
 
[Bak97] D. Baker, et al., “Flat vs. Hierarchical Network Control Architecture,” 

ARP/DARPA Workshop on Mobile Ad-Hoc Networking, March 1997. 
 
[Bag98] R. Bagrodia and et. al, “Parsec: A Parallel Simulation Environment for 

Complex Systems”, Computer, Vol. 31, October 1998, pp. 78-85. 
 
[BJM98] J. Broch, D. Johnson, and D. Maltz, “The Dynamic Source Routing Protocol 

for Mobile Ad Hoc Networks,”  IETF Internet draft, Dec. 1998. 
 
[BG87] D. Bertsekas and R. Gallager. Routing in Data Networks, chapter 5., Prentice 

Hall, second edition, 1987. 
 
[BJ98] J. Broch, D. John Johnson, and D. Maltz, “The Dynamic Source Routing 

Protocol for Mobile Ad Hoc Networks”,  IETF Internet-Draft, draft-ietf-manet-
dsr-00.txt, Mar. 1998 

 
[Chi97] C. Chiang, “Routing in Clustered Multihop, Mobile Wireless Networks with 

Fading Channel,” Proceedings of IEEE SICON ’97, April 1997, pp. 197-211. 
 
[Dub97] R. Dube, “Signal Stability based Adaptive Routing for Ad-Hoc Mobile 

Networks,” IEEE Personal Communication, Feb. 1997, pp. 36-45. 
 
[GCZ98] M. Gerla, C. Chiang, and L. Zhang, “Tree Multicast Strategies in Mobile, 

Multihop Wireless Networks,” ACM Mobile Networks and Applications, 
January 1998. 

 
[HP98] Z. Haas and M. Pearlman, “The Performance of Query Control Schemes for the 

Zone Routing Protocol”, ACM SIGCOMM ’98. 
 
[ICP99] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen, “Scalable Routing 

Strategies for Ad Hoc Wireless Networks”, IEEE Journal on Selected Areas in 
Communications, Aug. 1999, pp. 1369-79. 

 
[Jaf86]  J.M. Jaffer and et al. “Subtle Design Issues in the implementation of 

Distributed, Dynamic Routing Algorithms”, Computer Networks and ISDN 
systems, 1986,  pp. 147-68 

 
[JLT99] M. Jiang, J. Li, and Y. Tay, “Cluster Based Routing Protocol”, August 1999, 

IETF Internet-Draft. 
 
[JM96] D. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc Networks”, 

Mobile Computing, Kulwer, 1996, pp. 152-81. 
 



 62 
 
 

[JM99] D. Johnson and D. Maltz, “The Dynamic Source Routing Protocol for Mobile 
Ad Hoc Networks”, October 1999 IETF Internet-Draft. 

 
[JN99] M. Joa-Ng and I. Lu, “A Peer-to-Peer zone-based two-level link state routing 

for mobile Ad Hoc Networks,” IEEE Journal on Selected Areas in 
Communications, Special Issue on Ad-Hoc Networks, Aug. 1999, pp.1415-25. 

 
[JT87] J. Jubin and J. Tornow, “The DARPA Packet Radio Network Protocols,” 

Proceedings of IEEE, vol. 75, no. 1, 1987, pp. 21-32 
 
[KS71] L. Kleinrock and K. Stevens, “Fisheye: A Lenslike Computer Display 

Transformation,”  Computer Science Department, UCLA, CA Tech. Report, 
1971. 

 
[Man00] Mobile Ad-hoc Networks (MANET). URL:www.ietf.org/html.charters/manet-

charter.html.  February 2000.  Work in progress. 
 
[MG96] S. Murthy and J.J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for 

Wireless Networks,” ACM Mobile Networks and Applications, Routing in 
Mobile Communication Networks, Oct. 1996, pp. 183-97. 

 
[Mis99]  P. Misra, “Routing Protocols for Ad Hoc Mobile Wireless Networks”, 

Computer Science Department, Ohio State University, 1999. 
 
[Moy98] J. Moy, OSPF: Anatomy of an Internet Routing Protocol. Reading, 

Massachusetts, Addison Wesley Longman, Inc., 1998.  
 
[PB94] C. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-

Vector Routing(DSDV) for Mobile Computers”, Computer Communication 
Review, October 1994, pp.234-244. 

 
[PB96] L. Peterson and B. Davie, Computer Networks – A Systems Approach.  San 

Francisco, Morgan Kaufmann Publishers Inc., 1996. 
 
[PC97] V. Park and M. Corson, “A Highly Adaptive Distributed Routing Algorithm for 

Mobile Wireless Networks,” Proceedings of INFOCOM ’97, Apr. 1997. 
 
[PR99] C.E. Perkins and E.M. Royer, “Ad-hoc On-Demand Distance Vector Routing,” 

Proceedings of 2nd IEEE Workshop of Mobile Computer Systems and 
Applications, Feb. 1999, pp. 90-100. 

