Report on graduate project

comparative analysis of www gateway programming languages with benchmarks

by Larry Stein

�INTRODUCTION

Our topic is comparison of programming languages for World Wide Web applications.

We will discuss the Common Gateway Interface

We briefly describe the more common languages used

Java, JavaScript, Perl and C

We present the applications used for benchmarking

Then define the environment for the benchmarking

Then we present the benchmark results

To summarize we discuss important lessons learned

And finally include some closing points on browsers, debuggers and some undocumented obstacles

�Common Gateway Interface - CGI

CGI - communications method between

browser and server

CGI programs run on server, serve client browser

CGI program processes data using parameters from a web page - passes results back to client

�	�	�

WWW browser	Server System	CGI application	

�User requests a form

	Retrieves form

	Form sent to client

����User fills out form

�User submits form

	Server forwards to CGI application

		Process data

�		Output to server

�	Relay back

Output received and displayed

�Data and environment variables pass via stdin and stdout

Stdout data stream consists of two parts:

1: a full or partial http header that defines the data format (HTML, plain text, gif etc.). A blank line is required to finish the header.

2: the body of the returned file

CGI programs may either “post” or “get” information

CGI program must “tell” the server the type of data being sent (“text”, “gif”, “mime” etc.).

�Gateway Programs

Parse information between web environment and applications not native to the web.

Optional - only used when required action outside of scope of web environment.

�	�

CGI application	Gateway Program

�calls gateway	performs task

	

�output received 	returns to server

Gateway programs reside in server cgi-bin directory.

Data may or may not return to web server

Can be any language (e.g. SQL)

�CGI Server

$cgi-bin directory is where you locate all cgi programs

CGI-bin programs are native web or gateway programs

Only executables in $cgi-bin (no data files)

Must have at least --x—x—x permission

� EMBED PBrush ���

�CGI Programming Languages

Any program that can run can run in /cgi-bin

The program must be called by httpd process

Consideration to portability - will it run on different architecture (Sparc vs alpha etc.)

Consider operating system constraints Sys5 vs BSD binaries, database etc.

�Java

Pure Object Oriented language (everything exists within an object, no methods outside an object)

Compiles to “byte code” - intermediate object file

Byte code runs in a Java Virtual Machine (JVM) distributed for free for many popular architectures

Can be compiled to Applets or Standalone applications

Applets have no “main” method and require a browser to host them (run and display them)

Rich set of libraries included with JDK

(Java Development Kit)

GUI tools in Abstract Window Toolkit, Data Structures, Networking etc. supplied

�JavaScript

Interpreted in the Netscape, Internet Explorer and Hot Java browsers.

Language statements exist in an HTML page

Javascript instructions exist within the <SCRIPT> </SCRIPT> tags of HTML page

Object based (can handle pre defined object types e.g. FORM)

Allows HTML programmer to easily manipulate web page environment (color, change url location, load object etc.)

Best use is to off load functions from server that can be handled by Javascript, thus eliminating traffic, communication time, server process resources.

�Perl

Developed by Larry Wall as Practical Extractor and Reporting Language

Free for all architectures supported (Sun, Dec, PC etc.)

Extremely fast and efficient string parser

(sed, ex, vi search & replace etc. all work)

Interpreted language with pre compiler

Takes full advantage of Unix native database (e.g. /etc/aliases)

Language has feel of bourne shell programming (lots of $_ etc.)

Strong array handling including built in associative arrays

�C

Originally developed by Kernigan and Richie

Excellent compiler and debugger tools available.

The standard Unix language

Compiles into tight, fast executable.

Extremely programmable, you can achieve just about any goal with right compiler for objective.

Must be compiled for one target architecture on one operating system (e.g. Sparc)

Reasonably easy to port and recompile on other systems with proper up front programming

CGI programs architecture compiled dependency can quickly come back to haunt you.

�Benchmark Environment

Five Main Components

Web server systems

Client PC’s

Communication method

Browser application

Benchmark applications

Measurement metrics

“Round Trip or Response Time” methodology

Time to load an application to ready state

(web page ready)

Time to deliver full response back to client

(including graphic results)

Typical phases of applications

Establishing a TCP connection to the server

Sending an HTTP request.

Reading returned data

Recording results.

�Servers:

name�machine�ram�o.s.�software��chico�Sun Sparc Classic�48MB�Solaris 2.4�Netscape 2.0��owl�Dec Alpha�96MB�OSF1 3.2�Netscape 2.0��

Clients:

TYPE�CPU�RAM�O.S.�COMM��PC Laptop�486 DX2/66�20MB�Win 95�14.4k modem��PC Desktop�P5/133�16MB�Win 95�28.8k modem��PC Desktop�P5/100�16MB�Win 95�10base2��X Terminal�29000�4MB�NCD/Motif�10base2��

Communications:

Hardware�Speed��Modem�14.4k & 28.8kbps��Ethernet�10Mbps��

Browsers:

Netscape Navigator 3.0�Microsoft Internet Explorer 3.0�Sun Hot Java 1.0 beta��

Applications:

name��Graphic Locator��Network Restoration��RoloTool���Network Restoration Overview

For both Perl and Java versions

Operator selects network and nodes to simulate

Data is extracted from the supplied data files

Data is stored in data files in a directory tree

Two data files read - rreact and twoprong

Application generates two lines on our graph

Perl Version

HTML web page with form

Form submits data to the cgi program

CGI program opens appropriate data files

� EMBED PBrush ���

Creates command file for GNUPLOT

Reads / writes data to an GNUPLOT data file

Calls GNUPLOT program run

GNUPLOT generates a .ppm file

Calls ppmtogif program run

Generates .gif result file

Creates virtual web page with.gif file embedded.

Java version

Applet loaded from web page with CODE tag

Form type gui is created on the fly in the applet

User input is collected

Applet retrieves the data in the web server

After data read, graph “painted” on applet canvas.

�Network Restoration

� EMBED PBrush ���

Opening screen for Perl version

� EMBED PBrush ���

Result screen for server (perl) version

�NetRes Flow Diagram

perl	java

��Browser	Browser

NetRes.html	NetRes.html

��

passes params via Form to server	loads client

	

��NetRes.pl		NetRes.class

	

deletes old .gif,data,cmd files	Creates GUI

creates GNUPLOT command file	

creates GNUPLOT rreact &	

twoprong data files	Opens URL to srvr

reads rreact & twoprong data files	

runs GNUPLOT generating ppm file	

runs ppmtogif generating .gif file	reads data fm srvr

�

�

Browser	Browser

��returns to browser with list of data

points and a gif file in page	draws plot

�Analysis of Network Restoration

Perl vs java

Applications:

Perl requires two external applications (GNUPLOT, ppmtogif)

Java all inclusive within methods included in the awt and net libraries.

Design:

Perl version

More complex web page with form

Multiple external dependencies and intermediate data files

Returns virtual web page with results

Java version

Simple web page - simple CODE tag

Has all i/o in the applet.

Requires more coding for drawing

�Graphic Locator Overview

(by Heidi McClure Graduate Student)

� EMBED PBrush ���

For both Perl and Java versions

Given a persons name

display where that person sits in the office floor plan.

Perl Version

Uses perl database for xy coordinates

Calls gd application (a graphics lib app)

gd reads gif file (base picture)

Overlays an X onto the xy location selected

New .gif written to disk.

Perl returns virtual page with .gif

Java Version

CGI applet embedded in web page

Applet loads to client on page load

Form and data embedded in applet

Reads xy data location and “paints” X

Paints .gif on internal canvas

�Graphic Locator

(by Heidi McClure Graduate Student)

� EMBED PBrush ���

Opening screen for Perl (server) based version

� EMBED PBrush ���

Results screen for Perl (server) based version

�Graphic Locator Flow Diagram

Graphic Locator by Heidi McClure

perl	java

��Browser	Browser

cgimap.html	finalmap.html

��

passes name via Form to	

��	cgimap.pl	loads map3.class

	

looks up name to get x & y coord	map3 applet has GUI

	

�	mapdata.dat	

	

	

deletes old .gif file	imports base .gif

runs mygd creating new gif 	into canvas

	

�	mygd x y	Creates map on

	fly from internal

	table of name to

returns mygd.gif file as new url	x y coord

��	

	

Browser �	paints new .gif

mygd.gif �	on internal canvas

�Analysis of Graphic Locator

Perl vs java

Applications:

Perl version requires external database and external application (gd).

Java version all inclusive within methods.

Design:

Perl version requires more complex web page with form

Perl version returns virtual web page with results.

Java version simple web page - simple CODE tag.

Java version has all input/output operations included in the applet.

�RoloTool Overview

Phone book application

Reads / writes data records on persons

Persistent disk file.

For both Perl and Java version

Persistent records on server disk

Perl version

HTML web page with form

Form submits data to cgi program

CGI program utilizes Unix database

Performs linear search based on key of last name

Appropriate virtual web page is returned

Java version

Applet loaded - simple web page with CODE tag

Form type gui created on the fly in applet

Performs requested “action” - search or add

Search - read URL channel is opened

Linear search on ascii delimited data file

Add record - string to interim cgi gateway program

Gateway - C compiled, opens data file for write

Success returns cleaned input form

�RoloTool

� EMBED PBrush ���

RoloTool java application before running

� EMBED PBrush ���

RoloTool java version after a search has completed

�RoloTool Flow Diagram

perl	java

�Browser	Browser

� RoloTool.html	RoloTool.html

��

passes params via Form to	loads applet

��

RoloTool.pl	RoloTool.class

	

reads & or writes to RoloTool.dat	Creates GUI

creates returning results web page	Opens read URL

�	Opens write URL

	as needed and

�	reads / writes data

	to RoloTool.txt

�	uses intermediate

	cgi-bin/RoloTool

�	to write data

	displays results

�Browser

returns to browser with info

�Analysis of RoloTool

Perl vs java

Applications:

Perl version

straight forward string parser code

uses Unix database tools

Java version

security does not allow write to disk

requires gateway for keeping data persistent

must be in other language (used C)

Design:

Perl version

more complex web page with form

small, tight, string manipulation

returns virtual web page with results

Java version

simple web page - simple CODE tag

requires 2 methods for read vs write

(read URL vs URL to gateway)

cannot directly write to disk

�Benchmarks

Measuring performance from end user point of view

Comparison of same server software on different server platforms

Comparison of same client software on different client platforms

Comparison of different browsers on same clients

Comparison of different communication channels on the same client server machine setup

Comparison of diskless client with not cache with usual disk and ram cache client

�NetRes Benchmark Results

Pentium 10 base 2

��1st load�1st load�1st result�1st result��lang�browser�owl�chico�owl�chico��perl�Netscape�1�1�5�9��2

java�Netscape�3�3�1�2��perl�Inter Exp�1�1�4�25��2

java�Inter Exp�2�5�1�2��1

perl�Hot Java�3�3�failed�failed��java�Hot Java�3�3�failed�3��time in seconds

3		3

We can see

Poor performance of Hot Java browser

High performance response time of Java applet

High performance of Alpha vs Sparc server

For complete benchmark figures see the full text

�NetRes Benchmark Results

Pentium 28.8k baud modem

��1st load�1st load�1st result�1st result��lang�browser�owl�chico�owl�chico��perl�Netscape�2�2�15�18��java�Netscape�10�10�2�7��perl�Inter Exp�2�3�13�15��java�Inter Exp�5�8�3�4��perl�Hot Java�9�12�failed�failed��java�Hot Java�8�10�failed�3��time in seconds

We can see with all same parameters except communications channel (28.8k modem vs Ethernet)

 owl performance 3x slower via modem

 chico performance 2x slower via modem

 All other measurements consistent

For complete benchmark figures see the full text

�Network Restoration Performance

Best Performance and Parameters

best load time�best round trip time

1st run�best round trip time

runs 2:100�best browser for performance�best systems for performance�best comm method for performance��1�1�100�Netscape�Pentium to owl�10 base 2��

Worst Performance and Parameters

worst load time�worst round trip time

1st run�worst round trip time runs 2:100�worst browser for performance�worst systems for performance�worst comm method for performance��50�53�2900�Internet Explorer�486 to chico�14.4k modem��all times in seconds

Observations:

Quick load and response times with Java applet utilizing Netscape browser on Pentium client communicating with Alpha Station over Ethernet.

Poor performance with Java applet once again due to slow load times with 14.4k modem with slow Sparc server.

Internet Explorer browser has slower performance than Netscape.

�Performance Comparison on versions of Network Restoration

Perl version much quicker load

(does not download cgi program)

Java version twice as fast to obtain results

uses local processor to generate graphics

does not retrieve .gif file from server

Slower 486 system long applet download time

All multiple pass runs substantially faster in Java

Conclusion - single run use Perl version

multiple run use Java

�Graphic Locator Benchmark Results

Graphic Locator Pentium 10 base 2

��1st load�1st load�1st result�1st result��lang�browser�owl�chico�owl�chico��perl�Netscape�1�2�12�21��java�Netscape�14�17�0.1�0.1��perl�Inter Exp�1�1�10�11��java�Inter Exp�5�7�0.1�0.1��perl�Hot Java�1�3�failed�failed��java�Hot Java�7�7�1�1��

See section 5.0 Benchmarks of full paper for complete figures

all times in seconds

�Graphic Locator Benchmark Results

Graphic Locator Pentium 28.8k modem

lang�browser�owl�chico�owl�chico����1st load�1st load�1st result�1st result��perl�Netscape�1�3�25�27��java�Netscape�15�22�0.1�0.2��perl�Inter Exp�2�3�45�30��java�Inter Exp�18�20�0.1�0.2��perl�Hot Java�2�3�failed�failed��java�Hot Java�13�21�1�1��

See section 5.0 Benchmarks of full paper for complete figures

all times in seconds

Note: time to obtain results 2x with modem vs Ethernet. Time to load 3x with modem vs Ethernet

�Graphic Locator Performance

best load time�best round trip time

1st run�best round trip time

runs 2:100�best browser for performance�best systems for performance�best comm method for performance��1�0.1�10�Netscape�Pentium to owl�10 base 2��worst load time�worst round trip time

1st run�worst round trip time

runs 2:100�worst browser for performance�worst systems for performance�worst comm method for performance��61�53�5400�Internet Explorer�486 to chico�14.4k modem��

all times in seconds

�Performance Comparison on versions of Graphic Locator

Similar to Network Restoration results

(similar application types)

Load to ready state much quicker in Perl

Java version must download cgi applet

Repeat runs much faster in java

eliminates communication back to server

Pentium perl on 10base2 faster than java on 486 modem (server faster than modem)

�RoloTool Benchmark Results

Pentium 10 base 2 (search)

lang�browser�owl�chico�owl�chico��perl�Netscape�1�1�2�3��java�Netscape�2�2�1�1��perl�Inter Exp�2�3�9�7��java�Inter Exp�3�3�1�2��perl�Hot Java�3�6�8�4��java�Hot Java�1�2�1�1��

See section 5.0 Benchmarks of full paper for complete figures

all times in seconds

�RoloTool Benchmark Results

Pentium 28.8k modem (search)

lang�browser�owl�chico�owl�chico��perl�Netscape�2�2�8�4��java�Netscape�10�9�2�3��perl�Inter Exp�2�6�13�5��java�Inter Exp�4�7�4�3��perl�Hot Java�3�6�8�4��java�Hot Java�3�3�4�8��

See section 5.0 Benchmarks of full paper for complete figures

all times in seconds

Note: time to obtain results 1.5x with modem vs Ethernet. Time to load 2x with modem vs Ethernet.

Not as good a performance gain with Ethernet as graphic based application

�RoloTool Performance

best load time�best round trip time

1st run�best round trip time

runs 2:100�best browser for performance�best systems for performance�best comm method for performance��1�3�100�Netscape�Pentium to owl�10 base 2��worst load time�worst round trip time

1st run�worst round trip time

runs 2:100�worst browser for performance�worst systems for performance�worst comm method for performance��30�47�1600�Hot Java�NCD Xterm to chico�10 base 2��all times in seconds

X Terminal worst client for performance

No local ram cache

No local disk cache

Browser must return to server for all information

�Performance comparison on versions of RoloTool

Java load time much longer than Perl web page

Java results twice as fast than Perl

Performance is not 3x or greater with Java

data set size transferring is small ((100 bytes)

Performance gains are on disk search, CPU processing for string processing

�Language vs Size

NetRes

Language�File(s)�size bytes�lines code��Perl�NetRes.html�2.2k�57���NetRes.pl�8.1k�178��Perl Total��10.3k�235�������Java�NetRes.java�24.6k�413���NetRes.html�355�16��Java Total��24.9k�429��

Note: Perl requires external .gif file and external gnuplot and ppmtogif applications

Summary: Similar, java version provides all inclusive functionality for 194 lines of code

�Language vs Size

Graphic Locator

Language�File(s)�size bytes�lines code��Perl�cgimap.html�812�33���cgimap.pl�1.0k�37���mygd.c�2.1k�90��Perl Total��3.9k�160�������Java�map3.html�203�10���map3.java�6.0k�222��Java Totals��6.2k�232��

Note: Perl requires external .gif file and external applications

Summary: Perl above does not reflect mapdata unix data base size (1k binary) or mygd.gif external .gif file (16.7k binary).

Thus java version much greater functionality for only 62 more lines of code.

�Language vs Size

RoloTool

Language�File(s)�size bytes�lines code��Perl�RoloTool.htm�2.0k�61���RoloTool.pl�7.6k�173��Perl Total��9.6k�234�������Java�RoloTool.htm�382�15���RoloTool.java�12.9k�264���RoloTool.c�2.3k�51��Java Total��15.6k�320��

Note: Perl version uses unix database

Java version uses flat ascii file

Summary: RoloTool simpler coding in Perl.

Simplicity supports timing tests

�Bugs

Netscape

Clearing the cache does not clear an applet from memory - shift reload will resend applet from server

Writing data to a server side file via a URL just doesn’t execute in Netscape

Java

Opening a url connection in the java environment will request you pass the string to go out the url, but this does not happen. You must print the string (again) with a print statement before it actually goes out of the port

URL url_out = new

 URL("http://owl.uccs.edu/cgi-bin/lstein/RoloTool?"+rec);

OutputStream os = connection.getOutputStream();

 outStream.println(rec+"\n");

System Timing

When you want to close the url, I found it extremely important to perform multiple flushes or the reliability of the data being written to disk is unpredictable

�Quirks

Perl database not portable across hardware architectures

Disk caching on web server can cause problems

Java multiple flushing required for data to disk before URL closed

Multiple .gif generation - browser will reload cached version

either rm .gif in cgi program or multiple flush or shift reload

�Main Conclusions

Multiple runs

graphic apps - java speed on average 3X vs perl

data apps - perl speed 2-3X vs java dep. on browser

RoloTool performance is moot since user time (typing) is much longer than time to process 100 bytes (average record length).

Java applets eliminate

communications and traffic back to the server

slower server processing time

Netscape browser in general is overall best browser for performance and compatibility.

HotJava browser has better file i/o for writing data.

However extremely poor HTML support (tables etc.)

Perl dependent upon external programs for graphics

Java dependent upon gateways for persistent data

�Future Directions

Future study can include

Other application types

Different Server Systems

Different Client Systems

Other languages

Other communication methods

�end of document

Page � PAGE �45�

