comparative analysis of www gateway programming languages with benchmarks
by
Larry Stein
A masters project report submitted to the advising committee in partial fulfillment of the requirements for the degree of
Master of Science
Department of Computer Science
University of Colorado at Colorado Springs
1996
Approved by 	
Chairperson of Supervisory Committee
	
	
	
Program Authorized �to Offer Degree	
Date 	

�University of Colorado at Colorado Springs
Abstract
Comparative analysis of www gateway programming languages with benchmarks
by Larry Stein
Chairperson of the Supervisory Committee:	Professor Chow
	Department of Computer Science

�Table of Contents
� TOC \o "1-3" �Acknowledgments	� GOTOBUTTON _Toc373110997 � PAGEREF _Toc373110997 �5��
1. INTRODUCTION	� GOTOBUTTON _Toc373110998 � PAGEREF _Toc373110998 �6��
2. CGI	� GOTOBUTTON _Toc373110999 � PAGEREF _Toc373110999 �7��
3. Languages for CGI Programs	� GOTOBUTTON _Toc373111000 � PAGEREF _Toc373111000 �15��
3.1 Java	� GOTOBUTTON _Toc373111001 � PAGEREF _Toc373111001 �16��
3.2 Javascript	� GOTOBUTTON _Toc373111002 � PAGEREF _Toc373111002 �17��
3.3 Perl	� GOTOBUTTON _Toc373111003 � PAGEREF _Toc373111003 �18��
3.4 C	� GOTOBUTTON _Toc373111004 � PAGEREF _Toc373111004 �19��
4. Benchmark - Applications	� GOTOBUTTON _Toc373111005 � PAGEREF _Toc373111005 �20��
4.1 Benchmark Environment	� GOTOBUTTON _Toc373111006 � PAGEREF _Toc373111006 �21��
4.2 Systems:	� GOTOBUTTON _Toc373111007 � PAGEREF _Toc373111007 �23��
4.3 Browsers:	� GOTOBUTTON _Toc373111008 � PAGEREF _Toc373111008 �23��
4.4 Testing:	� GOTOBUTTON _Toc373111009 � PAGEREF _Toc373111009 �23��
4.5 Debuggers:	� GOTOBUTTON _Toc373111010 � PAGEREF _Toc373111010 �24��
4.6 Applications:	� GOTOBUTTON _Toc373111011 � PAGEREF _Toc373111011 �25��
4.7 Application Overviews	� GOTOBUTTON _Toc373111012 � PAGEREF _Toc373111012 �26��
Communication Observations	� GOTOBUTTON _Toc373111013 � PAGEREF _Toc373111013 �45��
5.1 Language vs Size	� GOTOBUTTON _Toc373111014 � PAGEREF _Toc373111014 �56��
5.2 Bugs	� GOTOBUTTON _Toc373111015 � PAGEREF _Toc373111015 �58��
5.3 URLs	� GOTOBUTTON _Toc373111016 � PAGEREF _Toc373111016 �58��
5.4 Quirks	� GOTOBUTTON _Toc373111017 � PAGEREF _Toc373111017 �59��
A.1 Java	� GOTOBUTTON _Toc373111018 � PAGEREF _Toc373111018 �61��
A.2 JavaScript	� GOTOBUTTON _Toc373111019 � PAGEREF _Toc373111019 �71��
A.3 Perl	� GOTOBUTTON _Toc373111020 � PAGEREF _Toc373111020 �82��
A.4 C	� GOTOBUTTON _Toc373111021 � PAGEREF _Toc373111021 �85��
Source Code	� GOTOBUTTON _Toc373111022 � PAGEREF _Toc373111022 �90��
Bibliography	� GOTOBUTTON _Toc373111023 � PAGEREF _Toc373111023 �127��
Glossary	� GOTOBUTTON _Toc373111024 � PAGEREF _Toc373111024 �128��
Index	� GOTOBUTTON _Toc373111025 � PAGEREF _Toc373111025 �129��
��Table of Figures

� TOC \t "Table of Figures,1" \c "Figure" �Figure 2.1. Web client - server interaction	� GOTOBUTTON _Toc373111027 � PAGEREF _Toc373111027 �7��
Figure 2.2 Sample HTML Form code and Perl CGI code	� GOTOBUTTON _Toc373111028 � PAGEREF _Toc373111028 �8��
Figure 2.3 Web page with query form	� GOTOBUTTON _Toc373111029 � PAGEREF _Toc373111029 �9��
Figure 2.4 data flow between web client - server	� GOTOBUTTON _Toc373111030 � PAGEREF _Toc373111030 �10��
figure 2.5 sample virtual document code	� GOTOBUTTON _Toc373111031 � PAGEREF _Toc373111031 �11��
Figure 2.6 sample HTML header code	� GOTOBUTTON _Toc373111032 � PAGEREF _Toc373111032 �12��
Figure 4.0 data flow of Graphic Locator application	� GOTOBUTTON _Toc373111033 � PAGEREF _Toc373111033 �28��
Figure 4.1 Opening screen for Perl (server) based version	� GOTOBUTTON _Toc373111034 � PAGEREF _Toc373111034 �31��
Figure 4.2 Results screen for Perl (server) based version	� GOTOBUTTON _Toc373111035 � PAGEREF _Toc373111035 �31��
Figure 4.3 partial picture of the opening screen for the java (client) version of the Graphic Locator	� GOTOBUTTON _Toc373111036 � PAGEREF _Toc373111036 �32��
with the x locator reset to the upper left corner	� GOTOBUTTON _Toc373111037 � PAGEREF _Toc373111037 �32��
Figure 4.4 picture of the Graphic Locator screen after it has run to find a Person in their cubicle (location)	� GOTOBUTTON _Toc373111038 � PAGEREF _Toc373111038 �32��
Figure 4.5 Data flow of Network Restoration Application	� GOTOBUTTON _Toc373111039 � PAGEREF _Toc373111039 �34��
Figure 4.6 Opening screen for server (perl) version	� GOTOBUTTON _Toc373111040 � PAGEREF _Toc373111040 �37��
Figure 4.7 Result screen for server (perl) version	� GOTOBUTTON _Toc373111041 � PAGEREF _Toc373111041 �37��
Figure 4.8 NetRes client (java) application after loading	� GOTOBUTTON _Toc373111042 � PAGEREF _Toc373111042 �38��
Figure 4.9 NetRes client application after completing a run	� GOTOBUTTON _Toc373111043 � PAGEREF _Toc373111043 �38��
Figure 4.10 Data flow of RoloTool application	� GOTOBUTTON _Toc373111044 � PAGEREF _Toc373111044 �40��
Figure 4.11 Partial picture of RoloTool server (perl) startup	� GOTOBUTTON _Toc373111045 � PAGEREF _Toc373111045 �43��
Figure 4.12 Partial picture of RoloTool server (perl) results	� GOTOBUTTON _Toc373111046 � PAGEREF _Toc373111046 �43��
Figure 4.13 RoloTool client application before running	� GOTOBUTTON _Toc373111047 � PAGEREF _Toc373111047 �44��
Figure 4.14 RoloTool (java) after a search has completed	� GOTOBUTTON _Toc373111048 � PAGEREF _Toc373111048 �44��
Table 4.1a	� GOTOBUTTON _Toc373111049 � PAGEREF _Toc373111049 �57��
Table 4.1b	� GOTOBUTTON _Toc373111050 � PAGEREF _Toc373111050 �57��
Table 4.1c	� GOTOBUTTON _Toc373111051 � PAGEREF _Toc373111051 �57��
�
�
Acknowledgments

The author wishes to thank Dr. C. Edward Chow for his many hours of technical assistance and moral support. I also with to thank Dr. Pinson for his expert assistance in Java and for Dr. Badal for his many years of support in pursuit of this goal. Finally, I would like to thank Heidi McClure who allowed me to use her Graphic Locator application in this discussion.

�1. INTRODUCTION

In this paper we compare programming languages which a user may choose to implement applications across the World Wide Web. Although almost all languages could be used (explanations to follow) we limit our discussion to the most popular languages in current use.

First in section 2, we will talk about the “Common Gateway Interface” (CGI). This explains why we are looking at these languages. After CGI we give a brief description of each of the following languages - Java, JavaScript, Perl and C(++) in section 3. I have included more detailed and complete information on the languages in man page style in the appendix for the readers reference.

After our discussion of CGI and languages we present the applications that are benchmarked in section 4. The environment for the comparison of applications are presented and system applications developed for the benchmarks are analyzed. The benchmark results and important lessons learned from the benchmarks and applications are discussed.

Concluding in section 5 are closing points on browsers, debuggers and some undocumented obstacles that will save the reader some lost down time. Section 5 includes appendixes, the source code of the applications, locations of code on the web a short glossary and an index.

�2. CGI
Overview

We begin by defining the Common Gateway Interface� XE "Common Gateway Interface" � (CGI). CGI is the communications method used by the web environment between the user client browser and the web server system. CGI is the part of the web environment that extends it beyond a static system. CGI programs are programs running on a web server to serve requests from a client browser. By implementing CGI programs we can make information (and or action) dynamic. Note that CGI implements rules used by the httpd web server daemon to communicate with other programs running on the server. These other programs can then be extended to communicate with other programs and systems as needed.

The Web server� XE "Web server" �, receiving information via CGI, can call up a CGI program and pass user specific data to that program. This is most commonly done through the stdin and stdout ports. In general, the CGI program processes data using parameters from a web page or possibly environment variables (e.g. username, hostname), and then the program passes the results / response (if any) back to the Web server. In this paper we demonstrate and benchmark various methods of CGI implementation and communication.

�	�	�
WWW browser	Server System	CGI application	
�
�User
	Submits completed form
	Calls CGI

�		CGI programs response
	CGI programs response
�
Result back to user

Figure 2.1. Web client - server interaction

�CGI Interface Method

CGI has strict rules on input types and programming output. This assures a dependable channel for data movement. Generally cgi programs may either “post” or “get” information via the CGI from a web page. Also, when sending data back to the server, a cgi program must “tell” the server the type of data being sent. This may be any predefined type such as “text”, “gif”, “audio” etc. Lets look at the example below. Commonly a form is used in an HTML web page to obtain parameter information from a user and send it to a cgi program.

<form name=myform method=”post” action=”some_url_address.pl”>
<input=submit value=”mydata”>
Last or Business Name<INPUT Type="text" Size=32 Name="lname">
First or “Nick” Name<INPUT Type="text" Size=32 Name="fname">
5. </form>
6. string passed is lname=Stein&fname=Larry
use CGI;
$buffer = new CGI;
$somefieldvalue = $buffer->param(somefieldname);

Figure 2.2 Sample HTML Form code and Perl CGI code

Explanation
Line 1. A form definition in an html page
The form name is myform
The page will pass the data in a post method (one long string via stdin)
It will pass the data to a program (and start the program) named some_url_address.pl
This program must exist in the server cgi-bin directory.
Line 2 says when the user presses the submit button, send all the information from the form fields through a variable named mydata (to the cgi program).
Line 3 & 4 are fields in the form that take on values from user
Line 5 is the end of the form
Line 6 is a sample of what the value of the parameter we pass looks like.
Line 7 tells the perl program we want to use a CGI object. This object knows
how to handle our cgi parameters we are passing in
Line 7 creates a variable and captures the parameter string from the cgi program
Line 8 extracts an individual parameter from our global parameter string
example $lname = $buffer(lname)

�Sample application of CGI program:

Forms� XE "Forms" �: these allow the user to “fill in the blanks” or select from lists etc. and then pass the data to an applicable CGI program.

� EMBED PBrush ���

Figure 2.3 Web page with query form
�
CGI Gateways� XE "Gateways" �:

Gateways are CGI programs that will do the parsing between the web environment (HTML) and an application not native to the web. As an example, you could have a gateway program that is a parser to a remote SQL database. In the RoloTool application below we use a RoloTool.c gateway program to do the actual reading and writing to an ascii delimited text file on the server disk file system

�	�	�
WWW browser	Server System	CGI application	

�User requests a form
	Retrieves form
	Form sent to client
���User fills out form
��User submits form
	Server forwards to CGI application
		Process data
�		Output to server
�	Output to client
Output received and displayed

Figure 2.4 data flow between web client - server

�
Virtual Documents� XE "Virtual Documents" �:

These are documents created on the fly in response to a user request. They may include text, environment variables, images created in real time, audio etc. or just a simple web page. Two of the benchmark applications in this study use images created by the cgi program and are inserted into new virtual document web pages. The RoloTool application discussed below uses virtual documents to create either error report pages or result pages in its Perl implementation (see ahead). Below is a sample snippet of a virtual document code.

 print "Content-type:text/html\n\n";
 print "<HTML>
\n";
 print "<BODY>
\n";
 print “Hello and welcome to my web page
”;
 …
 print “</BODY></HTML>”;

figure 2.5 sample virtual document code

When executing a cgi program, the browser will actually receive a html document as its virtual document, interpret it, and display the new web page.

�CGI Interface� XE "CGI Interface" �:

When using a CGI program, the client request passed data to the cgi program along with the environment variables. In UNIX, stdin and stdout are used to pass all information. The stdout data stream consists of two parts:
1: a full or partial http header that defines the data format (HTML, plain text, gif etc.). A blank line is required to finish the header.
2: the body of the returned file. This is the data that conforms to the type defined in the header (see example below).

Header�Content-type: text/html��blank line���body�<HTML>��body�<HEAD><TITLE>Larrys Home Page</TITLE></HEAD>��body�<BODY>Hello and welcome to my home page
��body�</BODY></HTML>��
Figure 2.6 sample HTML header code

The CGI program sends the data back to the server as a data stream, which adds the header information and then sends it along to the client. Or the program may send the information directly to the client. It is up to the programmer to decide which method to use.

�
CGI Server � XE "CGI:server" �

The web server expects to have a /cgi-bin directory. The server software is programmed so that any file that is called in this directory is expected to be run. Thus you do not want to put any ascii data files in the /cgi-bin directory. Ascii data files you may want to implement should be put under the public_html directory. The cgi server software must be configured, similar to setting up your UNIX system. There is a http.conf file, like the inted.conf file that has a variety of parameters to set. Since there are a variety of vendor server applications I will mention the two most common parameters here. See the server distribution for detailed information.

ServerRoot	defining where the application resides on disk
ScriptAlias	where the scripts reside on disk (user programs)
	http://chico.uccs.edu/cgi-bin/myprogram.pl
		parses to /usr/local/http/cgi-bin/myprogram.pl

�CGI Programming Languages

Virtually any programming language � XE "programming languages" � that can be compiled (or interpreted) to run on the server system can be used for CGI programming. However, the program
must be able to run in the /cgi-bin directory by the httpd process and
should be able to parse data.
You will see ahead in the analysis of the applications we benchmark that portability plays a big role in the language you choose to implement. As an example, Assembler code is a language that will run in the cgi-bin directory, but it does not lend itself to a heterogeneous environment like the world wide web.

CGI Data Passing

As mentioned above, the cgi-bin program will be passing and parsing data between the server and the end user browser. The data stream in the cgi interface is a stream of name value pairs, where the name of the variable is concatenated with “=” followed by the value of the variable, and the pairs are separated by an ampersand.

“first_name=Larry&last_name=Stein”
“street=2755_Tartan_Lane&Colorado_Springs”
sample name value pair strings

Some programming languages like C do not lend themselves easily to this task. However, it is easily overcome with tightly defined functions. One language that does parse nicely and is very popular in this environment is Perl. The RoloTool application below does extensive name value parsing. For more information on string parsing see the Perl Appendix

�

3. Languages for CGI Programs

�3.1 Java� XE "Java:language" �

Java was developed by Sun Microsystems originally to be a portable small language for home appliances with built in microprocessors. This use did not find any acceptance and Sun put the language out on the web to see if their was any interest in the computer community. Java was a big hit with web developers because it was compact, safe and easy to implement small programs that could perform animation’s, graphics and sound.

Java programs come in two flavors: applets for WWW programming and standalone applications. � XE “Applets”�Applets are typically restricted from performing network or file operations whereas � XE ”applications” �applications are not. Applets are small Java programs that operate within the confines of a WWW browser and as a result come into existence with a main window already prepared for them. Further, applets are sent a predefined set of messages to initialize, start, stop, paint the window, and so on. Java Applications are standalone programs with no initial context and are not required to respond to a predefined set of messages. Java applications can read and write to a local disk file. Applets cannot read or write to the local disk. Both are compiled to � XE ”byte codes” �”byte codes” not machine code. Thus a Java Virtual Machine (runner) is required on whatever machine an application or applet is going to be run on.

The appendix has a short but detailed “man page” on Java.

�3.2 Javascript� XE "Javascript:language" �

When Netscape� XE “Netscape”� released Navigator� XE “Navigator”� 2.0 they introduced JavaScript. Javascript was jointly developed by Netscape and Sun Microsystems. In the beginning Netscape Communications called JavaScript Mocha and later on LiveScript.

Javascript can be used as a simple way of adding client-side features to web content without a great deal of programming. The intention is to give HTML authors the ability to write script that can interact with objects within a web page such as background color, frames, forms and so forth. This is accomplished by writing Javascript within SCRIPT tags included in an ordinary HTML document.

Similar to Java applets, JavaScript runs entirely within the client's browser. This off loads the web servers and processes user data on the client side, thus improving performance and saving communication time. One of the most useful applications is to validate input from forms before sending it on to a CGI-script on the server.

For example you can write a JavaScript function to verify that users enter valid information into a form requesting a telephone number or zip code. Without any network transmission, an HTML page with embedded JavaScript can interpret the entered text and alert the user with a message dialog if the input is invalid. Or you can use JavaScript to perform an action (such as play an audio file execute an applet or communicate with a plug-in) in response to the user opening or exiting a page.

The appendix has a short but detailed “man page” on Javascript.

�3.3 Perl� XE "Perl:language" �

Perl was developed by Larry Wall as a Practical Extractor and Reporting Language. Larry developed the language as a robust string type parser. It is similar to shell programming in that it is small, interpreted (although there is a syntax pre compiler) and cryptic.

Perl is designed to assist with tasks that would probably be considered too intense, or too portability-sensitive for a shell-script, and too temporary or bizarre for C or some other high-level language. Perl exists for most major platforms, being distributed under the GNU Public License, including UNIX, Amiga, Mac, VMS, OS/2, and yes, even MS-DOS. Most of this discussion will be concerned with UNIX implementations, although there are few differences.

Perl has been historically the most popular language used for CGI programming. We talked earlier about CGI and how it works. Remember that we need a parser to “take apart the data that comes from the users browser to the server for processing. Perl has strong parsing tools; associative arrays, hash tables etc. And probably most important Perl is FREE !

Perl is an interpreted � XE “Interpreted”�language, meaning that it runs within its own environment. Perl, unlike most other UNIX utilities, does not place any limits on data size. To quote the perl(1) man page: “if you've got the memory, Perl can slurp in your whole file as a single string”. It also supports recursion of unlimited depth and associative array � XE “Associative Arrays”�hash tables grow as necessary to prevent slowed performance.

In the appendix is a more detailed discussion on Perl
�3.4 C� XE "C " �

� XE “C”�C is currently the most widely used language in the computer science field. The language is extremely flexible. A person can develop CGI programs in C. C programs are generally very fast since we have robust compilers available and the program compiles to machine code. This benefit also has a drawback, your machine code (cgi program) is not portable. Note the opposite position C takes to Java. Java we mentioned, is completely portable (machine independent), but is only compiled to byte codes and runs in an interpreter (virtual machine). Thus if you develop a program in C its only going to run on the machine (or at least machine type and OS family) that you compiled it on.

A point should be made here about the transparency of the web and compiled code. In the RoloTool java application we examine in this paper, it is dependent upon RoloTool.c cgi program. RoloTool.c is a small c program (another benefit of C, you can make it extremely compact) that is needed to write data to a local data file on the server. Say this program is compiled on a Sun Sparcstation using the GNU compiler for Solaris 2.5 operating system. Today that’s fine, tomorrow, well that’s another story. If the current server is shutdown or you decide to move the Netscape server (this program runs under) to (say) a new Dec Alpha server. We’re up the creek ! Someone goes to run the RoloTool application over the web and it can’t add any names. The cgi program fails because its not an Alpha executable. And how do I know ? I don’t unless someone tells me. That’s a big selling point for Java. A Java cgi program will run on any computer that has a Java virtual machine. The same for Perl since its interpreted.

�4. Benchmark - Applications
�4.1 Benchmark Environment

In our analysis we will discuss the approach taken for performing the benchmarks, the systems used for the benchmarks, the browsers (environment) the applications have run in, and debuggers used for development.

First, on the world wide web there is an excellent document discussing the measuring of performance of HTTP daemons. It is found at http://www.ncsa.uiuc.edu/InformationServers/Performance/Benchmarking/bench.html. This paper written by Robert McGrath discusses the methods involved and current research regarding benchmark testing of web servers. In this paper we use the method of laboratory testing for our benchmarking.

