Report on graduate project
comparative analysis of www gateway programming languages with benchmarks

by Larry Stein
�INTRODUCTION

Our topic is comparison of programming languages for World Wide Web applications.

We will discuss the Common Gateway Interface

We briefly describe the more common languages used
Java, JavaScript, Perl and C

We present the applications used for benchmarking

Then define the environment for the benchmarking

Then we present the benchmark results

To summarize we discuss important lessons learned

And finally include some closing points on browsers, debuggers and some undocumented obstacles
�Common Gateway Interface - CGI

CGI - communications method between
browser and server

CGI programs run on server, serve client browser

CGI program processes data using parameters from a web page - passes results back to client

�	�	�
WWW browser	Server System	CGI application	

�User requests a form
	Retrieves form
	Form sent to client
����User fills out form
�User submits form
	Server forwards to CGI application
		Process data
�		Output to server
�	Relay back
Output received and displayed

�Data and environment variables pass via stdin and stdout

Stdout data stream consists of two parts:
1: a full or partial http header that defines the data format (HTML, plain text, gif etc.). A blank line is required to finish the header.
2: the body of the returned file

CGI programs may either “post” or “get” information

CGI program must “tell” the server the type of data being sent (“text”, “gif”, “mime” etc.).
�Gateway Programs

Parse information between web environment and applications not native to the web.

Optional - only used when required action outside of scope of web environment.

�	�
CGI application	Gateway Program

�calls gateway	performs task
	
�output received 	returns to server

Gateway programs reside in server cgi-bin directory.

Data may or may not return to web server

Can be any language (e.g. SQL)
�CGI Server

$cgi-bin directory is where you locate all cgi programs

CGI-bin programs are native web or gateway programs

Only executables in $cgi-bin (no data files)

Must have at least --x—x—x permission

� EMBED PBrush ���
�CGI Programming Languages

Any program that can run can run in /cgi-bin

The program must be called by httpd process

Consideration to portability - will it run on different architecture (Sparc vs alpha etc.)

Consider operating system constraints Sys5 vs BSD binaries, database etc.

�Java

Pure Object Oriented language (everything exists within an object, no methods outside an object)

Compiles to “byte code” - intermediate object file

Byte code runs in a Java Virtual Machine (JVM) distributed for free for many popular architectures

Can be compiled to Applets or Standalone applications

Applets have no “main” method and require a browser to host them (run and display them)

Rich set of libraries included with JDK
(Java Development Kit)

GUI tools in Abstract Window Toolkit, Data Structures, Networking etc. supplied

�JavaScript

Interpreted in the Netscape, Internet Explorer and Hot Java browsers.

Language statements exist in an HTML page

Javascript instructions exist within the <SCRIPT> </SCRIPT> tags of HTML page

Object based (can handle pre defined object types e.g. FORM)

Allows HTML programmer to easily manipulate web page environment (color, change url location, load object etc.)

Best use is to off load functions from server that can be handled by Javascript, thus eliminating traffic, communication time, server process resources.
�Perl

Developed by Larry Wall as Practical Extractor and Reporting Language

Free for all architectures supported (Sun, Dec, PC etc.)

Extremely fast and efficient string parser
(sed, ex, vi search & replace etc. all work)

Interpreted language with pre compiler

Takes full advantage of Unix native database (e.g. /etc/aliases)

Language has feel of bourne shell programming (lots of $_ etc.)

Strong array handling including built in associative arrays

�C

Originally developed by Kernigan and Richie

Excellent compiler and debugger tools available.

The standard Unix language

Compiles into tight, fast executable.

Extremely programmable, you can achieve just about any goal with right compiler for objective.

Must be compiled for one target architecture on one operating system (e.g. Sparc)

Reasonably easy to port and recompile on other systems with proper up front programming

CGI programs architecture compiled dependency can quickly come back to haunt you.

�Benchmark Environment

Five Main Components
Web server systems
Client PC’s
Communication method
Browser application
Benchmark applications

Measurement metrics
“Round Trip or Response Time” methodology
Time to load an application to ready state
(web page ready)
Time to deliver full response back to client
(including graphic results)

Typical phases of applications
Establishing a TCP connection to the server
Sending an HTTP request.
Reading returned data
Recording results.

�Servers:
name�machine�ram�o.s.�software��chico�Sun Sparc Classic�48MB�Solaris 2.4�Netscape 2.0��owl�Dec Alpha�96MB�OSF1 3.2�Netscape 2.0��
Clients:
TYPE�CPU�RAM�O.S.�COMM��PC Laptop�486 DX2/66�20MB�Win 95�14.4k modem��PC Desktop�P5/133�16MB�Win 95�28.8k modem��PC Desktop�P5/100�16MB�Win 95�10base2��X Terminal�29000�4MB�NCD/Motif�10base2��
Communications:
Hardware�Speed��Modem�14.4k & 28.8kbps��Ethernet�10Mbps��
Browsers:
Netscape Navigator 3.0�Microsoft Internet Explorer 3.0�Sun Hot Java 1.0 beta��
Applications:
name��Graphic Locator��Network Restoration��RoloTool���Network Restoration Overview

For both Perl and Java versions
Operator selects network and nodes to simulate
Data is extracted from the supplied data files
Data is stored in data files in a directory tree
Two data files read - rreact and twoprong
Application generates two lines on our graph

Perl Version
HTML web page with form
Form submits data to the cgi program
CGI program opens appropriate data files
� EMBED PBrush ���
Creates command file for GNUPLOT
Reads / writes data to an GNUPLOT data file
Calls GNUPLOT program run
GNUPLOT generates a .ppm file
Calls ppmtogif program run
Generates .gif result file
Creates virtual web page with.gif file embedded.

Java version
Applet loaded from web page with CODE tag
Form type gui is created on the fly in the applet
User input is collected
Applet retrieves the data in the web server
After data read, graph “painted” on applet canvas.
�Network Restoration

� EMBED PBrush ���
Opening screen for Perl version

� EMBED PBrush ���

Result screen for server (perl) version
�NetRes Flow Diagram

perl	java
��Browser	Browser
NetRes.html	NetRes.html
��

passes params via Form to server	loads client
	
��NetRes.pl		NetRes.class
	
deletes old .gif,data,cmd files	Creates GUI
creates GNUPLOT command file	
creates GNUPLOT rreact &	
twoprong data files	Opens URL to srvr
reads rreact & twoprong data files	
runs GNUPLOT generating ppm file	
runs ppmtogif generating .gif file	reads data fm srvr

�
�

Browser	Browser
��returns to browser with list of data
points and a gif file in page	draws plot

�Analysis of Network Restoration
Perl vs java

Applications:
Perl requires two external applications (GNUPLOT, ppmtogif)
Java all inclusive within methods included in the awt and net libraries.

Design:
Perl version
More complex web page with form
Multiple external dependencies and intermediate data files
Returns virtual web page with results
Java version
Simple web page - simple CODE tag
Has all i/o in the applet.
Requires more coding for drawing

�Graphic Locator Overview
(by Heidi McClure Graduate Student)
� EMBED PBrush ���

For both Perl and Java versions
Given a persons name
display where that person sits in the office floor plan.

Perl Version
Uses perl database for xy coordinates
Calls gd application (a graphics lib app)
gd reads gif file (base picture)
Overlays an X onto the xy location selected
New .gif written to disk.
Perl returns virtual page with .gif

Java Version
CGI applet embedded in web page
Applet loads to client on page load
Form and data embedded in applet
Reads xy data location and “paints” X
Paints .gif on internal canvas

�Graphic Locator
(by Heidi McClure Graduate Student)

� EMBED PBrush ���

Opening screen for Perl (server) based version

� EMBED PBrush ���

Results screen for Perl (server) based version
�Graphic Locator Flow Diagram
Graphic Locator by Heidi McClure

perl	java
��Browser	Browser
cgimap.html	finalmap.html
��

passes name via Form to	

��	cgimap.pl	loads map3.class
	
looks up name to get x & y coord	map3 applet has GUI
	
�	mapdata.dat	
	
	
deletes old .gif file	imports base .gif
runs mygd creating new gif 	into canvas
	
�	mygd x y	Creates map on
	fly from internal
	table of name to
returns mygd.gif file as new url	x y coord
��	
	
Browser �	paints new .gif
mygd.gif �	on internal canvas

�Analysis of Graphic Locator
Perl vs java

Applications:
Perl version requires external database and external application (gd).
Java version all inclusive within methods.

Design:
Perl version requires more complex web page with form
Perl version returns virtual web page with results.
Java version simple web page - simple CODE tag.
Java version has all input/output operations included in the applet.

�RoloTool Overview

Phone book application
Reads / writes data records on persons
Persistent disk file.

For both Perl and Java version
Persistent records on server disk

Perl version
HTML web page with form
Form submits data to cgi program
CGI program utilizes Unix database
Performs linear search based on key of last name
Appropriate virtual web page is returned

Java version
Applet loaded - simple web page with CODE tag
Form type gui created on the fly in applet
Performs requested “action” - search or add
Search - read URL channel is opened
Linear search on ascii delimited data file
Add record - string to interim cgi gateway program
Gateway - C compiled, opens data file for write
Success returns cleaned input form

�RoloTool

� EMBED PBrush ���
RoloTool java application before running

� EMBED PBrush ���
RoloTool java version after a search has completed
�RoloTool Flow Diagram

perl	java
�Browser	Browser
� RoloTool.html	RoloTool.html
��
passes params via Form to	loads applet
��
RoloTool.pl	RoloTool.class
	
reads & or writes to RoloTool.dat	Creates GUI
creates returning results web page	Opens read URL
�	Opens write URL
	as needed and
�	reads / writes data
	to RoloTool.txt

�	uses intermediate
	cgi-bin/RoloTool
�	to write data

	displays results

�Browser
returns to browser with info
�Analysis of RoloTool
Perl vs java

Applications:
Perl version
straight forward string parser code
uses Unix database tools
Java version
security does not allow write to disk
requires gateway for keeping data persistent
must be in other language (used C)

Design:
Perl version
more complex web page with form
small, tight, string manipulation
returns virtual web page with results
Java version
simple web page - simple CODE tag
requires 2 methods for read vs write
(read URL vs URL to gateway)
cannot directly write to disk

�Benchmarks

Measuring performance from end user point of view
Comparison of same server software on different server platforms
Comparison of same client software on different client platforms
Comparison of different browsers on same clients
Comparison of different communication channels on the same client server machine setup
Comparison of diskless client with not cache with usual disk and ram cache client
�NetRes Benchmark Results

Pentium 10 base 2
��1st load�1st load�1st result�1st result��lang�browser�owl�chico�owl�chico��perl�Netscape�1�1�5�9��2
java�Netscape�3�3�1�2��perl�Inter Exp�1�1�4�25��2
java�Inter Exp�2�5�1�2��1
perl�Hot Java�3�3�failed�failed��java�Hot Java�3�3�failed�3��time in seconds
3		3

We can see
Poor performance of Hot Java browser
High performance response time of Java applet
High performance of Alpha vs Sparc server

For complete benchmark figures see the full text
�NetRes Benchmark Results

Pentium 28.8k baud modem
��1st load�1st load�1st result�1st result��lang�browser�owl�chico�owl�chico��perl�Netscape�2�2�15�18��java�Netscape�10�10�2�7��perl�Inter Exp�2�3�13�15��java�Inter Exp�5�8�3�4��perl�Hot Java�9�12�failed�failed��java�Hot Java�8�10�failed�3��time in seconds

We can see with all same parameters except communications channel (28.8k modem vs Ethernet)

 owl performance 3x slower via modem
 chico performance 2x slower via modem
 All other measurements consistent

For complete benchmark figures see the full text

�Network Restoration Performance

Best Performance and Parameters
best load time�best round trip time
1st run�best round trip time
runs 2:100�best browser for performance�best systems for performance�best comm method for performance��1�1�100�Netscape�Pentium to owl�10 base 2��
Worst Performance and Parameters
worst load time�worst round trip time
1st run�worst round trip time runs 2:100�worst browser for performance�worst systems for performance�worst comm method for performance��50�53�2900�Internet Explorer�486 to chico�14.4k modem��all times in seconds

Observations:

Quick load and response times with Java applet utilizing Netscape browser on Pentium client communicating with Alpha Station over Ethernet.
Poor performance with Java applet once again due to slow load times with 14.4k modem with slow Sparc server.
Internet Explorer browser has slower performance than Netscape.
�Performance Comparison on versions of Network Restoration

Perl version much quicker load
(does not download cgi program)
Java version twice as fast to obtain results
uses local processor to generate graphics
does not retrieve .gif file from server
Slower 486 system long applet download time
All multiple pass runs substantially faster in Java
Conclusion - single run use Perl version
multiple run use Java
�Graphic Locator Benchmark Results

Graphic Locator Pentium 10 base 2

��1st load�1st load�1st result�1st result��lang�browser�owl�chico�owl�chico��perl�Netscape�1�2�12�21��java�Netscape�14�17�0.1�0.1��perl�Inter Exp�1�1�10�11��java�Inter Exp�5�7�0.1�0.1��perl�Hot Java�1�3�failed�failed��java�Hot Java�7�7�1�1��
See section 5.0 Benchmarks of full paper for complete figures

all times in seconds
�Graphic Locator Benchmark Results

Graphic Locator Pentium 28.8k modem

lang�browser�owl�chico�owl�chico����1st load�1st load�1st result�1st result��perl�Netscape�1�3�25�27��java�Netscape�15�22�0.1�0.2��perl�Inter Exp�2�3�45�30��java�Inter Exp�18�20�0.1�0.2��perl�Hot Java�2�3�failed�failed��java�Hot Java�13�21�1�1��
See section 5.0 Benchmarks of full paper for complete figures

all times in seconds

Note: time to obtain results 2x with modem vs Ethernet. Time to load 3x with modem vs Ethernet
�Graphic Locator Performance

best load time�best round trip time
1st run�best round trip time
runs 2:100�best browser for performance�best systems for performance�best comm method for performance��1�0.1�10�Netscape�Pentium to owl�10 base 2��worst load time�worst round trip time
1st run�worst round trip time
runs 2:100�worst browser for performance�worst systems for performance�worst comm method for performance��61�53�5400�Internet Explorer�486 to chico�14.4k modem��

all times in seconds
�Performance Comparison on versions of Graphic Locator

Similar to Network Restoration results
(similar application types)
Load to ready state much quicker in Perl
Java version must download cgi applet
Repeat runs much faster in java
eliminates communication back to server
Pentium perl on 10base2 faster than java on 486 modem (server faster than modem)

�RoloTool Benchmark Results

Pentium 10 base 2 (search)

lang�browser�owl�chico�owl�chico��perl�Netscape�1�1�2�3��java�Netscape�2�2�1�1��perl�Inter Exp�2�3�9�7��java�Inter Exp�3�3�1�2��perl�Hot Java�3�6�8�4��java�Hot Java�1�2�1�1��
See section 5.0 Benchmarks of full paper for complete figures

all times in seconds

�RoloTool Benchmark Results

Pentium 28.8k modem (search)

lang�browser�owl�chico�owl�chico��perl�Netscape�2�2�8�4��java�Netscape�10�9�2�3��perl�Inter Exp�2�6�13�5��java�Inter Exp�4�7�4�3��perl�Hot Java�3�6�8�4��java�Hot Java�3�3�4�8��
See section 5.0 Benchmarks of full paper for complete figures

all times in seconds

Note: time to obtain results 1.5x with modem vs Ethernet. Time to load 2x with modem vs Ethernet.
Not as good a performance gain with Ethernet as graphic based application
�RoloTool Performance

best load time�best round trip time
1st run�best round trip time
runs 2:100�best browser for performance�best systems for performance�best comm method for performance��1�3�100�Netscape�Pentium to owl�10 base 2��worst load time�worst round trip time
1st run�worst round trip time
runs 2:100�worst browser for performance�worst systems for performance�worst comm method for performance��30�47�1600�Hot Java�NCD Xterm to chico�10 base 2��all times in seconds

X Terminal worst client for performance
No local ram cache
No local disk cache
Browser must return to server for all information
�Performance comparison on versions of RoloTool

Java load time much longer than Perl web page
Java results twice as fast than Perl
Performance is not 3x or greater with Java
data set size transferring is small ((100 bytes)
Performance gains are on disk search, CPU processing for string processing
�Language vs Size

NetRes

Language�File(s)�size bytes�lines code��Perl�NetRes.html�2.2k�57���NetRes.pl�8.1k�178��Perl Total��10.3k�235�������Java�NetRes.java�24.6k�413���NetRes.html�355�16��Java Total��24.9k�429��
Note: Perl requires external .gif file and external gnuplot and ppmtogif applications

Summary: Similar, java version provides all inclusive functionality for 194 lines of code
�Language vs Size

Graphic Locator

Language�File(s)�size bytes�lines code��Perl�cgimap.html�812�33���cgimap.pl�1.0k�37���mygd.c�2.1k�90��Perl Total��3.9k�160�������Java�map3.html�203�10���map3.java�6.0k�222��Java Totals��6.2k�232��
Note: Perl requires external .gif file and external applications

Summary: Perl above does not reflect mapdata unix data base size (1k binary) or mygd.gif external .gif file (16.7k binary).
Thus java version much greater functionality for only 62 more lines of code.

�Language vs Size

RoloTool

Language�File(s)�size bytes�lines code��Perl�RoloTool.htm�2.0k�61���RoloTool.pl�7.6k�173��Perl Total��9.6k�234�������Java�RoloTool.htm�382�15���RoloTool.java�12.9k�264���RoloTool.c�2.3k�51��Java Total��15.6k�320��
Note: Perl version uses unix database
Java version uses flat ascii file

Summary: RoloTool simpler coding in Perl.
Simplicity supports timing tests
�Bugs

Netscape
Clearing the cache does not clear an applet from memory - shift reload will resend applet from server

Writing data to a server side file via a URL just doesn’t execute in Netscape

Java
Opening a url connection in the java environment will request you pass the string to go out the url, but this does not happen. You must print the string (again) with a print statement before it actually goes out of the port

URL url_out = new
 URL("http://owl.uccs.edu/cgi-bin/lstein/RoloTool?"+rec);
OutputStream os = connection.getOutputStream();
 outStream.println(rec+"\n");

System Timing
When you want to close the url, I found it extremely important to perform multiple flushes or the reliability of the data being written to disk is unpredictable

�Quirks

Perl database not portable across hardware architectures

Disk caching on web server can cause problems

Java multiple flushing required for data to disk before URL closed

Multiple .gif generation - browser will reload cached version
either rm .gif in cgi program or multiple flush or shift reload
�Main Conclusions

Multiple runs
graphic apps - java speed on average 3X vs perl
data apps - perl speed 2-3X vs java dep. on browser

RoloTool performance is moot since user time (typing) is much longer than time to process 100 bytes (average record length).

Java applets eliminate
communications and traffic back to the server
slower server processing time

Netscape browser in general is overall best browser for performance and compatibility.

HotJava browser has better file i/o for writing data.
However extremely poor HTML support (tables etc.)

Perl dependent upon external programs for graphics

Java dependent upon gateways for persistent data
�Future Directions

Future study can include
Other application types
Different Server Systems
Different Client Systems
Other languages
Other communication methods

�end of document
Page � PAGE �45�

