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Abstract

In this report, I present the design and implementation of a VxWorks secure content switch on Intel IXP1200 Network Processor, called NPCS. The security feature of this content switch is based on the OpenSSL package. NPCS is used as a front end switch for a secure web cluster. It routes HTTP requests based on IP address, port number, URL, and the XML content. The routing decision is based on a set of content switching rules, which are expressed in terms of the header and content extracted from the packets. The NPCS also accepts Secure Socket Layer (SSL) connections.  The overheads of content switching and SSL processing are analyzed using WebBench. I also compare the performance of NPCS with Linux Content Switch (LCS).
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Chapter 1 
Introduction

For web business to be successful, content has to be customized to fit individual customer’s needs and be delivered to customers when they want it. Market needs drive technology evolution. These include speed-to-market, service, flexibility and value-addition. New network devices have provided tools for responding to the increased demands of load and new applications by deploying new architectures to scale business growth. One versatile device that now manages, routes and load-balances traffic across corporate networks and devices, as well as data centers is the intelligent, 'content-smart' Web switch. 

Well, the huge, heterogeneous anonymous network has also brought several troubles.  As increasing amounts of sensitive information like credit card numbers is being transmitted over the Internet, World Wide Web and network security has become critically important. For this reason, today, many companies use Secure Sockets Layer (SSL) to protect their information from an unauthorized party and reduce the risks of the data being exposed on the Internet.

1.1 Content-Based Switch (CS)

With the explosive growth of the Internet and its increasingly important role in our lives, the traffic on the Internet is increasing dramatically, at over 100% annual rate [LVS]

 REF HPCC99 \h \* MERGEFORMAT 
[HPCC99]. The workload on the servers is increasing rapidly so that servers are easily overloaded for a short period of time, especially for a popular web server. To overcome the overloading problem of the servers, there are two solutions. One is the single server solution, i.e., to upgrade the server to a higher performance server. However, the upgraded server will soon be overloaded when requests continue to increase, and will require upgrade again. The upgrade process is complex and the cost is high. The other solution is the multi-server solution, i.e., to build a scalable server on a cluster of servers [LVS]

 REF HPCC99 \h \* MERGEFORMAT 
[HPCC99]. When load increases, we can simply add one or more new server into the cluster to meet the increasing requests. A very efficient way to accomplish this is to use a load balancer to distribute load among servers in the cluster. Load balancing can be done in two levels, transport level using the layer 4 switch or application level using the content switch [WCS].

1.1.1 Layer 4 Switching/Transport Level Load Balancing

Linux Virtual Server is an example of the transport level load balancing approach. The basic goal of the Linux Virtual Server Project is to ”produce a high-performance and highly available server for Linux based on clustering, which provides a good scalability, reliability and serviceability” [LVS]. 

The LVS (Linux Virtual Server) is a highly scalable and highly available server built on a cluster of real servers. The architecture of the cluster is transparent to end users, and the users see only a single virtual server. The real servers may be interconnected by high-speed LAN or by geographically dispersed WAN. The front-end of the real servers is a load balancer, which schedules requests to the different real servers and makes parallel services of the cluster to appear as one virtual service on a single IP address. Scalability is achieved by adding or removing a node in the cluster. High availability is provided by detecting node failures and reconfiguring the failed system appropriately. 

The advantage of layer 4 load balancing is the overhead of load balancing is small and the maximum number of real server nodes can reach 25 or up to 100 [LVS]. The reason for layer 4 load balancing efficiency is that when a user request arrives at the load balancer, the load balancer only examines the source IP and port number of the incoming packet, the packet matching process can be easily sped up with a hash table based on these two fields. The common problem of layer 4 switching is that it is content blind, and does not analyze the advantages of the content information in the request messages [ICS]

 REF LCS \h  \* MERGEFORMAT 
[LCS].

1.1.2 Content Switching/Application Level Switching

Application level load balancing (also known as content switching) provides the highest level of control over incoming web traffic. When making a load balancing decision, the content switch can check the header information as well as the payload content of an incoming packet, including IP addresses, port number, HyperText Transport Protocol  (HTTP) meta headers, and URL. By examining the content of the request, the content switch can make decisions on how to route the request to the real servers. The content switching system can achieve better performance by load balancing the requests over a set of specialized web servers, or achieve consistent user-perceived response time through persistent connections, also called sticky connections, which is to route packets with the same IP address and port number to the same real servers [ICS].  

1.1.2.1 Linux-Based Content Switch (LCS)

The Linux-based Content Switch (LCS) is based on the Linux 2.2-16.3 kernel and related LVS package [LVS] implemented by Weihong Wang [LCS]. LCS examines the content of the request such as the URL in HTTP header and XML payload, besides its IP address and port number, and forwards the request to real servers based on the predefined content switching rules. Content switch rules are expressed in terms of a set of simple ‘if’ statements: if (condition) {action}. These “if” statements include conditions expressed in terms of the fields in the protocol header or pattern in the payload, and branch statements describing the routing decisions [LCS]. For example, if (xml.purchase/totalAmount < 10) routeTo(lowPriorityServer) will route the packet with “<purchase><totalAmount>” tag value less than 10 to the low priority real servers.

1.1.2.2 Linux-Based Secure Content Switch (LSCS)

The Linux-Based Secure Content Switch is an application level web switch implemented by Ganesh Godavari[LSWS], which is based on the OpenSSL [OPENSSL] package. It has two versions. One is based on dynamic forking of child processes and the other is based on the prefork idea similar to Apache[APA]

 REF LSWS \h  \* MERGEFORMAT 
[LSWS]. This content switch can route requests based on IP address, port number, URL and XML content in the application layer payload. Some of the other features of the secure content switch include session reusability for efficient and faster processing of secure HTTP requests. 

1.1.2.3 Other Industry Content Switch

The Intel NetStructure 7280 XML Director is the first device of its kind to combine the acceleration of security functions and XML, control of XML transactions, and "XML transaction roll-back" (re-submitting failed XML transactions to another server for processing) in a single device. The 7280 XML Director allows companies to carry out secure B2B XML transactions up to 150 times faster than previously possible. The product accelerates and intelligently controls secure XML-based Internet transactions so that B2B e-Commerce can take place faster and more reliably.[XML7280]
Cisco content switches such as the Cisco CSS 11500 direct traffic within a single data center -- or across multiple data centers -- based on Layer 4-7 information contained within incoming user requests. In addition to fully analyzing incoming requests, a Cisco content switch is continually evaluating available server resources so that traffic flow is optimized according to current data center or website load conditions. It also can put SSL acceleration, which reduces management complexity and optimizes secured transaction flow.

1.2 Secure Socket Layer (SSL) Protocol

The Secure Sockets Layer (SSL) protocol, originally developed by Netscape in 1994, has been universally accepted  by the Internet community for authentication and encrypted communication between clients and servers. The Transmission Control Protocol/Internet Protocol (TCP/IP) governs the transport and routing of data over the Internet. Other protocols, such as HTTP (HyperText Transport Protocol), Lightweight Directory Access Protocol (LDAP), or Internet Messaging Access Protocol (IMAP), run "on top of" TCP/IP in the sense that they all use TCP/IP to support typical application tasks such as displaying web pages or running email servers. The SSL protocol runs above TCP/IP and below higher-level protocols such as HTTP or IMAP, see Figure 1.1. It uses TCP/IP on behalf of the higher-level protocols, and in the process allows an SSL-enabled server to authenticate itself to an SSL-enabled client and vice versa and thus allows both machines to establish an encrypted connection. 
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Figure1.1 
SSL runs above TCP/IP and below high-level application protocols

1.2.1 Why we need SSL

Without proper controls, your data is subject to several types of attacks. 

You are in danger of:

· Loss of privacy - without encryption, every message sent may be read by an unauthorized party.

· Loss of data integrity - your data may be modified by a third party.

· Identity Spoofing - The practice of making a transmission appears to come from an authorized user. For example, in IP spoofing, a transmission is given the IP address of an authorized user in order to obtain access to a computer or network.

To reduce these risks, quite a few companies and organizations choose SSL protocol for their Internet security. SSL provides companies the means of making safe electronic commerce on the Internet.

1.2.2 Overview of SSL Procedure

When the web server gets information from your web browser, such as through a form submitting credit card information, the information is encrypted by the web browser using the server's public key. The encryption is done in the background without any interaction from the user.  SSL uses an algorithm from RSA (Rivest Shamir Adelman algorithm) Data Security Inc. for public-key encryption. Once this data is encrypted, it can't be decrypted unless the private key is known. This is what makes data transmissions secure.

