Module contents

★ Technologies overview

- ★ Spread Spectrum
 - ★ Direct Sequence
 - ★ Frequency Hopping

★ Modulation

- ★ DBPSK/DQPSK
- ★ CCK

OSI Reference Model: Phy

unication

★ Network Oper. System

- ★ Network Layer
- ★ Guarantees delivery data

★ Drivers

- ★ LLC Layer
- ★ send/receive data
- ★ LAN Controller
 - ★ MAC Layer
 - \star data into/out frame

★ MODEM

- ★ Physical Layer
- frame into/out phy frame
 .11 tech. OVW 2

(overview)

(Infrared)

- \star low power infrared light as the carrier
- ★ No license required
- ★ Very restricted mobility, limited coverage
- ★ high data rate (10 Mbps, 16 Mbps)
- ★ Line-of-Sight Infrared
 - \star no objects in the path between two stations
- ★ Diffuse Infrared
 - \star uses reflections to set-up wireless link

(Narrow Band)

★ Dedicated band (18 GHz)

★ License required

★ ISM band (915 MHz, 2.4 GHz, 5.8 GHz)

- ★ unlicensed (special modulation)
- ★ extremely low output power i.e. limited coverage
- ★ high data rate (up to 10 Mbps) on short distance

★ Europe - DECT band (1.8 GHz)

 \star based on voice standard

• 915 MHz only in the Americas (region 2)

nmunication

• 2.4 GHz for global availability (region 1,2,3)

(Spread Spectrum)

- ★ Unlicensed usage (ISM band)
- ★ No line of sight requirement (indoor)
- ★ High link reliability
- ★ Built-in transmission security
- ★ Two techniques used:
 - ★ Direct Sequence
 - ★ Frequency Hopping

Module contents

★ Technologies overview

★ Spread Spectrum

- ***** Direct Sequence
- ***** Frequency Hopping

★ Modulation

- ★ DBPSK/DQPSK
- ★ CCK

Multiple Access Methods

Multiple users share the available spectrum

★ Direct Sequence

- ★ Each symbol is transmitted over multiple frequencies at the same time
- ★ Very efficient (no overhead)
- ★ Higher speed than FH at comparable distances
- ★ System capacity (multiple channels) higher than FH

★ Frequency Hopping

- ★ Sequential use of multiple frequencies
- \star Hop sequence and rate will vary
- ★ "End hop waste time"

Direct Sequence transmitter

- ★ Spreading: Information signal (I.e. a "symbol") is multiplied by a unique, high rate digital code which stretches (spreads) its bandwidth before transmission.
- \star Code bits are called "Chips".
- ★ Sequence is called "Barker Code"

What happens during "spreading"

- ★ Due to the multiplication of a symbol with Barker code, the "rate-of-change" increases with a factor 11
- ★ This means that cycle rate increases from 1 MHz to 11 MHz
- ★ In terms of spectrum this means that after RF modulation the signal is spread from 2 MHz bandwidth to 22 MHz bandwidth

Direct Sequence receiver

- ★ At the receiver, the spread signal is multiplied again by a synchronized replica of the same code, and is "de-spread" and recovered
- ★ The outcome of the process is the original "symbol"

De-spreading

- ★ When the incoming signal is despread, it results in either a positive (+) or a negative (-) "spike"
- ★ These "spikes" arrive at intervals equal to the symbol time
- ★ A positive spike represents a "1" symbol, a negative spike represents a "0" symbol

Direct Sequence receiver - effect of echoes

- ★ Echoes may arrive at the receiver, fluctuations can be noticed at positions other than at the symbol time boundaries
- ★ These fluctuations are ignored as the receiver will only interpret the spike at the synchronization points (separated from each other by the symbol time)

Module contents

- ★ Technologies overview
- ★ Spread Spectrum
 - ★ Direct Sequence
 - ★ Frequency Hopping

★ Modulation

- ★ DBPSK/DQPSK
- * CCK

Modulation

DBPSK (Differential Binary Phase Shift Keying)

Bit Input	Phase Change (+jω)
0	0
1	π

Table 1, 1 Mb/s DBPSK Encoding Table.

Modulation

DQPSK (Differential Quadrature Phase Shift Keying)

Dibit pattern (d0,d1) d0 is first in time	Phase Change (+j α)
00	0
01	π/2
11	π
10	3π/2 (-π/2)

Table 1, 2 Mb/s DQPSK Encoding Table

CCK = Complementary Code Keying

- ★ IEEE 802.11 standard for high speed
- ★ 11 and 5.5 Mbps data rates
- ★ Outstanding high multi-path performance
- ★ Outstanding low-SNR performance
- ★ Seamless interoperability with existing DS
- ★ Maintains QPSK chips at 11 MHz chip rate
- ★ Maintains 3 frequency channels
- ★ FCC and MKK regulations satisfied

- ★ Data bits are encoded to a symbol which is transmitted in the form of 8 chips
- ★ For Data-Rate = Medium Encoding means:
 - ★ mapping 2 data bits to I or Q channel (in-Phase, Quaternary Phase)
 - ★ mapping 2 data bits to one of 4 Complex Codewords
- ★ For Data-Rate = High Encoding means:
 - ★ mapping 2 data bits to I or Q channel (in-Phase, Quaternary Phase)
 - ★ mapping 6 data bits to one of 64 Complex Codewords
- ★ Codewords are complex complementary codes selected from a code set

Data Rate = 4 bits/symbol * 1.375 MSps = 5.5 MBps

.11 tech. OVW 22

communication

★ Bit-rates:

- ★ The 11 chips Barker sequence in Standard DSSS carries one symbol clocked at 1MHz, which results in a symbol rate of 1Msymbol/sec.
- ★ The 8 chips sequence in CCK clocked at 1 MHz, results in a symbol rate of 1.375 Msymbol/sec (I.e. 11/8)
- ★ At date rate = medium, 4 data bits are mapped on one symbol, which results in 5.5 Mbps (I.e. 1.375 * 4)
- At date rate = high, 8 data bits are mapped on one symbol, which results in 11 Mbps (I.e. 1.375 * 8)

Module summary

- ★ Technologies overview
- ★ Spread Spectrum
 - ★ Direct Sequence
 - ★ Frequency Hopping
- ★ Modulation
 - ★ BQPSK/BQPSK
 - ★ CCK

