PAGE
42

ESI Extensions for Web-based Collaboration

by

MERLIN WESLEY VINCENT

B.S., Northern Arizona University, 1985

A thesis submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

2004

CONTENTS

1ESI Extensions for Web-based Collaboration

Chapter I
1
Introduction
1
Chapter II
4
Overview of Collaboration Features
4
Authentication
4
Access Rights
4
Dynamic Access Control
5
Dynamic Sharing
5
Interaction Modes
5
Awareness
5
Object History
5
Unrestricted Document Types
5
Unrestricted Application Types
6
Unrestricted Messaging
6
Transport Security
6
Chapter III
7
Communications for Collaboration
7
Multicast and Collaboration
8
Existing Collaboration Standards
9
Chapter IV
10
Security for Collaboration
10
Chapter IV
12
The Edge-Side Includes Protocol
12
Chapter VI
14
ESI Extensions for Collaboration
14
Assumptions
16
Session Attributes
17
User Attributes
18
Channel Attributes
18
Basic Channel
19
Homed Channels
20
Monitored Channels
20
Ordered Channels
21
Session Management
21
Using ESIC Channels
24
Message Addresses in Homed Channels
25
Inter-proxy Communications
25
ESIC Security
26
Security for the proxy/server connection
26
Security for the client/proxy connection
27
Security for Inter-proxy communications
28
Chapter VII
29
Implementation
29
The ESIC Proxy Server
29
The Drawboard Application
30
Chapter VIII
33
Performance Evaluation
33
Chapter IX
36
Lessons Learned
36
Chapter X
38
Future Work
38
Chapter XI
39
Conclusions
39
References
40

FIGURES

Figure

Chapter I

Introduction

Computer supported cooperative work (CSCW) systems can be defined as “computer-based systems that support groups of people engaged in a common task (or goal) and that provide an interface to a shared environment.
” As Greenberg points out
, CSCW systems have been under development since 1968. In that year Engelbart and English gave the first demonstration of voice and video conferencing, as well as screen sharing.

Since then CSCW has been an active field of research, and in recent years the technology has matured to the point that many commercial systems have been fielded. Current CSCW systems typically provide a digital workspace in which collaboration artifacts are manipulated. The workspace may start as a single-user environment, but can be transformed into a space shared by multiple workers through inviting others to join the collaboration. Such workspaces provide a variety of synchronous and asynchronous collaboration tools
.

Asynchronous collaboration tools are those that can accommodate delays between the time information is generated by a user and the time it is retrieved by other users. Such tools include electronic mail, messaging and announcements, threaded discussions, offline editing, meeting and process planning applications, and web pages.

Synchronous collaboration involves near real-time communication, i.e., users receive shared data within moments of when it is created. Examples of synchronous tools include instant messaging, whiteboard and application sharing, and tools that provide for awareness or presence information. Awareness in this case refers to the knowledge of the other users that may be sharing an application, e.g., when they login or logout and what objects they’re working with.

CSCW applications may also provide features for asset management and information dissemination. Asset management would include support for creation and management of documents and other digital assets, management of the editing process and the use of version controls.

Information dissemination features could include the ability to retrieve persistent data on demand and tools to facilitate one-to-many collaboration. An example of the latter would be an on-line learning application with a feature that allowed a lesson to proceed only after all of the students had submitted an answer to a question.

Clearly, one of the fundamental requirements of CSCW applications is an efficient, scalable communications infrastructure. Research projects in CSCW have resulted in several communications frameworks, including the COCA
 collaboration bus and the NSTP notification services
, and both the ITU
 and IETF
 have standards that address collaboration services.

This paper discusses one way in which the existing World Wide Web infrastructure, and HTTP in particular, can be extended to provide a framework for CSCW applications. A paper by IBM’s Barrett and Maglio suggests that intermediaries, in the form of Web proxies that operate on the stream of data that flows between an origin server and a client, are an ideal place to add functionality to the internet. Intermediaries “can (1) produce new information by injecting it into the stream, (2) enhance the information that is flowing along a stream, and (3) connect different streams, possibly translating communication protocols in the process.
”

Collaboration systems based on intermediaries have already been developed. The NSTP notification servers are intermediaries that serve as central collaboration servers and perform document consistency functions, and the ITU’s T.120 standard for real-time, multi-point data communications provides for intermediaries that perform locking and operation sequencing functions.

This paper proposes an extension of the existing Edge Side Includes (ESI) standards for surrogates that would allow them to explicitly support collaboration. The advantage of this approach is that it extends an already-deployed surrogate so that little additional development is needed, and uses the HTTP protocol so that messages will be able to traverse firewalls.

ESI proxies were developed to offload from the origin server some of the processing involved in generating dynamic content. The origin server generates a web page template containing the usual HTML plus an XML-based in-markup language that identifies page fragments that are to be handled by the proxy. The proxy uses URLs in the template to retrieve the fragments other servers and integrate them into the page, and finally delivers the completed web page to the client.

Historically, ESI proxies are positioned at the edge of the internet, as components of a Content Delivery Network (CDN), and provide both content integration and caching. But a recent trend is for organizations to include an Enterprise CDN (ECDN) as part of their intranet. ECDNs are attractive because they can increase a network's performance, scalability, and reliability
. According to Network World:

The trend began in the last year or so as companies began looking at in-house CDNs as a means of increasing the performance of online applications and speeding the delivery of multimedia presentations, while reducing bandwidth demands.
One indication that ESI proxies, in particular, are becoming more popular is the fact that the Squid open-source proxy will include ESI capability in its upcoming 3.0 version
.
In light of the fact that CDNs, ECDNs and ESI proxies are becoming more common, adding support for collaboration to the deployed intermediaries would not only reduce communications-related processing loads on the origin server, it would make it cheaper and easier for application developers to add collaboration to their applications. There would be no need for them to develop their own communications infrastructure; they could simply subscribe to services on any CDN/ECDN that provides such intermediaries.

This paper presents the ESI Collaboration (ESIC) proxy. The proxy uses ESI extensions to provide a collaboration framework based on sessions and channels. A session represents an on-going collaboration. A session is created when the first user logs in to the origin server and closed when the last user logs out. Associated with a session is a set of clients that are authorized to use the session, and a set of channels that are used to pass messages. The channels are bidirectional communications links that carry HTTP messages between any subset of the users that are connected to the channel.

Chapter II

Overview of Collaboration Features

This chapter attempts to define a set of features that are commonly found in CSCW systems. This feature set is not intended to be an exhaustive survey of the capabilities of CSCW applications, but rather is intended to give the reader a feel for what is being done and what that might imply in terms of the support needed from the communications infrastructure. Communications requirements are examined in detail in the next chapter.

In Rodden’s 1991 paper
, contemporary CSCW systems were grouped into four categories: message systems, conferencing systems, meeting rooms and co-authoring and argumentation systems. The groups were defined by two major system characteristics: location (co-located or remote) and mode of interaction (synchronous or asynchronous).

Since that time CSCW systems have evolved into applications that may take on all of those characteristics. As mentioned earlier, most commercial CSCW systems now provide a variety of synchronous and asynchronous tools that behave identically whether their users are in adjacent cubicles or on opposite sides of the planet.

The following subsections comprise a list of generally desirable features taken from the literature and from current CSCW systems
.

Authentication

Users of the system must be authenticated. This may involve a simple name and password scheme, or something more stringent. The ESIC proxy is not involved in this, and assumes that all needed authentication is provided by the origin server.

Access Rights

The collaboration system should be able to assign flexible access rights on a per object basis in order to specify who is allowed to do what in a shared workspace. Many applications use role-based schemes to determine access rights. The ESIC framework supports the use of application-specific user roles and channel access rights.