 
[PC97] V. Park and M. Corson, “A Highly Adaptive Distributed Routing Algorithm for 

Mobile Wireless Networks”, Proceeedings of INFOCOM ’97, April 1997. 
 



 63 
 
 

[Per00]  R. Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking 
Protocols- 2nd Edition. Reading, Massachusetts, Addison Wesley Longman, 
Inc., 2000. 

 
[PR98] C. Perkins and E. Royer, “Ad Hoc On Demand Distance Vector(AODV) 

Routing,” IETF Internet draft, Nov. 1998. 
 
[PRD99] C. Perkins, E. Royer, and S. Das, “Ad Hoc On-demand Distance Vector 

Routing”, October 1999 IETF Internet-Draft. 
 
[RT99] R. Royer and C. Toh, “A Review of Current Routing Protocols for Ad Hoc 

Mobile Wireless Networks”, IEEE Personal Communications, Vol. 6, No.2, 
pp.46-55, April 1999. 

 
[Sed83]  R. Sedgewick. Weighted Graphs, chapter 31. Addison-Wesley, 1983. 
 
[Toh96] C. Toh, “A Novel Distributed Routing Protocol to Support Ad-Hoc Mobile 

Computing,” Proceedings of 1996 IEEE 15th Annual International Conference 
on Computing and Communication, Mar. 1996, pp. 480-86. 

 
[Toh97] C. Toh, “Associativity-Based Routing for Ad-Hoc Mobile Networks,” Wireless 

Personal Communication, vol. 4, no.2, Mar. 1997, pp. 1-36. 
 
[ZA91] W. Zaumen and J. Aceves, “Dynamics of Distributed Shortest-path Routing 

Algorithms”, Proceedings on Communication Architecture and Protocols, 
September 1991, pp 31-42. 

 
[ZBG98]X.Zeng, R. Bagrodia, and M.Gerla, “GloMoSim: A library for the parallel 

simulation of large-scale wireless networks,” in Proc. 12th Workshop Parallel 
and Distributed Simulations- PADS’98, pp. 154-161. 



 64 
 
 

7 Appendix- Code Listing 
 
 

7.1 Router.C 
 
#include <Router.h> 
 
#include <IntfUdp.h> 
 
Router::Router(const String& address) : MultiPort("Router", 2) 
{ 
  // Initialization 
  cNextTime_SCAN_DB = Time::Now()      + EV_TIMER_SCAN_DB; 
  cNextTime_UPDATE_LSP = Time::Now()   + EV_TIMER_UPDATE_LSP; 
  cNextTime_SEND_HELLO = Time::Now()   + EV_TIMER_SEND_HELLO; 
  cNextTime_DECREMENT_AGE = Time::Now()    + EV_TIMER_DECREMENT_AGE;   
  cNextTime_FORWARD_DB = Time::Now() + EV_TIMER_FORWARD_DB; 
  cLocalNode = address; 
 
  // Init self in LSP Database 
  Router_DB_Entry index; 
  index.cSrc = cLocalNode; 
  index.cHops = 0; 
  index.cSequence = 0; 
  index.cAge = COUNTER_AGE; 
  index.cValid = 1; 
  index.cSend_Flag = 0; 
  index.cIs_Neighbor = 0; 
  cDB[cLocalNode] = index; 
} 
 
void Router::PrintEntry(String s) { 
   
  Router_DB_Entry entry; 
  entry = cDB[s]; 
   
   
  cout << "------>FOR ENTRY: "<< s << "<--------\n"; 
  cout << "cSrc: " << entry.cSrc <<endl; 
  cout << "cHops: " << entry.cHops <<endl; 
  cout << "cSequence: " << entry.cSequence <<endl; 
  cout << "cAge: " << entry.cAge <<endl; 
  cout << "cValid: " << entry.cValid <<endl; 
  cout << "cNeighbor_list:\n"; 
  typedef map<String, int>::const_iterator CI; 
  for (CI p = 
entry.cNeighbor_list.begin();p!=entry.cNeighbor_list.end(); 
       ++p) { 
    cout << "Node:"<< p->first << "\tCost:" << p->second << endl; 
  } 
 
  cout << "cTTS: " << entry.cTTS <<endl; 
  cout << "cSend_Flag: " << entry.cSend_Flag <<endl; 
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  cout << "cHELLO_timer: " << entry.cHELLO_timer <<endl; 
  cout << "cIs_Neighbor: " << entry.cIs_Neighbor <<endl; 
  cout << "--------------------------------------\n";  
} 
 
void Router::ComputeRoute(void) { 
 
  if (Debug("Router.ComputeRoute")) { 
       cout << "ComputeRoute: Running at Time:" << Time::Now()<<endl; 
  }  
 
  map<String, Route_info> PATH; 
  map<String, Route_info> TENT; 
  map<String, String> temp_DB; 
  Route_info index; 
  String current_node; 
  int path_cost; 
  String node; 
  int cost; 
  typedef map<String, int>::const_iterator CI; 
  typedef map<String, Route_info>::const_iterator RI; 
 
  // Flags 
  int store_tent = 0; 
  int empty_tent = 0; 
  int min_cost = 0; 
  String lowest_node; 
 
  // Begin with 'self' as root  
  index.cost = 0; 
  index.forw = cLocalNode; 
  PATH[cLocalNode] = index; 
  current_node = cLocalNode; 
 
 
  do { 
    /* Look at PATH's LSPs and store better paths into TENT */ 
    if (Debug("Router.ComputeRoute")) { 
      cout << "Current Node: " << current_node <<endl; 
    } 
    if (cDB[current_node].cValid == 1) { 
      map<String, int> &neighbors = cDB[current_node].cNeighbor_list; 
      for (CI p = neighbors.begin(); p!=neighbors.end(); ++p) { 
 node = p->first; 
 cost = p->second; 
 path_cost = PATH[current_node].cost+cost; 
 // Check if cost is shorter than value stored in TENT 
 store_tent = 0; 
 if (PATH.find(node) != PATH.end()) store_tent = 0; 
 else { 
   if (TENT.find(node) == TENT.end()) store_tent = 1; 
   else { 
     if (path_cost < TENT[node].cost) store_tent = 1; 
   } 
 } 
 // Store into TENT 
 if (store_tent == 1) { 
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   index.cost = path_cost; 
   if (PATH[current_node].forw ==cLocalNode) { 
     index.forw = node; 
   }  else index.forw = PATH[current_node].forw; 
   if (Debug("Router.ComputeRoute")) { 
     cout << "Store node into TENT: " << node << ", " << 
       "Forward: "<< index.forw <<endl; 
   } 
   TENT[node] = index; 
 } 
      } 
    } 
     
    // Find node in TENT with minimal cost and move to PATH 
    empty_tent = 1; 
    for (RI p = TENT.begin(); p!= TENT.end(); ++p) { 
      empty_tent = 0;   
      min_cost = 9999999; 
      node = p->first; 
      cost = p->second.cost; 
      if (cost < min_cost) lowest_node = node; 
    } 
    // Move entry from TENT into PATH 
    if (empty_tent == 0) { 
      PATH[lowest_node] = TENT[lowest_node]; 
      if (Debug("Router.ComputeRoute")) { 
 cout << "MOVING ENTRY FROM TENT TO PATH:"<< lowest_node << 
   ", FOWARD:" << TENT[lowest_node].forw << ", COST:" << 
   TENT[lowest_node].cost << endl; 
      } 
      TENT.erase(lowest_node); 
      current_node = lowest_node; 
    }; 
  } while (empty_tent == 0); 
 
  // Copy over forwarding database 
  for (RI p = PATH.begin(); p!= PATH.end(); ++p) { 
    temp_DB[p->first] = p->second.forw; 
    if (Debug("Router.ComputeRoute")) { 
      cout << "Route: "<< p->first << ", Forward: "<< p->second.forw 
<<endl; 
    } 
  } 
  Forward_DB = temp_DB; 
 
  if (Debug("Router.ComputeRoute")) { 
    cout << "ComputeRoute: Ending at Time:" << Time::Now()<<endl; 
  }  
   
} 
 
 
 
 
void Router::HandleLSP(const Packet & p) { 
   
  if (Debug("Router.HandleLSP")) { 
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    cout << "HandleLSP: Running at Time:" << Time::Now()<<endl; 
  }  
   
  // Extract values 
  String source = p["src"]; 
  String node = p["node"]; 
  int hops = p["hops"].Convert((int*)0); 
  int age = p["age"].Convert((long*)0); 
  int sequence = p["sequence"].Convert((long*)0); 
  String payload = p["payload"]; 
 
  String d = ":#:"; 
  Router_DB_Entry index; 
  map<String, int> List; 
  String temp; 
  int cost; 
  int new_entry = 0; 
 
  // Need to de-serialize payload 
  do { 
    temp = payload.Split(d,&payload); 
    cost = payload.Split(d,&payload).Convert((int*)0); 
    if (temp.length()) List[temp] = cost; 
  } while (temp.length()); 
   
 
  if (cDB.find(node) == cDB.end()) { // New Entry 
    new_entry = 1; 
  } 
 
  index = cDB[node]; 
  if ((index.cSequence < sequence) || (index.cAge == 0) || 
      (new_entry == 1) ) { 
    // Valid LSP, update into database 
    index.cSrc = source; 
    index.cHops = hops; 
    index.cSequence = sequence; 
    index.cAge = age; 
    index.cValid = 1; 
    index.cNeighbor_list = List; 
    // Fisheye update calculation 
    index.cTTS = Time::Now() + EV_TIMER_UPDATE_LSP * pow(hops, ALPHA); 
    index.cSend_Flag = 1; 
    if (new_entry == 1) { 
      index.cHELLO_timer = 0; 
      index.cIs_Neighbor = 0; 
    } 
 
    // Store back in database 
    cDB[node] = index; 
 
    if (Debug("Router.HandleLSP")) { 
      cout << "Store Packet in Database:\n" ; 
      PrintEntry(node); 
    } 
  
    // Recompute Routes 
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    ComputeRoute(); 
  } else { 
      if (Debug("Router.HandleLSP")) { 
 cout << "HandleLSP: LSP Rejected from node: " << node << endl; 
      }  
  } 
 
} 
 
void Router::HandleHELLO(const Packet & p) { 
 
  int new_neighbor = 0; 
  String Source = p["src"]; 
 
  if (Debug("Router.HandleHELLO")) { 
       cout << "HandleHELLO: Running at Time:" << Time::Now()<< 
  ", from node:"<< Source << endl; 
  }  
 
 
 
  if (cDB.find(Source) == cDB.end()) { // New Neighbor 
    new_neighbor = 1; 
  } else if (cDB[Source].cIs_Neighbor == 0) new_neighbor = 1; 
 
  // Initialize entries 
  if (new_neighbor == 1) { 
    if (Debug("Router.HandleHELLO")) { 
      cout << "HandleHELLO: New Neighbor: " << Source << endl; 
    } 
 
    cDB[Source].cSrc = ""; 
    cDB[Source].cHops = 0; 
    cDB[Source].cSequence = 0; 
    cDB[Source].cAge = 0; 
    cDB[Source].cValid = 0; 
    cDB[Source].cSend_Flag = 0; 
    cDB[Source].cAck_Flag = 0; 
  } 
   
  // Reset HELLO timer and update into LSP Database 
  cDB[Source].cIs_Neighbor = 1; 
  cDB[Source].cHELLO_timer = COUNTER_HELLO; 
  // Update neighbor list in LocalNode entry 
  cDB[cLocalNode].cNeighbor_list[Source] = COST_ROUTE; 
 
  if (new_neighbor == 1) { 
    // Must send out new LSP for self 
    // Currently suppress event triggered LSPs because of too much 
overhead traffic. 
    // SendLSP(cLocalNode); 
    // Recompute Routes 
    ComputeRoute(); 
  } 
  if (Debug("Router.HandleHELLO")) { 
    cout << "Store HELLO Information in Database:\n" ; 
    PrintEntry(Source); 



 69 
 
 

  } 
 
} 
 
 
 
void Router::HandleDATA(const Packet & q) { 
 
  Packet p = q; 
  String SRC = p["src"]; 
  String DST = p["dst"]; 
  String Net_SRC = p["net_src"]; 
  String Net_DST = p["net_dst"]; 
  String Data = p["data"]; 
  String Next_SRC; 
  String Next_DST; 
 
  if (Debug("Router.HandleDATA")) { 
       cout << "HandleDATA: Running at Time:" << Time::Now()<<endl; 
       cout << "Received DATA: SRC:"<<SRC<<", DST:"<<DST<<  
  ", NET_SRC:"<<Net_SRC<<", NET_DST:"<<Net_DST<< endl; 
  }  
 
  if (cLocalNode == Net_DST) {  // Final Destination 
    //    cout << "Data packet reached final destination:\n"<< p << 
endl; 
    ToAbove(p); 
  } else {  // Intermediate Node 
    if (Forward_DB.find(Net_DST) == Forward_DB.end()) { 
      cout << "Router does not have path to destination: "  
    << Net_DST << "!!! Packet discarded!\n"; 
      return; 
    } else { 
      Next_SRC = cLocalNode; 
      Next_DST = Forward_DB[Net_DST]; 
    } 
 
    // Update fields 
    p["src"] = Next_SRC; 
    p["dst"] = Next_DST; 
 
    // Pass it back down. 
    if (Debug("Router.HandleDATA")) { 
      cout << "Forwarding Packet to node: " << Next_DST << endl; 
    } 
    ToBelow(p); 
  } 
  return; 
} 
 
void Router::HandleACK(const Packet & p) { 
 
  if (Debug("Router.HandleACK")) { 
       cout << "HandleACK: Running at Time:" << Time::Now()<<endl; 
  }  
  // XXX Unfinished 
  cout << "Received ACK packet.. yippy!\n"; 
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  return; 
} 
 
 
 
void Router::SendLSP(String node) { 
 
  if(Debug("Router.SendLSP")) { 
    cout << "SendLSP: Node: "<< node << " at:" << Time::Now()<<endl; 
  } 
 
  // Sends out LSP Packet 
  Router_DB_Entry index; 
  Packet p; 
  String ListNeighbors; 
  String d = ":#:"; 
  String h = ""; 
 
  index = cDB[node]; 
  if (index.cValid == 0) {  // XXX node not valid in cDB 
    cout << "FATAL ERROR SendLSP: Node not valid in LSP Database!\n"; 
    exit(0); 
  } 
  // Extract LSP information and turn into String 
  typedef map<String, int>::const_iterator CI; 
  for (CI 
i=index.cNeighbor_list.begin();i!=index.cNeighbor_list.end();++i) { 
    h = h + i->first + d + String::Convert(i->second) + d; 
  } 
         
  // Construct LSP Packet 
  p["opcode"]        = OP_LSP; 
  p["src"]           = cLocalNode; 
  p["node"]          = node; 
  p["hops"]          = String::Convert(index.cHops+1); 
  p["sequence"]      = String::Convert(index.cSequence); 
  p["age"]           = String::Convert(index.cAge); 
  p["payload"]       = h; 
 
  if (SWITCH_BROADCAST == 0) {  // Send unicast 
    typedef map<String, Router_DB_Entry>::iterator IT; 
    for (IT i = cDB.begin(); i != cDB.end(); ++i) { 
      index = i->second; 
      if ((index.cIs_Neighbor == 1) && (i->first != cDB[node].cSrc)) { 
   p["dst"] = i->first; 
   ToBelow(p); 
      } 
    } 
  } 
   
  if (SWITCH_BROADCAST == 1) {  // Send Broadcast 
    p["dst"] = BROADCAST; 
    ToBelow(p); 
  } 
} 
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void Router::SendHELLO(void) { 
  Packet p; 
 
  if (Debug("Router.SendHELLO")) { 
    cout << "SendHELLO: Running at Time:" << Time::Now()<<endl; 
  } 
 
  p["opcode"]         = OP_HELLO; 
  p["timestamp"]      = String::Convert(Time::Now()); 
  p["src"]            = cLocalNode; 
  p["dst"]            = BROADCAST; 
 
  ToBelow(p); 
} 
 
void Router::UpdateOwnLSP(void) { 
 
  if (Debug("Router.UpdateOwnLSP")) { 
    cout << "UpdateOwnLSP: Running at Time:" << Time::Now()<<endl; 
  } 
 
  // increment sequence number 
  cDB[cLocalNode].cSequence++; 
  // reset age 
  cDB[cLocalNode].cAge = COUNTER_AGE; 
  // Set send flag 
  cDB[cLocalNode].cSend_Flag = 1; 
  cDB[cLocalNode].cTTS = Time::Now(); 
  cDB[cLocalNode].cValid = 1; 
 
} 
 
void Router::DecrementAge(void) { 
 
  Router_DB_Entry index; 
  int need_ComputeRoute = 0; 
  int need_SendLSP = 0; 
 
  if (Debug("Router.DecrementAge")) { 
       cout << "DecrementAge: Running at Time:" << Time::Now()<<endl; 
  }  
 
  typedef map<String, Router_DB_Entry>::iterator CI; 
  for (CI i = cDB.begin(); i != cDB.end(); ++i) { 
    index = i->second; 
    // only look at valid entries for decrementing ages 
    if (index.cValid == 1) { 
      // Decrement Age 
      index.cAge--;  
      if (index.cAge <= 0) { 
 if (Debug("Router.DecrementAge")) { 
   cout << "DECREMENT_AGE: Entry:"<< i->first << " LSP age is 
zero!\n"; 
 } 
 index.cValid = 0; 
 index.cSend_Flag = 0; 
 index.cAge = 0; 
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 need_ComputeRoute = 1; 
      } 
    } 
    //  Only look at Neighbors for decrementing hello timers 
    if (index.cIs_Neighbor == 1) { 
      index.cHELLO_timer--; 
      if(index.cHELLO_timer <= 0) { 
 if (Debug("Router.DecrementAge")) { 
   cout << "DECREMENT_AGE: Entry:"<< i->first <<  
     " HELLO age is zero!\n"; 
 } 
 index.cIs_Neighbor = 0; 
 index.cHELLO_timer = 0; 
 // Remove Entry from Local Node neighbor_list entry 
 cDB[cLocalNode].cNeighbor_list.erase(i->first); 
 need_SendLSP = 1; 
 need_ComputeRoute = 1; 
      } 
    } 
    // Write back entry into Master database 
    i->second = index; 
  } 
 
  // Print out  
  if ((need_SendLSP == 1) || (need_ComputeRoute == 1)) { 
    if (Debug("Router.DecrementAge")) { 
      typedef map<String, Router_DB_Entry>::iterator CI; 
      for (CI i = cDB.begin(); i != cDB.end(); ++i) { 
 PrintEntry(i->first); 
      } 
    } 
  } 
 
 
  // Check if we need to recompute Routes 
  if (need_ComputeRoute == 1) { 
    if (Debug("Router.DecrementAge")) { 
      cout << "DECREMENT_AGE: Recomputing Routes!\n"; 
    } 
    ComputeRoute(); 
  } 
  if (need_SendLSP == 1) { 
    if (Debug("Router.DecrementAge")) { 
      cout << "DECREMENT_AGE: Sending out LSP!\n"; 
    } 
    // Send out own LSP because of neighbor change 
    SendLSP(cLocalNode); 
  } 
} 
 
 
void Router::ScanLSPdb(void) { 
 
  Router_DB_Entry index; 
  String Node; 
 
  if (Debug("Router.ScanLSPdb")) { 
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    // cout << "ScanLSPdb: Running at Time:" << Time::Now()<<endl; 
  }  
 
  typedef map<String, Router_DB_Entry>::iterator CI; 
  for (CI i = cDB.begin(); i != cDB.end(); ++i) { 
    Node = i->first; 
    index = i->second; 
 
    if (index.cValid == 0) continue; // only look at valid entries 
    // Check for SEND FLAG 
    if (Debug("Router.ScanLSPdb")) { 
      cout << "ScanLSPdb: Node:" << Node << ", TTS:" << index.cTTS << 
 ", TimeNow:" << Time::Now() << endl; 
    } 
    if (index.cSend_Flag == 1) { 
      if (index.cTTS <= Time::Now()) { 
 SendLSP(Node); 
 index.cSend_Flag = 0;  
 i->second = index; 
      } 
    } 
 
    // Check for ACK FLAG 
    if (index.cAck_Flag == 1) { 
      // XXX No ACKS for now... 
    } 
 
  }   
} 
 
 
Time Router::DoWork() { 
 
   
  if (Debug("Router.DoWork")) { 
       cout << "DoWork: Running at Time:" << Time::Now()<<endl; 
  }  
 
  if (Debug("Router.PrintForwardDB")) { 
    if(Time::Now() >= cNextTime_FORWARD_DB) { 
      cNextTime_FORWARD_DB = Time::Now() + EV_TIMER_FORWARD_DB; 
      typedef map<String, String>::const_iterator CI; 
      cout <<"----------FORWARDING DATABASE-------------\n"; 
      for (CI p = Forward_DB.begin();p!=Forward_DB.end(); ++p) { 
 cout << "Node:"<< p->first << "\tForward:" << p->second << endl; 
      } 
      cout <<"------------------------------------------\n"; 
    } 
  } 
 
  if(Time::Now() >= cNextTime_UPDATE_LSP) { 
    UpdateOwnLSP(); 
    cNextTime_UPDATE_LSP = Time::Now() + EV_TIMER_UPDATE_LSP; 
  } 
  if(Time::Now() >= cNextTime_SEND_HELLO) { 
    // Send HELLO Messages 
    SendHELLO(); 



 74 
 
 

    cNextTime_SEND_HELLO = Time::Now() + EV_TIMER_SEND_HELLO; 
  } 
  if(Time::Now() >= cNextTime_DECREMENT_AGE) { 
    // 1) Decrement Age and 2) Check for neighbor livetime 
    DecrementAge(); 
    cNextTime_DECREMENT_AGE = Time::Now() + EV_TIMER_DECREMENT_AGE; 
    // Can do some type of trick here for power-saving features 
  } 
  if(Time::Now() >= cNextTime_SCAN_DB) { 
    // LSP Check for send 
    ScanLSPdb(); 
    cNextTime_SCAN_DB = Time::Now() + EV_TIMER_SCAN_DB; 
    // Can do some type of trick here for power-saving features 
  } 
  return(Time::Now()-Time::Now() + 1); 
} 
 
bool Router::DoConsume(const Packet& p, size_t port) { 
 
  switch(port) { 
  case top: FromAbove(p); break; 
  case bot:  
    if ( ((p["dst"] == cLocalNode)||(p["dst"] == BROADCAST)) && 
  (p["src"] != cLocalNode) ) { 
      if (Debug("Router.DoConsume")) { 
 cout << "DoConsume: PACKET with OPCODE:"<< p["opcode"]  
      << " received from SRC:" << p["src"] << endl; 
      } 
      FromBelow(p); break; 
    } else { 
      if (Debug("Router.DoConsume")) { 
 cout << "DoConsume: SRC of Packet:"<< p["src"] <<". Ignored Packet 
for node:" << p["dst"] << endl; 
      } 
    } 
  default: break; 
  } 
  return(true); 
} 
 
void Router::FromAbove(const Packet& q) { 
  Packet p = q; 
 
  if (Debug("Router.FromAbove")) { 
    cout << "FROM_ABOVE:\n" << p; 
  } 
 
    if (!p.Has("opcode")) { cout << "No OPCODE!\n"; } 
  if (!p.Has("net_src")) p["net_src"] = cLocalNode; 
 
  const String opcode = p["opcode"]; 
  if (opcode == OP_DATA) { 
    HandleDATA(p); 
  } 
 
   
} 
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bool Router::ValidPacket(const Packet& p) { 
 
  /* Verifies integrity of packet- checks for valid fields 
     for now.  Could add checksum and other things later. */ 
 
  bool valid; 
 
  if (!p.Has("opcode")) {  
    cout << "ValidPacket(): Packet recieved has no OPCODE!\n";  
    cout << p; 
    return 0; 
  } 
  if (!p.Has("dst")) {  
    cout << "ValidPacket(): Packet recieved has no LINK 
DESTINATION(dst)!\n";  
    cout << p; 
    return 0; 
  } 
 
 
  const String opcode = p["opcode"]; 
  valid = 1; 
  if (opcode == OP_LSP) { 
    // Fields: src, dst, node, hops, sequence, age, payload 
    if (!p.Has("node")) { 
      cout << "ValidPacket(): LSP Packet recieved has no NODE(node)!\n";  
      valid = 0; 
    }; 
    if (!p.Has("sequence")) { 
      cout << "ValidPacket(): LSP Packet recieved has no SEQUENCE 
Number(sequence)!\n";  
      valid = 0; 
    }; 
    if (!p.Has("age")) { 
      cout << "ValidPacket(): LSP Packet recieved has no AGE(age)!\n";  
      valid = 0; 
    }; 
 
    if (valid == 0) { cout << p; }; 
    return valid; 
  } 
  if (opcode == OP_HELLO) { 
    // Fields: src, dst, timestamp 
    return valid; 
  } 
  if (opcode == OP_DATA) { 
    // Fields: src, dst, net_src, net_dst, data 
    if (!p.Has("net_dst")) { 
      cout << "ValidPacket(): DATA Packet recieved has no NETWORK 
Destination(net_dst)\n";  
      valid = 0; 
    }; 
    if (valid == 0) { cout << p; }; 
    return valid; 
  } 
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  cout << "Invalid OPCODE!\n" << p; 
  return 0; 
} 
 
   
 
void Router::FromBelow(const Packet& q) { 
  Packet p = q; 
 
  // Error Checking Packets here for key fields 
 
  if (!p.Has("opcode")) {  
    cout << "FromBelow: Packet recieved has no OPCODE!\n";  
    cout << p; 
    return; 
  } 
  if (!p.Has("src")) {  
    cout << "FromBelow: Packet recieved has no SRC!\n";  
    cout << p; 
    return; 
  } 
 
  const String opcode = p["opcode"]; 
   
  if (opcode == OP_LSP) { 
    HandleLSP(p); 
  } 
  if (opcode == OP_HELLO) { 
    HandleHELLO(p); 
  } 
  if (opcode == OP_DATA) { 
    HandleDATA(p); 
  } 
  if (opcode == OP_ACK) { 
    HandleACK(p); 
  } 
} 
 
bool Router::ToBelow(const Packet & p) { 
 
  if (Debug("Router.ToBelow")) { 
    cout << "TO_BELOW EXECUTED!  Sending Packet:\n"; 
    cout << p; 
  } 
  return(DoProduce(p, bot)); 
  // return(true); 
} 
 
bool Router::ToAbove(const Packet & p) { 
 
  if (Debug("Router.ToAbove")) { 
    cout << "TO_ABOVE EXECUTED!  Sending Packet:\n"; 
    cout << p; 
  } 
  return(DoProduce(p, top)); 
  // return(true); 
} 
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#include <IntfFile.h> 
#include <IntfPipe.h> 
#include <IntfTty.h> 
#include <IntfUdp.h> 
#include <IntfChild.h> 
#include <UserCore.h> 
#include <ProdTimer.h> 
#include <MrrCore.h> 
#include <RouterFilter.h> 
 
int main(int argc, char* argv[]) { 
 
  /* Handle command line options... 
   * Valid options are: 
   * -router=<String> 
   * -pipe=<0:1> 
   */ 
 
  String RouterOpt("-router="); 
  String RouterName("Allen's Router"); 
  String PipeOpt("-pipe="); 
  String Pipe("1"); 
  for (int i=1; i<argc; i++) { 
    String a = argv[i]; 
    if(strncmp(RouterOpt.c_str(), a.c_str(), RouterOpt.length()) == 0) { 
      RouterName = a.substr(RouterOpt.length()); 
    } 
    else if (strncmp(PipeOpt.c_str(), a.c_str(), PipeOpt.length()) == 0) 
{ 
      Pipe = a.substr(PipeOpt.length()); 
    } 
    else { 
      cout << "Invalid Options\n"; 
      return(1); 
    } 
  } 
          
 
 
  Debug::Load("Debug-route.flags"); 
   
  FileInterface fi(STDIN_FILENO, STDOUT_FILENO); 
  PktToString psIn;   // From STDIN to Router String->Packet 
  PktToString psOut;  // From Router to Pipe  Packet-> String 
  Router LSR(RouterName); 
  RouterFilter Filter("Router-Network.filter", RouterName); 
  String inpipe  = ((Pipe == "1") ? "/tmp/in"  : "/tmp/out"); 
  String outpipe = ((Pipe == "1") ? "/tmp/out" : "/tmp/in" ); 
  //  PipeInterface ether(inpipe, outpipe); 
 
 
  int noCheck=false; 
  int mcast = true; 
  int mcastLoop = true; 
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  int broadcast = false; 
  int reuse = true; 
  UdpInterface ether("239.0.0.1:1024", "239.0.0.1:1024",  
        noCheck,  
        mcast, 
        mcastLoop, 
        broadcast,  
        reuse); 
 
 
  fi.ConnectTo(psIn.Port(String())); 
  psIn.Port(Packet()).ConnectTo(LSR.Port(MrrLayer::top)); 
  LSR.Port(MrrLayer::bot).ConnectTo(Filter.Port(MrrLayer::top)); 
  Filter.Port(MrrLayer::bot).ConnectTo(psOut.Port(Packet())); 
 
  //  LSR.Port(MrrLayer::bot).ConnectTo(psOut.Port(Packet())); 
 
  ether.ConnectTo(psOut.Port(String())); 
 
  // Set Manager and Run 
  Manager m; 
  m.BuildEmpire();  // Collect any strays... 
  OrgChart chart; 
  cout << chart.Build(m) << endl; 
  cout << Worker::Payroll() << endl; 
  m.TakeCharge(); 
} 
 
 

7.2 Router.h 
 
#include <stdlib.h> 
#include <iostream.h> 
#include <UtString.h> 
#include <UtTime.h> 
#include <UtDebug.h> 
#include <MrrPacket.h> 
#include <MrrLayer.h> 
#include <UserCore.h> 
// Opcodes for packets 
#define OP_LSP               "LSP" 
#define OP_HELLO             "HELLO" 
#define OP_DATA              "DATA" 
#define OP_ACK               "ACK" 
// Broadcast address 
#define BROADCAST            "BROADCAST" 
// Timer definitions: in seconds 
#define EV_TIMER_SEND_HELLO        1 
#define EV_TIMER_SCAN_DB           1 
#define EV_TIMER_UPDATE_LSP        3 
#define ALPHA                      1.0 
#define EV_TIMER_DECREMENT_AGE     1 
#define EV_TIMER_FORWARD_DB        3 
// Router Switches 
#define SWITCH_BROADCAST     0 
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// COUNTER VALUES 
#define COUNTER_HELLO        60 
#define COUNTER_AGE          60 
// COSTS 
#define COST_ROUTE           1 
 
struct  Router_DB_Entry { 
  String cSrc; 
  int cHops; 
  long cSequence; 
  long cAge; 
  int cValid;  // determined by age 
  map<String, int> cNeighbor_list; 
  Time cTTS; 
  int cSend_Flag; 
  int cAck_Flag; 
  long cHELLO_timer; 
  int cIs_Neighbor; 
  long cTime_stamp; 
  Router_DB_Entry() :  // Constuctor 
    cSrc(""), 
    cHops(0), 
    cSequence(0), 
    cAge(0), 
    cValid(0),  // determined by age 
    cNeighbor_list(), 
    cTTS(0.0), 
    cSend_Flag(0), 
    cAck_Flag(0), 
    cHELLO_timer(0), 
    cIs_Neighbor(0), 
    cTime_stamp(0) 
    {}; 
}; 
 
  struct Route_info { 
    int cost; 
    String forw; 
  }; 
 
 
 
 
class Router : public MultiPort<Packet> { 
 
protected: 
  map<String, Router_DB_Entry> cDB; 
  map<String, String> Forward_DB; 
 
  Time cNextTime_SCAN_DB; 
  Time cNextTime_UPDATE_LSP; 
  Time cNextTime_SEND_HELLO; 
  Time cNextTime_DECREMENT_AGE; 
  Time cNextTime_FORWARD_DB; 
 
  String cLocalNode; 
  // Bunch of other global type variables here 
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  /// DoConsume() - Place where all packets arrive... 
  virtual bool DoConsume(const Packet& p, size_t port); 
 
  /// FromAbove() - Handle packets from above 
  virtual void FromAbove(const Packet& p); 
 
  /// FromBelow() - Handle packets from below 
  virtual void FromBelow(const Packet& p); 
   
  /// ToAbove() - Send packet above 
  virtual bool ToAbove(const Packet & p); 
 
  /// ToBelow() - Send packet below 
  virtual bool ToBelow(const Packet & p); 
 
  /// Allows us to schedule timeouts 
  virtual Time DoWork(); 
 
  virtual void SendHELLO(void); 
   
  virtual void SendLSP(String); 
 
  virtual void UpdateOwnLSP(void); 
 
  virtual void DecrementAge(void); 
 
  virtual void ScanLSPdb(void); 
 
  virtual void HandleLSP(const Packet & p); 
 
  virtual void HandleHELLO(const Packet & p); 
 
  virtual void HandleDATA(const Packet & q); 
 
  virtual void HandleACK(const Packet & p); 
 
  virtual void ComputeRoute(void); 
 
  virtual void PrintEntry(String s); 
 
  virtual bool ValidPacket(const Packet &p); 
 
public: 
  enum { top,bot }; 
  Router(const String& address); 
  virtual ~Router() {}; 
}; 
 
 
 


