Online English Dictionary and Thesaurus

Masters Project Report
Spring 2001

Submitted to
Dr. Dushan Badal

Department of Computer Science
University of Colorado Springs

In partial fulfillment of the requirements for the degree of
Master of Science

Department of Computer Science

By
Mohammad Khalid Akhtar

This submission for the Master of Science degree by

Mohammad Khalid Akhtar

has been approved for the

Department of Computer Science

by

Signature _______________________

Dr. Dushan Badal

Signature _______________________

Dr. Marijke Augusteijn

Signature _______________________
 Dr. Edward Chow

Date _______________________

INDEX

1. INTRODUCTION…………………………………………………………………………04

1.1. Overview………………………………………………………………………………04

1.2. Problem Specification…………………………………………………………………04

2. IMPLMENTATION PREQUISITES………………………………………………………07

2.1. Apache Web Server……………………………………………………………………07

2.2. MySql Database………………………………………………………………………..10

2.3. HTML Forms…………………………………………………………………………..12

2.4. CGI & PERL…………………………………………………………………………...15

2.4.1 Using PERL CGI Module………………………………………………………...16

2.4.2 Useful PERL Modules……………………………………………………………17

2.4.2.1 HTML::Form……………………………………………………………17
2.4.2.2 DBI……………………………………………………………………...19

2.4.2.3 LWP::UserAgent………………………………………………………..20

3. IMPLEMENTATION………………………………………………………………………22

3.1 Database Schema………………………………………………………………………..22

3.2 HTML Code……………………………………………………………………………..25

3.3 CGI Interface routines…………………………………………………………………...26

3.4 Web Agents……………………………………………………………………………...27

3.5 Database Interface……………………………………………………………………….28

4. FUTURE WORK……………………………………………………………………………32

5. REFERENCES………………………………………………………………………………33

6. APPENDIX (Source Code) ………………………………………………………………….34

1. INTRODUCTION

1.1. Overview

When the size of the Web increased beyond a few sites and a small number of documents, it became clear that manual browsing through a significant portion of the hypertext structure is no longer possible. The nature of web is so dynamic that everyday large numbers of new links are added to the web as well as some of them are discontinued. The web has grown in size and recently become so much full of irrelevant information that finding anything of interest has become extremely difficult because it is neither a database nor an encyclopedia or a hypertext, neither book nor it is like a magazine. It is ephemeral, ever changing and transient.

There are so many things on the web but it is not organized or categorized so it takes a lot of time and effort to find a particular thing of our interest. Most of the search engines today are not intelligent enough to figure out what a user wants from the supplied input. It is the user who determines what s/he wants by browsing through hundred of thousands of pages and is very frustrating for an user to browse from one web page to another and not finding the material of his/her interest.

1.2. Problem Specification

Keeping in mind the above difficulties in finding information this project involves the development of an Online English Dictionary and Thesaurus. Since there are several Web dictionaries available on the Web, This project deals with the design and implementation of the dictionary would be that it based upon multiple Web-based dictionaries, so even if one site fails to provide the information, it will extend the search to next site. Therefore, the rationale behind this project is to provide users with user-friendly English Dictionary and Thesaurus that provides consistent and precise set of meanings extended from one or more other Web dictionaries.

The project involves developing the following features in the program in order to facilitate the features mentioned above:

1. Guaranteed Results: The program developed should be able to guarantee the results for every genuine word requested by the user. This can be achieved if we are able to develop programs that query multiple Web sites for the word meanings. Such programs are often referred to as agents. There are several agents that are now available, which perform various tasks on behalf of the user. The most common of such agents are shopping agents. These agents search various online web sites for the best deals for a product requested by the user. Some agents are information gathering agents, which traverse the web gathering information about a particular entity of interest. The agent that this system intends to develop can be thought of as information gathering agent. The information that it will gather are the meanings and concepts of the words requested by the user, from various online Web sites.

The program will attempt to develop agents that go to multiple sites. The general approach followed by each agent will be to fetch pages from Online Dictionary/Thesaurus sites that contain the meanings/concepts of the requested word. Such pages can only be fetched if the agent is able to fill out the appropriate forms in each of those sites. Thus this task requires identifying such pages manually and then writing code to fill those forms with the requested word. The result pages will need to be parsed to fetch the results and throw away unwanted data. The parsing logic will be different for each Web site’s result page. But we can be assured that the logic that we develop for one Web site’s result page will be able to parse all result pages of that site. In case of change of Web sites result format pages, The logic will have to revisit. Also to add any new Web site to our program we would need to do the following tasks.

· Identify the search forms

· Develop logic to fill out search forms

· Develop logic to parse the result pages
2. Data Caching: One of the most prominent features of most Online Web sites is how fast can they deliver the results. People surfing the Web for information don’t want to wait for more than a few minutes to get the data they are looking for on the Web site. Even a few minutes can be a bit irritating. We intend to eliminate the wait times for the meanings/concepts of the requested word to mere seconds with cashing. Cashing is an age-old concept in Computer Science. We intend to exploit this concept in order to facilitate better service to the users of our program. In order to incorporate the cashing mechanism we make use the features of the database.

The idea behind cashing is simple. All the meanings and concepts for the dictionary and thesaurus respectively will be stored in the database. Any request can then be immediately obliged by fetching results from the database. But we need to first populate the database with those meanings and concepts. There are two approaches to do this. 1. Either fetches data for every word in the English language or 2. Build a mechanism that loads the data over time yet does not heavily compromise the quality of service. The second approach sounds reasonable. So how do we propose to implement cashing mechanism? Again there are the following two approaches:

a. Develop a background process that spawns agents to fetch meanings/concepts from the online web sites and insert them in the database. This approach would require feeding these agents a comprehensive list of words. The agents would work by filling out forms for each of those words, parse the result page and put the data in the database. There are various drawbacks to this approach. A major drawback is trying to develop the list of words. The time and effort that would take to develop such a list does not justify writing such a program. The other drawback is that even if we succeed in developing such a list, there is always a possibility that it is incomplete, because the English language is always expanding with hundreds of new words being added to it everyday.

b. The other approach is to allow agents to do the work of gathering data from Web sites only when the meanings/concepts are not found in the database. This approach might not seem to promise quality of service initially but over time when enough data has been put in the database would be quite promising. Thus this approach would work as follows:

i. Search for the meanings/concepts first in the local database. This would guarantee instant results if the data is found in the database.

ii. If the data is not found, spawn agents to gather the data from the Web sites. The gathered data will then be cashed in the local database and displayed to the user. The wait time for the user would be the time it takes the agents to gather and insert data. This wait time would improve over time with increased use of the system by several users.

2. IMPLEMENTATION PREQUISITES

The project requires installation, configuration of Web server and a database. The project also involves writing code to implement agents and database interface routines. The various steps involved for each of the software components is explained in detail in this section.

2.1 Apache Web Server
Since this system will be hosted on the Web site there is a need to install a Web server. The server that we chose to use for our project is Apache. The main reasons to select Apache as the Web server are as follows:

· Apache web server is compiled with Processor-Specific Optimization to take advantage of the power of the new processor generation, giving it 5-30% better performance than any other Web Server.

· The main advantage of using the Apache web server is speed. Using the mod_perl module, Apache can return CGI requests on average 2-3 times faster than web servers that do not have mod_perl technology. It takes advantage of powerful API interface. Since we use CGI in our system and quality of service is of prime importance to us, getting a Web server that executes CGI fast is mandatory.

· Apache provides a robust and commercial grade reference implementation of the HTTP protocol. All commercial browsers like Internet Explorer and Netscape support HTTP protocol and almost every Web site uses HTTP. It is thus reasonable to use a Web Server that completely supports HTTP.

· It is available entirely free of cost. The latest release of Apache can be downloaded from their web site http://www.apache.org/.

Configuring the Apache

The following section explains the various steps involved in configuring the Apache for this project.

1. Creating the directory structure for the various files that will be needed to run the system under Apache.

2. Editing the configuration file of Apache.

1. In order to run the system under Apache we have created the following directory structure:

Root Directory (C:\PROJECT)

WEBSERVER

CGI-BIN

The system will need an index file that the Web server should send to any browser requesting an initial connection to the server. The file, which is called INDEX.HTML, is put in the WEBSERVER directory. It is not important that we always name the file index.html. In that case the name of html file should be identified to the server by declaring it in the configuration file to do any browser request, which will be discussed in the next section. Any CGI programs that the server should execute will be put in the CGI-BIN directory. All the CGI programs for this system have been written in PERL. These programs are executed when the user submits a FORM from the browser. The details of the FORM will be discussed in the HTML section.

We might be led to think that it is possible for an outside agent/program to access all that files that are on the machine where the Web server resides. But because of the built in security in Apache it is not possible. The Web server will not allow any agents to delete or create files on the machine. This is also one of the reasons why Apache is preferable.

2. When Apache is installed on the machine it creates the following directories apart from others.

APACHE GROUP

APACHE

CONF

LOGS

The configuration file resides in the CONF directory. This file is called httpd.conf. It is this file that Apache reads to obtain the location of HTML and CGI files. The following entries in this file are important in the configuration of Apache.

#

ServerRoot: The top of the directory tree under which the server's

configuration, error, and log files are kept.

#

Do NOT add a slash at the end of the directory path.

#

ServerRoot "C:/Program Files/Apache Group/Apache"

This option as is evident from the comments (lines beginning with #) above, tell the Server where to look for configuration, error and log files.

#

DirectoryIndex: Name of the file or files to use as a pre-written HTML

directory index. Separate multiple entries with spaces.

#

DirectoryIndex index.html

This entry is what tells the Apache the name of the first file to serve any browser/client that requests a connection. If the file name is different then that file should be provided instead of index.html.

#

ScriptAlias: This controls which directories contain server scripts.

ScriptAliases are essentially the same as Aliases, except that

documents in the realname directory are treated as applications and

run by the server when requested rather than as documents sent to the client.

The same rules about trailing "/" apply to ScriptAlias directives as to

Alias.

#

ScriptAlias /cgi-bin/ "C:/Project/WebServer/cgi-bin/

This option tells the Web server location of the CGI program directory on the machine. This is the directory where all the CGI programs of the system should be kept. For simplicity we chose to keep the name as CGI-BIN for our directory, but it can be anything else.

#

DocumentRoot: The directory out of which you will serve your

documents. By default, all requests are taken from this directory, but

symbolic links and aliases may be used to point to other locations.

#

DocumentRoot "C:/Project/WebServer"

This is the location of the first file i.e. INDEX.HTML that will be served to the browser.

#

ServerName allows you to set a host name which is sent back to clients for

your server if it's different than the one the program would get (i.e., use

"www" instead of the host's real name).

#

Note: You cannot just invent host names and hope they work. The name you

define here must be a valid DNS name for your host. If you don't understand

this, ask your network administrator.

If your host doesn't have a registered DNS name, enter its IP address here.

You will have to access it by its address (e.g., http://123.45.67.89/)

anyway, and this will make redirections work in a sensible way.

#

#ServerName new.host.name

ServerName localhost

This option is set to the DNS name of the host machine. It should be unique and should be purchased from a DNS service provider if we wish to publish our site on the INTERNET.

There are several other options like PORTS, ERRORLOG, ACCESSFILE etc. that serve purposes ranging from changing the port number of the Web server to controlling the access permissions. All these options make Apache highly configurable and suitable for any type of system. We have kept most of the other options as default.

The LOGS directory contains files that are used by the Web server to log any activity requested by the server and also to report any error that it might encounter while catering to those requests. The access.log file keeps log of every file that was accessed by the outside world. The error.log file contains all the errors encountered. These files are generally helpful to the Web masters to monitor the activity on the Web server and also to debug any errors. These files make it very easy to prevent any unauthorized access and prevent any errors.

2.2 MySql Database

As mentioned earlier the database is required for caching purposes. There are several databases that can be used with our system. MySql is freely available for most operating systems like LINUX, UNIX and MAC OS. Even though the latest revision for Windows Operating system is available at a nominal price, the last revision that was available freely is sufficient for our purposes for the time being. Even though it’s free it is comparable to commercial grade databases when it comes to executing following tasks.

· Transaction Logging.

· When you open many connections, it connects very fast.

· When SELECT and INSERT are used at the same time.

· When updates are not combined with selects that take a long time.

· When most selects/updates use unique keys.

· When many tables are used without long conflicting locks.
· When you have big tables (MySQL uses a very compact table format).
Our bias towards MySql is not just because its free or it does the above mentioned jobs effectively. It is also because there is a very good support in PERL for MySql. PERL provides DBD-MySql API libraries to seamlessly write PERL routines to perform MySql database operations.

Lets look at some of the common syntax that is used to work with MySql.

a. CREATE DATABASE Syntax

CREATE DATABASE creates a database with the given name. Databases in MySql are implemented as directories containing files that correspond to tables in the database. Since there are no tables in a database when it is initially created, the CREATE DATABASE statement only creates a directory under the MySql data directory.

For example below is the output from the run of MYSQL command line program.

C:\>MYSQL

Welcome to the MySql monitor. Commands end with ; or \g.

Your MySql connection id is 7 to server version: 3.22.32-shareware-debug

Type 'help' for help.

mysql> CREATE DATABASE PROJECT;

Query OK, 1 row affected (0.06 sec)

mysql>

b. CREATE TABLE syntax

CREATE TABLE creates a table with the given name in the current database. An error occurs if there is no current database or if the table already exists. Each table tbl_name is represented by some file in the database directory.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name [(create_definition,...)]

[table_options] [select_statement]

c. SHOW syntax

SHOW provides information about databases, tables, columns or the MySql server. If the LIKE wild part is used, the wild string can be a string that uses the SQL `%' and `_' wildcard characters.
e.g

mysql> SHOW INDEX FROM mytable FROM mydb;

mysql> SHOW INDEX FROM mydb.mytable;

SHOW DATABASES lists the databases on the MySql server host. We can also get this list using the mysqlshow command.

SHOW TABLES lists the tables in a given database. We can also get this list using the mysqlshow db_name command.

MySql supports ANSI-SQL92 and is very easy to work with if one has any experiences of any other ANSI compliant database. It provides support for access privilege, provides rollback, supports datatypes like BLOB, DATATIME, ENUM etc, It supports ODBC, is Y2K compliant, provides C API etc. Besides the command line utility that MYSQL provides to interact with the database it also provides a GUI to work with the database. The snapshot of the GUI is shown in the figure below.

[image: image1.png]. MySalManager - MySalM1 =1olx|
Fle Edt Tods Vew Window Hep

AMEEIEEEER]

@yt —lolx|
+ mySal Query to Test on localhost =lolx|

> A E I Clear Interval () [10

Sy st |t |

Tables n project

SITEFRED
IWEBSITES
IWORDCONCEPTS
WORDMEANINGS
WORDS

5 rows) affected)

Figure 1. MySql GUI

2.3 HTML Forms
HTML is a common markup language used to design Web pages. Most Web sites contain pages developed in HTML. All popular Web browsers support HTML. Since our goal is to host the system on a Web server, it is important that we provide HTML files to be compatible with most browsers and allow users to use the system. We have developed the index.html file in HTML. This is the file that will be provided to the users upon initial request. The file displays a FORM for the user to enter the search word. Details of our HTML FORM will be discussed in the IMPLEMENTATION section. However the discussion below will help us to understand what is involved in developing an HTML FORM element.

What are HTML FORMS?

· HTML forms are a means of collecting information. People fill in a form and/or select something. Then they click a button.

· Forms don't actually process information.

· For something to be done with the information, it must be sent somewhere. Information processing destinations can be CGI programs, JavaScript functions, mailto: links, or even a web page (which directs the browser to load the page at the specified URL).

· Forms begin with the <form> tag and end with the </form> tag. The <form> tag can contain several attributes.

· Sometimes we'll need to determine the applicable attributes. Other times, installation directions for CGI programs or JavaScript functions specify the <form> tag attributes expected by the installation.

Where information is sent?

One <form> tag attribute specifies where the information will be sent. That's the "action" attribute. We’ll only discuss how to sent information to CGI programs. Other way to send the information includes sending to (a). JavaScript functions (b). mailto: Links or (c). sending to different web page.

Sending to CGI Programs

If the information is being sent to a CGI program in the same domain as the web page containing the form, the action attribute can contain either a relative URL or an absolute URL.

With a relative URL, it would look something like this:

action="/cgi-bin/something.cgi"

If the information is being sent to a CGI program in a different domain, the URL must be absolute (a complete http://... URL):

action="http://domain.com/cgi-bin/something.cgi"

How information is sent?

Another <form> tag attribute specifies how the information will be sent to wherever it's going. That's the "method" attribute. The method attribute is either

method="POST"

or

method="GET"

Which one should we use depends on how the destination program or function wants to receive the information.

Sending With Method GET

method="GET" is used if we want to send information somewhere via a browser URL. We’ve seen URLs that send information; they look something like:

http://domain.com/something.cgi?color=red&shape=round

In the above URL, the part after the question mark is information sent to something.cgi. Multiple information chunks are separated with an ampersand.

The GET method can send only a limited amount of information. The limitation depends on the server where the current web page is on the server and where the information is sent to. The limitation can be as little as 256 bytes but is often 1k or more.

Another limitation of the GET method is that the information being sent is visible in the browser's address bar. In some cases this is of no consequence. In others, it is unacceptable.

Some CGI programs are written to accept information via the GET or the POST method, some to accept only the GET method.

Sending With Method POST

method="POST" is the most common method used to send information from a form to an information processing program or function. This is the method used when sending form information to JavaScript functions. Most CGI programs are written to accept information with the POST method, some to accept only the POST method.

The POST method can send much more information than the typical GET method. Currently, most browsers and servers limit the amount of POST information to about 32k.

With POST, the information is not sent via the URL. The sending is invisible to the site visitor. It is not necessary to know the exact interior mechanism of how POST works, because all we have to do is specify the method and the browser decides how to accomplish our directive.

FORM related tags

Between the <form> and </form> tags are the tags that create the body of the form. These are <select> (for drop-down and menu boxes), <textarea> (for multi-line text areas), and <input> (for the rest).

Every form related tag can have a name attribute. Some require it, others don't.

The assigned name is sent with the information and helps the receiving program or function identify the information chunks it receives. Some important tags are discussed below.

The <input> Tag

Most of the information forms collect is specified by the <input> tag. Single-line text entry fields, checkboxes, radio selections, password entry fields, form buttons, file upload fields, and image buttons are all specified with the <input> tag.

The <textarea> Tag

When asking for multi-line input from the form user, use the <textarea> tag.

The <select> Tag

The <select> tag is used to construct drop-down list boxes (sometimes called drop-down menus) and scrolling list boxes (sometimes called scrolling menus).

The index.html file discussed later will give a concrete example of an HTML form.

2.4 CGI & PERL

The Common Gateway Interface (CGI) is a standard for interfacing external applications with information servers, such as HTTP or Web servers. A plain HTML document that the Web daemon retrieves is static, which means it exists in a constant state: a text file that doesn't change. A CGI program, on the other hand, is executed in real-time, so that it can output dynamic information.

For example, let's say that one wants to "hook up" one’s database to the World Wide Web, to allow people from all over the world to query it. Basically, one will need to create a CGI program that the Web daemon will execute to transmit information to the database engine, and receive the results back again and display them to the client. This is an example of a gateway, and this is where CGI, currently version 1.1, got its origins.

The database example is a simple idea, but most of the time rather difficult to implement. There really is no limit as to what you can hook up to the Web. The only thing you need to remember is that whatever your CGI program does, it should not take too long to process. Otherwise, the user will just be staring at their browser waiting for something to happen.

Since a CGI program is executable, it is basically the equivalent of letting the world run a program on the system, which isn't the safest thing to do. Therefore, there are some security precautions that need to be implemented when it comes to using CGI programs. Probably the one that will affect the typical Web user the most is the fact that CGI programs need to reside in a special directory, so that the Web server knows to execute the program rather than just display it to the browser. This directory is usually under direct control of the webmaster, prohibiting the average user from creating CGI programs.

PERL provides a strong support for CGI. The CGI.pm PERL module is part of the standard PERL installation that can be used to write CGI scripts. Lets look at some of the CGI support that is available in PERL.

2.4.1 Using the PERL CGI module

CGI.pm can be used in two distinct modes called function-oriented and object-oriented. In the function-oriented mode, we first import CGI functions into the script's namespace, then call these functions directly. A simple function-oriented script looks like this:

#!/usr/local/bin/perl

use CGI qw/:standard/;

print header(), start_html(-title=>'Wow!'), h1('Wow!'), 'Look Ma, no hands!', end_html();

The use operator loads the CGI.pm definitions and imports the ":standard" set of function definitions. We then make calls to various functions such as header(), to generate the HTTP header, start_html(), to produce the top part of an HTML document, h1() to produce a level one header, and so forth.

How to get information from the server?

If the script was invoked with a parameter list (e.g. name1=value1&name2=value2&name3=

value3"), the param() method will return the parameter names as a list.

E.g. @names=param();

Pass the param() method a single argument to fetch the value of the named parameter. If the parameter is multivalued (e.g. from multiple selections in a scrolling list), we can ask to receive an array. Otherwise the method will return a single value.

E.g. $value=param(‘foo’);

How to send information to the server?

The most common errors in beginners’ CGI programs is not properly formatting the output so the server can understand it. CGI programs can return a myriad of document types. They can send back an image to the client, and HTML document, a plaintext document, or perhaps even an audio clip. They can also return references to other documents. The client must know what kind of document we’re sending it so it can present it accordingly. In order for the client to know this, the CGI program must tell the server what type of document it is returning.

In order to tell the server what kind of document is being sent back, whether it be a full document or a reference to one, CGI requires us to place a short header on the output. This header is ASCII text, consisting of lines separated by either linefeeds or carriage returns (or both) followed by a single blank line. The output body then follows in whatever native format.

The header can be created with CGI.pm modules as follows:

print $query->header('image/gif');

This prints out the required HTTP Content-type: header and the requisite blank line beneath it. If no parameter is specified, it will default to 'text/html'. An extended form of this method allows us to specify a status code and a message to pass back to the browser:

Several other named parameters are recognized. Here's a contrived example that uses them all:

print $query->header (-type=>'image/gif',

 -status=>'402 Payment Required',

 -expires=>'+3d',

 -cookie=>$my_cookie,

 -charset=>'UTF-7',

 -attachment=>'foo.gif',

 -Cost=>'$0.02');

print $query->end_html

This ends an HTML document by printing the </BODY> </HTML> tags.

2.4.2 Useful PERL Modules

CPAN provides lots of interesting modules, which have been, contributed many enthusiastic programmers all over the world. Among all the available modules, I found two modules that were particularly helpful for my project implementation. They are as follows:

1. HTML::Form

2. DBI

3. LWP::UserAgent

Below is an introduction to the concepts for these two modules. More information is available on the CPAN site.

2.4.2.1. HTML::Form

As the name suggests, this module helps to work with the forms present on an HTML page. Some of the key methods provided by this module are discussed below.

Objects of the HTML::Form class represents a single HTML <form> ... </form> instance. A form consists of a sequence of inputs that usually have names, and which can take on various values.

Some of the important methods are

@forms = HTML::Form->parse($html_document, $base_uri)

The parse() class method will parse an HTML document and build up HTML::Form objects for each <form> found. If called in scalar context, it only returns the first <form>. Returns an empty list if there are no forms to be found.

The $base_uri is (usually) the URI used to access the $html_document. It is needed to resolve relative action URIs. For LWP this parameter is obtained from the $response->base() method.

Example from my code:

my $base = 'http://www.dictionary.com';
The base URL

@form=HTML::Form->parse($response->content, $base);

$form->push_input($type, \%attr)

Adds a new input to the form.

$form->value($name, [$value])

The value() method can be used to get/set the value of some input. If no input have the indicated name, then this method will croak.

Example from my code:

Fill in the values to be sent to the server through the FORM

$word is the word we are looking for in the search box

we got this from param() CGI function.

$form->value('term',$word);

$form->click([$name], [$x, $y])

Will click on the first clickable input (input/submit or input/image), with the indicated $name, if specified. One can optionally specify a coordinate clicked, which only makes a difference if one clicked on an image. The default coordinate is (1,1).

Example from my code:

Submit the form

$response = $ua->request($form->click);

$form->form

Returns the current setting as a sequence of key/value pairs.

$form->dump

Returns a textual representation of the form. Useful mainly for debugging. If called in void context, then the dump is printed on STDERR.

2.4.2.2 DBI

DBI is a database access Application Programming Interface (API) for the PERL language that allows users to access multiple databases transparently. So, if we are connecting to an Oracle, Informix, MySql or any other database, we don't need to know the underlying mechanics of the 3GL layer. The API defined by DBI will work on all these databases. The following section briefly explains the various DBI API calls.

i. connect – In order to connect to the database, we use the connect call. The arguments to this call are the database type, database name, user name and password.

Usage:

my $dbh = DBI->connect(‘DBI:mysql: $dbname, $user, $passwd)

The database type here is MySql. Based upon this value, DBI will load the corresponding DBD module for the database. If we are required to convert other database, just changing the type will be sufficient.

ii. prepare – To execute a query, the query first needs to be prepared and it is done by the prepare call. The query can be any SQL query. On high-end databases, prepare will send the SQL to the database server, which will compile it.

Usage:

$selH=$dbh->prepare(‘select SITEID from WEBSITES where SITENAME = ?’)

The call returns a handle to the query. An argument can be passed to the query string by putting ‘?’ within the string, which will be replaced by the arguments during execution.

ii. execute- This is the call to send the query to the server and execute it. The arguments to call will substitute the ‘?’ within the prepared query.

Usage:

$strH->execute(‘www.dictionary.com’)

iii. fetch – The result set returned after execution of the SQL query should be obtained within the program. There are several fetch calls which do just this. A result set can be a single row or multiple rows. A result row could have one column or several. Following are some of fetch calls.

fetchrow

fetchrow_array

fetchrow_hash

fetchcol

Usage:

$retVal = $strH->fetchrow;

If the result set has more than one row, we can use a loop to fetch all the rows.

iv. finish – When we are done using the SQL statement, we can call this function on the handle. It tells the database to dissolve the handle, which subsequently drops any query associated with it.

Usage:

$strH->finish;

v. disconnect – This should always be the last statement of the database. It closes the connection to the database, that was opened by the connect function.

Usage:

$dbh->disconnect
2.4.2.3 LWP::UserAgent

The LWP::UserAgent is a class implementing a simple World-Wide Web user agent in Perl. It brings together the HTTP::Request, HTTP::Response and the LWP::Protocol classes that form the rest of the core of libwww-perl library. For simple uses this class can be used directly to dispatch WWW requests, alternatively it can be subclassed for application-specific behaviour.

In normal use the application creates a UserAgent object, and then configures it with values for timeouts, proxies, name, etc. It next creates an instance of HTTP::Request for the request that needs to be performed. This request is then passed to the UserAgent request() method, which dispatches it using the relevant protocol, and returns a HTTP::Response object.

Usage:

Create a user agent

my $ua = LWP::UserAgent->new();

Name our new agent

$ua->agent('MeaningSearch/1.0');

Create a uri object

my $uri = URI->new_abs($path,$base);

Create a request object

my $req = HTTP::Request->new(GET => $uri);

Request the request object

my $resp = $ua->request($req);

if ($resp->is_success) {

Parse all forms in the returned page

my @forms = HTML::Form->parse($resp->content,$base);

The new() method creates a new UserAgent object. The agent is dispatched to the Web site with the request() method and it returns with a response object that contains the response returned by the WebServer.

3. IMPLEMENTATION

3.1 Database Schema

Following is the detailed description of the schema that we have created in order to facilitate the caching process in local database.

· TABLES Summary

a. WEBSITES (SITEID, SITENAME)

b. SITEFREQ (SITEID, WORDSREQUESTED, WORDSRETURNED)

c. WORDS (WORDID, WORD)

d. WORDMEANING (WORDID, MEANING1, MEANING2, MEANING3, MEANING4, MEANING5, SITEID)

e. WORDCONCEPTS (WORDID, CONCEPT, CONCEPTDETAIL1 CONCEPTDETAIL2, CONCEPTDETAIL3, ……., CONCEPTDETAIL9, SITEID)

· Detailed TABLE description

Relation Name: WEBSITES

Attribute
Description
Type
Size
Null
Part of PK
FK
FK Relation

SITEID
An unique identifier for the tuple
Smallint
2 byte integer

NO
YES
NO
SITEREQ

WORDMEANING

SITENAME
URL of site
VARCHAR
255
Yes
NO
NO
None

Relation Name: SITEFREQ

Attribute
Description
Type
Size
Null
Part of PK
FK
FK Relation

SITEID
An unique identifier for the tuple
Smallint
2 byte integer

NO
YES
NO
SITEREQ

WORDMEANING

WORDSREQUESTED
Number of word requested by this site id.
INT
4 byte integer

NO
NO
NO
None

WORDSRETURNED
Number of words returned by this site id.
INT
4 byte integer

NO
NO
NO
None

Relation Name: WORD

Attribute
Description
Type
Size
Null
Part of UNIQUE Key
FK
FK Relation

WORDID
An unique identifier for the tuple
Smallint
2 byte integer

NO
YES
NO
WORDMEANING

SITEFREQ

WORD
Name of the word: 255 char
VARCHAR
255
YES
NO
NO
None

Relation Name: WORDMEANING

Attribute
Description
Type
Size
Null
Part of UNIQUE/PK Key
FK
FK Relation

WORDID
An unique identifier for the tuple
Smallint
2 byte integer

NO
YES
NO
WORDS

WORDME-ANING

SITEFREQ

MEANING1
Name of the word under search
VARCHAR
255
YES
NO
NO
None

 :

 :
Name of the word under search
VARCHAR
255
YES
NO
NO
None

MEANING5
Name of the word under search
VARCHAR
255
YES
NO
NO
None

SITEID
An unique identifier of site
Smallint
2 byte integer
NO
YES
YES
WEBSITES

Relation Name: WORDCONCEPTS

Attribute
Description
Type
Size
Null
Part of UNIQUE/PK Key
FK
FK Relation

WORDID
An unique identifier for the tuple
Integer
4 byte integer

NO
YES
NO
WORDS

CONCEPT
An unique identifier for the tuple
VARCHAR
250
NO
YES
NO
None

SITEID
An unique identifier for the tuple
Smallint
2 byte integer

YES
YES
NO
WEBSITES

SITEFREQ

CONCEPTDETAIL1
Concept meaning
VARCHAR
255
NO
NO
NO
None

 :

 :
Concept meaning
VARCHAR
255
YES
NO
NO
None

CONCEPTDETAIL9
Concept meaning
VARCHAR
255
YES
NO
NO
None

· Graphical Representation of the Schema

[image: image2.png]'WEBSITES

STED#
SITENAME

WORDS

WORDID#
WORD

WORDCONCEPTS

WORDID#
concerr
SIED#
CONCEPIDETAILL
CONCEPIDETAILZ

CONCEPIDETAILS

'WORDMEANING

WORDID#
MEANINGI
MEANINGZ
MEANINGS

MEANINGS
STED#

SITEREQ

STED#
'WORDSREQUESTED
WORDSRETURNED

#-Foreign Key
Datahase Schema Red Fidl - Primasy Key

Figure 2. Database Schema

3.2 HTML Code

One of the modules of the system is an HTML file named INDEX.HTML. The Apache Web Server serves this file to any client that makes an initial connection to the server. The file presents the user with a search form. A snap raw space shot of the initial screen is shown in Figure 3.

[image: image3.png]rer provided by MSN

J .80 MA@ m @B P =2
22 " rn | 8% GEdh oo | oo mmm G | 1P G oem e
| Acess [E7 s/ ocathos =] @t

- . H

Online Dictionary & Thesaurus
(by Mohammad Khalid Akhtar)
o
=

&1 Dene. [[T Localintianet i

Figure 3. INDEX.HTML rendering by the browser

The search form has been created using the HTML FORM element, discussed in section 2.4.2.1. Some sample code from that file is presented below.

<FORM NAME="search_form" METHOD="POST" ACTION="/cgi-bin/searchword.pl">

<TABLE ALIGN=CENTER BORDER=0 CELLSPACING=0 CELLPADDING=2 WIDTH="95%" BGCOLOR="#CC99CC">

<TR>

<TD ALIGN=CENTER>

<I>Enter a search word: </I>

<INPUT TYPE="text" NAME="searchword" SIZE="25" MAXLENGTH="25">

</TD>

</TR>

<TR>

<TD ALIGN=CENTER>

<INPUT TYPE="radio" NAME="radiobutton" VALUE="dictionary" CHECKED>Dictionary

<INPUT TYPE="radio" NAME="radiobutton" VALUE="thesaurus">Thesaurus

</TD>

</TR>

<TR>

<TD ALIGN=CENTER>

<INPUT TYPE="submit" NAME="Submit" VALUE="Submit">

<INPUT TYPE="reset" NAME="Cancel" VALUE="Cancel">

</TD>

</TR>

</TABLE>

</FORM>

INDEX.HTML Form Listing

If we look at Figure 3 and the bold text in the form listing above, we can see that the text box in the browser corresponds to the INPUT element of type text with the name “searcword”. This is the parameter that the CGI program attached with this form, which is “searchword.pl”, will extract using the param() CGI function. The values extracted would be any word that the user types in the text box. The user can select the result set to pertain to the dictionary, which is a collection of listing the words of a language with translations into same or another language or thesaurus which is a collection of selected words or concepts, such as a specialized vocabulary of a particular field, as of medicine or music. By choosing the appropriate radio button in the browser. These two radio buttons can be seen in the listing above under the tag <INPUT>. The CGI program is passed either the values “dictionary” or “thesaurus” based upon the button selected. This value is obtained by the CGI program using the param function with “radiobutton” as the argument. The two buttons “SUBMIT” and “CANCEL” correspond to the <INPUT> tags with type “submit” and “reset” respectively. When the submit button is pressed the browser sends the data from the FORM to the Web Server using the POST method and requests that searchword.pl be executed with the values for “searchword” and “radiobutton” parameters. The first line with the <FORM> tag specifies the POST method and the CGI program to be executed.

3.3 CGI Interface Routines
We have developed a module for this system called searchword.pl, which contains the CGI routines. This module is in cgi-bin directory of the Web Server. The index.html form also points to this file. This file is executed whenever the user presses the SUBMIT button. The program starts executing by obtaining the values of the word entered in the text box and also the value of the radio button that was selected. The code is shown below.

Get the paramaters

my $word = param ("searchword");

my $choice = param ("radiobutton");

The values in the $choice variable instructs the program to either look for dictionary meaning or thesaurus concepts of the word contained in the variable $word.

The other CGI portion of the program is contained in the functions print_header() and print_trailer(). The print_header() function sends the HTML header to the browser, so that the browser can understand the content-type it might expect and prepare to render it accordingly. If the content-type is not specified the default is text/html. It also sends the search FORM that the browser will render on top of the search results. The reason we send the form again is because otherwise the user will have to hit the BACK button on the browser if s/he wants to search the meaning of another word, after hitting the SUBMIT button.

The print_trailer() function sends the trailing portion of the HTML document, which confirms the end of the document to the browser. The trailing portion is generally the following tag combination </BODY></HTML>. Any results that appear after submitting the form are displayed using print statement between the print_header() and print _trailer() function calls. Print just directs the ouput to the stdout, which gets directed to the Web Server by virtue of this being a CGI program. The Web Server in turn directs the output to the browser program of the client.

3.4 Web Agents
The CGI program searchword.pl dispatches Web agents to various online Web sites. The agents have been implemented using PERL’s LWP::UserAgent library. The task of all the agents is twofold.

i. Fetch the Web page containing the search form.

ii. Submit the form with appropriate values to the Web site and fetch the result page.

Following is some sample code from the program that accomplish the two tasks mentioned above.

Request the request object

my $resp = $ua->request($req);

if ($resp->is_success) {

Parse all forms in the returned page

my @forms = HTML::Form->parse($resp->content,$base);

Now we fill out the form

$word is the word we are looking for in the search box

we got this from param above

$form->value('term',$word);

The click method returns a new request object

$req = $form->click;

So now request it!!

$resp = $ua->request($req);

Parses the web page and returns the meanings found.

@meanings = &parse_dictionary_com_text($resp); # different response object

The agents are only dispatched if the data for the search word requested in not found in the local database. This approach allows us to improve our response times considerably by cashing the search result in local database. For word which are available in the local database we do not need to even go to Web. The processing for fetching will be more than 70 percent faster in case of local storage depending on the Internet connection are being used to connect to the Web dictionary site. The result page that the agents bring are given to the parsing subroutines of that Web site. These routines extract relevant data from those pages and call database interface routines to insert that data into the database. Following is some sample code showing the parsing logic for http://www.dictionary.com/.

sub parse_dictionary_com_text {

Passed in response object

my $resp = shift;

my @lines;

my @meanings;

if ($resp->content !~ /No entry found/) {

my @array=split /\n/, $resp->content;

foreach (@array) {

if (/<LI.*?>/ or /<DL><DD>.*?<\/DD><\/DL>/) {

push @lines, $_;

}

}

foreach (@lines) {

if (!/<DL><DD>.*?<.*?>.*<\/DD><\/DL>/i and !/<LI.*?><A HREF.*?>.*/i and !/<LI.*?><IMG.*?>.*/i) {

s/<.*?>//g;

if (length $_) {

push @meanings, $_;

}

}

}

}

return @meanings;

}

Parser listing for DICTIONARY.COM result pages

The above subroutine is good as long as the current format of the result HTML page dosen’t change. In case of change of format of the result page of above mentioned Web site, the form parsing code will need to change.

3.5 Database Interface

The file dbInterface.pl contains subroutines that interface with the data. These subroutines are an integral part of the system. They perform the common database operations such as SELECT, INSERT and UPDATE. Some important subroutines that are part of this module are explained in detail below.

i. dbGetSiteId – The subroutine accepts the name of a Web site and returns the SITEID for that name stored in the WEBSITES table. This is a useful reference table and it helps to organize the data obtained from various Web sites. Based on this table column (SITEID) the popularity of a particular Web site is identified and based on the order of popularity of the Web site the meaning or thesaurus concepts are displayed. Any new site that is added to the system should be added to this table with the name by which it will be referred to in the program. The site added is given a new SITEID by the database.

ii. dbUpdateSiteFreq – This routine is called after the agents return with the result pages. The page is parsed to obtain the data. If the parser returns an empty result set, this routine is passed a flag value of 0. The routine then updates the SITEFREQ table where it increments the values of WORDSREQUESTED by 1 but leaves the value of WORDSRETURNED column unchanged for the Web site. If the result set is not empty both columns are incremented by 1. The entries in this table are used to determine which Web sites are better than the others. A SITEID will be given higher precedence over the other based on their result rate, which is calculated through the MySql database query WORDSRETURNED/WORDREQUESTED ratio (recall rate). It is definitely better than those with a lower ratio. This data is used at the time of displaying the result to the user. The result is displayed from Web sites in descending order of their recall rate. dbSiteIdbyFreq() subroutine returns SITEIDS in descending order of their recall rate. dbSiteIdByFreq is used by dbGetWordMeanigs and dbGetWordConcepts(), which are discussed next.

iii. dbGetWordId – All the words that the users search for on our system are stored in the WORDS table. Every word that is stored is also given a WORDID. The meanings and concepts that are thus stored for each word are stored along with the WORDID, in WORDMEANINGS and WORDCONCEPTS tables respectively. This subroutine accepts the word and returns the WORDID if the word is found in the table. Every new word that is inserted in the WORDS table is given a new WORDID by the database.

iv. dbInsertWordMeanings & dbInsertWordConcepts – These subroutines insert the meanings and concepts respectively extracted by the site parsers in the database. If the word does not exist in the database, they first insert the word in the WORDS table and then get the WORDID of the inserted word using dbGetWordId() function. Then meanings and concepts are passed to these functions as an array. The subroutines insert every element of the array in the database along with the WORDID.

v. dbGetWordMeanings & dbGetWordConcepts – These are important functions. They retrieve the meanings and concepts from the database for a given search word. They are called by the CGI program depending upon whether the user wants the dictionary meaning or the thesaurus concepts of the word. The CGI program first checks for the word meaning/concepts using these functions. They return an array, with each element of the array holding a meaning or concept. In case of dbGetWordConcepts, two arrays are returned CONCEPTS and CONCEPTDETAILS. The following code show how these two functions are used.

Code to fetch DICTIONARY Words or THESAURUS Concepts

if ($choice eq "dictionary") {

First fetch the meaning from the database

@meanings=&dbGetWordMeanings($dbh, $word);

} else {

First fetch the concepts from the database

($conceptsRef, $conceptdetailsRef)=&dbGetWordConcepts($dbh, $word);

@concepts=@$conceptsRef;

@conceptdetails=@$conceptdetailsRef;

}

Code to send the fetched DICTIONARY Meanings to the browser
Send the meanings to the browser

if ($#meanings >= 0) {

print "Following is the search result for \"$word\"

\n";

print "". ($#meanings+1) .

" entrie(s) found

\n";

$cnt=1;

foreach (@meanings) {

print "$cnt. $_
\n";

$cnt++;

}

Code to send the fetched THESAURUS Concepts to the browser

Send the concepts to the browser

if ($#concepts >= 0) {

print "Following is the search result for \"$word\"

\n";

print "". ($#concepts+1) .

" entrie(s) found

\n";

$cnt=1;

my $idx=0;

foreach (@concepts) {

print "
$cnt. $_
\n";

print $conceptdetails[$idx]. "
";

$idx++;

$cnt++;

}

The following two figures show the output from our system, one each for DICTIONAY and THESARUS.

[image: image4.png]3 Search Result

10s0ft Internet Explorer provided by MSN [_[CIx]

| Ble Edt Vew Favaies Took Hep
J@,».@ @‘@@8‘%- -
22 " rn | 8% GEdh oo | oo mmm G | 1P G oem e
| ctess [] s scathost/ogbin/searchword ol =] @t
H
Online Dictionary & Thesaurus
(by Mohammad Khalid Akhtar)
Enter a search word.
& Dictionary ¢ Thesaurus
Submit | Cancel
Following is the search result for “university"
3 entrie(s) found
1. Aninstitution for higher learning with teaching and research faciliies constituting a graduate school and
professional schools that award master's degrees and doctorates and an undergraduate division that awards
bachelor's degrees
2. The buildings and grounds of such an institution
3. The body of students and faculty of such an institution
=

&1 Done [[[Localimuanet 7

Figure 4. Output for DICTIONARY

[image: image5.png]| B Edt vew Favies Toos Hep
| ctess [] s scathost/ogbin/searchword ol =] @t

Online Dictionary & Thesaurus

{by Mohammad Khalid Akhtar)

Following is the search result for “university"

3 entrie(s) found

1. Learning

I MODES OF COMMUNICATION
Learning
[Antonyms:]

[Nouns] learning; acquisition of knowledge ,
acquisition of skill; acquirement, attainment; edification,

scholarship, erudition; acquired knowledge, lore, wide informatior; seff-
instruction study, reading, perusal; inuiry

apprenticeship, prerticeship; pupilage, pupilarity, tutslage,
nnvitiate matricilation

Figure 5. Output for THESAURUS

4. FUTURE WORK

The following areas have been identified that would need to be worked upon to improve our system.

1. The future work would mainly involve adding more Web sites to our system. The number of web site can be determined by the use of the dictionary and the response from this application. Now, We can estimate that adding two more Web site would be enough in future. Those two more Web sites need to be identified.

2. We should also examine the data in SITEFREQ table and try to judge whether our RECALL ratio is really a good indicator of determining whether one Web site is better then the other.

3. Presently the program updates the SITEFREQ table even if one enters a word that does not even exist in the English language. For example, If an user enters meaning for "xyz" and the dictionary does not find the meaning of that word because it is not a legitimate word then also the application increases the column value WORDREQUESTED by "1" and also decreases the value of WORDRETURNED by "1" of the SITEFREQ table which is not appropriate. For any ambiguous word our program assumes that the site failed to return a meaning and decreases its recall ratio. Although every Web site would fail to return any result and the recall ratio for each would be reduced as a result, so overall the indicator should still be good, yet we need to somehow find a way to eliminate this flaw. Maybe there is a Web site out there that keeps track of all the words in the English language and our program should first check for the existence of a the Word there before dispatching the agents to various online dictionary/thesaurus Web sites.

4. The system currently dispatches the agents sequentially i.e. one after the other. But each agent is independent of the other and can execute on their own. So the program logic should be modified to dispatch the agents in parallel to improve the throughput rate. An obvious problem with parallel agents is that if few of them return the result sets at the same time then, then inserting them in the same table at the same time can result in deadlocks. So we would also have to develop the logic to avoid deadlocks or find out how efficiently MySql handles the deadlock problem otherwise need to migrate to another database.

5. REFERENCES

5. Advanced PERL Programming by Sriram Srinivasan

6. CGI Programming with PERL by Scott Guelich, Shishir Gundavaram and Gunther Birznieks

7. The Complete HTML Reference by Thomas A. Powell

8. PERL in Nutshell by Stephen Spainhour, Nathan Patwardhan

9. Apache Web-Server by Lars Eilebrecht

10. Apache Server Unleashed by Richard Bowen, Ken A. L. Coar, Rich Bowen, Patrik Grip-Jansson, Matthew Marlowe, Mohan Chinnappan

11. http://www.apache.org
12. http://www.webtechniques.com/archives/1997/02/stein/
13. http://www.mysql.com
14. http://www.cs.tcd.ie/research_groups/aig/iag/toplevel2.html

20
3

_1050397149.doc
[image: image1.png]'WEBSITES

STED#
SITENAME

WORDS

WORDID#
WORD

WORDCONCEPTS

WORDID#
concerr
SIED#
CONCEPIDETAILL
CONCEPIDETAILZ

CONCEPIDETAILS

'WORDMEANING

WORDID#
MEANINGI
MEANINGZ
MEANINGS

MEANINGS
STED#

SITEREQ

STED#
'WORDSREQUESTED
WORDSRETURNED

#-Foreign Key
Datahase Schema Red Fidl - Primasy Key

