UTMOST: A Traffic Modeling Tool in Java

by

M. Heidi McClure

B.Sc., Cornell University, 1983

A thesis submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

1997

�

(Copyright 1997 by M. Heidi McClure

All Rights Reserved

�

This thesis for the Master of Science degree by

M. Heidi McClure

has been approved for the

Department of Computer Science

by

					

Dr. C. Edward Chow, Advisor

					

Dr. Sudhanshu Kumar Semwal

					

Dr. Charlie Shub

		

Date		

�
McClure, M. Heidi (M.Sc., Computer Science)

UTMOST: A Traffic Modeling Tool in Java

Thesis directed by Associate Professor Ching-Hua Edward Chow

This thesis presents the design and implementation of a user traffic modeling and simulation tool for wireless network design. It has a graphical user interface for displaying the cell layout, user traversing patterns, the current power and cell site assignments. For each simulation step, it generates an output file of the current location of the users, their power levels and cell assignments, and the boundary crossing times and locations. It also computes the visible sectors for each mobile user. It may interact with dynamic channel assignment optimization packages and facilitate the verification of the assignment results. It outputs event traces to drive discrete event simulators for the cell size determination and the comparison of efficient hand-off algorithms. Cell boundary crossing and visible sector algorithms are discussed and two approaches to each are analyzed.

�

To Jerry, who put up with me during the four years I worked on this degree�
Acknowledgments

I’d like to thank all the people and organizations who helped me complete this work:

I thank the Colorado Advanced Software Institute and U. S. West who provided the grant to UCCS to work on the RACEWIN project. Not only did they provide money, they provided a most interesting and challenging project on which to work.

I thank my professors at UCCS who helped me learn so much over the years.

I thank my close and extended family, including Mom, Carolyn McClure, who continues to amaze me with all of her energy and drive and Dad, Charles McClure, whose inquisitive nature has rubbed off on me, my brothers, Chip, Mike and John (John, I finally get to thank you in print as you did me in 1984!) and Jerry and his children, Stefanie, Richard and Tom (You kids are angels. I cannot thank you enough for putting up with me for the last four years!)

I thank Sun Microsystems, Inc., the company for which I work, who supported my education, but more importantly, exposed me to and allows me to work with some very talented engineers and software developers. This is a fun time to be at Sun. I started work there just before the beta versions of Java hit the internet and software development communities by storm. .

And finally, I thank Seymour R. Cray who passed away last fall. He was the one who taught me that any problem, no matter how big, may be conquered if one approaches the problem step by step, a little bit at a time and just work hard and steady until the task is done. Then move on to the next hard problem! I am grateful to have worked for Cray Computer Corporation for its entire existence and to have worked with and for Seymour. I will miss him.

�
 Contents� TOC \o "1-3" �

1. Introduction	� GOTOBUTTON _Toc387192667 � PAGEREF _Toc387192667 �1��

1.1 What is UTMOST?	� GOTOBUTTON _Toc387192668 � PAGEREF _Toc387192668 �1��

1.2 What is It For? (the models)	� GOTOBUTTON _Toc387192669 � PAGEREF _Toc387192669 �3��

1.3 How is It Used? (brief user’s tutorial)	� GOTOBUTTON _Toc387192670 � PAGEREF _Toc387192670 �4��

1.4 What Does It Do? (the files generated)	� GOTOBUTTON _Toc387192671 � PAGEREF _Toc387192671 �9��

1.5 Focus of This Thesis Report	� GOTOBUTTON _Toc387192672 � PAGEREF _Toc387192672 �9��

1.5.1 Boundary Crossing Algorithms	� GOTOBUTTON _Toc387192673 � PAGEREF _Toc387192673 �9��

1.5.2 Perimeter Placement of Users	� GOTOBUTTON _Toc387192674 � PAGEREF _Toc387192674 �11��

1.5.3 Custom Inside Function	� GOTOBUTTON _Toc387192675 � PAGEREF _Toc387192675 �11��

1.5.4 Visible Sector Antennae Calculations	� GOTOBUTTON _Toc387192676 � PAGEREF _Toc387192676 �11��

2. UTMOST Design	� GOTOBUTTON _Toc387192677 � PAGEREF _Toc387192677 �13��

2.1 Coordinate System Used in UTMOST	� GOTOBUTTON _Toc387192678 � PAGEREF _Toc387192678 �13��

2.2 Sector Naming Schemes	� GOTOBUTTON _Toc387192679 � PAGEREF _Toc387192679 �14��

2.3 All Classes Summarized	� GOTOBUTTON _Toc387192680 � PAGEREF _Toc387192680 �14��

2.3.1 UTMOST	� GOTOBUTTON _Toc387192681 � PAGEREF _Toc387192681 �15��

2.3.2 User	� GOTOBUTTON _Toc387192682 � PAGEREF _Toc387192682 �15��

2.3.3 Sector	� GOTOBUTTON _Toc387192683 � PAGEREF _Toc387192683 �15��

2.3.4 LineSegment	� GOTOBUTTON _Toc387192684 � PAGEREF _Toc387192684 �15��

2.3.5 ModelSetup	� GOTOBUTTON _Toc387192685 � PAGEREF _Toc387192685 �16��

2.3.6 MapPanel	� GOTOBUTTON _Toc387192686 � PAGEREF _Toc387192686 �16��

2.3.7 MapArea	� GOTOBUTTON _Toc387192687 � PAGEREF _Toc387192687 �16��

2.3.8 UserStats	� GOTOBUTTON _Toc387192688 � PAGEREF _Toc387192688 �16��

2.3.9 Util	� GOTOBUTTON _Toc387192689 � PAGEREF _Toc387192689 �16��

2.3.10 DebugLevel	� GOTOBUTTON _Toc387192690 � PAGEREF _Toc387192690 �17��

2.3.11 Other Miscellaneous Classes	� GOTOBUTTON _Toc387192691 � PAGEREF _Toc387192691 �18��

2.4 The Files Generated	� GOTOBUTTON _Toc387192692 � PAGEREF _Toc387192692 �19��

2.5 LineSegment Class	� GOTOBUTTON _Toc387192693 � PAGEREF _Toc387192693 �20��

2.6 Sector Array	� GOTOBUTTON _Toc387192694 � PAGEREF _Toc387192694 �20��

2.7 LineSegment Array	� GOTOBUTTON _Toc387192695 � PAGEREF _Toc387192695 �21��

2.8 calcLength() and calcTheta()	� GOTOBUTTON _Toc387192696 � PAGEREF _Toc387192696 �22��

2.9 calcInside()	� GOTOBUTTON _Toc387192697 � PAGEREF _Toc387192697 �23��

2.10 calcCurSector()	� GOTOBUTTON _Toc387192698 � PAGEREF _Toc387192698 �23��

2.11 calcVisibleSectors()	� GOTOBUTTON _Toc387192699 � PAGEREF _Toc387192699 �24��

2.12 writeBoundaryResults()	� GOTOBUTTON _Toc387192700 � PAGEREF _Toc387192700 �24��

2.13 calcNextPosition()	� GOTOBUTTON _Toc387192701 � PAGEREF _Toc387192701 �24��

3. Boundary Crossing Calculations	� GOTOBUTTON _Toc387192702 � PAGEREF _Toc387192702 �26��

3.1 Brute Force Calculations	� GOTOBUTTON _Toc387192703 � PAGEREF _Toc387192703 �26��

3.2 More Optimum Calculations	� GOTOBUTTON _Toc387192704 � PAGEREF _Toc387192704 �27��

3.3 Timing Comparison of the Algorithms	� GOTOBUTTON _Toc387192705 � PAGEREF _Toc387192705 �28��

4. Perimeter Placement of Users (Initializing)	� GOTOBUTTON _Toc387192706 � PAGEREF _Toc387192706 �31��

5. Calculating User’s Sector - calcInside().	� GOTOBUTTON _Toc387192707 � PAGEREF _Toc387192707 �32��

5.1 Problem with JDK AWT Built-in Functions	� GOTOBUTTON _Toc387192708 � PAGEREF _Toc387192708 �32��

5.2 UTMOST Implementation	� GOTOBUTTON _Toc387192709 � PAGEREF _Toc387192709 �33��

6. Determining Visible Sector Antennae	� GOTOBUTTON _Toc387192710 � PAGEREF _Toc387192710 �35��

6.1 Method Which Uses Three calcTheta() Calls	� GOTOBUTTON _Toc387192711 � PAGEREF _Toc387192711 �35��

6.2 Method Which Uses One calcTheta() Call	� GOTOBUTTON _Toc387192712 � PAGEREF _Toc387192712 �36��

6.3 Timing Comparison of the Algorithms	� GOTOBUTTON _Toc387192713 � PAGEREF _Toc387192713 �36��

7. Lessons Learned	� GOTOBUTTON _Toc387192714 � PAGEREF _Toc387192714 �37��

7.1 Floating Point Equivalence	� GOTOBUTTON _Toc387192715 � PAGEREF _Toc387192715 �37��

7.2 Graphics vs. Modeling, or Integer vs. Floating Point	� GOTOBUTTON _Toc387192716 � PAGEREF _Toc387192716 �37��

7.3 Linear Algebra Implementations	� GOTOBUTTON _Toc387192717 � PAGEREF _Toc387192717 �38��

7.4 Java	� GOTOBUTTON _Toc387192718 � PAGEREF _Toc387192718 �38��

7.4.1 Implementation Performed on Various Platforms	� GOTOBUTTON _Toc387192719 � PAGEREF _Toc387192719 �39��

7.4.2 Not Yet Totally Platform Independent (Java Beans?)	� GOTOBUTTON _Toc387192720 � PAGEREF _Toc387192720 �39��

8. Future Directions and Thoughts on Enhancements	� GOTOBUTTON _Toc387192721 � PAGEREF _Toc387192721 �40��

8.1 Extending the Number of Cells	� GOTOBUTTON _Toc387192722 � PAGEREF _Toc387192722 �40��

8.2 Providing Overlays of Wireless Subnetworks (Hexagons in Hexagons)	� GOTOBUTTON _Toc387192723 � PAGEREF _Toc387192723 �40��

8.3 Interfacing to POCAT and RACESIM (Files to Sockets)	� GOTOBUTTON _Toc387192724 � PAGEREF _Toc387192724 �41��

8.4 Overlay on GIS Maps	� GOTOBUTTON _Toc387192725 � PAGEREF _Toc387192725 �41��

8.5 Customizing User Travel Patterns	� GOTOBUTTON _Toc387192726 � PAGEREF _Toc387192726 �41��

9. References	� GOTOBUTTON _Toc387192727 � PAGEREF _Toc387192727 �42��

10. Appendix 1: Man Page for UTMOST	� GOTOBUTTON _Toc387192728 � PAGEREF _Toc387192728 �44��

11. Appendix 2: User’s Guide	� GOTOBUTTON _Toc387192729 � PAGEREF _Toc387192729 �48��

11.1 What’s Needed?	� GOTOBUTTON _Toc387192730 � PAGEREF _Toc387192730 �48��

11.2 What’s This?	� GOTOBUTTON _Toc387192731 � PAGEREF _Toc387192731 �52��

11.3 Model Scenarios	� GOTOBUTTON _Toc387192732 � PAGEREF _Toc387192732 �56��

11.4 What Happens?	� GOTOBUTTON _Toc387192733 � PAGEREF _Toc387192733 �56��

11.5 What Doesn’t Happen?	� GOTOBUTTON _Toc387192734 � PAGEREF _Toc387192734 �56��

12. Appendix 3: Definition of Data File Formats	� GOTOBUTTON _Toc387192735 � PAGEREF _Toc387192735 �58��

��
Tables

� TOC \c "Table" �Table 1. UTMOST Model Types	� GOTOBUTTON _Toc387192736 � PAGEREF _Toc387192736 �6��

Table 2. Show/Hide Buttons in UTMOST	� GOTOBUTTON _Toc387192737 � PAGEREF _Toc387192737 �8��

Table 3 DebugLevel Flags	� GOTOBUTTON _Toc387192738 � PAGEREF _Toc387192738 �17��

Table 4. Users Moving at random speeds (slow)	� GOTOBUTTON _Toc387192739 � PAGEREF _Toc387192739 �30��

Table 5. Users Moving at 600 kph	� GOTOBUTTON _Toc387192740 � PAGEREF _Toc387192740 �30��

Table 6 Files Required by UTMOST	� GOTOBUTTON _Toc387192741 � PAGEREF _Toc387192741 �48��

Table 7 UTMOST Model Types	� GOTOBUTTON _Toc387192742 � PAGEREF _Toc387192742 �53��

Table 8 Show/Hide Buttons in UTMOST	� GOTOBUTTON _Toc387192743 � PAGEREF _Toc387192743 �55��

� �
Figures� TOC \c "Figure" �

Figure 1. The UTMOST GUI	� GOTOBUTTON _Toc387192744 � PAGEREF _Toc387192744 �2��

Figure 2. Model Pattern Selection Pop-up Menu	� GOTOBUTTON _Toc387192745 � PAGEREF _Toc387192745 �5��

Figure 3. Model Type Selection Pop-up Menu	� GOTOBUTTON _Toc387192746 � PAGEREF _Toc387192746 �6��

Figure 4. User Behavior Selection Pop-up Menu	� GOTOBUTTON _Toc387192747 � PAGEREF _Toc387192747 �8��

Figure 5. User Movement Directions	� GOTOBUTTON _Toc387192748 � PAGEREF _Toc387192748 �13��

Figure 6. Sector Naming Schemes	� GOTOBUTTON _Toc387192749 � PAGEREF _Toc387192749 �14��

Figure 7. The UTMOST Result Files Hierarchy	� GOTOBUTTON _Toc387192750 � PAGEREF _Toc387192750 �19��

Figure 8. LineSector Array Initialization	� GOTOBUTTON _Toc387192751 � PAGEREF _Toc387192751 �21��

Figure 9. Triangle in Law of Cosines definition.	� GOTOBUTTON _Toc387192752 � PAGEREF _Toc387192752 �23��

Figure 10. User Movement and Distance Moved Calculations	� GOTOBUTTON _Toc387192753 � PAGEREF _Toc387192753 �25��

Figure 11. Triangle Angles for calcInside() Method.	� GOTOBUTTON _Toc387192754 � PAGEREF _Toc387192754 �33��

Figure 12. Triangle with (x, y) Outside the Triangle.	� GOTOBUTTON _Toc387192755 � PAGEREF _Toc387192755 �34��

Figure 13. Visible Sector Antennae Angles.	� GOTOBUTTON _Toc387192756 � PAGEREF _Toc387192756 �35��

Figure 14. The UTMOST GUI	� GOTOBUTTON _Toc387192757 � PAGEREF _Toc387192757 �51��

Figure 15. Model Pattern Selection Pop-up Menu	� GOTOBUTTON _Toc387192758 � PAGEREF _Toc387192758 �52��

Figure 16. Model Type Selection Pop-up Menu	� GOTOBUTTON _Toc387192759 � PAGEREF _Toc387192759 �53��

Figure 17. User Behavior Selection Pop-up Menu	� GOTOBUTTON _Toc387192760 � PAGEREF _Toc387192760 �55��

�

�
Introduction

The Colorado Advanced Software Institute (CASI) in conjunction with USWest has provided a grant to UCCS to work on Resource Allocation and Admission Control Evaluator for Wireless Information Networks (RACEWIN). The initial effort is to provide a user traffic analysis tool for Personal Communications Services (PCS) Wireless Information Networks [1, 2, 3, 4, 5, 6, 7, 8, 20]. This thesis is about this tool, the tool’s design and development and some of the important algorithms which were used in the tool’s implementation.

What is UTMOST?

UTMOST is the name of the tool. The acronym stands for User Traffic MOdelling and Simulation Tool. The tool has a Graphical User Interface (GUI) and is a stand-alone Java Application [10, 11, 12, 13, 14].

�

Figure � SEQ Figure * ARABIC �1�. The UTMOST GUI

The tool shows users as colored dots on a map of sectors. A PCS cell is represented by a hexagon [1, 2, 7, 8, 20]. A sector is one third of a PCS cell. Each hexagon has at its center a base station antenna. This antenna is actually three sector antennae which are directionally aimed. Each sector antenna covers sectors of cells that falls within its 120 degree coverage area. Since the reception power from a mobile station is typically the inverse of its distance to the sector antenna raised to the power of four. Therefore the sectors that are too far from the sector antenna, the signals of a mobile station from those sectors will be lower than a threshold and be too weak to be detected. In this case, the sector antenna is considered to be invisible to the mobile station. Other covered sectors, that are closer to the sector with mobile station signal above the threshold, the sector antenna is said to be visible to the mobile station in the covered sectors.

Each cell has a radius. Currently, in UTMOST, the radius is five kilometers. The radius may be changed by the command line interface (-DRADIUS=4.3) and the network configuration file (setting coordinates at 4.3 radius increments). On the maps, the radius is the same as one of the lines radiating out from a base station (center of hexagon) to the edge of that hexagon.

What is It For? (the models)

UTMOST is a user traffic modeling and simulation tool intended for use with PCS Wireless Information Network (WIN) simulations. The WIN simulations are used to study power and cell assignment algorithms and optimizations. That is, using input data from UTMOST of where mobile users are located at discrete points in time, the WIN simulations would be able to study and optimize power assigned to each user and decide if a new assignment is required. Similarly, channels to which users are assigned may need to change - a channel would be associated with a base station (antenna) and if a particular base station is over loaded, users may be handed off to a nearby antenna.

WIN simulations need to have accurate and realistic user traffic models as generated, for example, by UTMOST because actual PCS networks most commonly handle mobile users who travel from one cell to another, usually by automobile. The PCS WINs must try to optimize handling of mobile users so user calls are not disconnected. That is, WIN simulations are trying to help optimize and ultimately make more reliable all of the PCS networks.

UTMOST generates data of various traffic patterns. These traffic patterns could simulate mobile PCS users moving in automobiles or on foot in geographical regions. For example, along major interstate highways in the U. S., there are a number of antennae which provide PCS coverage. UTMOST would provide user traffic patterns simulating mobile users on the highway. The highway would have a number of sectors providing PCS communication. As users move about the cells and sectors, UTMOST calculates when a users has crossed from one sector to another. Boundary crossing information becomes important to the main switching stations in the WIN - the switching station must figure out if the user needs to be handed off from one antenna to another antenna. In addition to calculating the boundary crosses, UTMOST also provides information about which antennae in the model are visible to the mobile user. That is, since the antennae are directional, only one antenna in a cell can see a user at any time.

UTMOST provides some of the following specific modeling capabilities:

 From one to five thousand mobile users may be modeled.

 A circular seven cell layout and a linear four cell layout patterns are provided.

The circular seven cell model simulates the events where mobile users gather at the central cell, e.g., a football stadium.

The linear four cell model simulates highway traffic.

 Arriving, leaving and random patterns may be selected. The users may start randomly or may start from the perimeter or center of the model.

 Users may be constant in the model or they may regenerate after reaching their destination.

Constant user behavior means that once a user is initialized, that user never changes its identity. That is, if the user travels outside the boundaries of the model, the user just continues on its path, or if the user reaches its destination in the center of the model, the user just stays at the center.

Regenerating user behavior means that once a user reaches its destination, this user is re-initialized. That is, the user is given totally new coordinates, power levels, and direction of travel.

How is It Used? (brief user’s tutorial)

UTMOST is a Java application, so it requires a Java Virtual Machine (JVM) in order to be executed. It has been successfully run on Microsoft’s Win95 and WinNT, Sun’s Solaris, Digital’s Ultrix and SGI’s IRIX operating systems. It requires Java Developer’s Kit (JDK) 1.0.2 or greater version of the JVM. To execute UTMOST, you must be in the directory in which the UTMOST class files are (~racewin/src) and you may need to set the Java CLASSPATH environment variable to include the current directory (“setenv CLASSPATH .” for Unix csh.) To run UTMOST type “java UTMOST”. The window in � REF _Ref386697205 * MERGEFORMAT �Figure 1� should then appear.

Next you may wish to select other initial model settings than the defaults shown. Select the model pattern by pressing the first “Model:” pop-up menu and select “7 Cell” or “4 Cell” cell layout pattern:

�

Figure � SEQ Figure * ARABIC �2�. Model Pattern Selection Pop-up Menu

Now select the type of model you wish to run:

�

Figure � SEQ Figure * ARABIC �3�. Model Type Selection Pop-up Menu

� REF _Ref386527155 * MERGEFORMAT �Table 1� shows the summary of all the pattern and model configurations which UTMOST will allow.

Table � SEQ Table * ARABIC �1�. UTMOST Model Types

Pattern�
Model Type�
Description�
�
7 Cell�
Random Arriving�
Users start from random locations inside the 7 Cell pattern and all move towards the center.�
�
7 Cell�
Edge Arriving�
Users start from the edge (perimeter) of the 7 Cell pattern and all move towards the center.�
�
7 Cell�
Random Leaving�
Users start from random locations inside the 7 Cell pattern and all move towards the outside edge of the model in a straight line from the center.�
�
7 Cell�
Center Leaving�
Users start from the center of the model and all move towards the outside edge of the model in a straight line from the center.�
�
7 Cell�
Random�
Users start from random locations inside the 7 Cell pattern and move in random straight line directions.�
�
4 Cell�
Random Arriving�
Users start from random locations on the horizontal center line of the 4 Cell pattern and all move towards the right.�
�
4 Cell�
Arriving to Right�
Users start from the far left edge of the 4 Cell pattern on the center line of the 4 Cell pattern and all move towards the right.�
�
4 Cell�
Random Leaving�
Users start from random locations on the horizontal center line of the 4 Cell pattern and all move towards the left.�
�
4 Cell�
Arriving to Left�
Users start from the far right edge of the 4 Cell pattern on the center line of the 4 Cell pattern and all move towards the left.�
�
4 Cell�
Random�
Users start from random locations on the horizontal center line of the 4 Cell pattern and move in random left or right directions.�
�

Type in the number of users you wish to be in the model and select the kind of behavior you wish these users to have. Constant means that once a users begins its movement, if it moves outside the pattern or reaches its destination, it doesn’t move. Regenerate means that the user will be regenerated with a completely new set of attributes when it moves outside the pattern boundaries or reaches its destination.

�

Figure � SEQ Figure * ARABIC �4�. User Behavior Selection Pop-up Menu

Once the model has been defined, you may press “Go” to run 1 or more steps. To run more than 1 step, change the “Run steps” number. You may also wish to display any of the following things by pressing the corresponding button:

Table � SEQ Table * ARABIC �2�. Show/Hide Buttons in UTMOST

Button Name�
Description�
�
Show/Hide All Antennae�
The antenna assigned to each user is indicated by a black line from the user to the antenna.�
�
Show/Hide Changed Antennae�
After any step in which a user changes its assigned antenna, a green line will be shown from the user back to its previous assigned antenna and a red line will be shown from the user to its newly assigned antenna.�
�
Show/Hide Changed Power�
Any user whose power has changed will be shown with a red circle around the user dot.�
�
Show/Hide Sector Names�
The sector names will be shown in each sector. A name of 5B means the cell named 5 and sector named B.�
�

What Does It Do? (the files generated)

Every time “Go” is pressed in UTMOST, all users’ data is updated according to their traveling directions and speeds. The current state of each user is stored in an activity data file. If a user crosses a boundary from one sector to another, then an entry for this user is made in the boundary data file. This information includes the exact time and place of boundary crossing. More information about these files may be found in Section � REF _Ref386166997 \n �2.4�.

Focus of This Thesis Report

Initially this report will describe the basic design of UTMOST. Then the report will go more in depth into some of the more interesting algorithms used in the implementation. Finally, the report will describe some thoughts on and possible designs of future UTMOST enhancements.

Boundary Crossing Algorithms

Boundary crossing algorithms are needed to calculate exactly when and where a user crosses a sector boundary to be created. The algorithms involves tracking the sector edges. In UTMOST, the sector edges are maintained in a LineSegment array. The LineSegment class includes the two (x, y) coordinates which define the line segment in addition to the slope (m) and intercept (b) for the line. That is, m and b are the constants in the equation mx + b = y which defines the line on which the two coordinates lie. The application specific addition to this LineSegment class is a two element array of integers. This array is the sectors array which will keep track of the one or two sectors which use or share this line segment.

A user is known to have crossed a boundary when its current sector location is different from its previous sector location. With the LineSegment array to keep track of all edges in the cell layout pattern, the exact boundary which the user crossed may be calculated using a LineSegment method called intersects(). This method will determine the exact point of intersection, too.

One method which will work, but requires intersects() calculations for every single element in the LineSegment array is referred to as the Brute Force method. Intersections are checked for each user movement and each LineSegment in the array. When intersections are found, the time of intersection is found and recorded. The distance from the previous location and the boundary crossing point divided by the traveling speed of the mobile user yields the boundary crossing time from the previous simulation time.

If the current sector and the previous sector are immediate neighbors, then the shared sector edge and the traveling line of the mobile user can be used to the decide the boundary crossing point. That is, only one call to intersects() will be needed. The distance from the previous location and the boundary crossing point divided by the traveling speed of the mobile user yields the boundary crossing time from the previous simulation time. However, a user may cross sector boundaries many times between two simulation steps. This method will not work.

The more optimum method uses the knowledge that a user is traveling at certain direction and must cross an adjacent sector’s line segment to get to its new location. First calculate the four directions from the mobile stations to the four corners of the current sectors. Then check which two corner directions the traveling direction falls between. The selected two sector corners decide the line segment, which the user will cross the sector boundary. The intersection of the selected line segment and the traveling direction line is the boundary crossing point. The distance between the current location and boundary crossing point divided by the traveling speed yields the boundary crossing time relative to that of the last simulation step. Note that the above process will be repeated until the user reach the current sector.

Boundary crossing algorithms also need to handle the special case where the mobile user is traveling along the sector edges. Further discussion of this topic may be found in section � REF _Ref386106155 \n �3�.

Perimeter Placement of Users

One of the models that UTMOST has is the “7 Cell, Edge Arriving” model. This model has all users starting from the perimeter edge of the 7 Cell pattern. To place users in this initial state, UTMOST uses the LineSegment Array to find all sector lines that only have one sector in the sector array. That is, UTMOST finds all lines for sectors which do not share with another sector. Once these edges are found, the users are randomly assigned to one of these edges. Then a random (x, y) location is found on that edge and this location is used for the user’s location. Further discussion of this topic may be found in Section � REF _Ref386157836 \n �4�.

Custom Inside Function

An important piece of user information needed is the current sector location of the user. Every time a user moves, that user may move into a new sector (boundary crossing) or may stay in the same sector. The first approach to calculate the sector location was to use a Java built-in polygon method called inside() [11, 13, 14]. This proved to be insufficient. UTMOST also handles the special case where a user is exactly on an edge of a sector.

During the development of UTMOST, it was quickly learned that the polygon functions based in Java are for on-screen graphics and therefore, only use integer (x, y) coordinates. This was not accurate enough for calculating user locations in UTMOST. Instead, a custom calcInside() method was developed to handle floating point (x, y) and floating point sector coordinates.

Further discussion of calcInside() may be found in Section � REF _Ref386527381 \n �2.9� and in Section � REF _Ref386159100 \n �5�.

Visible Sector Antennae Calculations

One of the attributes of the User class is a visible sectors string. This string is calculated just before user activity data is written out to the activity file. That is, after the user’s next position is calculated, the new user information is used to determine the sector antennae which are now visible to this user. Two approaches were taken to find the visible sectors. Both of them involve figuring out the angle between two lines.

In the first approach, the law of cosines is used to calculate the angle between the user’s location and each of the three lines leaving each base station. The angle made with the visible sectors lines will be less than 120 degrees.

In the second approach, knowledge about the direction in which a base station antenna points (the Sector antenna direction attribute) is used along with the direction of movement from the base station to the user’s location. More discussion of the calcVisibleSectors() method may be found in Section � REF _Ref386159144 \n �2.11� and Section � REF _Ref386159169 \n �6�.

UTMOST Design

This section discusses the design of UTMOST in detail. The classes used to describe the Users, Sectors and other things in the model are discussed as well as some of the more important methods. In addition to this section, you may wish to refer to the actual javadoc documentation found with the source. Javadoc is a Java commenting tool which provides the ability to take in-line block comments from the source and to put these comments into formatted HTML web pages. Javadoc comments are comments in the source that begin with “/**” and end with “*/” That is, there is an extra ‘*’ at the starting block comment token. When the javadoc command is run on the *.java source files, the HTML web pages are created.

Coordinate System Used in UTMOST

All (x, y) coordinates are with (0, 0) located in the upper left corner of the MapArea. This facilitates drawing of objects on a GUI where (0, 0) is located in the same place.

The movement directions of a user or the direction in which an antenna points is as follows:

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �5�. User Movement Directions

Sector Naming Schemes

A cell in UTMOST is the hexagon shape. A sector in UTMOST is one third of a cell and also represents the area covered by one of the three sector antennae. A base station is at the center of each cell. Each Sector has an external name and an internal name. The external name consists of a cell number and a sector letter (A, B, or C), e.g., 4A or 6C. The internal name is an integer number. Below, in � REF _Ref386290934 * MERGEFORMAT �Figure 6�, is the 7 Cell and 4 Cell sector naming schemes used in UTMOST.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �6�. Sector Naming Schemes

All Classes Summarized

This section summarizes the more important classes used in UTMOST.

Before continuing, here are some comments about Java’s Abstract Windowing Toolkit (AWT) and its building blocks [10, 11, 12, 13, 14]. A Frame in Java is the basic application window which contains pull-down menus, the title bar at the top and other traditional window features which most GUI programs have. In terms of Java class hierarchy, most objects in the Java AWT are components. A special type of component is a container; that is, the container class extends or inherits from component class. The Frame object in UTMOST is an instance of the UTMOST class. The UTMOST class has as its components, various Panels like ModelSetup, MapPanel, and UserStats. Some of these Panels have components, too. That is, some of the Panels are not only components of the UTMOST class, they are also container classes holding other Panels or Buttons or other components.

UTMOST

This is the main class in the UTMOST program. One instance of this class is created and shown. All interaction with UTMOST is through this main class and its components.

User

Each user in the model is represented by an instance of the User class. A User array of up to 5000 Users is maintained by UTMOST.

Sector

A PCS cell consists of a base station and three directional antennae. The cell is a hexagon shaped area currently hard coded to have a 5km radius. The three directional antennae break the cell up into sectors. That is, a cell is divided into three parallelograms called sectors. The Sector class represents the parallelogram. An array of Sectors is maintained for the current pattern - 7 Cell or 4 Cell. More information about Sectors may be found in Section � REF _Ref386167373 \n �2.6�.

LineSegment

To facilitate user boundary crossing locations, perimeter locations of users on the model and other things in UTMOST, the LineSegments which make up all sectors in UTMOST are stored in a LineSegment array. A LineSegment is, as its name indicates, a definition of a line segment. It has two (x, y) coordinates and some other straight line definitions maintained like the line’s slope (m) and the line’s y-intercept (b) as used in the mx + b = y representation of a line. More information about LineSegments may be found in Section � REF _Ref386167585 \n �2.5�.

ModelSetup

The ModelSetup class is a Java Panel which controls the model parameters. Selection of model pattern, model type, number of users, behavior of users and zoom factor is done from the ModelSetup Panel.

MapPanel

The MapPanel class is a Java Panel which controls the MapArea and it’s display characteristics. It has at its left, a MapArea. It has at its right, the power legend (colors for users in the MapArea) and some buttons which allow for showing on the MapArea sector names, all assigned antennae, changed antennae and changed user power.

MapArea

The MapArea class is the Java Canvas on which the visual view of the UTMOST model is displayed. A Canvas in Java is a place where drawing may be done. The MapArea is ultimately placed in the MapPanel which is placed in UTMOST Frame for display.

UserStats

The UserStats class is a Java Panel which controls the model execution (“Go” button) and also displays selected user’s current statistics.

Util

This class contains some static utility methods. This class is a Java final class which means that no instances of it may be created and methods in the class may be referred to typing, for example, Util.calcTheta(). This is much like the Java Math class which contains methods like Math.cos(), etc.

DebugLevel

UTMOST prints little or no information to the console as the default. However, at certain times during debug of the program it is helpful to display lots of debug statements. The DebugLevel class provides the switches needed to control how much and what kind of information is displayed during the execution of UTMOST.

One or more of the DEBUG variables may be passed in from the call to the Java virtual machine with the -D option, information will be printed to the Console window and to the window from which UTMOST was started. That is, to call for FLOW_DEBUGGING, start UTMOST as follows:

java -DDEBUG_FLOW UTMOST

The available DEBUG variables are listed below in � REF _Ref386527702 * MERGEFORMAT �Table 3�:

Table � SEQ Table * ARABIC �3� DebugLevel Flags

Debug Flag�
Description�
�
�
The default... No debug statements will be displayed�
�
DEBUG_TIMING�
Show timing information. Currently this doesn't work�
�
DEBUG_TRACE�
Show stack traces. Currently this doesn't work�
�
DEBUG_SECTOR�
Show sector debugging information�
�
DEBUG_FLOW�
Show flow debugging information�
�
DEBUG_MOVE�
Show user movement debugging information�
�
DEBUG_SEGMENT�
Show segment calculations debugging information�
�
DEBUG_INTERSECT�
Show intersection calculation debugging information�
�
DEBUG_USER�
Show misc. user debugging information�
�
DEBUG_VISIBLE�
Show visible sector antennae calculation debugging information�
�
DEBUG_INSIDE�
Show inside sector calculation debugging information�
�

Other Miscellaneous Classes

Below are descriptions of other classes which UTMOST uses but that are not directly related to the main UTMOST design.

Additional Panels and Dialogs

Various hooks have been placed into UTMOST to provide extensions to its current functionality. One of the hooks is a set of properties which may be changed via the “Edit -> Properties...” pull down menu item. The properties that were envisioned were Variables, Files, Users, and Sectors. The Variables panel includes things like cell radius, time increment, and user dot size. The Files panel allowed changes to the activity files path, the boundary files path and the console log file. The Users panel was to allow initial input of user data from a file, instead of using the Model Setup to initialize. The Sectors panel was to allow for the customized setting up of sectors.

None of these panels work in V1.0 of UTMOST - they do display when selected, but the data from these panels is not used.

UTMOST also has some classes which are used to display “About” and “Quit” dialog boxes.

 Borrowed Code (Freeware)

JDK 1.0.2 does not contain floating point formatting like is used in printf statements in C. A class called Format allows a crude but effective way of formatting floating point numbers with various numbers of digits and significant digits. This class is from the book Core Java [13].

The etched boxes around many of the main sections of the UTMOST Frame use classes from David Geary’s book, Graphic Java [11]. These include DrawnRectangle, EtchBox, EtchedRectangle, and Etching classes.

The Files Generated

Once settings for the model are selected, the "Go" button is pressed to initiate 1 or more steps in the model. Two directories are created for each simulation run. An "activity/<date_time_stamp>" directory contains information for each user at each step of the simulation. This directory also contains the sector_data used for this particular simulation run.

Another directory called "boundary/<data_time_stamp>" contains information about any user who has crossed a sector boundary at each step of the simulation. Results from each simulation step are stored in separate files with applicable users reported in that file.

The files in both the "activity/<data_time_stamp>" and the "boundary/<data_time_stamp>" directories are named the number of the step which was executed. That is, step one's results will be in a file called "1", step two's in "2", etc. The files with name “<#> done” are used to indicate a tool has finished generating the data file and allow UTMOST and other tools such as optimization packages and simulators to work together. See � REF _Ref386698893 * MERGEFORMAT �Figure 7�.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �7�. The UTMOST Result Files Hierarchy

<UTMOSTHome> is the directory in which the UTMOST program is found.

<data_time> uses files named YYMMDDHHMMSS of the simulation run.

other_sim_files refers to data which UTMOST may someday read from to interact dynamically with other discrete event simulators.

Detailed description of each file generated or used by UTMOST may be found in the file with the documentation called "datafiles" or in the user's guide. The “datafiles” document is in the appendix in section � REF _Ref386104613 \n �12�. The user’s guide is in appendix in section � REF _Ref386104682 \n �11�.

LineSegment Class

This class is a line segment definition class. That is, the class represents a linear line segment with a starting (x, y) point and an ending (x, y) point. Based on these coordinates, the mx + b = y information is calculated (m is the slope and b is the y intercept). This class also contains a few very key methods used by the UTMOST model. Perhaps most important is the intersects() method. This method will set a User's boundary crossing (x, y) coordinate to the intersection of this line segment with a passed in line segment, if there is an intersection. If there is no intersection, the user's values boundary crossing (x,y) are not changed. This intersect method is used by UserStats' writeBoundaryResults method.

Sector Array

The Sector class contains information about the one third sections of a hexagon cell. The information includes an integer name, an integer corner name, a double (x, y) coordinate representing the base station location for this sector, a direction, radius and range. When an UTMOST pattern is selected, a Sector array is filled with information about all sectors in the current pattern. This is generally read out of the 7_sector_data file or the 4_sector_data file for “7 Cell” and “4 Cell”, respectively.

LineSegment Array

After the Sector array is loaded, this information is used to create the LineSegment Array. The LineSegment Array contains information about every line used to draw the sector patterns in the MapArea. The picture in � REF _Ref386172721 * MERGEFORMAT �Figure 8� shows visually how the LineSegment Array (ln[]) is created. The coordinates of the dark lined sector are stored in the p_x and p_y arrays. By looking at the index of the ln[] array, the order in which the array is built may be seen.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �8�. LineSector Array Initialization

Below is the sequence of events logically that happen to generate the ln[] array. � REF _Ref386172721 * MERGEFORMAT �Figure 8� may help in explaining the logic.

 Sector 0 is analyzed:

 ln[0] is initialized and the LineSegment sector array has it’s first element set to Sector 0.

 ln[1] is initialized and the LineSegment sector array has it’s first element set to Sector 0.

Figure ln[2] is initialized and the LineSegment sector array has it’s first element set to Sector 0.

 ln[3] is initialized and the LineSegment sector array has it’s first element set to Sector 0.

 Sector 1 is analyzed:

 ln[2] is found to already exist in ln[] array and this is the first line in Sector 1. Add Sector 1 as the second element of the LineSegment sector array.

 ln[4] is initialized and the LineSegment sector array has it’s first element set to Sector 1.

 ln[5] is initialized and the LineSegment sector array has it’s first element set to Sector 1.

 ln[6] is initialized and the LineSegment sector array has it’s first element set to Sector 1.

 Sector 2 is analyzed:

 ln[1] is found to already exist in ln[] array and this is the first line in Sector 2. Add Sector 2 as the second element of the LineSegment sector array.

 ln[7] is initialized and the LineSegment sector array has it’s first element set to Sector 2.

 ln[8] is initialized and the LineSegment sector array has it’s first element set to Sector 2.

 ln[4] is found to already exist in ln[] array and this is the last line in Sector 2. Add Sector 2 as the second element of the LineSegment sector array.

All Sectors in the Sectors Array are analyzed in this fashion and thus initializing the LineSegment Array.

calcLength() and calcTheta()

calcLength() and calcTheta() are two Util class methods which perform the geometry calculations for length and theta, respectively. The calcLength() method takes as arguments two (x, y) coordinates and returns the length of the line segment defined by these points. It uses the simple geometric equation for distance between two points [15]:

(((x)2 + ((y)2

The calcTheta() method has two signatures. The first takes as arguments two (x, y) coordinates and a LineSegment. calcTheta() figures out the angle in degrees between the first point (x, y), the second point (bx, by) and the point on the line segment which is not the same as (bx, by). That is, the angle calculated is the angle at the point (bx, by). The second signature of calcTheta() takes as arguments three (x, y) coordinates and finds the angle between the first, second and third points. That is, the angle calculated is the angle at the second point.

To calculate the angle, calcTheta uses the Law of Cosines [16]:

 (a2 + b2 - c2 (

angle C = cos-1 ((((((((((

 (2ab (

Where the triangle is defined as follows in � REF _Ref386162188 * MERGEFORMAT �Figure 9�. a, b, and c are the lengths of the sides and A, B, and C are the angles shown.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �9�. Triangle in Law of Cosines definition.

calcInside()

The MapArea class method, calcInside(), does an inside polygon check using floating point numbers instead of the integer values that the Java AWT Polygon class method inside() uses. The algorithm used in calcInside() is based on the fact that the sum of all angles inside a triangle should equal 180 degrees.

This method is described in detail in section � REF _Ref386097425 \n �5�.

calcCurSector()

This method is part of the MapArea class (it is also called from the User class). To calculate in what sector a given (x, y) coordinate is located, this method creates sector polygons and uses the calcInside() method to figure out if a point is inside that sector. The calcCurSector also uses the onPerimeter() method to check the special cases where a user is located exactly on the lines or on a vertex point defining the sector polygon [15].

calcVisibleSectors()

This method is found in the UserStats class. This method figures out what sector antennae are visible to a given (x, y) coordinate.

This method is described in detail in Section � REF _Ref386174690 \n �6�.

writeBoundaryResults()

This method is in the UserStats class. This method first finds out which boundary the user crossed, where it crossed that boundary and when the cross happened. Once an intersection is found, an entry is made for this user in the boundary output file.

calcNextPosition()

This method is in the User class. This method will compute the next position for the user based on its attributes and the current kind of model. The model type and pattern is passed in as a parameter to calcNextPosition().

Calculations for next position use cosine and sine of an angle to determine the distance traveled. Currently, distance traveled in one time increment is hard coded at 10 second increments. Therefore, 0.0027777 times current move speed will equal the distance traveled (d). Then the new x coordinate of location will equal the old x location plus d times cosine of the move direction, and likewise for y using sine instead of cosine. Note that the above example is the condition for a user moving between 270 and 360 degrees. To handle the other quadrants of user movement, the signs are changed from both additions to appropriate addition and/or subtraction. The diagram in � REF _Ref386527987 * MERGEFORMAT �Figure 10� may help in understanding user movement directions.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �10�. User Movement and Distance Moved Calculations

Boundary Crossing Calculations

As described in the introduction, the LineSegment array is used to assist in finding the exact location where a user crossed from one sector to another - the boundary crossing location. This section will discuss in more detail the two approaches used during the development of UTMOST.

As stated before, the LineSegment class is made up of two (x, y) coordinates, a slope (m), an intercept (b) and a sector array which contains the one or two sectors which use this line in their definition. When it has been determined that a user has crossed a boundary by the fact that its current sector location is different from its previous sector location, the exact location (and time) of the crossing is calculated.

This section will examine the brute force and the thought to be more optimum of finding the boundary cross locations. These methods are implemented in the writeBoundaryResults() and the writeBoundaryResultsOptimum() methods, respectively. The methods may be found in the UserStats class. The methods handle users who cross multiple boundaries in a step and will write multiple lines into the boundary cross files if a user crosses multiple boundaries in a step. The brute force does not guarantee order in the file, but the optimum method will be in order. The optimum method will display a user’s first boundary crossing first, second crossing second, etc.

Both methods use the LineSegment intersects() method. This method solves the two simultaneous linear equations to get the intersection of the two lines. Then the intersection point is checked to see if it is within the bounds of both line segments. Then and only then the segments are deemed to intersect.

Brute Force Calculations

The brute force method creates a LineSegment for the previous to current step’s user movement. Then the algorithm traverses the entire LineSegment array and checks to see if the user movement crossed any of the line segments. If a cross is found the results are written to the boundary cross file. The entire line segment array is traversed, so that any line that has been crossed will be found and recorded.

The pseudo code for this method is as follows:

for each line in LineSegment array {

	if (userMove intersects line) {

		writeBoundaryEntry

 }

}

More Optimum Calculations

In the more optimum algorithm, the LineSegment array is used to find adjacent sectors to the previous sector. The line segments which makes up the current line segment are checked in order. The checks are stopped as soon as the intersecting line segment has been found. Once the line segment which the user’s travel intersects is found, the new adjacent sector variable is set to the adjacent sector to the previous sector. This information is written to the boundary file.

Now the previous sector is set to the new adjacent sector so the loop may begin again. The loop only needs to be performed again if the adjacent sector is NOT equal to the current sector. That is, if the user has crossed more than one boundary the check must be performed again.

When UTMOST must check for a second line segment crossing, it must NOT find the segment it just found. To do this, a simple “crossedLines” array is used to flag any line which has already been crossed. Therefore, for any check, the crossedLines array must first be check to make sure this is a valid line at which to look.

This segment seaching loop continues until the adjacent sector found does indeed match the current sector location of the user.

The pseudo code for this method is as follows:

prevSector is where we start

adjSector is the sector we find we have crossed into

curSector is the ultimate location of the user.

prevSector becomes adjSector before each loop of the while loop.

while not done (done when adjSector is equal to curSector)

	for each line in LineSegment array {

		if this line has not been crossed before

			if this line shares an edge with prevSector

				if (userMove intersects line)

					update crossedLine array

					update adjSector to be sector we

						crossed into.

					writeBoundaryEntry (uses both

						prevSector and adjSector)

					update prevSector = adjSector

				}

			}

		}

	}

}

Timing Comparison of the Algorithms

Ironically, timing tests of the brute force method and the more optimum method show that the brute force method actually works faster!!!

In order to obtain some timing numbers, a debug flag was added to UTMOST which, when encountered, would print a message and a time to the console. The flag was set to print a “started” time at the beginning of the main step for loop in the goButtonAction() method. It was set to print a “completed” at the end of this loop. That is, the timing includes the file I/O and various other system overhead in addition to the updating of the user’s boundary cross data.

Data was collected for the following conditions:

 Optimum (both the improved boundary cross and visible sector algorithms incorporated)

Visible Sectors Optimization Only

 Boundary Sector Optimization Only

No Optimizations (both the old boundary cross and visible sector algorithms were used)

Five runs were completed for each condition above. Each run used 100 Users, Random movement pattern, Regenerating User behaviour and 20 steps per Run. In addition to the random speed assignments given by UTMOST, UTMOST was modified to allow a second set of data to be collected which had each user moving at a very fast 600 km/hour.

The summary results are as follows where the percentages reflect how much faster (or slower if negative!) the method is compared to the no optimization numbers.

Table � SEQ Table * ARABIC �4�. Users Moving at random speeds (slow)

Code Timed�
Total Time�
Avg per Cross Calculation�
�
Optimum�
11%�
1%�
�
Visual Sectors�
9%�
8%�
�
Boundary Cross�
-3%�
-9%�
�
No Optimizations�
0%�
0%�
�

Table � SEQ Table * ARABIC �5�. Users Moving at 600 kph

Code Timed�
Total Time�
Avg per Cross Calculation�
�
Optimum�
7%�
10%�
�
Visual Sectors�
5%�
6%�
�
Boundary Cross�
-3%�
-3%�
�
No Optimizations�
0%�
0%�
�

Since these numbers seem surprising with the Boundary Crossing optimization showing slower performance than the original UTMOST code, some more calculations on the data were performed. The number of boundary crossings at each step were totaled and a number representing the average time taken per crossing was calculated. Then the comparisons were made between using old code and optimized code. Those results may be found in � REF _Ref386540572 * MERGEFORMAT �Table 4� and � REF _Ref386540586 * MERGEFORMAT �Table 5�. These numbers to do not show much more except that the Optimum average time per crossing is insignificantly better when few boundary crossing calculation are needed. That is, the 1% number for average per crossing calculation on the random speed model shows that when users don’t cross boundaries often, the algorithms don’t have much effect!

The thought-to-be-optimum method requires much bookkeeping in order to implement. There are only fiftyone (51) line segments in the 7 Cell pattern. The overhead of the thought-to-be-optimum method is more than the benefit of only performing four intesect method calls. This method, however, may become faster than the brute force method if many more cells are in the model’s pattern.

Perimeter Placement of Users (Initializing)

As described in the introduction, the model “7 Cell, Edge Arriving” requires the initial placement of users to be on the perimeter edges of the 7 Cell pattern. This section will discuss this algorithm in more detail.

The LineSegment array of sector lines is used to find the perimeter edges. An edge line will only have one entry in its sectors array. That is element 0 of the sector will be the only sector which uses the edge and element 1 will still contain its initialized value of -1. A -1 means that this is not a sector. All sectors have integer names equal to or greater than 0. To find all the edge line segments, the LineSegment array is searched and a new array of edgeLines is created.

Once this edgeLines array is filled, users are randomly assigned to an edgeLine. Then using some LineSegment methods, a random point on the line is selected for this user’s initial perimeter location. The methods in LineSegment are: getRandomXPoint() and calcYPoint() for all lines that are not vertical and getX1() and getRandomYPoint() for vertical lines. The methods do pretty much what their names indicate. getRandomXPoint() and getRandomYPoint() will do just that: they will return a random x or a random y point which falls on the line segment. calcYPoint() takes a single argument of x. Given x, the line segment definition of m and b are used to calculate the corresponding y value on this line segment. That is, y is calculated to be mx + b. getX1() is a method which returns the value of x1 where x1 is an attribute of the line segment. When a line is vertical, x1 will equal x2. In other words, all values of x will be the same.

Calculating User’s Sector - calcInside().

As described in the introduction, an important piece of user information needed in UTMOST is the current sector location of a user. During the development of UTMOST, Java’s Polygon class [11, 13, 14] and its inside() method were discovered to be inadequate. In UTMOST, a custom calcInside() method was used instead of the Polygon class and its inside() method.

Problem with JDK AWT Built-in Functions

The Java Polygon class consists of two arrays of coordinates and an integer variable indicating how many points there are. See the Polygon constructor below:

public Polygon(int xpoints[],int ypoints[],int npoints)

Constructs and initializes a Polygon from the specified parameters.

Parameters:

xpoints - the array of x coordinates

ypoints - the array of y coordinates

npoints - the total number of points in the Polygon

The two arrays are for the x and y coordinates respectively. That is, the 0 index of the x array is paired with the 0 index of the y array. The arrays are arrays of integers! This is the main problem with the Polygon class.

Users in UTMOST are represented by an (x, y) coordinate. The coordinate is made up of floating point numbers. Sectors in UTMOST are defined by an (x, y) point representing the base station for that sector, a direction at which the antenna for this sector points, a radius of the cell of which this sector is a part, and the correct offsets from the base station to create the sector. All of the points, radius and offsets are floating point values, also.

In trying to use the built-in Java Polygon class, the coordinates are converted to integer values. The conversion introduced error which caused some users boundary cross to be discovered at the wrong execution (Go) step of the model. Boundary crossings from one sector to another must be found in the modeling step in which they happen. This is why the calcInside() method needed to be developed.

UTMOST Implementation

The MapArea class method, calcInside(), does an inside polygon check using floating point numbers instead of the integer values that the Java AWT Polygon class method inside() uses. The algorithm used in calcInside() is based on the fact that the sum of all angles inside a triangle should equal 180 degrees.

First a sector is divided into two triangles. The first triangle uses the first three points in the polygon defining the sector. That is, the 0th, 1st and 2nd points of the polygon definition array are used. The second triangle is the 2nd, 3rd and 4th points of the polygon. Then, using the same algorithm on each triangle, all of the inside angles are calculated as shown in � REF _Ref386157479 * MERGEFORMAT �Figure 11�. If point (x, y) is inside the triangle, the sum of A through F angles will be 180 degrees.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �11�. Triangle Angles for calcInside() Method.

If (x, y) is outside the triangle, the sum of A through F will be greater than 180 degrees. A point outside the triangle would look like � REF _Ref386157520 * MERGEFORMAT �Figure 12�.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �12�. Triangle with (x, y) Outside the Triangle.

Determining Visible Sector Antennae

There were two ways that this method was implemented. One uses no knowledge about the sectors antenna direction and performs three calcTheta() calls. The second only does not use calcTheta but uses the Util.getDirection() method and uses the knowledge about a sector’s antenna direction (Sector.getDirection() method). The calcVisibleSectors() and calcVisibleSectorsOptimum() methods may be found in the UserStats class.

Method Which Uses Three calcTheta() Calls

The first is done by calculating visible sector antennae to a user by using the base station coordinates and the sector lines which share the base station locations. That is, given a base station (bx, by) coordinate, there are three line segments which project out from this point. Then, using the line from the user coordinate (x, y) and the base station (bx, by) and each of the three base station line segments, the angle made is calculated. The sector antenna which is visible to the user is the sector antenna who owns the two lines which have an angle with the point (x, y) which is less than 120 degrees. See � REF _Ref386179290 * MERGEFORMAT �Figure 13�.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �13�. Visible Sector Antennae Angles.

Method Which Uses One calcTheta() Call

The second method for calculating visible sector antennae uses the knowledge of the antenna direction and then the direction that this user is in relation to the base station. This method depends on the sector anntena's direction and the angle from the base station to the point (x,y). It does not use the Law of Cosines.

A sector's direction attribute indicates the center of the 120 degree range of the sector antenna. This means the range visible by the sector antenna is from (direction - 60 degrees) to (direction + 60). Calculating the direction from base station to (x, y) can be done by just calling the user Util.getDirection() method.

Timing Comparison of the Algorithms

Summary timing results are displayed in � REF _Ref386540572 * MERGEFORMAT �Table 4� and � REF _Ref386540586 * MERGEFORMAT �Table 5� in Section � REF _Ref386541445 \n �3.3�.

There does seem to be a significant (albeit small) improvement in performance using the optimized algorithm. The data was collected in the same manner and at the same time as the timing date for the boundary cross algorithms. The descriptions in Section � REF _Ref386541575 \n �3.3� will not be repeated here.

Anytime many sine, cosine, or other multiplication or division calculations can be removed from a piece of code, then there should measurable be performance improvements!

Lessons Learned

This was the first large GUI application the author designed and implemented. The task has been most rewarding and interesting. The author feels much more comfortable with the design and implementation of fairly complex user interfaces. The author gained very broad knowledge of the Java programming language and became much more proficient in object oriented design and implementation.

Floating Point Equivalence

Perhaps the most difficult and embarrassing lesson learned is that computers have trouble equating one floating point number to another. That is, saying that a double variable x is equivalent to 180 is not as easy as coding (x = = 180). Instead, a Util.isEquiv() method needed to be implemented which would return true if the first passed in floating point number was really, really close to the second passed in number. This fixed many boundary case errors, which were in the UTMOST code. The boundary case code was in UTMOST, but almost never got called because of the inaccuracy of “= =” with floating point numbers.

Graphics vs. Modeling, or Integer vs. Floating Point

Graphics packages like the one that the JDK AWT provides may be based on integer coordinate systems [15]. This is certainly good enough for displaying objects on a video monitor since there are finite pixels in the screen. UTMOST is a modeling tools for physical user movements and physical placements of sectors, cells and antennae. This requires a floating point number coordinate system. This put limitations on how the author could use the built-in AWT methods for manipulating and calculating user movements, boundary crossings, and sector locations. In particular the calcInside() method was developed because the class Polygon’s inside() method was based on integer coordinates.

Linear Algebra Implementations

Much of the user movement, the sector placement and various other calculations used in UTMOST was based on linear relationships and geometric theorems. In particular, user movements were modeled as linear motion in UTMOST. This means a computer implementation of mx + b = y needed to be generated in addition to figuring out distances traveled in a unit of time along a given direction. Also, computing the relationship between a mobile user and a base station requires implementing theta calculations based on the Law of Cosines and using results to calculate visible sector antennae or current sector location of a user.

Java

Java has turned out to be a very powerful language even though it is still suffering from some immaturity in its design. The entire UTMOST program has been written in Java. Java had enough class library features to allow creation of a fairly complex GUI and all the underlying mathematical calculations. Because of its infancy, printing current screen was omitted from UTMOST. The JDK 1.1 code is commented out in the UTMOST class which would enable the “Print...” capabilities.

Also, the way that the panels communicate with one another was probably not done in the most object oriented design way - all panels maintained a reference to the UTMOST Frame object. This top level UTMOST class is where the user array, the sector array, the line segment array and various other variables reside. With the JDK 1.1, a totally new event handling mechanism is implemented where any panel may monitor events which may originate outside its bounds. That is, if a button was pushed in the UserStats panel, the MapArea may be able to react to that event. This new event handling is done largely via EventListeners. According to a Java instructor, rather than put up with shortcomings of the old event handling (JDK 1.0.2 and older), the designers of Java just rewrote the entire thing [17].

Implementation Performed on Various Platforms

Development of UTMOST was done primarily on two machines. One was a Pentium PC running Microsoft’s Windows 95, the other was a SPARC running Sun Microsystem’s Solaris 2.5.1 and 2.6 (beta version). Often, bytecode class files were ftp-ed from one platform to the other and no re-compiles were performed. The class files executed just fine when moved from one machine to the other. This is the much publicized power of Java.

Not Yet Totally Platform Independent (Java Beans?)

Moving compiled byte code from one machine to another usually worked just fine, however there are still some subtle differences which may be noticed. For example, the Power Legend which appears on the MapPanel displays the colored dots at differently on a PC than on a SPARC. Also the behavior (in JDK 1.0.2) of Dialogs in PC’s sometimes work different on SPARC’s. When a dialog is displayed, control is not always returned to the calling program when a “Cancel” or “OK” button is pressed.

Future Directions and Thoughts on Enhancements

This section discusses various areas where UTMOST may be extended, improved or enhanced.

Extending the Number of Cells

There are two dimensions to extending the number of cells. One is orientation and one is number of cells. First, this section discusses what may be done to handle orientation. Second, this section discusses number of cells extensibility.

Currently sectors are placed by knowing a base station location for the sector and knowing that sector’s internal number. This number is divided by mod 3 to figure out which direction the sector needs to face. In order to face sectors in different orientations, the direction attribute of the sector may be used instead to place sectors.

The number of cells is not restricted by the sector file definition, but instead it is restricted by the 4 cell and 7 cell switches found throughout the code. At one time during the development of UTMOST, a 5 cell linear pattern datafile was created. The code was changed to read this file instead of the 4_sector_data file. The 5 cells were drawn correctly with the existing code. There were some problems executing the user traffic modeling steps. These should not be too hard to fix.

Providing Overlays of Wireless Subnetworks (Hexagons in Hexagons)

Based on the observations in the previous section and based on the another piece of information which is used to draw sectors, handling wireless overlays on top of or in place of the current 5km sized cells may be possible. The other piece of information is that sectors are drawn with only knowledge of the base station as mentioned in the previous section and a radius of the cell. This radius parameter may be used to adjust the sizes of sectors drawn. The only problem with the overlay of smaller cells is that sufficient overlap with the larger adjacent cells will be required since hexagon patterns do not subdivide like squares or triangles.

Interfacing to POCAT and RACESIM (Files to Sockets)

All of the interfacing and updating of user data based on POCAT or RACESIM discrete simulation tools is done via files. Empty files called <step#>done are used to signify to all of the tools that a step has been completed and results may be read. The location of this interfacing code in UTMOST is at the end of the goButton() method in the UserStats class.

In order to move towards a socket based model, this file interface code would be replaced with socket code. There would need to be a protocol to clearly define the data sent and received on the sockets. Instead of waiting for an entire step to be completed, it may be possible to perform simulation that communicate the results one user at a time.

Overlay on GIS Maps

Java has very good graphical features which would allow insertion of GIS maps in the background. The maps would most likely be read from one of the many GIS databases. Specific road and geological features could be read. One source of information is the U.S. Geological Survey’s National Cooperative Geologic Mapping Program [18]. Another is the TIGER/Line (TM) Files from the U.S. Department of Commerce [19].

Customizing User Travel Patterns

Since a user’s travel is calculated each step, the direction in which a user is moving may be changed each step. This would still result in linear movement from one step to another, but given small enough time increments for each step, virtually any travel pattern may be simulated.

References

FCC, “Amendment of the Commission’s Rules to Establish New Personal Communications Services,” GEN Docket No. 90-314, Oct. 22, 1993.

Mischa Schwartz, “Network Management and Control Issues in Multimedia Wireless Networks,” IEEE Personal Communications, Vol. 2, No. 3, June 1995, pp. 8-16.

Leung, Kin K., “Traffic Models for Wireless Communications Networks,” IEEE JSAC, Vol. 12, No. 8, Oct. 1994.

Miltiades E. Anagnostou, G. C. Manos, “Handover Related Performance of Mobile Communication Networks,” Proceedings of IEEE 44th Veh. Tech. Conf., VTC 94, pp. 111-114.

Djamal Zeghlache, “Aggressive Handover Algorithm for Mobile Networks,” Proceedings of IEEE 44th Veh. Tech. Conf., VTC 94, pp. 87-90.

Rajiv Vijayan and J. M. Holtzman, “A Model for Analyzing Handoff Algorithms,” IEEE Trans. On Vehicular Technology, August, 1993.

Lon-Rong Hu and S. S. Rapport, “Personal Communications Systems Using Multiple Hierarchical Cellular Overlays,” IEEE JSAC, Vol. 13, No. 2, Feb. 1995, pp. 406-415.

Chih-Lin I, L. J. Greenstein, and R. D. Gitlin, “A Microcell/Macrocell Cellular Architecture for Low- and High-Mobility Wireless Users,” IEEE JSAC, Vol. 11, No. 6, Aug. 1993, pp. 885-891.

Katzela, I. and M. Naghshineh, Channel Assignment Schemes for Cellular Mobile Telecommunication Systems: A Comprehensive Survey, IEEE Personal Communications, June 1996, pp. 10-31

Lemay, Laura and Charles L. Perkins, Teach Yourself Java in 21 Days, Sams.net Publishing, 1996

Geary, David M. and Alan L. McClellan, Graphic Java - Mastering the AWT, The Sunsoft Press, 1996

Jackson, Jerry R. and Alan L. McClellan, Java By Example, The Sunsoft Press, 1996

Cornell, Gary and Cay S. Horstmann, Core Java, 2nd Edition The Sunsoft Press, 1997

van der Linden, Peter, Just Java, 2nd Edition, The Sunsoft Press, 1997

Foley, James D., et. al. Computer Graphics, Principles and Practice, 2nd edition, 1990, Addison-Wesley Publishing Company, Inc.

Hodgman, Charles D., Mathematical Tables from Handbook of Chemistry and Physics, 7th edition, 1941, Chemical Rubber Publishing Co. Cleveland, Ohio.

Heller, Paul, Instructor for an advanced Java programming class offered by Sun Microsystems in Denver, March 3 - 8, 1997.

Web Page: National Geologic Map Database, USGS, National Cooperative Geologic Mapping Program, National Geologic Mapping Act of 1992.

Brown, Ronald H, et. al. TIGER/Line (TM) Files, 1992, Technical Documentation, Washington, D. C. 1993, U. S. Department of Commerce.

Lee, William C. Y., Mobile Cellular Telecommunications, 2nd Edition, McGraw-Hill, Inc., 1995

Appendix 1: Man Page for UTMOST

NAME

	utmost - User Traffic MOdeling and Simulation Tool.

SYNOPSIS

	java [-D <DEBUG_LEVEL>] utmost

DESCRIPTION

	The utmost command starts the UTMOST tool. The tool may be

	started using one or more debug directive which will print various

	debug and diagnostic information to the console.

	UTMOST is a user traffic modeling and simulation tool intended for

	PCS Wireless Information Network simulations. The tool generates

	data for various traffic patterns. From one (1) to five thousand

	(5000) mobile users may be modeled.

	A seven cell circular pattern and a four cell linear pattern are

	provided. The seven cell circular model simulates the events

	where mobile users gather at the central cell (e.g. a football

	stadium). The four cell linear model simulates highway traffic.

	Arriving, leaving and random patterns may be selected. The users

	may start randomly or may start from the perimeter or center of

	the model. Users may be constant in the model or they may

	regenerate after reaching their destination.

	Constant user behavior means that once a user is initialized,

	that user never changes its identity. That is, if the user travels

	outside the boundaries of the model, the user just continues on

	its path, or if the user reaches its destination in the center of

	the model, the user just stays at the center.

	Regenerating user behavior means that once a user reaches its

	destination this user is re-initialized. That is, the user is

	given totally new coordinates, power levels, and direction

	of travel.

	Once settings for the model are selected, the "Go" button is

	pressed to initiate 1 or more steps in the model. Two directories

	are created for each simulation run. An

	"activity/<date_time_stamp>" directory contains information for

	each user at each step of the simulation. This directory also

	contains the sector_data used for this particular simulation run.

	Another directory called "boundary/<data_time_stamp>" contains

	information about any user who has crossed a sector boundary at

	each step of the simulation. Results from each simulation step are

	stored in separate files with applicable users reported in that

	file.

	The files in both the "activity/<data_time_stamp>" and the

	"boundary/<data_time_stamp>" directories are named the number of

	the step which was executed. That is, step one's results will be

	in a file called "1", step two's in "2", etc...

	Below is a visual description of the file hierarchy:

 <UTMOSTHome>

 / \

 / \

 / \

 utmost_files other_sim_files

 / \ / \

 / \ / \

 / \ / \

 activity boundary chan_assign racesim

 /\ /\ /\ /\

 /... \ /... \ /... \ /... \

 / \ / \ / \ / \

 <date_time> <date_time> <date_time> <date_time>

 /\ /\ /\ /\

 /... \ /... \ /... \ /... \

 / \ / \ / \ / \

 <step#> <step#> <step#> <step#>

 <#>done <#>done <#>done

 sector_data

Where,

 utmost_files, other_sim_files, activity, boundary, chan_assign, and

 racesim are hard coded pathnames. other_sim_files, chan_assign, and

racesim are not part of UTMOST at this time. They are results from other

discrete event simulators.

 	<UTMOSTHome> is the path to the UTMOST class files e.g. ~racewin/src.

 	<date_time> is a YYMMDDHHMMSS date time stamp, e.g. 970222160528.

 	<step#> is the current step in the simulation.

 	<#>done is an empty file created after the <step#> file has been closed.

 	sector_data is a file created with this run's sector data information.

 /\

 /... \ means there are 1 or more files at this level with naming

 / \ conventions based on information in angle brackets (<>)

 e.g. <date_time> as described above.

	Detailed description of each file generated or used by UTMOST may

	be found in the file with the documentation called "datafiles" or

	in the user's guide.

	

OPTIONS

	The following options to the "java utmost" command are supported:

	-D <DEBUG_LEVEL>

		DEBUG_LEVEL specifies which debug statements are printed to

		the console. The following DEBUG_LEVEL's are supported:

			DEBUG			shows all debug comments

			DEBUG_ALL		shows all debug comments

			DEBUG_SECTOR	shows the sector initialize

						comments

			DEBUG_FLOW		shows some general program flow

						comments

			DEBUG_MOVE		shows some information on

						calculating initial 7 cell

						arrive directions and general

						next position calculations

			DEBUG_SEGMENT	shows segment setup comments

			DEBUG_INTERSECT	shows intersection flow comments	

			DEBUG_USER		shows user update comments

			DEBUG_VISIBLE	shows info about calculating

						the visible sector antennae to a user

			DEBUG_INSIDE	shows info about the polygon inside

						function.

SEE ALSO

	The UTMOST User's Guide; the "datafiles", 4_sector_data, and

	7_sector_data files in the UTMOST Documentation directory.

	(4_sector_data and 7_sector_data should also be in the

	<UTMOST_HOME> directory)

AUTHOR

	M. Heidi McClure, University of Colorado, Colorado Springs,

	who may be reached at mhmcclur@elbert.uccs.edu or at

	heidi.mcclure@sun.com.

HISTORY

	Initial release: 7 Apr 1997

	Latest revision: 24 Apr 1997

Appendix 2: User’s Guide

What’s Needed?

Because UTMOST is a Java application it should run on any machine which has a Java Virtual Machine (JVM). That is, it should be able to be executed on a PC running Windows 95 or Windows NT, a Macintosh, a UNIX machine or an OS/2 machine as long as the machine has the JVM installed. To learn more about Java, go to the Sun Microsystems’ JavaSoft home page: http://java.sun.com/.

Java Developer’s Kit (JDK) 1.0.2 is the minimum version on which UTMOST will run. UTMOST has also been tested on more recent versions including JDK 1.1 and beta version of JDK1.1.1. UTMOST does not follow the new event handling paradigm introduced in JDK1.1. However, because of back version compatibility, it will still compile and execute on the newer JDK version.

The files needed for UTMOST are displayed in � REF _Ref386536535 * MERGEFORMAT �Table 6�.

Table � SEQ Table * ARABIC �6� Files Required by UTMOST

File Name�
Description�
�
4_sector_data�
The 4 cell pattern description file�
�
7_sector_data�
The 7 cell pattern description file�
�
AboutBox.class�
AboutBox Dialog byte code�
�
AboutBox.java�
AboutBox Dialog source code. This give information about the UTMOST tool.�
�
ColorCanvas.class�
The canvas on which color legend goes. See Legend.java for source�
�
ColorRange.class�
Color range object byte code.�
�
ColorRange.java�
Color range object source code. This is used by the Legend class.�
�
Console.class�
Console Dialog byte code�
�
Console.java�
Console Dialog source code�
�
DebugLevel.class�
DebugLevel byte code�
�
DebugLevel.java�
DebugLevel source - used for displaying debug messages to the console.�
�
DrawnRectangle.class�
DrawnRectangle byte code�
�
DrawnRectangle.java�
DrawnRectangle source which will draw a Rectangle. Code from Graphic Java Book�
�
EtchBox.class�
EtchBox byte code�
�
EtchBox.java�
EtchBox source which will create an etched box. This is used to draw an etched box around a component and place a title in the top center of the box. Code from Graphic Java Book�
�
EtchedRectangle.class�
Etched Rectangle byte code. �
�
EtchedRectangle.java�
Etched Rectangle source code. This creates a rectangle with etched edges. Code from Graphic Java Book�
�
Etching.class�
Etching byte code. �
�
Etching.java�
Etching source code. Etching creates an etched line effect. Code from Graphic Java Book�
�
FilesPanel.class�
FilesPanel byte code.�
�
FilesPanel.java�
FilesPanel is a panel for changing files from which various things are read. Is a component of the PropertySettings class. Currently does nothing.�
�
Format.class�
Format byte code. Code from Core Java Book�
�
Format.java�
Format source code. Format allows printf type formatting of output data. Code from Core Java Book�
�
Legend.class�
Legend byte code.�
�
Legend.java�
Legend source code. Legend is the Power Legend which shows user’s color - power relationship.�
�
LineSegment.class�
LineSegment byte code.�
�
LineSegment.java�
LineSegment source code. This is an object which represents a simple line segment.�
�
MapArea.class�
MapArea byte code.�
�
MapArea.java�
MapArea source code. The MapArea is the canvas on which the patterns and users are drawn.�
�
MapPanel.class�
MapPanel byte code.�
�
MapPanel.java�
MapPanel source code. MapPanel is the container class which contains the MapArea, the Legend and the 4 buttons for showing different things.�
�
ModelSetup.class�
ModelSetup byte code.�
�
ModelSetup.java�
ModelSetup source code. ModelSetup is the top portion of UTMOST where various selections may be made which define the current model.�
�
PropertySettings.class�
PropertySettings byte code.�
�
PropertySettings.java�
PropertySettings source code. PropertySettings contains the 4 customizing panels, UserPanel, SectorPanel, VariablesPanel and FilesPanel. Currently just shows these panels and nothing more.�
�
QuitBox.class�
QuitBox byte code.�
�
QuitBox.java�
QuitBox Dialog source code. This gives the “Yes” or “No” option for quitting.�
�
Sector.class�
Sector byte code.�
�
Sector.java�
Sector source code. Sectors are the 1/3 part of a cell.�
�
SectorsPanel.class�
Sectors Panel byte code.�
�
SectorsPanel.java�
SectorsPanel is a panel for changing or creating on the fly the sector properties. It is a component of the PropertySettings class. Currently does nothing.�
�
User.class�
User byte code.�
�
User.java�
User source code. A user has information like speed and direction of movement.�
�
UsersPanel.class�
UsersPanel byte code.�
�
UsersPanel.java�
UsersPanel is a panel for changing various user properties. It is a component of the PropertiesSetting class. Currently does nothing.�
�
UserStats.class�
UserStats byte code.�
�
UserStats.java�
UserStats source code. UserStats is the bottom portion of UTMOST where a selected (clicked on) user’s data may be displayed. This is also where the Model Control is (Go Button).�
�
Util.class�
Util byte code.�
�
Util.java�
Utility source code. This is where primarily the algebraic and geometric common functions are located.�
�
UTMOST2.class�
UTMOST2 byte code.�
�
UTMOST2.java�
UTMOST2 source code is where the main() method is.�
�
VariablesPanel.class�
VariablesPanel byte code.�
�
VariablesPanel.java�
VariablesPanel is a panel for changing various variables. It is a component of the PropertiesSetting class. Currently does nothing.�
�

To execute UTMOST, you must be in the directory in which the UTMOST class files are (~racewin/src) and you may need to set the Java CLASSPATH environment variable to include the current directory (“setenv CLASSPATH .” for UNIX csh.) To run UTMOST type “java UTMOST”. The window in � REF _Ref386536770 * MERGEFORMAT �Figure 14� should then appear.

�

Figure � SEQ Figure * ARABIC �14�. The UTMOST GUI

What’s This?

This section describes what the various screens, buttons and options in UTMOST do. Refer to the previous section to get UTMOST up and running. Once it’s running you will see the main UTMOST screen (� REF _Ref386536770 * MERGEFORMAT �Figure 14�).

Next you may wish to select other initial model settings than the defaults shown. Select the model pattern by pressing the first “Model:” pop-up menu and select “7 Cell” or “4 Cell” pattern:

�

Figure � SEQ Figure * ARABIC �15�. Model Pattern Selection Pop-up Menu

Now select the type of model you wish to run:

�

Figure � SEQ Figure * ARABIC �16�. Model Type Selection Pop-up Menu

� REF _Ref386527155 * MERGEFORMAT �Table 1� shows the summary of all the pattern and model configurations which UTMOST will allow.

Table � SEQ Table * ARABIC �7� UTMOST Model Types

Pattern�
Model Type�
Description�
�
7 Cell�
Random Arriving�
Users start from random locations inside the 7 Cell pattern and all move towards the center.�
�
7 Cell�
Edge Arriving�
Users start from the edge (perimeter) of the 7 Cell pattern and all move towards the center.�
�
7 Cell�
Random Leaving�
Users start from random locations inside the 7 Cell pattern and all move towards the outside edge of the model in a straight line from the center.�
�
7 Cell�
Center Leaving�
Users start from the center of the model and all move towards the outside edge of the model in a straight line from the center.�
�
7 Cell�
Random�
Users start from random locations inside the 7 Cell pattern and move in random straight line directions.�
�
4 Cell�
Random Arriving�
Users start from random locations on the horizontal center line of the 4 Cell pattern and all move towards the right.�
�
4 Cell�
Arriving to Right�
Users start from the far left edge of the 4 Cell pattern on the center line of the 4 Cell pattern and all move towards the right.�
�
4 Cell�
Random Leaving�
Users start from random locations on the horizontal center line of the 4 Cell pattern and all move towards the left.�
�
4 Cell�
Arriving to Left�
Users start from the far right edge of the 4 Cell pattern on the center line of the 4 Cell pattern and all move towards the left.�
�
4 Cell�
Random�
Users start from random locations on the horizontal center line of the 4 Cell pattern and move in random left or right directions.�
�

Type in the number of users you wish to be in the model and select the kind of behavior you wish these users to have. Constant means that once a users begins its movement, if it moves outside the pattern or reaches its destination, it doesn’t move. Regenerate means that the user will be regenerated with a completely new set of attributes when it moves outside the pattern boundaries or reaches its destination.

�

Figure � SEQ Figure * ARABIC �17�. User Behavior Selection Pop-up Menu

Once the model has been defined, you may press “Go” to run 1 or more steps. To run more than 1 step, change the “Run steps” number. You may also wish to display any of the following things by pressing the corresponding button:

Table � SEQ Table * ARABIC �8� Show/Hide Buttons in UTMOST

Button Name�
Description�
�
Show/Hide All Antennae�
The antenna assigned to each user is indicated by a black line from the user to the antenna.�
�
Show/Hide Changed Antennae�
After any step in which a user changes its assigned antenna, a green line will be shown from the user back to its previous assigned antenna and a red line will be shown from the user to its newly assigned antenna.�
�
Show/Hide Changed Power�
Any user whose power has changed will be shown with a red circle around the user dot.�
�
Show/Hide Sector Names�
The sector names will be shown in each sector. A name of 5B means the cell named 5 and sector named B.�
�
Model Scenarios

The multiple models available in UTMOST were described in the previous section. See � REF _Ref386536936 * MERGEFORMAT �Table 7� for the complete set of models. This section discusses briefly what the different models may mean.

The 7 Cell pattern is intended to represent mobile users arriving at or leaving an event like a football game. It may also be used as just a circular random pattern. Generally, the random arriving and random leaving are not part of this football game model, but were included in UTMOST because they may prove useful to represent a city at morning or evening rush hours.

The 4 Cell pattern is intended to represent mobile users moving along a highway. The random initial setups are probably most realistic for this kind of model. The users would start at points spread out along the entire stretch of highway. They may all be arriving or leaving for a rush hour simulation or they may be just randomly going in either direction. Similar to the 7 Cell model there are patterns which may or may not be useful. These are arriving and leaving patterns where all users start on the far left or the far right, respectively.

What Happens?

When “Go” is pressed, a model is initiated (or continued). Each user in each step is recorded in a file as described in Section � REF _Ref386104613 \n �12�, the data file description appendix.

What Doesn’t Happen?

The Edit -> Properties pull down option does nothing more than show the properties dialog (PropertySettings object). A future enhancement to UTMOST would be to hook up all of these options so they do something.

UTMOST doesn’t read from any discrete event simulator files at this time. This code would be placed in the goButtonAction() method in the UserStats source file. That is, after the Go button has been pressed, each user would be updated, then UTMOST would wait until the designated discrete event simulator completed its work. Then UTMOST would update each user by reading in the new set of User data as needed.

Appendix 3: Definition of Data File Formats

UTMOST Project

M. Heidi McClure

4/14/97

==

Datafiles created by or used by UTMOST

This document describes

 1) the files used by UTMOST to draw sectors,

 2) the files that UTMOST creates,

 3) the files that Channel Assignment Simulator creates,

 4) the expected places in which UTMOST will write files, and

 5) the places in which UTMOST will look for discrete simulation results.

==

Directory trees

 <UTMOSTHome>

 / \

 / \

 / \

 utmost_files other_sim_files

 / \ / \

 / \ / \

 / \ / \

 activity boundary chan_assign racesim

 /\ /\ /\ /\

 /... \ /... \ /... \ /... \

 / \ / \ / \ / \

 <date_time> <date_time> <date_time> <date_time>

 /\ /\ /\ /\

 /... \ /... \ /... \ /... \

 / \ / \ / \ / \

 <step#> <step#> <step#> <step#>

 <#>done <#>done <#>done

 sector_data

Where,

 utmost_files, other_sim_files, activity, boundary, chan_assign, and

 racesim are hard coded pathnames. other_sim_files, chan_assign, and

racesim are not part of UTMOST at this time. They are results from other

discrete event simulators.

 <UTMOSTHome> is the path to the UTMOST class files e.g. ~racewin/src.

 <date_time> is a YYMMDDHHMMSS date time stamp, e.g. 970222160528.

 <step#> is the current step in the simulation.

 <#>done is an empty file created after the <step#> file has been closed.

 sector_data is a file created with this run's sector data information.

 /\

 /... \ means there are 1 or more files at this level with naming

 / \ conventions based on information in angle brackets (<>) e.g.

 <date_time> as described above.

Each <step#> file contains information about all users at that current step.

In some cases, like in boundary data, there may be no information. The file

should still be created, but will have nothing in it.

<#>done files are only created in the activity directories.

sector_data files are only created in the activity directories. These files

are currently just a copy of the 7_cell or 4_cell data used to draw this model's

sectors.

Below are the definitions for the sector, activity, boundary and chan_assign

data files.

==

==

UTMOST 4_sector_data file:

sector:		The sector number

 cell: Calculate by (sector/3)+1

 csect: Calculate by (sector%3)+1

secloc:		The direction at which this sector is located with respect

		to the center base station location.

centerX:	The x coordinate in km at which the base station for this

		cell is located.

centerY:	The y coordinate in km at which the base station for this

		cell is located.

mult:		The basestation radius multiplier for this sector:

		radius * mult = range

noise:		The receiver noise at the base station.

smooth:		The smoothing weight for sector k.

cpcity:		The hard capacity of a sector.

Eb/N0:		The minimum Eb/N0 requirement at sector k.

sector secloc centerX centerY mult noise smooth cpcity Eb/N0

k (K) degrees (5km radius) sigma wk C Ek

===

0 150 4.33 5.0 3.0

1 30 4.33 5.0 3.0

2 270 4.33 5.0 3.0

3 150 12.99 5.0 3.0

4 30 12.99 5.0 3.0

5 270 12.99 5.0 3.0

6 150 21.65 5.0 3.0

7 30 21.65 5.0 3.0

8 270 21.65 5.0 3.0

9 150 30.31 5.0 3.0

10 30 30.31 5.0 3.0

11 270 30.31 5.0 3.0

==

==

UTMOST 7_sector_data file: (definitions of columns same as 4_sector_data file)

sector secloc centerX centerY mult noise smooth cpcity Eb/N0

k (K) degrees (5km radius) sigma wk C Ek

===

0 150 8.66 5.0 3.0

1 30 8.66 5.0 3.0

2 270 8.66 5.0 3.0

3 150 17.32 5.0 3.0

4 30 17.32 5.0 3.0

5 270 17.32 5.0 3.0

6 150 4.33 12.5 3.0

7 30 4.33 12.5 3.0

8 270 4.33 12.5 3.0

9 150 12.99 12.5 3.0

10 30 12.99 12.5 3.0

11 270 12.99 12.5 3.0

12 150 21.65 12.5 3.0

13 30 21.65 12.5 3.0

14 270 21.65 12.5 3.0

15 150 8.66 20.0 3.0

16 30 8.66 20.0 3.0

17 270 8.66 20.0 3.0

18 150 17.32 20.0 3.0

19 30 17.32 20.0 3.0

20 270 17.32 20.0 3.0

==

==

UTMOST Activity Files

step:		The step at which the numbers were calculated in the model. (will

 be same as file name)

user:		The user ID.

x:		 The current X coordinate for user X (km).

y:		 The current Y coordinate for user Y (km).

speed:		The current speed of user (kph).

dir:	 The current direction at which user is moving (degrees). 999 for

 not moving.

time:		The time stamp for current step in seconds.

xmit: The current transmit power of user (0 if phone is off)

calling: Is the user currently calling, roaming, or just driving? (C, R, D

 respectively. Note if D, xmit must = 0. If D, but speed = 0, then

 user isn't moving and doesn't have phone on.)

antenna: Is the sector whose antenna is currently servicing this user.

sector:		Is the sector in which user currently is located. (Note that Out

 means the user is currently not located inside the model

 boundaries. Hopefully in more final versions of UTMOST there

 will be no users Out of model... they will be recycled back into

 the model.)

crossed:	Indicates user has crossed 1 or more boundaries this step.

visible sectors: Sectors in model which can be seen by this user based on

 directional antennae.

 c a c

 a n s r

 s l t e o

 p k l e c s

 step user x y e p dir time xmit i n t s visible sectors

 i (km) (km) e h (deg) (sec) (W) n n o e

 d g a r d

==

 7 0 23.47 16.65 20 37.15 70 0.03 R 5C Out N 1C 2C 3B 4B 5C 6B 7B

 7 1 18.56 8.52 101 8.80 70 1.23 R 2C 2C N 1B 2C 3B 4B 5A 6B 7B

 7 2 18.07 12.06 144 268.95 70 0.51 D 5A 5A N 1C 2C 3B 4B 5A 6B 7B

 7 3 21.75 16.09 105 242.27 70 1.41 C 5C 5C N 1C 2C 3B 4B 5C 6B 7B

 7 4 21.00 4.12 111 191.38 70 0.69 D 2B Out N 1B 2B 3B 4B 5B 6B 7B

 7 5 17.76 3.75 72 165.09 70 1.38 R 2B 2B N 1B 2B 3B 4B 5A 6B 7B

 7 6 21.02 18.86 117 273.54 70 1.93 C 7B 7B N 1C 2C 3B 4C 5C 6B 7B

==

==

UTMOST Boundary Cross Files

step:		The step at which the following numbers were calculated in

 the model. (will be same as file name)

user:		The user ID.

x:		 The boundary crossing X coordinate (km).

y:		 The boundary crossing Y coordinate (km).

speed:		The current speed of user (kph).

dir: The current direction at which user is moving (degrees). 999

 for not moving.

time:		The time stamp at time of crossing. (some time values are not

 accurate due to some errors in the algorithms used - they are

 close, though!)

xmit: The transmit power of user at time of crossing (0 if phone is off)

calling: Is the user currently calling, roaming, or just driving? (C, R, D

 respectively. Note if D, xmit must = 0. If D, but speed = 0, then

 user isn't moving and doesn't have phone on.)

from sect:	Is the previous Sector location. (Note that Out means the user

 was not located inside the model boundaries.)

to sect:	Is the current Sector location. (Note that Out means the user is

 currently not located inside the model boundaries.)

cur ant:	Is this user's current antenna assignment - it may change based

 on this boundary crossing.

 f

 r

 c o t c

 a m o u

 s l r

 p l s s

step user x y e dir time xmit i e e a

 i e (deg) W n c c n

 d g t t t

===

 7 14 1.73 13.00 132 165.06 66.82 1.10 D 3C 3A 3C

 7 41 12.35 12.95 77 241.28 60.00 0.34 R Out 4C 4C

 7 109 4.33 8.46 128 57.86 67.22 1.47 R 3B 3A 4B

 7 110 14.01 16.91 123 2.85 66.80 0.33 D 4C 7A 4C

 7 111 16.02 15.75 109 166.90 60.95 2.42 C 7A 4C 7A

 7 138 19.03 5.99 87 354.90 67.84 1.24 C 2B 2C 2B

 7 144 21.65 7.14 80 25.79 66.01 0.86 D Out 2B 2B

 7 158 12.99 5.56 148 55.75 65.26 2.80 C 2A 1B 2A

==

==

Channel Assignment Result Files

step:		 The step at which the following numbers were calculated in

 the model. (will be same as filename)

user:		 The user ID.

old power: The transmit power of user at time of crossing

new power: The transmit power of user after channel reassignment

old antenna:	Is the antenna (sector location) which was servicing user.

new antenna:	Is the new antenna (sector location) which is servicing user.

step user old new old new

 i power power antenna antenna

===

 7 14 1.10 1.10 3C 3A

 7 41 0.34 0.34 4C 4C

 7 109 1.47 1.47 3B 3A

 7 110 0.33 0.33 4C 7A

 7 111 2.42 2.42 7A 4C

 7 138 1.24 1.24 2B 2C

 7 144 0.86 0.86 2B 2B

 7 158 2.80 2.80 2A 1B

		� PAGE �vi�

�PAGE �ix�

