WIRELESS LOCAL AREA NETWORK

IEE 802.11

Back and Forward Page 5

IEEE 802.11b :

In September 1999 IEEE ratified the 802.11b “High Rate” amendment to the standard, which added two higher speeds (5.5 and 11 Mbps) to 802.11. This was a major breakthrough as now With 802.11b WLANs, mobile users can get Ethernet levels of performance, throughput, and availability. The standards-based technology now enabled administrators to build networks that seamlessly combine more than one LAN technology to best fit their business and user needs.

The basic architecture, features, and services of 802.11b are defined by the original 802.11 standard. The 802.11b specification affects only the physical layer, adding higher data rates and more robust connectivity.

ISO Model architecture

The key contribution of the 802.11b addition to the wireless LAN standard was to standardize the physical layer support of two new speeds, 5.5 Mbps and 11 Mbps. To accomplish this, DSSS had to be selected as the sole physical layer technique for the standard since, as noted above, frequency hopping cannot support the higher speeds without violating current FCC regulations. The implication is that 802.11b systems will interoperate with 1 Mbps and 2 Mbps 802.11 DSSS systems, but will not work with 1 Mbps and 2 Mbps 802.11 FHSS systems.

The original 802.11 DSSS standard specifies an 11-bit chipping—called a Barker sequence—to encode all data sent over the air. Each 11-chip sequence represents a single data bit (1 or 0), and is converted to a waveform, called a symbol, that can be sent over the air. These symbols are transmitted at a 1 MSps (1 million symbols per second) symbol rate using a technique called Binary Phase Shift Keying (BPSK). In the case of 2 Mbps, a more sophisticated implementation called Quadrature Phase Shift Keying (QPSK) is used; it doubles the data rate available in BPSK, via improved efficiency in the use of the radio bandwidth.

To increase the data rate in the 802.11b standard, advanced coding techniques are employed. Rather than the two 11-bit Barker sequences, 802.11b specifies Complementary Code Keying (CCK), which consists of a set of 64 eight-bit code words. As a set, these code words have unique mathematical properties that allow them to be correctly distinguished from one another by a receiver even in the presence of substantial noise and multipath interference (e.g., interference caused by receiving multiple radio reflections within a building). The 5.5 Mbps rate uses CCK to encode 4 bits per carrier, while the 11 Mbps rate encodes 8 bits per carrier. Both speeds use QPSK as the modulation technique and signal at 1.375 MSps. This is how the higher data rates are obtained. Table 1 shows the differences.

Table 1. 802.11b Data Rate Specifications
Data Rate Code Length Modulation Symbol Rate Bits/Symbol
1 Mbps 11 (Barker Sequence) BPSK 1 MSps 1
2 Mbps 11 (Barker Sequence) QPSK 1 MSps 2
5.5 Mbps 8 (CCK) QPSK 1.375 MSps 4
11 Mbps 8 (CCK) QPSK 1.375 MSps 8

To support very noisy environments as well as extended range, 802.11b WLANs use dynamic rate shifting, allowing data rates to be automatically adjusted to compensate for the changing nature of the radio channel. Ideally, users connect at the full 11 Mbps rate. However when devices move beyond the optimal range for 11 Mbps operation, or if substantial interference is present, 802.11b devices will transmit at lower speeds, falling back to 5.5, 2, and 1 Mbps. Likewise, if the device moves back within the range of a higher-speed transmission, the connection will automatically speed up again. Rate shifting is a physical-layer mechanism transparent to the user and the upper layers of the protocol stack.