
The Design and Implementation of Content Switch

On IXP12EB

Thesis Proposal

by

Longhua Li

Computer Science Department

University of Colorado at Colorado Springs

5/15/2001

Approved by:

Dr. Edward Chow
(Advisor)

Dr. Jugal Kalita

Dr. Charlie M. Shub

1 Introduction to Content Switch

With the explosive growth of the Internet and its increasingly important role in our lives,
the traffic on the Internet is increasing dramatically, which has been growing at over
100% annual rate [1, 2]. The workload on the servers is increasing rapidly so that servers
will be easily overloaded for a short time, especially for a popular web server. To
overcome the overloading problem of the servers, there are two solutions. One is the
single server solution, i.e., to upgrade the server to a higher performance server, but it
will soon be overloaded when requests increases, and require upgrade again. The upgrade
process is complex and the cost is high. The other is the multi-server solution, i.e., to
build a scalable server on a cluster of servers[1,2]. When load increases, we can simply
add a new server or more into the cluster to meet the increasing requests. A very efficient
way to accomplish this is to use a load balancer to distribute load among servers in the
cluster. Load balancing can be done in two levels, transport level using the layer 4 switch
or application level using the content switch [3].

1.1 Layer 4 Switching/Transport Level Load Balancing

Linux Virtual Server is an example of transport level load balancing approach. The basic
goal of the Linux Virtual Server Project is to:

Produce a high-performance and highly available server for Linux based
on clustering, which provides a good scalability, reliability and
serviceability. [1]

The LVS (Linux Virtual Server) is a highly scalable and highly available server built on a
cluster of real servers. The architecture of the cluster is transparent to end users, and the
users see only a single virtual server. The real servers may be interconnected by high-
speed LAN or by geographically dispersed WAN. The front-end of the real servers is a
load balancer, which schedules requests to the different servers and make parallel
services of the cluster to appear as a virtual service on a single IP address. Scalability is
achieved by transparently adding or removing a node in the cluster. High availability is
provided by detecting node or daemon failures and reconfiguring the system
appropriately.

The advantage of layer 4 load balancing in switching is the overhead of load balancing is
small and the maxim number of real server nodes can reach 25 or up to 100 [1]. The
reason is when a user request arrives at the load balancer, the load balancer only examine
the source IP and port number of the incoming packet, the packet matching process can
be easily speeded up with the hash table based on these two fields. The common problem
of layer 4 switching is that it is content blind, and does not take the advantages of the
content information in the request messages [4] [5].

1.2 Content Switching/Application Level Load Balancing

Application level load balancing (also known as content switching) provides the highest
level of control over the incoming web traffic. When making a load balancing decisions,
the content switch can check the header/content including HTTP meta header, URL, the

pay load of the incoming packet, rather than simply checking TCP/UDP port number or
IP address. By examining the content of the request, these switches can make decisions
on how to route the request to the real servers. The content switching system can achieve
better performance through load balancing the requests over a set of specialized web
servers, or achieve consistent user-perceived response time through persistent
connections, also called sticky connections [4].

1.2.1 LCS (Linux-based Content Switch)

The Linux-based Content Switch (LCS) is based on the Linux 2.2-16.3 kernel and related
LVS package [1] implemented by Weihong Wang. LCS examines the content of the
request, e.g., URL in HTTP header and XML payload, besides its IP address
and port number, and forwards the request to real servers based on the
predefined content switching rules. Content switch rules are expressed in
terms of a set of simple ‘if’ statements. These if statements include
conditions expressed in terms of the fields in the protocol header or pattern in
the payload and branch statements describing the routing decisions [5].

2 Introduction to IXP1200

The Intel® IXP1200 Network Processor [6] is the cornerstone of the Intel® Internet
Exchange Architecture (Intel® IXA) [7]. It combines the best attributes of a network
ASIC with the flexibility, performance, and scalability of a programmable embedded
processor to accelerate development of next-generation Internet products. The IXP1200
Network Processor is specifically designed for network control tasks, such as wire-speed
switching and routing of packets or cells in real time.

2.1 IXP12EB
The IXP12EB Ethernet Evaluation Kit is a powerful tool for developing and verifying
hardware and software for the IXP1200 Network Processor. The kit supports the
IXP12DE software development environment for programming the Network Processor’s
microengines and integrated Intel StrongARM* processor core.
The IXP12EB is already set up in our lab. The configuration is shown in Figure 1.

Figure 1. IXP12EB set up

3 Introduction to WindRiver VxWorks and Tornado IDE
Tornado[8] is an integrated environment for software cross-development. It provides an
efficient way to develop real-time and embedded applications with minimal intrusion on
the target system. Tornado comprises the following elements [8,9]:

• VxWorks [10], a high-performance real-time operating systems.

• Application-building tools (compilers and associated programs)

• An integrated development environment (IDE) that facilitates managing and building
projects, establishing and managing host-target communication, and running,
debugging, and monitoring VxWorks applications.

The Tornado environment is designed to provide this full range of features regardless of
whether the target is resource-rich or resource-constrained. Tornado facilities execute
primarily on a host system, with shared access to a host-based dynamic linker and symbol
table for a remote target system. Communication between the host tools and VxWorks is
mediated by the target server and target agent.

The development environment is already set up in our lab as shown in Figure 2.

HP4000

IXP12EB

Real Server

10/100 fast Ethernet Port

Gigabit Ethernet Port

 7 6 5 4 3 2 1 0

Figure 2. Development Environment set up

4 Goal

The goal of this thesis work is to design and implement an efficient content switch on
IXP12EB. Since LCS (Linux Content Swtich) has already been developed, which can
load balance the web requests based on the transport and the application layer header and
content, I will concentrate port it onto IXP12EB. The tasks include:

• Modify LCS and port it onto IXP12EB by considering the parallel processing
capability and the heterogeneous processor architecture of IXP1200. We will call it
NPCS (Network Processor Content Switch).

• Analyze the performances between LCS and NPCS.

• Investigate possible improvements on NPCS.

5 Thesis Plan

The thesis will include the following activities:

• March-April 2001, Study WindRiver VxWorks and Tornado IDE.

• May 2001, Study and analyze the existing content switch technologies, especially
LCS.

• June-July 2001, Design and implement the content switch on IXP12EB.

• August-September 2001, Test functionality and reliability of the design.

• October 2001, Compare the performances of LCS and NPCS.

• November 2001, Document the research results.

9[:RUNV

7DUJHW
56����

(WKHUQHW

+RVW�7RUQDGR

IXP12EB

Dilbert

5.1 Design and Modification

This work will base on LCS version 0.2 which is first implemented by Weihong Wang
and then improved by Chandra Prakash. The content switch should distribute the
incoming requests to different web servers based on the content switch rule set. The five
different classes of routing policies are as follow:

1. Based on the source IP address and TCP/UDP port number.

2. Based on the URL regular expression.

3. Based on the HTTP meta header.

4. Based on values of XML tags.

5.2 Implementation

Because IXP1200 is a fairly new product, there are few products available on the market,
not much research has been done, and very few software support tools and source code
for it. Implementing efficient software is going to be very challenging. I will reuse the
code of LCS and port it onto the IXP12EB.

5.3 Testing

The implementation will be tested thoroughly on the advanced content switch testbed in
our computer science lab. The network configuration will include one content switch
(IXP12EB), four real servers. The IXP12EB performance will be compared against to
LCS running on Linux PC.

5.4 Deliverables

The deliverables will include:

• Design documentation for the content switch.

• Source code for implementing the NPCS on IXP1200.

• Testing documentation.

References

[1] “Linux Virtual Server”, http://www.linuxvirtualserver.org

[2] High Performance Cluster Computing: Architectures and Systems, Vol. 1&2, by
Rajkumar Buyya (Editor), May 21, 1999, Prentice Hall.

[3] Gregory Yerxa and James Hutchinson, “Web Content Switching”,
http://www.networkcomputing.com.

[4] C. Edward Chow, “Introduction to Content Switch,”
http://cs.uccs.edu/~cs622/doc/contentsw.ppt.

[5] C. Edward Chow and Weihong Wang, “Design and Implementation of a Linux-
based Content Switch,” to be published in Proceedings of Second International
Conference on Parallel and Distributed Computing, Applications, and Techniques.
http://cs.uccs.edu/~chow/pub/contentsw/status/chow1.doc

[6] Intel® IXP1200 Network Processor
http://developer.intel.com/design/network/products/npfamily/ixp1200.htm

[7] Intel® IXA (Internet Exchange Architecture),
http://developer.intel.com/design/ixa/index.htm

[8] WindRiver Tornado Development Tools,
http://www.windriver.com/products/html/tornado2.html

[9] Tornado User’s Guide (Windows Version) 2.0

[10] WindRiver VxWorks, http://www.windriver.com/products/html/vxwks54.html

