Master’s Project Proposal

Matt Weaver

Spring 2006

ezweave@gmail.com

XXXXX

Master Project Proposal

by

Matt Weaver

as part of the requirements for the degree of

Master of Computer Science

University Of Colorado, Colorado Springs

Committee Members and Signatures:

	Approved by

	
	Date

	Advisor: Dr. Edward Chow
	
	

	
	
	

	Committee member: Dr.
	
	

	
	
	

	Committee member: Dr.
	
	

1, Introduction

The goal of this project is to develop a non-malicious Worm for bandwidth analysis and network mapping. I propose that current inconsistencies in commercial network hardware/software make it very difficult to measure bandwidth via traditional means.

1.1 Related Work

Bandwidth Analysis

Network bandwidth analysis is a classic problem for system administrators. On a small home network, there is little one can do to improve performance: there are no obvious bottlenecks. In a larger system, however, it can be incredibly difficult to determine the source of a problem. This is only part of what we intended to remedy [dknoop].

The root of the problem with current analysis tools is that they depend on standards set forth in RFCs that are maintained by W3C.

Internet Connection Message Protocol

Many modern measurement tools depend on the Internet Connection Message Protocol (ICMP) as described in RFC 792. ICMP is designed to provide meaningful communication between software layers and hardware. Using ICMP many diagnostic measurements can be generated including, destination unreachable, source quench, redirect, timestamp, timestamp reply, information request, information reply, and the last two of most important significance, echo and time exceeded. These messages general have a simple format.

Echo consists of a UDP datagram that looks like such:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | Identifier | Sequence Number |

 +-+

 | Data ...

 +-+-+-+-+-

Where type can be either 8 for an echo message or 0 for an echo reply message. Everything else is typical of such data. But, ICMP messages do not look alike. Time exceeded messages return a header that looks more like this:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | unused |

 +-+

 | Internet Header + 64 bits of Original Data Datagram |

 +-+

The idea behind the time exceeded message is that as a router (this can be a simple hardware router, a computer routing, a LVS director, etc) should discard UDP data that has an expired Time To Live field (TTL). Once the datagram has been discarded a message to the datagrams source should be sent using ICMP. This makes the time exceeded message an ideal diagnostic tool.

Sadly, ICMP is an old standard. RFC 792 was established in 1981 and is not always a design consideration for modern hardware and software engineers. It is always possible to have problems with any measurement analysis for the simple reason that a particular node may not support ICMP.
Mapping

Mapping the network is a related problem, but is more of a byproduct of the route of bandwidth analysis that I propose [IDMap].

Worms

This is not the first attempt to use a worm for measurement. On November 2, 1988 Robert Morris unwittingly unleashed a poorly written worm that was designed to map what was then the Internet. The key problem with his worm was faulty logic. The failure case was to infect a machine, meaning that due to some poor design decisions, the failure case was always executed.

Worms, though originally designed for good, can easily get out of hand or be written to incorporate malicious behavior. That is not the goal here. The default case will be to not infect a machine.
2. Proposed Design

Give a summarized statement of what you proposed to do.

Mentioned about the metrics that are related to how to evaluate your proposed design(s). This includes

· Time to finish the tasks.

· The amount of packets/traffic generated

· Non-reinfection

· ,,,
Software architecture (Module)

Show a diagram of the software modules you have in your system.
Logic

Each instance of the worm implements a strict algorithm for execution.

1) After starting up as a running process, to avoid the mistake of the Morris worm, a text file will be written to the root directory (~ on a Unix system, C: on a Windows system). If the file fails to write, the worm dies. If the file already exists, the worm kills itself. The default behavior for the worm will be to die if anything fails.

2) Before spreading to a new PC, the worm creates a UDP packet containing the IP address of the machine it is being hosted on (and any other metadata) and sends it back to its parent. As a failsafe, if the worm does not get a response (return packet), it dies.

3) It then utilizes the Code Red II algorithm for “next IP” to find the next machine to target. It does this N times, where N is specified in the central distribution interface.

4) After each iteration of re-infection, the worm waits for the UDP packet from the child on a specified port (this will be assigned through the infection assignment algorithm). After receiving the packet, it sends a reply. Then it sends the original inbound UDP datagram to it’s parent. Because of the way it works, a reply will be sent, but it will not wait for it.

5) After time T (based on the time in execution and seeded via the interface), no matter what the worm is doing, the worm will cease active execution. This is compiled into the binary.

6) If the mapping is successful, the central distribution system will send a “prepare to stop” message. Each instance will attempt to send it to a child, each child will send a response (not three-way, again, our medium is primarily UDP). As soon as a response is not received (this will have to be a long timeout), the thread will stop itself and send its response back up the chain, so the same thing will happen.

[image: image1.emf]Parent Child Next Target

Additional fail safes will be encoded in the payload of the UDP packet. This includes a depth count. Each child will receive a response that increments a local variable in the binaries. Another failsafe would be the use of this “depth” to terminate germination based upon the value of the “depth”.

Each reinfection will include an attempt at both a Unix/POSIX variety payload and a Windows based payload. I should note that I am using POSIX to cover Unix and Linux distros. POSIX does not technically cover low level OS details, but command structure and syntax.

The default mode of operation is to fail. Only under ideal conditions will the worm propagate. It is fragile, but for a good reason: it is dangerous.
Initial Distribution/Creation

The distribution pattern for the described worm will follow a tree pattern, tracing back through the tree to each parent node. At some point, the packets are routed all the way back to the central distribution system.

The central distribution system will utilize a GUI interface to preload values into the pre-compilation C code. Basically the raw C code will be dynamically generated/written by the central distribution application and then compiled and the binaries will be included in the packets, as per the usual delivery method. The code must be dynamically generated to incorporate data into the payload.

The central distribution system will compile all returned UDP packets to construct a tree based map of the network. Due to the “tree nature” it will miss some relationships, but this can be identified by subnet, if it is necessary.

The body of the exploit, the C code, will be written into XML files to enable ease of adjustment and dynamic generation.

Test Environment

I propose to setup a subnet of virtual pcs to isolate any possible problems. Testing will begin with simple peer to peer testing and end with a robust “virtual” network configured to fully test the concept.

 Test networks with certain network topologies will be created to evaluate the effectiveness of the proposed design.

The volume of the generated traffic will be collected through ethereal…
3. Project Plan and Schedule (draft, replace with your specific tasks)

1. Requirement Analysis (December 12, 2004 – February 19, 2005)

· Study existing Wireless Sensor research

· Identify potential enhancements

· Evaluate possible solutions

· Define requirements for the solution I will implement

· Present proposal and obtain official approval

2. Planning (February 19, 2005 – March 12, 2005)

· Define thesis plan and schedule

3. Design (March 12, 2005 – April 12, 2005)

· Design initial algorithms

· Evaluate algorithm effectiveness

· Refine and finalize algorithms

4. Implementation & Testing (April 12, 2005 – July 12, 2005)

· Create initial implementation of algorithms

· Test algorithms

· Identify testing techniques to validate the effectiveness of algorithms

· Refine algorithms and test methods

5. Project Closure (July 12, 2005 – September 12, 2005)

· Present final data and obtain approval.

· Create all necessary documentation

· Thesis defense

4. Deliverables

1. A working prototype that demonstrate the design.

· XXXXX

· High, Medium, Low ‘Hello’ protocol

· Dynamic cluster head transference

· Sink Centric clustering

2. Master project report

5. References
_1195455929.vsd