Dynamic Access Control

This involves controlling how and when a collaboration object is manipulated, e.g., as a means to control document consistency in a shared editing application, provide for floor control in a meeting application, etc. The ESIC framework supports dynamic user roles and access rights so that access by a particular user or to a particular object can be modified over time.

Dynamic Sharing

The system should be able to support a personal workspace, but upon inviting other users it becomes a shared workspace. This is application-specific, but can be implemented through the ESIC framework.

Interaction Modes

Users of the system should be able to work on shared objects whether the user is online (synchronous) or offline (asynchronous). This may also involve issues with maintaining document consistency and support for latecomers. While these issues are primarily application-specific, the ESIC framework does provide monitored channels that can be used to implement version control and latecomer support.

Awareness

Users should be able to find out which other users are actively sharing the same workspace or document, and what activities they are engaged in. This is application-specific, but can be implemented through the ESIC framework.

Object History

The system should be able to inform users which objects have been changed since the user last accessed the object or workspace, and what those changes were. This is application-specific, but can be implemented through the ESIC framework.

Unrestricted Document Types

The system should be able to transfer any type of document found in a shared workspace, i.e., text and binary documents, graphics, sounds clips, and so on. This is not a problem for the ESIC framework since is based on HTTP, which supports MIME data types.

In addition to enabling a wider variety of collaboration objects, allowing unrestricted document types may avoid hampering the application in other ways. For example, the Webex [*] collaboration transparency system transmits a vector graphics representation of the shared data, rather than the data itself
.

Unrestricted Application Types

The system should support a variety of tools depending on the needs of the user, e.g., instant message, whiteboard, version control system, etc. The goal of this work is to define a framework that is flexible enough to support the widest possible variety of applications.

Unrestricted Messaging

Messaging requirements vary widely between collaboration applications. The system should support a wide variety of messaging needs, including peer-to-peer, client-to-server and server-to-client messaging of varying traffic loads. Meeting the needs of these various architectures is one of the primary goals of the ESIC framework.

Transport Security

The system should be able to transmit data between users in a manner that is not vulnerable to eavesdropping, tampering, etc.

Chapter III

Communications for Collaboration

In order for multiple users to share an object, some part of that object must be replicated on each user’s system. The application’s communications requirements depend largely on how that replication occurs.

Dewan
 classified synchronous collaboration systems based on user interface layers, with the highest layer being the data that the user manipulates, i.e., the Model. Below that is the View layer, or the logic for presenting the data. The widget, window and screen layers follow, and they are all involved in the mechanics of how the information is displayed.

Applications that replicate information at the higher layers have lower bandwidth requirements than those that replicate at the lower layers. One example of an architecture with high bandwidth requirements would be a centralized architecture in which the application logic executes on a single machine, and a bitmap of the screen is transmitted to all participants. This technique is known as collaboration transparency, and shares what would otherwise be single-user applications by replacing the standard windowing widgets with collaboration-aware widgets. Certain windows or even the entire desktop are shared without the knowing participation of the applications that are running there.

An example of a lower bandwidth architecture would be a distributed architecture in which the application logic executes on each user’s machine, and the control inputs that change the object is transmitted to all participants. The Content Object Replication Kit (CORK) described by Isenhour, et. al.
, transmits serialized Java “change objects” to collaborating applications.

Another factor that influences communications requirements is how often messages must be transmitted. Asynchronous collaboration may require only a file download to disseminate shared data, but synchronous collaboration involves real-time updates. An analysis by Li, et. al.
, resulted in guidelines governing how often update messages should be sent for shared text and graphics editors. The guidelines imply that message traffic varies as a function of timeouts and the specific operations being performed.

The above discussion addresses the rather low-level messaging requirements of an application. At a higher level, the application’s architecture is the primary influence on how it uses communications. There are numerous examples of both client-server and peer-to-peer collaboration architectures. In a recent Network World review
, most of the systems presented had client-server architectures; one had a peer-to-peer architecture and two had architectures that were a combination of both.

All of these messaging architectures are supported by ESIC, but with the restriction that an origin server must be utilized for certain functions. For example, the origin server must provide user authentication, and the server is responsible for creating and maintaining the sessions and channels. But once the collaboration session is active, the channels may be used in any way that the application supports. For example, the server may be used to set up a peer-to-peer channel and not be involved again until the collaboration session is closed.

Multicast and Collaboration

It’s possible that client-server architectures may have higher bandwidth requirements than a peer-to-peer architecture. For example, a user in a meeting application may generate traffic that must be broadcast to all of the other participants. If the traffic is first sent to a central server, which then performs the broadcast function, the resulting network load is higher than if the user had sent the information directly to the other users. This implies that some form of multicast should be used.

The IP multicast protocol would seem to be an obvious solution to providing efficient communications for collaboration. Indeed, work on the internet’s experimental multicast backbone, Mbone, led researchers to the conclusion that “IP multicast is an efficient model for group communication, both for delivery of time-critical media streams and for non-realtime messages.”

However, IP multicast has been avoided in more recent projects because of its insufficient deployment due to many problems. For example, IP multicast requires universal support in network routers, and there are no robust inter-domain routing protocols or distributed multicast address allocation schemes
. Further, the transport protocol, UDP, is not only inherently unreliable but is blocked by firewalls in many organizations.

The ESIC proxy does not support multicast between the proxies and the end users, but it does use multicast between the proxies in the CDN. Both user and session management messages are passed in this way. This is discussed in more detail later.

Existing Collaboration Standards

There are protocol standards that have been developed specifically to support collaboration.

The ITU’s T.120 User Data Applications family of standards
 includes a set of communication and application protocols that support real-time, multi-point data communications. Some of these specs (T.122, T.123, T.124, and T.125) specify a mechanism for providing multi-point data communications services to any type of application that may need it. Others (T.126 and T.127) define protocols for specific types of applications, e.g., shared whiteboards and file transfer. The T.120 protocols are closely associated with the H.323 protocols for network-based video conferencing. The ITU standards are used by some of the popular collaboration applications, including Webex and Microsoft’s NetMeeting.

The IETF has a set of standards for collaboration based on IP multicast
. The Resource Reservation Protocol (RSVP) is used to set up Quality of Service for router-based multicast groups. The Real-Time Protocol (RTP) provides for message sequencing by adding timestamps to messages. The Real-Time Control Protocol (RTCP) implements an awareness support framework. One drawback to these protocols is that they are based on UDP.

The Notification Server Transfer Protocol (NTSP) is to T.120 what SMTP is to X.400, i.e., similar but simpler. In addition, it specifies all resources as URLs, which is the same approach taken in the ESIC architecture.

Chapter IV

Security for Collaboration

Users expect that the contents of their collaboration will be secure as it travels over the internet. This expectation involves several aspects of communications security. The clients and servers involved in the collaboration need a way to verify that they’re communicating with the real server or client rather than an imposter. The application needs a way to verify that the user is authorized to participate in the collaboration activity, and to access the collaboration objects. And the participants need a way to keep the messages sent between collaborators safe from tampering or eavesdropping.

The research projects that I reviewed did not explicitly address security features other than access controls. Many applications work similarly to COCA
, in which collaborators are assigned roles such as “moderator, aspirant (someone who may request floor), session daemon (entity that allows who takes which roles and performs session mgmt tasks), etc.” The applications differ in the roles that may be assigned, but are similar in that access control is role-based.

The Intermezzo collaboration support environment
 goes a bit further, in that it uses static and dynamic role assignments to define policies that control access to collaboration objects. The application uses information about the user and the tasks being performed, along with other context cues, to enforce policies such as “only share my workspace with others on demo days.”

Most of the commercial collaboration products that I reviewed do support security. For example, the Webex on-line meeting application
 uses the HTTPS protocol to connect its client application to the server. Two levels of user authentication are required, based on username and password. A meeting host must login with a username and password in order to create a meeting, and the host must provide a meeting number and password to authenticate the other meeting participants.

Microsoft’s NetMeeting
 makes security optional. In addition to a meeting password and data encryption, security features include the use of digital certificates for authentication and encryption.

Both NetMeeting and Webex use T.120 and its associated protocols, which provide support for security. H.235 specifies the security requirements for H.323 communications. Four security services are provided: authentication, integrity, privacy, and non-repudiation. Authentication is provided by admission control of endpoints. Data integrity and privacy is provided by encryption. Non-repudiation ensures that no endpoint can deny that it participated in a call. These are provided as H.323 gatekeeper services. To implement these security services, H.235 can use existing standards such as IP Security (IPSec) and Transport Layer Security (TLS).

Chapter IV

The Edge-Side Includes Protocol

Document caching is an easy way to minimize web page delivery times but, prior to the development of ESI, could only be used for static web pages. Pages containing dynamic content, i.e., content that is personalized or rapidly changing, could not be cached and the entire page would have to be regenerated for every request.

It is likely, however, that the amount of dynamic content on a page is only a fraction of the entire contents. The ESI specification provides a way for the truly dynamic portions of a web page to be handled separately from the other static, cacheable portions of the page. When the origin server generates the ESI template it can identify the dynamic portions as fragments, each with its own caching characteristics.

Typically, companies interested in using ESI will subscribe to services on a Content Delivery Network. The company’s servers will be given DNS translations that map to an ESI surrogate on the CDN, ensuring that a proxy is always between the client and the origin server.

When the client requests a document the proxy adds an HTTP Surrogate-Capability request header to the message before forwarding it to the origin server. The header describes the cache server’s ESI capabilities, such as the ESI version number that it supports, etc. The ESI architecture spec describes the use of HTTP request and response headers.

The origin server creates a document template that includes ESI tags which identifies the document fragments and how they are to be handled by the proxy. The ESI language specification describes tags that provide the following capabilities:

1. Inclusion. The proxy is directed to fetch and integrate the files that make up the Web page. Each file can have its own configuration and control, TTL, and revalidation rules as specified in the response headers provided by the file server.

2. Conditional inclusion. The proxy’s actions are controlled by expressions in the markup which make boolean comparisons or test programmable variables, so that processing can be tailored as necessary.

3. Support for variables. A set of read-only variables, which are based on the client's HTTP request line and headers, is made available for use in decision structures.

4. Exception and error handling. Web developers can specify where to send the browser if an origin server or a document isn't available. Alternative pages or default behavior can be set for every fragment that forms a particular Web page. In addition, if an exception occurs the content returned to the client can be specified in a failure-response option associated with the fragment.

When the server returns the document template it includes an HTTP Surrogate-Control response header. This header contains instructions for the proxy, such as the template’s caching characteristics. The proxy retrieves the individual document fragments, compiles them into the final document, and delivers it to the client.

The Surrogate-Control header may also include instructions for additional processing that the proxy should perform on the document. The additional processing can be anything, such as image transcoding, compression or decompression, or parsing an in-markup language. It is this ability that allows the ESI protocol to be easily extended to support collaboration.

The ESI invalidation specification describes how origin servers (or other interested entities) can tell the proxy that a particular document or fragment is no longer up to date. An HTTP POST request is sent to the proxy server, where the XML-based message body contains a list of fragments that should no longer be served from cache.

The ESIC collaboration services are implemented through the use of the Surrogate-Control header’s content directive. The proxy’s collaboration processor is invoked when the header is present in a server’s response and contains the proper tokens. The processor retrieves XML-based instructions from the message body and uses them in creating collaboration sessions or channels, which may then be used by the server and its clients.

Chapter VI

ESI Extensions for Collaboration

The ESIC collaboration framework is a flexible, easy-to-use communications infrastructure with features that directly support collaboration. It provides an origin server and its clients the ability to send messages to one or more other collaborators, or even to broadcast a message to all of the other collaborators.

Collaboration activities are organized into sessions, or groups of users participating in a shared activity. Users can login to a collaboration application and initiate or join a session, and later leave the session to the remaining collaborators. The use of sessions allows multiple separate instances of a collaboration activity, and makes it easy to control access to shared objects.

Each session must have at least one communications channel. Channels are bi-directional links that carry arbitrary collaboration data. A session’s channels are configured by the application, so that a channel may connect all of the collaborators or any subset thereof. Channels can be created or removed at any time during the life of a session.

Each channel is assigned a “virtual” URL by the origin server, i.e., the URL must have the same hostname and port as the origin server so that the DNS translations result in all messages being routed to the content delivery network.

The application controls user access to a session’s channels by assigning user roles and corresponding channel access rights. Users access the channels by issuing the standard HTTP request methods to the URL. Using HTTP as the transport allows message traffic to pass through firewalls.

ESIC proxies distributed in a content delivery network implement the logical channels and enforce the separation of channels and sessions. Depending on the channel’s configuration, the user requests may be forwarded to the origin server or intercepted and served by the ESIC proxy.

[image: image1.wmf]Content Delivery

 Network

Proxy A

Proxy B

Proxy C

Origin Server

Clients

Clients

 Homed

Channel

Peer-to-peer

 Channel

Figure 1: ESIC Channels

When a collaboration session first begins it is assumed that a login sequence or other initial handshake will occur. In the final transaction of this initial process the origin server will write into the response message some XML containing the ESIC commands creating the session and its channels. The proxy acts on these commands, creating or updating the session and channels, then removes the markup and ESI headers from the response message before returning it to the client.

Since the ESIC markup and headers are removed from the response message, the channel URLs must be communicated to the client in some application-specific manner, e.g., through HTTP extension headers or within the body of the message. The client must then establish connections to the channels and may then proceed to pass messages to implement the collaboration.

The proxies provide an efficient means to pass application messages between collaborators and the origin server. For example, a client or server can generate a single message for broadcast to all of the collaborators, and the proxies will manage the distribution. The proxies use a reliable multicast protocol to forward the message to those proxies that are directly connected to the collaborators, and those proxies unicast the message to the addressees.

Assumptions

ESIC is intended to be a lightweight communications framework for collaboration. It does not provide shared editors or chat functions or other applications, but rather provides a communications transport and a limited set of related features that generically support such applications.

The ESIC proxy does not support streaming audio and video. As Mark Day points out in
, every organization of any size already has a dedicated audio communications system reaching every person, in the form of either the PSTN telephone system or Voice over IP, which should not be duplicated. And, according to Day:

Video is neither necessary nor sufficient for two or more people to cooperatively gesture at and modify an artifact like a spreadsheet. Simply taking a picture of one user’s application and transmitting it to another user is not the same as sharing an application where both can use the application naturally. Videoconferencing has little real relationship to synchronous groupware.
ESIC assumes that the origin server is integrated with the Content Delivery Network in some way. That is, when a client issues a connect request to the origin server’s URL it is routed to a proxy on the CDN. This may be accomplished by manipulating the DNS naming tables.

The ESIC server acts as an intercepting proxy in that it receives all of the client requests that are made to the origin server’s ESIC-capable URLs. The proxy forwards some of the requests to the origin server and handles some of the requests itself, such as those requests intended to be multicast to the other collaboration participants.

As a component of an HTTP proxy, ESIC uses the HTTP protocol as its transport. That is, the messages that the ESIC proxy handles consist of the usual HTTP requests and responses: HEAD, GET, POST, PUT and DELETE. Some technologies, such as pushlets
, use arbitrary messages once the transport is created. The ESIC protocol uses the HTTP headers to carry control information and therefore requires that all ESIC channels carry only correctly formatted HTTP messages.

In order to allow connectivity through firewalls, all network connections must originate with the client. This is also required by the fact that the proxy’s session and channel creation functions are controlled through a combination of HTTP headers and XML commands embedded in the body of the response messages. Persistent connections, as allowed by HTTP version 1.1, provide bidirectional communication once the initial connections are made.

ESIC therefore represents a centralized collaboration architecture in that an origin server must exist to provide an endpoint for outbound connections and to execute at least some of the collaboration logic. The origin server must provide user authentication and assign access controls, for example, in addition to managing the sessions and channels.

Session Attributes

A session is the top-level collaboration container and has associated with it a set of clients that are authorized to use the session, and a set of channels that are used to pass messages. In addition, a session has attributes that include a session ID and base path that are assigned by the origin server, and the hostname of the ESIC proxy that is acting as session master.

The ESIC proxies will intercept all user requests sent to any URL that begins with the origin server’s name and the specified base path:

http://a.b.com/base/doc1/doc2

 |------------|

The session’s assigned ID is an alphanumeric string, and must be supplied in all requests and responses sent by any client. This can be done either through the use of the esicSession cookie, or through a query component in the URL:

http://a.b.com/base/channel

Cookie: esicSession=”abc123”

 - or -

http://a.b.com/base/channel?esicSession=abc123

 |------------------------|

If cookies are used, the origin server should provide domain and path attributes in the Set-Cookie header. This will help ensure the session and client ID cookies are sent with all requests to any of the session’s URLs.

User Attributes

A user is any client participating in a collaboration session via an ESIC proxy connection. The origin server assigns each user a set of attributes when they are added to a session, and may change the attributes as the collaboration progresses. A user’s attributes include a client ID and a list of channels the user can access along with roles that define the access modes allowed.

Users are assigned an alphanumeric client ID that must be supplied in all messages sent to or from the client. This can be done either through the use of the esicClient cookie, or through a query component in the URL:

http://a.b.com/base/channel

Cookie: esicClient=”def456”

 - or -

http://a.b.com/base/channel?esicClient=def456

 |---------------------|

Users are given a list of channels that they may access, and roles that describe the access modes they may use with each channel. A role is simply an alphanumeric string, and is application specific. User roles and how they are used with channels is discussed in detail later.

Channel Attributes

A channel is a communications link from the client to the origin server and/or other clients via the ESIC proxies. That is, a channel’s endpoints may include many clients across many different ESIC proxies, and do not necessarily have to include the origin server. A peer-to-peer channel, for example, would not include the origin server.

A channel’s attributes include its path relative to the session’s base URL, a list of application-specific roles with corresponding access modes, an activity timeout, and the channel type.

Clients access the session’s channels via URLs comprised of the hostname plus the session’s base path plus the channel’s relative path:

http://a.b.com/base/channel

 |-------|

Roles are simply an alphanumeric string, and are application-specific. Each role must be assigned one of the following access modes: read-only, read-write, or write-only.

An activity timeout is a string representing an integer value in seconds. The activity timeout is optional, and if it is not present the connection is assumed to have no timeout limit. If no message traffic is passed by the channel in the specified number of seconds, all connections associated with the channel are closed. If the session is left with no active channels, the session is also closed. It is up to the origin server to set an appropriate timeout period, and up to the server and channel users to gracefully handle session and channel closures.

Channel types provide a convenient means of support for various collaboration-specific activities. The four channel types are basic, homed, monitored and ordered.

Basic Channel

A basic channel is the default channel type, and is simply a bi-directional communications link. This type of channel can be used to connect one or more clients, and the origin server does not have to be one of the endpoints. That is, this can be set up as a peer-to-peer channel, a many-to-many channel, or anything in between.

Clients that are allowed write access to a channel can send messages to any other user of the channel, any subset of the other users, or to all of the other users (broadcast). All posted messages must include the addresses of the intended recipients. The address used to send a message to a particular channel endpoint is the destination user’s client ID, as assigned by the origin server. Broadcast messages use the wildcard address, *.

In connections between the client and the proxy, the sending client may provide addresses in an esicToList cookie or as an “esicToList” query component in the URL:

http://a.b.com/base/ch1

Cookie: esicToList=”def456,ghi789”

 - or -

http://a.b.com/base/ch1?esicToList=def456,ghi789

 |-------------------------------|

Homed Channels

The “homed” type attribute means that, while all endpoints may receive messages from the channel, all traffic written to the channel is directed to the “home” endpoint, i.e., the origin server. No endpoint address is needed in requests posted to a homed channel, and if one is provided it is ignored. The CDN will intercept all user requests bound for a homed channel and will forward it to the server, so that the origin server must also serve the URL.

Homed channels support shared applications where the application logic executes on the origin server. In this way, a homed channel is similar to the normal client-server web connection. The difference is that, while all client traffic is routed to the origin server, the server’s responses may be addressed to any or all of the user endpoints.

The origin server indicates which endpoints are to get a copy of the response by providing an address list in XML markup in the response message. If no address is provided the CDN assumes the response’s destination is the sender of the request.

In connections between the proxy and the origin server, addresses are included in XML in the body of the server response messages. In this case, the origin server includes a Surrogate-Control header with a channelTraffic directive in the response message to indicate that the message is more than just a response to the sender, and the address information is written into a channelTraffic element in the message body. This is discussed in detail later.

A homed channel is one way in which a user can send a message directly to the server. The only other way is for the server to behave as simply another client of the session. That is, the origin server would have to connect to itself in order to provide the proxy a response message containing XML to add the server to the session and channels. Then the server would have to connect to the channel.

Monitored Channels

The “monitored” type attribute means that, while users may address messages to any or all of the other endpoints, one or more endpoints identified as monitors receive copies of all messages. This is true regardless of to whom they were addressed. This supports application features such as document control and versioning, meeting recording, latecomer support, etc.

The monitor endpoints may be any subset of users, and may even include the origin server. If an origin server is to be a monitor then it must behave as any other client, i.e., it must be assigned a client ID, must be added to the session and must connect to the channel.

In order to be a monitored channel, at least one user must have the “esicMonitor” role, and the channel must provide read-only or read-write access to that role. A monitored channel is not usable unless at least one monitor is connected to the channel.

Ordered Channels

Collaboration applications such as shared editors require that messages arrive at each client in exactly the same order. This requirement stems from the fact that editing functions are not commutative, i.e., editing actions received by two clients in a different order will result in different documents. ESIC ordered channels support this by routing all messages to the session master, which receives and re-distributes them to the clients connected to the channel. Messages are addressed in the manner as for the basic channel.

Session Management

ESIC sessions are managed through the cooperation of the ESIC proxy and the origin server. Per the ESI Architecture specification
, all messages from the proxy to the origin server will include the Surrogate-Capabilities header to alert the server to the fact that ESIC collaboration is available, e.g.:

Surrogate-Capability: <proxyName>="ESIC/0.1"
The <proxyName> token is the name of the ESIC proxy sending the message. The capabilities list that follows is a space-separated list of tokens that describes the functions the proxy can provide; in this case, ESIC collaboration services.

The origin server can create, update or close a session by including XML markup in the response message. The server alerts the proxy to the presence of ESIC markup by including the Surrogate-Control header, e.g.:

Surrogate-Control: content="ESIC/0.1"
The content directive is used to indicate what processing the proxy should perform on the response message before sending it on to the user. The content list is a space-separated list of tokens that indicate the functions to be performed by the proxy; in this case, ESIC session management. The origin server can also specify the ESIC message transmission function, as described later.

The proxy reads the message to recover the markup and acts on the commands, i.e., creating, updating or closing the session and channels, and then removes the markup and ESI headers before sending the response message to the client.

The XML markup has the following general structure:

<esicSession id="abc123">
 <sessionControl>
 … session control elements …
 </sessionControl>
 <channelTraffic>
 … channel addressing elements …
 <channelTraffic>
</esicSession>
Note that the session’s ID is an attribute of the esicSession element. Note also that commands for session management and commands for message transmission can occur in the same message. The sessionControl and channelTraffic elements can appear in any order, and their order determines the order in which the functions are applied. The order of execution can be important if, for example, an application is creating a new channel and also broadcasting a message to distribute its URL.

When a user logs into a collaboration application the origin server will return a response containing XML markup to create the session and its channels. The following shows the sessionControl element of a request to create a session for a classroom application, with one user and one channel.

<sessionControl action=”create”>

 <basePath>/OriginServer</basePath>
 <clientList>
<client action=”create”>

 <id>def456</id>

 <accessList>

 <channelAccess path="/classroom" role="student"/>

 </accessList>

</client>
 <clientList>
 <channelList>
<channel action=”create”>

 <path>/classroom </path>

 <type>basic</type>

 <accessControl>

 <access role="student">readonly</access>

 <access role="presenter">readwrite</access>

 <access role="instructor">readwrite</access>

 </accessControl>

</channel>
 </channelList>
</sessionControl>
The above example illustrates how channel access is managed via application-specific user roles. The ESIC proxy treats the user’s channel access role as a string of space-separated role tokens. As long as one of the tokens in the string is “presenter”, for example, the user would be granted read-write access to the channel.

As seen above, most session control elements may have an action attribute, which can take on the values of create, update and remove. When the parent element has a create or remove action attribute, all of the child elements have an implicit create or remove action attribute. When the parent element has an update action attribute the child elements may have a remove or create action attribute.

In this way, user and channel attributes can be changed as the collaboration progresses, according to the needs of the application. The only restriction is that a channel’s base path and type should not be changed, since this could effect the multicast group routing tables.

The markup to change the user’s channel access role from "student" to "presenter", for example, would have the action attribute set to “update” for both the sessionControl and the updated client’s elements:
 <client action="update">
 <id>def456</id>
 <accessList>
<channelAccess action="remove" path="/class" role="student"/>
<channelAccess action="create" path="/class" role="presenter"/>
 </accessList>
 </client>
Updates also allow the use of the wildcard, *, in user and channel updates. This is useful in session-wide configuration changes. For example, a group of users in a classroom application may have restricted access while a presentation is being made, but then access could be opened up for a discussion of the presented material.

Sessions and channels may be closed, and users removed, by the origin server by writing the appropriate markup into a response message. The action attribute for the effected entities should be set to “remove”. The server may do this as a result of an explicit logout sequence. Only the server that created a session is allowed to explicitly close the session or remove its channels or users.

Using ESIC Channels

Channels are created and managed using the sessionControl mechanisms described above. Once created, the channels can be used by the session’s clients according to their assigned roles.

When a channel is created there will be no connections to or from the proxy for that channel. It is up to the client (or server) to initiate a connection by issuing a request message to the channel’s URL. The ESIC proxy’s response to the initial request depends on the channel’s type.

If the URL is for a homed channel and no connection exists from the proxy to the origin server, the proxy will connect to the server and forward the message.

If the URL is for a monitored channel and the origin server is acting as the monitor, the proxy will connect to the server and forward the message. But if the monitor is another user and no connection exists, the proxy will return a 404 Not Found error. This behavior is driven by two requirements: 1) a monitored channel cannot be used unless one of the monitors is connected, and 2) all connections over the ESIC network are from client (or proxy) to server.

If the URL is for a basic channel and the addressee is not connected the proxy will return a 404 Not Found error. This implies a few things about creating channels between peer clients. First, one user must ask the origin server to create the channel, and the server’s response will contain markup instructing the proxy to do so. The other users must then be notified that the channel has been created, and this notification is application-specific, i.e., it could occur over an already existing channel or through some other means.

All of the users must establish a connection to the channel once it is created. A HEAD request can be used for this purpose. The request must include the address of the other user, and if they are connected the response status is set to 200 Ok, and 404 Not Found otherwise. The HTTP headers returned with the response include a Server header containing the name of the origin server, a Content-Base header containing the session’s base path, and Set-Cookie headers containing the session and client IDs.

Once the users have connected to the channel they can exchange messages. At this point the usual HTTP paradigm of request followed by response is no longer strictly enforced. That is, one user may receive a POST request from a peer even though the receiver is not a server. It is up to the peer applications to enforce the request/response paradigm should they decide to do so.

Channels that have an assigned activity timeout will be closed if no message traffic occurs during the timeout period. It is then up to the clients and the server to recreate the channel, etc. Timeouts are a common practice for HTTP-based systems, and are used to minimize resource utilization.

Message Addresses in Homed Channels

Homed channels route all user requests to the origin server, regardless of any addresses included with the request message. But the server’s response messages may be sent to any or all of the clients connected to the channel.

The origin server specifies message addresses in XML markup in the body of the message. The server alerts the proxy to the presence of ESIC address information by including the Surrogate-Control header with a channel traffic directive, e.g.:

Surrogate-Control: content="channelTraffic"
The markup in the message includes the channel’s path attribute and an address list comprised of the client IDs of the intended message recipients. The wildcard address, *, can be used to broadcast the response to all of the channel’s users.

<esicSession id="abc123">
 <channelTraffic>

<path>/control</path>

<toList>

 <client id="def456"/>

 <client id="ghi789"/>

</toList>
 </channelTraffic>
</esicSession>
Inter-proxy Communications

The clients that share a collaboration application may connect through any of the proxies in the CDN. Since an ESIC session can only be created or updated through markup in a response message, the situation arises wherein one proxy creates a session that is later updated by a different proxy. The CDN should be transparent to the origin server, i.e., it should not have to keep track of which proxy is serving any particular client, which implies that the proxies must share information about sessions, channels and users.

The ESIC proxies comprise an overlay multicast network, and the shared information is essentially the routing table for the multicast group, extended with the information on user roles and channel access controls. As a multicast group, only one copy of any message is sent between any two proxies. This approach reduces transmission overhead in the sender, and studies have shown that the use of multicast also reduces the time taken for all destinations to receive the data.

A wide variety of reliable multicast protocols are available. However, the ESIC channels are essentially multicast groups in which the number of members can change over time, and dynamic multicast group membership presents special performance challenges. The AMcast architecture presented by Shi
 specifically addresses dynamic multicast sessions and performs well for small to medium size groups involved in real-time, high data rate applications such as collaboration, and could be a starting point for ESIC.

When an ESIC session is first created, the proxy handling the server response message that creates the session becomes the session master. The master broadcasts the new session’s information to the other proxies, and any proxy can later update the session when users or channels are added or removed.

The primary purpose of the session master is to facilitate ordered channels. In an ordered channel all messages are sent to the session master, who then re-distributes the messages to all of the clients connected to the channel.

The ESI protocol does not restrict the ways in which the proxies may be connected together. That is, the proxies can be connected simply as a multicast mesh, or as a hierarchy of proxies, etc. The ESI Architecture Specification describes how each proxy in a chain of proxies should add their capabilities to the Surrogate-Capabilities request header, and how the origin server can target a specific proxy in the chain by associating the proxy’s name with directives in the Surrogate-Control response header.

ESIC Security

The intent of the ESIC architecture is to provide a collaboration framework that is flexible and easy to use. And since the ESIC proxy uses HTTP messaging, its security mechanisms should conform to those commonly used by other HTTP-based applications. Solutions that require special client-side software, for example, are undesirable.

The proxy should also be configurable so that the security mechanisms used can be tailored to the needs of the applications that use the CDN. User login to the origin server, for example, is obviously application specific.

Security for the proxy/server connection

The ESI architecture assumes that the proxy has access to the entire contents of all response messages from the origin server. The ESI and ESIC protocols are based on the HTTP headers as well as XML markup that may appear anywhere within the body of the message. Further, the proxy must be allowed to change the contents of the message. The proxy will remove the ESI headers, at least, and may even compile a new message by integrating fragments identified in the template.

The proxy, therefore, must be allowed to both read and alter the message, which means there is no message level security for the proxy/server connection. The application must simply trust the proxy with the message contents. This may be one reason that security is not addressed by the ESI specifications.