Note that we are not testing performance of the HTTP daemons only, but the overall server system, the client systems, the client browsers and the communication methods (modem vs Ethernet). In our testing then, we are using three main components as defined by McGrath:
The load generator (client systems as defined below)
The workloads (the applications used as defined below)
The measurements (metrics) detailed and summarized below

Of the four common metrics discussed by McGrath we use the “Round Trip or Response Time methodology. The response time is a measure of how long it takes for
Time to load an application to ready state (web page ready)
Time to deliver full response (including graphic results) back to client.

For test environments, we include using three basic clients and two basic servers with two communication methods providing a variety of environments a typical user may encounter. These include
A lower powered laptop (PC) with slower speed modem
A higher powered desktop with higher speed modem
High speed PC’s connected directly to 10Mb LAN to servers
One older Sun server
One newer Dec server
See details of these systems below.

�Some of the basic functions mentioned for benchmarking by McGrath include
establishing a TCP connection to the server
sending an HTTP request.
reading returned data
recording results.
These basic functions as well as writing data back to the server and spawning external applications are included in the benchmark applications below.

At this time we need to note that the tests performed and detailed below were not done in a controlled environment. Although the clients were used in an exclusive mode, the servers were not. The server systems as we detail below are shared resources of the University and are connected to the world wide web. These servers are also on the University 10 base2 Ethernet LAN and the dial in modem pool. Thus at any moment in time, there were various loads on the servers with other user browsers, Telnet sessions or other processes. However, this is not such a disadvantage since it helped model real world experiences that a person will have, and thus realistic performance figures.
�4.2 Systems: � XE “Systems”�

Server: Two servers were used for the benchmarks
Chico, a Sun Sparcstation classic with 48 MB ram running Solaris 2.4 operating system and the Netscape 2.0 Internet server.
Owl, a Dec Alpha workstation with 96 M ram running OSF/1 version 3.2 and the same Netscape 2.0 Internet server.

Clients: Four clients were also used
an Altima Virage PC compatible laptop 486DX2/66, 20MB ram and 14.4k baud modem running Windows 95
a Gateway 2000 Pentium 133, 16MB ram and a US Robotics 28.8k modem also running Windows 95.
a HP Pentium desktop, 16MB ram, running Windows 95 and a direct 10 base 2 Ethernet connection to the University LAN (and web)
an NCD MCX x terminal 29000 RISC processor, 4MB ram and a direct 10 base 2 Ethernet connection to the University LAN (and web)
4.3 Browsers: � XE “Browsers”�

The browsers used were those currently available on the web
Netscape Navigator 3.0
Microsoft Internet Explorer 3.0
Sun Hot Java version 1.0 beta.

4.4 Testing: � XE “Testing”�

The tests were performed with two PCs dialed in via modem to the web, and with two PCs connected by 10base2 Ethernet to the UCCS LAN. The two PCs connected via the modems are: the Altima Virage PC Laptop. connected via its 14.4k baud modem over dial up lines. The second dial up PC was the Gateway 2000 P5/133 Pentium 133mhz using its internal US Robotics 28.8k modem. The two connected Ethernet systems are: HP Pentium desktop and the NC MCX X terminal.
�4.5 Debuggers: � XE “Debuggers”�

For your benefit I include some pointers on dubugging tools for Perl, Javascript and Java. Perl has a rich history and cult following on the Internet. However I found the debugging tools lacking. Really there is no nice graphical debugger available. Since Perl is a one pass “pre compiler” language and then an interpreted runner, it did not seem a problem. Good old faithful print “stuff”, while slow, gets the job done.

On the Java side, Suns java workshop is a supposed nice gui integrated environment. However like java itself, is still in its infancy. Its a real disk and memory hog and has so many bugs that I quickly “trashed” it. Symantec has a reasonably stable environment called café that only occasionally will lock up your system. The best thing about Symantec is the stability of using URLs over the web while debugging.

As for JavaScript since it only deals with information on the client side, you will use the same print statements as for Perl.

Finally you cannot easily debug a C / C++ cgi program for the web unless you either:
Write data you need to analyze to a disk file and tail -f while you run in another window or:
2. Run the program “manually” outside the web environment. I ended up using all these methods for all my debugging.
�4.6 Applications: � XE “Applications”�

�4.7 Application Overviews

In this paper we benchmark three applications. A graphic locator program written by Heidi McClure (a graduate student at UCCS). A Network Restoration graphing application and a RoloTool phone book application.

The graphic locator program allows a user to select a persons name and the program will then generate an office location map and display where this person sits in that office layout.

The Network Restoration application reads two data files with simulation data and plots a line graph from that data.

The RoloTool application is an electronic rolodex type application. A user may enter a last name of a person to search for and see all information, or on that person add new name and address information to the phone book.

All three of these applications use the web browser for the graphical human interface. In all applications, the web page prompts the user for required information. The query information is then passed to a cgi program. The cgi program processes the query and passes the results back to the browser for display. Each of these three applications pose different interaction patterns (traffic) between the web client and server.

The Graphic Locator application (written by Heidi McClure) packages up a simple string of a name and xy location integers. These are passed to a picture type generator (different method to generate picture between perl and java) and finally a picture is generated (or drawn) for the user. Thus most of the interaction is in developing the picture. The Network Restoration application has a reasonable amount of disk read time and external application launching to generate pictures for display. Thus its time is spent in disk io and picture generation (once again different methods between perl and java). Finally the RoloTool is a text based application performing mostly disk io read or write and virtually no picture generation. Its interaction pattern is following user interface and disk.

In our benchmarks we have generated these applications in both a server based application in Perl and a client based application in Java. Additionally we run the applications in Netscape, Internet Explorer and Hot Java. These three applications are run in all three of the browsers mentioned on the four client systems. We go into more detail description of each of the applications below. And finally look at the results of the benchmarks.
�Graphic Locator (by Heidi McClure Graduate Student)

Overview
As mentioned the graphic locator is an office locator. Given a persons name, display where that person sits in the office floor plan.

The first version of the program is written in Perl. The web browser displays an HTML form. The data is packaged up into a post stream and sent to a cgi Perl program. The perl program uses the perl database to extract an xy coordinate for a given name. With that information a public domain application called gd is spawned (within the perl program). This program reads a gif file (the base picture of the office layout) and overlays an X onto the xy location selected. A new .gif file is generated to disk. Finally the perl program generates a virtual document (return HTML web page) with the result .gif picture embedded.

The second version of the program is written as a Java applet. This method is much more elegant in that there are few files that need to be used or generated. In this method the HTML web page has the cgi application embedded in the web page. When a user loads the page, they load the applet. This application has the form and data embedded in the applet. There are no other programs or data files that need to be maintained or read / written to. The applet prompts the user for the persons name, just as in the perl version. Then it reads its xy data structure and “paints” the X location over the .gif image imported and painted on its internal canvas using its built in graphics painting tools.

Note that the perl version does take advantage of an external database and the java version embeds the data into the application. When the map information needs to be updated, the java version would have to be edited and recompiled. The perl version would need an external program to update its database on the server. Also note in this application that the Perl version requires access to the server for each map location request whereas the java version does not. If the application moves to another server of a different architecture (e.g. Sun to Dec) the perl database would have to be deleted and rebuilt on the new architecture. See the discussion on Perl for more information on Perl database portability.
�
Data Flow Diagram
note: all paths under ~mhmcclur/public_html/cgi-bin

perl	java
Browser	Browser
��cgimap.html	finalmap.html
��

�passes name via Form to	loads map3.class

�cgimap.pl		map3 apple has
	GUI.
looks up name to get x & y coord	
	
�	mapdata.dat	imports base .gif
	into canvas
	
deletes old .gif file	Creates map on
runs mygd creating new gif 	fly from internal
	table of name to
�	mygd x y	x y coord

�returns mygd.gif file as new url	
�	
�Browser	
�mygd.gif	paints new .gif
	on internal canvas

Lines / Size	Lines / Size
516 bytes html	203 bytes html
874 bytes perl	6.4k bytes java

Source Code (appendix A1)

Figure 4.0 data flow of Graphic Locator application

�Summary Analysis (Graphic Locator)
Of perl vs java implementations (performance details below). The perl version requires an additional external database (data and index files), an external application (gd). Thus from a file creation and maintenance point of view the java application has an advantage.

From web page design, the perl based application is more complicated since we need to create a page with a form and pass all the information through a submit method. Then the cgi program has to generate a results web page to display. Comparatively the java version is an extremely simple web page. All it requires is a CODE tag to load the applet. All action including the look and feel of a form is included in the applet.

For performance we see (in the chart below) that in most cases it is quicker to load the application to a ready state is longer for the java version vs the perl version. This is because the browser must download the whole java applet. However, once this is completed, the client version runs extremely faster than the server version. It is important to note here before we get to far that modem speed plays a big factor in first time results. With the 486 PC and a 14.4k modem it is quicker for a single pass to use the perl version. However after the first run all other runs are quicker using the java version since this version does not do any communicating back across the web to the server. Conversely, if you have a Pentium class machine with a 28.8k modem even the first pass will be quicker in the java version. The speed of downloading the applet over the modem is quicker than the overhead to run the server side applications and send back the .gif file.

Conclusion on development time and effort: java version allows simplistic html page (no need to learn about and build complex forms). Then you only need to learn and implement one language (java) and no need for external .gif files and external gd applications. Note in the appendix that the perl & html code is 55 lines vs the java & html code is 208 lines. Although the perl version is smaller in code, it is dependent upon multiple external applications to do its work. The java version is all inclusive for its 208 lines of code, not requiring any external applications.
�
Partial benchmark results below
See section 5.0 Benchmarks for complete figures

486DX2/66����owl�chico�owl�chico��14.4k modem����time to�time to�time to�time to������load�load�obtain�obtain��Application�lang�browser��page�page�results�results��������1st time�1st time��graphloc�perl�Netscape��2�4�40�40���java�Netscape��49�55�1�1���perl�I Explorer��5�8�53�53���java�I Explorer��37�49�1�6���perl�Hot Java��5�8�failed�failed���java�Hot Java��54�61�1�1��perl version uses perl database engine���������java version has data embedded in application - no file i/o for java���������

Pentium����owl�chico�owl�chico��28.8k modem����time to�time to�time to�time to������load�load�obtain�obtain��Application�lang�browser��page�page�results�results��������1st time�1st time��graphloc�perl�Netscape��1�3�25�27���java�Netscape��15�22�0.1�0.2���perl�I Explorer��2�3�45�30���java�I Explorer��18�20�0.1�0.2���perl�Hot Java��2�3�failed�failed���java�Hot Java��13�21�1�1��perl version uses perl database engine���������java version has data embedded in application - no file i/o for java���������
�
� EMBED PBrush ���

Figure 4.1 Opening screen for Perl (server) based version

� EMBED PBrush ���

Figure 4.2 Results screen for Perl (server) based version

�

� EMBED PBrush ���
Figure 4.3 partial picture of the opening screen for the java (client) version of the Graphic Locator
with the x locator reset to the upper left corner

� EMBED PBrush ��

�
Figure 4.4 picture of the Graphic Locator screen after it has run to find a Person in their cubicle (location)
�Network Restoration

Overview
The Network Restoration program is used to read network simulation result as generated by a network restoration simulation and display this data in an easy to interpret line graph. The data is extracted from the supplied data files, which we read over the web. For our study we have the selection of two networks that can be simulated, NJ and US. In each network, a user may select any of up to 27 different nodes. The data is stored in data files in a directory tree. Each simulation is between two nodes on a network. There are two simulation restoration algorithms performed between these two nodes on a network, Rreact and Twoprong. So we generate two lines on our graph.

For the perl version, an HTML web page generates a form for the selection of network and two nodes simulation results. The user selects from the web form, the network (NJ or US), the two nodes (say N04 and N07) and submits this data to the cgi program.

The cgi program opens the appropriate data files, creates an command file for GNUPLOT, writes data to an GNUPLOT data file and spawns a GNUPLOT session. The GNUPLOT generates a .ppm file. Then the program spawns a ppmtogif program run, passing in the .ppm file and generating a .gif file. Finally the program creates a virtual document (HTML web page) on the fly with the .gif file embedded.

In the java based model, a java applet is loaded from a simple .html page. Once again all action takes place within the applet. A form type gui is created on the fly in the applet. User input is collected and the applet retrieves the data in the web server. When the data has been read into a data structure, a graph is “painted” on the applet canvas.

�

Data Flow Diagram
note: all paths under ~lstein/public_html/NetRes

perl	java
Browser	Browser
��NetRes.html	NetRes.html
��

passes net,node1,node2 via Form to	loads
��server	client
NetRes.pl		NetRes.class
�	
deletes old .gif,data,cmd files	Creates GUI
creates GNUPLOT command file	
creates GNUPLOT rreact & twoprong data files	Opens URL to srvr
reads rreact and twoprong data files	reads data fm srvr
runs GNUPLOT generating ppm file	
runs ppmtogif program generating .gif file	draws plot
�

�Browser
returns to browser with list of data points
and a gif file in page

Lines / Size
	2.2k bytes html	305 bytes html
	8.1k bytes perl	24.6k bytes java
	15.4k bytes .gif file

Source Code (appendix A1)

Figure 4.5 Data flow of Network Restoration Application

�Summary Analysis (Network Restoration)
Once again from a perl vs java perspective for file maintenance and overhead, we can see that the java based model is much more simple and elegant in both development and maintenance. The perl model has a more complex web page with a form. To pass the data to an external cgi program, it runs two external programs (gnuplot and ppmtogif), creates two external data files (gnuplot command, gnuplot data), and two external picture files (.ppm and .gif). It also has to generate a return web page to display results.

The java model has a simplistic web page only requiring to load the applet with a CODE tag. It then creates its own form, reads the same data files from the server (a constant across both models). Finally it “paints” the results on its own built in canvas.

Performance issues: We see from the chart below that the performance figures are very similar in nature to the graphic locator (best times). This is reassuring since they are similar in plotting graphics, although in different approaches. To load the perl based web page is a short 2 seconds vs the java based version which must load the whole applet and takes 5 seconds. The overall run time for first results is 15 seconds for the perl version and 8 seconds for the java model.

From the data flow diagram above we saw that the java version must download a 25k byte applet. Since this is 10 times the size of the perl web page, we can see the impact on loading time (2 seconds vs 5). Additionally in reverse we see that to generate results is 3 times faster with the java applet than with the perl version, since the java applet does not have to read the data from the server again.

Conclusion for performance: If you are going to perform multiple runs (and most probably in this application you would be), and you are running on a 486 class machine with a 14.4k modem, then the java version is definitely the way to go. If it is a one time run, then the perl version will be the one you want to use, unless you have the higher performing system / modem.
�
Partial performance figures for NetRes
See chart in section 5.0 benchmarks for complete figures

486DX2/66����owl�chico�owl�chico��14.4k modem����time to�time to�time to�time to������load�load�obtain�obtain��Application�lang�browser��page�page�results�results��������1st time�1st time��NetRes�perl�Netscape��3�4�16�22���java�Netscape��16�40�5�7���perl�I Explorer��4�7�17�22���java�I Explorer��10�48�5�6���perl�Hot Java��9�12�failed�failed���java�Hot Java��45�50�failed�6��read data via url over web���������

Pentium����owl�chico�owl�chico��28.8k modem����time to�time to�time to�time to������load�load�obtain�obtain��Application�lang�browser��page�page�results�results��������1st time�1st time��NetRes�perl�Netscape��2�2�15�18���java�Netscape��10�10�2�7���perl�I Explorer��2�3�13�15���java�I Explorer��5�8�3�4���perl�Hot Java��9�12�failed�failed���java�Hot Java��8�10�failed�3��read data via url over web���������

�
� EMBED PBrush ���

Figure 4.6 Opening screen for server (perl) version

� EMBED PBrush ���

Figure 4.7 Result screen for server (perl) version

�
� EMBED PBrush ���
Figure 4.8 NetRes client (java) application after loading

� EMBED PBrush ���
Figure 4.9 NetRes client application after completing a run
�RoloTool

Overview

The RoloTool phone book application reads and writes data records on a person type entities to / from a persistent disk file. It has a form type human interface.

In the server based version (perl) the web page creates a form for the user to input the action they want to take and the required data to be managed. From the web page, the form passes the data to the cgi perl program. This program uses the perl database engine to store ascii delimited records (comma separated fields). On completion the perl program generates a web page, which displays appropriate information. Note that in this application if a user added a record, an “add record web page” is returned, and if they searched for a record a “search record web page” is returned. Finally on error, an error web page is returned.

In the java based model a very simplistic web page loads an applet (java program). The applet creates the gui with the look and feel of a form. The user selects the appropriate action, either search or add a record. If a SEARCH command, the last name is parsed and a read channel is opened via a URL on an ascii delimited data file back on the server disk. A linear search is performed. Note that in this application duplicate last names are not supported. Thus the first last name that is found in returned. All records are appended to the end of the data file. If an ADD is executed, the record to be added is encoded into an ascii delimited string. This string is passed via the web server to an intermediate cgi program. Java applets are not allowed to write to any disk, but they are allowed to pass data to an intermediate cgi program. This cgi program is an interface and is allowed to open a URL for write to the server disk from where the applet originated.

In both cases the appropriate results are displayed in the form window. Note again as in the Graphic Locator application that the perl version, if moved to a server of a different architecture (e.g. Sun to Dec) would need its Perl database deleted and rebuilt on the new architecture (see Perl discussion ahead). Also on the java version the cgi interface program that does the actual disk write on the server would have to be recompiled for the new architecture.

�Data Flow Diagram
note: all paths under ~lstein/public_html/RoloTool

perl	java
Browser	Browser
��RoloTool.html	RoloTool.html
��

passes name,address info via Form to	loads applet
��
RoloTool.pl		RoloTool.class
�	
reads & or writes to RoloTool.dat	Creates GUI
creates returning results web page	Opens read URL
	Opens write URL
�	as needed and
�	reads / writes data
	to RoloTool.txt
�
	uses intermediate
	cgi-bin/RoloTool
	to write data
�
	displays results

�Browser
returns to browser with name / address info

Lines / Size
2.2k html	384 bytes html
7.6k perl	12.7k java
	4.3k ‘C’

Source Code (appendix A1)

Figure 4.10 Data flow of RoloTool application

�Summary Analysis

In this type of application (database not graphical) we see that the java based version is actually more complex from a file access overhead point of view. The perl based application just uses its built in database to store and retrieve simple ascii strings. And it is much easier to parse strings in perl than java (the java app required the writing of a string parser method). Of course in both versions, we must process strings and string passing through the cgi interface.
In the java based model, it is important to note that java applets are not allowed to write directly to disks either locally or on the network. Even of more important note, client applets are not allowed to read or write to their local disks at all ! Client applets are allowed to open a URL for reading (with the proper UNIX permissions of course). However to write data (keeping it persistent), a client applet may only write to an intermediate cgi program. This intermediate program may then be used to write data to disk. In our example we created the RoloTool.c program for this function. Note that all UNIX permission rules apply, (rwx) and that the data file to be written must be in a path that is also known to the client browser. This is because in your client applet a URL uses the http addressing format. In our application we open a URL to
chico.uccs.edu/~lstein/RoloTool/java/(chico or owl)/RoloTool.txt
which is translated in UNIX to /user/students/lstein/public_html/RoloTool/java/(chico or owl)/RoloTool.txt
For string parsing and persistence, we see that the server based perl version is superior to the client based java version.
For the performance to load the web page to a ready to run state is quicker on the perl model except in the case of Suns Hot Java browser. This may be due to the close working relationship that Sun has with Netscape, in that they must have developed some tight hooks between Unix, the Netscape server and Hot Java. Sun and Netscape do collaborate on Java, Javascript and the Netscape browser. However, we need to downplay this due to the multitude of other problems that Hot Java has, its instability and Suns lack of support for Hot Java (no real production releases now or in the near future. See ahead for more information on Hot Java).
Although in multiple runs the java model does beat the perl model, in reality the perl model is still better. This is because the user spends more time typing in data (names to search, name addresses etc.) than the run time of the application. So the java version does not really have an advantage. For non graphical applications with a lot of user data, the perl based application is the better choice. Note that since record size is small, usually less than 100 bytes, the data can transfer in one access. Thus record size is not a factor between perl or java versions.

�Sample benchmark timing numbers for RoloTool
See section 5.0 Benchmarks for complete figures

486DX2/66����owl�chico�owl�chico��14.4k modem����time to�time to�time to�time to������load�load�obtain�obtain��Application�lang�browser��page�page�results�results��������1st time�1st time��RoloTool�perl�Netscape��3�4�8�8��search�java�Netscape��11�18�4�5��record�perl�I Explorer��5�7�9�10���java�I Explorer��6�19�4�6���perl�Hot Java��11�17�13�11���java�Hot Java��11�20�5�9��perl version uses perl database engine���������java version uses intermediate cgi program for write to flat file���������

Pentium����owl�chico�owl�chico��28.8k modem����time to�time to�time to�time to������load�load�obtain�obtain��Application�lang�browser��page�page�results�results��������1st time�1st time��RoloTool�perl�Netscape��2�2�8�4��search�java�Netscape��10�9�2�3��record�perl�I Explorer��2�6�13�5���java�I Explorer��4�7�4�3���perl�Hot Java��3�6�8�4���java�Hot Java��3�3�4�8��perl version uses perl database engine���������java version uses intermediate cgi program for write to flat file���������

�� EMBED PBrush ��� � EMBED PBrush ���
Figure 4.11 Partial picture of RoloTool server (perl) startup

� EMBED PBrush ���
Figure 4.12 Partial picture of RoloTool server (perl) results

�
� EMBED PBrush ���

Figure 4.13 RoloTool client application before running

� EMBED PBrush ���

Figure 4.14 RoloTool (java) after a search has completed
�Communication Observations

Before going into the detail of the benchmarking we need to observe the impact of the various communication methods used. Although we are not testing communications methods here (modem vs 10base2 Ethernet), we take a moment to discuss observed behavior between these methods.

In trying to keep all other factors the same we focus on the same applications on similar systems. Thus we want to focus on the differences between the Pentium 133 vs Pentium 100. Ram and all other factors are the same. The communications difference is the 28.8k baud modem vs the 10base2 Ethernet. The RoloTool application had similar times between communication methods due the small data sets (100 byte records) so the RoloTool numbers are not listed.

�Graphic Locator���486/14.4k�P5/133/28.8k�P5/100/Enet�X/Enet��Perl�42�26�13�20��Java�50�15�14�10���Network restoration���486/14.4k�P5/133/28.8k�P5/100/Enet�X/Enet��Perl�19�17�6�7��Java�21�12�4�13��Time to obtain results 1st round trip (Netscape browser)

Notice first that the Graphic Locator had similar numbers in java between the two Pentium machines. This supports our comparison test set in that there is no communications after applet load and processing is within the machine. The NetRes application must open a URL channel back to the server and read the two data sets, this is why even in java we see a dramatic performance difference in the java application. With this observation completed we turn our attention to the communication difference between the modem and Ethernet implementations. Note that the Graphic Locator had a 2:1 performance improvement between the communication methods on the Pentium systems. The Network Restoration application had closer to a 3:1 performance improvement in Ethernet over modem. With this observation we turn our attention to the benchmarking. See the complete performance figures ahead for all details.

�
5.0 Benchmarks

The next four pages show summary charts of the all the benchmark tests. The first chart is utilizing the 486 PC with 14.4k modem
The second chart is utilizing the Pentium with 28.8k modem
The third is the HP Pentium desktop on 10base2 Ethernet.
The fourth is the NCD X terminal on 10base2 Ethernet
�page intentionally left blank
�page intentionally left blank - insert excel spreadsheet copy horizontally

Figure 4.16a Benchmark summary chart - 486 DX laptop with 14.4k modem

�page intentionally left blank - insert excel spreadsheet copy horizontally

Figure 4.16b Benchmark summary chart - Pentium system with 28.8k modem
�page intentionally left blank - insert excel spreadsheet copy horizontally

Figure 4.16c Benchmark summary chart - Pentium system with 10 base 2 Ethernet
�page intentionally left blank - insert excel spreadsheet copy horizontally

Figure 4.16d Benchmark summary chart - NCD X terminal with 10 base 2 Ethernet

�page intentionally left blank
�5.0 Observations

Best Summary Results for 10 runs in seconds (Pentium to owl) over dial up lines:
		Perl		Java	
Application Type	Lang	Browser	Lang	Browser
Picture Generation (Graphic Loc)	125	Netscape	16	Netscape
Data to Plot (NetRes)	105	I Explorer	26	I Explorer
Data I/O (RoloTool read)	82	Netscape	21	Netscape
Data I/O (RoloTool write)	34	Hot Java	13	Hot Java

Best Summary Results for 10 runs in seconds (Pentium to owl) over 10base2 lines:
		Perl		Java	
Application Type	Lang	Browser	Lang	Browser
Picture Generation (Graphic Loc)	91	Netscape	6	Netscape
Data to Plot (NetRes)	37	I Explorer	21	I Explorer
Data I/O (RoloTool read)	20	Netscape	11	Netscape
Data I/O (RoloTool write)	11	Hot Java	11	Hot Java

There are two main conclusions we can draw from the above.

For multiple runs we see the great benefit of the java language. The speed is basically threefold. The obvious reason is that the java applets download all information on the first loading (to the client browser) and thus eliminate
communications and traffic back to the server
Server processing time which being a multi-user multitasking system is slower than the local Pentium (which has all computer resources to this one application). This eliminates the largest bottleneck in these type of applications, that of transmission time and network delays.
The one application that does write new information back to the disk is the RoloTool application. It had significant performance benefits in the Hot Java browser. However as we noted earlier this is a moot point since the application is highly user interactive and the amount of data is extremely small (100 bytes).

As expected, applications that only read / write data and do not perform any graphics operations, perform 3 or more times faster. The graphics painting is the slowest application. Note that any application that will only have one run will almost always perform better in a server based model. This is due to the transmission time to download the client applet over the web to the local client machine before execution.

�It can be seen that performance results are impacted by a variety of factors. Using different servers (chico vs owl) gives us a consistent difference in performance. In this environment the performance figures support the performance as stated by the vendor manufacturer. The new DEC Alpha server a much higher performance processor than the older Sun Sparc Classic system. The owl system performs consistently better than chico in all applications.

Also the same can be said in using a 486 vs a Pentium client system. The same consistent improvements can be seen in all applications. We know that the Pentium class PCs are a significant factor faster than the legacy 486 processor systems.

Given then, that we hold the server and client as constants (say we choose owl and the Pentium), then we can compare the application types and then the data sizes. Taking the application types first, we see that there are two main differences we can look at.
Graphical applications in relation to data i/o intensive application
Web browsers used on the clients

First in looking at the comparison of graphical applications in relation to performance, we see that the application speed is in direct proportion to the byte size. That is, the Graphic Locator with a byte size of 6k takes 1,000 seconds for the first 100 runs and the Network Restoration with a byte size of 24k takes 4,000 seconds, a direct 1:4 ratio of time to size. While there are variations in speed between systems, the ratios themselves are consistent, supporting our conclusion that the size in bytes we transfer has a direct correlation to the speed of completion.

Second in looking at the web browsers we can see a consistent pattern in performance and behavior. First we need to mention the Sun Hot Java browser. Its performance was sub standard. It could not even run the Perl versions of graphical applications. For java versions (its claim to fame), we could only obtain results for the Graphic Locator application and not the Network Restoration application (a full drawing program). Hot Java to its credit was particularly fast in first loads of the RoloTool application, particularly with the java version. However for repeat runs, the Netscape and Internet Explorer did out perform it.

�The Netscape browser was the best overall performer in all application types. Netscape does outperform Internet Explorer by 10 to 20 percent overall for Perl applications. We can conclude that the Netscape browser manages its communication in a more efficient manner than the Internet Explorer. However in the java versions of the applications, the Netscape browser does not beat the Internet Explorer. Indeed the Internet Explorer with the java versions of the Network Restoration and RoloTool outperforms the Netscape browser for these applications.

Conclusion of comparison of browser performance: For perl based versions, the Netscape browser is the better performer, both in load times and overall response time. For java based versions the Internet Explorer is the better performer in overall response time and especially load times. The Hot Java browser must be eliminated since it failed on many tests and its performance figures were below all others except for the RoloTool application. It should be mentioned that this browser also lacks basic features such as support for tables and frames. Thus the RoloTool application was hard to even read with this browser.
�5.1 Language vs Size

When we used Perl as a cgi language, we are dependent upon external programs and external data sets to achieve graphic results. Because of this external dependence, the source code with Perl is smaller than with another language such as Java. When writing applications that work with strings or numbers and not involving graphics Perl does show its strength as reflected in its name (Practical Extractor and Reporting Language).

Conversely, Java is not dependent upon external programs to generate graphics. Java’s rich Abstract Windowing Toolkit allows us to write applications with robust graphics (pick lists, radio buttons etc.) with minimal lines of code. Additionally Java’s rich networking library has allowed us to read and write across the web with only an additional small method.

The tables below shows the data and applications involved within a comparison of size and lines of code. Note that the gif files and unix database files are not listed since they are not directly “coded” or can be measured in “lines” of code. They are not a part of measurement of effort, but rather a resource we use.

�Graphic Locator
Language�File(s)�size bytes�lines code��Perl�cgimap.html�812�33���cgimap.pl�1.0k�37���mygd.c�2.1k�90��Perl Total��3.9k�160�������Java�map3.html�203�10���map3.java�6.0k�222��Java Totals��6.2k�232��Table 4.1a
Note: Perl requires external .gif file and external applications
Summary: Perl above does not reflect mapdata unix data base size (1k binary) or mygd.gif external .gif file (16.7k binary).
Thus java version much greater functionality for only 62 more lines of code.

NetRes
Language�File(s)�size bytes�lines code��Perl�NetRes.html�2.2k�57���NetRes.pl�8.1k�178��Perl Total��10.3k�235�������Java�NetRes.java�24.6k�413���NetRes.html�355�16��Java Total��24.9k�429��Table 4.1b
Note: Perl requires external .gif file and external gnuplot and ppmtogif applications
Summary: Similar, java version provides all inclusive functionality for 194 lines of code
RoloTool
Language�File(s)�size bytes�lines code��Perl�RoloTool.htm�2.0k�61���RoloTool.pl�7.6k�173��Perl Total��9.6k�234�������Java�RoloTool.htm�382�15���RoloTool.java�12.9k�264���RoloTool.c�2.3k�51��Java Total��15.6k�320��Table 4.1c
Note: Perl version uses unix database. Java version uses flat ascii file
Summary: RoloTool simpler coding in Perl.
Simplicity supports timing tests
�5.2 Bugs

A word about browsers should be made. When doing this research I discovered that the Netscape browser, while vastly the most popular does have some bugs that you should be aware of. The two areas that caused me problems are
Clearing the cache does not clear an applet from memory. What does this mean ? It means that as you are debugging your java program (applet) and rerunning you are always running the first version you loaded. Workaraounds - there is only one. Executing an Options Network Cache Clear does not do it. Nor does deleting all the files in your Netscape cache directory. The applet is loaded into RAM. You must File Quit Netscape in order to unload the applet from Ram and then re launch Netscape to load a fresh version of the applet.
Writing data to a server side file via a URL. Just doesn’t happen in Netscape. As you will note in the RoloTool program, the applet opens a URL to a server side cgi program and passes the string to write to that program. This will not happen in Netscape 3.0.

5.3 URLs
Working with and debugging URLs can be a challenge. The java environment, while clearly defined does not have much supporting documentation. I found that there was no real literature with clear cut procedures. Additionally when you open your url connection, the java environment will request you pass the string to go out the url, but this does not happen. You must print the string (again) with a print statement before it actually goes out of the port. Also when you want to close the url, I found it extremely important to perform multiple flushes or the reliability of the data being written to disk is unpredictable.
�
5.4 Quirks

The perl database is not portable across hardware architectures. If you develop a perl application and build a perl database to use with it on one system (e.g. Sun Sparcstation - Solaris 2.5), this database will not be able to be read on a different system (e.g. Dec Alpha - Dec OSF). If you move your application to a different system, you will need to delete the database and recreate it on the new architecture.
Using external applications and writing to disk can be tricky between systems. As file servers are optimized by their manufacturers to squeeze out more performance we find larger and more efficient caches. Twice in development of these benchmark applications I found caching on the web server to cause problems. The java applet for writing data to the server (Rolotool.java) was required to add a minimum of three disk flushes and the cache turned off manually within the applet to assure that the data was written to disk before the applet went out of existence. The same was found when using the mygd application as part of the Graphic Locator in the perl version. This program when moved to the Dec Alpha system was not able to complete its write before returning the gif file to the virtual web page for display. Once again a minimum of three disk flushes were required to assure that the data got out of cache and the disk file closed before returning the web page for display.

One important quirk that should be mentioned in development and support of WWW applications: You must always consider the environment that your application(s) will preside in. The WWW is very dynamic and always changing. Will you own the environment that your application(s) will be in ?? Will you own the server ? The operating system ? Who controls the server software (vendor, version etc.) ? Will there be upgrades to the hardware ? Different hardware platforms ? What about versions of Java runtime libraries, location of Perl binaries etc. etc. These parameters will all have an effect on your applications. Answering these questions up front can and will alleviate a lot of problems later.
�Appendix

�A.1 Java� XE "Java:language" �

Events� XE "Events" �
GUIs are event-driven programs -- they set up an interface and then wait for some physical event to trigger an action such as a mouse click. Each Java Component object can respond to an event or let the event fall through to the enclosing (parent) Container object. Responding to an event is a matter of overriding the default behavior of Component. Here are some details on events
init The � XE “init”�init method is called when your applet begins executing. Netscape is also known to call this method at other times such as when an applet is reloaded or you return to a page containing an applet. Generally you use this method to set up any data structures or perform any tasks you need to get ready to run the applet.
Paint: Almost any applet is going to need to override this method. This is the method in which you will do all your drawing. You can only write to the applet screen in the � XE “paint” �paint method. However there are times when you'll want to write to an offscreen image in another method and then just quickly copy that image to the screen in your paint method.
stop A � XE “stop”�stop message says the user is no longer looking at the page that contains the applet. This is usually because the user left the page or minimized the window.
start The � XE “start”�start method is called when a user brings their attention back to an applet, for instance after maximizing a window or returning to the applet's page. It is called after the init() method. Initialization code that needs to be performed every time an applet is restarted should be put here.
destroy The � XE “destroy”�destroy method is called before the applet is unloaded completely. It is called after the stop() method.
update The � XE “update”�update event is called automatically by the system when the screen changes (like its size).
mouseUp The mouseUp method is called whenever the � XE “mouse methods”�mouse button is released in your applet. mouseDown The mouseDown method is called whenever the mouse button is pressed in your applet. mouseDrag methods occur when a user moves the mouse while holding down the mouse button. mouseDrag methods receive the coordinates of the point where the mouse is when the event occurs. mouseMove methods occur when a user moves the mouse without holding down the mouse button. mouseMove methods receive the coordinates of the point where the mouse is when the event occurs. mouseEnter Your applet receives a mouseEnter event whenever the cursor enters your applet from somewhere else. You'll also receive the coordinates of the point at which the cursor entered your applet. mouseExit Your applet receives a mouseExit event whenever the cursor leaves your applet. You'll also receive the coordinates of the point at which the cursor exited your applet.
keyDown A keyDown event is generated whenever the user presses a � XE “keyboard methods”�key while your applet is active. An integer keycode is returned indicating which key was pressed.

Action Events� XE " Action Events" �
Activating a graphical widget object such as a Button generally triggers the action() method for that component.
Each event handling method returns true (the method handled the event) or false (the method did not handle the event). When an event method does not handle an event, the analogous event handler in the parent container is called. In this way, events are passed from innermost to outermost containers.

Data Structures� XE " Data Structures " �
A number of well understood utility classes such as HashTable, Vector, and Stack are provided in the Java library. This saves the programmer a substantial amount of time and debugging.

Applets� XE " Applets " �
An applet is a Java program that runs within the confines of an existing environment; specifically, within the confines of a java-compatible WWW browser. To execute your applet, the browser creates an instance of your applet and then sends an agreed upon set of messages to it (calls a number of the applet's methods) during the applet's lifetime. The applet's default response is to ignore these messages. All you have to do is fill in the appropriate methods to bring your applet to life.

The common "bookkeeping" methods defined by applets are
void destroy()
Called when an applet terminates; for example, when you quit the browser. Final cleanup should be done here such as freeing up system resources with dispose(). The dispose() method of Frame, the superclass of Applet, removes the menu bar. Therefore, do not forget to call super.dispose() if you override the default behavior.
void init()
This method takes the place of the Applet constructor and is only called once during applet creation. Instance variables should be initialized in this function. GUI components such as buttons and scrollbars should be added (via a layout manager) in this method.
void start()
Method start() is called once after init() and whenever your applet is revisited with your browser or when you de-iconify your browser. This method should be used to start up animation’s and other threads.
void stop()
Method stop() is called when you leave an applet or when you iconify your browser. This method should be used to suspend animation’s and other threads so they do not take system resources unnecessarily. Method stop is guaranteed to be called before destroy().
void paint(Graphics g)
This method is called when the applet drawing area needs to be redrawn. Anything not drawn with a layout manager must be drawn in this method. For example, buttons are not drawn here because the layout manager handles those, but bitmaps and so on must be redrawn here.

Applet Parameters� XE " Applet Parameters " �
Applets are normally invoked with HTML tags of the form
<applet code=AppletName.class [parameters]> </applet>
where the optional parameters are a space-separated list of parameter definitions. For example,
<applet code=AppletName.class width=300 p1=34 p2="test"> </applet>
where width is a predefined parameter and p1 and p2 are user-defined parameters. Your applet can access any of these parameters by calling Applet.getParameter("param"), which returns the String value of param.

AWT� XE "AWT" �
In Java the coordinate system for an applet begins in the upper left hand corner and increases to the right and down. As an example the drawRect method draws an open rectangle and by default starts at 0,0 (upper left). If we want to draw a filled rectangle we use the fillRect method. There are a lot of nice graphic tools available in the AWT toolkit. With the awt a programmer can develop a nice user interface in no time. See below for some details of some of the tools available.

The awt predefines a number of colors including: black blue cyan darkGray gray green lightGray magenta orange pink red white yellow If these aren't sufficient for your needs, you can define others using the same RGB triple that's used to set background colors on many web pages. You even get to use decimal numbers instead of the hex values you have to use for the bgcolor tag.

� XE “GUI classes”�GUI Classes
A Java program behaves in the same way on every Java compatible platform except that the windows and other GUI objects will be displayed using the native windowing system. In other words, a button may look a little different on each platform, but you can assume that pushing that button will trigger an event in the same way everywhere. Java's high degree of portability is derived from a number of factors including the nature of interpreted programs (versus compiled programs) and the flexible design of the class library.

Graphical Objects: � XE “Graphical Objects”�
Java provides a number of common GUI graphical objects that you can add to your display area with a layout manager. Such as: Checkbox, CheckboxGroup, Choice, Label, List, Scrollbar, TextArea and TextField

GUI Layout:� XE “GUI Layout”�
Rather than specifying x and y coordinates for laying out graphical objects such as buttons and scrollbars, layout managers are used to place these objects relative to each other. There are a variety of � XE “layout manager”�layout manager objects to handle different situations. Because different regions of a GUI are most conveniently laid out in different ways, Java allows regions to be broken up into smaller regions with their own layout manager.
The following layouts are available in Java: FlowLayout, BorderLayout, CardLayout, GridLayout, GridBagLayout

� XE “Canvas”�Canvas
A canvas is a generic graphical component representing a region where you can draw things such as rectangles, circles, and text strings. You subclass Canvas to override the default Canvas paint() method and to catch mouse events. For example, when writing a drawing applet, the region where objects are drawn is a subclass of Canvas. In the Canvas region, you want mouse events to create objects. Whereas, outside the canvas, you want the mouse to activate buttons and so on.

� XE “Drawing”�Drawing � XE “GIF”�GIF files
Applets display images by getting an Image object with getImage() and then displaying the image with Graphics.drawImage().
A reference to the applet itself is passed to drawImage() as the ImageObserver so that the applet can be notified when the image has been loaded and displayed. Images are not actually loaded by getImage()--they are asynchronously loaded when you actually try to draw them.

� XE “Animation “�Animation
Animation is produced by flipping through a series of predrawn images just like a movie projector. Because you normally want more than just an animation running in an applet, animation is best done in a separate thread.
Image loading is done asynchronously in Java. Method getImage() does not actually load the image -- images are loaded when drawn. However, the drawImage() method does not block waiting for the load to complete. As a result, the applet initiates animation without having loaded any of the images.
Java provides a MediaTracker class for achieving the desired behavior.

Printing to the � XE “Console”�Console
When creating an applet, it is often convenient (especially for debugging purposes) to print strings to the console, which is normally the window that launched the web browser or a console output window when using a development environment. The Java class library provides two objects for printing to standard output and standard error. In class System, you will find
static PrintStream out; and static PrintStream err;
These objects correspond to stdout and stderr from C and C++.

� XE “Applications”�Applications
An application is a standalone Java program that has no initial context (such as a pre-existing main window). The main differences from applets are
Applications are not required to respond to a set of messages
Applications are not restricted from using sockets or file I/O
To create a window for your application, define a subclass of Frame (a Window with a title, menubar, and border) and have the main program construct an instance of that class.
Responding to events is done just like it is done for applets.

Dialog Boxes: � XE “Dialog Boxes “�
A Dialog is a window that requires a response from the user. Components may be added to the Dialog like any other container. A Dialog is initially invisible. You must call method show() to activate the dialog box. Warning Dialog boxes can only be used in Frames, not in windows! The utility class FileDialog is useful for getting file names from the application user.

File I/O: � XE “File I/O “�
Java provides a set of predefined classes and objects for reading and writing data to and from sequential or random access files on a local host using a "stream" paradigm similar to C/C++. Files may be read on remote hosts via URL objects. Java objects and items of primitive type may be portably written and read in binary form. In addition, Java has File objects that are used to obtain information about files and directories. As for writing via a URL, you can only write to a cgi program on the Server from whence an Applet originated.

File System Access:� XE “File System Access”�
Java provides a set of predefined classes and objects for reading and writing data to and from files on a local file system (note that browsers generally prohibit applet file I/O for security reasons). Both sequential and random access are possible.

Predefined System I/O objects� XE " Predefined System I/O objects " �
Java provides two static objects in class System for sending output to stdout and stderr
static PrintStream out; static PrintStream err;
Methods print() and println() are used to print ASCII (or UNICODE) text representations of the arguments.
System.err is typically used for error information when redirecting the standard output to a file. The output will appear in the window that launched your browser or, in the case of a development environment, in a console window.
Java also provides a static object in class System for reading input from stdin
static InputStream in;
which is actually initialized to a BufferedInputStream. Reading input can be done via read(), which reads in a single character and returns -1 upon end of input.

File Objects� XE " File Objects " �
To obtain information about a file or directory, File objects are used. File objects are to be distinguished from stream objects such as OutputStream and InputStream. A File object is used to obtain information about a particular file or directory and is not used to read or write data. When the File object is associated with a file system directory, you can easily obtain the list of files in that directory.

Writing Output� XE " Writing Output " �
Java provides means for writing bytes to a FileOutputStream, writing items of primitive type such as float to a DataOutputStream, and printing items of primitive type and objects to a PrintStream. FileOutputStream is a pure byte stream, DataOutputStream writes items of primitive type in binary form, and PrintStream prints items in human-readable form (i.e., ASCII or UNICODE not binary). These three classes are the most commonly used and all are created from either a String filename or from a File object.
FileOutputStream
If you want to write a bunch of characters (down a network socket perhaps) or some binary byte array, FileOutputStream is the class to use.
DataOutputStream
If you have a bunch of items of primitive type such as int or float (or a String) that you want to write in binary in a portable manner, attach a DataOutputStream object to a regular FileOutputStream. By chaining the DataOutputStream to the FileOutputStream, we can write more complicated items than bytes to the stream (these items may be portably read by DataInputStream).
PrintStream
If you want to print a bunch of things to a text file, use a PrintStream object (e.g., System.out and System.err are both PrintStream objects). Notice that any object answers the message toString() and, hence, can be printed.
To summarize, FileOutputStream writes only bytes, DataOutputStream writes primitive items and Strings in portable binary, PrintStream prints primitive items and Objects to text files (i.e., the integer 34 is written as two characters: ‘3' followed by ‘4' as opposed to a 4 byte binary word with value 34).

Buffered Output� XE " Buffered Output " �
Class BufferedOutputStream allows you to write bytes to a stream without an actual file system write every time. When you flush() the buffer, close the stream, or fill up the internal buffer, the buffer is written to the stream. BufferedOutputStream objects must be attached to OutputStream objects, but are then used just like those OutputStream objects.
CLASS FilterOutputStream
Java provides class FileOutputStream to write bytes and provides a "filter" called DataOutputStream that supports writing more complex items.
DataOutputStream may be attached to any OutputStream to provide this extra functionality. For example, Java does not provide a BufferedDataOutputStream class, but it does provide filters DataOutputStream and BufferedOutputStream that can be chained and attached to a basic FileOutputStream.
A write to the DataOutputStream computes the bytes that need to be written and sends them to the BufferedOutputStream. The BufferedOutputStream stores the bytes in a buffer until the buffer becomes full, at which point it calls upon the FileOutputStream to actually write out the bytes to the file system.

Reading Input� XE " Reading Input " �
Java provides means for reading bytes from a FileInputStream and reading strings or items of primitive type such as float from a DataInputStream. Reading text items and converting them to primitive types is normally done by reading characters into a String and then parsing the String (as an alternative, see class StreamTokenizer) with methods such as Integer.parseInt() and Float.valueOf(). These two classes are the most commonly used and both are created from either a String filename or from a File object.
If you want to read a bunch of bytes from a stream, use FileInputStream.
If you want to read in items of primitive type, stored in binary, in a portable way, use DataInputStream.
StringBufferInputStream. Use this for reading Strings through a buffer
FilterInputStream As with FilterOutputStream, FilterInputStream uses delegation to allow InputStream objects to be chained together (see our discussion of FilterOutputStream).

Random Access I/O� XE " Random Access I/O " �
Java provides class RandomAccessFile which behaves like a combined DataOutputStream and DataInputStream -- RandomAccessFile implements DataOutput and DataInput.
RandomAccessFile objects are created from a String filename or File object like other stream objects, but a mode constructor argument is also required. The mode is either String "r" (read-only) or "rw" (read/write) just like fopen() in C or C++.
To append information to a RandomAccessFile, seek to the end of the file: f.seek(f.length());
The beginning of a file is considered position 0, hence, to seek to the beginning of a file, use: f.seek(0);

Read & Write to remote File System� XE " remote File System " �
Files on remote file systems may be read or written via sockets (see the next section) or read via URL objects. You can ask a URL object for an InputStream to read from.

Network Communications� XE " Network Communications " �
Java can be used to communicate with remote file systems using a client/server model. A server listens for connection requests from clients across the network or even on the same machine. Clients know how to connect to the server via an established port number (like a published phone number). Upon connection, the server spawns a thread to process the request coming across the "channel" from the client. In this way, multiple clients may connect to the same server.

Sockets� XE " Sockets " �
Client/Server applications may be built using Java's network communication classes. Specifically, Java provides two-way communication channels between hosts called sockets. The channel can be treated like a file stream.

Threads� XE " Threads " �
Java supports multiple threads of execution -- that is, you can have more than one thing going on at once. A thread is technically a single flow of control running through your program that has its own stack for making method calls and storing local variables. Multitasking using threads can be viewed as having a computer with multiple CPUs.
Creating separate threads in Java is trivial. Simply subclass class Thread, override method run(), and call start() for each instance you create of your new class. When run() returns or when stop() is called for that thread, the thread dies.
When you want to create a thread, it is easy to subclass Thread to inherit the appropriate behavior, however, what you really mean to say is that your new class is Runnable. Interface Runnable provides a common protocol for objects that want to run as a separate threads without having to pollute the class hierarchy.
To launch an object as a separate thread, define a class that implements Runnable and pass a reference to an instance of that class to the Thread constructor.

Syncronized Keyword� XE " Syncronized " �
Each object has a semaphore (or synchronization "gate" variable) that can be used to permit mutually exclusive execution of a group of methods. Among the group of "synchronized" methods within a class, at most one of them can be executed at one time. In other words, if methods f and g are synchronized, then f and g cannot be executed at the same time -- if method f starts to execute and another thread calls g, the thread calling g will block until the thread calling f has returned from f.
Synchronized methods are generally used for so-called "critical sections" or atomic operations. Critical sections are code blocks that cannot be interrupted.

Modularity and Packages� XE " Packages " �
Some developers propose that we write each class into a separate file on disk. This may become cumbersome with a larger application. However to aid managing files Java supports packages. You may define at the top of your source file package mypackage. This tells the compiler what files belong together. Kind of like linking object files. Then all the classes are known to each other in the package (are linked together). I prefer not to put each class in a separate java file, but to use directory structures are needed. You will need the directory structure because although we may not put each class into a separate file, the java compiler will compile each class into a separate .class file. Compiling this way, I admit, does help a lot when we download applets over the web.

Rules for Java development� XE " Rules " �
1.No file should contain more than one public class.
2.All files should have the same name as their single public class followed by the extension ".java".
3.Source code files should be stored in the same directory as their compiled .class file. This is so the Java compiler can find the appropriate definitions and interfaces for a class when the class is referred to in a different file.
4.Source code and .class files should be in a directory that's part of the $CLASSPATH environment variable.

�A.2 JavaScript� XE "Javascript:language" �

JavaScript Development� XE "JavaScript Development" �
A script author is not required to extend instantiate or know about classes. Instead the author acquires finished components exposing high-level properties such as "visible" and "color" then gets and sets the properties to cause desired effects.

Events In JavaScript� XE "Events in JavaScript" �

Event handlers
The following event handlers are available in JavaScript
onBlur	onChange	onClick	onFocus	onLoad	onMouseOver	onSelect	onSubmit	onUnload

onBlur event handler. A blur event occurs when a select text or textarea field on a form loses focus. The onBlur event handler executes JavaScript code when a blur event occurs.

onChange event handler. A change event occurs when a select text or textarea field loses focus and its value has been modified. The onChange event handler executes JavaScript code when a change event occurs. The onChange event handler is used to validate data after it is modified by a user.

onClick event handler. A click event occurs when an object on a form is clicked. The onClick event handler executes JavaScript code when a click event occurs.

onFocus event handler. A focus event occurs when a field receives input focus by tabbing with the keyboard or clicking with the mouse. Selecting within a field results in a select event not a focus event. The onFocus event handler executes JavaScript code when a focus event occurs.

OnLoad event handler. This event is sent to the current window when all the items to be put in the window finish loading and are available to the browser. This is an attribute of the BODY tag in your web page. If you have something short and sweet to run after the page loads then use the onLoad event handler.

onMouseOver event handler. A mouseOver event occurs once each time the mouse pointer moves over an object from outside that object. The onMouseOver event handler executes JavaScript code when a mouseOver event occurs. You must return true within the event handler if you want to set the status or defaultStatus properties with the onMouseOver event handler.

onSelect event handler. A select event occurs when a user selects some of the text within a text or textarea field. The onSelect event handler executes JavaScript code when a select event occurs.

onSubmit event handler. A submit event occurs when a user submits a form. The onSubmit event handler executes JavaScript code when a submit event occurs. You can use the onSubmit event handler to prevent a form from being submitted. To do so put a returns false in the event handler. Any other returned value lets the form submit.

onUnload event handler. An unload event occurs when you exit a document. The onUnload event handler executes JavaScript code when an unload event occurs. Use the onUnload event handler within either the BODY or the FRAMESET tag

Built-in Objects and Functions� XE " Built-in Objects " �� XE " Built-in Functions " �
The JavaScript Language contains the following built-in objects and functions
String object	Math object	Date object	Built-in functions

Using the String Object
Whenever you assign a string value to a variable or property you create a string object. String literals are also string objects. For example the statement mystring = "Hello World!" creates a string object called mystring. The literal "blah" is also a string object.
The string object has methods that return: a variation on the string itself such as substring and toUpperCase

Using the Math Object
The built-in Math object has properties and methods for mathematical constants and functions. For example the Math object's PI property has the value of pi which you would use in an application.

Similarly standard mathematical functions are methods of Math. These include trigonometric logarithmic exponential and other functions.

Using the Date Object
JavaScript does not have a date data type. However the date object and its methods enable you to work with dates and times in your applications. The date object has a large number of methods for setting getting and manipulating dates. It does not have any properties.

JavaScript handles dates very similarly to Java. The two languages have many of the same date methods and both languages store dates as the number of milliseconds since January 1 1970 00:00:00.
The parse method is useful for assigning values from date strings to existing date objects.

Using Built-in functions
JavaScript has several "top-level" functions built-in to the language such as
eval	parseInt	parseFloat

The built-in function eval takes a string as its argument. The string can be is any string representing a JavaScript expression statement or sequence of statements. The expression can include variables and properties of existing objects. If the argument represents an expression eval evaluates the expression. If the argument represents one or more JavaScript statements eval performs the statements.

The parseInt and parseFloat Functions
These two built-in functions return a numeric value when given a string as an argument. ParseFloat parses its argument a string and attempts to return a floating point number. If it encounters a character other than a sign (+ or -) numeral (0-9) a decimal point or an exponent then it returns the value up to that point and ignores that character and all succeeding characters. If the first character cannot be converted to a number it returns NaN.

Overview of JavaScript Statements� XE " JavaScript Statements " �
JavaScript supports a compact set of statements that enables you to incorporate inter activity in web pages. Variable Declaration / Assignment, Function Definition, Conditionals, Loops, for loop while loop for in loop, break and continue statements with statement Comments.

Values	Variable	Names	Literals

Values� XE "Values" �
JavaScript recognizes the following types of values
 numbers such as 42 or 3. 14159 logical (Boolean) values either true or false strings such as "Howdy!" null a special keyword denoting a null value

This relatively small set of types of values or data types enables you to perform useful functions with your applications. Notice that there is no explicit distinction between integer and real-valued numbers. Nor is there an explicit date data type in Navigator. However the date object and related built-in functions enable you to handle dates.

Data type Conversion� XE "Data Type" �
JavaScript is a loosely typed language. That means that you do not have to specify the data type of a variable when you declare it and data types are converted automatically as needed during the course of script execution.

Because JavaScript is loosely typed this will not cause an error message. In general in expressions involving numeric and string values JavaScript converts the numeric values to strings.

JavaScript provides several special functions for manipulating string and numeric values

Variable Names� XE "Variable Names" �
You use variables to hold values in your application. You give these variables names and there are certain rules to which the names must conform.

A JavaScript identifier or name underscore (_) subsequent characters can also be digits (0-9). Letters include the characters A through Z (uppercase) and the characters a through z (lowercase). JavaScript is case-sensitive. Some examples of legal names are
 Number_hits	temp99	_name

Literals� XE "Literals" �
Literals are the way you represent values in JavaScript. These are fixed values that you literally define in the application source and are not variables. Examples of literals include
42	3	14159	To be or not to be

Integers� XE "Integers" �
Integers can be expressed in decimal (base 10) hexadecimal (base16) or octal (base 8) format. A decimal integer literal consists of a sequence of digits (optionally suffixed as described below)without a leading 0 (zero).
An integer can be expressed in octal or hexadecimal rather than decimal. A leading 0 (zero) on an integer literal means it is in octal a leading 0x (or 0X) means hexadecimal. Hexadecimal integers can include digits (0-9) and the letters a-f and A-F. Octal integers can include only the digits 0-7.

Floating Point Literals� XE "Floating Point Literals" �
A floating point literal can have the following parts: a decimal integer a decimal point (.) a fraction (another decimal number) an exponent and a type suffix. The exponent part is an "e" or "E" followed by an integer which can be signed (preceded by a "+" or "-"). A floating point literal must have at least one digit plus either a decimal point or "e" (or "E"). Some examples of floating point literals are
 3.	1415 -3.	1E12	1e12 2E-12

Boolean Literals� XE "Boolean Literals" �
The Boolean type has two literal values: true and false

String Literals� XE "String Literals" �
A string literal is zero or more characters enclosed in double(“) or single (') quotes. A string must be delimited by quotes of the same type that is either both single quotes or double quotes. The following are examples of string literals
“blah”	'blah'	‘1234’	“one line \n another line”

Special Characters� XE "Special Chars" �
You can use the following special characters in JavaScript string literals
 \b \f \n \r \t

Escaping Characters� XE "Escaping Chars" �
You can insert quotes inside of strings by preceding them by a backslash. This is known as escaping the quotes.

Reserved words� XE "Reserved Words" �
The reserved words in this list cannot be used as JavaScript variables functions methods or object names. Some of these words are keywords used in JavaScript others are reserved for future use.
abstract Boolean break byte case catch char class const continue default do double else extends false final finally float for function goto if implements import in instanceof int interface long native new null package private protected public return short static super switch synchronized this throw throws transient true try var void while with

JavaScript Object Model� XE "Object Model" �
JavaScript is based on a simple object-oriented paradigm. An object is a construct with properties that are JavaScript variables. Properties can be other objects. Functions associated with an object are known as the object's methods . In addition to objects that are built into the Navigator client you can define your own objects. A JavaScript object has properties associated with it. You access the properties of an object with a simple notation: objectName. propertyN

Creating New Objects� XE "New Objects" �
Both client and server JavaScript have a number of predefined objects. In addition you can create your own objects. Creating your own object requires two steps
* Define the object type by writing a function.
* Create an instance of the object with new .
To define an object type, create a function for the object type that specifies its name and its properties and methods. Then to create an instance of the object, just call the function passing in the values the new object is to have.
Defining Methods
You can define methods for an object type by including a method definition in the object type definition.

Using Navigator Objects
When you load a page in Navigator it creates a number of objects corresponding to the page its contents and other pertinent information.
Every page always has the following objects
window: the top-level object contains properties that apply to the entire window. There is also a window object for each of the "child windows" in a frames document. location: contains properties on the current URL. history: contains properties representing URLs the user has previously visited document: contains properties for content in the current document such as title, background, color and forms
The properties of the document object are largely content-dependent. That is they are created based on the content that you put in the document.
Navigator would also create the following objects based on the contents of items on the page such as
document myform document.
document myform. Check document.
document myform. Button
These would have properties such as
document myform. Action == http://terrapin/moch
document myform. Method == get document.
document myform. Length == 5
document myform. Button == Press Me
document myform. Button == Button1
document myform. Text == blahblah
document myform. Text == text1
document myform. Check == true
document myform. Check == on
document myform. Check == Check1
Notice that each of the property references above starts with "document "followed by the name of the form "myform " and then the property name (for form properties)or the name of the form element. This sequence follows the Navigator's object hierarchy discussed in the next section.

Navigator Object Hierarchy� XE "Object Hierarchy" �
The objects in Navigator exist in a hierarchy that reflects the hierarchical structure of the HTML page itself. You cannot derive object classes from these objects as you can in languages such as Java. In the strict object-oriented sense this type of hierarchy is known as an instance hierarchy since it concerns specific instances of objects rather than object classes.
In this hierarchy an object's "descendants" are properties of the object. For example a form named "form1" is an object but is also a property of document and is referred to as "document.form1".
The Navigator object hierarchy is illustrated below
navigator.window | +--parent frames self top | +--location | +--history | +--document | +--forms | | | elements (text fields textarea checkbox password | radio select button submit reset) +--links | +--anchors
To refer to specific properties of these objects you must specify the object name and all its ancestors. Exception: You are not required to include the window object.

Key Navigator Objects� XE "Objects, Key" �
Some of the most useful Navigator objects include document, form and window.

Using the document Object
One of the most useful Navigator objects is the document object because its write and writeln methods can generate HTML. These methods are the way that you display JavaScript expressions to the user. The only difference between write and writeln is that writeln adds a carriage return at the end of the line. However since HTML ignores carriage returns this will only affect pre formatted text such as that inside a PRE tag.

The document object also has onLoad and onUnload event-handlers to perform functions when a user first loads a page and when a user exits a page. There is only one document object for a page and it is the ancestor for all the form link and anchor objects in the page.

Using the form Object
Navigator creates a form object for each form in a document. You can name a form with the NAME attribute as in this example
 NAME="myform"> TYPE="text" NAME="quantity" onChange=". . . ">

There would be a JavaScript object named myform based on this form. The form would have a property corresponding to the text object that you would refer to as
document. myform. quantity
You would refer to the value property of this object as
document. myform. quantity

The forms in a document are stored in an array called forms . The first (topmost in the page) form is forms[0]the second forms[1] and so on. So the above references could also be
document. forms[0]. document. forms[0].
Likewise the elements in a form such as text fields radio buttons and so on are stored in an elements array.

Using the window Object
The window object is the "parent" object for all other objects in Navigator. You can always omit the object name in references to window properties and methods. Window has several very useful methods that create new windows and pop-up dialog boxes
 open and close: Opens and closes a browser window alert: Pops up an alert dialog box confirm: Pops up a confirmation dialog box

The window object has properties for all the frames in a frame set. The frames are stored in the frames array. The frames array contains an entry for each child frame in a window. For example if a window contains three child frames these frames are reflected as window. frames[0]window. frames[1] and window. frames[2].

Functions and Methods� XE "Functions" �� XE "Methods" �
Functions are one of the fundamental building blocks in JavaScript. A function is a JavaScript procedure--a set of statements that performs a specific task. A function definition consists of the function keyword followed by the name of the function, a list of parameters to the function enclosed in parentheses and separated by commas the JavaScript statements that define the function enclosed in curly braces {. . . }

In a Navigator application you can use any functions defined in the current page. It is generally a good idea to define all your functions in the HEAD of a page. When a user loads the page the functions will then be loaded first. The statements in a function can include other function calls defined for the current application.

Defining a function does not execute it. You have to call the function for it to do its work. The parameters of a function are not limited to just strings and numbers. You can pass whole objects to a function too. A function can even be recursive that is it can call itself.

Methods� XE "Methods" �
A method is a function associated with an object. You define a method in the same way as you define a standard function. Then use the following syntax to associate the function with an existing object
object. Method name = function_name
where object is an existing object method name is the name you are assigning to the method and function_name is the name of the function. You can then call the method in the context of the object as follows
object. Method name(params)

Using this for Object References
JavaScript has a special keyword this that you can use to refer to the current object. In general, in a method this refers to the calling object. Here this is used the same as in Java.

JavaScript in HTML� XE "JavaScript" �
JavaScript can be embedded in an HTML document in two ways
 * As statements and functions using the SCRIPT tag.
 * As event handlers using HTML tags.

The SCRIPT tag A script embedded in HTML with the SCRIPT tag uses the format
<SCRIPT LANGUAGE = “JavaScript”>
 JavaScript statements in here
</SCRIPT>

You also can define a JavaScript event handler in your html document. These do things such as capture mouse clicks of form buttons.
<INPUT TYPE=”button” onClick=<”script code”>
This method can be used to capture user input, that can then be processed by a script section of code (function etc.).

JavaScript and HTML Layout� XE "JavaScript" �

Layout refers to transforming the plain text directives of HTML into graphical display on your computer. Generally speaking layout happens sequentially in the Navigator. That is, the Navigator starts from the top of the HTML file and works its way down figuring out how to display output to the screen as it goes. So it starts with the HEAD of an HTML document then starts at the top of the BODY and works its way down.

Because of this "top-down" behavior JavaScript only reflects HTML that it has encountered. You cannot use or call something before Navigator has “seen” it. This is why it was mentioned to define your functions in the Head section of the html page.

JavaScript and Java� XE "JavaScript vs Java" �
The JavaScript language resembles Java but without Java's static typing and strong type checking. JavaScript supports most of Java's expression syntax and basic control flow constructs. In contrast to Java's compile-time system of classes built by declarations JavaScript supports a run-time system based on a small number of data types representing numeric Boolean and string values.

JavaScript has a simple instance-based object model that still provides significant capabilities. JavaScript also supports functions again without any special declarative requirements. Functions can be properties of objects executing as loosely typed methods.

JavaScript complements Java by exposing useful properties of Java applets to script authors. JavaScript statements can get and set exposed properties to query or alter the performance of an applet or plug-in.

JavaScript offer programming tools to a much wider audience because of their easier syntax, specialized built-in functionality and minimal requirements for object creation.

JavaScript vs. Java� XE "JavaScript vs Java" �
Java is not JavaScript! The techniques used in Java and JavaScript are so different from each other because JavaScript is a scripting language and Java is a programming language. The different languages have different purposes. Yet the JavaScript language resembles Java but without Java's static typing and strong type checking. JavaScript also supports most of Java's expression syntax and basic control flow constructs.

The following table compares and contrasts JavaScript and Java.

JavaScript
	Java

Interpreted (not compiled) by client.
Compiled on server before execution on client.

Object-based. Code uses built-in extensible objects but no classes or inheritance.
Object-oriented. Applets consist of object classes with inheritance.

Code integrated with and embedded in HTML.
Applets distinct from HTML (accessed from HTML pages).

Variable data types not declared (loose typing).
Variable data types must be declared (strong typing).

Dynamic binding. Object references checked at run-time.
Static binding. Object references must exist at compile-time.

Secure. Cannot write to hard disk.
Secure. Cannot write to hard disk.

Summary
JavaScript is a robust scripting language allowing HTML developers to develop small yet robust application tools to run in their client pages. It is especially useful for capturing form and other user input. This way you can check user input and do some processing without the overhead of communication bandwidth or further burdening the server system.

�A.3 Perl� XE "Perl:language" �

Variables
Variables need not be declared, and are implicitly initialized to zero. If Perl has a weak point it would be its scarcity of primitive data types. Strings and numbers are all you get in Perl. The number type is a double precision floating point number - no integer type exists in Perl. Additionally, Perl doesn't assign type to variables, that is, it's perfectly legal to assign a number to variable x and then assign a string to the same variable x. Perl's variable names are case sensitive, meaning that $blah and $Blah are different. Perl does have a reserved string variable, $_ that it uses for many operations.

Data Structures
Perl has three data structures: scalars� XE “scalars”�, arrays of scalars, and associative arrays of scalars, known as “hashes” � XE “hashes”�. Scalars are, as their name implies, plain vanilla variables, with no real structure to them. Scalars are denoted by a '$' before the variable name. Arrays of scalars are more commonly known as arrays. Just as C would have array_var[n] with element array_var[0], Perl would have @array_var with element $array_var[0]. Like C, and as God intended, Perl begins arrays with the 0th element. Associative arrays of scalars are Perl's implementation of hash tables� XE “hash tables”�. Associative arrays are arguably the most unique and useful feature of Perl. Common applications of associative arrays include creating keyed tables, such as user lists and filename lists. The prefix for associative arrays is the percent sign (%). Note that in the RoloTool.pl program we benchmark in this application, we use these associative arrays and key off the last name field.

Structured Code
Blocks of Perl code are enclosed in braces ({. . .}). In Perl, as in C, every line ends with a semicolon. Lines beginning with a pound sign (#) are treated as comments and are ignored. Being rooted in C, Perl's flow control structures very closely resemble those of the C language. Likewise, Perl's operator and comparator set parallels that of C. Valid Perl operators� XE “Perl:operators”� / comparators that are not valid C operators include
 ** 	The exponentiation operator
 **=	The exponentiation assignment operator
()		The null list, used to initialize an array to null
 		Concatenation of two strings
.=		The concatenation assignment operator
eq		String equality (== is numeric equality)
=~		Approximately equal, these are only used on strings

Certain operations search or modify the string $_ by default. This operator makes that kind of operation work on some other string. The right argument is a search pattern, substitution, or translation. The left argument is what is supposed to be searched, substituted, or translated instead of the default
$_.

X			The repetition operator
..			The range operator
 -f, -x, -l, ...	Unary file test operator.
Perl has the ability to test various file permission settings in the same way as the UNIX test command. The Perl manual page contains a full listing of Perl file test operators.

Control Flow
Perl's flow control� XE “Perl:flow control”� structures include the if-then-else construct, the while statement, the for (and foreach) statement, and even the foul goto statement. Most noticeably absent from Perl's repertoire of flow control structures is the case statement, omitted mainly because it can be simulated with the other constructs.

If Then Else
The if-then-else construct works as in any normal procedural language, especially, of course, C. Perl's notion of truth is similar to C, that is numeric zero is false, and non-zero numerics are true. Strings of null length are logically false while strings of length greater than or equal to one are logically true. Arrays (both scalar and associative) are true if they contain at least one member, and false if they are empty. Lastly, nonexistent variables are considered false, since they are created when referenced and initialized to zero.

Loops
Perl's while statement works as in any procedural language. Conveniently, when it is passed an array as the test value, while(@array), it iterates until the array has no values in it, allowing one to iterate through the array by popping off an element each cycle (via the shift command). This allows iteration through each element of the array, as in a for loop, but without needing to calculate start and end values. This feature seems as though it could be very time conserving, but Perl provides an even better mechanism for this purpose.

Perl provides a for-loop construct, as would any good language, but Perl handles them differently than does C. Perl provides a three argument for loop like C's, but it also provides a one argument 'for' that takes an array (the argument) and assigns $_ the nth element in the array as n goes from 1 to N (N being the number of elements in the array). This method of iterating through arrays is a lifesaver, since the 'while' traversal of an array is destructive to the array, and since it requires so little code to accomplish so much.

There is a goto in Perl.

Perl provides two mechanisms for short cutting loops. The next keyword works like C's continue, forcing the next iteration. The last keyword, like C's break, forces control out of the current loop.

Subprograms � XE “Perl:sub programs”�are allowed in Perl. They are implemented with the sub keyword followed by the subroutine name, followed by a code block (enclosed in braces, of course). Return values are handled somewhat differently in Perl than in other languages. The subprogram can explicitly return a value with the return keyword, or implicitly return the value of the last Perl statement. Also of interest for subprograms, all variables are global by default, although this can be overridden.

Summary
People who are into shell programming and hard to read terse code will enjoy programming in Perl. Those who were "raised" on languages such as Pascal will find Perl unpleasant.

�A.4 C� XE "C:language" �
C has
includes to include library routines like Java imports
typedefs to define exotic variable type
structs (handy record types) and unions (can be dangerous sharing memory locations
all the basic data types, int, float, char etc.
all the basic math expressions +, -, *, /, % (remainder)
increment and decrement operators ++, --
a nice library of handy dandy routines like
scanf, printf, getchar, putchar

It uses the regular modular program style of blocks (braces {}) of code, functions like methods and the usual parameter passing. Note however here is where we can get a little tricky. We can pass by address or by value. And the big topic pointers (there I said it).

Pointers
Pointers� XE “Pointers”� by far are the most confusing piece of power for non C programmers. Its just this, when working with an item (most of the time its a variable, but sometimes its objects and occasionally even a function or method), we either are working with the value of the item or the address in memory of where that item is. As an example, a function. If you are passing by address (or reference some like to say), then you are working with a pointer. You are sending (or receiving) the address of where the item is. You can even pass the address of a function so that the program will start executing at that function.

If you are a fluent C programmer, then you really enjoy using these a lot, especially since you can make it look real complex to other people (haha). Once again, this is where Java claims to have made vast strides of improvement. They have no pointers, claim you don’t need them (maybe true), and thus makes the code levels easier to maintain.

Flow Control
Back to some code. C has all the usual flow of control stuff, while, for, do, if, switch, break and continue. Once again we went into some detail on these above and this isn’t an all inclusive language tutorial, so look for the details in the references.

Versions / Headers
When writing your code, C has a couple of flavors. The original Kernigan and Richie� XE “Kernigan and Richie”�, the Ansi C� XE “Ansi C”� and of course the newer C++ syntax. Your pretty safe now compiling ansi C code. When writing code, generally its considered good housekeeping to create .h header files. Here you kind of forward declare all your variables and functions (methods). This allows the compiler to take a peek on the first pass and then know about your calls before the full function definition is compiled. Also to note here all your arrays must be sized statically here with constants.

Its easy to make your C code modular and include all your common portable stuff with a #include statement in your latest program. Variables like filename can be externally defined to be in these other modules also. You can do full macro definitions in your header files too. Simple 1 or 2 liner functions can be defined and used like a keyword in your code.

Arrays
Another note on arrays. You can have arrays of anything including simple data types, linked lists, objects etc. Arrays are always passed by reference to functions and you can address into arrays with the usual index like myarray[7] or use pointer and pointer arithmetic like *(myarray + I) = 0; (oh fun!).

Strings
Strings are nice and easy in C. There is a great library with all kinds of nice string functions (length, compare, copy etc.). This is as robust (at least to me) as Perl without any of the cryptic little codes you need to remember.

Files
Files, you have all the standard stuff for reading, writing, appending, seeking etc. Plus the usual stdin, stdout, stderr you can work with. You also have fputc, fgetc, fscanf, fprintf like we mentioned above. With C you have more work involved (a lot more) when dealing with problems than you do with Java. As noted with Java you are forced to check for errors. With C you can totally ignore it (at least in your code). Not wise though, so you have to check for errors and handle them yourself.

Dynamic memory is easy in C. Lists and trees of all types are easily defined with a structure (or two), a couple pointer (next and prev, left and right) and the malloc� XE “malloc”� or new� XE “new”� operator.

Heres an interesting piece of the C puzzle. The bitwise operators. You can use ~, &, !, ^, <<, >> to manipulate binary bits in a word (or say register). This is real handy if your doing any hardware level programming (like out an IEEE test bus).

C and CGI
When it comes to writing cgi programs C makes a great small tight program if needed for small processing like disk writes. This is just what was needed for the RoloTool application (see below). Remember C strength lies in its terse tight abilities. However also remember that your code has to be compiled for the server it will run on, and that means in a heterogeneous environment like the world wide web you are at great risk.

Summary
In summary, an ansi C compiler makes a super C compiler since you can use some of the new features like inline, new, delete, const etc. The C code will provide a compact executable, but will not be portable across different hardware architectures.

�B.1 Files / Locations

All files can be found on UCCS UNIX web server /users/server/students/…
Note that in a web URL we do not enter public_html (it is assumed). But in a shell window we must i.e. http://chico.uccs.edu/~lstein/RoloTool/java/RoloTool.html = /users/server/students/lstein/public_html/RoloTool/java/RoloTool.html
note: to support these applications running on both chico a Sun Sparcstation and owl a Dec Alphastation there are two versions (calling owl or chico and compiled appropriately)

Insert http://chico.uccs/edu/ or http://owl.uccs.edu/ for each of the paths below

Graphic Locator (Perl - chico)
~mhmcclur/cgi-bin/project/cgimap.html	web page to launch
~mhmcclur/cgi-bin/project/cgimap.pl	perl program
~mhmcclur/cgi-bin/project/mapdata.dir & .pag	database
~mhmcclur/cgi-bin/project/mygd	gif generator application
~mhmcclur/cgi-bin/project/mygd.gif	resulting map picture
Graphic Locator (Perl - owl)
~lstein/cgi-bin/mhmcclur/cgi-bin/project/cgimap.html	web page to launch
~lstein/cgi-bin/mhmcclur/cgi-bin/project/cgimap.pl	perl program
~lstein/cgi-bin/mhmcclur/cgi-bin/project/mapdata.dir & .pag	database
~lstein/cgi-bin/mhmcclur/cgi-bin/project/mygd	gif generator application
~lstein/cgi-bin/mhmcclur/project/mygd.gif	resulting map picture

Graphic Locator (Java same for chico and owl)
~mhmcclur/cgi-bin/project/finalmap.html	web page to launch
~mhmccur/cgi-bin/project/map3.java & .class	applet program

Network Restoration (Perl - chico)
~lstein/NetRes/perl/chico/NetRes.html	(perl web page)
~lstein/cgi-bin/chico/NetRes.pl	perl source code
~lstein/cgi-bin/chico/plotdemo/rreact-data	output data for gnuplot
~lstein/cgi-bin/chico/plotdemo/twoprong-data	output data for gnuplot
~lstein/cgi-bin/chico/plotdemo/gnuplot_cmd	gnuplot output
~lstein/cgi-bin/chico/plotdemo/netres.ppm	gnuplot output
~lstein/cgi-bin/chico/plotdemo/netres.gif	ppmtogif output
~chow/cgi-bin/chow/plotdemo/nj (or us)/	data input files
	/rreact (or twoprong)/N00-N27cut.l
Network Restoration (Perl - owl)
~lstein/NetRes/perl/owl/NetRes.html	(perl web page)
~lstein/cgi-bin/ owl/NetRes.pl	perl source code
~lstein/cgi-bin/ owl/plotdemo/rreact-data	output data for gnuplot
~lstein/cgi-bin/ owl/plotdemo/twoprong-data	output data for gnuplot
~lstein/cgi-bin/ owl/plotdemo/gnuplot_cmd	gnuplot output
~lstein/cgi-bin/ owl/plotdemo/netres.ppm	gnuplot output
~lstein/cgi-bin/ owl/plotdemo/netres.gif	ppmtogif output
~chow/cgi-bin/chow/plotdemo/nj (or us)/	data input files
	/rreact (or twoprong)/N00-N27cut.l

Network Restoration (java - chico)
~lstein/NetRes/java/chico/NetRes.html	(java web page)
~lstein/NetRes/java/chico/NetRes.java	(applet program)
~chow/cgi-bin/chow/plotdemo/nj (or us)/	data input files
	/rreact (or twoprong)/N00-N27cut.l
Network Restoration (java - owl)
~lstein/NetRes/java/owl/NetRes.html	(java web page)
~lstein/NetRes/java/owl/NetRes.java	(applet program)
~chow/cgi-bin/chow/plotdemo/nj (or us)/	data input files
	/rreact (or twoprong)/N00-N27cut.l

RoloTool (Perl - chico)
~lstein/RoloTool/perl/chico/RoloTool.html	(java web page)
~lstein/cgi-bin/chico/RoloTool.pl	(perl program)
~lstein/cgi-bin/chico/RoloTool.dat (&.pag)	(database)
RoloTool (Perl - owl)
~lstein/RoloTool/perl/owl/RoloTool.html	(java web page)
~lstein/cgi-bin/owl/RoloTool.pl	(perl program)
~lstein/cgi-bin/owl/RoloTool.dat (&.pag)	(database)

RoloTool (java - chico)
~lstein/RoloTool/java/chico/RoloTool.html	(java web page)
~lstein/RoloTool/java/chico/RoloTool.java	(applet program)
~lstein/cgi-bin/chico/RoloTool.c	(cgi program)
~lstein/RoloTool/java/chico/RoloTool.txt	(data file)
RoloTool (java - owl)
~lstein/RoloTool/java/owl/RoloTool.html	(java web page)
~lstein/RoloTool/java/owl/RoloTool.java	(applet program)
~lstein/cgi-bin/owl/RoloTool.c	(cgi program)
~lstein/RoloTool/java/owl/RoloTool.txt	(data file)

�Source Code

�C.1 <!--Cgimap.html by Heidi McClure Perl version (

<html>
<title>Map Locator Tool </title>
<body>
<h1>Map Locator Tool (CGI based version) </h1>
<h3>Please select the name of the person you would like to locate
</h3>
<form method=post
action="http://chico.uccs.edu/cgi-bin/mhmcclur/project/cgimap.pl">
<table BORDER=2 CELLSPACING=3 CELLPADDING=3>
<tr>
<td>Name
<td><select name="thename">
<option>Mike <option>Chip <option>John <option>Heidi
<option selected>Carolyn <option>Chuck

</select>
</table>
<input type=submit value="locate">
</form>
</body>
</html>

�C.2 Cgimap.pl by Heidi McClure

#!/users/research/students/chow/perl5/bin/perl
#!/usr/rmtc/gnu/bin/perl

use CGI;

$query = new CGI;
$name = $query->param(thename);

print "Content-type: text/html\n\n";
print "<title>Map Locator Tool </title>\n";
print "<h1>Map Locator Tool </h1>\n";

print "<body>name = $name
\n";

add look up code here via database

dbmopen(%DBFILE,
"/users/server/students/mhmcclur/public_html/cgi-bin/project/mapdata",
0666);
$data = $DBFILE{$name};

if ($data eq "") {
 print $name." is not in the map database\n";
 exit;
}

($xcoord, $ycoord) = split(/!/, $DBFILE{$name});

dbmclose(%DBFILE);
system "rm -f mygd.gif";
system("/users/server/students/mhmcclur/public_html/cgi-bin/project/mygd $xcoord $ycoord");

print "\n";
exit;

�C.3 <!--finalmap.html by Heidi McClure java version (

<HTML>
<TITLE>Java Map Locator Tool</TITLE>

<h2>Please select or enter the name of the person you wish to
locate</h2>
<hr>
<applet code=map3.class width=1000 height=780>\n</applet>

<hr>

</HTML>

�C.4 Map3.java by Heidi McClure

import java.awt.*;
import java.applet.Applet;

public class map3 extends Applet {

 Image buffer;
 Graphics gc;
 myCanvas c1, c2;

 Panel entryPanel;
 TextField enterText;
 Label enterLabel, listLabel;
 List nameList;

 String nameString = new String("");
 Button locateButton;

// Integer[][] arrayOfCoords = new Integer[20][];
 int[][] arrayOfCoords = new int[20][];
 String[] arrayOfNames = new String[20];

 public void init() {
	Image im;
	int i, j;
 locateButton = new Button("Locate");
	setLayout(new BorderLayout(10,10));
// set up arrays of names and coords
	arrayOfNames[0] = "Heidi";
	arrayOfNames[1] = "Mike";
	arrayOfNames[2] = "John";
	arrayOfNames[3] = "Chip";
	arrayOfNames[4] = "Carolyn";
	arrayOfNames[5] = "Chuck";
	arrayOfNames[6] = "Jerry";
	arrayOfNames[7] = "Gerry";
	arrayOfNames[8] = "Debi";
	arrayOfNames[9] = "Sarah";
	arrayOfNames[10] = "Liz";

	for (i = 0; i < arrayOfCoords.length; i++) {
		arrayOfCoords[i] = new int[2];
	}
/*
	for (i = 0; i < arrayOfCoords.length; i++) {
		for (j = 0; j < arrayOfCoords[i].length; j++) {
			arrayOfCoords[i][j] = new int(0);
		}
	}
/*
	for (i = 0; i < arrayOfCoords.length; i++) {
		arrayOfCoords[i] = new Integer[2];
	}
	for (i = 0; i < arrayOfCoords.length; i++) {
		for (j = 0; j < arrayOfCoords[i].length; j++) {
			arrayOfCoords[i][j] = new Integer(0);
		}
	}
*/
	arrayOfCoords[0][0] = 409; arrayOfCoords[0][1] = 11;
	arrayOfCoords[1][0] = 526; arrayOfCoords[1][1] = 131;
	arrayOfCoords[2][0] = 544; arrayOfCoords[2][1] = 203;
	arrayOfCoords[3][0] = 710; arrayOfCoords[3][1] = 133;
	arrayOfCoords[4][0] = 888; arrayOfCoords[4][1] = 442;
	arrayOfCoords[5][0] = 886; arrayOfCoords[5][1] = 11;
	arrayOfCoords[6][0] = 804; arrayOfCoords[6][1] = 133;
	arrayOfCoords[7][0] = 592; arrayOfCoords[7][1] = 133;
	arrayOfCoords[8][0] = 469; arrayOfCoords[8][1] = 11;
	arrayOfCoords[9][0] = 727; arrayOfCoords[9][1] = 11;
	arrayOfCoords[10][0] = 647; arrayOfCoords[10][1] = 11;
/*
	arrayOfCoords[0][0].valueOf("409"); arrayOfCoords[0][1].valueOf("11");
	arrayOfCoords[1][0].valueOf("526"); arrayOfCoords[1][1].valueOf("131");
	arrayOfCoords[2][0].valueOf("544"); arrayOfCoords[2][1].valueOf("203");
	arrayOfCoords[3][0].valueOf("710"); arrayOfCoords[3][1].valueOf("133");
	arrayOfCoords[4][0].valueOf("888"); arrayOfCoords[4][1].valueOf("442");
	arrayOfCoords[5][0].valueOf("886"); arrayOfCoords[5][1].valueOf("11");
	arrayOfCoords[6][0].valueOf("804"); arrayOfCoords[6][1].valueOf("133");
	arrayOfCoords[7][0].valueOf("592"); arrayOfCoords[7][1].valueOf("133");
	arrayOfCoords[8][0].valueOf("469"); arrayOfCoords[8][1].valueOf("11");
	arrayOfCoords[9][0].valueOf("727"); arrayOfCoords[9][1].valueOf("11");
	arrayOfCoords[10][0].valueOf("647"); arrayOfCoords[10][1].valueOf("11");
*/

// set up top part of locator tool (entryPanel)
 entryPanel = new Panel();
 entryPanel.setLayout(new FlowLayout(FlowLayout.LEFT, 10, 10));
 enterLabel = new Label("Name:");
 enterText = new TextField(20);
//	enterText.setEditable(true);

// set up list of names
 listLabel = new Label("All Names:");
 nameList = new List(8, false);
 nameList.addItem("Heidi");
 nameList.addItem("Mike");
 nameList.addItem("John");
 nameList.addItem("Chip");
 nameList.addItem("Carolyn");
 nameList.addItem("Chuck");
 nameList.addItem("Jerry");
 nameList.addItem("Gerry");
 nameList.addItem("Debi");
 nameList.addItem("Sarah");
 nameList.addItem("Liz");

// add these to the entry panel
// entryPanel.add(listLabel);
 entryPanel.add(nameList);
// entryPanel.add(enterLabel);
 entryPanel.add(enterText);
	entryPanel.add(locateButton);

	im = getImage(getDocumentBase(), "graphics/fn.gif");
	buffer = createImage(100,100);
	gc = buffer.getGraphics();
//	gc.setColor(Color.red);
//	gc.fillRect(0,0,50,50);
//	gc.setColor(Color.black);

	c1 = new myCanvas(im, gc);

	add("North", entryPanel);
	add("Center", c1);

	c1.resize(100,100);

	resize(1000, 780);
 }

 public boolean mouseUp(Event e, int x, int y) {
	c1.setCoords(5, 5);
	c1.repaint();
	return true;
 }
 public boolean action (Event e, Object arg) {
	Boolean temp;
	int i;
//	Integer ux = new Integer(0), uy = new Integer(0);
	int ux, uy;
	ux = 0; uy = 0;
	if (e.target instanceof Button) {
		// Assume it's the correct button since only one
		nameString = enterText.getText();
		if (nameString.equals("")) {
			nameString = nameList.getSelectedItem();
			System.out.println("List selection: " + nameString);
		} else {
			System.out.println("Text Entry: " + nameString);
		}
		// Now get new Coords for nameString entered
		for (i = 0; i < 11; i++) {
			System.out.println("arrayOfNames[i]: " + arrayOfNames[i]);
			if (nameString.equals(arrayOfNames[i])) {
				System.out.println("arrayOfCoords[i][0]: "
							+ arrayOfCoords[i][0]);
				System.out.println("arrayOfCoords[i][1]: "
							+ arrayOfCoords[i][1]);
				ux = arrayOfCoords[i][0];
				uy = arrayOfCoords[i][1];
//				ux.parseInt(arrayOfCoords[i][0].toString());
//				uy.parseInt(arrayOfCoords[i][1].toString());
				break;
			}
		}
//		System.out.println("ux: " + ux.intValue() + " uy: " + uy.intValue());
		System.out.println("ux: " + ux + " uy: " + uy);
		c1.setCoords(ux, uy);
		c1.repaint();
	}
	return true;
 }
}
class myCanvas extends Canvas {

 int CURUX, CURUY;
 boolean drawn = true;
 Image buffer;
 Graphics gc;

 public myCanvas(Image i, Graphics g) {
	buffer = i;
	gc = g;
	CURUX = 0;
	CURUY = 0;
	gc.setColor(Color.red);
 }

 public void setCoords(int ux, int uy) {
	CURUX = ux;
	CURUY = uy;
 }
	
 public boolean mouseDown(Event evt, int x, int y) {
	return true;
 }

 public boolean mouseUp(Event evt, int x, int y) {
 drawn = true;
	repaint();
	return false;
 }

 public void paint(Graphics g) {
 if (drawn) {
	g.drawImage(buffer,0,0,this);
	g.setColor(Color.red);
	g.drawLine(CURUX, CURUY, CURUX+50, CURUY+50);
	g.drawLine(CURUX+5, CURUY, CURUX+55, CURUY+50);
	g.drawLine(CURUX-5, CURUY, CURUX+45, CURUY+50);
	g.drawLine(CURUX+50, CURUY, CURUX, CURUY+50);
	g.drawLine(CURUX+55, CURUY, CURUX+5, CURUY+50);
	g.drawLine(CURUX+45, CURUY, CURUX-5, CURUY+50);
 }
 else {
 g.drawString("Draw a box with the mouse", 5, 5);
 }
 }

 public void update(Graphics g) {
 paint(g);
 }
}

�C.5 ~lstein/NetRes/perl/NetRes.html	html source code

<!-- Author: Larry Stein
 Date: 4/3/96
 Revision 1
 File: ~lstein/public_html/NetRes/perl/NetRes.html
 BASED ON Author: C. Edward Chow plotdemo.html for network restoration

<html>
<title>Plotting RREACT Simulation Results on NJ net </title>
<body>
<h1>Plotting RREACT Simulation Results on NJ net</h1>
<h3>
Please select the net, algorithm, and the two nodes of
the broken link for ploting the network restoration result.</h3>
<form method=post action="http://chico.uccs.edu/cgi-bin/lstein/plot.pl">
<table BORDER=2 CELLSPACING=3 CELLPADDING=3>
<tr>
<td>Net
<td><select name="net">
<option> nj
<option> us
</select>
<tr>
<td>Algorithm
<td><select name="algorithm">
<option>rreact
<option>twoprong
</select>
<tr>
<td>Node1
<td><select name="node1">
<option>N00 <option>N01 <option>N02 <option>N03 <option selected>N04 <option>N05
<option>N06 <option>N07 <option>N08 <option>N09 <option>N10
</select>
<tr>
<td>Node2
<td><select name="node2">
<option>N00 <option>N01 <option>N02 <option>N03 <option>N04 <option>N05
<option>N06 <option selected>N07 <option>N08 <option>N09 <option>N10
</select>
</table>
<input type=submit value="launch gnuplot">
<input type=reset value="reset selection">
</form>
</body>
</html>
<!-------------------- end of file NetRes.html --------------------------------

�C.6 ~lstein/cgi-bin/NetRes.pl	perl source code
#!/users/research/students/chow/perl5/bin/perl

##
file: ~lstein/public_html/cgi-bin/NetRes.pl
date: 4/10/96
original: plot.pl 4/10/96
purpose: generates a graphical plot of network data from files
#
revision: created from plot.pl 9/3/96 for grad project
cleanup for release
#
data flow: This program is called from the
~lstein/NetRes/perl/NetRes.html form
After a person fills in what network and 2 nodes they
want and submit the form, this program is called
This program
1. creates a web page for results of this program via
print statements you will find in this program
2. reads two input data files under network directory
./$net(nj or us)/rreact/$node1.$node2.cutl
./$net(nj or us)/twoprong/$node1.$node2.cutl
3. writes to 5 output files in ./plotdemo directory
./plotdemo/$rreact_data
./plotdemo/$twoprong_data
./plotdemo/$gnuplot_cmd);
./plotdemo/netres.ppm
./plotdemo/netres.gif
4. runs gnuplot program passing gnuplot_cmd file
5. runs the ppmtogif program passing netres.ppm file
and redirecting output to netnres.gif
6. exit program which returns web page generated on fly
showing graph generated by this program

###

use CGI; # will use perl object library

extract params from web page environment passing
 $query = new CGI; # create a new query object
 $net = $query->param(net); # extract $net value from web page arguement
 $node1 = $query->param(node1); # extract $node1 value from web page
 $node2 = $query->param(node2); # extract $node2 value from web page

define the algorithms we want to do
 @algorithm = ("rreact","twoprong"); #define array with both alg names

start the web page
 print "Content-type: text/html\n\n";
 print "<title>~lstein/cgi-bin/NetRes.pl</title>\n";
 print "\nNetRes web page created by NetRes.pl program\n\n";
 print "<h1>@algorithm Simulation Plot on $net net
\n";
 print "with break between $node1 and $node2</h1>\n";

quality control check user asked for two nodes
 if ($node1 eq $node2)
 { print "<h3>Error! node1=$node1 can not be the same as node2=$node2\n";
 exit;
 }
 if ($net eq "nj")
 {
 if ($node1 gt "N10")
 { print "<h3>Error! NJ net only has 11 nodes retry \n";
 print "
To return and try again click here
\n";
 print "\n";
 print "click here <P><P>
<P><P>\n";
 exit;
 }
 elsif ($node2 gt "N10")
 { print "<h3>Error! NJ net only has 11 nodes retry \n";
 print "
To return and try again click here
 \n";
 print "\n";
 print "click here <P><P>
<P><P>\n";
 exit;
 } # end elsif
 } # end if $net eq nj
 # for the gnuplot program we have 3 files, 2 data files and a
 # command file (which is the instructions to gnuplot)
 # here we define the name of our data files
 $rreact_data = "plotdemo/rreact_data";
 $twoprong_data = "plotdemo/twoprong_data";
 $gnuplot_cmd = "plotdemo/gnuplot_cmd";
 # remove any old data & command files lying around
 # note the command file name is a literal
 system("rm -f $rreact_data");
 system("rm -f $twoprong_data");
 system("rm -f $gnuplot_cmd");
 system "rm -f plotdemo/netres.ppm"; #
 system "rm -f plotdemo/netres.gif"; # get rid of any old one

 open(GNUPLOTRREACT, "> $rreact_data"); # open data file for write
 open(GNUPLOTTWOPRONG, "> $twoprong_data"); # open data file
 open(GNUPLOTCMD, "> $gnuplot_cmd"); # open command file
 # we will start plotting from coords x=0,0 y=0,0
 print GNUPLOTRREACT "0.0 0.0\n"; # start writing data
 print GNUPLOTTWOPRONG "0.0 0.0\n"; # start writing data

 # for each of the algorithm names (rreact & twoprong
 # do the following
 foreach $astring(@algorithm)
 {
 $algorithm = $astring; # extract this algorithm name
 # define where we will find the data file on disk
 $net_data_file = "$net/$algorithm/$node1-". $node2 . "cut.l";
 # start body section of web page
 print "<body>net_data_file=$net_data_file
\n";
 open(INPUT, "$net_data_file"); # open the data file to INPUT
 while (<INPUT>) # read all the lines in the input file
 { # now for each line
 s/\)/ /; # get rid of (;
 s/\(/ /; # get rid of);
 @words = split(/\s+/); # use white spaces as separators
 if ($words[0] eq "Path") # here is the data line to plot
 {
 parse(); # call the subroutine to get data
 }
 } # end while
 } # end foreach
 close(INPUT); # okay, all done with data input file
 close(GNUPLOTRREACT); # done writing our data to data file
 close(GNUPLOTTWOPRONG); # done writing our data to data file
 # start printing instructions for the gnuplot program
 print GNUPLOTCMD "set term pbm small color\n";
 print GNUPLOTCMD "set size 0.72, 0.54\n";
 print GNUPLOTCMD "set output \"plotdemo/netres.ppm\" \n";
 print GNUPLOTCMD "set title \"$algorithm simulation on $net".
 ", $node1-$node2 break\" \n";
 print GNUPLOTCMD "set grid\n";
 print GNUPLOTCMD "set xlabel \'Time (sec)\' \n";
 print GNUPLOTCMD "set ylabel \'Restoration Level\' \n";
 print GNUPLOTCMD "set yrange [0:100] \n";
 print GNUPLOTCMD "plot \"$rreact_data\" with linesp 1, ".
 " \"$twoprong_data\" with linesp 2 \n";
 close GNUPLOTCMD; # done with gnuplot instructions
 # now execute the gnuplot program, passing gnuplot_cmd instructions
 system "/usr/local/ug/bin/gnuplot plotdemo/gnuplot_cmd"; # run it !
 # run the ppmtogif program passing in netres.ppm data
 # and redirecting output to netres.gif
 system
 "/usr/local/ug/bin/ppmtogif plotdemo/netres.ppm > plotdemo/netres.gif";
 # ad the picture (gif graph) to the web results page
 print "\n";
 exit; # all done
###
 sub parse
 {
 $local_alg = $astring; # extract algorithm name we want to do

 $percent = $words[4]; # percent value is in location 4
 @percent = split(//, $words[4]);
 $percent =~ s/%//;
 if ($percent[$#percent] ne "%")
 { # format error
 exit();
 }
 if ($local_alg eq "rreact") # if we are doing rrect
 { # then time is in location 5
 $time = $words[5];
 $time =~ s/rstrd\@//;
 $time =~ s/msec//;
 print GNUPLOTRREACT "$time $percent\n";
 } elsif ($local_alg eq "twoprong")
 {
 $time = $words[7];
 print GNUPLOTTWOPRONG "$time $percent\n";
 } else
 {
 print "Help I don't know what kind of algorithm to do\n";
 print "It should have been rreact or twoprong\n";
 exit();
 } # end else
 print "\$time=$time, \$percent=$percent
\n";

 } # end of subroutine parse

##
�C.7 ~lstein/NetRes/java/NetRes.html	html source code

<HTML>
 <HEAD>
 <TITLE>NetRes Java Web Page</TITLE>
 </HEAD>
 <BODY>
 <CENTER>
 NetRes Java Application

 <TABLE BORDER>
 <APPLET CODE="NetRes.class" WIDTH=500 HEIGHT=375>
 You should not see this text with a java enabled browser
 </APPLET>
 </TABLE>
 </CENTER>
 <HR>
 </BODY>
</HTML>
<!-------------------- end of file NetRes.html --------------------------------

�C.8 ~lstein/NetRes/java/NetRes.java	java source code
/***
MASTER
 File:	 NetRes.java
 Author: Larry Stein
 Purpose: Create a data plotting style application
	 This application is based on Dr. C Edward Chow
 Network Restoration application written in Perl
 as used in the Multimedia class
 (reference hw3 - homework assignment 3).
 Date:	 7/25/96
 Revisions: Original release 8/15/96
 Overview: In this program we create a user interface in the
 upper half of the window. Based on the input "network"
 and the two "nodes" to simulate from the user, we then
 read in the data input files for rreact and twoprong
 simulations. Then we create a graph in the lower
 half of the window by painting the graph on a canvas.

***/
/**************************** IMPORTS ******************************/

import java.awt.*;	// import abstract window tool kit
import java.io.*;	// import all io library stuff
import java.lang.*;	// import all io library stuff

/*********************** CLASS NETRES **************************/

public class NetRes extends java.applet.Applet
{
/*********************** PUBLIC VARS **************************/
 CheckboxGroup Network; // group of radio buttons nj or us network
 List From;		 // user selects node from n0 to n27
 List To;		 // end node
 Panel p;		 // this is our primary panel
 Panel pefile; // panel for file error message
 Panel penode; // panel for node error message
 Panel pequit; // panel will hold quit button
 public String net = new String(); // will hold network name (nj or us)
 public String fr = new String(); // N00 to N07 etc.
 public String to = new String(); // ""
 Float rvals[][] = new Float[20][2]; // holds rreact pct & time values
 Float tvals[][] = new Float[20][2]; // holds twoprong pct & time values
 DataInputStream aRE;	 // create reference to rreact file
 DataInputStream aTW;	 // ditto - twoprong file
 Graphics gc; // create a graphics object to draw with
 myCanvas c1; // create canvas to place graphics on
 Frame f;
/************************** MEMBER METHODS **********************/

 public void init() /*********** METHOD INIT ********//*********** METHOD INIT ********/
 {
	setLayout(new GridLayout(2,1,10,10)); // puts things at top & bottom
	p = new Panel();		 // create a panel in the frame
	add(p);			 // add panel to the frame

	p.setBackground(Color.white);
	p.setLayout(new GridLayout(9,3));	 // create 9 rows, 3 cols
	p.setFont(new Font("Helvetica",Font.BOLD,12));	 // set font
	p.add(new Label(" ",Label.CENTER));				 // r1 c1
	p.add(new Label("Network Restoration Applet",Label.CENTER)); // r1 c2
	p.add(new Label(" ",Label.CENTER));				 // r1 c3
	p.setFont(new Font("Helvetica",Font.PLAIN,12));	 // reset font
	p.add(new Label("Please select the network",Label.CENTER)); // r2 c1
	p.add(new Label(" ",Label.CENTER));				 // r2 c2
	p.add(new Label("and nodes to simulate between",Label.CENTER));//r2 c3
	p.add(new Label("Select Network",Label.CENTER));		 // r4 c1
	Network = new CheckboxGroup(); // create the group of radio buttons
	Checkbox NJ = new Checkbox("NJ",Network,false);	// add 'nj' radio button
	p.add(NJ);	// and add it to panel // r4 c2
	Checkbox US = new Checkbox("US",Network,false);	// add 'us' radio button
	p.add(US);	// add us radio button to panel // r4 c3
	p.add(new Label("Select From Node",Label.CENTER));	 // r5 c1
 From = new List(27,false); 	// create a "from choice pick list // r5 c2
	From.addItem("N00");	From.addItem("N01"); // add these items
	From.addItem("N02");	From.addItem("N03"); // to the from choice
 	From.addItem("N04");	From.addItem("N05"); // pick list
	From.addItem("N06");	From.addItem("N07");
	From.addItem("N08");	From.addItem("N09");
	From.addItem("N10");	From.addItem("N11");
	From.addItem("N12");	From.addItem("N13");
 	From.addItem("N14");	From.addItem("N15");
	From.addItem("N16");	From.addItem("N17");
	From.addItem("N18");	From.addItem("N19");
	From.addItem("N20");	From.addItem("N21");
	From.addItem("N22");	From.addItem("N23");
 	From.addItem("N24");	From.addItem("N25");
	From.addItem("N26");	From.addItem("N27");
	p.add(From); // now add the from list to the panel
	p.add(new Label(""));	// take up space in this column		 // r5 c3
	p.add(new Label("Select To Node",Label.CENTER));		 // r6 c1
	To = new List(27,false);	// do the same for TO as we did for From // r6 c2
	To.addItem("N00");	To.addItem("N01");
	To.addItem("N02");	To.addItem("N03");
	To.addItem("N04");	To.addItem("N05");
	To.addItem("N06");	To.addItem("N07");
	To.addItem("N08");	To.addItem("N09");
	To.addItem("N10");	To.addItem("N11");
	To.addItem("N12");	To.addItem("N13");
 	To.addItem("N14");	To.addItem("N15");
	To.addItem("N16");	To.addItem("N17");
	To.addItem("N18");	To.addItem("N19");
	To.addItem("N20");	To.addItem("N21");
	To.addItem("N22");	To.addItem("N23");
 	To.addItem("N24");	To.addItem("N25");
	To.addItem("N26");	To.addItem("N27");
	p.add(To);
	p.add(new Label(""));	// skip over this column // r6 c3
	p.add(new Label(" ",Label.CENTER));	// create the look of a // r7 c1
	p.add(new Label(" ",Label.CENTER));	// blank line // r7 c2
	p.add(new Label(" ",Label.CENTER));				 // r7 c3
	p.add(new Button("Execute"));						 // r8 c2
	p.add(new Label(" ",Label.CENTER));				 // r8 c1
	p.add(new Button("Quit"));				 // r8 c3
	p.resize(300,245); // now enlarge the panel this size
	p.show(); // finally display what we defined
	 // the canvas below is where we plot the results in row 2 of grid
 c1 = new myCanvas(this,gc,net,fr,to,rvals,tvals);	// create a canvas
	add(c1);	 // add canvas to frame on next row of grid
	c1.hide();	 // don't display results canvas yet
	resize(620, 3370);	 // resize frame to 620x370
 // create two error panels 1 for if can't open file, 2nd for if bad selection of data nodes
	pefile = new Panel();	 penode= new Panel();
	p.add(pefile);	 p.add(penode);
 	pefile.setBackground(Color.red); 	 penode.setBackground(Color.yellow);
	pefile.setFont(new Font("Courier",Font.BOLD,12));	penode.setFont(new Font("Courier",Font.BOLD,12));
	pefile.setLayout(new FlowLayout()); penode.setLayout(new BorderLayout());
	pefile.add(new Label("COULD NOT OPEN DATA FILE !"));	penode.add("North",new Label("BAD NODE SELECTION!"));
	pefile.add(new Label("check for data file & rerun!"));	penode.add("Center",new Label("Select proper nodes and rerun!"));
	pefile.add(new Button("Quit"));	 penode.add("South",new Button("Quit"));
	pefile.hide();	 penode.hide();
 pequit = new Panel(); p.add(pequit);
 	pequit.setBackground(Color.white);
	pequit.setFont(new Font("Courier",Font.BOLD,12));
	pequit.setLayout(new FlowLayout()); pequit.add(new Button("Quit"));
	pequit.hide();

 } // end public void init in class NetRes2

 public boolean action(Event evt, Object arg) /***** METHOD ACTION *****/
 {		 // once user presses mouse on search or add, do it
	if (evt.target instanceof Button)
	takeaction((String)arg);
	return true;
 } // end public boolean action in class NetRes

 void takeaction(String action) /***** METHOD TAKEACTION *****//***** METHOD TAKEACTION *****/
 {
 if (action.equals("Execute"))	 // if user clicked on execute
 {
	 penode.hide();	 pefile.hide();	 pequit.hide();
 params(); // find out what the operator selected
 read_data(); // read the data files into arrays
	 init2(); // get the graphics object in the canvas and set background
	 c1.repaint(); // repaint after setting the background
	 c1.show(); // okay unhide our output canvas now
 } // end if (action.equals("Execute"))
 else if (action.equals("Quit"))
 {
 System.exit(1);
 } // end if (action.equals("Quit"))
 } // end void takeaction in class NetRes

 public void init2() /*********** METHOD INIT2 ************//*********** METHOD INIT2 ************/
 {
	 gc = c1.getGraphics();	 // get a graphics object to draw on
	 c1.setBackground(Color.white); // set the background of the canvas to this
 } // end public void init2 in class NetRes

 				 /***** METHOD PARAMS *****//***** METHOD PARAMS *****/
 void params() // get parameters from menu and create open input files
 {
	 net = Network.getCurrent().getLabel(); // extract network requested
	 fr = From.getSelectedItem().toString(); // extract node from
	 to = To.getSelectedItem().toString(); // extract node to
 System.out.println("fr = "+fr+" to = "+to);
	 if (fr.equals(to)) // test if operator selected valid nodes
	 {
	 penode.show();
	 pequit.show();
	 }

	 // now open the two input files needed (rreact & two prong from-to)
	 // like nj/rreact/N00-N01CUT.L
	 // note that the data files are in subdirectories
	 // and the data files have CUT.l appended to their names
	 String f1 = new String("./"+net+"/rreact/"+fr+"-"+to+"CUT.L");
	 String f2 = new String("./"+net+"/twoprong/"+fr+"-"+to+"CUT.L");
 System.out.println("f1 = "+f1);
 System.out.println("f2 = "+f2);
	 try // open the files if you can
	 { aRE = new DataInputStream(new FileInputStream(f1));
	 } catch (java.io.FileNotFoundException x)
	 {
	 pefile.show();
 	 pequit.show();
	 }
	 try
	 { aTW = new DataInputStream(new FileInputStream(f2));
	 } catch (java.io.FileNotFoundException x)
	 {
 pefile.show();
	 pequit.show();
	 }
 } // end void params in class NetRes

				/***** METHOD READ_DATA *****//***** METHOD READ_DATA *****/
 void read_data() // reads rreact and twoprong data files
 {		 // stores info in global 2D arrays for later
	String Rrec = new String("dummy"); // RReact dataline (need to load up)
	String Trec = new String();	 // Twoprong dataline
	String char1 = Rrec.substring(0,1); // flag for last line in data file
	String char4 = Rrec.substring(0,1); // see if line start with Path (dataline)
	String time = Rrec.substring(0,1); // will hold chars with time value
 String time2 = new String(); // time value after cleanup
	String pct = Rrec.substring(0,1); // will hold chars with pct value
	int ri = 0;		 // rval index into array of data points
	int ti = 0;		 // tval index into array of data points
	boolean done = false;
	while (! done) // loop till done reading data files
	{
	 try { Rrec = aRE.readLine(); } // read from rreact file
	 catch (java.io.IOException e) { done = true; break; }
	 char4 = Rrec.substring(0,4); // see if line starts with Path (data line)
	 char1 = Rrec.substring(0,1); // see if we read past Path data lines
	 if (char1.equalsIgnoreCase("N")) // then we are past Path data lines
	 {
	 break; // out of while loop
	 } // end if cjar1 = n
	 if (char4.equalsIgnoreCase("Path")) // then rec is Path data line
	 {
		pct = Rrec.substring(15,23); // get pct string from line
		time = Rrec.substring(26,39); // get time string from line
		int here = time.indexOf('@');// find out where ints start are in word
		int msec = time.indexOf('m'); // find out where ints end in word
	 time2 = time.substring(here+1,msec); // strip out ints from rstd@156.60msec
		rvals[ri][0] = Float.valueOf(pct); // extract & store into array
		rvals[ri][1] = Float.valueOf(time2); // do the same for time value
		ri++; // get ready for next data line
	 } // end if char4
 } // end while ! done reading Rreact data

	done = false; // twoprong data file is quite different so do again
	while (! done) // loop till done reading twopring data files
	{
	 try { Trec = aTW.readLine(); } // read from two prong file
	 catch (java.io.IOException e) { done = true; break; }
	 char4 = Trec.substring(0,4); // see if line starts with Path (data line)
	 char1 = Trec.substring(0,1); // see if we read past Path data lines
	 if (char1.equalsIgnoreCase("N")) // past Path data lines
	 {
	 break; // out of while loop
	 } // end if char1 = n
	 if (char4.equalsIgnoreCase("Path")) // then rec is Path data line
	 {
		pct = Trec.substring(14,24); // get pct String from line
		time = Trec.substring(26,40); // get time string from line
		int strt = pct.indexOf(')'); // find out where ints are in word
		int endd = pct.indexOf('%'); // find out where ints end in word
		String pct2 = pct.substring(strt+1,endd); // strip out all else
		strt = time.indexOf('t'); // find out where ints are in word
		endd = time.indexOf('m'); // find out where ints end in word
	 time2 = time.substring(strt+1,endd); // strip out ints from rstd@156.60msec
		tvals[ti][0] = Float.valueOf(pct2); // convert string to float and store
		tvals[ti][1] = Float.valueOf(time2); // same for time value
		ti++; // get ready for next record
	 } // end if char4 ...
	} // end while (! done)
 } // end of method read_data

 // the following repaints the canvas everytime something changes
 void update(myCanvas mc, Graphics g) /***** METHOD UPDATE *****//***** METHOD UPDATE *****/
 {
 setBackground(Color.white); // canvas has white background
	 Font fb = new Font("TimesRoman", Font.BOLD, 18); //definition to use later
	 Font fn = new Font("TimesRoman", Font.PLAIN, 12); // ditto
	 g.setFont(fb);		 // 14 pixels per char
	 g.drawString("Simulation plot of ",60,30); // start title
	 g.drawString(net,210,30); // print network user selected
	 g.drawString("network",235,30);
	 g.setFont(fn);		 // 5 pixels per char
	 g.drawString("Between Nodes", 335,30);
	 g.drawString(fr ,420,30); // like N01
	 g.drawString("and",445,30); // and
	 g.drawString(to ,465,30); // N02
 } // end method update in class NetRes

} // end of class NetRes
/********************** end of class NetRes *************************/

/********************** CLASS MYCANVAS *************************/
class myCanvas extends Canvas
{
 /************************ GLOBAL VARS TO MYCANVAS *************/
 NetRes outerparent; // create reference var to point at parent
 String lnet = new String(); // local copy of network, node1, node2
 String lfm = new String();
 String lto = new String();
 float firstrx = 50; float firsttx = 50; // pixel value of start point (like 0,0)
 float firstry = 150; float firstty = 150; // pixel value of start point (like 0,0)
 float thisrx = 50; float thistx = 50; // pixel value of start point (like 0,0)
 float thisry = 150; float thisty = 150; // pixel value of start point (like 0,0)
 float lastrx = firstrx; float lasttx = firsttx; // remember where we left off at
 float lastry = firstry; float lastty = firstty; // ditto
 Float Rv[][] ; // reference to an array object
 Float Tv[][] ; // these are references to what we read before

/****************************** METHODS ****************************/
/*********************** METHOD MYCANVAS (CONSTRUCTOR) *****************/
 // constructor receives reference to NetRes object
 // and all the parameters from user and data arrays
 public myCanvas(NetRes parent, Graphics g
		 ,String NET, String FR, String TO
			 ,Float Rvals[][], Float Tvals[][])
 {
 outerparent = parent; // need reference to parent to update later
	 Rv = Rvals; Tv = Tvals; // get values to plot local to this class
	 lnet = NET; lfm = FR; lto = TO;
 } // end method myCanvas in class myCanvas (constructor)

 public void paint(Graphics g) /*******METHOD PAINT *********//*******METHOD PAINT *********/
 { // heres our graphics instructions
 setBackground(Color.white);
	 Font fn = new Font("TimesRoman", Font.PLAIN, 12); // defina a font
	 g.setFont(fn); // and set it
 // our working area is at 60,50 to 510,150 (x,y)
	 g.drawRect(60,50,450,100); // from x,y to width,height
	 // now put titles and axis labels on rectangle
	 g.drawString("r",30,60);g.drawString("e",30,70);
	 g.drawString("s",30,80);g.drawString("t",30,90);
	 g.drawString("o",30,100);g.drawString("r",30,110);
	 g.drawString("a",30,120);g.drawString("t",30,130);
	 g.drawString("i",30,140);g.drawString("o",30,150);
	 g.drawString("n",30,160);
 // below is 0 to 100 axis values on rectangle
	 g.drawString("0",40,150);	 g.drawString("20",40,130);
 g.drawString("40",40,110);	 g.drawString("60",40,90);
 g.drawString("80",40,70);	 g.drawString("100",40,50);
 // below is 0 to 450 values on x axis on rectangle
 g.drawString("0",60,160);	 g.drawString("50",110,160);
 g.drawString("100",160,160);	 g.drawString("150",210,160);
 g.drawString("200",260,160);	 g.drawString("250",310,160);
 g.drawString("300",360,160);	 g.drawString("350",410,160);
 g.drawString("400",460,160);	 g.drawString("450",510,160);
 g.drawString("Time (sec) -->",250,170);
	// now plot the data we read in before
	// p is for percent data, t is for time data
	// we have to calculate offset from value to pixel in rectangle for both lines we plot
	// we plot the rreact line and the two prong line r = react line, t = two prong line
	// rreact x & y two prong x & y
	// remember we draw from bottom left up to top right

/* pixel x=60, y=50 x=510,y=50
 --
 |pct100=y 50 |
 |pct80 =y 70 |
 |pct60 =y 90 |
 |pct40 =y110 |
 |pct20 =y130 |
 |pct0 =y150 |
 --
 pixel x=60,y=150 x=510,y=150

 |time0=x60,time50=110,time100=160,time150=210,time200=260,
 time250=310,time300=360,time350=410,time400=460,time450=510
*/
 // first pixels (lines) start at 0,0 = 60,150 (bottom left)
	firstrx = 60;	firsttx = 60; // pixel value of start point (like 0,0)
	firstry = 150;	firstty = 150; // pixel value of start point (like 0,0)

	lastrx = firstrx; lasttx = firsttx; // remember where we left off at
	lastry = firstry; lastty = firstty; // ditto
	try
	{
	 g.setColor(Color.red); // draw Rreact in red
	 g.drawString("Rreact",550,90); // key on right side
 for (int index = 0; index < Rv.length; index++) // for all values
	 {	// use rules below to convert data value to x,y pixel value to plot in rectangle
		thisrx = firstrx + (Rv[index][1].floatValue()); // time value
	 thisry = firstry - (Rv[index][0].floatValue()); // pct value
	 // cast values to int for drawline method
	 int lrx = (int)lastrx;	 int lry = (int)lastry;
	 int trx = (int)thisrx;	 int trry = (int)thisry;
	 g.drawLine(lrx,lry,trx,trry);	 // draw from x,y to x,y
	 lastrx = thisrx;	 lastry = thisry; // get ready for next point
 } // end for int index
	} catch (java.lang.NullPointerException n)
	 { System.out.println("done plotting rreact data");}
	try // now do two prong data
	{
	 g.setColor(Color.blue); // draw Twoprong in blue
	 g.drawString("Twoprong",550,110); // show key on right side
 for (int index = 0; index < Tv.length; index++) // for all values
	 {	// use rules below to convert data value to x,y pixel value to plot in rectangle
 thistx = firsttx + (Tv[index][1].floatValue()); // time value
	 thisty = firstty - (Tv[index][0].floatValue()); // pct value
	 int ltx = (int)lasttx;	 int lty = (int)lastty; // cast to int
	 int ttx = (int)thistx;	 int tty = (int)thisty;
	 g.drawLine(ltx,lty,ttx,tty);	 // draw from x,y to x,y
	 lasttx = thistx;	 lastty = thisty; // save old for next start
	 } // end for
	} catch (java.lang.NullPointerException n)
	 {System.out.println("done plotting twoprong data");}
	outerparent.update(this,g); // finally update the crt with this stuff
	return ;
 } // end method paint in class myCanvas
} // end of class mycanvas

/***
class ErrorDialog extends Dialog
{ // start with constructor method
 ErrorDialog(NetRes parent, String s1, boolean modal)
 { // receive whatever frame we were in, and 2 strings to print
 super(parent,true);
 setLayout(new GridLayout(4,1)); //4 rows, 1 column
 Panel ep = new Panel(); // create panel for error messages
 ep.resize(300,300);
 ep.add(new Label(s1)); // print first line of error message
// ep.add(new Label(s2)); // print 2nd line of error message
 ep.add(new Label("Quit the application and fix error"));
 ep.add(new Button("Quit")); // give them a quit button
 ep.show();
 }
 public void init()
 {
 System.out.println("in errordialog");
 }

 public boolean action(Event evt, Object arg)
 {
 if("Quit".equals(arg))
 {
 dispose();
 System.exit(1);
 }
 return false;
 } // end method action
} // end class ErrorDialog
***/
�C.9 ~lstein/RoloTool/perl/RoloTool.html	(perl program)
<HTML>
<!--Author: Larry Stein
 Date: 5/21/96
 Revision 1
 File: ~lstein/public_html/RoloTool/perl/RoloTool.html
-->
<!--title section-->
<HEAD>
<TITLE>Larry Stein - Rolotool perl web page</TITLE>
</HEAD>
<!--start of body section-->
<BODY Bgcolor = #BCDDEE Link=#FF0000 Vlink=#00FF00 Text = #543210>
<!--banner-->
<CENTER>
<FORM Method="post" Action=http://chico.uccs.edu/cgi-bin/lstein/rolotool.pl">
<TABLE BORDER=2 CELLSPACING=3 CELLPADDING=3>
<TR><TD>I want to search:</TD>
<TD><INPUT Type=Radio Name="dothis" Checked Value="search"></TD>
<TD>I want to input:</TD>
<TD><INPUT Type=Radio Name="dothis" Value="input"></TD></TR>
</TABLE>
<TABLE BORDER=2 CELL SPACING=3 CELLPADDING=3>
<TR><TD>Last or Business Name ></TD>
 <TD><INPUT Type="text" Size =32 Name="1name"></TD></TR>
<TR><TD>First Name</TD>
 <TD> <INPUT Type="text" Size=32 Name="fname"></TD></TR>
<TR><TD>Street</TD>
 <TD> <INPUT Type="text" Size=32 Name="street"></TD></TD>
<TR><TD>Apt or P.O. </TD>
 <TD> <INPUT Type="text" Size=12 Name="apt_po"></TD></TR>
<TR><TD>City</TD>
 <TD> <INPUT Type="text" Size=32 Name="city"></TD></TD>
<TR><TD>State</TD>
 <TD> <INPUT Type="text" Size=2 Name="state"></TD></TR>
<TR><TD>ZIP</TD>
 <TD> <INPUT Type="text" Size=10 Name="zip"></TD></TR>
<TR><TD>Phone</TD>
 <TD> <INPUT Type="text" Size=12 Name="phone"></TD></TR>
<TR><TD>Fax</TD>
 <TD> <INPUT Type="text" Size=12 Name="fphone"></TD></TR>
<TR><TD>Email</TD>
 <TD> <INPUT Type="text" Siz=20 Name="email"></TD></TR>
</TABLE>
<INPUT Type=submit Value="Submit">
<INPUT Type=reset Value="Reset">
</CENTER>
</FORM>
<P>
<CENTER>
<H1>Rolotool</H1>by Larry Stein
</Center>
To use the Rolotool, select the Search or Insert button.
When searching, enter the persons last name.
Wheninserting, enter all the fields of information.

</BODY>
</HTML>
<!--------------------- end of file rolotool.html -------------------------->

�C.10 ~lstein/cgi-bin/RoloTool.pl	(perl program)
#!/users/research/students/chow/perl5/bin/perl
#234567890123456789012345678901234567890123456789012345678901234567890123456789
#
file: ~lstein/public_html/cgi-bin/RoloTool.pl
date: 5/22/96
purpose: to support the RoloTool.html web page for a rolodex application
searchs RoloTool database or inserts records
revision
#
#234567890123456789012345678901234567890123456789012345678901234567890123456789

start the web page
 print "Content-type: text/html\n\n";
 print "<HTML>\n";
 print "<BODY Bgcolor = #BCDDEE Link=#FF0000 Vlink=#00FF00 ";
 print "Text = #543210>
\n";

#234567890123456789012345678901234567890123456789012345678901234567890123456789

 $dbfile = "RoloTool"; # this is the name of the database file
 use CGI; # include this Perl 5 library
 $buffer = new CGI; # capture data from form into buffer

 $dothis = $buffer->param(dothis); #extract search or input
 $lname = $buffer->param(lname); # capture lname to var
 test_lname($lname); # lname is always required else abort
 if ($dothis eq "input") # open data base and write
 { # first get rest of data from form
 do_input($lname); # update db & write page to user
 }
 elsif ($dothis eq "search") # open DB for read only
 {
 do_search($lname); # process search and return page
 } # end elsif ($dothis eq "search")

 dbmclose(%DB); # done with db
 print "</BODY></HTML>\n"; # End the web page

#234567890123456789012345678901234567890123456789012345678901234567890123456789
####################### SUBROUTINES #######################
 # this sub will make sure operator at least put in a last name
 sub test_lname
 { if ($_[0] eq "") # $_ is string from web form
 {
 print "<HTML><HEAD><title>";
 print "Rolotool search results page</title></head>\n";
 print "<BODY bgcolor = #bcddee text = #543210>\n";
 print "<center>\n";
 print "Sorry you must enter a last name
 \n";
 print "\n";
 print "Try Again\n";
 exit 1;
 } # end if ! $lname
 } # end sub test_lname

#234567890123456789012345678901234567890123456789012345678901234567890123456789
 sub do_input
 {
 $fname = $buffer->param(fname);
 $street = $buffer->param(street);
 $apt_po = $buffer->param(apt_po);
 $city = $buffer->param(city);
 $state = $buffer->param(state);
 $zip = $buffer->param(zip);
 $phone = $buffer->param(phone);
 $fphone = $buffer->param(fphone);
 $email = $buffer->param(email); # build a single value string
 $string = "$lname&$fname&$street&$apt_po&$city&$state".
 "&$zip&$phone&$fphone&$email";
 dbmopen(%DB,$dbfile,0666)|| die "Sorry, couldn't open RoloTool
\n";
 $DB{$lname} = $string; # write the buffer to the database

 print "<HTML><HEAD><title>Rolotool input complete page</title></head>\n";
 print "<BODY bgcolor = #bcddee text = #543210>\n";
 print "<center> \n";
 print "<h1>Rolotool</H1> by Larry Stein \n";
 print "</center>
 \n";
 print "<center>I have updated the database by adding</center>
\n";
 print "$string
<hr>\n";
 print "To return to Rolotool form page \t";
 print " ";
 print "Back to Rolotool Form
\n";
 print "
<p>\n";
 print "If you have problems with this page \t";
 print "<a href=\"mailto:lstein\@culebra.uccs.edu\"\n";
 print "title: \"send from example 14\"> ";
 print "lstein\@culebra.uccs.edu";
 print "
\n";
 } # end sub do_input

#234567890123456789012345678901234567890123456789012345678901234567890123456789
 sub do_search
 {
 dbmopen(%DB,$dbfile,undef)|| die "Sorry, couldn't open RoloTool
\n";
 $value = $DB{$_[0]}; # extract string using key
 @list = split(/&/,$value);
 $llname = $list[0];
 $fname = $list[1]; $street = $list[2]; $apt_po = $list[3];
 $city = $list[4]; $state = $list[5]; $zip = $list[6];
 $phone = $list[7]; $fphone = $list[8]; $email = $list[9];

 if ($llname eq "") # the record is blank - not found - tell them
 {
 print "<HTML>\n";
 print "<BODY Bgcolor = #BCDDEE Link=#FF0000 Vlink=#00FF00 ";
 print "Text = #543210>
\n";
 print "<center>\n";
 print "Sorry a record with last name of $lname
\n";
 print "was not found
 \n";
 print "\n";
 print "Try Again\n";
 exit 1;
 }
 # we found some kind of record so show the results
 print "<HTML>\n";
 print " <HEAD><title>";
 print "Rolotool search results page</title></head>\n";
 print "<BODY Bgcolor=#BCDDEE Link=#FF0000 Vlink=#00FF00 ";
 print "Text = #543210>\n";
 print " <center>\n";
 print " <h1>Rolotool</H1> by Larry Stein
\n";
 print "Here are the search results you requested
\n";
 print "<FORM method=\"post\" action=\n";
 print "\"http://chico.uccs.edu/cgi-bin/lstein/RoloTool.pl\">\n";
 print "<TABLE border=2 cellspacing=3 cellpadding=3> \n";
 print "<tr><td>Last or Business name ></td> \n";
 print "<td><input type=\"text\" Size=32 name=\"llname\" ";
 print "value=$llname></td></tr> \n";
 print "<tr><td>First name</td> \n";
 print "<td><input type=\"text\" Size=32 name=\"fname\" ";
 print "value=$fname></td></tr> \n";
 print "<tr><td>Street</td> \n";
 print "<td><input type=\"text\" Size=32 name=\"street\" ";
 print "value=\"$street\"></td></tr> \n";
 print "<tr><td>Apt or P.O. </td> \n";
 print "<td><input type=\"text\" Size=12 name=\"apt_po\" ";
 print "value=\"$apt_po\"></td></tr> \n";
 print "<tr><td>City</td> \n";
 print "<td><input type=\"text\" Size=32 name=\"city\" ";
 print "value=\"$city\"></td></tr> \n";
 print "<tr><td>State</td> \n";
 print "<td><input type=\"text\" Size= 2 name=\"state\" ";
 print "value=$state></td></tr> \n";
 print "<tr><td>ZIP</td> \n";
 print "<td><input type=\"text\" Size= 10 name=\"zip\" ";
 print "value=$zip></td></tr> \n";
 print "<tr><td>Phone</td> \n";
 print "<td><input type=\"text\" Size=12 name=\"phone\" ";
 print "value=\"$phone\"></td></tr> \n";
 print "<tr><td>Fax</td> \n";
 print "<td><input type=\"text\" Size=12 name=\"fphone\" ";
 print "value=\"$fphone\"></td></tr> \n";
 print "<tr><td>Email</td> \n";
 print "<td><input type=\"text\" Size=20 name=\"email\" ";
 print "value=$email></td></tr> \n";
 print "</table> \n";
 print "</center> \n";
 print "</form> \n";
 print "<p> \n";
 print "To return to Rolotool form page \t";
 print " ";
 print "Back to Rolotool Form
\n";
 print "
<p>\n";
 print "If you have problems with this page \t";
 print "<a href=\"mailto:lstein\@culebra.uccs.edu\"\n";
 print "title: \"send from example 14\"> ";
 print "lstein\@culebra.uccs.edu";
 print "
\n";
 } # end sub do_search
#234567890123456789012345678901234567890123456789012345678901234567890123456789
end of file RoloTool.pl
�C.11 ~lstein/RoloTool/java/RoloTool.html	html program

<HTML>
 <HEAD><TITLE>RoloTool Java Web Page</TITLE></HEAD>
 <BODY>
 <CENTER>
 RoloTool Java Application
 Last Name is Required.

 <TABLE BORDER>
 <APPLET CODE="RoloTool.class" WIDTH=300 HEIGHT=375>
 You should not see this text with a java enabled browser
 </APPLET>
 </TABLE>
 </CENTER>
 <HR>
 </BODY>
</HTML>

�C.12 ~lstein/RoloTool/java/RoloTool.java	(applet program)
/***

/***

 File: RoloTool.java
 Author: Larry Stein
 Purpose: Create a rolodex style application
 Date: 6/30/96
 Revisions: 9/15/96 for URL i/o
 9/29/96 added URL methods

***/
/****************************** IMPORTS *********************************/

import java.awt.*; // import abstract window tool kit
import java.io.*; // import all io library stuff
import java.net.*; // for URL objects

/************************* CLASS ROLOTOOL *******************************/

public class RoloTool extends java.applet.Applet
{ /***** PUBLIC VARS *****//***** PUBLIC VARS *****//***** PUBLIC VARS *****/
 Panel panel; // create a reference to a panel we will use
 // create our textfields for the panel
 TextField fn = new TextField(10); TextField ln = new TextField(10);
 TextField ap = new TextField(10); TextField rd = new TextField(10);
 TextField ct = new TextField(10); TextField st = new TextField(2);
 TextField zp = new TextField(10); TextField ph = new TextField(12);
 TextField fx = new TextField(10); TextField em = new TextField(10);
 DataInputStream in_data;

 public void init() /***** METHOD INIT *****//***** METHOD INIT *****/
 {
 Panel panel = new Panel(); // create a panel in the frame
 add(panel); // add panel to the frame
 panel.setLayout(new GridLayout(12,2));// define 11 rows, 2 columns
 panel.resize(300,245);
 panel.setBackground(Color.white);
 panel.setFont(new Font("Helvetica",Font.PLAIN,12)); // set font
 // instantiate a text label then add field to panel
 panel.add(new Label("First Name ")); panel.add(fn);
 panel.add(new Label("Last Name ")); panel.add(ln);
 panel.add(new Label("Apt_PO ")); panel.add(ap);
 panel.add(new Label("Street ")); panel.add(rd);
 panel.add(new Label("City ")); panel.add(ct);
 panel.add(new Label("State ")); panel.add(st);
 panel.add(new Label("Zip ")); panel.add(zp);
 panel.add(new Label("Phone Number ")); panel.add(ph);
 panel.add(new Label("Fax Number ")); panel.add(fx);
 panel.add(new Label("email ")); panel.add(em);
 // create 3 radio buttons for user to search or add
 panel.add(new Button("Search"));
 panel.add(new Button(" Add "));
 panel.add(new Button(" Clear "));
 panel.add(new Button(" "));
 panel.resize(300,245);
 } /***** END METHOD INIT IN CLASS ROLOTOOL *****/

 public boolean action(Event evt, Object arg) /***** METHOD ACTION *****/
 { // once user presses mouse on search or add, do it
 if (evt.target instanceof Button)
 takeaction((String)arg);
 return true;
 } /***** END METHOD ACTION *****/

 void takeaction(String action) /***** METHOD TAKEACTION *****/
 {

 if (action.equals("Search")) // get lname from GUI form and search
 {
 Search(ln.getText()); // find rec based on l.name
 } // end if action.equals search
 else if (action.equals(" Add ")) // build input form into string & add
 {
 String tmp = new String(fn.getText()); // input into a string record
 tmp+=','; tmp+=ln.getText(); tmp+=','; tmp+=ap.getText();
 tmp+=','; tmp+=rd.getText(); tmp+=','; tmp+=ct.getText();
 tmp+=','; tmp+=st.getText(); tmp+=','; tmp+=zp.getText();
 tmp+=','; tmp+=ph.getText(); tmp+=','; tmp+=fx.getText();
 tmp+=','; tmp+=em.getText(); tmp+="\r\n";
 add_rec(tmp); // add this record to the datafile
 clear_form(false); // clear the form so we are ready for next action
 }// end if action.equals add
 else if (action.equals(" Clear ")) // build input form into string & add
 {
 clear_form(false);
 } // end if action equals Clear
} /***** END METHOD TAKEACTION *****/

 /***** METHOD DISPLAYRECORDFOUND *****/
 public void displayRecordFound(Words w, boolean Flag)
 {
 // if the Flag is true, add to text areas in panel, else print not found
 if (Flag == true) // display words
 { fn.setText(w.allwords[0]); ln.setText(w.allwords[1]);
 ap.setText(w.allwords[2]); rd.setText(w.allwords[3]);
 ct.setText(w.allwords[4]); st.setText(w.allwords[5]);
 zp.setText(w.allwords[6]); ph.setText(w.allwords[7]);
 fx.setText(w.allwords[8]); em.setText(w.allwords[9]);
 } // end else if action
 else // record not there, so tell them
 {
 clear_form(true); // clear the form and display "record not found"
 }
 } /***** END METHOD DISPLAYRECORDFOUND *****/

 public void clear_form(boolean flag) /***** METHOD CLEAR_FORM *****/
 { // clears all data from form fields
 if (flag) // then we did a search for a record and failed
 fn.setText("Record not found"); // tell them no record
 else // clear all fields after adding record
 fn.setText("");
 ln.setText(""); ap.setText(""); rd.setText(""); ct.setText("");
 st.setText("");
 zp.setText(""); ph.setText(""); fx.setText(""); em.setText("");
 } // END METHOD CLEAR_FORM

 /***** METHOD ADD_REC *****/
 public void add_rec(String rec) // to add a record to the datafile
 {
 try
 {
 rec = my_encoder(rec,"encode"); // convert spaces to underscores

 URL url_out = new
 URL("http://owl.uccs.edu/cgi-bin/lstein/RoloTool?"+rec);
 URLConnection connection = url_out.openConnection();
 connection.setDoOutput(true);
 connection.setAllowUserInteraction(true);
 connection.setUseCaches(false);
 OutputStream os = connection.getOutputStream();
 PrintStream outStream = new PrintStream(os);
 outStream.println(rec+"\n");
 outStream.flush();outStream.flush();outStream.flush();
 outStream.flush();outStream.flush();
 outStream.close();
 }
 catch (MalformedURLException me) // if something went wrong with URL
 { System.err.println("MalformedURLException: " + me); }
 catch (java.io.IOException ioe) // if something went wrong with IO
 { System.err.println("java.ioIOException : " + ioe); } // end catch
 clear_form(false); // clear the form after adding record
 } // end method add_rec

 /***** METHOD MY_ENCODER *****/
 // must send string to c program without spaces or screen without _
 public String my_encoder(String in_rec, String code)
 // code == encode (put in _) or decode (take out _)
 {
 StringBuffer sb = new StringBuffer(in_rec); // manipulate in buffer
 String out_rec = new String(); // what we send back
 int len = sb.length(); // get length of record
 int i = 0; // init our index
 char chr; // current char we look at
 while (i < len) // scan sb for spaces
 {
 chr = sb.charAt(i); // get current char
 if (chr == ' ' && code == "encode") // this char a space ?
 { sb.setCharAt(i,'_'); } // convert to _
 else if (chr == '_' && code == "decode") // take _ out
 { sb.setCharAt(i,' '); } // convert to _
 i++; // get next char
 } // end while
 out_rec = sb.toString(); // copy record back to String
 return out_rec; // and return it
 } // end method my_encoder
 /***** METHOD SEARCH *****/
 public void Search(String ln) // to find the person requested in datafile
 {
 int lindex = 1; // last name index is in location 1 of array
 String rec = new String(); // record read in datafile
 Words w = new Words(rec); // parse line into words
 // first define where we will find the data file
 String in_name = new String
 ("http://owl.uccs.edu/~lstein/RoloTool/java/RoloTool.txt");
 // next create a connection to the URL we want to read from
 try
 {
 URL url_in = new URL(in_name); // create connection
 URLConnection conn_in = url_in.openConnection(); // open the conn
 // line below will make a nice buffered stream for performance
 in_data = new DataInputStream(conn_in.getInputStream());
 } // yippee so far
 catch (MalformedURLException me) // if something went wrong with URL
 { System.err.println("MalformedURLException: " + me); } // end catch
 catch (java.io.IOException ioe) // if something went wrong with IO
 { System.err.println("java.ioIOException : " + ioe); } // end catch
 // now we can read the data
 try // to read the data
 {
 while((rec = in_data.readLine()) != null) // read all lines
 {
 rec = my_encoder(rec,"decode"); // convert underscores to spaces
 w = new Words(rec); // parse line into words
 // we parsed w object words into allwords array of strings
 if (w.allwords[lindex].equalsIgnoreCase(ln)) // record one we want ?
 {
 displayRecordFound(w,true);
 break; // out of do while loop ! we are done
 } // end if (w.allwords[lindex].equalsIgnoreCase(ln))
 else
 { displayRecordFound(w,false); }
 } // end while (w.allwords[lindex] != ln);
 // find record with ln name on crt
 } // end try
 catch (java.io.IOException ioe) // if something went wrong with IO
 { System.err.println("java.ioIOException : " + ioe);
 } // end catch
 } // end method Search /***** END METHOD SEARCH *****/

 public boolean handleEvent(Event evt) /***** METHOD HANDLEEVENT *****/
 { // this method is used to destroy (close) windows
 switch(evt.id)
 {
 case Event.WINDOW_DESTROY: // if user clicked close window button
 {
 System.exit(0);
 return true;
 }
 default
 }
 return super.handleEvent(evt);
 } // end public boolean handleEvent

} /********************** END OF CLASS ROLOTOOL *************************/

/************************* CLASS WORDS *******************************/

// parses a record (line of words) into array of words
class Words
{
 int nmwrds = 10; // there are 11 words to a record
 String fullstring; // a record is held here
 char wrdsep = ','; // each word is separated by a ,
 String[] allwords = new String[nmwrds]; // parse line into words

 Words(String str) // constructor receives record to parse
 {
 fullstring = str; // get passed in string local
 int windex = 0; // index to start of next word
 int index = 0; // current char pointer into string (record)
 int lindex = 0; // start of last word we processed
 int len = fullstring.length(); // gets length of the record
 while ((index < len) & (windex < nmwrds))
 {
 int chophere = fullstring.indexOf(wrdsep,lindex); // point at next word
 if (chophere == -1) // we are at last word
 {
 chophere = fullstring.lastIndexOf(wrdsep);
 chophere++; // must get just past that last comma separator
 allwords[windex] = fullstring.substring(chophere);
 break; // out of while loop, we are done
 } // end if
 allwords[windex] = fullstring.substring(lindex,chophere);
 // extract substring between indexes and store
 windex++;

 lindex = chophere; // move index along
 index = chophere; // move index along
 lindex++; index++;
 } // end while
 } // end method eachword
} // end class Words
/********************** end of file rolotool.java ***********************/�C.13 ~lstein/RoloTool/java/RoloTool.c	cgi program
/*---
 File: RoloTool.c
 Author: Larry Stein
 Date: 9/14/96
 Version
 Purpose: See Bottom of file
---*/
//------------------------------ INCLUDE DEFINES ----------------------------

#include <stdio.h> // for atoi
#include <stdlib.h> // for atoi

FILE *fpout; // pointer to the data file
FILE *fperr; // pointer to the error file

//-------------------------- START MAIN PROGRAM ------------------------------

int main(int argc, char *argv[]) // main program starts here
{
int i = 0; // loop counter
 // before we begin, send the file type to html server
 printf("Content-type: text/html\n");
 printf("\n"); // blank line required here

 // open error file to try and give some debug info
 fperr = fopen("/var/tmp/RoloTool.err","w");
 if (! fperr)
 { printf("error opening error file\n");
 exit(1);
 }
 else // we had success opening error file write title to error file
 { fprintf(fperr,"succesfully opened RoloTool.err error file\n");
 }

 // if that succeeded then try to open data file for append
 // we must write to path below, browser must read from here
 fpout = fopen("../RoloTool/java/RoloTool.txt","a");
 if (! fpout)
 { fprintf(fperr,"error opening ../RoloTool/java/RoloTool.txt file\n");
 exit(1);
 }
 // write the parameters passed in on argv to RoloTool.txt datafile
 for (i=1; i < argc; i++) // argv[0] is the program name - not data
 fprintf(fpout,"%s \n",argv[i]);
// fprintf(fpout,"\n"); // and finish off the line
 fflush(fpout); fflush(fpout); fflush(fpout); fflush(fpout);
 fclose(fpout);
 return(0); // for good measure
} // end of main
//---------------------- end of file ---------------------------------------

�Bibliography
CGI Programming on the World Wide Web,
Gundavaram,
	O’Reilly & Associates

Learning Perl,
Schwartz,
		O’Reilly & Associates

Java Essentials for C and C++ Programmers,
Boone
		Addison Wesley Press

Hooked on Java,
van Hoff, Shaio, Sarbuck
		Addison Wesley Press

JavaScript Handbook,
Goodman
		IDG Books

HTML & CGI Unleashed,
December and Ginsburg
		Sams Net Publishing

Perl Programming
	Jay Campbell

Ansi C,
Barclay,
Prentice Hall

C++ Primer,
Lippman,
Addison Wesley

The C++ Programming Language,
Stroustrup
		Addison Wesley

�Glossary
CGI. Common Gateway Interface - the specified interface between a server and client system.
HTML Hyper Text Markup Language - language used to implement web pages
Java Object Oriented Language used to develop applets for a web page or can be used to develop standalone applications.
Javascript Object oriented scripting language used within a web page
Perl Practical Extraction and Reporting Language - developed and used widely on the web for manipulating strings or other data
C a compilable source code language commonly used in the Unix programming environment.
Client computer system local to a user that sends information to a server to be processed. Receives results of processing from the Server.
Server computer system possibly remote to a user that receives information from a client to be processed. Sends results of processing to the client.
10base2 The Ethernet cabling method utilizing a coaxial cable with a 50 ohm impedance for connecting two or more machines over a 10MB network.

�Index
� INDEX \c "2" ��Action Events, 62
Animation, 64
Ansi C, 86
Applet Parameters, 63
Applets, 62
Applets, 16
applications, 16, 25, 65
Associative Arrays, 18
AWT, 63
Boolean Literals, 75
Browsers, 23
Buffered Output, 67
Built-in Functions, 72
Built-in Objects, 72
byte codes, 16
C, 19
language, 85
C, 19
Canvas, 64
CGI
server, 13
CGI Interface, 12
Common Gateway Interface, 7
Console, 65
Data Structures, 62
Data Type, 74
Debuggers, 24
destroy, 61
Dialog Boxes, 65
Drawing, 64
Escaping Chars, 75
Events, 61
Events in JavaScript, 71
File I/O, 65
File Objects, 66
File System Access, 65
Floating Point Literals, 75
Forms, 9
Functions, 78
Gateways, 10
GIF, 64
Graphical Objects, 64
GUI classes, 63
GUI Layout, 64
hash tables, 82
hashes, 82
init, 61
Integers, 74
Interpreted, 18
Java
language, 16, 61
Javascript, 79
language, 17, 71
JavaScript Development, 71
JavaScript Statements, 73
JavaScript vs Java, 80
Kernigan and Richie, 86
keyboard methods, 62
layout manager, 64
Literals, 74
malloc, 86
Methods, 78, 79
mouse methods, 61
Navigator, 17
Netscape, 17
Network Communications, 68
new, 86
New Objects, 76
Object Hierarchy, 77
Object Model, 75
Objects, Key, 77
Packages, 69
paint, 61
Perl
flow control, 83
language, 18, 82
operators, 82
sub programs, 84
Pointers, 85
Predefined System I/O objects, 66
programming languages, 14
Random Access I/O, 68
Reading Input, 67
remote File System, 68
Reserved Words, 75
Rules, 69
scalars, 82
Sockets, 68
Special Chars, 75
start, 61
stop, 61
String Literals, 75
Syncronized, 69
Systems, 23
Testing, 23
Threads, 68
update, 61
Values, 73
Variable Names, 74
Virtual Documents, 11
Web server, 7
Writing Output, 66
��
end of document

�PAGE �cxxix�

�PAGE �cxxix�

Page � PAGE �44�

