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Abstract
A skeleton composed of rotation points is usually made to fit motion capture data 

by guessing the size and iterating until the model fits the motion.  This involves a few 
assumptions and approximations and sometimes produces more than one answer.  This 
dissertation presents a purely mathematical solution that has only one answer.  This new 
closed-form solution is robust in noisy and missing motion capture data.  The Minimum 
Variance Method produces the same accuracy as linear and non-linear Least-Squares 
methods of fitting spheres, cylinders, circles and planes to generic data without the initial 
guessing.  The method significantly reduces the amount of work needed for calculating a 
rotation point by only requiring O(N) averaging of the data and one inversion of a 3x3 
positive-definite matrix for any data-set.   The same matrix can be used to compensate for 
cylindrical motion inaccuracies.  This method aids the realism of motion data animation 
by allowing the subtle nuances of human motion to be displayed.  The calculations can be 
reused for the same actor and marker-set allowing different data sets to be blended.
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1 Introduction

1.1 Motivation

Through the research into articulated motion, one fundamental problem arose 

which existing method produced unsatisfactory results.  The problems was to find a 

skeleton under a data-set.  Judgment is made by having the method satisfy the simple 

criteria:

1.  Quick

2.  No a-priori knowledge of skeleton

3.  Generalized to any shape of articulated model

Many authors uses Least-Squares techniques to fit a pre-existing skeleton into the 

data by “squishing”  and adjustment joints until it fits the data.  This is generally termed as 

inverse kinematics.  O’brien (2000) produced a global optimization of least-squares 

analysis of a skeleton.  They claim real-time calculations but they are using a-priori 

knowledge of a human shaped model to fit into the data.  Their method, and many others, 

involve constraints on the skeleton which include being symmetric human shapes.  Other 

constraints on the model must be enforced for Inverse Kinematics because there are cases 

where the problem is severely under-constrained.  When a problem is under-constrained, 

multiple solutions exist and artificial constraints must be introduced.  A good example of 

this problem is when a human wants to place his hand on the table.  Carnegie-Melon 

University (CMU) Graphics Lab produced a similar sequence (labeled 05-05) using a 

ballerina outstretching her leg.  Once outstretched, the knee joint flopped between two 

possible solutions in three consecutive time frames:
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This is a well studied problem with various authors coming up with appropriate 

constraints.  But what if there was a method that did not need to know the skeleton 

beforehand and did not have to guess at constraints and initial conditions?  Various 

attempts were tried in order to obtain this goal.  Originally, genetic algorithms combined 

with kinetics were tried and failed due to the slow nature of the genetic algorithm.  Next, 

Least-Squares fitting was tried but sometimes did not converge to the right answer (the 
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initial guess was not close enough).  The Kalman filter was tried next but had the 

tendency to converge to a biased answer or none at all.  Finally, after stepping back in 

frustration, the Minimum Variance equation was discovered which produced a correct 

answer all of the time, excluding non-moving joints.  The method does not fit into the 

mold of either Kinetic or Kinematic methods but is a purely closed-form mathematical 

solution of the rotation points of the skeleton inside.  It satisfies the self-imposed criteria 

of quick O(N); has absolutely no a-priori knowledge of an articulated figure except for a 

simple association of a marker with a segment; can conform to the exact form of the 

underlying actor, whether it be deformed, animal, human or robot: as long as it has 

articulated non-translational joints.

Articulated motion is described as connected solid segments moving as a whole.  

Examples of such bodies are the human body, insects, and robots.  The approach in this 

research is to have a local view of a segment’s motion.  Each segment will have control 

of its motion relative to its more proximal segment (e.g. the hand controls the wrist 

motion).  This produces a hierarchy of segments starting from the root (hips) and moving 

outward to the end effectors.  The hierarchy produces a set of constants that determine the 

rotation point.  The constants include the position of the rotation point relative to the 

parent’s fixed reference frame and the null vector of the joint, which is usually the one 

axis in a cylindrical joint.  Once the constants of motion are found for the motion capture 

data each segment will store for determining the absolute position of its rotation point at a 

later time frame.
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1.2 History

Motion capture animation has been continuously improved by many authors1.  

Their contributions can be divided into two methods of analysis: kinematic and kinetic2.  

In kinematic methods, scientists study the mechanical displacements of the limbs during 

motion.  In kinetic methods, the energies and forces on the limbs are studied during the 

motion of the articulated figure leading to dynamical formulation.  This new method does 

not fall in either of these categories.

Kinematic methods are used in animation by determining the joint angles from 

space-time constraints.  Holt et al. (1997) estimated the 3D motion of an articulated 

object from a sequence of 2D perspective views.  They used a decomposition approach to 

break down the motion of each segment.  This was a good use of video motion capture to 

estimate the animation of a figure.  Inverse Kinematics (IK) is the backwards use of 

positioning to determine which angles are necessary to get from one posture to the next.  

IK is the more popular method to determine motion.  Grochow et al. (2004) have a fairly 

complete system building on the IK method.  Their method compensates for the multiple 

possible poses by a probabilistic model based on previously known styles of poses.

Kinetic methods are used in animation by analyzing the changes in energy, inertia, 

or forces involved in the motion.  These values determine the way the joint angles change 

in time.  Kinetic methods had their start in the stick and/or block figures of Jensen, et al. 

in 19773.  Jensen produced a system for interactive computer modeling of the 
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musculoskeletal system.  A good example of this physics based motion analysis can be 

seen in Semwal et al. (1999) as well.  Their method allows a cyclist to visualize the leg 

rotations and forces involved in the pedal movement.  A straightforward physics approach 

is to solve for the equation of motion whether it be Newtonian mechanics or Lagrangian 

mechanics.  This approach is not easily computed, usually by time consuming iterative 

methods.  The method involves solving simultaneous second order partial differential 

equation.  These complications make them not used very often.  Results are mediocre in 

both quality of animation and controlling the figure.  A more efficient attitude to solving 

these equations is using recursive methods4.  Liu and Popovic (2002) presented a 

SIGRAPH paper explaining a novel method of infusing physical reality into sparsely 

keyed motion data.  They presented an articulated figure that realistically played 

hopscotch from a minimal set of predetermined positions.  Their method involved a 

figure composed of ellipsoids.  The key-frames would be set up by the animator and the 

method could correct the positions to follow physical reality.  Liu and Popovic’s method 

produced wonderful motions but relied on off-line calculations.  The method presented in 

this dissertation is an “on-line” method in which there is virtually no work involved in 

following motion capture data.

Popovic and Witkin (1999) presented another novel idea to transform standard 

models of motion into a diverse assortment of similar motions.  For instance, their 

method could take a standard run sequence and transform it into a run with a limp 

sequence, while retaining physical reality.  This method relies on a library of standard 

motions that contain every motion regime that may be transformed.
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1.3 Realism

This research is concerned with the realism as perceived by the viewer of the 

animation.  If the viewer perceives realistic motion then the motion is classified as 

satisfactory.  This is also known as the classic Turing test.  Only a skeleton based on 

joints is used so the realism relates to the algorithm producing the motion.  The generated 

motion has been presented to an audience who has agreed that the motion is better than 

the same data-set analyzed by CMU Graphics Lab using inverse kinematics.  It is the 

author’s opinion that the human’s ability to identify subtleties in motion is the 

determining factor of realism.  The Minimum Variance Method allows for the subtleties 

to still be displayed.

1.4 Real-time

The “real-time”  phrase, as used in this research, relates to the aspects of the 

motion algorithm.  The algorithm is as fast as analyzing only ten data points for each 

segment and then reusing the constants in all time frames of the data.  The constants that 

determine the rotation point of each segment can be reused so long as the data came from 

the same actor wearing the same non-moved markers.  Not much more speed can be 

achieved without a-priori knowledge.

1.5 Paper Outline

This paper is structured as follows.  Section 1 contains the introduction to the 

research topic.  In Section 2, the motion model is derived.  The articulated figure model is 

presented in Section 3.  The programming model follows in Section 4.  Section 5 contains 
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the products that have come out of the research.  The conclusion is in Section 6.  The 

bibliography is in Section 7.  The appendix contains various proofs and mathematical 

details that have been derived as well as a user’s guide to the application that was 

developed for the research.

1.6 Terminology

Some terms have been borrowed from biology.  Distal is a description of a part of 

a body that is closer to the peripherals (e.g. finger is distal to the elbow).  Proximal is a 

part that is closer to the central body.  In this paper, these terms are used to describe parts 

of the body that are placed in a tree structure representing the articulated figure.  There is 

always a root to the tree, which has nothing proximal.  A parent segment is proximal to its 

children.  As explained in the next chapter, a segment’s proximity to the central body is 

not strictly the same as the position in segment tree hierarchy.  Throughout the paper, 

vector notation is used and a caret (ˆ) symbolizes that the vector with a caret has been 

normalized to have a length of unity.  Also, during matrix algebra, a vector is considered 

to be a column vector and a row vector is a column vector explicitly transposed (T).

Knight 7



2 Motion Model

This chapter sets forth the method used to turn an uncorrelated set of data points 

into a moving human figure.  The first question that must be answer is where to put the 

skeleton.  The skeleton is a set of rotation points with lines drawn in between.  So where 

are the rotation points relative to the surface data points in the data?  The original motion 

capture data does not come with any explicit information about the size and shape and 

rotations of the actor doing the motion.  The method presented next solves the local 

minimization solution for a single rotation point in the articulated figure.  The follow-up 

question to answer is how to get a fixed coordinate frame relative to each segment in 

articulated figure under the data points.  Putting the two answers to these questions 

together is what allows this motion model to animate a skeleton through direct 

calculations from the raw data.

2.1 Closed-Form Rotation Point Determination

A more successful solution than previous method was discovered during course of 

this research.  It was found that a closed-form solution exists when the variance of the 

square of the distance from the measurement to the point of rotation is minimized.  Joint 

rotations cannot be determined unless the point of rotation is determined.  Most data does 

not come with this information.  Data comes in the form of (t,x,y,z) for a particular point 

on a figure during its motion in absolute coordinates.  Previous solutions5,6,7 to determine 
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this point involve iterations on a least-squares equation or M-estimators starting from an 

initial guess.  This approach involves either linear or non-linear fitting of the data and has 

a chance of not converging to a solution.  The initial guess must be close enough to the 

truth or the iterations may diverge away from the point.  This chapter presents a new 

closed-form solution to the center of rotation that involves no guessing and just the 

inversion of a 3x3 matrix.  The Minimum Variance Method is robust with noise and also 

works with cylindrical motion, with a little extra work.  The method is a suitable 

replacement for linear and non-linear least-squares fitting of a sphere, cylinder, circle, and 

a plane.  The requirements in order to determine the point of rotation are as follows:

1) Fixed axes relative to the point of rotation.

2) At least 4 points far enough apart.

The problem amounts to finding the best-fit sphere for a 2 or 3 DOF joint or the 

best-fit cylinder for a 1 DOF joint.  According to the NIST,8  the best approach to this 

problem is non-linear Least-Squares fitting.  The Minimum Variance Method eliminates 

the guesswork involved in least-squares fitting and produces an immediate answer.

2.1.1 Theory

Presented here is a closed form solution that has time complexity of O(N) and 

involves the inversion of a 3x3 positive-definite matrix.  Stated “simply”, the closed form 

solution involves solving for the absolute minimum of the variance of the square of the 

lengths from the point of rotation to each point in the data.  A point (pi) around a rotation 

point (r) can be represented as
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pi = r+Liρi

where

‖ρi‖ = 1

and Li is the distance to pi from r

The standard definition of the sampled variance of the square of the distance is

s2 ≡Var(L2) =
N

N−1
(
L4−L22

)
where

Li = ‖pi− r‖

Lk =
1
N∑‖pi− r‖k

The formula to solve after collecting the data is when the gradient of the variance 

is set to zero.

Equation 2.1.1    ∇s2 = 0  where
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∇≡
(

∂
∂x

∂
∂y

∂
∂z

)T
Taking the gradient derivative of the variance produces

∇s2 =
N

N−1
(
∇L4−2L2∇L2

)
The gradient of the mean powers of L are

∇L2 = 2(r− p)  and ∇L4 =
4
N∑L2i (r− pi)

and

L2 = p2−2pT r+ r2

Substituting these in produces

∇s2 =
N

N−1
(
4L2r− 4

N∑L2i pi−4L2(r− p)
)

Further simplification produces this

∇s2 =
4

N−1
(
2∑ pi

(
pTi − pT

)
r−∑ pi

(
p2i − p2

))
∇s2 = 8(Ar−b)

Setting this to zero ends up being a simple 3x3 linear equation to solve

Equation 2.1.2  Ar = b

where

Equation 2.1.3  A=
1

N−1∑(pi− p)pTi

Equation 2.1.4  b=
1

2(N−1)∑(pi− p)pTi pi

Knight 11



The notation used here is such that

ppT =

x
y
z

(
x y z

)
=

xx xy xz
yx yy yz
zx zy zz



pT p=
(
x y z

)x
y
z

 = x2+ y2+ z2

and the mean of the data points is

p=
1
N∑ pi

The Minimum Variance Matrix A is positive-definite (cf. Appendix) so Cholesky 

decomposition can be used for a more efficient solution to the equation.  There are two 

exceptions to this statement.  The trivial case is if all points coincide, A=0.  The non-

trivial case is during planar motion.  If there exists a vector n such that

pTi n= constant

then A=0.  All is not lost though if A is near singular.  Some mathematical 

concepts must be explained in order to continue solving the rotation point of planar data.

The Null Space of a matrix is a set of vectors that solve the equation An=0.  This 

set of vectors is inherently extracted during the Singular Value Decomposition9 (SVD) of 

any matrix based on some threshold.  The condition number of a matrix is a measure that 

increases to infinity as a matrix becomes closer to singular.  It too is extracted during 

SVD.  If the threshold is equal to the inverse of the condition number then a single vector 

exists in the Null Space of A and that vector happens to be the normal to the plane of 

Knight 12

9 Press 1992



motion and is the best-fit plane for the data.  This is proven by solving for the minimum 

of the variance of the distance from the plane.

pTi n= zi

The variance of the distance zi is

Var(z) =
N

N−1
(
z2− z2

)
and the gradient of the variance is

Equation 2.1.5   ∇Var(z) = 2An

Setting the gradient to zero will produce the minimum variance of z.  The only 

solution to this equation is the Null Space of the Minimum Variance Matrix A.

Another interesting property for this equation comes from the fact that the double 

derivative matrix (Hessian) is

Equation 2.1.6  Hessian(s2)≡ 1
2∇∇

T s2 = 4A

The Hessian is positive-definite because A is positive-definite (cf. Appendix).  If 

the Hessian of the function is positive-definite then the solution found is an absolute 

minimum.  This says that the solution found for the rotation point is the absolute best to 

minimize the variance of the square of the lengths.

2.1.2 Pseudo-code

The procedure to determine point of rotation is as follows:

Procedure 2.1.1

Choose one set of points on segment.
Make points relative to parent.
  M = column matrix of parent coordinate axes
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  c = center of parent’s coordinate frame

  pi =MT (pi− c)
Calculate variance of points.

  
p=

1
N∑ pi

  
p2 =

1
N∑ pTi pi

  
Var(p) =

N
N−1

(
p2− p2

)
if variance of points is large then
    use spherical formula.

    A=
1

N−1∑(pi− p)pTi

    b=
1

2(N−1)∑(pi− p)pTi pi

    solve Ar0 = b
    if condition number of A is large then
        use cylindrical formula.
        solve An= 0 (n is cylinder axis or Null vector)
        return r1 = r0+nnT (p− r0)
    else
        return r0
end

2.1.3 Examples

Example #1 - Spherical Joint

Results from a-priori data are comparable to linear or non-linear least-squares 

fitting.  Spherical motion data is produced below with added noise.  The points are in the 

following table.  The center of the sphere is at (0.6 -0.2 0.9)T with a radius of 1.2.  

Standard deviation of the noise of each point is 0.01.

x y z

1.71641 0.0532489 0.534942

-0.257165 -0.984895 0.59321

-0.0154738 0.0295651 1.90681
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1.19134 -0.00156902 1.9146

1.31147 0.607414 0.374474

1.2274 -0.0905109 1.91278

1.62875 -0.631279 0.507247

0.367905 0.908098 0.472217

1.74362 -0.526356 0.621037

0.510973 -1.29795 0.495898

The points in the table produce the Minimum Variance Matrix:

A=

 0.540464 0.0639822−0.0671881
0.0639822 0.462403 0.0550300
−0.0671881 0.055030 0.459960



b=

 0.251491
0.00024245
0.362261


Calculated results are as follows:

Method x y z L error

Original 0.6 -0.2 0.9 1.2 0

Min Var 0.599337 -0.189249 0.897781 1.19811 0.0109972

Least Squares 0.599084 -0.189018 0.89785 1.19818 0.0112276

The results from above tell how close the answer is for Levenberg-Marquardt 

non-linear Least-Squares fitting and the Minimum Variance Method.  Using the Singular 

Value Decomposition of A, the condition number for A is determined as 1.63852.  A 

spherical solution is assumed better than cylindrical since the condition number is not 
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large.  As the results show, a spherical solution from Minimum Variance or from Non-

linear Least-Squares give approximately the same answer.

Example #2 - Cylindrical Joint

An example for cylindrical data shows similar good results.  The data is produced 

from a circle at the same rotation point and radius and normal vector of 

(0.1 0.2 0.974679)T.  The same amount of noise is introduced (0.01).

x y z

0.965464 0.896476 0.641555

1.68157 0.248753 0.703445

1.61990 -0.871485 0.930594

-0.592497 -0.0747179 1.01050

-0.402654 -0.818748 1.12976

-0.0912121 -1.14638 1.16056

0.117659 -1.26534 1.16835

-0.569521 -0.403927 1.06119

1.69910 -0.702110 0.889177

1.67226 -0.724973 0.891406

The Minimum Variance equation for this data becomes

A=

 1.02288 0.110289 −0.129224
0.110289 0.448177 −0.100884
−0.129224−0.100884 0.0336710


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b=

 0.475661
−0.119367
−0.0260505


Calculated results are as follows:

Method x y z L error

Original r 0.6 -0.2 0.9 1.2 0

Min Var 0.700154 -0.0243642 1.8404 1.534 0.961886

Least-Squares 0.60523 -0.204356 0.936388 1.19704 0.0370193

Original Null 0.1 0.2 0.974679 N/A 0

Min Var Null -0.102284 -0.194435 -0.975568 N/A 0.0060804

Least-Squares Null -0.102284 -0.194435 -0.975568 N/A 0.0060804

Min Var new r 0.60204 -0.210872 0.904606 1.19708 0.0119822

The results of this example show, once again, almost the same answer as non-

linear least-squares fitting.  The condition number of this example’s matrix is 67184.8 

which tells us the matrix is nearly singular.  Knowing this, additional work must be done 

in the Minimum Variance method.  Using the cylindrical formula (projecting onto the 

mean plane), a better answer than the least-squares answer is found.

Example #3 - Case study of CMU Data 60-08

The CMU Graphics Lab produced a one minute long motion capture data-set of a 

salsa dance in 60-08.  The data file contains 3421 time slices for 41 markers on two 

figures.  This case study will concentrate on analyzing the performance of the Minimum 

Variance Method in determining the rotation points in the female subject.  Four passes on 

the data will collect rotation point calculations, each pass randomly removing from 0 to 

99% of the time frames in increments of 1%.  400 calculated rotation points were 
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collected for each segment modeled.  The calculated constants are the relative rotation 

points as referenced in each segment’s parent’s coordinate system.  The 400 calculations 

were averaged and the standard deviations were calculated as well.  These values are 

presented in the tables below.

Rotation Point Mean x (m) Mean y (m) Mean z (m)

Waist 0.13324824 -0.063898286 0.130439024

Neck -0.077279042 -0.003811468 -0.010261576

Left Ankle 0.437510805 -0.032639212 0.040255145

Left Wrist 0.110981565 -0.075779216 0.014702334

Left Elbow 0.283393628 -0.060979142 0.012893845

Left Knee -0.244076283 -0.07952933 0.009066338

Right Elbow 0.253621623 -0.146993545 -0.001828167

Right Knee 0.188950453 -0.080176833 -0.003163181

Right Ankle 0.241527156 -0.065156728 0.006255086

Right Wrist 0.211446183 -0.069707086 -0.019905695

Left Shoulder 0.01607591 -0.069950812 -0.119403856

Left Hip 0.003814737 -0.019484536 -0.198284078

Right Shoulder -0.00219989 -0.069832041 0.132929455

Right Hip 0.263017638 -0.022520684 -0.202218743

Table of Means of Rotation Points

Rotation Point σx σy σz

Waist 0.003896258 0.004605284 0.014676666

Neck 0.001768695 0.001355136 0.001206322

Left Ankle 0.01981794 0.011053845 0.011233588
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Left Wrist 0.002071725 0.002539415 0.000947775

Left Elbow 0.015518996 0.004050952 0.00398332

Left Knee 0.011752322 0.002762332 0.003553895

Right Elbow 0.017223326 0.00815392 0.004313482

Right Knee 0.016813465 0.003744518 0.003104466

Right Ankle 0.129159355 0.034143233 0.020772927

Right Wrist 0.00163169 0.000935295 0.000834657

Left Shoulder 0.001960198 0.000852649 0.00314934

Left Hip 0.001577703 0.001635193 0.004697627

Right Shoulder 0.000891381 0.00158762 0.003755364

Right Hip 0.001447724 0.00128305 0.004635324

Table of Standard Deviations of Rotation Points.

Most of the standard deviations are less than one centimeter, but there are some 

significant outliers.  Further analysis of the calculated points for the ankles and elbows 

show that the four runs produced two answer due to different orientations of the parent’s 

reference frame.  Therefore the standard deviation presented above for the ankles and 

elbows are erroneously calculating the deviation from the average of two distinct means.  

It is more appropriate to calculate the standard deviation from a single mean.  When these 

outliers are removed from the calculation of the deviation, a very informative graph can 

be produced below.  Every calculation for every segment is presented below as a 

deviation from the single mean rotation point versus the number of sample.
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As can be readily seen from the above graph, a statistically significant amount of 

calculations are within one centimeter of accuracy when analyzing more than about 200 

samples.  The accuracy gets better on average with a power law of N-0.8125.

2.1.4 Results

As has been shown by examples above, the Minimum Variance Method produces 

similar answers to the Least-Squares Method but without the initial guessing.  This new 

method can produce a better answer in the cylindrical case with only a little extra work.

Statistical analysis of real motion capture data reveal an error of about one 

centimeter when 200 samples are analyze.  The error goes down to one millimeter when 

2000 samples are analyzed.  Lessons learned during implementation of the equations 

2.1.3 and 2.1.4 have shown the the difference from the mean must be calculated during 
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each step of the summation.  If the presented equation is algebraically re-arranged, 

propagation of finite math errors (as present in all computers) produce extremely 

significant errors in the results.  This is not uncommon with these kinds of averaging and 

shows up in many “deviation” statistics.  For a significant amount of motion capture data 

analyzed, the determinant of the matrix is small but since the condition number does not 

get very big, the matrix is not considered near singular.  None-the-less, the Singular-

Value Decomposition (SVD) is recommended instead of the Cholesky Decomposition for 

the fact that SVD significantly reduces the error propagation for small matrices.  The 

matrix can become singular though in two different cases.  The matrix is singular when 

the points are identical or when the points are planar.  When the points are identical, the 

rotation point can be any point in space.  This occurs if the joint doesn’t move.  When the 

joint doesn’t move, then no rotation point can be calculated may just as well be modeled 

as being permanently attached.  When the points are planar, the rotation point can be any 

point on the rotation axis.  This is why the projection of the spherical answer along the 

axis onto the plane compensates for the spherical assumption error.  This does not occur 

too often in real 3D motion capture data due to measurement errors.  During any 

physically determined measurements, there is always some degree of noise.  

Measurement noise alone is enough to keep the matrix away from being singular.  Just 

like an average, the Minimum Variance equation will smooth out the noise when enough 

data is sampled.  This produces a very robust, deterministic answer for the rotation 

points.  Through the many data-files that have been analyzed, this equation has produced 

visibly incorrect rotation points only if the joint didn’t move much.  An example of 

connecting the rotation points is in the figure below.  Each rotation point is well 
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determined from the 41 markers except the waist.  This motion data entitled 

“ericcamper.c3d”  is a figure doing some standing martial arts moves.  He does not bend 

at the waist during the motion.  As a result, the rotation point ends up high in his chest.  

There is no impact to the animation though since the joint never moved.

Figure A - Rotation Points of Data

2.1.5 Limitations

The limitations of the Minimum Variance Method for calculation are due to not 

following the previously stated requirements - i.e. the joint must move significantly 
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around a rotation point that is fixed relative to a stable reference frame.  If this require 

fails, so does the algorithm.

2.2 Segment Coordinate System

Now to answer the question of where to get the fixed coordinate system on a 

segment from the data.  Most information in motion capture data comes in the form of 

absolute Cartesian coordinates of markers placed on the segments of an articulated figure.  

This is considered the rawest form of the data.  Usually, no information is available to 

determine the rotation points of the underlying skeleton.  To determine these, the frames 

of data must be analyzed en-mass using a hierarchical model and the Minimum Variance 

Method.  This method will only work if the following conditions are met for a joint:

1) No translational freedom.

2) The orientation of the parent segment can be determined.

3) The joint moves.

These restrictions are not that unreasonable since previous methods come with 

more.  The orientation of a segment can be easily determined if there are at least three 

non-linear data points fixed to that segment, i.e. markers in a time frame. It still is 

possible to determine the orientation if there is only one or two points but is less accurate.  

There is a hierarchical dependency for determining the center of rotation and the 

orientation.  The orientation can be determined if there:

1) is one data point, rotation point, and a rotation axis (non-linear).

2) are two data points and one rotation point (non-linear).

3) are three or more data points (non-linear).
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Requirements 1 and 2 rely on previously calculated constants as can be 

determined by the Minimum Variance Method.  The root of the segment tree is a special 

case and must follow requirement 3.  All subsequent segments of the tree can follow any 

of the orientation requirements.  So, for a human, the minimum number of data points is 

17 for 15 segments.  This N+2 absolute minimum is not a recommendation.  

Requirements 1 and 2 rely on every joint below in the tree to calculate its rotation points 

properly.  The ripple down effect can escalate to an undesirable level if these minimal 

requirements are followed.  With that in mind a better number of markers to follow is 3N, 

i.e. 3 for every segment.

The information can be retrieved if calculated hierarchically from root to leaf.  

First, define the tree.  Then, assign the data points to their appropriate segments.  The root 

must have three points.  No center of rotation for the root can be determined.  The 

children of the root can determine their center of rotation relative to their parent by 

Minimum Variance Method.  If there are three or more points, each time frame can 

contribute to the fitting.  The point of rotation in absolute coordinates for a segment is 

r = pc+Acr′

n̂= Acn̂′

Where r′  is the constant relative rotation point, n̂′  is the constant relative rotation 

axis, pc is the center of the coordinate system, and Ac is the 3x3 matrix of column vectors 

that represent the axes of the coordinate system.  Ac is determined differently for 

whichever requirement is followed.

Requirement 1:

x̂= n̂
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ẑ=
p0× x̂
‖p0× x̂‖

ŷ= ẑ× x̂
pc = r

Requirement 2:

x̂=
p0− r
‖p0− r‖

ẑ=
p1× x̂
‖p1× x̂‖

ŷ= ẑ× x̂
pc = r

Requirement 3:

x̂=
p1− p0
‖p1− p0‖

ẑ=
p2× x̂
‖p2× x̂‖

ŷ= ẑ× x̂
pc = p0

Now that the three coordinate axes have been created, the rotation matrix can be 

assembled from the column vectors.

Ac =
(
x̂ ŷ ẑ

)
There is hierarchical dependency here in that requirements 1 and 2 make a 

segment depend on the parent segment’s coordinate system to determine his own 

coordinate system.  The C++ implementation of this recursive dependency is presented in 

the appendix.  The dependencies work quite well with each other as long as the rotation 

points are accurate.  This method was implement before the Minimum Variance Method 
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was discovered.  During the many failures of other methods for determining the rotation 

points, this dependency was nasty.  With the success rate of the Minimum Variance 

Method, the coordinate system calculations have become much cleaner.

2.3 Motion Capture Data

Many disciplines need in-depth analysis of motion.  Ergonomic studies need 

optimal reach information.  Olympic runners require efficiency information for running 

better/farther/faster.  In order to study the particular motion, data must be acquired for the 

particular motion regime.   The motion capture data used in this thesis comes from the 

very large database (>2GB) of motions captured by Carnegie Mellon University (CMU) 

Graphics Lab.  The data is freely downloadable at http://mocap.cs.cmu.edu/.  The 

database was created with funding from National Science Foundation grant # EIA

-0196217.  There are 1576 trials in 6 categories and 23 subcategories and growing 

continuously.

2.3.1 Capturing Data

Data can either be artificially generated or actual measurements from actors. 

There are many different techniques that have been around for 40 years.  This thesis is 

not involved in the process of capturing data but relies on previously captured data.  

Artificially generated data points are similar to animation key frames where an animator 

would create scenes that perform an act.  These points may not be realistic but are 

compensated for realism with various simulation techniques.  Real data is captured by 

attaching sensors to various places on each moving segment of the body.  If the data is 

sparse, it is possible to manually insert critical data points like footsteps amongst the real 

Knight 26



data.  Motion capture data is usually acquired on forty or more points on the body 

depending on the motion being studied.

2.3.2 Data Format

The CMU data comes in a few file formats.  The raw absolute Cartesian 

coordinates of the data in time are stored in the C3D file format.  C3D is one of the oldest 

formats for storing this kind of data.  Each time frame is stored, with each frame 

consisting of X,Y,Z for each marker on the body.  If any data is missing from a frame, 

that point is zeroed and marked.  The captured motion also comes in the form of ASF and 

AMC file formats.  These are created after the VICON program has done analysis of the 

data.  The ASF format stores the skeleton and joint information to create an articulated 

figure on the screen.  The AMC format contains every time frame’s translation and 

rotation for each bone.  This work focuses on the use of raw XYZ data and therefore does 

not consider the post-analysis data in the AMC or ASF files.  A new file format was 

produced to address the special use of tetrahedral meshes to build up the articulated 

figure.  This format, called Articulated Tetrahedral Model (ATM), replaces the ASF 

format.  A simple example is printed here of a 5R1P manipulation arm:

FIGURE 5R1P
SEGMENTS 3

MESH 0 cube.mesh
MASS 1.0
NAME Base
TRANSLATE_Z 0.5
JOINT Root
3 0.0 0.0 0.5
CHILDREN 1
1 // extendArm
ENDMESH
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MESH 1 cube.mesh
MASS 1.0
NAME extendArm
SCALE_XYZ 0.2 0.2 1.0
TRANSLATE_Z 1.5
PARENT 0 // Base
JOINT 2R
3 0.0 0.0 1.0
DEGREES_OF_FREEDOM 2 0
VALUE 0.0
3 0.0 1.0 0.0
FROM -90.0 TO 90.0
VALUE 0.0
3 0.0 0.0 1.0
FROM -180.0 TO 180.0
CHILDREN 1
2 // Hand
ENDMESH

MESH 2 cube.mesh
MASS 1.0
NAME Hand
SCALE_XYZ 0.8 0.8 0.4
TRANSLATE_Z 2.5
PARENT 1 // extendedArm
JOINT 3R1P
3 0.0 0.0 2.0
DEGREES_OF_FREEDOM 3 1
VALUE 0.0
3 1.0 0.0 0.0
FROM -90.0 TO 90.0
VALUE 0.0
3 0.0 1.0 0.0
FROM -90.0 TO 90.0
VALUE 0.0
3 0.0 0.0 1.0
FROM -180.0 TO 180.0
VALUE 0.0
3 0.0 0.0 1.0
FROM 0.0 TO 0.4
ENDMESH

ENDFIGURE
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The specification for the ATM format is explained in the Appendix.

2.3.3 Correlating Data to Segments

A motion capture file (e.g. C3D file) contains the data, as well as a name 

associated with each set.  For example, a marker is placed on the right thigh and is called 

“JOE::RTHI”.  Usually, the ATM file doesn’t have the same designation so a cross-

correlation must be achieved to identify which segment this data marker belongs.  This 

thesis has set up a two file process to cross-correlate a C3D data-set with the segments on 

the ATM model.  Firstly, a correlation file specifies which standard Marker Set is to be 

used.  It then lists the marker names in the C3D file alongside the marker names in a 

standard Marker Set.    An example is as follows:

42 WANDS
MARKERSET vicon512.txt

JOE::LBWT = LBWT Left back waist
JOE::RBWT = RBWT Right back waist
JOE::LFWT = LFWT Left front waist
JOE::LTHI = LTHI Left thigh
JOE::RFRM = RARM Right forearm
...

The second file is the Marker Set that specifies the markers and their locations on 

the articulated model.  An example of this file is as follows:

51 WANDS

WAND RFHD
SEGMENT Head
LENGTH 0.0
anterior right top

WAND LFHD
SEGMENT Head
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LENGTH 0.0
anterior left top

WAND RSHO
SEGMENT Chest
LENGTH 0.0
right mid top
...

As the reader may notice, the format allows the placement of markers in a relative 

fashion onto the specified segment of the figure.  This dual level correlation allows for the 

use of a single set of markers on a figure for many data-sets.  This may or may not be an 

advantage depending on how varied the motion capture systems are.  In CMU’s case, 

about 80% of the motion capture has the same marker sets.

2.4 Motion Algorithm

The motion equations are expressed in homogeneous vectors and matrices.  

Homogeneous vector math is a convenience so that both translation and rotation of 3D 

vectors can be combined together into a single matrix.  This technique of vector 

manipulation is fairly common and appears in the OpenGL standard for drawing 3D 

graphics.  A 3D position vector is extended to four components where the fourth is 

usually set to one.  A 3D direction vector is similarly extended except the fourth 

component is set to zero, in essence saying it is a position located at infinity.  A 

homogenous matrix is a 4x4 matrix that usually contains (0 0 0 1) in the bottom row.  

These definitions simplify the sequential concatenation of translations and rotations as 

applied to a vector.  A translation is expressed as a 4x4 matrix T multiplied to a 4x1 

column vector thus:
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T (r)a= r+a

where

T (r) =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1


The cross-product can similarly be turned into a 4x4 matrix operation

S(r)a= r×a

where

S(r) =


0 −z y 0
z 0 −x 0
−y x 0 0
0 0 0 0


A rotation around a unit vector r̂  by a counter clockwise angle θ  is expressed 

similarly:

Equation 2.3.1 R(θ, r̂) = I+S(r̂)[sinθ+S(r̂)(1− cosθ)]

where the angle is to be rotated around the unit vector r̂  using the Right-Hand 

Rule for direction of the angle.  The following pseudo-code represents the entire motion 

algorithm for a generic tree-structured articulated figure.

2.4.1 Pseudo-code

Procedure 2.3.1

Procedure MoveArticulatedFigure( time )
Begin
 motion = IdentityMatrix
 MoveSegment( rootOfFigure, time, motion )
End
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Procedure 2.3.2

Procedure MoveSegment( segment, time, motion )
Begin
 motion = motion * MovementMatrix(time)
 pointOfRotation = motion * pointOfRotation
 rotationAxes = motion * rotationAxes
 vertices = motion * vertices
 for each child of segment
 Begin
  motionCopy = motion
  MoveSegment( child, time, motionCopy )
 End
End

Function MovementMatrix( time )
Begin
 displacement = Displacement(time)
 angles = Angles(time)
 m = T( pointOfRotation+displacement-
previousDisplacement )
 for each axis of rotationAxes
  m = m * R( angles[i]-previousAngles[i], axis )
 m = m * T(-pointOfRotation)
 previousDisplacement = displacement
 previousAngles = angles
 return m
End

Function Displacement( time )
Begin
 return position of point of rotation
    relative to parent segment
End

Function Angles( time )
Begin
 return array of angles for the axes
    relative to parent segment
End

The two user-supplied functions Displacement and Angle will provide the amount 

of change for each degree of freedom (DOF) for the segment’s joint.  This research has 
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used Taylor series expansions to calculate these values for each DOF as well as followed 

the data directly.  These procedures are compatible with the Denavit-Hartenberg notation 

for generic joint-link coordinate frames.  These procedures are not used when the 

Minimum Variance Method is calculating the rotation points.  They are used subsequently 

once the points are determined.
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3 Articulated Model

Any three-dimensional simulation requires three-dimensional information.  Most 

of the models followed by previous authors use either stick figures; shapes defined by 2D 

surfaces; or easy 3D shapes for each segment. Two-dimensional surfaces are very time 

consuming to calculate volumetric information.  One must perform a surface integral 

approximation.  The added complexity is inadequate for real-time physical simulations 

making volumes and moments of inertia unnecessarily difficult to calculate.  Simple 

three-dimensional shapes such as blocks, ellipsoids and cylinders have been used in the 

past but reduce the ability for diverse shapes.  This research had the intention of using 

physical calculations in its motion model.  As it turns out, none of the physics was needed 

by the Minimum Variance Method.  The new method uses the hierarchical organization of 

the segments in order to traverse the tree for calculations.  None-the-less, this articulated 

model is still an efficient aid to modeling and is presented here anyway.  A three-

dimensional equivalent to the triangulated mesh is used.  A rigid body (e.g. each segment) 

is subdivided into face-connected tetrahedrons to make up a tetrahedral mesh.  Each 

tetrahedron will have four vertices, four triangular faces, six edges and density. The 

advantage of dividing space into tetrahedrons is to have the ability to vary the mass 

distribution and to ease inertial calculations.  A tetrahedral mesh can approximate any 

volumetric shape.  The approximation of the original shape gets better when more 

tetrahedrons are used within a shape.
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To ease drawing, each face of the tetrahedra are labeled if they are on the surface 

of the shape.  The draw algorithm will traverse the list of tetrahedrons and draw (using 

OpenGL) only those triangle faces that are labeled as on the surface.

A hierarchical approach to building the articulated figure is used in the thesis.  The 

figure is made of segments; the segments are made of a rigid body and a joint; the rigid 

body is made of a tetrahedral mesh; the tetrahedral mesh is made of tetrahedrons; the 

tetrahedra are made of triangles and vertices.

3.1 Tetrahedron

The tetrahedron is the simplest 3D shape that can fill a volume completely when 

placed together face to face.

Figure B - Tetrahedron

Any arbitrary shape can be achieved by placing tetrahedrons next to each other.  

Granted the resulting surface is not smooth but today’s graphics engines are specifically 

designed to draw triangulated surfaces.

The tetrahedron is made of four triangle faces and four vertices.  Given the 

vertices !ri , the volume is easy to determine by the following formula:10.
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VTet =
1
6(r3− r0) · (r2− r0)× (r1− r0)

Assuming the density is constant over the tetrahedron, the center of mass is the 

centroid.  The centroid is easily determined by the average of the four vertices.

CVol =
1
4

3
∑
i=0

ri

There is a fairly simple algorithm if the density is assumed to be linearly changing 

between the four vertices.  It can be derived by doing an integration over the tetrahedron 

volume of the differential mass.  If each vertex has a density value associated, the center 

of mass can be calculated with

Cmass =
4
5CVol +

1
20ρ

3
∑
i=0

ρiri

mTet =VTetρ

Other quantities are more difficult but can be exactly determined.  The moment of 

inertia and angular momentum are very desirable traits to follow during any dynamic 

simulation.  They both involve integrating over the tetrahedral volume.  The equations 

have been derived in the Appendix.  The result is a matrix equation involving the 

geometric tensor defined by

Q(r) = rT r− rrT =

r2− x2 −xy −xz
−yx r2− y2 −yz
−zx −zy r2− z2


where r=( x y z )T and in general

ppT =

x
y
z

(
x y z

)
=

xx xy xz
yx yy yz
zx zy zz


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pT p=
(
x y z

)x
y
z

 = x2+ y2+ z2

and the properties of moment of inertia and angular momentum about the center 

of rotation (Crot ) become

ITet = mTetŵTQTetŵ

LTet = mTetQTetw

where

QTet = Q(Cmass−Crot)+
1
20

3
∑
i=0

Q(ri−Cmass)

These calculations pave the way for the macro properties and the energy 

calculations, which are more interesting for studies in dynamics.

3.2 Tetrahedral Mesh

The tetrahedral mesh is a packed group of tetrahedrons (cf. Figure C), face-to-

face, producing a solid shape.  This mesh has the properties of mass, volume, moment of 

inertia, angular momentum, all of which can be simply added together from its 

constituent tetrahedrons.  The geometric tensor Q, centroid, and the center of mass are not 

additive but are weighted averages of the constituent tetrahedrons.

CTotal =
∑Cimi
∑mi

The time complexity of all quantities at this level is O(n) where n is the number of 

constituent tetrahedrons.  A simple cube is made of five tetrahedrons as in the following 

figure.
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Figure C - Tetrahedral Mesh

3.3 Rigid Body

A tetrahedral mesh can be made a rigid body once it has been manipulated into its 

final shape.  This new object has the property that it cannot be molded or stretched.  It 

still can be translated and rotated as a whole.  This has advantages because the rigid body 

has a fixed volume, mass, principal moments, principal axes and relative center of mass 

thereby reducing the calculations.  The fixed values can be calculated at time of creation 

of the body so it will not be necessary to calculate during motion.  The volume and mass 

are simple additions.  The center of mass and geometric tensor are simple weighted 

averages.  The principal moments and principal axes are much more complicated but only 

need to be calculated once.  The principal moments and axes have been derived in the 

Appendix.  The simplified moment of inertia and angular momentum is composed of the 

principal moments and axes, and the center of mass inertia tensor as derived in the 

Appendix.

I = mŵTQ(Cmass−Crot)ŵ+ ŵT
(

2
∑
i=0

λi p̂i p̂T
)
ŵ
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L= mQ(Cmass−Crot)w+

(
2
∑
i=0

λi p̂i p̂T
)
w

where λi are the principal moments

pi are the principal axes

These equations are much simpler than summing the calculated values for the 

constituent tetrahedrons.  As the rigid body is translated and rotated, so must the principal 

axes and center of mass.  If those are maintained throughout the figure motion, the 

inertial properties will not be complex to calculate.

3.4 Segment

The segment is composed of a rigid body and a joint.  The segment also has 

knowledge of its parent and its children in the tree of segments that make up the whole 

figure.  The segment is the level at which the calculations are made for the motion model.  

The segment’s motion variables are the constants defining the relative position of the 

rotation point.

3.5 Figure

The articulated figure is a set of segments attached into a tree structure.  There are 

some segments without children and one without a parent.  The one without a parent is 

the root segment.  The ones without children are the end-effectors.
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Figure D - Articulated Tetrahedral Mesh
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Figure E - Articulated Figure

For any articulated figure, there is always one root segment.  It does not matter 

which segment is the base since there is no physical significance (the hand serves just as 

well as the chest).  The hips were chosen in Figure E because it is nearest to the center of 

mass of the human figure and the fact that there is usually four markers on the hips.  The 

root of the segment tree is the starting point for message sending.  Bolt (2000) used 17 

degrees of freedom (DOF) in his model of the human figure.  Ko and Cremer (1996) used 

34 DOF for their a-priori system.  The Minimum Variance Method is independent of the 

number degrees so the DOF model is a self-imposed limit for other kinds of simulations.
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3.5.1 Converting Triangulated Surface into Tetrahedral Solid

Most figures are available as a set of triangles that completely cover the surface.  

While this is easy to draw, it is difficult to calculate physical properties such as volume 

and inertia tensor.  Converting a triangulated surface into a tetrahedral solid would make 

it easier to handle for physical simulations.  The conversion is very time consuming and 

should be done offline to the simulation.  There are a few techniques available to produce 

a tetrahedral solid.  Delaunay meshes are a wonderful and well-studied technique that can 

produce a tetrahedral mesh of any set of points provided it is a convex figure.

3.5.1.1 Triangulated Surface with no normals

Which way is outside?  A surface without normals can only answer this by using 

the 3-D equivalent of the Jordan curve Theorem.  Unfortunately the theorem is only 

proven for the 2D case.  The 3D equivalent has known counterexamples that must be 

explained in order to be useful.

Jordan Curve Theorem

A simply closed curve divides the region into two distinct areas; an inside and an 

outside.

A simple test to see if a point exists inside or outside the curve involves shooting a 

ray in an arbitrary direction and counting the times it crosses the curve.  If the count is 

odd, the point is inside; if even it is outside.  This can be used in 3D keeping in mind that 

there are special extreme surfaces that don’t work.  The known figures that don’t work are 
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the Klein Bottle (which is not simply closed); a surface with a hole (not closed); 

Alexander’s Horned Sphere (has infinitely recursive horns wrapping around itself).  A 

real-world limitation can exclude these known problems.

Theorem 1

A simply closed tessellated surface with finite size and finite number of elements 

divides space into two distinct regions; an inside and an outside.

Lemma 1

A neighboring element of a simply closed tessellated surface has the outside on 

the same side.

Lemma 2

An arbitrary ray from an outside point will cross a simply closed tessellated 

surface an even number of times.  An inside point will have an odd number of crossings.

Proof by Contradiction

A neighboring element has the opposite side be the outside.  Look at the 

intervening edge. Place a point epsilon outside of both elements such that no other 

elements have been crossed and near the intervening edge.  Now draw a ray from one 

point through the neighboring point. The number of crossings of one point would be 

exactly one more than the other number of crossings.  This would specify one point is on 

the inside and one point is on the outside that contradicts the starting conditions.

3.5.1.2 Central Convexity Point insertion.

Extra points carefully placed inside an arbitrary figure can produce a simple 

tetrahedral mesh. The simple technique involves inserting points inside of the figure such 

that the point can “see” the inside of the surface triangles in its immediate vicinity.  The 
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necessary condition for this point placement is that it can be used as a vertex of a 

tetrahedron as long as the surface triangle normal is pointing away from it (i.e. convex).  

Once the point can no longer see contiguous surface triangles, a new point must be 

inserted.  The insertion continues until there are no more surface triangles left to use in a 

tetrahedron. 

Knight 44



4 Programming Model

4.1 Articulated Figure

The articulated figure designed for this research is for general purpose articulated 

modeling.  The original attempt was to use it for physical based calculations.  With the 

advent of the Minimum Variance Method, the model has been resigned to a simple 

organizational tool for the hierarchical tree traversals.  The entire implementation is 

explained here for future use.  The C++  object model is set up in a hierarchical manner 

for the articulated figure.  An articulated figure (ArtFigure.cpp) is made of segments 

(Segment.cpp).  A segment is a rigid body (RigidBody.cpp) that is linked to another by a 

joint.  The rigid body is a shape that can be translated and rotated, but not molded.  The 

rigid body is made of a mesh of tetrahedrons (TetrahedralMesh.cpp).  The mesh is a face-

connected list of tetrahedrons.  Only faces on the surface have no connected tetrahedrons 

and are available for drawing.  A tetrahedron (Tetrahedron.cpp) is a four sided figure with 

four vertices assigned.  Each side of the tetrahedron is a triangle (Triangle.cpp).  Since 

adjacent tetrahedrons share vertices, the tetrahedrons will contain only references to its 

points.  All of the points for the tetrahedral mesh will be stored in a linear array inside the 

TetrahedralMesh instance.  This allows easy access to the points for quick translations 

and rotations without duplication of effort.  The following figure is a UML Diagram 

describing the relationships between objects.
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Figure F - UML Diagram
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5 Products

An extremely large (~4GB) set of motion capture data has been downloaded free 

off the Internet.  Most of the sets come from Carnegie Melon University Graphics Lab.  A 

large variety of motion regimes were analyzed by the Minimum Variance method.  Each 

of the data-sets had their different quirks like missing time frames or negligible motion 

for certain joints.  The Minimum Variance Method is actually independent of missing 

data and time frames.  As counter-intuitive as it seems, the more complicated the motion, 

the easier it is to calculate the rotation points using the Minimum Variance method.  The 

original list of simple motions have been changed to include more complicated ones such 

as break-dancing and rolling on the floor.  To be fair though, an example of a weak 

product is given.

5.1 Walking Human Figure

This motion regime has some issues with the Minimum Variance Method.  During 

normal walking, almost all of the joints exhibit either cylindrical motion or no motion at 

all.  As you can see, this motion regime does not fair well because of the small amounts 

of motion.  The left arm and the neck have produced visibly off positions.
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CMU/02_01

5.2 Rolling On Floor

Rolling on the floor was a data-set that was avoided for a good part of the earlier 

research because it was assumed the motion regime was too complex to handle for most 

methods.  It was the first successful data-set for the Minimum Variance Method.
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5.3 Break-dancing

The break-dancing sequence in the CMU data-set 85-14 is a very successful 

match for the requirements of the Minimum Variance Method.  Nearly all of the joints are 

exercised during the motion capture and therefore a strong collection of constants for the 

motion.  The drawing of the figure at everyday time frame looks realistic and some 

reviewers have agreed that the motion animated by Minimum Variance has more realism 

than that rendered by inverse kinematics from CMU. 
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CMU/85-14

5.4 Salsa Dance

The salsa dance sequence is also a difficult data-set to model.  There are two 

actors in the one c3d file.  Inverse kinematics methods usually will consider the figures 

one at a time to analyze the motion.  The Minimum Variance Method can analyze both 

figures and start drawing them in real-time.  Separate segment trees must be maintained 

and two sets of constants are calculated for each figure.  The method successfully and 

realistically handled the dual figure salsa dancing as can be seen in the picture below and 

in movies that were generated in the research material.
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6 Conclusion

The Minimum Variance Method is a very robust method in the face of 

complicated motions.  For a given actor and marker-set, a single set of constants can be 

calculated for each joint if the actor first does a “convolution”  run which involves rotating 

every modeled joint to a significant degree.  These constants can be calculated in the face 

of sparse data and uncertain measurements.  These calculations can be as accurate as one 

millimeter depending on the amount of data analyzed and the quality of the data.  Once 

these constants are stored, they can be reused for any new motion capture as long as the 

actor and markers do not change.  In addition to this reusability convenience, the 

algorithm is quick, O(N), depending on how many points are analyzed for each joint.  

Existing methods, i.e. least-squares fitting involve more amount of work because of the 

simple fact there are iterations involve in finding an optimized skeleton.  Another 

advantage over existing methods is the fact that there can be only one solution calculated 

from the data.  It has been shown at the beginning an example of this break-down.  

Optimizing in placing markers on the body can be done.  It is standard practice to place 

markers on the joints but this does not aid this new algorithm.  Ideally there should be 

three non-linear markers on each segment and they should be at least 5 cm from the 

rotation point unless small joints like the fingers make it scale down.  This research has 

shown that a stable, realistic, real-time skeleton can be retrieved directly from the data 

without any interpolations or guessing.  The new method has also been proven to be a 

suitable closed-form replacement for linear or non-linear least-squares fitting of data to a 

sphere, cylinder, circle or plane.  It has further been proven that it is a significant 
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improvement on existing methods though it is not a complete replacement of Inverse 

Kinematics (IK).  IK is still useful in producing joint angles where there are no motion 

capture data available.  The Minimum Variance Method specifically solves the problem 

of finding an underlying skeleton in motion capture data with significant improvement in 

speed and  work involved.  Future research can involve building a real-looking figure on 

top of the skeleton to produce either game quality figures or movie quality figures that 

move to the realism that the Minimum Variance Method can achieve.
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8 Appendix

8.1 Taylor Array Size

The size of the array of an m-dimensional Taylor expansion is derived here since 

the formula is not readily available.  The Taylor expansion can be represented compactly 

as

Equation 8.1.1 f (r) = e(r−a)
T∇ f (a)

where the variables are

Constant vector a=
(
a0 a1 a2 · · · am−1

)T
Input vector r =

(
r0 r1 r2 · · · rm−1

)T
Differential operator vector ∇ =

(
∂
∂r0

∂
∂r1

∂
∂r2 · · · ∂

∂rm−1

)T
The exponential operator is expanded to

Equation 8.1.2  ey =
ω

∑
i=0

yi

i!

Where ω  is the terminating limit of approximation and

y= (r−a)T∇ =
m−1
∑
i=0

(ri−ai) ∂
∂ri

Each term in the expansion of Equation 8.1.2 is a multinomial expansion.  There 

is a recursive relationship for the number of exponential expansion terms
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Equation 8.1.3 Nω+1(m) =
m
∑
i=1

Nω(i)

Since N1(m) = m+1 and the fact that

Equation 8.1.4 

m
∑
i=0

(
n+ i
n

)
=

(
n+m+ i
n+1

)
 and 

(
n+ i
n

)
=

(
n+ i
i

)

leads to the conclusion that

Equation 8.1.5 Nω(m) =
(
ω+m
m

)

8.2 Inertial Properties of a Tetrahedron

Inertial properties can be quite difficult to calculate but can be exactly determined.  

The moment of inertia and angular momentum is taken from standard analytical 

mechanics books11 as

Equation 8.2.1 I =
Z
‖ŵ× r‖2dm

Equation 8.2.2 L=
Z
r× (w× r)dm

Where dm = ρ dV, the density times the differential volume.