Since the origin server must trust the proxy to such a large degree, it’s important that the proxy and origin server use a robust form of authentication. The Secure Socket Layers (SSL) protocol
 allows servers and clients to authenticate each other through the use of digital certificates. The SSL handshake requires the server to send its certificate to the client, but for ESIC the server should also send a CertificateRequest message. That will allow the proxy to sends its certificate and a CertificateVerify message to the server, and both ends of the connection will be able to authenticate the other.

In addition to authentication, SSL can provide network level security for the proxy/server messages. SSL is commonly available and is used in many HTTP-based applications via the HTTPS protocol.

The origin server creates and maintains ESIC sessions and channels via markup in its response messages. Since session and client IDs can be considered sensitive information, the proxy/server connection must be encrypted before the first response message that contains those IDs.

This means the proxy must know when to establish an SSL connection to the origin server. The only cue as to when this might be necessary is when a client has established a secure connection to the ESIC proxy.

Security for the client/proxy connection

The ESIC proxy must have access to the HTTP headers that are sent by the collaborating clients, since the headers contain the session and client IDs used for message routing. Since the session and client IDs can be considered sensitive information, the messages between the client and proxy should be able to be encrypted. HTTP clients commonly use the HTTPS protocol, i.e., HTTP over SSL, for encrypted connections to servers and it would be best if ESIC could conform to that.

Normally, when a proxy is between the client and the origin server, the client uses the HTTP tunneling protocol, i.e., it sends an HTTP CONNECT request to the proxy containing the hostname and port number of the origin server. The proxy establishes the end-to-end connection, and any data sent thereafter is simply tunneled through.
 This approach will not work with the ESIC proxy since the proxy needs access to the HTTP headers in all messages.

One way to allow the use of HTTPS is for subscribers to provide keys and digital certificates to the Content Delivery Network that would enable the ESIC proxy to assume the identity of the origin server. This seems reasonable since the CDN and origin server are already tightly integrated, to the extent that the DNS naming tables are configured to return the IP address of the ESIC proxy instead of the origin server.

The digital certificate used in the SSL handshake contains the origin server’s domain name, which the proxy has already assumed. When the HTTPS connection handshake takes place the proxy need only supply the provided certificate.

This is similar to the security arrangements made to accommodate clusters or server farms, or for ISPs that provide virtual hosting. In the latter case, the ISP’s server certificate will contain a wildcarded domain name, e.g., “*.secure.com”. In order for the client request’s server domain name to match the certificate’s server domain name, the requests sent to a hosted site, e.g., “www.collabApps.com”, are redirected to “www.collabApps.secure.com”.

In this way, messages sent by the client will be secure as they travel over the internet. Further, the proxy does not need access to the message body of any messages other than the origin server’s response messages. This means that clients using anything other than a homed channel could encrypt the message body, apply message digests and digital signatures, etc., before transmitting the message to the proxy.

Security for Inter-proxy communications

The ESIC network should provide security for the session maintenance and data messages that are passed between the proxies. As mentioned, the proxies comprise a multicast network, and one of the problems with standard IP multicast is a lack of security. Any system can join an IP multicast group by sending IGMP messages to their local router, and any system can send data to a multicast group by simply sending a message to the group address.

Several approaches to secure multicast have been developed that, in addition to providing support for message encryption
, address the issue of controlling access to the multicast group
. It is assumed that any commercial implementation of ESIC proxies would include an appropriate mechanism for secure multicast.

Chapter VII

Implementation

To demonstrate my ideas I have created a Java-based ESIC proxy server and modified a small collaboration application to use the ESIC proxy network.

The ESIC Proxy Server

When the proxy server starts up it reads a configuration file that holds the hostnames and port numbers of the other proxies. This information is used to connect the proxies into a small content delivery network. Once connected, the sockets are used to pass both session management messages and user data messages. Inter-proxy messages are given a small header that indicates the message type and length.

The proxy server sends a Surrogate-Capabilities header with every request message sent to the origin server, and checks for the Surrogate-Control header in the response. If the response header exists, the proxy routes the message to a processor that reads the ESIC markup from the body of the message. My implementation uses the JDOM libraries for XML processing. This is a more lightweight approach than JAXB, and allows the XML to be parsed without requiring a schema.

The sessionControl and channelTraffic elements in the server response are processed in the order of their appearance. If a session is being created or updated, the proxy sends a copy of the XML markup to all of the other proxies in the CDN. Each proxy maintains a set of hashtables that describe the active sessions, channels and users. In a more robust implementation this would be replaced with the routing tables of the multicast group, extended as appropriate with user’s channel access information. Session management messages are not “piggybacked” with data messages because while all proxies need to learn of session configuration changes, only those proxies that are serving data message addressees should receive the data message. This is an inefficiency that could be eliminated in a later implementation.

If a server response contains a channelTraffic XML element, the proxy reads the address list and forwards a copy of the message to the proxies that are serving the users in the list. Each proxy then sends a copy of the message to each directly connected client.

When a user message is received that is addressed to a known channel’s URL, the message is passed to a processor that routes the request. The processor reads the message headers to recover the esicSession and esicClient cookies, and uses the information to access the hashtables that describe the session.

The user’s access rights are verified. That is, the user must be in the session’s list of active users, and must have a role that allows write access to the channel.

If the channel being accessed is a homed channel, the request is forwarded to the origin server. Otherwise, the HTTP request method is checked and acted upon. If a HEAD request has been received and has an esicToList cookie, the addressees are retrieved from the user table. If any of the addressees are connected, the response includes some headers and a success status. If none of the addressees are connected the response includes headers and a failure status.

If a POST request has been received and has an esicToList cookie, the proxy accesses the session’s tables to build a list of the proxy connections for the message addressees. For locally connected clients, the message is sent directly to the user. For remote clients, an inter-proxy message encapsulating the POST request is sent to the serving proxies.

If a data message is received from another proxy it could be a POST request or a response message. Response messages can only be encountered on a homed channel since a POST request sent by a client is received as a POST request by the message addressees. The address list for response messages is always included as an XML channelTraffic element, which avoids problems due to a server’s inability to send address information in cookie headers (as opposed to Set-Cookie headers).

The Drawboard Application

The collaboration application used in my prototype is based on the Drawboard applet
 written by Tomek Zieliński and available under the GNU Lesser General Public License. The software includes a Java applet and a server that collects and distributes messages from the applet.

The applet presents a small drawing window, in which the user can create shapes and enter text. Serialized Java objects are sent to a central server and re-distributed to all connected clients. Latecomer support is provided by the server, i.e., it collects messages and sends an archive to new clients. Note that this behavior can be easily ported to an ESIC homed channel.

[image: image2.png]

Figure 2: The Drawboard window

I first modified the applet to run as a standalone Java application, primarily to overcome my inability to simulate DNS operations that would translate an origin server name to the address of an ESIC proxy. Browsers do not force an applet to use the same proxy that the browser is configured to use, and this caused problems when the applet attempted to connect to its codebase server.

I then heavily modified the application’s communications functions. The serialized Java objects were encapsulated in HTTP messages, and a rudimentary application-level protocol was added.

The application protocol begins with users issuing an initial GET request to the origin server, simulating a login sequence. This allows a session to be created with a single homed channel. The server response includes the XML markup, the esicSession and esicClient cookies, and a ConnectionStarter data object that carries the channel URL.

The users then connect to the channel by issuing a GET request to the channel URL. The server responds by sending an Archive object containing any drawing objects that were collected before the user logged in.

The users then collaborate by drawing on the applet’s screen, which generates Java AWT objects for shapes and letters. The objects are serialized and encapsulated in an HTTP message in which a Content-Type header specifies an application-specific MIME type.

User messages addressed to the channel URL are intercepted by the ESIC proxy and, since it’s a homed channel, forwarded to the origin server. The server adds the objects to its Archive, and then broadcasts it to all users. The broadcast is accomplished by including markup with a channelTraffic element with a toList with the wildcard address, *.

I also added the capability for a user to create a peer-to-peer channel to another user. In response to a prompt from the command line interface, the client sends a ConnectionStarter object asking the server to create a basic channel from the current user to some other user.

The server returns a response message containing sessionControl markup creating a new channel, along with a ConnectionStarter data object carrying the new channel’s URL. The response is addressed only to the two peer users, and serves to notify them that the channel has been created.

Both clients then issue HEAD requests to the channel to establish connections to the proxy. Once connected, this channel becomes the client’s active channel and all Java drawing objects are sent via that channel. Note this is a basic channel and the server is not participating, so it is a true peer-to-peer connection facilitated by the ESIC proxy.

 I did not implement channel timeouts or an explicit logout sequence into the applet, so that the session is closed by shutting down all of the clients.

Chapter VIII

Performance Evaluation

Performance improvements provided to a server and its clients should be most apparent when a homed channel is used. This type of channel requires all user messages to be forwarded to the origin server, which may then re-distribute the message as it sees fit.

In the case of the Drawboard application, the server collects all user input and broadcasts it to all connected clients, including the original sender. However, by using the ESIC network the server only has to send a single response message rather than sending a copy to each of n users. This is a savings of n-1 messages per transaction. CPU utilization, as compared to the non-ESIC version of Drawboard, should go down especially for a large number of users.

Other channel types, such as peer-to-peer channels, do not require the origin server to be involved at all except for session maintenance. Almost all communications processing is offloaded to the proxies in that case.

It has been shown
 that an efficient multicast network can reduce the amount of time it takes for data to be received by all of the users in the multicast group. This could reduce message latencies for all channel types, especially for large numbers of users.

I ran a set of performance tests to compare the ESIC and non-ESIC versions of the Drawboard application. Both versions of the application use the same HTTP messages and perform the same Java AWT tasks, so that the only difference is the processing related to the use of the ESIC proxy. In both versions the client was modified to repeat the last generated Java AWT object at a specified interval, which was set to one message per second. The messages generated by the clients were of different sizes, ranging between 90 and 500 bytes, depending on the object drawn on the screen.

Both application servers broadcast the received messages to all of the connected clients, including the original sender. Given n clients, the non-ESIC server processes one message reception and n message transmissions per client, or n(n+1) messages per second. The ESIC version of the server processes one message reception and one message transmission for each client, or 2n messages per second. I used from 2 to 15 clients, adding 2 clients each time, for a maximum of 240 messages per second in the non-ESIC server and 30 messages per second in the ESIC server.

I ran the tests in the UCCS computer science lab. I ran one instance of the Drawboard server on the Linux system, blanca, and up to three instances of the Drawboard client on each of several Windows workstations. When testing the ESIC version I ran one instance of the ESIC proxy on two separate Linux systems, sanluis and crestone. I split the clients between the two proxies, so that inter-proxy messaging was involved when the server broadcast data to all of the clients.

The test results do not support my expectations. See the graph below.

[image: image3.emf]2 4 6 8 10 12 14 16 18

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Percentage CPU Utilization

Number of Clients (each sending 1 message per second)

Non-ESIC Application

ESIC Application

Figure 3: Performance Test Results

The graph shows figures collected using vmstat on the application server at a rate of one sample per second. CPU idle time is plotted as a function of the number of connected clients. The graph clearly shows that the ESIC version of the application used a larger percentage of the CPU than the non-ESIC version.

I attribute this to the fact that the server is required to generate XML in the response message for the address information. The non-ESIC version of the server is quite simple, so that the addition of JDOM calls to create XML represents a significant amount of additional processing. I believe that was enough to overcome the savings due to reduced network I/O, especially given the small number of clients I was able to use.

Chapter IX

Lessons Learned
My thesis proposal indicated that I’d be working within the ESI concepts of a template document and fragment integration. This had to be abandoned early in the research stage, when it became apparent that any collaboration framework has to support arbitrary data types. The ESIC couldn’t hope to successfully perform fragment integration for, say, a shared graphics editor. If an application wants to use the usual ESI mechanisms the origin server responses will be restricted to HTML (or possibly XHTML) documents since that’s what ESI is designed to process.

The same argument applies to document consistency and latecomer support, etc. The ESIC framework doesn’t know what might be appropriate for any particular application. Monitored channels were provided instead, which sends a copy of all data messages to specified systems that might know what to do.

For my prototype I intended to use the open source Drawboard applet running as it was intended to, i.e., as an applet embedded in a web page. This did not work, for the following reasons.

When developing the proxy I had to simulate the DNS translation that an ESIC-based collaboration server would use to ensure the ESIC proxy receives all server requests. It was easy to set up a browser to use my proxy, but the browser does not force applets to use the same proxy. The applet would connect directly to the origin server, bypassing the proxy.

I tried to solve this by making the proxy act as a true surrogate, or reverse proxy. The browser and applet both connected directly to the proxy, and the proxy forwarded messages to the backend origin server. This didn’t work because the applet’s codebase was still the origin server, and the browser’s applet security manager would not allow the connection (applets may connect only to the server they were loaded from).

I could not find a way around this and finally abandoned the applet approach, even though it meant losing the ability to work with the Tomcat-based security mechanisms. I converted the applet into a standalone application connecting directly to my reverse proxy.

My performance testing failed to validate my assertions that offloading network I/O would result in performance improvements on the server. My simple test method was not up to the task and a better simulator, e.g., one that could provide hundreds of clients, would hopefully provide more justification of my efforts.

Chapter X

Future Work
The ESIC network could be made more efficient in many ways. Two opportunities for improvement are extending the multicast groups and using connection pooling to the origin server.

The ESIC proxies form a multicast group, and use unicast messages among themselves to pass a single copy of any message to only those proxies that need to handle it. At the edge of the network, however, the proxy sends a copy of the message to each of the directly connected clients. It would be interesting to see if the ESIC multicast group could be extended, or subgrouped, to include the clients and improve efficiency at the edge of the network.

The ESIC architecture that I developed for homed channels creates a connection between the ESIC network and the origin server for each and every client. As I was running my performance tests it occurred to me that this is inefficient, since processing overhead increases with the number of sockets being used. It would be useful to provide a way to multiplex messages to the origin server over some small number of connections. This impacts the origin server’s design, of course, so it should be a configurable option that can be set by the server when it creates the session or channels.

One issue I did not address is that of file transfer. Collaboration applications sometimes provide for file transfer, and HTTP includes the PUT and DELETE methods for managing files on the origin server. File size, fragmentation and re-assembly issues would have to be addressed.

I have a concern with the way the ESIC proxies use persistent connections, and it would be worthwhile to investigate the issue to see if presents an obstacle to the use of this kind of network. When the client receives the server response that adds it to the session it must issue a request to each channel from which it will receive data. This establishes persistent connections to the proxy server that will be used to pass data to and from the channel. But according to Gourley’s book
 it is common practice for proxies to allow a maximum of two persistent connections to any single client.

Chapter XI

Conclusions

The ESIC protocol provides a flexible, easy-to-use communications infrastructure with features that directly support collaboration. It provides an origin server and its clients the ability to send messages to one or more other collaborators, or even to broadcast messages to all other collaborators. The various ESIC channel types provide support for client-server, peer-to-peer and many-to-many application architectures as well as support for such application features as meeting recording, latecomer support and document consistency and versioning.

Extending the ESI protocol to include support for collaboration would leverage proxies that already exist in the major content delivery networks as well as in many enterprise CDNs. Extending access to an inexpensive framework would help developers add collaboration capabilities to their applications.

ESIC does not require special client-side software to be installed, and the only application-level requirement for clients is the use of HTTP as the message transport. The use of HTTP as the network transport helps ensure that ESIC messages will not be restricted by firewalls.

References

� Ellis, C. A., Gibbs, S. J., and Rein, G. L., Groupware: Some issues and experiences, Communications of the �HYPERLINK "http://www.acm.org/"��ACM�, vol. 34 no. 1, 1991.

� Greenberg, S. “Collaborative Interfaces for the Web,” in Human Factors and Web Development, C. Forsythe, E. Grose and J. Ratner (eds.), LEA Press, Mahwah, NJ, 1997, pp. 241-254.

� Christine Perey, Travis Berkley, “Working together in virtual facilities”, in Network World, July 28, 2003 Volume 20, Number 30.

� Du Li and Richard R. Muntz. COCA: Collaborative Objects Coordination Architecture. Proceedings of ACM CSCW ’98, Nov. 1998, Seattle

� Patterson, J.F., Day, M., Kucan, J. (1996) "Notification Servers for Synchronous Groupware", Proc. Conference on Computer Supported Cooperative Work CSCW’96, November 16-20, Boston, USA, ACM Press, 1996, pp. 122-139.

� International Telecommunications Union-Telecommunication, “Data Protocols for Multimedia Conferencing“, Recommendation T.120, July 1996.

� Sears, A., “Directory Services for Internet Telephony”, Masters Thesis, Massachusetts Institute of Technology, September, 1997.

� Barrett, R. & Maglio, P. P., Intermediaries: An approach to manipulating information streams. IBM Systems Journal, 38, 1999, pp. 629-641.

� Jennifer Mears, “Services offer path to in-house CDNs”, in Network World, September 15, 2003 Volume 20, Number 37.

� Squid web cache proxy, � HYPERLINK http://www.squid-cache.org/ ��http://www.squid-cache.org/�

� T. Rodden, “A Survey of CSCW Systems,” Interacting with Computers, vol. 3, no. 3, Dec. 1991, pp. 319-353.

� Thomas Koch and Wolfgang Appelt. Beyond Web Technology- Lessons Learnt from BSCW. In Proceedings of the 1998 IEEE WEI ICE Workshop

� WebEx Communications, Inc., Webex Mediatone: the “Dial Tone” for Web Communications Services. � HYPERLINK http://www.webex.com/pdf/wp_mediatone.pdf ��http://www.webex.com/pdf/wp_mediatone.pdf�.

� Dewan, P. Architectures for Collaboration. Trends in Software, special issue on Computer Supported Cooperative Work, volume 7, 1998.

� Du Li and Rui Li, Transparent Sharing and Interoperation of Heterogeneous Single-User Applications, ACM CSCW'02 Conference. Nov 16-20, 2002. New Orleans, Louisiana, USA.

� Isenhour, P. L., Rosson, M.B., and Carroll, J. M. (2000b, in press). Supporting interactive collaboration on the Web with CORK. Interacting with Computers.

� D. Li, C. Sun, L. Zhou, and R. R. Muntz. Operation propagation in real-time group editors. IEEE Multimedia Special Issue on Multimedia Computer Supported Cooperative Work, 2000.

� Christine Perey, Travis Berkley, “Working together in virtual facilities”, in Network World, July 28, 2003 Volume 20, Number 30.

� Floyd, S., Jacobson, V., Liu, C., McCanne, S., and Zhang, L., A Reliable Multicast Framework for Lightweight Sessions and Application-Level Framing. IEEE/ACM Transactions on Networking, November 1997.

� Y. Chawathe. Scattercast: An Architecture for Internet Broadcast Distribution as an Infrastructure Service. PhD thesis, U.C. Berkeley, December 2000.

� Geyer, W., Vogel, J., Cheng, L., Muller, M. Supporting Activity-centric Collaboration Through Peer-to-Peer Shared Objects. IBM Research Report. August 2003.

� International Telecommunications Union-Telecommunication, “Data Protocols for Multimedia Conferencing“, Recommendation T.120, July 1996.

� Sears, A., “Directory Services for Internet Telephony”, Masters Thesis, Massachusetts Institute of Technology, September 1997.

� Du Li and Richard R. Muntz. COCA: Collaborative Objects Coordination Architecture. Proceedings of ACM CSCW ’98, Nov. 1998, Seattle

� W. Keith Edwards, Policies and Roles in Collaborative Applications, Proceedings of the ACM CSCW '96, Cambridge, MA, USA

� WebEx Communications, Inc., Webex Security Overview: Security Documentation. � HYPERLINK http://www.webex.com/pdf/wp_security.pdf ��http://www.webex.com/pdf/wp_security.pdf�, WebEx Communications, Inc. 2003

� Microsoft Corp., NetMeeting Architecture. http://www.microsoft.com/windows/NetMeeting/Corp/reskit/Chapter8/default.asp. Microsoft Corp., 1999.

� Doug Allen, Edge Side Includes, Network Magazine, August 4, 2002. Online at �HYPERLINK "http://www.networkmagazine.com/shared/article/showArticle.jhtml?articleId=8703424"��http://www.networkmagazine.com/shared/article/showArticle.jhtml?articleId=8703424�

� Day, M. What Synchronous Groupware Needs: Notification Services. ACM Workshop on Hot Topics in Operating Systems, 1997, pp 118-122.

� Gourley, David, B. Totty, HTTP: The Definitive Guide, O’Reilly and Associates, Inc., 2002, pp. 140-141.

� Van den Broecke, J. A., Pushlets – Whitepaper. Online at � HYPERLINK http://www.pushlets.com/doc/whitepaper-all.htm ��http://www.pushlets.com/doc/whitepaper-all.htm�, Aug. 2002.

� ESI Architecture Specification, � HYPERLINK http://www.w3.org/TR/edge-arch ��http://www.w3.org/TR/edge-arch�. Oracle Corporation, Akamai Technologies, Inc. 2001

� Bond, M. and Law, D. Tomcat Kick Start, Sams Publishing, Indianapolis, IN, 2003.

� Shi, S. Y., and Turner, J. S.. Issues in Overlay Multicast Networks: Dynamic Routing and Communication Cost. Washington University in St. Louis, May 2002.

� S. Shi. A Proposal for A Scalable Internet Multicast Architecture. Technical Report WUCS-01-03, Washington Universtiy in St. Louis, March 2001.

� Rescorla, Eric, SSL and TLS: Designing and Building Secure Systems, Addison-Wesley, 2001.

� Gourley, David, B. Totty, HTTP: The Definitive Guide, O’Reilly and Associates, Inc., 2002.

� Gourley, David, B. Totty, HTTP: The Definitive Guide, O’Reilly and Associates, Inc., 2002, pp. 335 - 336.

� S. Setia, S. Koussih, S. Jajodia, and E. Harder, "Kronos: A Scalable Group Re-keying Approach for Secure Multicast", Proceedings of lEEE Symposium on Security and Privacy'2000.

� R. Canetti, J. Garay, G. Itkis, D. Miccian-cio, M. Naor, B. Pinkas, “Multicast Security: A Taxonomy and Efficient Authentication”, INFO-COM 1999.

� S. Setia, S. Koussih, S. Jajodia, and E. Harder, "Kronos: A Scalable Group Re-keying Approach for Secure Multicast", Proceedings of lEEE Symposium on Security and Privacy'2000.

� Drawboard Java Applet for Graphical Teleconferencing, written by Tomek Zielinski and available at �HYPERLINK "http://sourceforge.net/projects/drawboard"��www.sourceforge.net/projects/drawboard�.

� Shi, S. Y., and Turner, J. S.. Issues in Overlay Multicast Networks: Dynamic Routing and Communication Cost. Washington University in St. Louis, May 2002.

� Gourley, David, B. Totty, HTTP: The Definitive Guide, O’Reilly and Associates, Inc., 2002, p. 99.

Appendices

An appendix containing the source code will be attached to the final document.