Different key sizes work best with different cryptographic algorithms but in general the larger the size of the Private Key the more secure the SSL enabled application will be. After the Public Key is securely shared, the client and server use the Private Key to create a different set of keys called Session Keys. These keys are used with a specified cryptographic algorithm to encrypt and decrypt the contents of the communication session. The Session Keys are only valid for a single communications session. An overview of SSL procedure figure is presented in Figure 1.2.

Usually an SSL connection is initiated by the client (normally a Web browser) by requesting a document to be sent through the secured HTTP protocol as opposed to the standard HTTP protocol. This is done by simply prefixing the URL by "https" as opposed to "http". For example: http://java.sun.com/index.html requests the document index.html be sent through the standard HTTP protocol, while https://java.sun.com/index.html requests the same document be sent using the HTTPS protocol which incorporates SSL.

	SSL Messages

	Client 
	  
	Server 

	1. Client hello 
	-----> 
	

	
	<----- 
	2. Server hello 

	
	<----- 
	3. Certificate (Optional) 

	
	<----- 
	4. Certificate request (Optional) 

	
	<----- 
	5. Server key exchange (Optional) 

	
	<----- 
	6. Server hello done 

	7. Certificate (Optional) 
	-----> 
	

	8. Client key exchange 
	-----> 
	

	9. Certificate verify (Optional) 
	-----> 
	

	10. Change cipher spec 
	-----> 
	

	11. Finished 
	-----> 
	

	
	<----- 
	12. Change cipher spec 

	
	<----- 
	13. Finished 

	14. Encrypted data 
	<----- 
	14. Encrypted data 


Figure 1.2 Overview of SSL procedure

1.2.3 How SSL Works

1.2.3.1 Transmitting Data Privately

SSL uses encryption and decryption to ensure that data is transmitted privately.  It works on the public-and-private key encryption system from RSA. The web server contains a private and public key "signed" by a Certificate Authority. The public key is used to encrypt data, but it can only be decrypted using the private key

Public (Asymmetric) key encryption 

Public key encryption uses a key pair made up of a public and a private key. The keys are mathematically related; that is, data encrypted with one key in the pair can only be decrypted using the other key in the pair. The public key can be distributed and made generally available. The private key is kept private. 

A web server and web browser use public key encryption when first establishing communications with each other. Specifically, it is used during the SSL handshake when the web browser authenticates the web server. After the handshake is complete, the web server and web browser switch to the more efficient symmetric key encryption for the remainder of the transaction. 

Symmetric key encryption 

Symmetric key encryption uses a single key. The web browser and the web server create the key (called a session key) during their initial interaction (the SSL handshake). The same key is used to both encrypt and decrypt the data. This encryption ensures that no one else can read the data being transmitted in either direction.  A different session key is used for each server/client connection, and the session key automatically expires after certain time.

1.2.3.2 Ensuring the Data Is Not Altered During Transit

SSL uses cryptographic hashing to ensure that no one alters data during transit. Cryptographic hashing creates a unique hash value based on the content of transmitted data. The content of the data cannot be determined from the hash value and it is nearly impossible to compose another message that computes to the same hash value. Both the web server and the web browser compute hash values using the same hashing algorithm. If the hash values are the same, the data was not altered. 

When sending data to a web browser, the web server computes a hash value for data then sends the hash value and the data to the web browser. When the web browser receives this information, it computes its own hash value for the data then compares the two hash values. If they match, the web browser is assured that the data was not altered during transit. A similar process occurs when the web browser sends data back to the web server. The web browser computes a hash value then sends it and the data to the web server. 

This process assures web browser users that information they receive from the web server has not been altered and that information they fill in on an HTML form is not altered before it reaches the web server. 

1.2.3.3 Authenticating the Web Server

SSL uses digitally signed certificates to authenticate the web server, that is, to assure the web browser that it is communicating with the organization the browser thinks it is. 

A certificate is a data structure that contains information about the organization. It also contains the public key of the organization’s public/private key pair. Because the certificate contains the public key, it binds a public/private key pair to the organization. The key pair is used for public key encryption during the SSL handshake. 

A server certificate is a certificate that attests to the identity of an organization that owns a web server. Certificates are issued by certificate authorities such as VeriSign. A certificate authority is a trusted company or organization that confirms that an organization is what it claims to be. 

To obtain a server certificate, an organization must send a certificate signing request (CSR) to the certificate authority. After conducting research to ensure the organization is what it claims to be, the certificate authority digitally signs the certificate and sends it to the organization that requested it. 

To create the digital signature, the certificate authority computes a hash value based on the contents of the certificate. 

The certificate authority then encrypts the hash value with its private key. The digital signature is the encrypted hash value. The digital signature is stored with the certificate. 

When the organization that requested the certificate receives the certificate, it loads the certificate to its web server. When an SSL request is made, the web server sends the certificate to the web browser. When the web browser receives the certificate, it can read the information about the organization and its public key. 

To validate the certificate, the web browser verifies the digital signature. Because the digital signature is an encrypted hash value that was computed based on the contents of the certificate, the web browser needs to compare hash values. The web browser computes a hash value based on the contents of the certificate it received. It then decrypts the digital signature using the CA’s public key for the hash value that the certificate authority computed. If the two hash values match, the web browser is assured that the certificate contains the information that the certificate authority verified and digitally signed.

1.2.3.4 SSL Handshake

The SSL handshake occurs when a web browser user first requests information from a  web server that is using SSL. 

The following steps are accomplished during the SSL handshake: 

· The web browser and the web server negotiate the cipher suite they will use for the rest of the security services. 

· The web browser authenticates the web server. 

· The web browser selects and transmits a symmetric key to the web server. 

The handshake protocol is composed of two phases. 

Phase 1 deals with the selection of a cipher suite, the exchange of a master key and the authentication of the server. 

A cipher suite is made up of three techniques: 

· Key exchange technique--This is how the web browser and web server will exchange the symmetric key that will be used for the symmetric encryption that takes place after the SSL handshake is complete. 

· Symmetric encryption technique--This is the type of symmetric encryption to be used, for example, RC2 or RC4. 

· Hashing technique--This is the type of hashing the web browser and the web server will use to ensure the data is not altered during transit. 

Phase 2 handles client authentication, if requested, and finishes the handshaking. After the handshake stage is complete, the data transfer between client and server begins. All messages during and after handshaking are sent over the SSL Record Protocol layer. 

To allow the web browser to authenticate the web server, the web server sends its server certificate to the web browser. The web browser validates the server certificate. 

The web browser selects an appropriate symmetric key for the type of symmetric encryption to be used. It then encrypts the symmetric key using the web server's public key. It obtained the web server's public key from the server certificate. The web browser then sends the encrypted key to the web server. 

Using its private key, the web server decrypts the symmetric key. Now both the web browser and the web server have a secret key that they will use to send data back and forth. The handshake is complete.

1.3 OpenSSL (An Open Source Toolkit for SSL/TLS)

The OpenSSL is an Open Source toolkit [OPENSSL], which implements the Secure Sockets Layer protocol (SSL v2/v3), the Transport Layer Security (TLS v1) protocol, as well as a full-strength general-purpose cryptography library. It is based on the excellent SSLeay [SSLEAY] encryption library developed by Eric A. Young and Tim J. Hudson. 

OpenSSL combines two tools in one package: a cryptography library and an SSL toolkit. The SSL library provides an implementation of all versions of the SSL protocol, including TLS v1. The cryptography library provides the most popular algorithms for symmetric key and public key cryptography, hash algorithms, and message digests. It also provides pseudorandom number generator, and manipulates common certificate formats and manages key material. There are also general purpose helper libraries for buffer management and manipulation of arbitrary precision numbers. 

OpenSSL is the only free, full-featured SSL implementation currently available for use with the C and C++ programming languages [NSOPEN]. It is available for download in source form from http://www.openssl.org. 

There are a lot of versions of OpenSSL. In this project I used OpenSSL 0.9.6b which was the latest version when this project started. Currently, OpenSSL 0.9.6g is the newest one.  The SSL protocol relies heavily on a variety of different cryptographic algorithms, including message digest algorithms (also known as cryptographic hash functions), symmetric ciphers, and public key cryptography. OpenSSL supports 

· MD2, MD4, MD5, MDC2, SHA1 and RIPEMD-160 message digest algorithms;

· Blowfish, CAST5, DES, 3DES (Triple DES), IDEA, RC2, RC4, and RC5 symmetric ciphers and most of the ciphers support different modes, including CBC, CFB, ECB and OFB;

· Public key cryptography including Diffie-Hellman algorithm (only used for key agreement), Digital Signature Algorithm (DSA), and RSA.

It also can handle S/MIME (Secure Multipurpose Internet Mail Exchange) signed or encrypted emails. 

1.4 Intel IXP1200 Network Processor

1.4.1 Intel® IXP1200 Network Processor

The Intel® IXP1200 Network Processor is the cornerstone of the Intel® Internet

Exchange Architecture (Intel® IXA) [IXA]. It combines the best attributes of a network

ASIC with the flexibility, performance, and scalability of a programmable embedded

processor to accelerate the development of next-generation Internet products. Meeting the multi-service challenge calls for a network processor that can deliver a combination of wire-speed deep packet inspection and easy reprogrammability, the IXP1200 Network Processor meets these demanding requirements, while providing developers with an expanded range of performance options and functions that enable us to match processor capabilities with the unique requirements of individual applications. 

The product features are described as follows:

· Delivers superior programmability with a range of performance and feature options 

· Highly integrated RISC architecture includes six multithreaded microengines and a choice of Intel® StrongARM* 166, 200, or 232 MHz processor core 

· Available features include Cyclic Redundancy Checking (CRC) and Error Correction Code (ECC) memory for improved performance and reliability 

· 2K instruction store for each microengine 

· Peak bandwidth of 6.26 Gbps I/O bus (104 MHz IX Bus with a point-to-point connection) 

· 32-bit 66 MHz PCI bus interface 

· Integrated memory controllers for SRAM and SDRAM 

· Low power consumption of 5 watts or less, typical 

· Supported by the Intel® Internet Exchange Architecture (Intel® IXA) Software Development Kit (SDK) 2.0 and the Intel® IXDP1200 Advanced Development Platform

Figure1.3 shows the IXP1200 Network Processor.
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Figure 1.3 IXP1200 Block Diagram

1.4.2 Intel® IXP12EB (IXP1200 Evaluation Board) 

The IXP12EB Intel IXP1200 Network Processor Ethernet Evaluation Kit is a powerful tool used to develop and verify IXP1200 software. In conjunction with a user’s host system (typically a network-based PC), it allows in-depth testing to validate data paths, chip functionality, system functionality, device driver behavior and the functionality of board support package software. 

The IXP12EB Ethernet Evaluation Kit includes a PCI form factor board based on IXP1200 Network Processor. The PCI board has eight 10/100 Mbps ports and two Gigabit Ethernet ports. The kit also includes a passive PCI back-plane and an Ethernet Network Interface Card (NIC) that enables the system’s host processor to communicate efficiently to the IXP1200 Network Processor. The components of this board are shown in Figure 1.4. The actual look of the board is shown in Figure 1.5[IXPUG]. As shown in Figure 1.4, major components of the Evaluation Board include:

· An IXP1200 and its associated SRAM, Flash, and SDRAM,

· An Intel IXF1002 Dual GigaMAC and associated Gigabit transceivers,

· An Intel 21440 Multiport 10/100 Ethernet Controller and associated transceivers,

· A serial port,

· Logic analyzer connectors for SDRAM.

· Configuration jumpers, and

· Dual 7-segment status LEDs.

[image: image3.jpg]NetROM Connectors

101100 Ethernet Ports

Gigabit
Transceiver
0

Gigabit
Transceiver
1

[_TowWord

L]

BN
J EIER) EXEN

High Word

Bufers and
oo

IXF1002
GigaMAC

21440
OctalMAC

IXP1200

Log Andyzer
onnectors
vm SDRAM

AB0S6-01





Figure 1.4 IXP1200 Evaluation Board
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Figure 1.5 Actual Look of IXP1200 Evaluation Board

The IXP12EB kit simplifies evaluation of the following characteristics:

· IXP200 Network Processor functionality in a network wire-speed store-and-forward configuration.

· Use of the IXP1200 Network Processor as a network switch solution to perform bridging and routing functions with multiple 10/100 Mbps and Gigabit Ethernet ports.

· Performance capabilities of a single IXP1200 Network Processor running example network code. The kit will process and forward at wire speed (approximately three million packets/sec.) using Layer 2 and Layer 3 packet inspection on minimum-size packets, and a longest-prefix match algorithm.

· Electrical, mechanical, and component layouts used in a typical IXP1200 Network Processor design. The evaluation kit design illustrates how to interface various devices to the IXP1200 Network Processor via the IX Bus, providing a design reference for developers using the IXF1002 Dual-Port Gigabit Ethernet media access controller (MAC) and the 21440AD 8-Port 10/100 Mbps Ethernet controllers.

1.5 IXP1200 Network Processor Microengine Development Enviroment 

The supported programming languages for Intel IXP1200 microengine are IXP1200 microcode and microengine C for IXP1200. Intel provides a set of development tools for IXP1200 microengine, such as the Developer GUI Workbench, Assembler, Linker and Transactor. 

The development station operating system (OS) is Windows NT.

1.5.1 Developer Workbench

The Intel IXP1200 Network Processor Developers Workbench, also called the Workbench or GUI Workbench, is the GUI interface to either the Transactor (the simulator - IXP1200 cycle and data accurate model) or the IXP1200 Hardware (i.e. the Ethernet Evaluation System) [NPDTUG]. The Workbench gives a window-based graphic interface to the simulator or the hardware  and provides various debugging features and  statistics. It is an integrated development environment (IDE) for assembling, linking, and debugging microcodes that run on the IXP1200 Network Processor Microengines. The Workbench is a Win32 application that runs on Windows NT/95/98 platforms [NPDTUG]. 

The Workbench supports debugging in four different configurations:

· Local simulation with no foreign model, in which the Workbench and the IXP1200 Network Processor simulator (Transactor) both run on the same Windows platform.

· Local simulation with a local foreign model, in which the Workbench, the Transactor, and a foreign model Dynamic-Link Library all run on the same Windows platform.

· Local simulation with a remote foreign model, in which the Workbench and the Transactor both run on the same Windows platform and communicate over the network with a foreign model running on a remote system.

· Hardware, in which the Workbench runs on a Windows host and communicates over a network or a serial port with a subsystem containing actual IXP1200 Network Processors. 

When debugging in a simulation configuration, the Workbench provides performance statistics for the IXP1200 Network Processor subsystem. For example, it provides data on memory bandwidth to the SDRAM.

Important Workbench features include:

· Source level debugging.

· Execution history and statistics.

· IX Bus device and network traffic simulation.

· Optional command line interface to the IXP1200 Network Processor Transactor

·  Customizable graphical user interface (GUI) components.

1.5.2 Assembler

The assembler is invoked from the command line:

uca [options] microcode_file microcode_file...

It may also be invoked through the IXP1200 Workbench. Invoking the assembler results in a two-step process composed of a preprocessor step and an assembler step. The preprocessor step takes a “.uc” file and creates a “.ucp” file for the assembler. The assembler takes a “.ucp” file and creates an intermediate file with the file name extension of “.uci”. The “.uci” file is used by the assembler to create the ‘.list’ file and provides error information that may be used to resolve semantic problems (such as register conflicts) in the input file. The assembly procedure is shown in Figure 1.6 [NPDTUG].
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Figure 1.6 Assembly Procedure

1.5.3 Linker

In IXP1200 Network Processor, memory is shared between the StrongARM Core and the Microengines. The StrongARM Core generates and maintains data structures, while the Microengine reads the data. Microengine Image Linkier (ucld) is an executable that accepts a list of Microengine images (“*.list”) generated by the assembler, uca, and combines them into a single object that is loadable by the core image, running on the StrongARM processor, utilizing Microengine Loader Library (libD) functions. 

The usage of ucld is 

ucld [options ...] uca_list_file ...

1.5.4 Transactor

The IXP1200 Transactor executes IXP1200 microengine object code. It demonstrates the functional behavior and performance characteristics of a system design based on the IXP1200 without relying on IXP1200 hardware. The IXP1200 Transactor is a cycle-accurate architectural model of the IXP1200 hardware that is optimized for high-speed simulation of an IXP1200 based system. 

The first step in using the IXP1200 Transactor is to create a model of an IXP1200 based system. This involves the use of commands that define how many IXP1200 chips are in the system and the amount of SRAM and SDRAM associated with each IXP1200. Once the system model has been defined, the Transactor can be used to run simulations, debug them, and gather performance statistics.

The Transactor recognizes two types of inputs:

· Transactor commands. Commands unique to the IXP1200 Transactor that allow you to control its operation.

· A subset of C commands. Provided to give you greater flexibility in controlling the Transactor.

Commands can be typed in through the command line interface or be executed as a series of commands from a command script file.

1.6 IXP1200 Intel StrongARM® core Development Environment 

The supported programming languages for IXP1200 Intel StrongARM core are Standard C/C++ linking in Intel® IXA SDK (Software Developers Kit) libraries [SDK]. The developer tool is Wind River Tornado II[TIDE]. It is an integrated environment for cross platform software development. It provides an efficient way to develop real-time and embedded applications with minimal intrusion on the target system. Tornado comprises the following elements [TIDE]
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[TUG]: 

· VxWorks 5.4 [VXWORKS], a high-performance real-time operating systems.

· Application-building tools (compilers and associated programs)

· An integrated development environment (IDE) that facilitates managing and building projects, establishing and managing host-target communication, and running, debugging, and monitoring VxWorks applications. 

The Tornado environment is designed to provide this full range of features regardless of whether the target is resource-rich or resource-constrained. Tornado facilities execute primarily on a host system, with shared access to a host-based dynamic linker and symbol table for a remote target system. Communication between the host tools and VxWorks is mediated by the target server and target agent.

The rest chapters are organized as follows:

Chapter 2 presents the design of IXP1200-based secure content switch;

Chapter 3 elaborates the implementation of IXP1200-based secure content switch;

Chapter 4 shows the test results and analysis;

Chapter 5 describes the limitations and possible future works for NPCS;

Chapter 6 gives the learned lessons;

Chapter 7 concludes the project;

Appendix A is the instructions for configuring and launching IXP2EB with Tornado;

Appendix B is the instructions for building new VxWorks image;

Appendix C is the instructions for creating a certificate with OpenSSL on Linux;

Appendix D is attached makefiles for libssl.a and libcrypto.a

Appendix E is the NPCS user guide.

Chapter 2 
Design of IXP1200-Based Secure Content Switch

This thesis proposes the design of an IXP1200 network processor based Secure Content Switch that utilizes existing and affordable tools and technologies. The goal of the design is to use different hardware system and make possible improvements to achieve content distribution similar to that attained by personal computer architectures. The NPCS (IXP1200 Network Processor Content Switch) is specifically designed to enhance quality of service with secure connections.

2.1 Hardware Architecture

The IXP1200 consists of a StrongArm core and six programmable RISC cores (also known as `microengines'). The StrongARM core runs the VxWorks operating system and controls the microengine threads. Each microengine can execute up to four hardware threads. Its instruction set is specially designed for packet processing. An instruction is piped through a five-stage pipeline with the execution stage taking one cycle for each instruction. These microengines do not do out-of-order speculation. Due to its hardware support for multiple threads, it is able to achieve high performance and also it is allowed to hide the relatively high latencies for accessing memory.  

The StrongArm Core is the same 32-bit RISC processor used in the Intel StrongArm SA-1100. This project’s goal is to implement the secure content switch on this chip and try to move part of the tasks down to microengines. The whole content switch system is set up as shown in Figure 2.1.
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Figure 2.1 Hardware set up for NPCS system

The whole design assumes the network connections among IXP12EB and back end real servers are secure. The IXP12EB, as the front end switch for the web cluster, will deal with the incoming SSL connections (i.e. encrypt/decrypt incoming requests/outgoing information) and communicate with back end real servers through plain text.

2.2 Software Architecture

The overall software layer for the IXP1200 Secure Content Switch (NPCS) is shown in Figure 2.2. The Secure Content Switch is built on top of VxWorks operating system and utilizes its TCP/IP stack to establish TCP connections between clients and the web switch (here is the IXP1200 secure content switch). For the security part of this design, NPCS utilizes the SSL library and the Crypto library coming with OpenSSL package. 
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Figure 2.2 Overall software layer of IXP1200 Secure Content Switch

2.2.1 VxWorks Network Stack

2.2.1.1 VxWorks TCP/IP Stack

VxWorks, the Wind River’s real-time operating system, comes with a full-featured, BSD 4.4-compliant TCP/IP stack. It has complete routing support and is scalable, so developers can build products ranging from IP routing devices to full TCP/IP, SNMP-managed systems. Figure 2.3 shows the layered architecture of VxWorks TCP/IP stack.
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Figure 2.3 VxWorks TCP/IP Stack

VxWorks allocates and initializes memory for the network stack at network initialization time. Out of this pre-allocated memory, the network stack uses the netBufLib routines to set up a memory pool. From this memory pool, the network stack gets the memory needed for data transfer.

The netBufLib routines deal with data in terms of mBlk structures, clBlk structures and clusters. The mBlk and clBlk structures provide information necessary to manage the data stored in a block of memory, called clusters. The clusters, which come in different sizes, contain the data described by the mBlk and clBlk structures. By default, the VxWorks network stack creates six pools for clusters ranging in size from 64 bytes to 2048 bytes.

The mBlk structure is the primary vehicle through which you can access data in a memory pool. Because, the mBlk structure merely references the data, this lets network layers communicate data without actually having to copy the data. In addition, data can be chained using mBlks. Thus, you can pass an arbitrarily large amount of data by passing the mBlk at the head of an mBlk chain. Figure2.4 shows the presentation of 2 packets to the TCP layer.
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Figure 2.4 Presentation of two packets to the TCP layer

To support chaining across multiple packets, the mBlk structure contains two members that support chaining. One member points to the next mBlk in the current packet. The other member points to the head mBlk in the next packet if any. The clBlk structure points to the cluster where the data is stored.

VxWorks also provides the MUX interface to support independence between the network protocol layer and the data link layer. To use a driver in the data link layer, the network protocol calls the appropriate MUX routine. Likewise, when a driver in the data link layer needs to access the network layer (whether IP or another protocol), it calls the appropriate MUX routine. Neither protocol nor driver deal with each other directly. Thus, neither needs specific knowledge of the other, which makes it easier to plug in a new protocol over existing drivers. To attach the TCP/IP stack to the MUX for a particular interface, use the ipAttach( ) routine. When an interface is shut down, ipDetach( ) will release the TCP/IP stack components for that interface.

2.2.1.2 VxWorks Network Configuration

VxWorks includes a variety of utilities for assigning Internet addresses to network interfaces, hosts, and broadcasting. VxWorks also includes utilities for explicitly adding a gateway or configure a subnet. On a VxWorks target, you can use the functions of the ifLib library to associate Internet addresses with network interfaces, host names, and broadcasting. In a UNIX system, to associate an Internet address with a network interface is specified to use ifConfig command. For example, to associate Internet address “128.198.60.130” to the interface “ln0”, enter:

>ifconfig ln0 128.198.60.130

This is usually done in the UNIX startup file /etc/rc.boot.

In VxWorks, ifAddrSet( ) is called for specifying the Internet address of a network interface, and for constructing a new route to that interface. For example, to associate the Internet address 128.198.60.130 with the interface ln0, enter:

ifAddrSet ("ln0", "128.198.60.130");

2.2.1.3 Socket

A socket is a communications end-point that is bound to a UDP or TCP port within the node. Under VxWorks, applications can use the sockets interface to access features of the Internet Protocol suite, such as multicasting. Depending on the bound port type, a socket is referred to either as a stream socket or a datagram socket. VxWorks sockets are UNIX BSD 4.4 compatible. However, VxWorks does not support signal functionality for sockets.

VxWorks also includes an alternative set of socket calls based on a data abstraction called a zbuf, which permits you to share data buffers (or portions of data buffers) between separate software modules. The zbuf socket interface allows applications to read and write UNIX BSD sockets without copying data between application buffers and network buffers. You can use zbufs with either UDP or TCP applications. The TCP subset of this new interface is sometimes called zero-copy TCP. 

Zbuf-based socket calls are interoperable with the standard BSD socket interface: the other end of a socket has no way of telling whether your end is using zbuf-based calls or traditional calls. 

However, zbuf-based socket calls are not source-compatible with the standard BSD socket interface: you must call different socket functions to use the zbuf interface. Applications that use the zbuf interface are thus less portable.

2.2.2 OpenSSL Package

2.2.2.1 SSL library and Crypto library

The major relevant object types in the SSL API are SSL_METHOD, SSL_CTX and SSL. SSL_METHOD represents an implementation of SSL functionality. In other words, it specifies a protocol version. OpenSSL provides populated SSL_METHOD objects and some accessor methods for them. They are listed in Table 2.1[NSOPEN]
	Function
	Comments

	SSLv2_method
	For generic SSL version 2

	SSLv2_client_method
	For an SSL version 2 client

	SSLv2_server_method
	For an SSL version 2 server

	SSLv3_method
	For generic SSL version 3

	SSLv3_client_method
	For an SSL version 3 client

	SSLv3_server_method
	For an SSL version 3 server

	TLSv1_method
	For generic TLS version 1

	TLSv1_client_method
	For an TLS version 1 client

	TLSv1_server_method
	For an TLS version 1 server

	SSLv23_ method
	For generic SSL/TLS

	SSLv23_ client_method
	For an SSL/TLS client

	SSLv23_server_ method
	For an SSL/TLS server


Table 2.5 Functions to retrieve pointers to SSL_METHOD object.

An SSL_CTX object is a factory for producing SSL objects. The context allows us to set connection configuration parameters before the connection is made, such as protocol version, certificate information, and verification requirements. Actually, the SSL_CTX object stores the default values for the SSL connections made by a program.  To create SSL_CTX object, it should use the function SSL_CTX_new. For example:

SSL_METHOD *meth;


SSL_CTX *ctx;

…

/* create our context*/

meth = SSLv23_method();

ctx = SSL_CTX_new (meth);
… 

SSL object is the main SSL/TLS structure which is created by a server or client per established connection. This actually is the core structure in the SSL API. Under run-time the application usually deals with this structure, which has links to mostly all other structures. Also the SSL protocol usually requires the server to present a certificate. The certificate contains credentials that the client may look at to determine if the server is authentic and can be trusted. For this reason I will have to create a certificate and private key for the virtual server (i.e. the front end secure content switch). The instruction of creating a certificate is described in Appendix C. All the certificates and keys are put into a specified directory on the host machine Dilbert, which serves as the development enviroment.

The major steps involved in the working of OpenSSL are [GANE]:

a) First an SSL_CTX object is created as a framework to establish TLS/SSL enabled connections.

b) When a network connection is created, it can be assigned to an SSL object. After the SSL object is created using SSL_new(), SSL_set_fd() or SSL_set_bio() can be used to associate the network connection with the object.

c) Then the TLS/SSL handshake is performed using SSL_accept() or SSL_connect() respectively.

d) SSL_read() and SSL_write() are used to read and write data on the TLS/SSL connection.

e) SSL_shutdown() can be used to shut down the TLS/SSL connection.
2.2.3 Modules

It is often essential to organize applications into independent, though cooperating, programs. Each of these programs, while executing, is called a task[VPG]. In VxWorks, tasks have immediate, shared access to most system resources, while also maintaining enough separate contexts to maintain individual threads of control.

The original design of the secure content switch is that each request is handled by a task. The procedure is shown in Figure 2.6 and processing steps described as following:

1. The web browser makes a request to the secure content switch. 

2. The dispatcher module in the secure content switch forwards the request to the request processing module, which is an individual task. The processing task is generated dynamically according to the coming request.

3. The secure content switch request processing module performs the handshake with the client and reads in the request. 

4. The secure content switch request processing module then sends the request to the Rule Processing Module (an individual task), which performs rule matching and returns the routing decision (i.e. the name of the chosen real server by which the request can be served).

5. The real server returns the requested information to the client through the secure content switch. 
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Figure 2.6 Design of Secure Content Switch

The reason to separate the rule processing module is that rules can be modified dynamically.

Chapter 3 
Implementation of The IXP1200-Based Secure Content Switch

The hardware is set up based on the design in Chapter 2. The development environment is set up as shown in Figure 3.1.
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Figure 3.1 Development Environment set up

The target machine is IXP12EB which runs VxWorks operating system. Host machine, named ‘Dilbert’, runs Wind River Tornado II and Intel IXP1200 Developer Workbench. The connections between host machine and target machine are Ethernet and RS-232 (serial connection). The serial connection is used for VxWorks console.  It is used for the initial configuration of the target and its LAN connection. After boot, the serial connection is used as a development I/O terminal and LAN connection is used for Host to Target communications, including debug, VxWorks Shell, file access, and other Tornado features. 

The implementation of NPCS is divided into three phases:

· Testing packets receiving and transmitting

· Porting OpenSSL 

· Porting Linux-base Secure Content Switch to IXP12EB

3.1 Hardware and Software Environments 

The IXP12EB is set up as designed in Chapter 2 Figure 2.1. The connections between HP4000 switch and IXP12EB are crossover cables and fibers, i.e. the IXP12EB 10/100 Ethernet ports are connected to the switch by crossover cables; the two Giga ports are connected to the switch by fibers. The back end real servers are frodo and eca, which are also connected to HP4000 switch. 

The IP address assigned to IXP12EB PCI Ethernet card is 128.198.60.32. The assignment is performed during the set up of IXP12EB. It can be done by the command line on the host machine Dilbert:

tgtsvr.exe 128.198.60.32 –n IXP12EB –m 15728640 –V –B Wdbrpc -redirectIO

This command means the target server’s (IXP12EB) address is 128.198.60.32, name “IXP12EB”, cache memory size 15,728,640 bytes, backend target communication protocol is Wdbrpc, and redirect the target global stdin and stdout and stderr to the target server. The target server configuration can also be done through Tornado IDE, please refer to Appendix A. 

By default, the cache memory size is 1024 bytes, for this project, it is set up to be 15,728,640 bytes which is decided by the Tornado downloadable project size. 

3.2 The Prototype


3.2.1 Microengine Reception and Transmission

The reception and transmission of packets in IXP12EB is done by microengines, this project uses the microengine reference design code, which can be found in IXP1200\MicroCode\MVRRefdes\ONproj_8_1f_hw.dwp). Figure 3.2 shows the packets flow of receiving.

[image: image12.jpg]Receive
Scheduler

rec_nextpac.uc

4" rec_verifyip.uc ’—P‘ rec_lmatch.uc ’}





Figure 3.2 Packets flow of Receiving Part

Upon the arrival of a new packet, the current IXP1200 reference design will eventually begin its “receive” side processing: scheduling receive threads, pulling the packet in from the IX Bus to SDRAM. To send the packet, microengine will dequeue the packet and copy from SDRAM to IX Bus and finally free the descriptor back to the freelist. 

To use these macrocodes to receive and transmit packets, it has to be included into VxWorks kernel image. The instructions of building new images with microcodes are described in Appendix B. 

3.2.2 Pseudo Device Driver

The concept of Pseudo Ethernet Device Driver (PETH) was implemented in the IXP1200 Ethernet Evaluation System. From operating system view, the “driver” receives packets and passes them to VxWorks kernel (the operating system); and also gets packets from kernel to send out. 

3.2.2.1 Overall Design of PETH

PETH is a VxWorks END-compliant network driver that interacts with the IXP1200 reference design and Microengines for the reception and transmission of packets[NPSRM]. This driver has the effect of making each of the IXP1200 IX Bus Ethernet ports appear as an Ethernet device in the VxWorks kernel. Packets that the Microengines enqueue to a special “core” port are received by the PETH driver and delivered to the VxWorks kernel. These packets may in turn be delivered to user-space programs written on top of standard sockets (or other) APIs. Packets generated either by user-space applications, or by the VxWorks kernel itself (e.g., in the case of ICMP) are delivered to the PETH driver which will then enqueue the packets on the appropriate transmit queue within the Microengines.

Figure 3.3 [NPSRM] shows the overall IXP1200 EB system with the inclusion of the PETH driver. The Microengines in the IXP1200 (shown at the bottom of Figure 3.3) are running an almost unmodified version of the reference design. From the transmit side, the reference design is used almost unmodified. Each PETH instance enqueues outgoing packets directly on the existing output queues for each port. From the receive side, two small changes are made: first, a special port is created (port 18) which represents the “core”. The Microengine receive code uses its unmodified enqueuing operations on port 18 when it wants to send a packet to an instance of PETH (and eventually to the VxWorks networking stack). Second, the receive code is modified to deliver locally bound packets to port 18. Here, locally bound would ideally mean that the packet has the proper DMAC and IP address for the ingress port. In actuality, this ideal is sacrificed for simplicity and only L2 broadcast, L2 IP-based multicast, and specifically routed packets are delivered to port 18.
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Figure 3.3 Overall Architecture of the IXP1200 Evaluation Board with the PETH Driver

On the StrongARM Core, where VxWorks is running (shown at the top of Figure 3.1), multiple instances of the PETH driver are created, one for each IXP1200 IX Bus Ethernet port. Each instance is tied to a port and only receives (transmits) packets from (to) its own port. Each instance of PETH enqueues outgoing packets directly on the proper transmit queue, but incoming packets are all queued to port 18, regardless of what ingress port they arrive on. Given the fact that each instance of PETH should only receive packets that arrive on its associated port, there is a need for a PETH demultiplexor (demux). The demux takes packets from the one incoming queue (port 18) and dispatches them to the appropriate instance of the PETH driver. Figure 3.3 also shows the demux being used as a poller. The Core polls port 18’s queue for new packets. If an interrupt-based architecture is desired, the PETH demux block without the polling loop would become the Interrupt Service Routine (ISR). Finally, Figure 3.3 shows each PETH instance interacting with the kernel. This is done through standard driver interfaces. The VxWorks kernel cannot tell the difference between a PETH device and another, more traditional, Ethernet NIC.

3.2.2.2 Driver Initialization

The beginning life for all of the PETH components (driver instances and poller/demux) is in PethDrvInit(). It initializes the PETH instances:

        // For each port create a new instance of the driver

        for (pethDrvNum = 0; pethDrvNum < PETH_NUM_DEVS; ++pethDrvNum) {

            sprintf(pethInitStr, "%d:", pethDrvNum);

            cookie = muxDevLoad(pethDrvNum, pethEndLoad, pethInitStr, 0, NULL);

            if (NULL == cookie) {

                printf("Failed to load Pseudo Ethernet driver number %d\n", pethDrvNum);

                continue;

            }

            // Start the driver

            if (OK != muxDevStart(cookie)) {

                printf("Failed to start Pseudo Ethernet driver number %d\n", pethDrvNum);

                continue;

            }

            // Attach each driver to the ipStack

            if (OK != ipAttach(pethDrvNum, "peth")) {

                printf("Failed to attach device %d to ip stack\n", pethDrvNum);

            }

      }  // end for
ipAttach(), a VxWorks call as described in Chapter 2, is to attach MUX to the TCP/IP stack. It has the underlying effect of calling muxBind() for the TCP/IP stack and the given instance of the PETH driver. Thus, after ipAttach() has been called, packets passed from an instance of PETH “upward” get delivered to the IP module within the kernel.

3.2.2.3 Packet Reception

As shown in Figure 3.3, packet reception consists of the following steps:

1. The packet arrives via the IX Bus at the Microengines then enqueues the packet on port 18.

2. The PETH demultiplexor (run inside a polling loop pethPoller()) dequeues the packet from the Microengines and passes it to the appropriate PETH instance.

3. The PETH instance receives the packet, prepares it for acceptance by the kernel, and delivers it to the kernel.

4. Finally, the kernel then acts upon the packet appropriately, which might mean delivering the packet to a user-space application (e.g., through an open socket), or delivering the packet to the kernel’s ICMP module.

Demultiplexor first checks if there are any packets on the incoming queue. If so, it dequeues the first packet from the queue then schedules the pethRecv() routine to be run, passing the dequeued packet to pethRecv().

The pethRecv() routine is passed two arguments. The first is a driver control data structure that is specific to the instance of the PETH driver. The second is the packet descriptor. The driver control data structure provides access to the shared memory pool. The packet descriptor provides access to the actual packet data as well as miscellaneous information about the packet. The receive routine allocates a cluster (block of memory) from the shared memory pool, copies the packet data into the cluster and hands the packet off to the kernel.

3.2.2.4 Packet Transmission

Packet transmission consists of the following (simplified) steps:

1. Either a VxWorks application or the kernel itself determines the need to transmit a packet on a particular interface. 

2. The pethSend() routine, which was registered with the kernel during driver initialization, is called by the kernel to transmit the packet. The arguments to pethSend() include a driver control structure as well as the packet to transmit. The send routine allocates a new packet descriptor, copies the outgoing packet data into the proper location according to the new descriptor, and enqueues the descriptor on the proper port’s transmit queue. Finally, pethSend() informs the Microengines of the new outgoing packet.

3. The standard Microengine reference design dequeues the outgoing packet and transmits it.

The pethSend() routine is called whenever the kernel wants to transmit a packet on a particular PETH instance. The send routine takes two arguments. The first is a driver control data structure that has values specific to the PETH instance. The second is an mBlk (described in Chapter 2), which is essentially the packet to transmit.

3.2.3 Porting OpenSSL

The search for public domain about porting OpenSSL was not successful. The porting job has to be done myself. The OpenSSL package has two major libraries, SSL library and Crypto library, which are used by this project. The porting job is to build these two libraries separately for VxWorks. Not all the OpenSSL source codes are compatible with VxWorks platform. The makefiles to make libssl.a and libcrypto.a for VxWorks are in the Appendix D.

As the Chapter 1 described about OpenSSL, it implemented symmetric cipher: DES, RC2, RC4, RC5, CAST, IDEA; asymmetric cipher: RSA, DSA, DH; digest: MD2, MD4, MD5, SHA, RIPEMD, MDC2. Since IXP12EB does not have much memory, to reduce the size of the downloadable program which is running on StrongARM, some useless utilities or ciphers can be removed from the library by defining in the makefile. The following shows the defines in makefile.

# Utility

# -DNO_BIO=1 -DNO_BF=1

# Symmetric ciphers

# -DNO_DES=1 -DNO_RC2=1 -DNO_RC4=1 -DNO_RC5=1 -DNO_CAST=1 -DNO_IDEA=1

# Asymmetric ciphers

# -DNO_RSA=1 -DNO_DSA=1 -DNO_DH=1

# Digests

# -DNO_MD2=1 -DNO_MD4=1 -DNO_MD5=1 -DNO_SHA=1 -DNO_RIPEMD=1 -DNO_MDC2=1

#ADDED_CFLAGS += -DNO_RC2=1 -DNO_RC5=1 -DNO_CAST=1 -DNO_IDEA=1

#ADDED_CFLAGS += -DNO_MD2=1 -DNO_MD4=1 -DNO_RIPEMD=1

The hint is to compile libraries and applications with the same flags. Of course, libraries are not code, by linking the code with libssl.a and libcrypto.a the image could be reduced a lot. 

3.2.4 Porting and Implementing Secure Content Switch on IXP12EB

The Linux-based Secure Content Switch has two versions: preforking version and dynamic forking version [GANE]. In VxWorks, there is no “forking” concept, instead “taskSpawn” is used to spawn tasks which are independent, though cooperating, programs. In this project I implemented Secure Content Switch similar to “dynamic forking” version of Ganesh’s work. 

The IXP12EB Secure Content Switch as designed in Chapter 2 has three parts. One is the Controller (it is the dispatcher in the original design), one is the Request Processor, and the third is the Rule Module. In this implementation, the Controller and Request Processor are built into one Module. Here, “Module” is a downloadable program, which can be run on IXP1200. 

The Controller’s major job is to create SSL_CTX object, read in the certificate file, check on private key, which are stored in a specific directory on the host machine Dilbert, and listen to the port 443. After receiving a request it passes the request to Request Processor. Figure 3.4 shows the flow chart of the program.

[image: image14.jpg]Requests

Create SSL_CTX object
Load private key and certificate
Check if key and certificate match
Match
Open Server Socket
Listento port 443

IE request coming

Requests

Mo Requests





Figure 3.4 Program Flow of Controller

The Request Processor’s major job is to create an SSL connection, perform the SSL handshake, get the data (request) and send it to Rule Module. Figure 3.5 shows the flow chart of this program.
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Figure 3.5 Request Processor Flow Chart

The Rule Module’s major job is to match the rule and send back the routing decisions to the Request Processor. The program flow chart is shown in Figure 3.6.
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Figure 3.6 Rule Module Flow Chart

In this version of NPCS, the communication between the Request Processor and Rule Module is by socket. 

Based on the routing decision, Request Processor creates a connection with the real server chosen by the rule module, gets the data from the real server and sends back to the client through SSL connection. 

I also tried running rule module on NPCS and out on a separate machine. 

Chapter 4 
Test Results and Performance Analysis

This section presents the test results of the VxWorks Secure content switch on IXP12EB. Figure 4.1 shown below shows a block diagram of IXP1200 based secure content switch. 
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Figure 4.1 The test environment of IXP1200-based Secure Content Switch

4.1 Test Scenario

Three groups of test scenarios are conducted with the NPCS test-bed and results are compiled. For each scenario, a minimum of three test runs is executed to verify performance consistency. Since the results are relatively consistent, only the last set of test results are presented in this section. The three test scenarios are:

1. Both SSL Proxy and Rule Module running on the IXP12EB. Real servers are two Linux machines.

2. SSL Proxy running on IXP12EB with Rule Module running on a Linux machine. Real servers are two Linux machines.

3. Test response time according to different xml doc request size for NPCS and Intel 7280 XML director.

4.2 Test Bed Set Up and Data Collection

The test bed is set up as shown in Figure 4.1. All the machines involved in these tests are listed in Table 4.1.

	Machine Spec
	IP Address
	O/S
	Web Server

	 IXP12EB 200MHz

(Content switch)
	Port 0 128.198.60.130

PCI Ethernet Card

128.198.60.32
	VxWorks 5.4
	N/A

	a) dilbert.uccs.edu

b) oblib.uccs.edu

c) wind.uccs.edu

(Client)
	128.198.60.23

128.198.60.195

128.198.60.204


	a) Windows NT, 4.0

b) Linux 7.2 (2.4.9-21)

 c) Windows-2000, Advanced Server


	N/A

b) Apache 1.3.22

	a) eca.uccs.edu

b) frodo.uccs.edu

HP Kayak Machines, 233 MHz, 96MB RAM

(Real Server) 
	128.198.60.188

128.198.60.183


	Redhat 7.1

 (2.4.3-12)
	Apache 1.3.19




Table 4.1 Configuration of machines used in NPCS tests

For the first two scenarios test data are collected by a benchmark – WebBench [WB]. The WebBench is installed on wind. Both controller and client of WebBench are running on wind. 

For the third scenario, a perl script is executed on Calvin to send different size of XML requests to NPCS and get the response time. 

4.3 Test Results

For scenario 1 the test result is in Figure 4.2.
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Figure 4.2 Test results for Scenario 1 (rule module running on a separate machine).
From the results we observed that the number of requests that the NPCS can process in one second is quite small.

For scenario 2, the test results shows in Figure 4.3.
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Figure 4.3 Test results for Scenario 2 (rule module running on IXP12EB)

To compare the performance of the two tests, Figure 4.4 shows the data with request/second metric  and Figure 4.5 shows the throughtput in terms of bytes per second.
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Figure 4.4 Requests Per Second of NPCS
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Figure 4.5 Throughputs of NPCS

We noticed that where the rule module runs affects the performance of the NPCS. It shows that the computation overhead of the rule matching outweighs the communication overhead when the rule module is running remotely.

We also compared the test results with Linux Secure Content Switch. It is showed in Figure 4.6. The Linux Secure Content Switch was running on a Linux 7.2 machine named calvin.  
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Figure 4.6 Compares with Linux Secure Content Switch

It is obviously that Linux Secure Content Switch has better performance. 

For scenario 3, a perl script running on Calvin sends XML requests to NPCS or Intel 7280 through SSL connections. With different size of requests we got the results shown in Figure 4.7

[image: image23.jpg]Response Time (usec)

16000000
14000000
12000000
10000000
8000000
6000000
4000000
2000000

0

XML Request Response Time

s

—

1234

7424 13614 19804 25994
Size of XML Doc (Bytes)

—+— NPCS with Local Rule
Module

—=— NPCS with Remote Rule
Module

o Intel 7280





Figure 4.7 XML Requests Response Time for NPCS and Intel 7280

4.4 Results Analysis

According to the test results, we observed that as rule module putting onto a separate machine, the overload of the content switch is off a little. Overall the IXP1200-based secure content switch does not have good performance compared to Linux Secure Content Switch. The reason is obvious since the StrongARM on IXP12EB is a 200MHz processor. It is much slower than the Intel processor of calvin which is running at 933MHz. The possible improvement is described in Chapter 5.

For test scenario 3, we could see that Intel 7280 has better performance. We also observed that with local rule module, the XML request response time is much longer compared to the remote rule module version. 

Chapter 5 
Limitations and Future Works for NPCS

This version of NPCS is a prototype of a Secure Content Switch implemented on IXP12EB. The performance is not good as expected due to many reasons. 

5.1 Communication between tasks

VxWorks supplies a rich set of intertask communication mechanisms, including:

· Shared memory, for simple sharing of data.

· Semaphores, for basic mutual exclusion and synchronization.

· Message queues and pipes, for intertask message passing within a CPU.

· Sockets and remote procedure calls, for network-transparent intertask communication. 

· Signals, for exception handling.

In this implementation the communication between Request Processor and Rule Module is through socket. Other intercommunication mechanisms may be able to improve the performance.
The uses of these mechanisms please refer to VxWorks Programmer’s Guide 5.4, Edition 1.

5.2 Rule Module

Currently rules are coded in Rule Module. To modify the rules, the user has to add rules to the source code and rebuild the module, then download it to the IXP12EB for execution.  An alternate approach is to treat the rules as data and build an interpreter to interpret these rules. This may shorten the rule modification time. But it may increase the rule matching time.
5.3 File store

The IXP12EB does not have a hard drive. The Target Server File System (TSFS) is a full-featured VxWorks file system, but the data are actually located on the host. TSFS uses a WDB driver to transfer requests from the I/O system to the target server, i.e., the IXP12EB. The target server reads the request and executes it using the host file system and the host-target communication path. The file retrieval is through the ftp service on the host machine.

This project used certificates, private key etc. that stored in files and put on the host machine Dilbert, instead of storing on the IXP12EB. These files are supposed to be stored on IXP12EB.  

Another problem about files is that the CryptoLib of OpenSSL uses file access operations, such as fopen and fclose. We can either rewrite those file functions to use RAM instead of files, or use the memory resident file system such as proc on Linux.
5.4 Utilization of Microengines 

IXP1200 Network Processor has six microengines, which have special instruction set for packet processing. Each  microengine can have 4 threads running. The microcodes used in this project for microengines are simply implemented the transfer of the packets to and from IX Bus, and did not do much work on packets processing. NPCS involves two basic tasks, “packet parsing” and “rule matching”. One possible improvement is to allocate these two tasks to microengines. 

5.5 Sizes of Libraries CryptoLib and SSLLib

The size of ssl_proxy.out (the downloadable application for IXP1200) is 9M. It is relatively big in an embedded system with small memory size. It probably slows the performance of NPCS. One possible improvement is to reduce the libraries size of CryptoLib and SSLLib used in this project. 

Chapter 6 
Lessons Learned 

An important lesson learned is that, before starting the IXP12EB one must check up the hardware configuration, which includes the jumpers on the board and cable connections to the network. 
In this project, cross-over cables are used to connect the eight 10/100 Ethernet ports to the HP4000 switch in our lab, but fibers for the Giga ports are not connected.
 

Some regions of target memory are good candidates for caching. The target memory cache, by default, caches the program text sections of all target-resident modules. Because it is highly unorthodox to modify the text of the program (beyond adding breakpoints), this use of the cache provides a considerable boost in performance for cross-debugging. Due to the size of the project, when set up the IXP12EB, the memory cache size has to be modified to about 15M, please see Appendix A for how to set the memory cache size.

Another problem I met in this project is that building the new VxWorks image. For some reason Tornado IDE is not able to create a project for building new VxWorks image file. In this project, command lines have to be used instead. The instructions that are used for building the images for this project can be found in Appendix B. 

Debug in Tornado IDE is convenient. But unfortunately for the tasks that are spawned by function taskSpawn() are not able to cannot be debugged by using with the debug tool. The easiest way, actually more inconvenient, is to simply use printf() inside those spawned tasks to track variables changing.

In Tornado IDE to To build a library with Tornado IDE, one has to set the build rule to be “archive”, which will generate a “.a” file instead of a downloadable application “.out” file. To link the library, the “PRJ_LIBS” has to be defined in the build properties. To include files, “VPATH” has to be set in the building properties. 

On porting To verify the correctness of our local OpenSSL implementation, two applications coming come with OpenSSL package are ported to VxWorks also essential for the library function testing. They are “s_server” and “s_client”. Which helped to do the libaries function testing. The command for running “s_server” on IXP12EB is 

> s_server 8, "-cert server.pem -rand random.pem -accept 4433 –state

The command for running “s_client” on vinci is 

> openssl s_client -connect 128.198.60.130:4433 -state

This test helped test validate the communication through SSL between IXP12EB, as a server, and vinci, as a client. 

Another helpful useful tool used in this project is ssldump [SSLDUMP]. It is an SSLv3/TLS network protocol analyzer. It identifies TCP connections on the chosen network interface and attempts to interpret them as SSLv3/TLS traffic. When it identifies SSLv3/TLS traffic, it decodes the records and displays them in a textual form to stdout. If provided with the appropriate keying material, it will also decrypt the connections and display the application data traffic. This tool is intalled installed on vinci and helped observe packets coming from IXP12EB. 

Chapter 7 
Conclusion

I have implemented a secure content switch that performs the functions of a web switch on IXP1200 Network Processor Evaluation Board. The security feature of this implementation currently used the software package OpenSSL version 0.9.6b ported onto to VxWorks. The packets receiving is used the modified microengine reference design codes and PETH driver are used for the packet reception. A set of tests has been done on a cluster test-bed using the industry standard benchmarking software – WebBench. 
We found out 
that where the rule module runs affects the performance of the NPCS. From the test results, the computation overhead of the rule matching outweighs the communication overhead when the rule module is running remotely. It is observed We also found out  that the performance of NPCS is not to be satisfactory compared to Linux Secure Content Switch.  Based on the study of the IXP1200 Network Processor and the test results, several suggestions or possible improvements are proposed for the future works.   They include are improving the improvement of communications among tasks, implementing the of dynamically modifying the modification of the rule module without recompilation recompiling, saving data storing files on IXP12EB memory  instead of on the file of the host machine, utilizing microengines to implement parallelism, and reducing the size of crypto library and SSL library. 
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Appendix A Configuring and Launching IXP12EB with Tornado

Before beginning the following procedure, be sure that a VxWorks License Server is up and running and that an adequate number of licenses are available. 

1. Launch Tornado by double-clicking the Tornado icon on your PC desktop.

2. On the main menu, select Tools > TargetServer > Configure. A target server configuration window appears (Figure A-1). 
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Figure A-1 Target Server Configuration Window 1

3. If the Target Server Descriptions box is blank, click New and the name Configuration should appear in this box.

4. Enter the name of the target server in the Target Server Name text box. This is an arbitrary name that describes these configuration settings.

5. In the Available Back Ends textbox, select wdbrpc and enter the value of the Target name and IP address in the Target Name/IP Address text box. This should be the same as the inet on ethernet parameter entered as part of the procedure shown in Figure A-2.
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Figure A-2 Target Server Configuration Window 2

6. Under the Target Server Properties field, select Console and Redirection (Figure A-3).  If not already selected, select Redirect Target I/O.

7. Under the Memory Cache Size field, select Specify, and enter 15360 (i.e. 15M) (Figure A-4).
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Figure A-3 Target Server Configuration Window 3
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Figure A-4 Target Server Configuration Window 4

8. Click Launch. A command prompt appears and succeeded messages should be displayed.

9. If necessary, click OK to close the Configure Target Servers window.

10. Click the Tornado main window (Figure A-5) and click the Target Server Dropdown List. Highlight the target server configuration you have just created.
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Figure A-5 Tornado Main Control Window

11. To launch the VxWorks shell, click the Launch Shell button. A display such as the following should appear:
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Figure A-6 Tornado Launch Display

At this point, the VxWorks operating system is up and running on the IXP1200.

Appendix B Building New VxWorks Image

Instructions of building vxworks images:

1. Recompile the microcode in ixp1200/microcode/mvrrefdes/Onproj_8_1f_hw project with modified refdes/rec_nextpac.uc
recompile the microcodes to get hex ‘c’ file. (set the option workbench -> build -> setting -> linker => generate hex ‘c’ file)

2. copy content of the file to ixp1200/sa1_corelibs/app1200/mvr_ucld.c

3. cd ixp1200\SA1_CoreLibs\SA1200Core_Build
make –f vxworks_mvr.mak NetApp_DBG 
(with modified vxworks_mvr.mak and  ixp1200\SA1_CoreLibs\app1200\net_app.cpp)
Notes: to set up the tornado compile environment, you must run c:\tornado\host\x86-win32\bin\torVars.bat

4. copy c:\ixp1200\vxworks_lib\VxWorks_Gig_mvr.a ./vxworks_gig.a

5. cd c:\ixp1200\BoardSupport\Boot1200
make vxWorks_gig

6. in c:\ixp1200\BoardSupport\bin you will get vxWorks_gig.o


Appendix C Instructions for Creating a Certificate with OpenSSL on Linux

To make certificate authority: 

mkdir CA

cd CA

mkdir certs crl newcerts private

echo "01" > serial

cp /dev/null index.txt

cp /usr/local/openssl/openssl.cnf.sample openssl.cnf

vi openssl.cnf   (set values)

openssl req -new -x509 -keyout private/cakey.pem -out cacert.pem -days 365 -config openssl.cnf

To make a new certificate: 

cd CA        (same directory created above)

openssl req -nodes -new -x509 -keyout newreq.pem -out newreq.pem -days 365 -config openssl.cnf

(certificate and private key in file newreq.pem) 

To sign new certificate with certificate authority: 

cd CA        (same directory created above)

openssl x509 -x509toreq -in newreq.pem -signkey newreq.pem -out tmp.pem

openssl ca -config openssl.cnf -policy policy_anything -out newcert.pem -infiles tmp.pem

rm -f tmp.pem

(newcert.pem contains signed certificate, newreq.pem still contains unsigned certificate and private key)

Appendix D Makefiles for libssl.a and libcrypto.a 

Please refer to 

http://cs.uccs.edu/~chow/pub/master/lli/src/libssl_makefile for libssl.a

http://cs.uccs.edu/~chow/pub/master/lli/src/libcrypto_makefile for libcrypto.a

Appendix E NPCS User Guide

Environment set up

Real servers: eca.uccs.edu, frodo.uccs.edu (linux machines)

Back up rule matching server: vinci.uccs.edu (linux machines)

For Tornado and IXP12EB set up please refer to Chapter 2 Figure 2.1 and Appendix A.

Instructions of running NPCS

1. Download ssl_proxy.out and rulemodule.out to IXP12EB through Tornado IDE

2. Open a shell window 
> init
(may not be necessary to execute) which adds host IP to host table (for real servers and back up rule matching server). If resolvLib is included, this is not necessary.
> PethDrvInit
Initialize the driver and set up IXP12EB peth0 IP address 128.198.60.130
>sslproxy
run the ssl proxy server 

Notes: after executing PethDrvInit(), pls
 use ifShow() to check if the peth0 is receiving packages. If not, reboot the board and start it over. Check on the FTP server running on your host machine and see which directory is specified for the target machine. Read in config.h, and find out where you should put your CA files according to the specified directory. 
CA_FILE "testssl/CA/cacert.pem"
CA_PATH "testssl/CA"
KEY_FILE "testssl/private/private.key"
CERT_FILE "testssl/cert/newcert.pem"
RAND_FILE "testssl/random/random.pem" 

3. Run rule module 
Open another shell window
>rulemodule
Notes: if want rule module on separate machine, please do not run it on IXP board. The back up rule module server is vinci (Linux machine). rulemodule running on port 4000. To compile the rule module, you must have libcrypto and libssl (have openssl installed). 
Compile and build command for Linux machine, e.g.,
cc -o rulemodule rulemodule.c -lcrypto –lssl

4. Run client (browsers)
Test page: http://archie.uccs.edu/~acsd/ixp1200/sslproxytest.html
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�Make sure caption is centered.


�Indicate the situation of the problem – no connection.  Explain why cross-over cable is needed.


�Explain why gigabit port are not connected. What is the problem? Provide your explanation or congestion about the problem or its solution.��Briefly describe some of the debugging sessions with CCL engineers.


�What is the problem when the memory is not enough? What did you observed? How do you find out what is the maximum size you can use? What happens  if you exceed that?


�Found out is colloquial. Try not to use it in formal report.


�What those real servers needs to have?  In /var/www/html and /var/www/cgi-bin.  Make sure you have these data in you findal tar ball.


�Where is the source code? The setup procedure? No detailed here.


�Detail steps for others to follow.


�Please (not short hand)
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