

i

iv

Implementation and Performance Analysis of

The Protected Extensible Authentication Protocol

by

NIRMALA BULUSU

Post Graduate Diploma ‘A’ Level, Department of Electronics, India, 1997

B.A., University of Delhi, Delhi, India, 1995

A Thesis

Submitted to the Faculty of Graduate School of the

University of Colorado at Colorado Springs

In Partial Fulfillment of the Requirements

For the Degree of

Master of Computer Science

Department of Computer Science

2003

(Copyright By Nirmala Bulusu 2003

All Rights Reserved

This thesis for Master of Computer Science degree by

Nirmala Bulusu

has been approved for the

Department of Computer Science

by

Advisor: Dr. C. Edward Chow

Dr. Terrance Boult

Dr. Xiaobo Zhou

Date

Nirmala Bulusu (M.S. Computer Science)

Implementation and Performance Analysis of

The Protected Extensible Authentication Protocol

Thesis directed by Professor Dr. C. Edward Chow, Department of Computer Science

Abstract

Wireless local area networks (wireless LANs, or WLANs) are changing the landscape of computer networking. Wireless communications are inherently more open to attack than wired data transfer, as its physical layer is not contained in the wire. Wireless LANs require strict user authentication, data privacy and data integrity to prevent unauthorized access to network resources and protect data from modification or destruction. Many standard setting bodies are working on the problem of wireless security. Recently new protocols have been proposed by the Internet Engineering Task Force (IETF) for protecting client authentication by running the protocols in a secure tunnel wherein all data required for authenticating the user is well encrypted. The purpose of this thesis is to implement one such proposed security protocol - PEAP (Protected Extensible Authentication Protocol). The thesis also attempts to make a comparative analysis between the implemented protocol and its competing standard TTLS (Tunneled Transport Layer Security).

Acknowledgements

First and foremost I would like to sincerely thank my advisor Dr. Edward Chow for all the guidance and interest he took in the progress of this work. I will consider myself lucky if I have imbibed at least a small percentage of his admirable qualities like devotion and single-minded dedication towards work.

I am extremely grateful to Dr. Terrance Boult for his valuable suggestions and advise during the course of this thesis work without which it would have been very difficult for me to implement the protocol.

I am thankful to Donovan Thorpe for providing me with the much-needed logs that helped me study the behavior of the protocol and also for his every ready response to the questions I had while setting up the test bed. I also wish to thank Paul Fong for setting-up the wireless access point. I would like to thank Dave Lohmann for guiding me through the many Linux installations. I would also like to thank Ganesh Kumar Godavari, for suggesting me to work in this area of research and guiding me in the initial stages of my thesis work. I am thankful to all my friends and classmates who provided me great company during the tedious hours in the lab.

Many thanks go to my family members for their constant support and encouragement. I am grateful to my parents for all their love, affection and blessings without which I would not have gotten this far in life. And finally a special note of thanks goes to Sridhar, my husband for his continual encouragement, support; advice and patience that has enabled me to accomplish things I never thought were possible.

CONTENTS

1Chapter 1
Introduction

21.1
wireless networks

21.1.1
Overview

31.1.2
How Wireless LANs Work

31.2
Wireless Network Security

61.3
Thesis Goal

61.4
Thesis Requirements

61.5
Thesis Outline

9Chapter 2
Wireless LAN Standards

92.1
Overview

102.2
The IEEE 802.11 Standard

102.2.1
Overview

132.2.2
IEEE 802.11 Standard Security Mechanisms

152.3
802.1x and the Extensible Authentication Protocol (EAP)

152.3.1
IEEE 802.1x - Overview

182.3.2
How 802.1x works

202.3.3
EAPoL Packet Format and Message Types

212.4
Extensible Authentication Protocol (EAP)

212.4.1
Definition

222.4.2
How EAP works

25Chapter 3
EAP – Authentication Methods

253.1
Overview

273.2
EAP Transport Layer Security

283.2.1
EAP-TLS Message Exchange Process

303.2.2
EAP-TLS – Weaknesses

323.3
EAP – Tunneled Transport Layer Security (EAP-TTLS)

333.3.1
How EAP-TTLS works?

343.4
Protected Extensible Authentication Protocol (PEAP)

353.4.1
PEAP Message Exchange Process

38Chapter 4
Remote Authentication Dial-in User Service

384.1
Overview

394.2
The RADIUS protocol

394.2.1
Components

414.2.2
RADIUS Server Operation and its Message types

434.3
RADIUS Packet Format

444.3.1
An Example RADIUS Packet

454.4
Extensible Authentication Protocol (EAP) over RADIUS

46Chapter 5
PEAP Protocol Design and Implementation

465.1
RADIUS Server Code Organization

465.1.1
Server Functionality

465.1.2
How the RADIUS Requests are processed

465.1.2.1
A Modular Approach

475.1.2.2
Module Outline

495.1.2.3
Module Creation

505.1.2.4
Module Initialization and Detach methods

525.1.3
EAP Code Organization

525.1.3.1
Overview

525.1.3.2
Directory Structure

535.1.4
The rlm_eap module

565.1.4.1
EAP Packet format

575.1.5
The rlm_eap_tls module

585.1.5.1
EAP-TLS Packet format

595.1.5.2
EAP-TLS - Code Descriptions

605.2
Implementation of the rlm_eap_peap module

605.2.1
Overview

615.2.2
The rlm_eap_peap module

625.2.2.1
EAP-PEAP Packet Format

635.2.2.2
PEAP – PHASE1

655.2.2.3
The EAP-TLV Method

695.2.2.4
PEAP – PHASE2

765.3
The rlm_eap_ttls module

765.3.1
Overview

775.3.2
AVPs and their encapsulation within the TLS Record Layer

82Chapter 6
Performance Results

836.1
Current TestBed in the UCCS Engineering LAB

846.2
Test Data Collection

856.3
Test Scenarios

866.4
Test Results and Analysis

1076.5
MAC Address Spoofing Test on PEAP

110Chapter 7
Lessons Learnt

113Chapter 8
Future Areas of Work

115Chapter 9
Conclusion

117Bibliography

122Appendix A
FreeRadius – Set-up

128Appendix B
XSupplicant – Set-up

131Appendix C
Access Point Set-up

133Appendix D
OPENSSL - Installation

137Appendix E
Server and Client Logs

FIGURES

Figure

1.1:
Wireless LAN Topology
5
2.1:

The Classic 802.11 State Machine
12
2.2:
EAPoL packets / RADIUS PDUs
18
2.3:

Principal of Operation among the IEEE 802.1x Components
19
2.4:

EAPoL Packet Format and MessageTypes
20
2.5:

IEEE 802.1x and EAP Message exchange
24
3.1:

Wireless LAN Architectural Framework
26
3.2:

EAP-TLS Message Exchange Process
30
3.3:

The Network Architectural Framework for EAP-TTLS
33
3.4:

PEAP Phase 1 – Perform TLS handshake & Establish TLS Tunnel
37
3.5:

PEAP Phase 2 – Authenticate Client in the generated TLS tunnel
37
4.1:

A typical RADIUS Server Topology (Adapted [IEPOCH])
40
4.2:

A Broad Operational Flow of RADIUS Server
42
4.3:

Message Exchange between RADIUS Client & Server
42
4.4:

RADIUS Packet Format
43
4.5:

An Example RADIUS Packet
44
5.2:

Radius Source Code Directory Structure
52
5.3:

EAP PACKET FORMAT
56
5.4:

EAP-TLS PACKET FORMAT
58
5.5:

PEAP Packet Format
63
5.6:

EAP-TLV Packet Format
66
5.7:

RESULT- TLV Packet Format
66
5.8:

AVP Packet Format
78
6.1:

Test Bench set-up in the Lab
83
6.2

PEAP vs TTLS for the Toshiba Client
87
6.3

PEAP vs TTLS for the Hobbit Client
88
6.4

PEAP vs TTLS on running simultaneously on two different Clients
89
6.5:

PEAP vs TTLS at a distance range of ~30 ft
92
6.6:

PEAP vs TTLS at a distance range of ~25 ft
93
6.7:

PEAP vs TTLS at a distance range of ~45 ft
94
6.8:

PEAP vs TTLS at a distance range of ~55 ft
95
6.9:

PEAP vs TTLS at a distance range of ~65 ft
96
6.10:
PEAP vs TTLS Average Performances over Varying Distances
97
6.11:
PEAP vs TTLS Variance Data over Various Distances
97
6.12:
PEAP vs TTLS Resilience Test with Network Uptime 5 sec
100
6.13:
PEAP vs TTLS Resilience Test with Network Uptime 4.5 sec
101
6.14:
PEAP vs TTLS Resilience Test with Network Uptime 4.2 sec
102
6.15:
PEAP vs TTLS Resilience Test with Network Uptime 4 sec
103
6.16:
PEAP vs TTLS Resilience Test with Network Uptime 3.9 sec
104
6.17:
PEAP Stress Test
106
6.18:
TTLS Stress Test
107

TABLES

Table

6.1

Configuration of machines used in performance tests
82
6.2

PEAP vs TTLS for the Toshiba Client
87
6.3

PEAP vs TTLS for the Hobbit Client
88
6.4

PEAP vs TTLS on running simultaneously on two different Clients
89
6.5:

PEAP vs TTLS at a distance range of ~30 ft
91
6.6:

PEAP vs TTLS at a distance range of ~25 ft
92
6.7:

PEAP vs TTLS at a distance range of ~45 ft
93
6.8:

PEAP vs TTLS at a distance range of ~55 ft
94
6.9:

PEAP vs TTLS at a distance range of ~65 ft
95
6.10:
PEAP vs TTLS Performances over Varying Distances [Average Values]
96
6.11:
PEAP vs TTLS Variance Data over Various Distances
97
6.12:
PEAP vs TTLS Resilience Test with Network Uptime 5 sec
100
6.13:
PEAP vs TTLS Resilience Test with Network Uptime 4.5 sec
101
6.14:
PEAP vs TTLS Resilience Test with Network Uptime 4.2 sec
102
6.15:
PEAP vs TTLS Resilience Test with Network Uptime 4 sec
103
6.16:
PEAP vs TTLS Resilience Test with Network Uptime 3.9 sec
104
6.17:
PEAP Stress Test
106
6.18:
TTLS Stress Test
106
Chapter 1
Introduction
Wireless local area networks (wireless LANs, or WLANs) are changing the landscape of computer networking. In recent years, the proliferation of mobile computing devices, such as laptops and personal digital assistants (PDA’s), coupled with the demand for continual network connections without having to "plug in," are resulting in an explosive growth in enterprise WLANs [GEIR01, CIS02]. Wireless LANs are finding their way into a wide variety of markets including financial sectors, corporations, health care, and education. Indeed, according to a research study by Frost and Sullivan, the wireless LAN market is set to reach $697.7 million in 2003 [FRSU02].

Wireless networks offer the benefits of increased productivity, easier network expansion, flexibility, and lower the cost of ownership. In addition Wireless LAN systems can be configured in a variety of topologies to meet the needs of specific applications and installations. Following the increasing demand for wireless data access, different kind of wireless communication technologies are being developed continually.

On the other hand, security considerations continue to be a major challenge in the wireless network set-ups. Lack of security and inflexible authentication is often cited as a major barrier to the growth of e-commerce (electronic commerce) into m-commerce (mobile commerce). Wireless LANs, unlike the relative simplicity of wired Ethernet deployments, broadcast radio-frequency (RF) data for the Client stations to hear. This presents new and complex security issues requiring additional policies to be incorporated in every WLAN deployment. Wireless LANs require strict User authentication, Data privacy and Data Integrity to prevent unauthorized access to network resources and protect data from modification or destruction.

The Internet Engineering Task Force (IETF) has proposed new protocols for protecting Client authentication by running the protocols in a secure tunnel wherein all data required for authenticating the user is well encrypted. The purpose of this thesis is to implement one such proposed security protocol - PEAP (Protected Extensible Authentication Protocol) [IETF02]. PEAP was developed by Microsoft, Cisco and RSA security and is currently an Internet draft. The protocol implementation is done on the server end of a Client/Server network model on a RADIUS server (Remote Authentication Dial-in User Service). The thesis also attempts to make a comparative analysis between the implemented protocol and another competing standard TTLS (Tunneled Transport Layer Security). The proposed protocol - PEAP provides for Client identity protection and key generation thus preventing unauthorized user access and protecting or encrypting the data against malicious manipulation.

1.1 Wireless Networks

1.1.1 Overview

A wireless Local Area Network (WLAN) is a flexible data communications system implemented as an extension to or as an alternative for, a wired LAN. Using radio frequency (RF) technology, wireless LANs transmit and receive data over the air, minimizing the need for wired connections. Wireless LANs frequently augment rather than replace wired LAN networks—often providing the final few meters of connectivity between a wired network and the mobile user.

1.1.2 How Wireless LANs Work

At its simplest form, wireless LAN technology, lets computers communicate with the rest of a local area network via radio signals rather than over wires. Figure 1.1 shows a typical WLAN topology. There are two key components. First is the access point, or AP, which is the last wired stop on your network. Connected to the rest of the network via Ethernet cable, the AP translates the wired network traffic into radio signals and transmits it out. The signals are picked up by laptops or desktops with either removable or permanently embedded wireless-network interface cards.

1.2 Wireless Network Security

With the added convenience of wireless access come new problems. With wireless LAN radio waves propagating throughout--and even outside--the enterprise, wireless LANs obviously present unique challenges like user security, data rate enhancements, lowering costs and roaming user challenges of which security considerations continue to be a major consideration. While fundamentals of wireless security are largely similar to those of the wired Internet, wireless data networks present a more constrained communication environment compared to wired networks. Because of fundamental limitations of power, available spectrum and mobility, wireless data networks tend to have less bandwidth, more latency, less connection stability, and less predictable availability. Similarly, handheld wireless devices tend to have limited battery life, less powerful CPUs, less memory, restricted power consumption, smaller displays, and different input presenting a more constrained computing environment compared to desktop computers [CISSP02].

With a WLAN, transmitted data is broadcast over the air using radio waves. This means that any WLAN Client within an access point (AP) service area can receive data transmitted to or from the access point. Because radio waves travel through ceilings, floors, and walls data may hence easily reach unintended recipients. Tools like Ethereal; AirSnort can easily be used to passively collect data of any Client within the broadcast range [ETHv1, ASnort]. Users have no way of knowing if they are connecting to rogue access point set-up as part of a man-in-the-middle attack [AVK02].

WLAN security, involves concern in three separate issues: Authentication, user Privacy and Authorization. Focusing too much on any one of these capabilities without adequately addressing the other issues will not help reduce the insecurities inherent in the wireless system.

[image: image6.wmf]

EAP Messages

Encapsulated

EAPOL

Supplicant

System

Authenticator

 S

ystem

Host NIC

Ethernet 802.1,

Wireless PC card,

etc.

Services offered by

the Authenticator

system

Authenticator

PAE

Authorize/Unauthorize

Port Unauthorized

Controlled

Port

Uncontrolled

Port

MAC Enable

Authentication

Server System

Authentication

Server

[AAA]

Any EAP

Mostly Radius

The th

ree d

ifferent

e

lements in

IEEE

802.1x

Figure 1.1: Wireless LAN Topology

1.3 Thesis Goal

The main goal of this thesis is to offer a server side implementation of the Protected Extensible Authentication Protocol (PEAP). PEAP as introduced in Chapter 3 is an 802.1x EAP authentication protocol designed typically for access control in wireless LANs. It makes use of two very well known protocols Extensible Authentication Protocol (EAP) and EAP- Transport Layer Security (TLS) as a way to securely transport authentication data, including passwords, over 802.11 wireless networks.

1.4 Thesis Requirements

This thesis would require sometimes modifying the kernel of operating systems for wireless LAN adapter driver support and the source code on both the Client and server end. Therefore we have chosen to use the available open source software and the Linux Operating System for both the Client and the Server to implement the protocol.

1.5 Thesis Outline

In this thesis, the concepts of wireless LAN Security with special emphasis on IEEE 802.1x standard and the Extensible Authentication Protocol (EAP) with its various authentication methods are studied. This thesis provides a detailed look at the proposed EAP method - Protected Extensible Authentication Protocol and its implementation on a Linux Server. The rest of the thesis report is organized as follows:

Chapter 2 introduces us to the IEEE 802.11 standards. The concepts and the operation of the two protocols - IEEE 802.1x standard for wireless networks and the Extensible Authentication Protocol are explained.

Chapter 3 talks about the various Extensible Authentication Protocols (EAP) methods with special emphasis on the three most popular EAP-Types namely TLS, TTLS, and PEAP.

Chapter 4 explains in detail the working of the Authentication Authorization and Accounting Server - RADIUS. It discusses the message exchanges between EAP and the RADIUS to achieve secured access of legitimate Clients to the network. Special emphasis is being given to this topic as this thesis implements the PEAP protocol on a RADIUS server.

Chapter 5 shows the study, analysis and implementation of the PEAP protocol. Firstly a brief outline the FreeRadius server code organization is given, then a detailed design of the server side code of the EAP protocol is explained and finally the PEAP module implementation. It also lists the requirements of the operating system, the software and network protocols needed for the implementation.

Chapter 6 shows the Performance Results of the two protocols PEAP and TTLS

Chapter 7 outlines the lessons learnt in the process of the thesis work.

Chapter 8 indicates the possible future research work and the lessons learnt during the course of the thesis work.

Chapter 9 summarizes the results of the implementation. A comparative analysis with its competing protocol is given.

Bibliography lists all Standards, RFCs, Drafts, ACM/IEEE papers, books and even the web sites that have been referred to.

Appendix A shows how to install, set-up and configure the Radius Server.

Appendix B presents the steps involved in setting up the Xsupplicant Client.

Appendix C explains the access point set-up.

Appendix D gives a brief account of how to install Openssl and generate certificates.

Appendix E lists the Server and Client Logs.

Wireless LAN Standards

1.6 Overview

The widespread acceptance of WLANs depends on industry standardization to ensure product compatibility and reliability among the various manufacturers. There are several wireless LAN solutions available today, with varying levels of standardization and interoperability. As the globally recognized LAN authority, The Institute of Electrical and Electronics Engineers (IEEE) has established the standards that have driven the LAN industry for the past two decades.

The IEEE 802 standards committee formed the first internationally recognized Wireless Local Area Networks Standards Working Group – 802.11 in 1990. The 802.11 working group specifies an over-the air interface between a wireless Client and base station or between two wireless Clients. It developed a global standard for radio equipment and networks operating for data rates of 1 and 2 Mbps transmission in the 2.4 GHz unlicensed frequency band using either frequency hopping spread spectrum (FHSS) or direct sequence spread spectrum (DSSS).

In September 1999 the IEEE standard was ratified for higher data rates. The new IEEE 802.11b extension (also popularly referred to as 802.11 High Rate or Wi-Fi) defines a standard for products of wireless networks working at 11 Mbps transmission in the 2.4 GHz band. This ratification of the standard allowed wireless functionality comparable to Ethernet.

Unfortunately, the 802.11 standard provides only limited support for confidentiality through the wired equivalent privacy (WEP) protocol, which has been discovered to contain significant flaws in the design [UMD01]. The IEEE 802.11 in response to the security flaws of 802.11 standards employed a task group in July 2001, which published the 802.1x standard. The use of the new standard offered an effective framework for authenticating and controlling user traffic to a protected network, as well as dynamically varying encryption keys. 802.1x ties a protocol called EAP (Extensible Authentication Protocol) to both the wired and wireless LAN media and supports multiple authentication methods, such as token cards, kerberos, one-time passwords, certificates, and public key authentication.

This Chapter addresses the operations, the strengths and weaknesses in each of the above-mentioned standards.

1.7 The IEEE 802.11 Standard

1.7.1 Overview

The IEEE 802.11 standard defines both the physical (PHY) and medium access control (MAC) layer protocols for WLANs [IEEE99]. 802.11 wireless networks operate in one of two modes: ad-hoc or infrastructure mode. The IEEE standard defines the ad-hoc mode as Independent Basic Service Set (IBSS), and the infrastructure mode as Basic Service Set (BSS).

In ad-hoc mode, each Client communicates directly with the other Clients within the network. This mode is designed such that only the Clients within transmission range (within the same cell) of each other can communicate. If a Client in an ad-hoc network wishes to communicate outside of the cell, a member of the cell MUST operate as a gateway and perform routing.

In infrastructure mode, each Client sends all of its communications to a central station, or access point (AP). The access point acts as an Ethernet bridge and forwards the communications onto the appropriate network– either the wired network, or the wireless network. In this mode the wireless Clients and access points must establish a relationship, or an association prior to communicating data. Only after an association is established can the two wireless stations exchange data. Complete association with an access point involves transition among three: Unauthenticated and nassociated, Authenticated and unassociated, and Authenticated and associated. To transition between the states, the communicating parties exchange messages called management frames or a data frame. To transition between state 1 and 2, the Client or station (STA) and AP exchange Authentication Management frames. Figure 2.1 shows the classic 802.11 State Machine with the three state transitions.

The most widely used IEEE standards in the industry are the 802.11a and the 802.11b. The third standard 802.11g holds promise and like 802.11a, has a nominal maximum throughput of 54 Mbps, and because it is on the 2.4-GHz frequency band, its products would be compatible with 802.11b products. 802.11a and 802.11b each define a different physical layer. 802.11b radios transmit at 2.4 GHz and send data up to 11 Mbps using Direct Sequence Spread Spectrum Modulation (DSSSM); whereas, 802.11a radios transmit at 5 GHz and send data up to 54 Mbps using Orthogonal Frequency Division Multiplexing (OFDM). The 802.11 standard offers no provisions for interoperability between the different physical layers [JIM02].

[image: image7.wmf]

EAP

RADIUS Server

EAPoL

Enterprise

Network

RADIUS

Client/Supplicant

Access Point

EAP

-

Response

EAP

-

Response

EAP

-

Request

EAP

-

TLS Start

EAP

-

Response

EAP

-

Request

EAP

-

Success

EAP

-

type=EAP

-

TLS

[Start bit set, no data]

EAP

-

Type=EAP

-

TLS

[TLS Client Hello]

EAP

-

type=EAP

-

TLS

[TLS certificate,

TLS Client_key_exchange,

TLS certificate_verify

TLS change_cipher_spec,

TLS finished]

EAP

-

type=EAP

-

TLS

[TLS server_hello,

TLS certificate,

TLS Server_key_exchange,

TLS certificate_r

equest,

TLS server_hello_done]

EAP

-

Type=EAP

-

TLS

EAP

-

Type=EAP

-

TLS

[TLS change_cipher_spec,

TLS finished]

EAPoW

Figure 2.1: The Classic 802.11 State Machine [UMD02]

1.7.2 IEEE 802.11 Standard Security Mechanisms

The 802.11 standard provides several mechanisms intended to provide a secure operating environment. The various mechanisms are as follows:

1. Wired Equivalent Privacy protocol: The Wired Equivalent Privacy (WEP) protocol was designed to protect link-level data during wireless transmission and provide confidentiality for network traffic using the wireless protocol. It is considered to be the first line of defense against intruders. WEP relies on a security key k shared between the communicating parties to protect the body of a transmitted frame of data. Both the access and Client devices use the same WEP key to encrypt and decrypt radio signals. Thus with WEP turned on each packet transmitted from one radio to another is first encrypted by taking the packet's data payload and a secret number and passing them through a shredding machine called RC4. The resulting encrypted packet is then transmitted across the airwaves. When the receiving station hears the packet it then uses the same number to pass the encrypted data through RC4 backwards, resulting in the host receiving good, useable data. The primary goal of WEP is to protect the confidentiality of user data from eavesdropping. However the vulnerabilities described in the Fluhrer, Mantin, and Shamir, paper [FMS01] as well as tools like the AirSnort [ASnort], WEPcrack [WEPc] that can implement an attack, render WEP ineffective for data privacy and encryption. According to University of Berkeley’s research team, the secret WEP key/code can be broken in a day or less by a good encryption hacker [BERK01]. A more recent study by AT&T Labs outlines a modification of the suggested Berkeley’s technique that enables retrieval of the network key in fifteen minutes or less [STRU01].
2. Open System Authentication: Open system authentication is the default authentication protocol for 802.11. As the name implies, open system authentication authenticates anyone who requests authentication. With open authentication, even if a Client can complete authentication and associate with an AP, the use of WEP prevents the Client from sending data to and receiving data from the AP, unless the Client has the correct WEP key. However this is not considered very secure as wireless encryption is weak and the WEP can be decrypted in a short period of time.

3. Shared System Authentication: Shared key authentication uses a standard challenge and response along with a shared secret key to provide authentication. With shared-key authentication, the AP sends the Client device a challenge text packet that the Client must then encrypt with the correct WEP key and return to the access point. If the Client has the wrong key or no key, authentication will fail and the Client will not be allowed to associate with the access point. Shared-key authentication is not considered secure, because a hacker who detects both the clear-text challenge and the same challenge encrypted with a WEP key can decipher the WEP key.

4. Access Control Lists: Some WLAN vendors support authentication based on the physical address, or MAC address, of the Client Network Interface Card (NIC). An access point will allow association by a Client only if that Client's MAC address matches an address in an authentication table used by the access point. But MAC authentication is an inadequate security measure, because MAC addresses can be forged, or a NIC can be lost or stolen [NETST].

1.8 802.1x and the Extensible Authentication Protocol (EAP)

From the above discussion it can be seen that while traditional WLAN security that relies on open or shared-keys, static WEP keys or MAC authentication is better than no security at all, it is not sufficient for the enterprise organization. And all large enterprises and organizations have to invest in a robust, enterprise-class WLAN security solution.

The IEEE in July 2001 published standard 802.1x for Port-Based Network Access Control [IEEE01]. Though 802.1x was meant to provide an authentication and authorization framework suitable for any IEEE 802-based local area network with a point-to-point topology, it was especially interesting to adapt the standard for use in IEEE 802.11 wireless LAN, which was more vulnerable to security attacks.

1.8.1 IEEE 802.1x - Overview

The IEEE 802.1x is a layer two port-based access control mechanism that makes use of the physical access of a Local Area Network (LAN) infrastructure to provide a means of authenticating and authorizing devices attached to the port. The ports of the LAN infrastructure can be a port of an Ethernet switch, or an IEEE 802.11 Wireless LAN access point. The primary components involved in the fundamental operation of the 802.1x standard are:

· Authenticator: An Authenticator typically in a wireless LANs is the access point (AP). It is responsible for enforcing the authentication of a device that attaches to its controlled port before allowing access to the LAN services accessible via the port. It enforces authentication by forwarding access decision to the Authentication/Backend server. In a WLAN the association established between the wireless Client and the access point could be considered by the system a logical point-to-point (PPP) link.

· Supplicant – The Supplicant is the entity on the opposite end of the point-to-point link from the Authenticator. A wireless Client is an example of a Supplicant. A Supplicant is responsible for transmitting its credentials to the Authenticator in response to request from the Authenticator. Note: Documentation describing other authentication protocols (such as EAP) often uses the term “peer” instead of supplicant.

· Authentication Server – As the name suggests, this is the actual source of authentication services provided to end points. It performs the function of checking the credentials of the supplicant on behalf of the Authenticator and indicates whether the Client is authorized to access the LAN services. The Authentication Server is typically a RADIUS (Remote Authentication Dial-in User Service) server.

· Network Access Port – This is a device’s point of attachment to the network. Since wireless Clients do not have physical network connections, an association between a wireless Client and an access point is considered a network access port.

· Port Access Entity (PAE) – The PAE refers to the processes executing the authentication protocols and algorithms associated with a port. There are both Supplicant PAEs and Authenticator PAEs, each with their own respective roles in the authentication process.

· Extensible Authentication Protocol (EAP) – With EAP, once a link has been established between the Authenticator and a peer, the Authenticator sends authentication requests to the peer. Each request has a coded type field specifying the type of information being requested, and the peer must reply to each request using a matching type code. The code indicates the EAP-Type that is used to authenticate the peer.

· EAPoL – EAP over LAN (EAPoL) describes how EAP packets are to be encapsulated within Ethernet, Token Ring or FDDI frames. This provides a communications path between the Supplicant PAE and Authenticator PAE over which authentication can take place. When EAP packets between the Authenticator and the Authentication Server are sent across the network, they are encapsulated within a secure protocol such as RADIUS. Figure 2.2 shows the EAPoL packets and the RADIUS packets. For the format of the RADIUS and EAP packets please refer to figure 4.4 and 5.3.4.1 respectively.

[image: image8.wmf]

Attributes …

User

-

Name = “adam

-

ctl”,

User

-

Password,

NAS

-

IP

-

Address=128.198.61

.130,

NAS

-

Port = 37

Request Authenticator =

A random number generated by the NAS

Code =

 [1

-

 Access

-

Request]

 Identifier =

0

 Length =

256

0 1

 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

Figure 2.2: EAPoL packets / RADIUS PDUs

1.8.2 How 802.1x works

Figure 2.3 shows the principle of operation among the different 802.1x components (Figure has been adapted from IEEE Aboba’s 802.1x paper) [IEEE01]. The 802.1x standard defines two logical ports of access between the supplicant and the Authenticator, a controlled port and an uncontrolled port. The Authenticator initially filters out all traffic i.e. disallow all ingress and egress traffic from the supplicant except for that which is required for the authentication process to complete. Thus the Authenticator PAE communicates with the Supplicant PAE via EAPoL (EAP over LAN) protocol data units (PDUs) during this state. Should the authentication process be successful, the port transitions to authorized state (or controlled port is enabled) and the supplicant is granted access. In addition all access to the LAN can also be subjected to the administrative state of the Media Access Control (MAC) associated with the port, i.e. no traffic is allowed through the port if the port is disabled administratively.

[image: image9.wmf]

EAP HEADER

EAP PAYLOAD

Code

Identifier

 0

 7 8

 15 16

 31

Request/

Response Ty

pe

EAP Packet

Length

Type

-

Data

[EAP

-

TLS, EAP

-

TTLS, PEAP]

 Figure 2.3: Principal of Operation among the IEEE 802.1x Components

The 802.1x protocol is only a transport mechanism. It makes use of the Extensible Authentication Protocol (EAP) to define how authentication messages are to be exchanged between the various logical network components – Supplicant (Client), Authenticator (wireless access point) and Authentication server. The combination of 802.1 x standards with the EAP, tries to resolve weaknesses of WEP by providing for dynamic WEP keys to wireless users [ABOB02].

1.8.3 EAPoL Packet Format and Message Types

Figure 2.4 shows the EAPoL packet format and the Mesaage types.

 [image: image10.wmf]

Authentication

METHOD

LAYER

EAP APIs

EAP

LAYER

NDIS

APIs

M

EDIA

LAYER

MD

5

TLS

TTLS

802

.11

PPP

PEAP

MS

-

CHAPv

2

C

H

A

P

P

A

P

EAP

802.1

x

E

A

P

EAP

BACKEND AAA INFRASTRUCTURE

EAP

–

RADIUS,

TACACS+, LDAP,

KERBEROS

[image: image11.jpg]B W

EAP Radius
EAPOL START

EAP-Request Identity

EAP-Response Identity > Radius Access Request
EAP- Request/Type=PEAP P Radius Access Challenge/PEAP
Server-Side TLS

Radius Access Request

EAP-Response/TLS:ClientHello > TLS:ClientHello .
EAP-Request Radius Access Challenge
< Identity/TLS:Finished < TLS:Finished

TLS Server Authenticated
Session/Tunnel Established

[image: image12.wmf]

Authenticator

Authentication

Server

S

upplicant

Client/End

-

User

Access Point (AP)/

Network Access

Server/NAS

RADIUS Server

Etherne

t

EAPoL

EAP

EAP

-

Payload

CRC

IP

UDP

RADIUS

EAP

-

Payload

EAP

EAPo

L Packet

RADIUS Packet

[image: image13.wmf]

Have a

Shared secret

No shared

secret

Receive

Request

Validate

Client

Respons

e

Discard

Response

Check User

Database to

Find User

identity

[image: image14.jpg]EAP
EAP-Response Identity Radius Access Request
To TLS tunnel opened Client Identity
> .
EAP- Request/ Radius Access Challenge
< EAP-Type=MSCHAPv2 P EAP-MSCHAPv2
EAP-Response/ Radius Access Request
User-id and Password > Userid and Password >
EAP authentication Radius Access Accept
SUCCESS

<

EAPoL Key - New WEP key
protected by the session key

- Session key passed to AP

\Network Access Open

Figure 2.4: EAPoL Packet Format and MessageTypes

1.9 Extensible Authentication Protocol (EAP)

The Point-to-Point (PPP) Extensible Authentication Protocol (EAP) (RFC 2284) is an authentication protocol defined by the Internet Engineering Task Force (IETF) that typically rides on top of other protocols such as 802.1x, RADIUS, PPP. Through the use of EAP, support for a number of authentication schemes may be added, including smart cards, Kerberos, Public Key (PKI), One Time Passwords (OTP), and others.

1.9.1 Definition

EAP defines a standard message exchange between the Supplicant and an Authenticator before the Supplicant is granted access to the LAN. It allows an Authentication Server to authenticate the Client based on an authentication protocol agreed upon by both parties. EAP protocol uses the link layer and does not require the IP protocol to transport messages between devices and hence is effective in networks that rely on the Dynamic Host Configuration Protocol (DHCP) for assigning Client their IP addresses. The Clients can communicate with the access points without requiring a valid IP address and use the EAP over LAN (EAPoL) protocol to transmit messages. It is to be noted that in the context of wireless LANs the term EAPoW is used instead. EAPoW doesn't officially exist in any technical standard. In reality, there are only some minor differences in the way EAPoL works on a wired network verses a wireless network and hence another term has been defined [IEEE00].

The Client will not be able to retrieve an IP address from the DHCP server until they are authenticated to the network and the network connection port is opened.

1.9.2 How EAP works

EAP creates a standard message structure to authenticate the Client to the network. Depending on the authentication protocol agreed upon by the Client and the server, the details in the message exchange may vary. Figure 2.5 shows us the general message flow that occurs between the EAP Client, Authenticator and Authentication server [CIS350]. The steps involved in the EAP conversation are:

1. The EAP Client connects to the network and tries to access information on the network. The communication is performed using EAP over LAN (EAPoL) protocol.

2. The Authenticator responds to the Client by asking for its identity using EAPoL.

3. The Client responds to the Authenticator with its identity information using EAPoL.

4. The Authenticator forwards the Client’s identity information to the Authentication Server using the necessary protocol agreed upon by the Authentication Server and the Authenticator or Client.

5. The Authentication Server responds with a challenge to the Authenticator and specifies the EAP authentication type supported by the Authentication server. This message is transmitted over the RADIUS protocol back to the Authenticator.

6. The Authenticator forwards the challenge back to the Client with the authentication type requested by the Authentication Server using EAPoL.

7. The Client examines the challenge and determines if it can support the requested EAP authentication protocol. If it cannot support the authentication type requested by the Authentication Server, the Client will issue a NAK request and try to negotiate an alternative authentication method. If the Client can support the authentication type requested by the Authentication Server, it responds with its credential information using EAPoL.

8. The Authenticator relays the Client’s credentials to the Authentication Server using the RADIUS protocol.

9. If the Client’s credentials are valid, the Authentication Server authenticates and authorizes the Client. Otherwise, the Client is rejected and the appropriate RADIUS Access-Accept or Access-Reject message is sent back to the Authenticator using the RADIUS protocol.

10. The Authenticator receives the RADIUS Access-Accept or Access-Reject message and configures the network access accordingly.

11. Upon receiving the RADIUS ACCEPT packet, the Authenticator transitions the Client’s port to an authorized state and the network traffic is forwarded.

[image: image15.wmf]

rlm_mschap

radiusd

doc

share

libltdl

raddb

src

modules

include

main

include

test

rlm_eap

rlm_unix

rlm_ldap

rlm_sql

types

eap.c

eap.h

rlm_eap.c

rlm_eap.h

rlm_eap_tls

rlm_eap_leap

rlm_md5

rlm_eap_peap

rlm_eap_ttls

rlm_eap_peap.h

peap.c

rlm_eap_peap.c

Makefile

Figure 2.5: IEEE 802.1x and EAP Message exchange

EAP – Authentication Methods

1.10 Overview

The Extensible Authentication Protocol (EAP – RFC 2284) as explained in Chapter two is an extension to the Point-to-Point Protocol (PPP) that allows for employment of various authentication mechanisms to authenticate a Client and validate a PPP connection [RFC2284].

EAP by itself cannot protect the authentication message exchange between the Client, Authenticator and the Authentication server. It makes use of some higher-level authentication mechanism to validate the user’s login credentials. There are several EAP authentication schemes that can be used each with its own strengths and weaknesses. Some of the most commonly deployed EAP authentication types include EAP-MD-5, EAP-TLS, EAP-PEAP, and EAP-TTLS. However in practice, it has been noted that only methods based on the IETF's well-known Transport Layer Security (TLS) standard can satisfy strict encryption and authentication requirements [GAST03]. And in accordance to the above, the three TLS-based protocols (EAP-TLS, EAP-TTLS and PEAP) have been developed for use with EAP and are in general most suitable for deployments within the wireless LAN environment. A brief explanation of each of these protocols is given in the following sections. Figure 3.1 gives a broad architectural framework [CIS02] of the EAP stack and its place in the overall IEEE 802.11 standard. Note that the PEAP protocol can allow only EAP types of authentication methods within its tunnel while TTLS can use any authentication protocol other than EAP also.

[image: image16.png]Wireless LAN Addressing

B

= 128.198.60.10
HP 4000 Swich Gateway
125 198.61.129
Authientication @
128.198.61.132 [
128 T 19 Access Point Primary: 128.198.1.250
198.61. 128.198.61.130 Backup: 128.198.1117

DHCP Range:
128188 61144 -
12818861158

/

802.11b
EEE ce

802.11b
Clients

Figure 3.1: Wireless LAN Architectural Framework

[image: image17.wmf]

Attributes

…

Authen

ticator

Code

Length

Identifier

0

7

 8

15

16

31

1.11 EAP Transport Layer Security

EAP Transport Layer Security (TLS) (RFC2716) is an EAP type that is used in certificate-based security environments. The EAP-TLS provides for mutual authentication of Client and server with both parties mutually validating each other through the use of PKI (Public Key Infrastructure) certificates. It is based on the Secure Socket Layer (SSL) version 3.0 that is being used by most web browsers for secure Web application transactions.

TLS is designed to provide secure authentication and encryption of data by making use of the reliable Transport Layer like a TCP/IP connection. It provides security to any application protocol layered on top of it. TLS authentication is split into two methods: server side authentication and Client side authentication. The server presents a certificate to the Client, and, after validating the server's certificate; the Client presents a Client certificate. Naturally, the certificate may be protected on the Client by a pass phrase, PIN, or stored on a smart card, depending on the implementation. Thus the certificates on both the Certificate Authority and the Client must be valid in order for a connection to be established.

A short description as to how a PKI certificates is used is given below [CIS02]: A PKI user has two keys: a public key and a private key. Any data encrypted with the public key can be decrypted only with the private key and vice versa. Digital certificates are data structures distributed by a certificate authority that join a public key to a user. The digital signature thus derived is a hashed value of a combination of the certificate version, serial number, issuer, user, user’s public key, and validity period.

1.11.1 EAP-TLS Message Exchange Process

Following is a brief explanation of the EAP-TLS conversation that takes place when a wireless Client tries to access the network and Figure 3.2 shows us the conversation that occurs between the Client, Authenticator and Authentication server.

1. Wireless Client gets associated with the Access Point (AP).

2. Access Point does not permit the Client to send any data at this point and the AP sends an Authentication request.

3. The Supplicant will then respond with an EAP- Response Identity with user identity credentials back to the Authentication Server.
4. The Authentication Server such as RADIUS responds back to the Client with an EAP-TLS Start Packet.
The EAP-TLS conversation starts at this point.

5. The Client sends an EAP-Response back to the Authentication Server which contains a Client_hello handshake message, a cipher that is set for NULL (and that will remain this value until change_cipher_spec are negotiated), and TLS version number.

6. The Authentication Server will present its certificate to the Client as well as request a valid one from the Client. The Authentication Server responds with an EAP-Request packet that contains the following: TLS server_hello, handshake message, server certificate, server_key_exchange, certificate request and server_hello_done.

7. The Client responds with an EAP-Response message that contains the following: Client Certificate, Client_key_exchange, certificate_verify change_cipher_spec and TLS finished Message.

8. After the Client authenticates successfully, the EAP server will respond with an EAP-Request that contains the change_cipher_spec and finished handshake message. The finished handshake message contains the authentication response with the hashed key from the server. Upon receiving this, the Client will verify the hash in order to authenticate the EAP server. A new encryption key is dynamically derived from the master key (The key derived between the EAP client and EAP server during the EAP authentication process i.e. during the TLS handshake).

9. At this point the EAP-TLS protocol enables the port and the wireless Client can access the network.

[image: image18.wmf]

 31

Code

Identifier

 0

 7 8

 15 16

Type

TLS

 Packet

Length

Flags

TLS Message

Length…

TLS Data….

(

Encapsulated

TLS packet

)

TLS Message Length…

Figure 3.2: EAP-TLS Message Exchange Process

1.11.2 EAP-TLS – Weaknesses

EAP-TLS provides for very strong security by requiring both Client and the server to be identified and validated through the use of PKI certificates. It establishes a TLS tunnel between the Client and the Authentication server thus protecting the transmitted EAP messages from eavesdropping. In a wireless set-up it provides for dynamic WEP key generation thus strengthening the WLAN security. Although EAP-TLS provides protection from most attacks, a number of weaknesses have become apparent since its deployment.

The major drawback of EAP-TLS security is that it requires each user to have a PKI certificate. This imposes a substantial administrative burden in operating a certificate authority to distribute, revoke and manage user certificates. It was also noted by many observers that the identity exchange between the Client and the Authentication Server passes in the clear before exchange of certificates, so a passive attack could easily observe user names [AVK02].

The two other EAP authentication methods namely EAP - TTLS and the Protected EAP (PEAP) protocols were developed in response to the PKI barrier in EAP-TLS. Both use the transport layer security (TLS) to authenticate the server and offer tunneling of other authentication methods like Challenge Handshake Authentication Protocol (CHAP), Password Authentication Protocol (PAP), Message Digest (MD5), to authenticate the Client. Thus they were designed to use older authentication mechanisms while retaining the strong cryptographic foundation of TLS.

1.12 EAP – Tunneled Transport Layer Security (EAP-TTLS)

EAP-TTLS is an Internet draft (IETF) standard jointly authored by Funk Software and Certicom, and is a working document of the PPP Extensions group. EAP-TTLS is an EAP protocol that extends EAP-TLS. It was introduced taking into account the above disadvantages posed by EAP-TLS. Like EAP-TLS, TTLS also uses transport layer security, the successor to SSL, as the underlying strong cryptography.

However, EAP-TTLS differs in that only the RADIUS servers, not the users, are required to have certificates. The user is authenticated to the network using ordinary username and password credentials, which are made proof against interception by enclosing them in the TLS security wrapper. Thus in EAP-TTLS, the TLS handshake may be mutual; or it may be one-way, in which only the server is authenticated to the Client. The secure connection established by the handshake may then be used to allow the server to authenticate the Client using existing, widely deployed authentication infrastructures such as RADIUS. The authentication of the Client may itself be EAP, or it may be another authentication protocol.

Thus, EAP-TTLS allows legacy password-based authentication protocols to be used against existing authentication databases, while protecting the security of these legacy protocols against eavesdropping, man-in-the-middle and other cryptographic attacks. EAP-TTLS also allows Client and server to establish keying material for use in the data connection between the Client and access point. The keying material is established implicitly between Client and server based on the TLS handshake.

1.12.1 How EAP-TTLS works?

The way EAP-TTLS works is comparable to that of secure web sites, such as those that handle online credit card transactions. The web server proves its authenticity to the user by providing its certificate. Then, the user encrypts credit card information and sends it to the server. Online commerce does not require user certificates for maximum security, and neither should wireless LAN access [GEOFF02]. EAP-TTLS makes this possible. Figure 3.3 shows a broad architectural framework of the EAP-TTLS [IETF02-2] protocol. With EAP-TTLS, the user’s identity and password-based credentials are tunneled during authentication negotiation, and are therefore not observable in the communications channel. This prevents dictionary attacks, man-in-the-middle attacks, and hijacked connections by wireless eavesdroppers.

[image: image19.wmf]

Access Point 3

Access Point 2

Access Point 1

PKI / Certificate

Server

Internet

Internal Network

DHCP Server

RADIUS Server

Wireless Client

Access Control Device

[Router, firewall, VPN]

Figure 3.3: The Network Architectural Framework for EAP-TTLS

1.13 Protected Extensible Authentication Protocol (PEAP)

PEAP was developed by Microsoft, Cisco and RSA security and is currently an Internet draft. Like its competing standard TTLS, PEAP makes it possible to authenticate wireless Clients without requiring them to have PKI certificates. PEAP uses Transport Layer Security (TLS) to create an encrypted channel between an authenticating EAP Client and an EAP Authenticator. It then uses the resulting TLS session as a secure wrapper for other EAP authentication protocols, such as EAP MS-CHAPv2.

PEAP is based on server-side EAP-TLS and for Client-side it can use any non-mutually authenticating EAP-types, thus providing for a mutual authentication. In this way PEAP attempts to fix the problems found in EAP–TLS that of having to install digital certificates on every Client machine.

PEAP performs authentication in two phases. In the first phase the Authentication Server is authenticated to the Supplicant using a PKI certificate. Using TLS, a secure channel is established through which any other EAP-Type can be used to authenticate the Client (Supplicant) to the Authentication Server during the second Phase. The draft states: “In Part 2, within the TLS session, a complete EAP conversation is carried out, unless part 1 provided client authentication”. Therefore a certificate is only required at the Authentication Server. The Client and Server exchange a sequence of EAP messages encapsulated within the TLS messages, and the TLS messages are authenticated and encrypted using TLS session keys negotiated by the Client and the server.

PEAP thus addresses the weaknesses of EAP by protecting user credentials, as now messages sent by the server during user authentication are not transmitted in the clear but through the encrypted channel. It standardizes key exchanges, supports fast reconnection, fragmentation, reassembly and seamless transition for roaming Clients [IETF01].

They are now two versions of the PEAP draft – Microsoft PEAP and Cisco PEAP

· Microsoft PEAP: This version of PEAP supports Client authentication by only MS-CHAPv2, which limits user database to those that support MS-CHAPv2, such as Windows NT domains and Active Directory. This thesis attempts to address this issue and implemented PEAP on a Linux Server

· Cisco PEAP: This version supports Client Authentication by One-Time Password (OTP) support and logon passwords. This allows support for OTP databases from vendors such as RSA security and Secure Computing Corporation, and also supports logon password databases like LDAP, Novell NDS, and Microsoft databases. Also the Cisco PEAP Client attempts to protect user-name identities until the TLS encrypted tunnel is established.

1.13.1 PEAP Message Exchange Process

Following is a brief explanation of the conversation that takes place when a wireless Client tries to access the network using the PEAP authentication method. Figures 3.4 and 3.5 depict the message exchanges that take place during the process of authentication. As PEAP adds a TLS layer on top of EAP, the message exchange starts in the same way as EAP-TLS:

1. The Client sends an EAP Start message to the access point

2. The access point replies with an EAP Request Identity message

3. The Client sends its network access identifier (NAI), which is its username, to the access point in an EAP Response message

4. The Access Point forwards the NAI to the RADIUS server encapsulated in a RADIUS Access Request message

5. The RADIUS server will respond to the Client with its digital certificate.
6. The Client will validate the RADIUS server's digital certificate

Server side TLS is done - TLS Session/Tunnel is established

7. The Client and server negotiate and create an encrypted tunnel
8. This tunnel provides a secure data path for Client authentication

9. Using the TLS Record protocol, a new EAP authentication is initiated by the RADIUS server

10. The exchange will include the transactions specific to the EAP type used for Client authentication

11. The RADIUS server sends the access point a RADIUS ACCEPT message, including the Client's WEP key, indicating successful authentication

[image: image20.wmf]

Access Request

RADIUS

Server

(

NAS

-

ID, NAS

-

port, username, password

)

Access

-

 Challenge

(“

Challenge, enter your password at the

prompt” message displayed to the client

)

Access Request (New)

(

new NAS

-

ID, NAS

-

port, username, encrypted

password

)

A

ccess

-

Accept or Access

-

Reject

(

Send success or Send another Access

Challenge

)

RADIUS

Client

(

NAS

)

Figure 3.4: PEAP Phase 1 – Perform TLS handshake & Establish TLS Tunnel

[image: image21.emf]PEAP vs TTLS

[Toshiba - 366.604mhz]

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Runs

Time in msec

TTLS

PEAP

Figure 3.5: PEAP Phase 2 – Authenticate Client in the generated TLS tunnel

Chapter 2
Remote Authentication Dial-in User Service

2.1 Overview

The Remote Authentication Dial-in User Service (RADIUS) (RFC 2865) is an IETF-defined Client/server protocol and software that enables remote access servers to communicate with a central server to authenticate dial-in users and authorize their access to the requested system or service [RFC2865]. It is commonly used to provide centralized Authentication, Authorization, and Accounting (AAA) for dial-up, virtual private network, and, wireless network access.

The software for a RADIUS server includes three parts: an Authentication server, Client protocols and an Accounting server. These pieces can all run on one machine or on separate ones outfitted with different operating systems. Broadly speaking it works by having a user dial in to a remote access server and pass logon name and password information to it. The information is forwarded to a RADIUS Authentication Server that validates the user and returns the information necessary for the access server to initiate a session with the user. The user repeats this process to initiate every session. A dictionary file kept in the RADIUS database determines the types of attributes that can be included in the user profile. The user profile is a file containing authentication security and configuration information for each user.

2.2 The RADIUS protocol

2.2.1 Components

The RADIUS protocol is based on a Client/server model. A network access server (NAS) operates as a Client of RADIUS. The Client is responsible for passing user information to a designated RADIUS server and then acting on the response that is returned. There are actually three types of applications that participate in RADIUS:

· End-User: It is an application, such as a dial-up utility or software, which is located in the end user’s PC or laptop. It talks with the RADIUS Client as part of establishing a connection.

· RADIUS Client: Typically are access servers such as a dial-up server, network Access Server (NAS), VPN server, or wireless Access Point. The Radius Client software is installed on one such device at the network edge, where external traffic first enters a company’s or ISP’s infrastructure. It sends user credentials and connection parameter information in the form of a RADIUS message on behalf of the End-User to a RADIUS server.

· RADIUS server: The server authenticates and authorizes the RADIUS Client request, and sends back a RADIUS message response. The server checks the configuration database and processes the request using one or more authentication mechanisms. The database contains Client service configuration data as well as specific rules for granting access. The RADIUS server should be able to provide for reliable and sufficient network connectivity between itself and its Clients.

A full server implementation of RADIUS consists of two servers: the RADIUS server itself (for Authentication and Authorization) and the RADIUS Accounting server. All RADIUS messages are sent as User Datagram Protocol (UDP) messages. UDP port 1812/1645 is used for RADIUS authentication messages and UDP port 1813/1646 is used for RADIUS accounting messages. Only one RADIUS message is included in the UDP payload of a RADIUS packet. Figure 4.1 shows a typical RADIUS server topology.

[image: image1.png]eee
02 i Compliant
&

RADIUSINAT/DHCR
Meragemert Server

Figure 4.1: A typical RADIUS Server Topology (Adapted [IEPOCH])

2.2.2 RADIUS Server Operation and its Message types

The Operation of the RADIUS server is explained below in terms of the message type exchanges that take place between the Client and the Server [RFC2865]:

· Access-Request: Sent by a RADIUS Client to request authentication and authorization for a network access connection attempt. It determines whether a user is allowed access to a specific NAS, and any other specific service.

· Access-Accept: Sent by a RADIUS server in response to an Access-Request message when all conditions are met. The message informs the RADIUS Client that the connection attempt is authenticated and authorized and it contains the list of configuration values for the user.

· Access-Reject: Sent by a RADIUS server in response to an Access-Request message if any condition is not met. This message informs the RADIUS Client that the connection attempt is rejected. A RADIUS server sends this message if either the credentials are not authentic or the connection attempt is not authorized.

· Access-Challenge: Sent by a RADIUS server in response to an Access-Request message if all conditions are met and RADIUS server wishes to issue a challenge to which the user must respond. The Client in response resubmits its original Access-Request with a new request ID, response (encrypted), and including the Attribute from the Access-challenge.

· Accounting-Request: Sent by a RADIUS Client to specify accounting information for a connection that was accepted.

· Accounting-Response: Sent by the RADIUS server in response to the Accounting-Request message. This message acknowledges the successful receipt and processing of the Accounting-Request message.

Figure 4.2 shows a broad operational flow of the RADIUS Server and Figure 4.3 gives the basic message exchanges between the RADIUS Client and Server.

[image: image22.wmf]

RADIUS Server Authenticates Client

Request Identity

Response

 Identity

Receive Identity

Access Point Blocks all traffic Until

the Server Authenticates the Client

Access Point now sends Broadcast Key,

Encrypted with the Session Key to the

Client

Client Authenticates RADIUS Server

Key Length

Broadcast Key

Access Client /

End

-

User

Access Point (AP)

Network Access Server

(NAS)

RADIUS Server

EAPoL

RADIUS

Start

Figure 4.2: A Broad Operational Flow of RADIUS Server

[image: image23.emf]TTLS vs PEAP

[Running Requests Simultaenoulsy From Toshiba

and Hobbit]

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No of Times

Time in msec

TTLS

PEAP

Figure 4.3: Message Exchange between RADIUS Client & Server

2.3 RADIUS Packet Format

[image: image24.emf]PEAP-TTLS Performance Comparison For

Distance Range ~30 ft

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 10 19 28 37 46 55 64 73 82 91 100

No. of Runs

Time in msec

PEAP

TTLS

A RADIUS packet consists of a RADIUS header and RADIUS attributes. Each RADIUS attribute specifies a piece of information about the connection attempt. For example, there are RADIUS attributes for the user name, the user password, the type of service requested by the user, and the IP address of the access server. RADIUS attributes are used to convey information between RADIUS Clients, RADIUS proxies, and RADIUS servers.

Figure 4.4: RADIUS Packet Format

· Code: The Code field is one octet, and identifies the type of RADIUS packet. When a packet is received with an invalid Code field, it is silently discarded. RADIUS Codes (in decimals) are assigned as follows:

 1 Access-Request

 2 Access-Accept

 3 Access-Reject

 4 Accounting-Request

 5 Accounting-Response

 11 Access-Challenge

 12 Status-Server (experimental)

 13 Status-Client (experimental)

255 Reserved

· Identifier: This helps in matching requests and replies. The RADIUS server can detect a duplicate request if it has the same Client source IP address and source UDP port and identifier.

· Length: This value indicates the length of the packet including the Code, Identifier, Length, and Authenticator and Attribute fields i.e. the total length of the packet. The ideal length of the packet should be between 20 to 4096.
· Authenticator: This can represent a Request or a Response. The Request Authenticator value is a 2-byte random number with a unique and unpredictable value. The Response Authenticator is a response challenge with a combination of Code + ID + Length + RequestAuth + Attributes + Secret.
2.3.1 An Example RADIUS Packet

Suppose a RADIUS Client (NAS) at 128.192.61.130 sends an Access-Request UDP packet to the RADIUS server for a user named “adam-ctl” logging in on port 37 with password “hello”, the RADIUS data packet would then be in the following format:

[image: image25.wmf]

Code

Identifier

 0

 7 8

 15 16

Type

PEAP Packet

Length

Flags

Ver

TLS Message

Length…

TLS Data….

(EAP packets)

TLS Message Length…

Figure 4.5: An Example RADIUS Packet

2.4 Extensible Authentication Protocol (EAP) over RADIUS

EAP over RADIUS is a transport mechanism for passing EAP messages of any EAP type by the RADIUS Client (access point) to a RADIUS server for authentication. EAP is supported in the RADIUS and allows for new authentication types to be used over links running on the PPP protocol [JONH02]. To support EAP, RADIUS includes two new attributes - EAP-Message and Message-Authenticator.

Normally, the RADIUS server encapsulates the EAP packets within a standard RADIUS packet, using the EAP-Message attribute, and then transmits them back and forth between the RADIUS Client and the RADIUS server [RFC2869]. The access point then becomes only a pass-through device relaying EAP authentication messages from the wireless Client device to the RADIUS server and vice versa without having to process the packets. This way every new EAP type that is introduced need not be installed at each access point but only at the RADIUS server end. The access point would then behave the same way for each EAP type thus making it extremely flexible.

The RADIUS Client (access point) must however support the negotiation of EAP as an authentication protocol and the passing of EAP messages to a RADIUS server. When a connection attempt is made, the end user negotiates the use of EAP with the access point. When the user sends an EAP message to the access point, the access point encapsulates the EAP message as a RADIUS message and sends it to its configured RADIUS server. The RADIUS server processes the EAP message and sends a RADIUS-formatted EAP message back to the access point. The access point finally forwards the EAP message to the end user.

Chapter 3
PEAP Protocol Design and Implementation

3.1 RADIUS Server Code Organization

3.1.1 Server Functionality

FreeRADIUS is an authentication server [FRADIUS]. It does RADIUS Authorization, Authentication, and Accounting (AAA). The server performs the following functionality:

· Receive a RADIUS request

· Process the request

· Look up user information in one or more databases

· Store information in one or more databases

· Respond to the request

3.1.2 How the RADIUS Requests are processed

3.1.2.1 A Modular Approach

The FreeRadius code is organized in a modular format. The modules perform small, simple well-defined actions when RADIUS packets are received. The module infrastructure of the FreeRadius server is intended to handle only incoming RADIUS packets and does not handle situations when the RADIUS packets are not received i.e. handling of servers, applications or timed events [FRDOC]. This made the code more stable, secure and simple to maintain. The modules in the FreeRadius server are also responsible to open sockets to other network programs, and to send and receive data on those sockets.

3.1.2.2 Module Outline

As mentioned above the FreeRadius server handles all RLM (Radius Load Module] requests through a module interface. The RLM module interface contains three fundamental concepts – modules, instance and component.

· Module: is a block of code that knows how to deal with a particular kind of database, or perhaps a collection of similar databases. For example the rlm_eap directory would contain all code for handling EAP messages.

· Instance: Specifies the actual location of a collection data that can be used by a module.

· Components: A module can have up to four components that act on RADIUS requests at different stages of processing the request. The components are:

· Authorization: This is a process of obtaining information about the user from external source (file, database or LDAP), and determining what the user is allowed to do. It checks if the information in request is enough to authenticate user. The process of authorization involves checking of attributes from an Access Request for specific values, sending back the outcome of policy decisions to the access device as Access Reply attributes and deciding on an authentication method to be used and possibly apply some attributes to be returned in the reply packet. This is necessary as conditions can be enforced where, a user may not be permitted to use a particular authentication method. So during the authorize Phase, we can deny them the ability to use that kind of authentication

· Authentication: This is a process of validating a User’s Identity. It compares user's credentials/password in request with credentials/password stored in the database. Authentication usually deals with password encryption. This encryption of the user credentials is performed by use of different methods and protocols like PAP, CHAP, and EAP that are implemented by FreeRadius as authentication modules.

· Pre-Accounting: This decides whether to proxy the request, and possibly adds attributes that should be included in any logs.

· Accounting: This records the request in the RADIUS log.

A module declares which components it supports by putting function pointers in its "module_t rlm_* ” structure. All modules are present in the local sub-directory “src/modules/” of the installed main source code directory.

Template 5.1
struct module_t {

const char *name;

int
 type;
/* reserved */

int
(*init)(void);

int
(*instantiate)(CONF_SECTION *mod_cs, void **instance);

packetmethod
methods[RLM_COMPONENT_COUNT];

int
(*detach)(void *instance);

int
(*destroy)(void);

} module_t;

3.1.2.3 Module Creation

The creation of a module instance is performed by adding the module inside the modules{} block of the radiusd.conf file. The module_name defined in the block is later used to load the module. The parameters inside the module block are passed without any processing to the module and generally they point to the exact location of a database or enable optional features of the module. The following steps describe how each component is called. Note: For specific block details please refer to the radiusd.conf file in Appendix A

1. For each Access-Request that comes to the server, the authorize{} block is called.

2. Then one of the Auth-Type{} blocks from authenticate{} is called, depending on the Auth-Type attribute that was chosen by authorize{}.

3. Finally, the post-auth{} block is called.

Template 5.2
An Example for enabling TLS Authentication – Settings to be made in radiusd.conf file

modules {

...

eap {

default_eap_type = tls

tls{

}

 ...

}

...

}

eap sets the authenticate type as EAP

authorize {

...

eap

}

eap authentication takes place.

authenticate {

eap

}

If you are proxying requests

 post-proxy {

eap

}

3.1.2.4 Module Initialization and Detach methods

When the server is starting up, or reinitializing itself it reads the modules{} section. The following are the methods called during the initialization of a module.

1. init() method: Each configured module when loaded calls its own initialize method of the form int init(void). The method should take care of any setup that is not tied to a specific instance. It will only be called once, even if there are multiple instances configured.
2. instantiate() method: For each configured instance, after the init() method, the instantiate() method is called. It is given a handle to the configuration block holding its parameters, which it can access with cf_section_parse() function in int instantiate(CONF_SECTION *cs, void **instance). The instantiate() function should look up options in the config section, and open whatever files or network connections are necessary for the module to do its job. It also should create a structure holding all of the persistent variables that are particular to this instance (open file descriptors, configure pathnames, etc.) and store a pointer to it in instance. That void pointer becomes a handle representing this instance.
3. The instance handle is then passed as a parameter in all subsequent calls to the module's methods, so they can determine which database they are supposed to act on.

The authorize() and authenticate() functions are also called in the same way. Each method receives the instance handle and request structure. They are expected to act on the request using the database pointed to by the instance handle. When the server is being shut down a detach() method is called for each module instance. The following are the methods called when a module is detached:

1. detach() method: This method is responsible for releasing whatever resources that were allocated by the instantiate() method. int detach(void *instance).

2. destroy() method: After all instances are detached, the destroy() method is called - int destroy(void). It should release resources that were acquired by the init() method.

3.1.3 EAP Code Organization

3.1.3.1 Overview

As explained above FreeRadius implemented the Extensible Authentication Protocl (EAP) as a module. All EAP_Types are organized as sub-directories in “src/modules/rlm_eap/types/” directory and are handled in their respective sub modules. Each EAP-Type contains a chunk of code that knows how to deal with a particular kind of authentication mechanism. Thus RLMs first processes a request of the particular authentication type say EAP in “src/modules/rlm_eap/eap.c”. This file would contain the basic EAP and generalized interfaces to all the EAP-Types. From here based on the EAP type specified, further authentication is performed via the “rlm_eap_XXX” module where XXX is an EAP_Type name defined in the module section of the radiusd.conf file.

3.1.3.2 Directory Structure

Figure 5.2 below illustrates the directory structure of the Radius Server softwre code

[image: image26.wmf]

 31

Code

Identifier

 0

 7 8

 15 16

Type

Length

Data

….

Figure 5.2: Radius Source Code Directory Structure

3.1.4 The rlm_eap module

The rlm_eap module only deals with EAP specific authentication mechanisms and the generic interface to interact with all the EAP-Types. The following are the existing interfaces that are implemented:

1. int attach(CONF_SECTION *conf, void **type_arg) Allocates required resources.

2. int initiate(void **type_arg, EAP_HANDLER *handler) Begins the conversation when EAP-Identity response is received.

3. int authenticate(void **type_arg, EAP_HANDLER *handler) This uses specific EAP-Type authentication mechanism to authenticate the user. During authentication, many EAP-Requests and EAP-Response take place for each authentication. Hence authenticate() function may be called many times. EAP_HANDLER contains the complete state informatiom required.

4. int detach (void **type_arg) = De-allocates all the required resources.

Template 5.3

Interface to call EAP sub mdoules

typedef struct eap_type_t {

const
char *name;

int
(*attach)(CONF_SECTION *conf, void **type_data);

int
(*initiate)(void *type_data, EAP_HANDLER *handler);

int
(*authorize)(void *type_data, EAP_HANDLER *handler);

int
(*authenticate)(void *type_data, EAP_HANDLER *handler);

int
(*detach)(void *type_data);

} EAP_TYPE;

Template 5.4

EAP_HANDLER is the interface for any EAP-Type. Each handler contains information for one specific EAP-Type. This way we don't need to change any interfaces in future.

It is also a list of EAP-request handlers waiting for EAP-response

typedef struct _eap_handler {

struct _eap_handler *next;

uint8_t

state[EAP_STATE_LEN];

uint32_t
src_ipaddr;

unsigned int
eap_id;

unsigned int
eap_type;

time_t

timestamp;

REQUEST
*request;

char

identity; / User name from EAP-Identity */

EAP_DS
*prev_eapds;

EAP_DS
*eap_ds;

void

*opaque;

void

(*free_opaque)(void *opaque);

int

status;

int

stage;

} EAP_HANDLER;

where ,

· eap_id = copy of the eap packet we sent to the

· next = pointer to next

· state = state attribute from the reply we sent

· state_len = length of data in the state attribute.

· src_ipaddr = Client which sent us the RADIUS request containing this EAP conversation.

· eap_id = copy of EAP id we sent to the Client.

· timestamp = timestamp when this handler was last used.

· identity = Identity, as obtained, from EAP-Identity response.

· request = RADIUS request data structure

· prev_eapds = Previous EAP request, for which eap_ds contains the response.

· eap_ds = Current EAP response.

· opaque = EAP-Type holds some data that corresponds to the current EAP-request/response

· free_opaque = To release memory held by opaque, when this handler is timedout & needs to be deleted. It is the responsibility of the specific EAP-TYPE to avoid any memory leaks in opaque. Hence this pointer should be provided by the EAP-Type if opaque is not NULL

· status = finished/onhold/..

3.1.4.1 [image: image27.emf]PEAP-TTLS Performance Comparison For

Distance Range ~25 ft [Behind Closed Doors and Walls]

500

1000

1500

2000

2500

3000

3500

1 10 19 28 37 46 55 64 73 82 91 100

No. of Runs

Time in msec

PEAP

TTLS

EAP Packet format

Figure 5.3: EAP Packet Format

Template 5.5

Structure to hold EAP data.

typedef struct eap_packet {

unsigned char
code;

unsigned char
id;

unsigned int
length;

eaptype_t
type; //EAP-Type specific Data

unsigned char *packet;

} EAP_PACKET;

where length = code + id + length + type + type.data

 = 1 + 1 + 2 + 1 + X

EAP-Type specific data.

typedef struct eaptype_t {

unsigned char
type;

unsigned int
length;

unsigned char
*data;

} eaptype_t;

FreeRadius is an authentication server, so will get ONLY EAP-Responses and send only EAP-Request/EAP-success/EAP-failure

The EAP_DS contains all the received/sending information

typedef struct eap_ds {

EAP_PACKET
*response; // Received EAP packet

EAP_PACKET
*request; // Sending EAP packet

int

set_request_id;

} EAP_DS;

3.1.5 The rlm_eap_tls module

The rlm_eap_tls module deals with the EAP-TLS based authentication process. In the actual authentication it first verifies the packet coming in and then frames the eap tls packet data structure. In order for the server to process the EAP- TLS it needs to ensure that the incoming data is processed as follows:

· EAP-TLS module should get the compelete TLS data from the peer.

· It then store that data in a data structure with any other required info

· It hands this data structure to the TLS module file.

· TLS module file will perform its operations on the data and hand it back to the EAP-TLS module

· For the outgoing data the EAP-TLS module if necessary will fragment the outgoing data and send it to the destination.

During EAP-TLS initialization, TLS Context object will be initialized and stored. For every new authentication requests, TLS will open a new session object and that session object should be maintained even after the session is completed.

Template 5.6

Session Object: tls_session_t Structure gets stored as opaque in EAP_HANDLER.

This contains EAP-REQUEST specific data (ie EAPTLS_DATA(fragment), EAPTLS-ALERT, EAPTLS-REQUEST ...)

typedef struct _tls_session_t {

SSL

*ssl;

tls_info_t
info;

BIO

*into_ssl;

BIO

*from_ssl;

record_t
clean_in;

record_t
clean_out;

record_t
dirty_in;

record_t
dirty_out;

unsigned int
offset;

unsigned int
tls_msg_len;

int

fragment;

int

length_flag;

} tls_session_t;

where

· clean_in - data that needs to be sent but only after it is soiled.

· dirty_in - data EAP server receives.

· clean_out - data that is cleaned after receiving.

· dirty_out - data EAP server sends.

· offset - current fragment size transmitted

· fragment - Flag, In fragment mode or not.

· tls_msg_len - Actual/Total TLS message length.

· length_flag - A flag to include length in every TLS Data/Alert packet if set to no then only the first fragment contains length

3.1.5.1 EAP-TLS Packet format

[image: image28.emf]PEAP-TTLS Performance Comparison For

Distance Range ~45 ft

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

1 10 19 28 37 46 55 64 73 82 91 100

No. of Runs

Time in msec

PEAP

TTLS

Figure 5.4: EAP-TLS PACKET FORMAT

Template 5.7

Structure to hold EAP-TLS packet.

typedef struct tls_packet {

uint8_t
code;

uint8_t
id;

uint32_t
length;

uint8_t
flags;

uint8_t
*data;

uint32_t
dlen;

} EAPTLS_PACKET;

where

· code = EAP-code

· id = EAP-id

· length = code + id + length + flags + tlsdata
 = 1 + 1 + 2 + 1 + X

· length = EAP-length - 1(EAP-Type = 1 octet)

· flags = EAP-typedata[0] (1 octet)

· dlen = EAP-typedata[1-4] (4 octets), if L flag set
 = length - 5(code+id+length+flags), otherwise

· data = EAP-typedata[5-n], if L flag set

 = EAP-typedata[1-n], otherwise

Thus packet = EAP-typedata (complete typedata)

3.1.5.2 EAP-TLS - Code Descriptions

The following table outlines the code files and the corresponding functions they perform.

	 Source Code File Name
	Description

	rlm_eap_tls.c
	Contains the interfaces that are called from the EAP module. It handles sending of the initial eap-tls request. ie access challenge to the user/peer. Framing the outgoing data packets. Creates all the required data structures to be verified for each Client and to use them when the server gets a response. Thus the code is responsible for the TLS session initialization.

	eap_tls.c
	Responsible for processing the TLS operation. It handles allocating and de-allocating of the EAP-TLS packets. Handles fragmentation and sending the next fragment. Process EAP-TLS data extraction of the received packets. It is responsible for freeing all the resources of the session after a Success/Failure.

	tls.c
	Responsible for all SSL session creation and certificate management activities. It Creates Global context SSL and use it in every new session. Thus responsible for Loading the trusted CAs, Loading of the Private key & the certificate and Setting the Context options & Verify options.

3.2 Implementation of the rlm_eap_peap module

3.2.1 Overview

Implementing the PEAP protocol has not been easy. The sole reason for this has been the confusion around the different versions of the protocol. On reading some of the PEAP related articles, it looked as if there were quite a few implementations of the protocol each implementing a different version of the protocol. There is the Microsoft implementation of PEAP, and the Cisco implementation of PEAP. Both the implementations were not inter-operable. There were instances when it has been detected that many implementations although following the same version had interpreted the protocol differently and hence had different versions.

The next problem was choosing the Client. PEAP has three versions of the protocol: 0, 1, and 2. To be completely inter-operable, any PEAP module will have to implement all the three versions. Though there seemed to be multiple PEAP Clients, the different versions of the protocol made each Client implement the protocol slightly differently. Also many of the open source Clients had bugs of their own. Thus to implement the server side of the protocol without having a stable Client seemed extremely difficult especially during the debugging stages.

Initially we had chosen Windows-XP with the Service Pack 1 package as our mobile Client. However testing out our server code seemed very difficult, as we could not go into the debug mode with a windows Client. Hence we had to adhere to reverse engineering techniques. We collected the packets exchanged between the Windows-XP Client and the Windows 2003 server and from the message exchange flow could start to implement the code fully. For testing purposes a Linux Client running the xsupplicant code was chosen. Xsupplicant was the best bet as it was open source and hence I could easily play around with the code to get it to work with the new implementation on the server.

3.2.2 The rlm_eap_peap module

As explained in the RADIUS server code organization section, the first step in introducing a new EAP-Type to the code structure is to create a new directory named rlm_eap_peap in the rlm_eap/types/ directory. The peap module is to be organized in this rlm_eap_peap directory. The module instance is created by adding the module name inside the modules{} block in the radiusd.conf file (Please refer to Appendix A for configuration details). The instance definition as placed in the radiusd.conf file and the corresponding structure as defined in the header file of the module is as follows:

Template 5.8

radiusd.conf
-- FreeRADIUS server configuration file.

modules {

For all EAP related authentications

eap {

default_eap_type = peap ….

peap {

default_eap_type = mschapv2

 }…

}…

}

// eap_peap.h

typedef struct rlm_eap_peap_t {

char * default_eap_type_name;

int default_eap_type;

} rlm_eap_peap_t;

The rlm_eap_peap module as described in the rlm_eap module section, deals with the standard attach, detach, and authenticate interfaces. It is to be noted that unlike in the rlm_eap and rlm_eap_tls modules, the rlm_eap_peap module would not have an initiate() interface. This is because PEAP is a protocol on top of TLS, so before initiating the PEAP we have to initialize the TLS session and hence the main EAP module should be taking care of calling the eaptls_initiate(). Thus the final rlm_eap_peap module instantiate structure looks like this:

Template 5.9

/* rlm_eap_peap.c - Contains interfaces called from the main module EAP */

EAP_TYPE rlm_eap_peap = {

"eap_peap",

/* module_name */

eappeap_attach,

/* attach */

NULL,

/* No peap initialization interface*/

NULL,

/* No need for authorization interface*/

eappeap_authenticate,
/* authentication */

eappeap_detach

/* detach */

};
3.2.2.1 EAP-PEAP Packet Format

In PEAP the data exchanged between the Client and the server over the TLS channel is an EAP packet, hence a PEAP packet has not been explicitly defined in the code rather the messages or data are stored in the data structure of the type EAP_PACKET itself [as defined in section 5.3.4.1].

[image: image29.emf]PEAP-TTLS Performance Comparison For

Distance Range ~55 ft

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 10 19 28 37 46 55 64 73 82 91 100

No. of Runs

Time in msec

PEAP

TTLS

Figure 5.5: PEAP Packet Format

[image: image30.emf]PEAP-TTLS Performance Comparison For

Distance Range ~65 ft [behind Closed Doors and Walls]

500

1000

1500

2000

2500

3000

3500

4000

4500

1 10 19 28 37 46 55 64 73 82 91 100

No. of Runs

Time in msec

PEAP

TTLS

3.2.2.2 PEAP – PHASE1

As described in Chapter 3 the PEAP protocol is comprised of a two-part conversation. In Phase 1, a TLS session is negotiated, with server authenticating to the Client and optionally the Client to the server. The negotiated key is then used to encrypt the rest of the conversation. Thus it is to be noted that during Phase 1, the PEAP protocol will do authentication by letting EAP-TLS to do most of the work. The message exchange of both EAP-TLS and PEAP has been explained in detail in Chapter 3.

PEAP Phase One implementation:

In the first Authenticate Phase of the protocol the handler is sent to the eaptls_process function. The eaptls_process function implemented in the eap.c code processes the EAP request and returns the following status codes.

EAPTLS_SUCCESS: indicates that the initial handshake is done. On sending the status code back to the client, the client sends back more tunneled data.

EAPTLS_HANDLED: is returned when the TLS exchange is still taking place. It is a TLS request with the process waiting to get the rest of the packet fragments

EAPTLS_OK: indicates that initial handshake is completely done. In this state the PEAP module does not return back to the TLS processing but continues with decoding the tunneled data.

If the PEAP module receives any other code other than the above from the eaptls_process function, then the PEAP module interprets it as a failure in establishing the TLS session. The following template shows portions of the code where Phase 1 of the protocol has been implemented.

Template 5.10

/* rlm_eap_peap.c contains the interfaces that are called from eap */

static int eappeap_authenticate(void *arg, EAP_HANDLER *handler)

{

int rcode;

eaptls_status_t status;

rlm_eap_peap_t *inst = (rlm_eap_peap_t *) arg;

tls_session_t *tls_session = (tls_session_t *) handler->opaque;

status = eaptls_process(handler);

switch (status) {

case EAPTLS_SUCCESS:

 eappeap_request_id(handler->eap_ds, tls_session);

eaptls_request(handler->eap_ds, tls_session);

return 1;

case EAPTLS_HANDLED:

return 1;

case EAPTLS_OK:

break;

default:

return 0;

}

/* Session is established, proceed with decoding tunneled data. */

…... rest of the code

}
3.2.2.3 The EAP-TLV Method

The EAP-TLV method is a payload with standard Type-Length-Value (TLV) objects. The TLV objects are used to carry arbitrary parameters between the EAP peer and the EAP server. The draft version of the PEAP protocol states [IETF02]:

“Compliant PEAP implementations MUST support the EAP_TLV method, processing of mandatory/optional settings on the TLV, the NAK TLV”.

The PEAP tunnel success/failure packet contains a Result TLV. The Result TLV packet is used to indicate success or failure of the PEAP tunnel. And the Result TLV should be sent only in packets with success/failure indication. In a successful authentication for a tunnel, the last packet exchange (both request and response) inside the tunnel Must always contain a valid Crypto-Binding TLV and Result-TLV=Success. The EAP-TLVs method is sent in the TLS channel i.e. is formed in the Phase 2 of the PEAP protocol. Thus these packets are protected from being spoofed as against clear text EAP success and EAP failure messages that can be easily sent by an attacker.

EAP-TLV Packet

[image: image31.wmf]

Client

Access

Point

TTLS

AAA

Server

AAA /H

Server

PPP/EAPoL

RADIUS

RADIUS

Secure password authentication tunnel

Secure data tunnel

PKI

certificates

USER

Database

Figure 5.6: EAP-TLV Packet Format

[image: image32.wmf]

 31

M

TLV Type

 0

1

2

 15 16

Length

R

Status

Result TLV Packet Format:

[image: image33.emf]TTLS vs PEAP

[hobbit - 996.785mhz]

600

700

800

900

1000

1100

1200

1300

123456789101112131415

No of Times

Time in msec

TTLS

PEAP

Figure 5.7: RESULT- TLV Packet Format

[image: image34.emf]PEAP-TTLS Resilience Test with Network

Uptime 5.0 sec and Downtime 3 sec

0

5

10

15

20

25

30

35

40

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Runs

Time in sec

TTLS

PEAP

The EAP-TLV method implementation

In Phase 2 of the protocol user credentials, the state of the message exchange and the Status i.e the Result TLV has to be passed through the encrypted channel. Hence a data structure to store these parameters is defined in the eap_peap.h header file. The PEAP header file introduces variables defining the new EAP-Type TLV. Two new functions have been added for processing the result TLV packets. Basically in the two functions the TLV packets are explicitly built. The following template shows portions of the header and c files where the TLV packets have been handled.

Template 5.11

/* eap_peap.h - PEAP header file*/

#define TLV_SUCCESS 1

#define TLV_FAILURE 2

#define PW_EAP_TLV 33

typedef struct peap_tunnel_t {

VALUE_PAIR
*username;

VALUE_PAIR
*state;

int

status; /* Checks for Result TLV status */

} peap_tunnel_t;

/* Result-TLV = Success. Need to prepare the TLV packet to be sent. */

static int eappeap_success(EAP_HANDLER *handler, tls_session_t *tls_session)

{

uint8_t *result_tlv;

uint16_t length;

result_tlv = malloc(11);

result_tlv[0] = PW_EAP_REQUEST;

result_tlv[1] = handler->eap_ds->response->id +1;

length = 10;

length = htons(length);

memcpy(&result_tlv[3], &length, sizeof(uint16_t));

result_tlv[4] = PW_EAP_TLV;

result_tlv[5] = 0x80; /* Mandatory*/

result_tlv[6] = 3; /*TLV_TYPE = 3 for Success/Failure*/

result_tlv[7] = 0;

result_tlv[8] = 2; /* Length of data field*/

result_tlv[9] = 0;

result_tlv[10] = 1; /* Status : Success = 1*/

record_plus(&tls_session->clean_in, result_tlv, 11);

tls_handshake_send(tls_session);

record_init(&tls_session->clean_in);

free(result_tlv);

return 1;

}

/* Result-TLV = Failure Need to prepare the tlv packet to be sent */

static int eappeap_failure(EAP_HANDLER *handler, tls_session_t *tls_session)

{

uint8_t *result_tlv;

uint16_t length;

result_tlv = malloc(11);

result_tlv[0] = PW_EAP_REQUEST;

result_tlv[1] = handler->eap_ds->response->id +1;

length = 10;

length = htons(length);

memcpy(&result_tlv[3], &length, sizeof(uint16_t));

result_tlv[4] = PW_EAP_TLV;

result_tlv[5] = 0x80; /* Mandatory*/

result_tlv[6] = 3; /*TLV_TYPE =3 for Success/Failure*/

result_tlv[7] = 0;

result_tlv[8] = 2; /* Length of the Data */

result_tlv[9] = 0;

result_tlv[10] = 2; /* Status: Failure Code */

record_plus(&tls_session->clean_in, result_tlv, 11);

tls_handshake_send(tls_session);

record_init(&tls_session->clean_in);

free(result_tlv);

return 1;

}

3.2.2.4 PEAP – PHASE2

Phase two of the PEAP protocol happens in the established TLS tunnel. Within this TLS session, a complete EAP conversation is carried out if the user was not authenticated with a certificate in the first Phase. The Phase 2 occurs only if the establishment of the new TLS session is in Phase 1 is successful. The EAP session in the channel is encrypted and hence all the EAP packets including the EAP header sent within the PEAP Phase 2 conversations are protected using the negotiated TLS ciphersuite. The message exchange has been explained in detail in Chapter 3.

PEAP Phase Two implementation:

An overview of the process and the functions used to implement Phase two is given below:

1. The Phase 2 of the protocol starts with the eappeap_authenticate () interface receiving the EAP_TLSOK status code from the eaptls_process function. Then the eappeap_process () function is called to process the PEAP portion of the request.

2. The eappeap_process () uses the in built SSL functions to read and decrypt the tunneled data from the SSL session. The decrypted session data is placed in a pre-defined data buffer. On a successful decryption by the SSL the tunneleddata_verify () function is called to check the validity of the tunneled data. If the tunneleddata_verify returns a code 0 then the authentication is rejected. However if the tunneled data is valid then the Status code is checked for a TLV Success or Failure. It accordingly sends back an Authentication Acknowledgment or a PEAP Reject code based on the status code.

3. If there is data in the decrypted response packet then the eappeap_process function continues to process the response. The function then allocates a fake REQUEST structure and adds the tunneled attributes to the fake request.

4. The function then checks for the EAP_Type in the tunneled attributes of the REQUEST. By default the PEAP module sets the tunneled type as MS-CHAPv2. It then updates the username, state and the Status field items in the REQUEST data structure. The function then calls the in-build Radius Authentication function rad_authenticate () with the fake request packet as the parameter to handle the tunneled EAP-Type MS-CHAPv2.

5. The next step in the eappeap_process () is to read the Response Packet received from the rad_authenticate () function. Based on the following reply codes further processing is done.

· PW_AUTHENTICATION_REJECT: implies that Tunneled Authentication is rejected.

· PW_ACCESS_CHALLENGE: This is returned if we get a tunneled Access-Challenge indicating that a Reply-Message is to be sent to the Client.

· PW_AUTHENTICATION_ACK: Is returned on a successful Authentication. Thus the response packet was an Access-Accept and the status field of the structure will now be set to TLV_SUCCESS, indicating that the Phase two of the protocol has been successful and the server can proceed to generate the MPPE (Microsoft Point–to-Point Encryption) keys according to the RFC 2716 [EAP-TLS].

6. For PW_ACCESS_CHALLENGE code a reply_message has to be formulated in the challenge that is to be tunneled back to the client. For this the reply_messages that are in the VALUEPAIR format need to be converted to the tunneled data format. Two Functions have been defined to convert the value pair packet format into tunnel data format and vica versa.

The following template shows only portions of the code where the above process steps are handled. It also includes two functions for converting value pair to tunneled data and vica versa. Microsoft PEAP version 0 has a few differences from the general behaviour of sending value pair packets, which need to be taken care of. For example PEAP version 0 dos not provide EAP headers in the inner request hence they need to be removed before tunneling the EAP-meesage packet back to the Client. Also the ID of the outer auth needs to be sent to the inner auth unless it is explicitly done Windows XP PEAP-MSCHAPv2 does not work. Another point to take into account is that in some cases XP assumes the length is not present and hence we should not be sending the length with the request. To handle this behaviour the include_length field in eap_tls module section of the radiusd.conf file needs to be set to No. It generally is set to Yes for all other EAP authentication types like TLS and TTLS.

Template 5.12

int eappeap_process(EAP_HANDLER *handler, tls_session_t *tls_session)

{

int err, i;

peap_tunnel_t *t ;

REQUEST *fake;

VALUE_PAIR *vp;

int rcode = PW_AUTHENTICATION_REJECT;

const uint8_t *data;

unsigned int data_len;

unsigned char buffer[1024];

eap_packet_t *eap_message ;

REQUEST *request = handler->request;

EAP_DS *eap_ds = handler->eap_ds;

BIO_write(tls_session->into_ssl, buffer, data_len);

record_init(&tls_session->clean_out);

err = SSL_read(tls_session->ssl, tls_session->clean_out.data,

 sizeof(tls_session->clean_out.data));

t = (peap_tunnel_t *) tls_session->opaque;

if (t->status >= TLV_SUCCESS) {

return PW_AUTHENTICATION_ACK;

} /* else no session, no data, die. */

return PW_AUTHENTICATION_REJECT;

}

data_len = tls_session->clean_out.used = err;

data = tls_session->clean_out.data;

if (!tunneleddata_verify(data, data_len)) {

return PW_AUTHENTICATION_REJECT;

}

if (t->status >= TLV_SUCCESS) {

 eap_message = (eap_packet_t *) data;

 if ((eap_message->code == PW_EAP_RESPONSE) &&

(eap_message->data[0] == PW_EAP_TLV) &&

(data[10] == 1))

{

return PW_AUTHENTICATION_ACK;

}

return PW_AUTHENTICATION_REJECT;

}

/* Allocate a fake REQUEST structe. */

fake = request_alloc_fake(request);

rad_assert(fake->packet->vps == NULL);

/* Add the tunneled attributes to the fake request. */

fake->packet->vps = tunneleddata2vp(eap_ds, data, data_len);

if (!fake->packet->vps) {

return PW_AUTHENTICATION_REJECT;

}

vp = pairmake("EAP-Type", "0", T_OP_EQ);

vp->lvalue = PW_EAP_MSCHAPV2;

pairadd(&fake->config_items, vp);

vp = pairmake("Freeradius-Proxied-To", "127.0.0.1", T_OP_EQ);

if (vp) {

pairadd(&fake->packet->vps, vp);

}

/*Update other items in the REQUEST data structure.
 */

if (!t->username) {

if ((data[0] == PW_EAP_IDENTITY) && (data_len > 1)) {

t->username = pairmake("User-Name", "", T_OP_EQ);

rad_assert(t->username != NULL);

memcpy(t->username->strvalue, data+1, data_len - 1);

t->username->length = data_len -1;

t->username->strvalue[t->username->length] = 0;

}

}

if (t->username) {

vp = paircopy(t->username);

pairadd(&fake->packet->vps, vp);

fake->username = pairfind(fake->packet->vps, PW_USER_NAME);

} /* else the request ALREADY had a User-Name */

/*Call authentication recursively, which will
do PAP, CHAP, MS-CHAP, etc. */

rad_authenticate(fake);

if (fake->reply->code == PW_AUTHENTICATION_ACK) {

t->status = TLV_SUCCESS;

eappeap_success(handler, tls_session);

rcode = PW_ACCESS_CHALLENGE;

} else if (fake->reply->code == PW_AUTHENTICATION_REJECT) {

t->status = TLV_FAILURE;

eappeap_failure(handler, tls_session);

rcode = PW_AUTHENTICATION_REJECT;

} else if (fake->reply->code == PW_ACCESS_CHALLENGE) {

vp = NULL;

pairmove2(&vp, &fake->reply->vps, PW_EAP_MESSAGE);

/*

 *
There MUST be a Reply-Message in the challenge,

 *
which we tunnel back to the client.

 */

pairmove2(&vp, &fake->reply->vps, PW_REPLY_MESSAGE);

/*Handle the ACK, by tunneling any necessary reply. VP's back to the client. */

if (vp) {

vp2tunneleddata(tls_session, vp);

pairfree(&vp);

}

rcode = PW_ACCESS_CHALLENGE;

} else {

rcode = PW_AUTHENTICATION_REJECT;

}

request_free(&fake);

return rcode;

}

/* Convert tunneled attributes to VALUE_PAIR's */

static VALUE_PAIR *tunneleddata2vp(EAP_DS *eap_ds, const uint8_t *data, unsigned int data_len)

{

VALUE_PAIR *vp = NULL;

eap_packet_t *eap_message;

int total_length;

total_length = EAP_HEADER_LEN + data_len;

eap_message = malloc(total_length);

if (!eap_message) {

radlog(L_ERR, "rlm_eap_peap: out of memory");

return NULL;

}

eap_message->code = PW_EAP_RESPONSE;

eap_message->id = eap_ds->response->id;

total_length = htons(total_length);

memcpy(eap_message->length, &total_length, sizeof(uint16_t));

memcpy(&(eap_message->data[0]), data, data_len);

vp = paircreate(PW_EAP_MESSAGE, PW_TYPE_OCTETS);

if (!vp) {

DEBUG2(" PEAP: Failure in creating VP");

return NULL;

}

memcpy(vp->strvalue, eap_message,total_length);

vp->length = total_length;

free(eap_message);

return vp;

}

/* Convert VALUE_PAIR's to tunneled attributes, and write them to an SSL session. */

static int vp2tunneleddata(tls_session_t *tls_session, VALUE_PAIR *eap_message)

{

tls_handshake_send(tls_session);

record_init(&tls_session->clean_in);

return 1;

}

For an entire listing of the code along with the debug statements and error condition checks one can please refer to the following web-site

http://www.cs.uccs.edu/~chow/pub/master/nbulusu/src/
3.3 The rlm_eap_ttls module

3.3.1 Overview

TTLS (Tunneled TLS Authentication Protocol) is an authentication protocol that is used in wireless networks, using the same underlying concepts as that of PEAP. The TTLS protocol is an extension to TLS, and is comprised of a two Phase conversation. In the first Phase the protocol establish a TLS channel, authenticating the server by presenting a server sertificate. In the second Phase once the Client verifies the server certificate and sends username and password over the established TLS channel encrypted by a session key. There are various protocols like one-time password, challenge response, or plaintext username and password that are sent through the encrypted channel.

The TTLS module has been developed by Alan DeKok of the FreeRadius group. The module has been organized in the src/modules/rlm_eap/types/rlm_eap_ttls directory. The module instance is created by adding the module name inside the modules{} block in the radiusd.conf file (Please refer to Appendix A for configuration details). As the TTLS protocol is very much similar to the PEAP protocol I would be presenting only a brief implementation of the protocol highlighting only on the major areas of difference. The following template has been presented only for comparision purposes with the PEAP protocol. The instance definition as placed in the radiusd.conf file and the corresponding structure defined in the header file of the module are as follows:

Template 5.13

radiusd.conf
-- FreeRADIUS server configuration file.

modules {

For all EAP related authentications

eap {…

ttls {

default_eap_type = mschap

copy_request_to_tunnel = no

use_tunneled_reply = no

 } …

}…

}

// Structure as defined in rlm_eap_ttls.c

typedef struct rlm_eap_ttls_t {

char
*default_eap_type_name;

int
default_eap_type;

int
use_tunneled_reply;

int
copy_request_to_tunnel;

} rlm_eap_ttls_t;

// Structure as defined in eap_ttls.h to be used within the TLS tunnel.

typedef struct ttls_tunnel_t {

VALUE_PAIR
*username;

VALUE_PAIR
*state;

int

authenticated;

int

default_eap_type;

int

copy_request_to_tunnel;

int

use_tunneled_reply;

} ttls_tunnel_t;

3.3.2 AVPs and their encapsulation within the TLS Record Layer

One of the major differences between the PEAP and TTLS protocol is the exchange of data packets within the TLS channel. It is mostly in the second Phase that the two protocols differ. In EAP-TTLS, AVPs – attribute-value pairs are exchanged. The AVPs are encrypted within the TLS record layer and encapsulated in the EAP-TTLS packets. It is to be noted that the AVPs format of EAP-TTLS is very much compatible with the Diameter and Radius AVP format. This compatability allows for easy translation of AVP packets by the EAP-TTLs server between the Client and the Radius server. Another difference is in the authentication method that can be used by the Client within the tunnel. In PEAP presently only EAP methods like ms-chapv2 are supported however for TTLS any authentication methods like EAP itself or any other non-EAP methods such as PAP, CHAP, MS-CHAP or MS-CHAP-v2 can be used. In the RADIUS implementation presently the MS-CHAP version is used.

[image: image35.emf]PEAP-TTLS Resilience Test with Network

Uptime 4.5sec and Downtime 3sec

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Runs

Time in sec

TTLS

PEAP

AVP Packet Format

Figure 5.8: AVP Packet Format

[image: image36.emf]PEAP-TTLS Resilience Test with Network

Uptime 4.2sec and Downtime is 3sec

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Runs

Time in sec

TTLS

PEAP

The AVP method implementation

The Phase two of the protocol involves processing the AVP packets. As in PEAP there is a eapttls_process function that handles the Phase 2 of the protocol. The function returns the same status codes as described in the PEAP implementation section. The function first verifies if the tunneled data is valid or not using the diameter_verify (). The TTLS protocol uses the term “diameter” for the tunnel. The function then allocates a fake REQUEST structure and adds the tunneled attributes to the fake request. The reason for creating the fake request from the tunneled attributes is that the Radius authenticates the request based on this fake request. The fake request packet is prepared using the diameter2vp() function. The eapttls_process then continues by checking for the EAP_Type in the tunneled attributes of the REQUEST. It then updates the username, state and the Staus field items in the REQUEST data structure. The function calls the in-build Radius Authentication function rad_authenticate () with the fake request packet as the parameter to handle the tunneled EAP-Type. The following template shows portions of the code where the AVP packets have been handled.

Template 5.14

/* rlm_eap_ttls.c - Contains interfaces that are called from eap*/

{
static int eapttls_authenticate(void *arg, EAP_HANDLER *handler)

{

rcode = eapttls_process(handler->request, tls_session);

if (rcode == PW_AUTHENTICATION_REJECT) {

eaptls_fail(handler->eap_ds, 0);

return 0;

}

if (rcode == PW_ACCESS_CHALLENGE) {

eaptls_request(handler->eap_ds, tls_session);

return 1;

}

if (rcode == PW_AUTHENTICATION_ACK) {

eaptls_success(handler->eap_ds, 0);

eaptls_gen_mppe_keys(&handler->request->reply->vps, tls_session->ssl,

 "ttls keying material");

return 1;

}

eaptls_fail(handler->eap_ds, 0);

return 0;

 }

}
/* eap_ttls.c - Has functions to process the EAP-TTLS pahse 2 authentication*/

int eapttls_process(REQUEST *request, tls_session_t *tls_session)

{

int rcode = PW_AUTHENTICATION_REJECT;

REQUEST *fake;

VALUE_PAIR *vp;

ttls_tunnel_t *t;

fake = request_alloc_fake(request);

rad_assert(fake->packet->vps == NULL);

/*Add the tunneled attributes to the fake request */

/*The diameter2vp function converts the tunneled attribute to the Value Pair structure. */

fake->packet->vps = diameter2vp(tls_session->ssl, data, data_len);

if (!fake->packet->vps) {

return PW_AUTHENTICATION_REJECT;

}

/* Update other items in the REQUEST data structure. */

/* the pairfind function is an internal RADIUS Value Pair function that finds the pair with the matching attribute that is passed*/

fake->username = pairfind(fake->packet->vps, PW_USER_NAME);

fake->password = pairfind(fake->packet->vps, PW_PASSWORD);

/* the pairadd() adds another pair at the end of the list forming a linked list */

/* Assign the Tunneled EAP_Type to the value_pair*/

/* the pairmake() creates a ValuePair with the given ASCII attribute and value */

/* As the default_eap_type exists the EAP_Type in the ValuePair is set back to null. And the ValuePairs lvalue is set instead to the eap_type. T_OP_EQ is an Equal To operator*/

if (t->default_eap_type != 0) {

vp = pairmake("EAP-Type", "0", T_OP_EQ);

vp->lvalue = t->default_eap_type;

pairadd(&fake->config_items, vp);

}

rad_authenticate(fake);

rcode = 0;

if (fake->reply->code == PW_AUTHENTICATION_ACK) {

rcode = fake->reply->code;

vp = NULL; /* reset the ValuPair to prepare for the next data*/

/* The pairmove2 function just transfers one kind of attributes from one list to another */

pairmove2(&vp, &fake->reply->vps, PW_MSCHAP2_SUCCESS);

if (vp) {

rcode = PW_ACCESS_CHALLENGE;

t->authenticated = TRUE;

} else { /* no MS-CHAP2-Success */

/* Then need not tunnel back the attributes to Client. However if askedt to use attributes from reply then tunnel it back */

pairmove2(&vp, &fake->reply->vps, PW_EAP_MESSAGE);

pairfree(&vp);

if (t->use_tunneled_reply) {

pairadd(&request->reply->vps, fake->reply->vps);

fake->reply->vps = NULL;

}

}

if (vp) {

vp2diameter(tls_session, vp);

pairfree(&vp);

}

} else if (fake->reply->code == PW_ACCESS_CHALLENGE) {

vp = NULL;

pairmove2(&vp, &fake->reply->vps, PW_EAP_MESSAGE);

pairmove2(&vp, &fake->reply->vps, PW_REPLY_MESSAGE);

if (vp) {

vp2diameter(tls_session, vp);

pairfree(&vp);

}

rcode = fake->reply->code;

} else { /* Rejecting tunneled user");*/

DEBUG2(" TTLS: Rejecting tunneled user");

}

request_free(&fake);

return rcode;

}
For an entire listing of the code one can please refer to the following web-site:

http://www.cs.uccs.edu/~chow/pub/master/nbulusu/src/
Chapter 4
Performance Results

This Chapter presents the performance results of the implemented protocol PEAP and performs a comparative analysis with its competing protocol EAP-TTLS (Extensible Authentication Protocol – Tunneled Transport Layer Security). Table 6.1 shows the hardware and software configuration of machines used in the test-bed.

	Machine Spec
	IP Address
	OS
	Software

	wiper.uccs.edu

1.8 ghz, 1GB,

RADIUS Server and DHCP server
	128.192.61.132
	RedHat 9.0

Running Linux 2.2.20-19.9 kernel
	FreeRadius

Modified

CVS snapshot radiusd-09.03.03.tar.gz

	willow.uccs.edu

Access Point

Cisco Aironet 1200

	128.192.61.130
	RedHat 9.0 Running Linux 2.2.20-19.9 kernel
	Cisco 1200 series

Software

	Toshiba – 366 Mhz, 512 MB

Wireless Client

Using Cisco Aironet 350 PC Card
	Dynamic IP address

128.192.61.144

to

128.98.61.152
	RedHat 6.2 running Linux 2.2.20-19.9 kernel
	Open1x Xsupplicant

Version 9.0

	Hobbit – 1 Ghz Dell Optiplex, 512 MB

Wireless Client

Using Cisco Aironet 350 PCI Card
	Dynamic IP address

128.192.61.144

to

128.98.61.152
	Windows XP-SP1

And RedHat 9.0 Running Linux 2.2.20.9 kernel
	Open1x Xsupplicant for Linux and built in Service Pack for XP

Table 6.1 Configuration of machines used in performance tests

4.1 Current TestBed in the UCCS Engineering LAB

The development environment that has been used to implement and test is as shown in Figure 6.1

[image: image37.emf]PEAP-TTLS Resilience Test with Network

Uptime 4.0sec and Downtime 3sec

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Runs

Time in sec

TTLS

PEAP

Figure 6.1: Test Bench set-up in the Lab

4.2 Test Data Collection

In all tests the data was based on the number of requests processed per microsecond. The time was calculated from when the Client is associated with the Access Point until the Client gets authenticated. The benefits of using the open-source code on the Client side were that I could control the timer settings and finally get the required time difference for the tests. The following template shows the functions written to calculate the time. The gettimeofday () function was called once at the start of EAPoL and once when the Client got authenticated. This function enables us to collect data in microseconds.

Template 6.1

/* eapol.c - EAPOL Function implementations for supplicant*/

#include <sys/time.h>

struct timeval starttv, tv;

struct timezone tz;

void get_timediff()

{

 (void)gettimeofday((struct timeval *)&tv, (struct timezone *)&tz);

 (void) tvsub_1(&tv, &starttv);

 printf("recv_time = %ld us\n", tv.tv_sec * 1000000 + tv.tv_usec);

}

void tvsub_1(register struct timeval *out, register struct timeval *in)

{

 if ((out->tv_usec -= in->tv_usec) < 0) {

 --out->tv_sec;

 out->tv_usec += 1000000;

 }

 out->tv_sec -= in->tv_sec;

}
4.3 Test Scenarios

Four groups of test scenarios have been conducted with the test-bed. For each scenario tests were conducted for both PEAP and TTLS on the same platform. Each wireless Client was run one at a time continuously ranging from 15 runs to 1500 runs based on the test scenario. The four testing scenarios are:

1. Performance impact of Client processor speed on the two protocols - PEAP and TTLS. These tests were done to investigate the influence of processor speeds on the performance of the protocol.

2. Sensitivity study of PEAP and TTLS with the Client stationed at varying distances: This was an important test scenario for testing performances with the mobile Client trying to authenticate at different distance ranges. These tests were performed to study the impact of increasing distance range on the authentication protocol.

3. PEAP and TTLS Resilience Tests: The performance of the two protocols is investigated in situations of frequent network disruptions. The network interface at the RADIUS server end is brought up and down over different time periods by running a perl script. Through the tests we also tried to find out the threshold time where the two protocols stopped to recover. These tests were performed to see which of the two protocols was more resilient in context with changing network conditions.

4. Stress Tests: Finally some stress tests were performed for both PEAP and TTLS. The tests were conducted for more than 20 hours to see if the Clients got authenticated all the times or if the association got broken. The test indicates the server’s tolerance capacity on getting continous requests for a long period of time.

4.4 Test Results and Analysis

1. Performance Test Scenario 1:

Performance impact of Client processor speed on PEAP and TTLS protocols.

Purpose: Investigate the impact of proceesor speed of the Client on the time taken to process the Client requests. The third test was done to see the capacity of the server to handle multiple rquests coming from the Clients.

Clients used: Toshiba with processor speed 366.604 Mhz and Hobbit with processor speed 996.785 Mhz

Number of Tests Performed: Three Tests were performed for this group scenario. The first two tests were comparing PEAP and TTLS each running for 15 times individually on the two machines. The final test was when both the Clients were running simultaneously thus sending multiple requests to the server.

Test 1: Running PEAP and TTLS one at a time on Toshiba machine

	Time in milliseconds for the Toshiba - 366.604Mhz Client

	No. of Runs
	PEAP
	TTLS

	1
	1180
	1043

	2
	1124
	692

	3
	1032
	958

	4
	773
	1016

	5
	1033
	695

	6
	1026
	1016

	7
	1036
	954

	8
	1031
	951

	9
	1034
	1036

	10
	1035
	955

	11
	1027
	1019

	12
	1118
	954

	13
	1094
	953

	14
	1028
	950

	15
	1123
	1039

	Average
	1046
	949

	Variance
	8142
	12060

Table 6.2 PEAP vs TTLS for the Toshiba Client
[image: image38.wmf]

DeAuthentication

Notification

Successful

Association or

Reassociation

DisAsso

ciation

Notification

Successful

Authentication

DeAuthentication

Notification

State 1:

802.11 Unauthenticated,

Unassociated

State 2:

802.11 Authenticated,

Unassociated

State 3:

802.11 Authenticated,

Associated

Class

1,2 & 3

Frames

Class

1 & 2

Frames

Class 1

Frames

Figure 6.2 PEAP vs TTLS for the Toshiba Client

Test 2: Running PEAP and TTLS one at a time on Hobbit machine

	Time in milliseconds for Hobbit - 996.785 mhz Client

	No. of Runs
	PEAP
	TTLS

	1
	982
	942

	2
	986
	901

	3
	978
	941

	4
	979
	902

	5
	984
	897

	6
	983
	896

	7
	977
	901

	8
	981
	905

	9
	985
	942

	10
	984
	941

	11
	985
	904

	12
	978
	897

	13
	984
	899

	14
	985
	901

	15
	985
	901

	Average
	983
	911

	Variance
	10
	356

Table 6.3 PEAP vs TTLS for the Hobbit Client

[image: image39.emf]PEAP-TTLS Resilience Test with Network

Uptime 3.9sec and Downtime 3.0sec

0

5

10

15

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Runs

Time in sec

TTLS

PEAP

Figure 6.3 PEAP vs TTLS for the Hobbit Client

Test 3: Running PEAP and TTLS simultaneously on two different Clients.

	Time in milliseconds for Running PEAP and TTLS Simultaneously from two different Clients Toshiba and Hobbit

	No. of Runs
	PEAP
	TTLS

	1
	1026
	998

	2
	777
	949

	3
	1038
	1038

	4
	772
	949

	5
	1032
	1040

	6
	1037
	951

	7
	1407
	946

	8
	1027
	949

	9
	771
	691

	10
	1044
	1022

	11
	1032
	691

	12
	1027
	949

	13
	1035
	948

	14
	1033
	1043

	15
	1033
	1038

	Average
	1006
	947

	Variance
	23707
	12387

Table 6.4 PEAP vs TTLS on running simultaneously on two different Clients

[image: image40.emf]PEAP STRESS TEST

0

1000

2000

3000

4000

5000

6000

1 200 399 598 797 996 1195 1394

No. of Runs

Time in msec

PEAP

Figure 6.4 PEAP vs TTLS on running simultaneously on two different Clients

Result Analysis: From the above three tests it is quite evident that TTLS is performing on an average 8% better than PEAP. With lower Client processor speeds TTLS was outperforming PEAP by well over 10% but with higher processor speed the performance difference was only around 7% and decreased to 6% when the protocols were running simultaneoulsy. Although the better performance shown by TTLS over PEAP is negligible, it has to be observed that PEAP performed worse at lower processor speeds while TTLS showed consistently better performance over all the three tests. Another point that has to be taken into account is that both TTLS and PEAP had lower data variance with PEAP showing almost negligible variance when the Client had higher processor speeds. Thus one can conclude that the influence of processor speed was more on PEAP as compared to TTLS.

2. Performance Test Scenario 2:

Sensitivity study of PEAP and TTLS with the Client stationed at varying distances:

Purpose: A wireless network's throughput depends on many factors, such as building construction and the distance between the wireless Client and the wireless access point or router. At best, 802.11b products reach 4 to 6 Mbps within the distance range of 20 to 70 feet from the access point. We needed to increase distance to introduce packet loss or signal degradation and then study their impact on the performance of the two protocols.

Clients used: Toshiba with processor speed 366.604Mhz

Number of Tests Performed: Five Tests were performed for this group scenario. The tests were performed at distance ranges of 25, 30, 45, 55 and 65 feet approximately. For some of the tests the Clients were stationed behind walls and closed doors to see the impact of stations not in the line of sight range. For others the Client and the access point have line of sight connection. The tests were performed for both PEAP and TTLS each running for approx 100 times. Finally an average time taken over the distance and variance of the data collected have been calculated and graphed for the purpose of performance analysis.

 Test 1: Performance Comparison of PEAP and TTLS at distance ~30ft.

	Time in milliseconds for Running PEAP and TTLS at a Distance Range ~30 ft [Open space]

	No. of Runs
	PEAP
	TTLS

	1
	1059
	899

	2
	932
	893

	3
	4895
	1022

	4
	1063
	893

	5
	1173
	1015

	6
	935
	1023

	7
	1055
	898

	8
	1057
	897

	9
	1318
	1019

	10
	931
	1020

	….
	….
	….

	97
	942
	1021

	98
	934
	1014

	99
	1063
	906

	100
	942
	1023

Table 6.5: PEAP vs TTLS at a distance range of ~30 ft

[image: image41.emf]TTLS STRESS TEST

0

1000

2000

3000

4000

5000

6000

7000

1 200 399 598 797 996 1195 1394

No. of Runs

Time in msec

TTLS

Figure 6.5: PEAP vs TTLS at a distance range of ~30 ft

Test 2: Performance Comparison of PEAP and TTLS at distance ~25ft.

	Time in milliseconds for Running PEAP and TTLS at a Distance Range ~25 ft [Behind Walls and Closed Doors]

	No. of Runs
	PEAP
	TTLS

	1
	1271
	1276

	2
	1002
	893

	3
	953
	894

	4
	676
	897

	5
	3369
	895

	6
	1070
	906

	7
	939
	887

	8
	1061
	903

	9
	1062
	902

	10
	952
	1279

	….
	….
	….

	97
	678
	1019

	98
	950
	1018

	99
	952
	892

	100
	952
	892

Table 6.6: PEAP vs TTLS at a distance range of ~25 ft

Figure 6.6: PEAP vs TTLS at a distance range of ~25 ft

Test 3: Performance Comparison of PEAP and TTLS at distance ~45ft.

	Time in milliseconds for Running PEAP and TTLS at a Distance Range ~45 ft

	No. of Runs
	PEAP
	TTLS

	1
	1065
	6848

	2
	940
	1016

	3
	1060
	1021

	4
	931
	1018

	5
	1060
	892

	6
	1061
	1013

	7
	935
	1023

	8
	941
	1010

	9
	941
	886

	10
	1055
	3327

	….
	….
	….

	97
	1062
	889

	98
	1062
	906

	99
	1062
	1022

	100
	1062
	1011

Table 6.7: PEAP vs TTLS at a distance range of ~45 ft

Figure 6.7: PEAP vs TTLS at a distance range of ~45 ft

Test 4: Performance Comparison of PEAP and TTLS at distance ~55ft.

	Time in milliseconds for Running PEAP and TTLS at a Distance Range ~55 ft

	No. of Runs
	PEAP
	TTLS

	1
	1598
	1018

	2
	1057
	1281

	3
	4591
	1019

	4
	1340
	1559

	5
	1383
	1019

	6
	1603
	1561

	7
	1599
	1309

	8
	1324
	1020

	9
	1121
	1558

	10
	1575
	1560

	….
	….
	….

	97
	1113
	1613

	98
	1339
	1300

	99
	1062
	1018

	100
	1862
	1560

Table 6.8: PEAP vs TTLS at a distance range of ~55 ft

Figure 6.8: PEAP vs TTLS at a distance range of ~55 ft

Test 5: Performance Comparison of PEAP and TTLS at distance ~65ft.

	Time in milliseconds for Running PEAP and TTLS at a Distance Range ~65 ft [Behind Walls and Closed Doors]

	No. of Runs
	PEAP
	TTLS

	1
	1330
	1355

	2
	1048
	1029

	3
	1339
	1026

	4
	1089
	1028

	5
	1599
	991

	6
	1628
	1006

	7
	1339
	1005

	8
	1937
	1056

	9
	1336
	1296

	10
	1606
	999

	….
	….
	….

	97
	1327
	1019

	98
	1337
	1858

	99
	1340
	3108

	100
	4089
	999

Table 6.9: PEAP vs TTLS at a distance range of ~65 ft

Figure 6.9: PEAP vs TTLS at a distance range of ~65 ft

Average Performance Comparison of PEAP and TTLS.

Average

	Time in milliseconds for Running PEAP and TTLS over Varying Distances

	No. of Runs
	PEAP
	TTLS

	DIST1
	1023
	1009

	DIST2
	1016
	998

	DIST3
	1099
	1032

	DIST4
	1389
	1276

	DIST5
	1439
	1200

Table 6.10: PEAP vs TTLS Performances over Varying Distances [Average Values]

[image: image2.emf]PEAP-TTLS Average Performances over varying Distances

800

900

1000

1100

1200

1300

1400

1500

DIST1 DIST2 DIST3 DIST4 DIST5

Distance Range

Average-Time/ msec

PEAP

TTLS

Figure 6.10: PEAP vs TTLS Average Performances over Varying Distances

Comparison of PEAP and TTLS based on the Variance of Data

	Variance Data for Running PEAP and TTLS over Varying Distances

	No. of Runs
	PEAP
	TTLS

	DIST1
	175250
	119226

	DIST2
	129413
	20721

	DIST3
	157919
	131914

	DIST4
	195837
	122061

	DIST5
	183766
	219442

Table 6.11: PEAP vs TTLS Variance Data over Various Distances

[image: image3.emf]Variance Data for PEAP and TTLS over Varying Distances

0

50000

100000

150000

200000

250000

Dist1 Dist2 Dist3 Dist4 Dist5

Distance

Variance

PEAP

TTLS

Figure 6.11: PEAP vs TTLS Variance Data over Various Distances

Result Analysis: The above tests clearly indicate that as the Client goes farther away from the access point both of the protocol’s performance degrades. In the first test with the Client placed at ~30 feet the time taken to process the rquests for both TTLS and PEAP was on an average around 1016 msec. In the ~25 feet range, Client surprisingly seemed to have performed better although the Client was behind closed doors with both eprotocols having an average of 1000 msec. At a lower distance range the performance difference between PEAP and TTLS is negligible with TTLS performing around 1% better than PEAP. However with the distance range increasing the average performance difference between PEAP and TTLS also slowly increased with TTLS performing 9%, 10% better than PEAP at ~45, ~55 feet respectively and finally increased by 20 % at ~65 feet range. Howvere such a large increase in performance TTLS needs to be critically examined and it has been observed that the data collected has been quite variant for PEAP as compared to TTLS at closer distances howvere at the farthest point of ~65 feet TTLS data showed a very high variance as compared to PEAP.

3. Performance Test Scenario 3:

PEAP and TTLS Resilience Tests:

Purpose: To study the tolerance capacity of the protocols towards network transitive behaviour. For these tests we wrote a small perl script to turn on and off the Ethernet interface of the RADIUS server. With this we could investigate the resilient aspect of the two protocols and see which of the protocols had better recovery potential. In all the tests a constant 3 second down time has been chosen. At first this was just a randomly chosen number. However in the process of testing it had been observed that there was not much impact with frequently changing the downtime period as compared to the changing network uptime. Hence in all the tests it was the network up time that had been changed frequently to investigate the impact of network transitive behavior.

Clients used: Toshiba with processor speed 366.604 Mhz

Number of Tests Performed: Five Tests were performed for this group scenario. The network interface at the RADIUS server end is brought up and down over different time periods by running a perl script. Through the tests we also tried to find out the threshold time where the two protocols stopped to recover. Initially had just used the sleep() function to estimate the time however this measurement was not accurate in getting the threshold time result. And hence we shifted to writing a perl script with higher resolution timer package. Each test was performed 15 times for both PEAP and TTLS each. The time was measured in seconds for this test.

Test 1: Comparison of PEAP and TTLS with Network uptime 5 sec

	PEAP-TTLS Resilience Test with Network Uptime 5 sec

	No. of Runs
	PEAP
	TTLS

	1
	0.9
	1

	2
	21
	21

	3
	59
	0.9

	4
	22
	1

	5
	0.9
	21

	6
	0.9
	0.9

	7
	21
	1

	8
	0.9
	0.9

	9
	0.9
	21

	10
	0.9
	0.9

	11
	21
	0.9

	12
	0.9
	0.9

	13
	1
	21

	14
	0.9
	1

	15
	21
	1

	Average
	12
	6

	Variance
	266
	84

Table 6.12: PEAP vs TTLS Resilience Test with Network Uptime 5 sec

Figure 6.12: PEAP vs TTLS Resilience Test with Network Uptime 5 sec

Test 2: Comparison of PEAP and TTLS with Network uptime 4.5 sec

	PEAP-TTLS Resilience Test with Network Uptime 4.5 sec

	No. Of Runs
	PEAP
	TTLS

	1
	0.9
	1

	2
	1
	1

	3
	0.9
	0.9

	4
	21
	21

	5
	1
	1

	6
	21
	0.9

	7
	1
	21

	8
	1
	0.9

	9
	21
	21

	10
	1
	1

	11
	21
	0.9

	12
	1
	21

	13
	21
	1

	14
	0.9
	21

	15
	21
	0.9

	Average
	9
	8

	Variance
	105
	95

Table 6.13: PEAP vs TTLS Resilience Test with Network Uptime 4.5 sec

Figure 6.13: PEAP vs TTLS Resilience Test with Network Uptime 4.5 sec

Test 3: Comparison of PEAP and TTLS with Network uptime 4.2 sec

	PEAP-TTLS Resilience Test with Network Uptime 4.2 sec and

Downtime 3 sec

	No. of Runs
	PEAP
	TTLS

	1
	0.9
	1

	2
	0.9
	23

	3
	1
	1

	4
	21
	26

	5
	1
	1

	6
	21
	0.9

	7
	21
	21

	8
	1
	1

	9
	21
	21

	10
	21
	21

	11
	0.9
	0.9

	12
	21
	21

	13
	1
	21

	14
	21
	0.9

	15
	21
	21

	Average
	12
	12

	Variance
	106
	118

Table 6.14: PEAP vs TTLS Resilience Test with Network Uptime 4.2 sec

Figure 6.14: PEAP vs TTLS Resilience Test with Network Uptime 4.2 sec

Test 4: Comparison of PEAP and TTLS with Network uptime 4 sec

	PEAP-TTLS Resilience Test with Network Uptime 4 sec and

Downtime 3 sec

	No. of Runs
	PEAP
	TTLS

	1
	0.9
	1

	2
	0.9
	0.9

	3
	21
	0.8

	4
	21
	21

	5
	21
	21

	6
	21
	21

	7
	21
	21

	8
	21
	21

	9
	21
	21

	10
	21
	21

	11
	21
	21

	12
	21
	27

	13
	21
	0.9

	14
	21
	21

	15
	21
	21

	Average
	18
	16

	Variance
	50
	91

Table 6.15: PEAP vs TTLS Resilience Test with Network Uptime 4 sec

Figure 6.15: PEAP vs TTLS Resilience Test with Network Uptime 4 sec

Test 5: Comparison of PEAP and TTLS with Network uptime 3.9 sec

	PEAP-TTLS Resilience Test with Network Uptime 3.9 sec and Downtime 3 sec

	No. of Runs
	PEAP
	TTLS

	1
	0.9
	1

	2
	0.9
	0.9

	3
	21
	0.9

	4
	21
	21

	5
	55
	55

	6
	21
	21

	7
	55
	21

	8
	21
	21

	9
	55
	55

	10
	21
	21

	11
	56
	21

	12
	0.9
	55

	13
	0.9
	21

	14
	21
	55

	15
	21
	21

	Average
	25
	26

	Variance
	437
	390

Table 6.16: PEAP vs TTLS Resilience Test with Network Uptime 3.9 sec

Figure 6.16: PEAP vs TTLS Resilience Test with Network Uptime 3.9 sec

Result Analysis: The above tests indicate that the Client performance degrades as the network interface uptime gets shorter. Also the test was performed upto 3.9sec network uptime, beyond which i.e at 3.8 sec uptime both PEAP and TTLS failed to recover. It has been observed in this tests suprisingly the average performance of TTLS as compared to PEAP is negligible. But in cases where the difference was large the variance difference between the two also has been relatively big. Looking at the Client-side xsupplicant code it has been seen that the Client waits 1/4th seconds for a missing frame and in case the Client fails to authenticate the Client sleeps for 5 sec before starting the request to re-authenticate. The Client tries for a total of 3 times to re-authenticate and if it fails all three times it disconnects the EAPoL association with the access point. And an external intervention of manually restarting the network service with the Linux command “service network restart” is required to re-start the authentication process.

4. Performance Test Scenario 4:

PEAP and TTLS Stress Tests:

Purpose: To study the performance of the two protocols when run for a longer period of time.

Clients used: Toshiba with processor speed 366.606 Mhz

Number of Tests Performed: Two Tests were performed for each of the two protocols. Each test was run for over 15 hours.

Test 1: PEAP Stress Test

	Time in msec PEAP Stress Test

	No. of Runs
	PEAP

	1
	1063

	2
	969

	3
	1060

	4
	3370

	…
	…

	1498
	927

	1499
	930

	1500
	1060

	Average
	1011

Table 6.17: PEAP Stress Test

Figure 6.16: PEAP Stress Test

Figure 6.17: PEAP Stress Test

Test 2: TTLS Stress Test

	Time in msec TTLS Stress Test

	No. of Runs
	TTLS

	1
	927

	2
	1023

	3
	1011

	4
	3584

	….
	….

	1498
	1018

	1499
	1018

	1500
	1018

	Average
	1099

Table 6.18: TTLS Stress Test

Figure 6.18: TTLS Stress Test

Result Analysis: Both the protocols passed the stress tests. Both authenticated the Client all times. The peaks can be attributed to the fact that probably in some of the cases the Client got authenticated not in the first but in second or third trial of the Client. Also it has been observed that over a longer time period TTLS seems to have shown much more variance as compared to PEAP. The peaks reached by TTLS were much more frequent and higher as compared to PEAP. This could be attributed to the fact that TTLS was run at a busier time period of the day while PEAP was run when the network traffic was relatively less.

4.5 MAC Address Spoofing Test on PEAP

The Media Access Control address is a hardware address that uniquely identifies each node of a network. An attacker wishing to disrupt a wireless network can present himself as an authorized client by using an altered MAC address. As nearly all wireless Network Interface Cards (NIC) permit changing their MAC address to an arbitrary value through vendor-supplied drivers, open-source drivers or various application programming frameworks, an attacker using these tools, can launch denial of service attacks, bypass access control mechanisms, or falsely advertise services to wireless clients [JWU03]. The PEAP and TTLS protocols require the use of user authentication like user name and password before accessing the network. This test was performed to show that by spoofing the MAC address alone an attacker couldn’t gain access to a wireless network that relies on tunneled encryption for authenticating wireless Clients.

The tests required two laptops – One a legitimate Client running PEAP on a Linux machine and the second machine as an attacker was using AiroPeek [AIRP03] tool on a Windows XP machine. I would like to note that the above test was performed with the help of Donovan Thorpe. The following steps outline the procedure involved in performing the test:

1. Using AiroPeek tool the Client’s IP and MAC address were sniffed. From the tools however we could not get the user credentials, as they were passed through the established tunnel and were in encrypted format.

2. The MAC address was modified within the registry of the Windows XP Client. The following steps were performed to change the registry [MGEN02].

a. Open regedit and find

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-E325-11CE-BFC1-08002bE10318}\0011]

b. Add a String Value called NetworkAddress (no space) and enter a MAC address value. Save and exit regedit

c. Reboot the system.

3. With the modified MAC address try to connect to the Access Point.

Result Analysis:

The attacker could associate with the Access Point as it now had a valid MAC address thus passing the first line of defense – MAC address filtering

The attacker was then prompted for the user credentials. This stage could not be by-passed and the attacker could not access the network. Thus with just the MAC address an attacker cannot gain access to network services that makes use of tunneled encryption protocols like PEAP or TTLS.

Chapter 5
Lessons Learnt

Much of the time during the development of the thesis work has been spent in not only implementing the draft version of the protocol, but also in debugging the implemented protocol. This Chapter briefly presents the problems faced during the course of the thesis work and the tools used and procedures followed in solving them.

As the thesis was built on open source code, lot of time was spent in first trying to understand the already developed code portions. From the very beginning of the GNU Project debugger, GDB has been used for the purposes of walking through the code and understanding it and also later for debugging the implemented portions. The other tools that were used are Ethereal the network protocol analyzer. This has been extremely useful in trying to understand the protocol message conversations. With this tool I could examine in detail the information being exchanged in each packet. The detailed exchange of packet information is very critical while debugging the code.

The first problem we encountered was in setting up the test-bed based on the open sources available. There were a number of compiling errors that needed to be corrected initially. Most of the compile erros were due to the incompatible versions of libnet and openSSL packages. The README documents of the open source packages used were not at descriptive in the initial stages of their implementations. A very detailed section on how to set-up has been given in the Appendices.

The next problem we encountered was in generating the PKI certificates. There were different versions of the OpenSSL package that were needed. One version was used in just building the FreeRAdius and the Xsupplicant package. One version was required to compile the EAP-TLS module of FreeRadius and another version was required to generate the PKI certificates. Initially we had installed only one version of the openSSL package and with that we were unable to debug the errors found while compiling the EAP-TLS module. Later on looking closely at the debug statements, we found that the openSSL version that is used by the other modules does not support the enhanced features used by the EAP-TLS modules that uses the later versions of openSSL. The HOW-TO presented by Raymond McKay [MCKAY02] helped solve the problem.

The next problem was trying to debug why the access point did not relay messages to the RADIUS server. The Ethereal dumps [ETHV1] on the Client side showed EAPoL start packets. Howvere none of the packets were being transported to the RADIUS server. The Ethereal dumps on the server end did not give any indication in solving this problem. It took us a while to understand that the RADIUS Server machine had high-level of firewall enabled on it. This made some of the ports that the RADIUS was using namely 1812 and 1642 inaccessible. Hence the access point could not associate with the RADIUS server. Thus for the set-up to work we need to either disable the firewall or explicitly enable the ports 1812 and 1642.

We also faced problems when migrating to RedHat Linux 9.0. The Xsupplicant source then was not upgraded to support RedHat 9.0. There were problems encountered in compiling the code. Changes were made to the Makefiles in the source directories to include the path for the new Kerberos location in RedHat 9.0.

The next problem faced was trying to get the EAP-TTLS code working. It failed to authenticate in the second Phase of the protocol. The problem was that it refused to identify the tunneled EAP-Type (MS-CHAPv2) mentioned in the 1x.conf file on the Client-side and hence was always trying to authenticate using the default EAP_type PAP. This was due to the version problems in implementing the MS-CHAPv2 on the server side. The MS-CHAPv2 version on the Client end and Server end did not match. By changing either of the two, the PEAP protocol failed hence a temporary solution was done by tring to authenticate TTLS using MS-CHAP. However the recent versions of the xsupplicant have compatible MS-CHAPv2 modules.

Finally debugging the PEAP code was difficult. One particular problem that had held me for a long time was the eap-header length field. As explained in Chapter 5 PEAP version 0 does not provide EAP headers in the inner request hence they need to be removed before tunneling the EAP-meesage packet back to the Client. Also in some cases XP assumes the packet length is not present and hence we should not be sending the packet length with the request. The initial implementation did not take care of this aspect. To solve the issue, we tried changing the packet length field in the EAP-TLS code itself but an alternative was found. The include_length field in eap_tls module section of the radiusd.conf files could be set to “No” for authenticating PEAP. For all other EAP authentication types like TLS and TTLS it could be is set to “Yes”.

Future Areas of Work

Mobile Ad-hoc Networking (MANET) is receiving growing attention as a means of providing communications in environments with no existing infrastructure. A very interesting area of work could be to apply the PEAP/TTLS protocols in Mobile Ad-Hoc Network. A wireless Ad-Hoc network as explained in Chapter 2 is a collection of autonomous nodes or terminals that communicate with each other by forming a multihop radio network and maintaining connectivity in a decentralized manner. Each node in a wireless ad hoc network functions as both a host and a router, and the control of the network is distributed among the nodes. Because of the differences between ad-hoc and traditional networks, usage models and infrastructure for each could be very different. However the security concepts, such as authentication, would be common to both. The design of the PEAP/TTLS authentication protocol in an Ad-Hoc could be something as follows: In the Ad-Hoc network the access point can be replaced by the firewall or more specifically the iptable command on Linux. Originally a new user not in the group will only be allowed to talk to the radius server (certain port for example 1812) in the group. When the RADIUS server authenticates it, a RADIUS Access-Accept message is sent to the access node along with a newly generated session key. The access node that is directly connected to the new user will then on receiving the message open up the network access port using iptable command. One possible design is to have an authenticating process running on the access node that monitors the traffic between the radius server and the new user and to take the necessary actions when the authenticated messages are passing by. It can also serve as part of Intrusion Detection System (IDS) if the new user is generating the incorrect authentication messages as a Distributed Denial of Service (DDoS) attack.

A Virtual Private Network (VPN) provides a private and secure network over another network such as the Internet. It typically utilizes a dedicated server that provides an encrypted tunnel within the network. One good area of research could be to study the implications of providing VPN features in addition to encryption of PEAP/TTLS within the wireless Access Point devices.

In the TTLS or PEAP set-up a user's identity is not hidden from the RADIUS server and may be included in the clear in the messages between the access point, the RADIUS server, and any other database-backend server. One can develop ways to protect security at this level by implementing firewalls or other such viable security techniques. Also one needs to look into alternative ways to protect the private key in RADIUS servers, as they are susceptible to attacks in the case where the server certificates are lost or are to be compromised.

A very important aspect of the PEAP protocol is the case of roaming users. In order to obtain a seamless transition, the protocol uses the connection re-establishment mechanism provided by the TLS handshake protocol. Further studies should be performed to look into the case of roaming Clients and session resumption.

Chapter 6
Conclusion

We have developed the PEAP (Protected Extensible Authentication Protocol) for the FreeRadius Server. A comparative analysis between the implemented protocol PEAP and its competing standard TTLS (Tunneled Transport Layer Security) are presented. The thesis has given a deeper insight in some of the issues faced in the design and implementation of protocol standards. Four groups of test scenarios have been conducted for both PEAP and TTLS. In all the tests both TTLS and PEAP had similar behavioral pattern. The distance tests indicate that the wireless Client’s performance slows down as it goes farther away from the access point irrespective of the authentication method it is using. The resilience tests indicate that the Client performance degraded as the network interface uptime gets shorter irrespective of the authentication protocol it was using. Also beyond 3.8 sec network uptime both PEAP and TTLS failed to recover. On an average in all the tests the TTLS protocol has shown a higher performance rate of 10% in terms of the time taken in handling requests as compared to PEAP. Also from the tests it can be observerd that relatively PEAP has been more influenced by the Client’s processor speeds, the distance ranges and the network transitive nature as compared to TTLS. Although the better performance shown by TTLS over PEAP is negligible, it is worth noting that TTLS was outperforming PEAP consistently in all the tests.

Finally a MAC address-spoofing test has been performed to see if an attacker could gain access to the wireless network that is using the TTLS/PEAP protocols as its authentication mechanism. The test results clearly indicate that by MAC address spoofing an attacker could not masquerade his identity and break into the network. The attacker in addition to the MAC address and IP address required user credentials and they were relayed acroos the network in encrypted format that could not be decrypted.

Bibliography

[ACM03]
Yang Xiao Jon Rosdahl. Performance analysis and enhancement for the current and future IEEE 802.11 MAC protocols. ACM SIGMOBILE Mobile Computing and Communications Review

[AIRO99]
Cisco/Aironet driver for Linux (4500/4800/340/350 series), URL: http://airo-linux.sourceforge.net/
[AIRP03]
Wireless LAN analyzer tools, WildPackets Inc., URL:

http://www.wildpackets.com/
[AVK02]
N.Asokan, Valtteri Niemi, Kaisa Nyberg. Man-in-the-Middle in Tunneled Authentication. Nokia Research Center, Finland, 2002

[ABOB02]
Wireless LANs: The 802.1X Revolution http://www.drizzle.com/~aboba/IEEE/BAWUG.ppt
[ASNORT]
AirSnort Tool. The Shmoo group. URL: http://airsnort.shmoo.com/
[BERK01]
Intercepting Mobile Communications: The Insecurity of 802.11. URL:
http://www.isaac.cs.berkeley.edu/isaac/wep-draft.pdf
[CIS02]
A comprehensive Review of 802.11 Wireless LAN Security and URL:

www.cisco.com/warp/public/cc/pd/witc/ao1200ap/prodlit/wswpf_wp.pdf
[CIS02-3]
Cisco Wireless LAN Security Bulletin

/www.cisco.com/warp/public/cc/pd/witc/ao350ap/prodlit/1515_pp.htm

[CIS02-4]
Authentication with 802.1x and EAP Across Congested WAN Links

www.cisco.com/warp/public/cc/pd/witc/ao350ap/prodlit/authp_an.htm
[CIS02-5]
Configuring the Cisco Wireless Security Suite

www.cisco.com/warp/public/cc/pd/witc/ao1200ap/prodlit/wrsec_an.htm
[CIS350]
Cisco Aironet Wireless LAN Security Overview

www.cisco.com/warp/public/cc/pd/witc/ao350ap/prodlit/a350w_ov.htm
[CISSP02]
Carter, Brian, CISSP and Russell Shumway. Wireless security: end to end c2002.

[DRIZ03]
The Unofficial 802.11 Security Web Page

http://www.drizzle.com/~aboba/IEEE/
[ECE02]
Wireless LAN: Issues and Challenges R. Chandramouli and K.P. Subbalakshmi URL: www.ece.stevens-tech.edu/~suba
[ETHV1]
Free network protocol analyzer for Unix and Windows, URL: http://www.ethereal.com/
[FMS01]
Stubblefield, A., Ioannidis, J., Rubin, A. “Using the Fluhrer, Mantin, and Shamir. Attack to Break WEP” URL:

http://www.cs.rice.edu/~astubble/wep/wep_attack.pdf
[FRDOC]
Alan Curry, RLM Module Interface (for developers), April 2003, URL:

http://www.freeradius.org/cgi-in/cvsweb.cgi/radiusd/doc/module_interface
[FRADIUS]
Free Radius, Open Source implementation of the RADIUS Server http://www.freeradius.org/

[FRSU02]
Frost & Sullivan analyst briefings URL:

http://www.frost.com/prod/servlet/analyst-briefings.pag
[GAST03]
Mathew Gast, TTLS and PEAP Comparison, Wireless LAN Security

Interoperability Lab URL: www.ilabs.interop.net/WLAN_Sec/TTLS-PEAP-lv03.pdf
[GEIER01]
Geier, James T. Wireless LANs / Jim Geier 2001.

[GEOFF02]
Geoff Marshall, Odyssey, August 2002. URL: http://www.scmagazine.com/scmagazine/sc-online/2002/review/28/product.html
[GREG01]
Redder, Greg. “Implementation of a Secure Wireless Network on a University Campus” October 29, 2001. URL:

http://rr.sans.org/wireless/wireless_univ.php
[IECweb]
Web ProForumTutorials. URL: http://www.iec.org
[IEEEGRP]
IEEE 802.11 Working Group Web site. URL:

http://grouper.ieee.org/groups/802/11/
[IEEE99]
IEEE Standard 802-11, IEEE standard for wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification June 1999) URL: http://standards.ieee.org/getieee802/download/802.11-1999.pdf
[IEEE00]
Bernard Aboba, Tim Moore, Paul Congdon, IEEE 802.1X For Wireless LANs, IEEE Plenary Submission, March 2000. URL:

www.ieee802.org/1/files/public/docs2000/ieee_plenary.PDF
[IEEE01]
IEEE 802.1X Committee. “IEEE Std 802.1X, 2001 Edition, IEEE Standard for Local and metropolitan area networks—Port-Based Network Access Control”. July, 2001. URL:

http://standards.ieee.org/reading/ieee/std/lanman/802.1X-2001.pdf
[IEEE02]
Paul Congdon, IEEE Plenary, March 2000 “IEEE 802.1X Overview Port Based Network Access Control” URL:

www.ieee802.org/1/files/public/docs2000/P8021XOverview.pdf
[IETF01]
Andersson, H., Josefsson, S., Zorn, G., and B. Aboba, “Protected Extensible Authentication Protocol (PEAP)”, IETF Work in progress, October 2001. URL: http://ietf.org/internet-drafts/draft-josefsson-pppext-eap-tls-eap-xx.txt
[IETF02]
Andersson, H, “Protected EAP Protocol (PEAP)”, IETF Internet Draft. 23 February, 2002. URL: http://www.ietf.org/internet-drafts/draft-josefsson-pppext-eap-tlseap-02.txt
[IETF02-2]
Paul Funk and Simon Blake-Wilson. EAP tunneled TLS Authentication Protocol (EAP-TTLS), Nov 2002. IETF pppext working group draft. URL: http://www.ietf.org/internet-drafts/draft-ietf-pppext-eap-ttls-02.txt
[IETF03-2]
Paul Funk and Simon Blake-Wilson. EAP tunneled TLS Authentication Protocol (EAP-TTLS), August 2003. IETF pppext working group draft. URL: http://www.ietf.org/internet-drafts/draft-ietf-pppext-eap-ttls-03.txt
[JIM02]
Geier, Jim. 2002. The BIG Question: 802.11a or 802.11b? URL:

http://www.80211-planet.com/columns/article.php/961181
[JONH02]
O’Reilly Book Jonathan Hassel. RADIUS Securing Public Access to Private Resources. October 2002

[JWU03]
Joshua Wright, Detecting Wireless LAN MAC Address Spoofing,

GCIH, CCNA. January 2003. URL: http://home.jwu.edu/jwright/
[KENR02]
Ken Roser, “HOWTO: EAP//TLS Setup for FreeRADIIUS and Windows XP Supplliicant”, URL: http://www.freeradius.org/doc/EAPTLS.pdf
[LIBD]
Portable interface to low-level networking routines, URL: http://libdnet.sourceforge.net/
[LIBP]

Portable Packet Capture library, URL: http://www.tcpdump.org
[IEPOCH]
Yuh-Rong Leu, Ph.D. WLAN Security, Manageability, and Mobility, INTEREPOCH TECHNOLOGY, INC

http://netlab18.cis.nctu.edu.tw/html/semi/WlanSecManageMobilility.ppt
[MISSL02]
Adam Sulmicki, “HOWTO on EAP/TLS authentication between FreeRADIUS and XSupplicant”, March 2002, URL:

http://www.missl.cs.umd.edu/wireless/eaptls/
[MCKAY02]
Raymond McKay, “FreeRADIUS EAP/TLS - WinXP HOWTO”,

Version 1.2, October 2002, URL:

http://www.impossiblereflex.com/8021x/eap-tls-HOWTO.htm
[MSEC02]
Mobile Security Overview, September 2002

http://www.hp.be/egov/doc/mobile/mobile_overview.pdf
[NETST]
Network Stumbler, URL: http://www.netstumbler.com/
[NPET02]
Nick Petroni, J. Vollbrecht, P. Eronen. State Machines for EAP Peer and Authenticator, March 3 2003, URL: http://www.cs.umd.edu/~npetroni/EAP/drafts/01/draft-vollbrecht-eap-state-01.html
[OPNSSL]
The OpenSSL Project. URL: http://www.openssl.org/
[OPEN1X]
Open Source Implementation of IEEE 802.1x, URL:

http://www.open1x.org/
[RFC2716]
Aboba, B. and D. Simon, “PPP EAP TLS Authentication Protocol”, IETF RFC 2716, October 1999, URL: http://www.ietf.org/rfc/rfc2716.txt
L. Blunk and J. Vollbrecht, “PPP Extensible Authentication Protocol (EAP)”, March 1998, URL: http://www.ietf.org/rfc/rfc2284.txt
[RFC2865]
Rigney, C. et. al. “Remote Authentication Dial In User Service (RADIUS)”. IETF RFC 2865, June, 2000. URL: www.ietf.org/rfc/rfc2865.txt
[RFC3579]
Aboba, B. and P. Calhoun, “RADIUS (Remote Authentication Dial In User Service) Support For Extensible Authentication Protocol (EAP)", RFC 3579, September 2003. URL: http://www.ietf.org/rfc/rfc3579.txt
[STRU01]
Adam Stubblefield, John Ioannidis and Aviel D. Rubin, “Using the Fluhrer, Mantin, and Shamir Attack To Break WEP”, AT&T Labs Technical Report TD-4ZCPZZ , August 2001, URL: www.cs.rice.edu/~astubble/wep/wep_attack.pdf
[TIONG01]
Tiong Ow, “IEEE 802.11b Wireless LAN: Security Risks”, September 2001, URL: http://rr.sans.org/wireless/IEEE.php
[UMD01]
William A. Arbaugh, Narendar Shankar, Y.C. Justin Wan. “Your 802.11 Wireless Network has No Clothes”, March 30, 2001, URL: www.cs.umd.edu/~waa/wireless.pdf
[UMD02]
Mishra, A., and Arbaugh, W. “An Initial Security Analysis of the IEEE 802.1X Standard”, February, 2002. URL:
 http://www.cs.umd.edu/~waa/1x.pdf
[WEPC]
Wep Crack, URL: http://wepcrack.sourceforge.net/
Appendix A

 FreeRadius – Set-up

This section describes the steps involved in installing, seting-up and configuring FreeRadius for supporting the 802.1x authentication methods – EAP-TLS, EAP-TTLS and PEAP. We have a number of HOW-TOs available, which can be used to set-up the FreeRadius to authenticate using EAP-TLS [MISSL02, KENR02, MCKAY02]. This Apendix uses the above How-Tos to set up the Server to authenticate using EAP-TTLS and PEAP. The following packages must be installed before configuring and building the FreeRadius software package:

Required Software:

	Software/Version
	Usage
	Web-site for downloads

	OpenSSL

0.9.7g

0.9.7-beta3
	Build FreeRadius Modules, Creating certificates
	http://www.openssl.org
http://www.cs.uccs.edu

	Libdnet

1.7 or greater
	Build OpenSSL and FreeRadius packages
	http://libdnet.sourceforge.net/

	Ethereal

Latest Version
	Capture Packets
	http://www.ethereal.org

	FreeRadius

Snapshot

Modified
	OpenSource Authentication server
	http://www.cs.uccs.edu/~chow/pub/ master/nbulusu/src/radiusd.tar.gz

Step 1: Installing FreeRadius

As the software required some modifications in the existing modules and implementation of a new module to support the PEAP protocol, a CVS version of the sources for the package was installed. The CVS version as of was used for the implementation. Descriptions as to how to procure the CVS tree can be found at http://www.freeradius.org/development.html#cvs. The following templates describe the basic steps involved in installing and configuring the software:

Template A.1

Installing FreeRadius

> mkdir –p /usr/src/802/freeradius

> cd /usr/src/802/freeradius

 download http://www.cs.uccs.edu/~chow/pub/ master/nbulusu/src/radiusd.tar.gz
> tar –zxvf radiusd.tar.gz

> cd ./radiusd

> ./configure –prefix = /usr/local/radius

As the FreeRadius software is based on modules. We need to include the required modules before compiling the software. Hence

Template A.2

To include the EAP-TLS module

> cd ./src/modules/rlm_eap_types/rlm_eap_tls

> Edit the first line of Makefile in this directory like the following.

Generated automatically from Makefile.in by configure.

TARGET = rlm_eap_tls

To include the EAP-TTLS module

> cd ./src/modules/rlm_eap_types/rlm_eap_ttls

> Edit Makefile in this directory like the following.

Generated automatically from Makefile.in by configure.

TARGET = rlm_eap_ttls

To include the EAP-PEAP module

> cd ./src/modules/rlm_eap_types/rlm_eap_peap

> Edit Makefile in this directory like the following.

Generated automatically from Makefile.in by configure.

TARGET = rlm_eap_peap

Once the three modules are included all we need to do is to compile and install it.

Template A.3

> cd /usr/src/802/freeradius/radiusd/

> make

> make install

The software would have installed in /usr/local/radius directory. To check if the basic installation has been done successfully we could run the server in debug mode and test it with the script provided by the software.

Template A.4

Initial testing of the installed software

Start the server in debugging mode, do:

> radiusd –X -A

If the server says "Ready to process requests.", then it is running properly.

From another shell (or another window), type:

$ radtest test test localhost 0 testing123

 One should be able to see the server print out more messages as it receives the request, and responds to it. The 'radtest' program should receive the response within a few seconds. It doesn't matter if the authentication request is accepted or rejected, what matters is that the server received the request, and responded to it.

Once the above test has been performed and the server responded we are ready to edit the configuration files to suit our purposes.

Step 2: Configuring FreeRadius

All the files that need to be configured would be in the /usr/local/radius/etc/raddb directory. For our testbed we need to configure basically 3 files. The files are radiusd.conf, users.conf and Clients.conf. Before configuring the files we need to generate certificates andcopy the root and server certificates to the appropriate directory. For our testbed we hace copied them into /etc/1x/ directory. Details regarding generation of certificates are given in Appendix D. The following templates show the 3 example files that have been configured for the testbed.

Template A.5

Radiusd.conf : This file has information regarding all the modules. But we would be modifying only a few sections to enable EAP-TLS, TTLS and PEAP methods. The first section to be modified would be the EAP section. We need to specify the different paths to appropriate certificate files.

radiusd.conf
-- FreeRADIUS server configuration file.

This path needs to be modified if the package has been installed in a different directory.

prefix = /usr/local/radius

….

Extensible Authentication Protocol

#

For all EAP related authentications

eap {

default_eap_type = peap

timer_expire = 60

ignore_unknown_eap_types = no

Supported EAP-types

 # EAP-TLS is highly experimental EAP-Type at the moment.

tls {

private_key_password = whatever

private_key_file = /etc/1x/server.pem

certificate_file = /etc/1x/server.pem

CA_file = /etc/1x/root.pem

dh_file = /dev/urandom

random_file = /dev/urandom

fragment_size = 1024

include_length = no

}

ttls {

#

 default_eap_type = pap

 copy_request_to_tunnel = no

 use_tunneled_reply = no

 }

 peap {

default_eap_type = mschapv2

}

mschapv2 {

}

}

We now modify the authorize section to enable EAP and MSCHAP

authorize {

Eap

mschap

}

Finally we edit the Authentication section again to include EAP & mschap

authenticate {

Auth-Type MS-CHAP {

Mschap

 }

Allow EAP authentication.

eap

}

The next file to modified is the Users file. This file contains authentication security and configuration information for each user. It lists all the users that reference the Client certificates. We can also add entries for disabling a particular set of users

Template A.6

Users

"adam-ctl"
User-Password == "whatever"

Reply-Message = "Hello, %u"

"nbulusu"
User-Password == "whatever"

Reply-Message = "Hello, %u"

Added test user for testing the radius server locally.

“test” Auth_Type:=Local, User-Password == “test”

Finally we edit the Clients.conf file. This file gives access to the access points that connect to the RADIUS server and request authentication.

Template A.7

Clients.conf - Client configuration directives

We add the ipaddress given to our cisco 1200 AP

Client 128.198.61.130 {

secret

= testing123

shortname
= cisco_ap1

}

We can also add localhost Client just for testing purposes

Client 127.0.0.1 {

secret = test

shortname = localhost

}

Appendix B

XSupplicant – Set-UP

This section describes the steps involved in installing, setting-up and configuring the Client side software- Xsupplicant for supporting the 802.1x authentication methods – EAP-TLS, EAP-TTLS and PEAP. A number of HOW-TOs are available, which can be used to set-up Xsuplicant to authenticate using EAP-TLS [MISSL02, KENR02, MCKAY02]. This Apendix uses the above the how-tos to set up the Client to authenticate using EAP-TTLS and PEAP. For the Windows–XP client please refer to Ken Roser’s HOW-TO explaining the Windows Client set-up [KENR02]. The following packages must be installed before configuring and building the xsupplicant software package:

Required Software:

	Software/Version
	Usage
	Web-site for downloads

	OpenSSL

0.9.7g

	Build Xsupplicant
	http://www.openssl.org

	Libdnet - 1.7
	Build OpenSSL and xsupplicant
	http://libdnet.sourceforge.net/

	Libpcap 1.7
	Build xsupplicant
	http://www.tcpdump.org

	Ethereal

Latest Version
	Capture Packets
	http://www.ethereal.org

	XSupplicant

Version 8.0
	OpenSource Client software
	http://www.open1x.org
http://www.cs.uccs.edu/~chow/pub/master/ nbulusu/src

Step 1: Installing xsupplicant

As the software required some tracing through the code to support the newly installed PEAP protocol, a CVS version of the sources for the package was installed. The CVS version as of was used for the implementation. The following templates describe the basic steps involved in installing and configuring the software [MISSL02].

Template B.1

Installing Xsupplicant

> mkdir –p /usr/src/802/xsup

> cd /usr/src/802/xsup

> cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/open1x login

 cvs password: anoncvs

> cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/open1x co xsupplicant

At this point the xsupplicant CVS tree would be copied to the local xsupplicant directory

> cd ./xsupplicant

> ./configure –enable—full-debug

> make

> make install

Once an installation of the package is done you need to configure the 1x.conf file that is used by the xsupplicant. This file explains all currently configurable functionality and in general is a series of tag-value pairs. The file can be copied to the /etc/1x directory. The sample configuration file comes with the software in the ./xsupplicant/etc directory. The following template shows the 1x.conf file used in our test bed. Also before configuring this file we need to make sure that the Client certificates and certificate authority [Client.pem, Client.der and root.pem] generated in the beginning are copied into the /etc/1x/certs directory.

 Template B.2

Configure the 1x.conf file

default : id = winrace

winrace :root = /etc/1x/certs/root.pem

winrace : pref = peap

winrace : phase2id = adam-ctl

winrace : chunk_size = 1398

winrace : random_file = /dev/random

winrace : first_auth = "/sbin/dhClient eth0"

winrace : after_auth = "/bin/echo I authenticated"

Once the above steps are performed successfully we need to check if the Client and the Access Point (AP) are associated first before running the xsupplicant.

The association is done using the following command: ‘iwconfig <dev> essid <name> ‘.

For our test-bed the essid was given the name winrace. Hence we run the command: ‘iwconfig eth0 essid winrace’ at the command prompt.
Once the Client gets associated we need to bring up the interface manually before running xsupplicant using the ifconfig command. This is important as the xsupplicant would not run otherwise. Therfore we run ‘ifconfig eth0 up’ at the command prompt.

Finally once all the configurations are set and the interface up we can run the xsupplicant at the command prompt as ‘./xsupplicant –i eth0’ .

Appendix C

Access Point Set UP

This section describes the steps involved in configuring the access point for supporting the 802.1x authentication methods – EAP-TLS, EAP-TTLS and PEAP. In our test set-up we have used the CISCO AIRONET 1200 series 11 mbps access point installed on a Linux machine running RedHat 9.0. The software used was -

The following screen dumps explain the set-up process [MISSL02].

Step 1: Click on the Set-up tab on the main screen. Then select the security service sub-tab and from there select the Authentication Server service. The screen below shows the Authenticator Configuration. Choose RADIUS as the server type.

[image: image4.png]GBack - = - @ [B) 43| @esch [lFavartes @iveda B |5 B - E D ¥

e [W /128 190511 30/5euhantatoCofg 7Rl /128158 61130/ Sotp s

ERIEE

802.1 Protocol Version (for EAP Authenication).
Primary Server Reattempt Period (Min.) o

Server Name/TP

Server Type

Port

802.1x-2001 7]

Shared Secret

Retran Int (sec)

12819861132
Use serverfor. ¥ EAP Authentication

RADIUS] 1812
™ MAC Address Authentication

™ User Authentication

™ MIP Authentication

b
20 [

12813861152 RADIUS | [i645 20 [
Use serverfor: [EAP Authentication [MAC Address Authentication | User Authentication [MIP Authentication

12819861132 RADIUS 7| [112 20 [
Use serverfor: W EAP Authentication [MAC Address Authentication | User Authentication [MIP Authentication

12819861132 RADIUS | [1812 20 [
Use serverfor: [EAP Authentication [MAC Address Authentication | User Authentication [MIP Authentication

Note: For each authentication finction, the most recently used server is shown in green tex

Apply | oK | cancel

Restare Defe

m_—

[@pone

Internet

4

Figure C.1: Authenticator Configuration Screen shot

In the above screen enter the RADIUS server ipaddress on the first line. For our test bed the RADIUS server is 128.198.61.132 running on 1812 port. Enter the shared secret. The secret phrase should be same as the one specified in the Clients.conf file of the FreeRadius server. Enable the EAP Authentication checkbox. And then click Apply and then OK. The settings get saved and the screen goes back to the main security screen.

Step 2: Next on the main Security Screen click on the Radio Data Encryption option. The following screen shows the AP Radio Data Encryption configuration.

[image: image5.png]GBack - = - @ [B) 43| @esch [lFavartes @iveda B |5 B - E D ¥

Atess [€] htp://128.198 61.130/SeWEP_Keys shmildex=2Liindes-24Referetist=ht//128,198.61.1 30/SetSecuty. shbig://1 =] @B | Links |

Use of Data Encryption by Stations is: NG

Open Shared

Data Encryption is set independenty for each enabled VLAN through VLAN Sefup.

Network-EAP
Accept Authentication Type: 4 r 2
Require EAP 4 r
Transmit
With Key Encryption Key Key Size
WEP Key 1. Lo 128 bit ¥]
WEP Key 2 @ 128 bit ¥]
WEP Key 3 - notset v]
WEP Key 4 - notset v]
Eater 40-bit WEP eys as 10 hexadecimal digits 0, a5 ot AF)
Eater 128-6it WEP keys as 26 hexadecimal digits (05, af, ot A-F).
“This adio supports Encryption for o Data Rates.
Apply | OK | Cancel Restore Defaults
[&] Dore

Internet

RN

Figure C.2: AP Radio Data Encrytion Screen Shot

There are three options for Use of Data Encrytion by station field. They are no-encrytion, optional and full-encryption. If we need to set the WEP key then we need to choose the full-encryption option. If full encryption is chosen then we need to enable WEP key 1 or WEP key 2 as the transmit key and specify the key size. There are two options for the key size and they are 40 bit and 128 bit. For our test set-up we have chosen 128 bit size.

Appendix D

OPENSSL - INSTALLATION

This section describes how to install and configure OpenSSL. The software is an important package that is to be installed on both the Client and server machines for authenticating the Client using the 802.1x standard methods. The following set-up is based on the HOW-TO by Raymond Mckay [MCKAY02]. The software can be installed from http://www.openssl.org site.

A.1 Installing Openssl

During our initial trials on setting up FreeRadius, we had encountered a number of problems in trying to build the FreeRadius package. Most of the problems were due to the version of openssl that came with the RedHat Linux package. Hence two versions of openssl are to be installed for different purposes. A stable version of openSSL is required to build FreeRadius and its EAP-TLS modules. A beta version of openssl is required to create certificates. Actually the stable version does not support enhanced OID’s needed for certificate generation explicitly used by the EAP-TLS modules. Hence we need two different versions of openssl. In the initial phases of my thesis work I was required to install a snapshot version of openssl also as the versions then did not support MPPE dynamic encryption keying extension that was used by the EAP-TLS module. However the recent versions seem to have included all the new modules. Hence a snapshot version is not required for present installations [MCKAY02].

Template D.1

Installing OpenSSL

Download the two versions of openssl –

> ncftpge ftp://ftp.openssl.org/openssl-0.9.7g

> tar -zxvf openssl-0.9.6g.tar.gz

Build OpenSSL package with the following commands.

> cd openssl-0.9.6b

>./config shared –prefix=/usr/local/openssl

> make

> make test

> make install

This installs openssl in the /usr/local/openssl directory.

Repeat the above steps for installing the 0.9.7b – beta version of openssl however to avoid overwriting the stable version specify during config a different directory like:

> ./config shared –prefix=/usr/local/openssl-certgen

> make

> make install

This installs the openssl in /usr/local/opens-certgen/ directory. This version would later be used for creating certificates.

A.2 Generating one’s own set of certificates

We will require using the openSSL-0.9.7b version to generate the certificates. All other versions seemed to be giving errors either with PKCS12 encoding/decoding or did not support attributes needed for EAP-TLS modules. This leads to errors while running the FreeRadius software like “unknown CA” etc., which were very difficult to interpret and debug. Hence it is best to generate ones own certificates rather that using some pre-generated set. Vefore starting to generate certificates one can customize the openssl.cnf file to avoid typing at the prompts.

Step 1: Certification Generation Scripts.

The following formats are to be used to generate the certificates/keys:

User Certificate (DER format), User Private Key (PEM format) and Root Certificate store (PEM format). Three scripts are needed to generate ones own set of private and public keys and then convert the generated certificate into the required formats. These scripts each take a single argument namely the final certificate file name that contains the user's certificate and private key, and produce the files in the required .pem and .der formats. The scripts were taken and modified from Ken Rosers HOWTO document [KEN02]. A OID extensions file is needed to generate the certificate authority, server certificate and Client certificates. One also needs a ‘random file’ that contains, as the name suggests, random data and another file to generate the diffie-Hellman key agreement (DH). One can have the scripts from Ken Rosers Document. The scripts along with the generated certificates used in the test-bed can be found at http://www.cs.uccs.edu/~chow/pub/master/nbulusu/src/certs.tar.gz. Once you have the scripts just run the following commands to generate the certificates.

Template D.3

Generate the certificates using the 3 scripts.

> cd /usr/local/openssl-certgen/ssl

> ./CA.root

The above command generates Certificate Authority (CA). It creates the following 3 files root.p12, root.pem and root.der

> ./CA.svr server

This command generates Server Certificates. When prompted we change the common name to the server name. The 3 files created are server.p12, server.pem and server.der

> ./CA.clt client

This command generates Client Certificates. When prompted we change the common name to the Client name. The 3 files that will be created are Client.p12, Client.pem and Client.der

From the above-generated certificates, root.pem, Client.pem and Client.der should be copied to the Client’s machine and root.pem, server.pem should be copied to the appropriate directory on the server and used by the FreeRadius (in this testbed they were copied to /etc/1x/).

Appendix E

Server and Client Logs

RADIUS Server Log

Here is the output of the FreeRADIUS server authenticating a wireless Client using PEAP.

Starting - reading configuration files ...

reread_config: reading radiusd.conf

Config: including file: /usr/local/radius/etc/raddb/proxy.conf

Config: including file: /usr/local/radius/etc/raddb/Clients.conf

Config: including file: /usr/local/radius/etc/raddb/snmp.conf

 main: prefix = "/usr/local/radius"

 main: localstatedir = "/usr/local/radius/var"

 main: logdir = "/usr/local/radius/var/log/radius"

 main: libdir = "/usr/local/radius/lib"

 main: radacctdir = "/usr/local/radius/var/log/radius/radacct"

 main: hostname_lookups = no

 main: max_request_time = 30

 main: cleanup_delay = 5

 main: max_requests = 1024

 main: delete_blocked_requests = 0

 main: port = 0

 main: allow_core_dumps = no

 main: log_stripped_names = no

 main: log_file = "/usr/local/radius/var/log/radius/radius.log"

 main: log_auth = no

 main: log_auth_badpass = no

 main: log_auth_goodpass = no

 main: pidfile = "/usr/local/radius/var/run/radiusd/radiusd.pid"

 main: user = "(null)"

 main: group = "(null)"

 main: usercollide = no

 main: lower_user = "no"

 main: lower_pass = "no"

 main: nospace_user = "no"

 main: nospace_pass = "no"

 main: checkrad = "/usr/local/radius/sbin/checkrad"

 main: proxy_requests = yes

 proxy: retry_delay = 5

 proxy: retry_count = 3

 proxy: synchronous = no

 proxy: default_fallback = yes

 proxy: dead_time = 120

 proxy: post_proxy_authorize = yes

 proxy: wake_all_if_all_dead = no

 security: max_attributes = 200

 security: reject_delay = 1

 security: status_server = no

 main: debug_level = 0

read_config_files: reading dictionary

read_config_files: reading naslist

Using deprecated naslist file. Support for this will go away soon.

read_config_files: reading Clients

Using deprecated Clients file. Support for this will go away soon.

read_config_files: reading realms

Using deprecated realms file. Support for this will go away soon.

radiusd: entering modules setup

Module: Library search path is /usr/local/radius/lib

Module: Loaded expr

Module: Instantiated expr (expr)

Module: Loaded PAP

 pap: encryption_scheme = "crypt"

Module: Instantiated pap (pap)

Module: Loaded CHAP

Module: Instantiated chap (chap)

Module: Loaded MS-CHAP

 mschap: use_mppe = yes

 mschap: require_encryption = no

 mschap: require_strong = no

 mschap: passwd = "(null)"

 mschap: authtype = "MS-CHAP"

Module: Instantiated mschap (mschap)

Module: Loaded eap

 eap: default_eap_type = "peap"

 eap: timer_expire = 60

 eap: ignore_unknown_eap_types = no

rlm_eap: Loaded and initialized type md5

 tls: rsa_key_exchange = no

 tls: dh_key_exchange = yes

 tls: rsa_key_length = 512

 tls: dh_key_length = 512

 tls: verify_depth = 0

 tls: CA_path = "(null)"

 tls: pem_file_type = yes

 tls: private_key_file = "/etc/1x/server.pem"

 tls: certificate_file = "/etc/1x/server.pem"

 tls: CA_file = "/etc/1x/root.pem"

 tls: private_key_password = "whatever"

 tls: dh_file = "/dev/urandom"

 tls: random_file = "/dev/urandom"

 tls: fragment_size = 1024

 tls: include_length = no

 tls: check_crl = no

rlm_eap: Loaded and initialized type tls

 ttls: default_eap_type = "md5"

 ttls: copy_request_to_tunnel = no

 ttls: use_tunneled_reply = no

rlm_eap: Loaded and initialized type ttls

 peap: default_eap_type = "mschapv2"

 peap: copy_request_to_tunnel = no

 peap: use_tunneled_reply = no

rlm_eap: Loaded and initialized type peap

rlm_eap: Loaded and initialized type mschapv2

Module: Instantiated eap (eap)

Module: Loaded preprocess

 preprocess: huntgroups = "/usr/local/radius/etc/raddb/huntgroups"

 preprocess: hints = "/usr/local/radius/etc/raddb/hints"

 preprocess: with_ascend_hack = no

 preprocess: ascend_channels_per_line = 23

 preprocess: with_ntdomain_hack = no

 preprocess: with_specialix_jetstream_hack = no

 preprocess: with_cisco_vsa_hack = no

Module: Instantiated preprocess (preprocess)

Module: Loaded realm

 realm: format = "suffix"

 realm: delimiter = "@"

Module: Instantiated realm (suffix)

Module: Loaded files

 files: usersfile = "/usr/local/radius/etc/raddb/users"

 files: acctusersfile = "/usr/local/radius/etc/raddb/acct_users"

 files: preproxy_usersfile = "/usr/local/radius/etc/raddb/preproxy_users"

 files: compat = "no"

Module: Instantiated files (files)

Module: Loaded Acct-Unique-Session-Id

 acct_unique: key = "User-Name, Acct-Session-Id, NAS-IP-Address, Client-IP-Address, NAS-Port-Id"

Module: Instantiated acct_unique (acct_unique)

Module: Loaded detail

 detail: detailfile = "/usr/local/radius/var/log/radius/radacct/%{Client-IP-Address}/detail-%Y%m%d"

 detail: detailperm = 384

 detail: dirperm = 493

 detail: locking = no

Module: Instantiated detail (detail)

Module: Loaded radutmp

 radutmp: filename = "/usr/local/radius/var/log/radius/radutmp"

 radutmp: username = "%{User-Name}"

 radutmp: case_sensitive = yes

 radutmp: check_with_nas = yes

 radutmp: perm = 384

 radutmp: callerid = yes

Module: Instantiated radutmp (radutmp)

Listening on IP address *, ports 1812/udp and 1813/udp, with proxy on 1814/udp.

Ready to process requests.

rad_recv: Access-Request packet from host 128.198.61.130:4409, id=242, length=149

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x026f000d016164616d2d63746c

Message-Authenticator = 0x3f7c59e647f7991548a590604a4ac105

modcall: entering group authorize for request 0

 modcall[authorize]: module "preprocess" returns ok for request 0

 modcall[authorize]: module "chap" returns noop for request 0

 rlm_eap: EAP packet type response id 111 length 13

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 0

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 0

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 0

 modcall[authorize]: module "mschap" returns noop for request 0

modcall: group authorize returns updated for request 0

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 0

 rlm_eap: EAP Identity

 rlm_eap: processing type tls

 rlm_eap_tls: Initiate

 rlm_eap_tls: Start returned 1

 modcall[authenticate]: module "eap" returns handled for request 0

modcall: group authenticate returns handled for request 0

Sending Access-Challenge of id 242 to 128.198.61.130:4409

Reply-Message = "Hello, %u"

EAP-Message = 0x017000061920

Message-Authenticator = 0x00000000000000000000000000000000

State = 0xab6b2ff051b8866b9c514b80e76c6ecc

Finished request 0

Going to the next request

--- Walking the entire request list ---

Waking up in 6 seconds...

rad_recv: Access-Request packet from host 128.198.61.130:4410, id=243, length=264

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

State = 0xab6b2ff051b8866b9c514b80e76c6ecc

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x0270006e198000000064160301005f0100005b03013fa055e0baa5ea8e666a0802bce57392f5836b71332e69c5cdf23d28f275c06400003400390038003500160013000a00330032002f006600050004006300620061001500120009006500640060001400110008000600030100

Message-Authenticator = 0xff48707fffb019fdf772af03f9e6f065

modcall: entering group authorize for request 1

 modcall[authorize]: module "preprocess" returns ok for request 1

 modcall[authorize]: module "chap" returns noop for request 1

 rlm_eap: EAP packet type response id 112 length 110

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 1

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 1

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 1

 modcall[authorize]: module "mschap" returns noop for request 1

modcall: group authorize returns updated for request 1

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 1

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - peap

 rlm_eap: processing type peap

 rlm_eap_peap: Authenticate

 rlm_eap_tls: processing TLS

rlm_eap_tls: Length Included

 eaptls_verify returned 11

undefined: before/accept initialization

TLS_accept: before/accept initialization

 rlm_eap_tls: <<< TLS 1.0 Handshake [length 005f], ClientHello

TLS_accept: SSLv3 read Client hello A

 rlm_eap_tls: >>> TLS 1.0 Handshake [length 004a], ServerHello

TLS_accept: SSLv3 write server hello A

 rlm_eap_tls: >>> TLS 1.0 Handshake [length 05e6], Certificate

TLS_accept: SSLv3 write certificate A

 rlm_eap_tls: >>> TLS 1.0 Handshake [length 0004], ServerHelloDone

TLS_accept: SSLv3 write server done A

TLS_accept: SSLv3 flush data

TLS_accept:error in SSLv3 read Client certificate A

In SSL Handshake Phase

In SSL Accept mode

 eaptls_process returned 13

 rlm_eap_peap: EAPTLS_HANDLED

 modcall[authenticate]: module "eap" returns handled for request 1

modcall: group authenticate returns handled for request 1

Sending Access-Challenge of id 243 to 128.198.61.130:4410

Reply-Message = "Hello, %u"

EAP-Message = 0x0171040a19c000000643160301004a0200004603013fa055728d91c4af4a0cb0280310f0c8117b6fc160568250f141b9cfc03febbf2095237c04ef359d1e78ba00884c165b6cbac4e4694c24d311e705ccb0e0b177c900350016030105e60b0005e20005df00028930820285308201eea003020102020101300d06092a864886f70d0101040500307d310b30090603550406130255533111300f06035504081308434f4c4f5241444f3119301706035504071310436f6c6f7261646f20537072696e6773310d300b060355040a1304554343533110300e060355040313074e62756c757375311f301d06092a864886f70d01090116106e62756c757375

EAP-Message = 0x40756363732e656475301e170d3033313031363232333832385a170d3034313031353232333832385a307b310b30090603550406130255533111300f06035504081308434f4c4f5241444f3119301706035504071310436f6c6f7261646f20537072696e6773310d300b060355040a130455434353310e300c060355040313057769706572311f301d06092a864886f70d01090116106e62756c75737540756363732e65647530819f300d06092a864886f70d010101050003818d0030818902818100c1179250d6af27ceb4c0456b36b9c53da7c453d2ad70c4158a811d5e6ea9946451262c4099eddac6722901899ae8eeda69ea3032d9ad01d9bfa3

EAP-Message = 0x76bff48d035d85ea450e913aa8bdd47ce760b93282d1049cda1903cde1300b34b913e12f3c9ab164ce82857ceecad1e0f035d7c78920ccc0774dbf43f4c83ab5e07c10100dd10203010001a317301530130603551d25040c300a06082b06010505070301300d06092a864886f70d010104050003818100a875ff51e0d8f32070c5bb056e172d319d62435b519b2777e18fe3a825115cf34c9e7e4fe800d7f7c239c8560121f6a4b4e222a1836594bfcf75c6baf36435c71378d52624598f2e3ec5d17dabc99258556fff5f42d3c05760b9bbcb6486af9874560237f4f5352c4799ba01b7c97b36efbbb376b3296cb13ee1ba6f58f4ee0d000350308203

EAP-Message = 0x4c308202b5a003020102020100300d06092a864886f70d0101040500307d310b30090603550406130255533111300f06035504081308434f4c4f5241444f3119301706035504071310436f6c6f7261646f20537072696e6773310d300b060355040a1304554343533110300e060355040313074e62756c757375311f301d06092a864886f70d01090116106e62756c75737540756363732e656475301e170d3033313031363232333731355a170d3033313131353232333731355a307d310b30090603550406130255533111300f06035504081308434f4c4f5241444f3119301706035504071310436f6c6f7261646f20537072696e6773310d300b06

EAP-Message = 0x0355040a1304554343533110300e060355040313074e

Message-Authenticator = 0x00000000000000000000000000000000

State = 0x39ec73284fa17c79226f953daf8673e9

Finished request 1

Going to the next request

--- Walking the entire request list ---

Waking up in 5 seconds...

rad_recv: Access-Request packet from host 128.198.61.130:4411, id=244, length=160

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

State = 0x39ec73284fa17c79226f953daf8673e9

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x027100061900

Message-Authenticator = 0x1efba20ce53f66827235fafed374e09e

modcall: entering group authorize for request 2

 modcall[authorize]: module "preprocess" returns ok for request 2

 modcall[authorize]: module "chap" returns noop for request 2

 rlm_eap: EAP packet type response id 113 length 6

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 2

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 2

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 2

 modcall[authorize]: module "mschap" returns noop for request 2

modcall: group authorize returns updated for request 2

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 2

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - peap

 rlm_eap: processing type peap

 rlm_eap_peap: Authenticate

 rlm_eap_tls: processing TLS

rlm_eap_tls: Received EAP-TLS ACK message

 rlm_eap_tls: ack handshake fragment handler

 eaptls_verify returned 1

 eaptls_process returned 13

 rlm_eap_peap: EAPTLS_HANDLED

 modcall[authenticate]: module "eap" returns handled for request 2

modcall: group authenticate returns handled for request 2

Sending Access-Challenge of id 244 to 128.198.61.130:4411

Reply-Message = "Hello, %u"

EAP-Message = 0x01720249190062756c757375311f301d06092a864886f70d01090116106e62756c75737540756363732e65647530819f300d06092a864886f70d010101050003818d0030818902818100b4d39879229181551e55bdef0f613bd5c03de96169aac0155a5d0a6906cd7efc7da34b0081bed92b408334cac56fc02cf16b241699b84bf7579621a517ba45d3043d7689a79ebd79ca7dd007e11899fb7a823bd6f905250ab989e570875ca430374ed445f33c774610ebe48cec1649a9cfb11bd458bc4329b69c7a6c7fb4332f0203010001a381db3081d8301d0603551d0e041604148977aa21502bd5bcbc4ca0c3606cc0ca550876ee3081a80603551d2304

EAP-Message = 0x81a030819d80148977aa21502bd5bcbc4ca0c3606cc0ca550876eea18181a47f307d310b30090603550406130255533111300f06035504081308434f4c4f5241444f3119301706035504071310436f6c6f7261646f20537072696e6773310d300b060355040a1304554343533110300e060355040313074e62756c757375311f301d06092a864886f70d01090116106e62756c75737540756363732e656475820100300c0603551d13040530030101ff300d06092a864886f70d0101040500038181004f4ca7ca437e647ebb2c56eaa2fce8c92e152c7a041a84d813a08969eee1fd78f02df341e63f0d095c4d5283167328a26192f9511d6c21df8d42

EAP-Message = 0x890e7df40f6689587cb81dc215ec035c423354a3d9cc7eb5ec5c171a2b6c3bb34f6b2778cd953e1f7e04d46487aef06afc16d8956bf0309cde51a714515573b31291c533cf5216030100040e000000

Message-Authenticator = 0x00000000000000000000000000000000

State = 0x600a42139bf33962477157576c332e73

Finished request 2

Going to the next request

--- Walking the entire request list ---

Waking up in 4 seconds...

rad_recv: Access-Request packet from host 128.198.61.130:4412, id=245, length=362

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

State = 0x600a42139bf33962477157576c332e73

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x027200d01980000000c61603010086100000820080a852d861d444306d42e58fc50eaa1ac48d40882a564051538d59bee925b4b1e7312a0ec4e491a60bb90f2c12b3c05f86d858701a6852917510e356d8875c820ccfcfb5e877ea417e38c3bac1e265b3663d728821e725b1b0f2d8a9d70379831471ed5f00784840d4d9a02d7e783494c0534cd2bead2aced88219c27e820bcc0514030100010116030100302d20275df595f24b249867965fa1cc34ab62c2fb465779d495b92211c9ee239cecd2929076324683b0331f5c9ddccd38

Message-Authenticator = 0xae7bd8f38f341a940f5adae3e282f331

modcall: entering group authorize for request 3

 modcall[authorize]: module "preprocess" returns ok for request 3

 modcall[authorize]: module "chap" returns noop for request 3

 rlm_eap: EAP packet type response id 114 length 208

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 3

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 3

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 3

 modcall[authorize]: module "mschap" returns noop for request 3

modcall: group authorize returns updated for request 3

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 3

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - peap

 rlm_eap: processing type peap

 rlm_eap_peap: Authenticate

 rlm_eap_tls: processing TLS

rlm_eap_tls: Length Included

 eaptls_verify returned 11

 rlm_eap_tls: <<< TLS 1.0 Handshake [length 0086], ClientKeyExchange

TLS_accept: SSLv3 read Client key exchange A

 rlm_eap_tls: <<< TLS 1.0 ChangeCipherSpec [length 0001]

 rlm_eap_tls: <<< TLS 1.0 Handshake [length 0010], Finished

TLS_accept: SSLv3 read finished A

 rlm_eap_tls: >>> TLS 1.0 ChangeCipherSpec [length 0001]

TLS_accept: SSLv3 write change cipher spec A

 rlm_eap_tls: >>> TLS 1.0 Handshake [length 0010], Finished

TLS_accept: SSLv3 write finished A

TLS_accept: SSLv3 flush data

undefined: SSL negotiation finished successfully

SSL Connection Established

 eaptls_process returned 13

 rlm_eap_peap: EAPTLS_HANDLED

 modcall[authenticate]: module "eap" returns handled for request 3

modcall: group authenticate returns handled for request 3

Sending Access-Challenge of id 245 to 128.198.61.130:4412

Reply-Message = "Hello, %u"

EAP-Message = 0x0173004119001403010001011603010030bffc9c8ec209aaabb8aa1ea5568471092923cf153e956f157da936513686dff40dd664fb103f1dd55b7be32443bb1c87

Message-Authenticator = 0x00000000000000000000000000000000

State = 0x7ef764112aae2494af70d1cc74ff54cd

Finished request 3

Going to the next request

Waking up in 4 seconds...

rad_recv: Access-Request packet from host 128.198.61.130:4413, id=246, length=160

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

State = 0x7ef764112aae2494af70d1cc74ff54cd

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x027300061900

Message-Authenticator = 0xda898c4a2c6824c8644ab363b4122bea

modcall: entering group authorize for request 4

 modcall[authorize]: module "preprocess" returns ok for request 4

 modcall[authorize]: module "chap" returns noop for request 4

 rlm_eap: EAP packet type response id 115 length 6

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 4

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 4

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 4

 modcall[authorize]: module "mschap" returns noop for request 4

modcall: group authorize returns updated for request 4

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 4

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - peap

 rlm_eap: processing type peap

 rlm_eap_peap: Authenticate

 rlm_eap_tls: processing TLS

rlm_eap_tls: Received EAP-TLS ACK message

 rlm_eap_tls: ack handshake is finished

 eaptls_verify returned 3

 eaptls_process returned 3

 rlm_eap_peap: EAPTLS_SUCCESS

 modcall[authenticate]: module "eap" returns handled for request 4

modcall: group authenticate returns handled for request 4

Sending Access-Challenge of id 246 to 128.198.61.130:4413

Reply-Message = "Hello, %u"

EAP-Message = 0x01740050190017030100201f3b62f6b25455376c6fba64fceed257c4fb8f986c2eba4fb3391287d5e5c4641703010020f8e932a00cf6685ac17a0d5b82cd6341b001ae5a65af4eea72f813abb651c845

Message-Authenticator = 0x00000000000000000000000000000000

State = 0x0518a1c3009272f409b8999d0f4177c7

Finished request 4

Going to the next request

--- Walking the entire request list ---

Waking up in 3 seconds...

rad_recv: Access-Request packet from host 128.198.61.130:4414, id=247, length=234

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

State = 0x0518a1c3009272f409b8999d0f4177c7

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x0274005019001703010020b9df700ba6f815847a18f63627f0b7396f7589c94f910ceb06c3a6fed9eeac42170301002007688f89e827bd2d6a7ca38714b791d002612a911dc6a8f87e8596ac9668138c

Message-Authenticator = 0x5cf5b9ddd0410a738012e9ed7f3320f0

modcall: entering group authorize for request 5

 modcall[authorize]: module "preprocess" returns ok for request 5

 modcall[authorize]: module "chap" returns noop for request 5

 rlm_eap: EAP packet type response id 116 length 80

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 5

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 5

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 5

 modcall[authorize]: module "mschap" returns noop for request 5

modcall: group authorize returns updated for request 5

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 5

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - peap

 rlm_eap: processing type peap

 rlm_eap_peap: Authenticate

 rlm_eap_tls: processing TLS

 eaptls_verify returned 7

 rlm_eap_tls: Done initial handshake

 eaptls_process returned 7

 rlm_eap_peap: EAPTLS_OK

 rlm_eap_peap: Session established. Proceeding to decode tunneled attributes.

 rlm_eap_peap: Identity - adam-ctl

 rlm_eap_peap: Tunneled data is valid.

 PEAP: Got tunneled EAP-Message

EAP-Message = 0x0274000d016164616d2d63746c

 PEAP: Got tunneled identity of adam-ctl

 PEAP: Setting default EAP type for tunneled EAP session.

 PEAP: Sending tunneled request

EAP-Message = 0x0274000d016164616d2d63746c

Freeradius-Proxied-To = 127.0.0.1

User-Name = "adam-ctl"

modcall: entering group authorize for request 5

 modcall[authorize]: module "preprocess" returns ok for request 5

 modcall[authorize]: module "chap" returns noop for request 5

 rlm_eap: EAP packet type response id 116 length 13

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 5

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 5

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 5

 modcall[authorize]: module "mschap" returns noop for request 5

modcall: group authorize returns updated for request 5

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 5

 rlm_eap: EAP Identity

 rlm_eap: processing type mschapv2

rlm_eap_mschapv2: Issuing Challenge

 modcall[authenticate]: module "eap" returns handled for request 5

modcall: group authenticate returns handled for request 5

 PEAP: Got tunneled reply RADIUS code 11

Reply-Message = "Hello, %u"

EAP-Message = 0x017500221a0175001d10171b3db65317cb22ba582dd9166a66dc6164616d2d63746c

Message-Authenticator = 0x00000000000000000000000000000000

State = 0x28c17d01cd9a2cbf508fbb625b0572fc

 PEAP: Got tunneled Access-Challenge

rlm_eap_peap: EAP Request packet is too large. Code must be fixed to handle this.

 modcall[authenticate]: module "eap" returns handled for request 5

modcall: group authenticate returns handled for request 5

Sending Access-Challenge of id 247 to 128.198.61.130:4414

Reply-Message = "Hello, %u"

EAP-Message = 0x01750070190017030100201a1e2e5f24a4cd504c2b1daa601b0cd5fce2daba7009ed914f63a6cc6ac1f9a21703010040d5b3c027a5b5e967a1f8cffac15d30b312f049c92f1cccb55e6182f9f1ba7f277257dcd0db50997cca1cd50b7b589470008f2a89550ec988e02277338747f59c

Message-Authenticator = 0x00000000000000000000000000000000

State = 0xefd23fea6e1fb32cb268f7ea334dc345

Finished request 5

Going to the next request

Waking up in 3 seconds...

rad_recv: Access-Request packet from host 128.198.61.130:4415, id=248, length=298

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

State = 0xefd23fea6e1fb32cb268f7ea334dc345

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x0275009019001703010020e4b16d952b5382f821d23b7262701478c0642a64b659b43926a668a3fc380a8b1703010060e407775d1887c2f17a2b705c4aecaf86dd5641f24b03d1d99645a5bdfa1b3b31dfa974db5e645b43d0a9009ba2c0103f74edc245ed7d32ae0c5e9c0127f2311b1981c1c89c9fba11c9989a0a8ea3873a5fba7ae886bcc8ed238b5bd0b1e8bca9

Message-Authenticator = 0x2cccb068091f76fc6950f13d3d6e8837

modcall: entering group authorize for request 6

 modcall[authorize]: module "preprocess" returns ok for request 6

 modcall[authorize]: module "chap" returns noop for request 6

 rlm_eap: EAP packet type response id 117 length 144

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 6

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 6

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 6

 modcall[authorize]: module "mschap" returns noop for request 6

modcall: group authorize returns updated for request 6

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 6

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - peap

 rlm_eap: processing type peap

 rlm_eap_peap: Authenticate

 rlm_eap_tls: processing TLS

 eaptls_verify returned 7

 rlm_eap_tls: Done initial handshake

 eaptls_process returned 7

 rlm_eap_peap: EAPTLS_OK

 rlm_eap_peap: Session established. Proceeding to decode tunneled attributes.

 rlm_eap_peap: EAP type 26

 rlm_eap_peap: Tunneled data is valid.

 PEAP: Got tunneled EAP-Message

EAP-Message = 0x027500431a0275003131171b3db65317cb22ba582dd9166a66dc0000000000000000107a102a8c9ca4d68b4f73ad9eb71a6349b62bca156a939c006164616d2d63746c

 PEAP: Adding old state with 28 c1

 PEAP: Sending tunneled request

EAP-Message = 0x027500431a0275003131171b3db65317cb22ba582dd9166a66dc0000000000000000107a102a8c9ca4d68b4f73ad9eb71a6349b62bca156a939c006164616d2d63746c

Freeradius-Proxied-To = 127.0.0.1

User-Name = "adam-ctl"

State = 0x28c17d01cd9a2cbf508fbb625b0572fc

modcall: entering group authorize for request 6

 modcall[authorize]: module "preprocess" returns ok for request 6

 modcall[authorize]: module "chap" returns noop for request 6

 rlm_eap: EAP packet type response id 117 length 67

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 6

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 6

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 6

 modcall[authorize]: module "mschap" returns noop for request 6

modcall: group authorize returns updated for request 6

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 6

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - mschapv2

 rlm_eap: processing type mschapv2

modcall: entering group Auth-Type for request 6

 rlm_mschap: doing MS-CHAPv2 with NT-Password

rlm_mschap: adding MS-CHAPv2 MPPE keys

 modcall[authenticate]: module "mschap" returns ok for request 6

modcall: group Auth-Type returns ok for request 6

MSCHAP Success

 modcall[authenticate]: module "eap" returns handled for request 6

modcall: group authenticate returns handled for request 6

 PEAP: Got tunneled reply RADIUS code 11

Reply-Message = "Hello, %u"

MS-CHAP2-Success = 0x00533d34424633453446393838433346364335453745383230414236463039363437354539424243334342

MS-MPPE-Recv-Key = 0x2c676623377c2970e5728b5509d3a4ae

MS-MPPE-Send-Key = 0x0450b6f412c8aa810865167daf5ba5c6

MS-MPPE-Encryption-Policy = 0x00000001

MS-MPPE-Encryption-Types = 0x00000006

EAP-Message = 0x017600331a0375002e533d34424633453446393838433346364335453745383230414236463039363437354539424243334342

Message-Authenticator = 0x00000000000000000000000000000000

State = 0x1cd47c493c72bb3f1d82f02ac574b4ad

 PEAP: Got tunneled Access-Challenge

rlm_eap_peap: EAP Request packet is too large. Code must be fixed to handle this.

 modcall[authenticate]: module "eap" returns handled for request 6

modcall: group authenticate returns handled for request 6

Sending Access-Challenge of id 248 to 128.198.61.130:4415

Reply-Message = "Hello, %u"

EAP-Message = 0x0176008019001703010020f88fc5309dc66a88bbd04f51b18e459ed55483d76bda6b7b556e43f77a9c6308170301005098c1575a7e0f186399bbd9b07ef466be0745d09370d6131ff3fdc90156b8ae86dd3cd1c18fdb2317b4d5027289289f34cf746a3a70328d798857d7103272909d6398c228d4d9b3457f45befd0f78e2f9

Message-Authenticator = 0x00000000000000000000000000000000

State = 0x0007e17b1d2c54100a0dcabe8d0f54ce

Finished request 6

Going to the next request

--- Walking the entire request list ---

Waking up in 2 seconds...

rad_recv: Access-Request packet from host 128.198.61.130:4416, id=249, length=234

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

State = 0x0007e17b1d2c54100a0dcabe8d0f54ce

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x027600501900170301002026bbc0cb50e2465191d56a91a8d45e5e215185d68ef7449e5ee13ea16d68d5df1703010020dab35f126dc2a754f62ef1a7e8bdefc39e141ea7787eb17aa368ce41b8db52e4

Message-Authenticator = 0xed39746a42f52f3347d8c7c2fb46bcfb

modcall: entering group authorize for request 7

 modcall[authorize]: module "preprocess" returns ok for request 7

 modcall[authorize]: module "chap" returns noop for request 7

 rlm_eap: EAP packet type response id 118 length 80

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 7

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 7

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 7

 modcall[authorize]: module "mschap" returns noop for request 7

modcall: group authorize returns updated for request 7

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 7

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - peap

 rlm_eap: processing type peap

 rlm_eap_peap: Authenticate

 rlm_eap_tls: processing TLS

 eaptls_verify returned 7

 rlm_eap_tls: Done initial handshake

 eaptls_process returned 7

 rlm_eap_peap: EAPTLS_OK

 rlm_eap_peap: Session established. Proceeding to decode tunneled attributes.

 rlm_eap_peap: EAP type 26

 rlm_eap_peap: Tunneled data is valid.

 PEAP: Got tunneled EAP-Message

EAP-Message = 0x027600061a03

 PEAP: Adding old state with 1c d4

 PEAP: Sending tunneled request

EAP-Message = 0x027600061a03

Freeradius-Proxied-To = 127.0.0.1

User-Name = "adam-ctl"

State = 0x1cd47c493c72bb3f1d82f02ac574b4ad

modcall: entering group authorize for request 7

 modcall[authorize]: module "preprocess" returns ok for request 7

 modcall[authorize]: module "chap" returns noop for request 7

 rlm_eap: EAP packet type response id 118 length 6

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 7

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 7

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 7

 modcall[authorize]: module "mschap" returns noop for request 7

modcall: group authorize returns updated for request 7

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 7

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - mschapv2

 rlm_eap: processing type mschapv2

 rlm_eap: Freeing handler

 modcall[authenticate]: module "eap" returns ok for request 7

modcall: group authenticate returns ok for request 7

radius_xlat: 'Hello, adam-ctl'

 PEAP: Got tunneled reply RADIUS code 2

Reply-Message = "Hello, adam-ctl"

EAP-Message = 0x03760004

Message-Authenticator = 0x00000000000000000000000000000000

User-Name = "adam-ctl"

 PEAP: Tunneled authentication was successful.

 rlm_eap_peap: SUCCESS

 modcall[authenticate]: module "eap" returns handled for request 7

modcall: group authenticate returns handled for request 7

Sending Access-Challenge of id 249 to 128.198.61.130:4416

Reply-Message = "Hello, %u"

EAP-Message = 0x01770050190017030100209caa3ca7cfc29a1a72d761b6eb1b76b1e6ea135383c0f9b0f33f30247025546217030100202bf82abfb56a4e4edce33449274924da90a2550021ea83652f676c00b9797cc8

Message-Authenticator = 0x00000000000000000000000000000000

State = 0x5e6cb9fb1dfed7e84274080bf06acbf2

Finished request 7

Going to the next request

Waking up in 2 seconds...

rad_recv: Access-Request packet from host 128.198.61.130:4417, id=250, length=234

User-Name = "adam-ctl"

Cisco-AVPair = "ssid=winrace"

NAS-IP-Address = 128.198.61.130

Called-Station-Id = "000b464e8fd6"

Calling-Station-Id = "000ab78b5c1d"

NAS-Identifier = "AP1200"

NAS-Port = 37

Framed-MTU = 1400

State = 0x5e6cb9fb1dfed7e84274080bf06acbf2

NAS-Port-Type = Wireless-802.11

Service-Type = Login-User

EAP-Message = 0x02770050190017030100208687846b46af5c2e960872997e9409d20a0f30fa6b3732eb7095cc8c7b5b079c1703010020339083805bc87ff4b1afcdbb0a4aa9820291918be37ecef6c0593c326c56dcf1

Message-Authenticator = 0xdbd94ab858683609108cf3e651fec17d

modcall: entering group authorize for request 8

 modcall[authorize]: module "preprocess" returns ok for request 8

 modcall[authorize]: module "chap" returns noop for request 8

 rlm_eap: EAP packet type response id 119 length 80

 rlm_eap: No EAP Start, assuming it's an on-going EAP conversation

 modcall[authorize]: module "eap" returns updated for request 8

 rlm_realm: No '@' in User-Name = "adam-ctl", looking up realm NULL

 rlm_realm: No such realm "NULL"

 modcall[authorize]: module "suffix" returns noop for request 8

 users: Matched adam-ctl at 97

 modcall[authorize]: module "files" returns ok for request 8

 modcall[authorize]: module "mschap" returns noop for request 8

modcall: group authorize returns updated for request 8

 rad_check_password: Found Auth-Type EAP

auth: type "EAP"

modcall: entering group authenticate for request 8

 rlm_eap: Request found, released from the list

 rlm_eap: EAP_TYPE - peap

 rlm_eap: processing type peap

 rlm_eap_peap: Authenticate

 rlm_eap_tls: processing TLS

 eaptls_verify returned 7

 rlm_eap_tls: Done initial handshake

 eaptls_process returned 7

 rlm_eap_peap: EAPTLS_OK

 rlm_eap_peap: Session established. Proceeding to decode tunneled attributes.

 rlm_eap_peap: Received EAP-TLV response.

 rlm_eap_peap: Tunneled data is valid.

 rlm_eap_peap: Success

 rlm_eap: Freeing handler

 modcall[authenticate]: module "eap" returns ok for request 8

modcall: group authenticate returns ok for request 8

radius_xlat: 'Hello, adam-ctl'

Sending Access-Accept of id 250 to 128.198.61.130:4417

Reply-Message = "Hello, adam-ctl"

MS-MPPE-Recv-Key = 0xff851e1eb6497e1ddabd03b00d71b7b0dfd2ebf3f237450361fbdd8d16a211e7

MS-MPPE-Send-Key = 0x1b299ca2e01db5eab1a240143ca883236bd83e76739d67539f5f85799f547aa7

EAP-Message = 0x03770004

Message-Authenticator = 0x00000000000000000000000000000000

User-Name = "adam-ctl"

Finished request 8

Going to the next request

Waking up in 2 seconds...

--- Walking the entire request list ---

Cleaning up request 0 ID 242 with timestamp 3fa05571

Waking up in 1 seconds...

--- Walking the entire request list ---

Cleaning up request 1 ID 243 with timestamp 3fa05572

Waking up in 1 seconds...

--- Walking the entire request list ---

Cleaning up request 2 ID 244 with timestamp 3fa05573

Cleaning up request 3 ID 245 with timestamp 3fa05573

Waking up in 1 seconds...

--- Walking the entire request list ---

Cleaning up request 4 ID 246 with timestamp 3fa05574

Cleaning up request 5 ID 247 with timestamp 3fa05574

Waking up in 1 seconds...

--- Walking the entire request list ---

Cleaning up request 6 ID 248 with timestamp 3fa05575

Cleaning up request 7 ID 249 with timestamp 3fa05575

Cleaning up request 8 ID 250 with timestamp 3fa05575

Nothing to do. Sleeping until we see a request.

Client Log

Here is the output during startup of the wirless Client trying to authenticate using PEAP.

./xsupplicant -i eth0 -d5

Couldn't get information for interface wifi0!

initalize_user_conf() finished!

Reading configuration from file : /etc/1x/1x.conf

--Printing user configuration--

username: (null)

root cert: (null)

Client cert: (null)

key file: (null)

auth type: (null)

preferred auth: (null)

Client type: (null)

chunk size: 1398

random file: (null)

first auth: (null)

after auth: (null)

phase2 auth: (null)

phase2 id: (null)

An error occured while attempting to bind socket in 1xdriver.c

Error: 98

Calling do_eapol, with device eth0

Initalizing Frame handler (generic)

Using interface : eth0

Got MAC address of 00:0a:b7:8b:5c:1d

PCAP Filter : ether dst 00:0a:b7:8b:5c:1d or ether dst 01:80:c2:00:00:03 and ether proto 0x888e

Setup on device eth0 complete

(EAPTLS) Changed state to 0

(TLS) Initalized TLS Successfully!

(EAPMD5) Initalized

(TLS) Initalized TLS Successfully!

(EAPMS-CHAP) Initalized

(TLS) Initalized TLS Successfully!

Done with init.

Loading profile for winrace from /etc/1x/1x.conf.

Reading configuration from file : /etc/1x/1x.conf

--Printing user configuration--

username: adam-ctl

root cert: /etc/1x/certs/root.pem

Client cert: (null)

key file: (null)

auth type: none

preferred auth: PEAP

Client type: WIRELESS

chunk size: 1398

random file: /dev/random

first auth: /sbin/dhClient eth0

after auth: /bin/echo I authenticated

phase2 auth: mschapv2

phase2 id: adam-ctl

$$ eapol_pae_do_state $$: DISCONNECTED

Sending EAPOL-Start #1

eap_decode_packet ##: Got an EAP request

eap_decode_packet ##: Type is Identity

$$ eapol_decode_packet $$: back from eap_return

Request ID, skipping CONNECTING state...

Connection Established, authenticating...

Please Enter Your Password :

Sending to 0:b:46:4e:8f:d6

ACQUIRED

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP request

Type is 25, length: 6

$$ eapol_decode_packet $$: back from eap_return

eapol_dst = 0:b:46:4e:8f:d6

resp_out = 0:b:46:4e:8f:d6

Loading certificate /etc/1x/certs/root.pem . . .

(TLS)Loaded root certificate /etc/1x/certs/root.pem and dirctory (null)

PEAP Version changed to 0

 --- SSL : before/connect initialization

 --- SSL : before/connect initialization

 --- SSL : SSLv3 write Client hello A

 --- SSL : SSLv3 read server hello A

Destination : 0:b:46:4e:8f:d6

AUTHENTICATING

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP request

Type is 25, length: 1034

$$ eapol_decode_packet $$: back from eap_return

eapol_dst = 0:b:46:4e:8f:d6

resp_out = 0:b:46:4e:8f:d6

(EAPTTLS) Saved packet fragment.

Destination : 0:b:46:4e:8f:d6

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP request

Type is 25, length: 585

$$ eapol_decode_packet $$: back from eap_return

eapol_dst = 0:b:46:4e:8f:d6

resp_out = 0:b:46:4e:8f:d6

(TTLS) Saved final data fragment!

16 3 1 0 4a 2 0 0 46 3 1 3f a0 55 72 8d

 --- SSL : SSLv3 read server hello A

 --- SSL : SSLv3 read server certificate A

 --- SSL : SSLv3 read server done A

 --- SSL : SSLv3 write Client key exchange A

 --- SSL : SSLv3 write change cipher spec A

 --- SSL : SSLv3 write finished A

 --- SSL : SSLv3 flush data

 --- SSL : SSLv3 read finished A

Destination : 0:b:46:4e:8f:d6

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP request

Type is 25, length: 65

$$ eapol_decode_packet $$: back from eap_return

eapol_dst = 0:b:46:4e:8f:d6

resp_out = 0:b:46:4e:8f:d6

(TTLS) Saved final data fragment!

(TTLS) Not enough data to form the certificate!!! 1603 != 59

14 3 1 0 1 1 16 3 1 0 30 bf fc 9c 8e c2

 --- SSL : SSLv3 read finished A

 --- SSL : SSL negotiation finished successfully

 --- SSL : SSL negotiation finished successfully

Destination : 0:b:46:4e:8f:d6

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP request

Type is 25, length: 80

$$ eapol_decode_packet $$: back from eap_return

eapol_dst = 0:b:46:4e:8f:d6

resp_out = 0:b:46:4e:8f:d6

Destination : 0:b:46:4e:8f:d6

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP request

Type is 25, length: 112

$$ eapol_decode_packet $$: back from eap_return

eapol_dst = 0:b:46:4e:8f:d6

resp_out = 0:b:46:4e:8f:d6

(EAPMS-CHAP) ID : 75

Username = adam-ctl -- Password = whatever

Destination : 0:b:46:4e:8f:d6

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP request

Type is 25, length: 128

$$ eapol_decode_packet $$: back from eap_return

eapol_dst = 0:b:46:4e:8f:d6

resp_out = 0:b:46:4e:8f:d6

(EAPMS-CHAP) ID : 76

Username = adam-ctl -- Password = whatever

Destination : 0:b:46:4e:8f:d6

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP request

Type is 25, length: 80

$$ eapol_decode_packet $$: back from eap_return

eapol_dst = 0:b:46:4e:8f:d6

resp_out = 0:b:46:4e:8f:d6

Destination : 0:b:46:4e:8f:d6

eap_decode_packet ##: Got an EAP request

Received EAP Notify

$$ eapol_decode_packet $$: back from eap_return

Recieved Notification, Ignoring.

eap_decode_packet ##: Got an EAP success

$$ eapol_decode_packet $$: back from eap_return

Authentication Succeeded

Success Count: 1

Failure Count: 0

AUTHENTICATED

Internet Software Consortium DHCP Client V3.0pl1

Copyright 1995-2001 Internet Software Consortium.

All rights reserved.

For info, please visit http://www.isc.org/products/DHCP

wifi0: unknown hardware address type 801

the found signature: 99 77 d3 49 8a 4 5b 7a dc e6 9c 80 dc 72 ac d1

the real signature: 99 77 d3 49 8a 4 5b 7a dc e6 9c 80 dc 72 ac d1

the iv: 27 aa 51 a0 5d 1e 73 99 50 70 2c f4 2b aa 72 94

After iv:

EAPOL Key processed: unicast [4] (0 bytes)

After check signature...

$$ eapol_decode_packet $$: Got an EAPOL KEY

wifi0: unknown hardware address type 801

Listening on LPF/eth0/00:0a:b7:8b:5c:1d

Sending on LPF/eth0/00:0a:b7:8b:5c:1d

Sending on Socket/fallback

DHCPREQUEST on eth0 to 255.255.255.255 port 67

DHCPACK from 128.198.61.132

bound to 128.198.61.144 -- renewal in 8349 seconds.

Protocol Version (1)

 15 16

The acronyms used in the above figure are as follows:

PPP – Point-to-Point Protocol

AAA – Authentication Authorization Accounting

TACACS - Terminal Access Controller Access Control System

LDAP- Lightweight Directory Access Protocol

PAP –Password Authentication Protocol

CHAP - Challenge Handshake Authentication Protocol

MD5 – Message Digest Protocol

NDIS - Network Driver Interface Specification - Windows APIs

Data . . .

ID (Opt)

-

Vendor

AVP Length

V M r r r r r r

 7 8

 0

AVP Code

 31

EAP-Packet (0): Contains Encapsulated EAP frame

EAPoL-Start (1): Instead of waiting for a challenge from the Authenticator, the Supplicant can issue an EAPoL-Start frame. In response the Authenticator sends an EAP-Request/Identity frame.

EAPoL-Logoff (2): When system is done with using the network, it can issue EAPoL-Logoff frame to return the port to an unauthorized state.

EAPoL-Key (3): EAPoL can be used to exchange cryptographic keying information

EAPoL-Encapsulated ASF Alert (4): The alerting Standards Forum (ASF) has defined a way of allowing alerts, such as SNMP traps, to be sent to an authorized port using this frame type.

Packet Body

Packet Body Length

Packet type

AVP Code+Vendor ID ; Is used to identify attributes

V : Indicates if the option Vendor-Id field is present.

M : Mandatory bit indicates if support for AVP is required.

 0 – This AVP can be ignored if not supported

 1 – If this AVP is’nt supported, fail the negotation.

 r : (reserved) bits are unused and are set to 0

AVP Length: Length of the AVP including AVP code,

Length, Flags , Vendor-ID and Data

VendorId: This is present if ‘V’ bit is set in the Flags field.

M/R : 1 - Mandatory TLV 0-Reserved

TLV Type : 3 - (Success/Failure)

Length : 2

Status : Is two octets and contains value

 1 - Success 2 - Failure

Code : 1 - Request 2-Response

Identifier: Used to match response to request

Type: 33 (EAP - TLV)

Length: The Length field indicates the length of the EAP packet

 including the Code, Identifier, Length, Type, and TLS

 data fields.

Data:	The Data field is of variable length, and contains EAP-TLV TLVs

Code : 1 - Request 2-Response

Identifier: Used to match response to request

Type: 25 (PEAP)

Length: The Length field indicates the length of the EAP packet

 including the Code, Identifier, Length, Type, and TLS

 data fields.

Flags: Length included, More fragments, Start Flag

Version: PEAP packets contain a three bit version field, which

 enables PEAP.

This implementation has version bit set to 0.

_1130746629