The moment of inertia and angular momentum are very desirable traits to follow 

during any dynamic simulation.  They both involve integrating over the tetrahedral 
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volume.  I have derived them below using parametrized coordinates.  A point inside the 

tetrahedron can be uniquely determined by

Equation 8.2.3 r = a0+(a1+(a2+a3t0)t1)t2

where

a0 = v2

a1 = v3− v2
a2 = v0− v3
a3 = v1− v0

and vi  are one of the tetrahedron vertices

The differential volume is determined by the parameter space change formula

dV =
∂r
∂t2

·
(
∂r
∂t1
× ∂r

∂t0

)
dt0dt1dt2

∂r
∂t2

·
(
∂r
∂t1
× ∂r

∂t0

)
6t1t22VTet

Each parameter ti varies from zero to one for inside the tetrahedron so the entire 

integral results in

Equation 8.2.4 I = 6m
ZZZ 1

0
‖ŵ× r‖2t1t22dt0dt1dt2

where ŵ  is the angular velocity unit vector (i.e. the spin axis) and m is the mass of 

the entire tetrahedron.  The density of the tetrahedron is kept constant and thus the mass 

is brought out of the integrand as the density times the volume.  Performing the triple 

integral produces a double sum.  The integral turns into the double sum
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Equation 8.2.5 
  

� 

I = 6m ˆ w ×  a i( )
j= 0

3

∑
i= 0

3

∑ ⋅ ˆ w ×  a j( ) t0
n0ij t1

n1 ij t2
n2ij dt0dt1dt2

0...1
∫∫∫  where

nki j =
⌊
i+ k
3

⌋
+

⌊
j+ k
3

⌋
+ k

Integrating the double sum and expanding the ai terms into vi terms produces the 

equation

Equation 8.2.6  I = m
3
∑
i=0

3
∑
j=0

qi jai j

ai j = (ŵ× vi) · (ŵ× v j)

qi j =
{ 1
20 j != i
1
10 j = i

Since both qij and aij are symmetric then Equation 8.2.6 reduces to ten terms.

The angular momentum is very similar with the integral

Equation 8.2.7 
  

� 

 
L = 6m  r ×  w ×  r ( )t1t2

2dt0dt1dt2
0...1
∫∫∫

Equation 8.2.8 L= m
3
∑
i=0

3
∑
j=0

qi jbi j

bi j = vi× (w× v j)

In this case, bij is not symmetric so all sixteen terms must be calculated.  A much 

simpler form of these equations occurs when a body has a coordinate system that is 
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centered on its center of mass and is aligned to its principal axes.  This simplification will 

be approached in the next section.  The following matrix equations separate out the 

purely geometric quantity Q from the spinning quantity ŵ .

Equation 8.2.9 ITet = mTetŵTQTetŵ

Equation 8.2.10 LTet = mTetQTetw

QTet(r) = Q(Cmass− r)+
1
20

3
∑
i=0

Q(vi−Cmass)

Q(r) = rT r− rrT =

r2− x2 −xy −xz
−yx r2− y2 −yz
−zx −zy r2− z2


The time complexity of QTet is 30 multiplications + 54 additions.  For each of the 

above equations, the vectors are relative to the center of rotation.  To generalize, one must 

subtract the center of rotation from the four vertex vectors.

8.3 Inertial Properties of a Rigid Body

A rigid body has the property that it cannot be molded, stretched or deformed.  It 

still can be translated and rotated as a whole.  This has advantages because it has a fixed 

volume, mass, principal moments, principal axes and relative center of mass thereby 

reducing the calculations for the inertial properties.  The fixed values can be calculated at 

time of creation of the body so it will not be necessary to recalculate during motion.  The 

center of mass and geometric tensor are simple weighted averages.  The principal 

moments and principal axes are much more complicated but only need to be calculated 

once.  The principal moments and axes are calculated by solving the eigensystem Ax = λx 

where A is a symmetric matrix, λ  are the eigenvalues (principal moments) and x are their 
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corresponding eigenvectors (principal axes).  The system is usually solved by iterative 

techniques like the Jacobi method (Press et al. 1992).  In the case of the inertial body, the 

symmetric matrix A is the Inertia Tensor, which is the mass times the geometric tensor, in 

the center-of-mass reference frame.  The center-of-mass geometric tensor can be isolated 

by noting that, for a rigid body, the angular momentum is

LRB =∑LTeti

where the sought after tensor for the tetrahedral mesh is

Equation 8.3.1 QRB(r) =
1
mRB∑miQTeti−Q(CmassRB− r)

Each tetrahedron’s contribution must be calculated relative to the rigid body’s 

center of mass.  The eigensystem equation to solve then becomes

Equation 8.3.2    mQp̂= λ p̂

which has three real solutions for λ and their corresponding p.  The eigenvectors p 

are orthogonal12 and therefore any vector can be represented with components in the 

three directions.  The angular velocity vector is thus

w=
2
∑
i=0

wi p̂i

where wi = w · p̂i

Using this solution for a rigid body greatly simplifies the calculation efforts for 

the dynamically changing moment of inertia and angular momentum.  The formulae 

become
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Equation 8.3.3 
  

� 

I = ˆ w i
2λi + m ˆ w TQ

 
C mass −

 r ( )
i= 0

2

∑ ˆ w 

Equation 8.3.4 
  

� 

 
L = wiλi ˆ p i + mQ

 
C mass −

 r ( )
i= 0

2

∑  w 

The complexity of these equations no longer depend on the number of 

tetrahedrons that make up the rigid body.  As long as the center-of-mass Cmass  and p̂  are 

continually updated as the body moves then this formula can be used directly.

8.4 User’s Guide for Macintosh Application

The following sections describe the use of the application that was built for the 

research.  The application was designed using the Xcode 1.5 integrated development 

environment available for free from Apple and comes with the MacOSX 10.3 operating 

system.  There are 41558 lines of code with a total McCabe's Cyclomatic Complexity 

Number of 7503. The application follows the recommended Macintosh human interface 

and is compatible with MacOSX 10.1, 10.2, and 10.3 though only tested on 10.3.  The 

engine that drives the calculations are written entirely in standard portable C++ and the 

graphics panes are written in OpenGL.  The user interface is written in ObjectiveC that 

compliment the NIB files for Interface Builder.  Everything except the user interface is 

portable.  The code was compiled for the G4 processor and was tested on a PowerBook 

G4.
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8.4.1 Menu

The File Menu provides the basic file saving and retrieving capabilities some of 

which are available in the Options Pane as well.

Add Figure

The Add Figure menu item (optionally use -1) allows the user to add a figure to 

the graphics.  A figure can be an Articulated Tetrahedral Mesh (ATM) file (as explained in 

this Appendix); a MESH formatted file (both tetrahedral and triangulated); and a PLY 

formatted file.  Only the ATM file can be used for the hierarchical analysis of the motion 

capture data.  When this menu item is picked, a standard Open dialog is presented for 

choosing a file.  When a file is chosen, the file is parsed and presented in the Animation 

Pane.  The Options Pane text for the figure is filled out with the path of the file and the 

height of the figure is filled out.

Get Data

This menu item (optionally use -2) will present a standard Open dialog to allow 

the user to choose a C3D motion capture data file.  The selected file will associate the 

data with the currently active figure (see the Options Pane).  Once chosen, the file is 

parsed and connected lists of data frames are filled out.

Save Temp Correlation

This menu item allows the user to save a temporary correlation text file associated 

with the C3D data file that was previously chosen.  The text file can then be edited to 

allow a hierarchical correlation of the data markers with segments on the figure.  The 

number of markers are stated on the first line (e.g. 41 WANDS).  The marker set file 

name is stated on the second line (e.g. MARKERSET vicon512.txt).  Then comes a list of 
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marker correlations (e.g. Jim:RTHI = RTHI Right thigh).  The left side of the equals sign 

is the single word that the marker is labeled as in the data (e.g. Jim:RTHI).  The right side 

has a single word that corresponds to a marker in the above mentioned marker set file 

followed by a free-form description.

Get Correlation

This menu item (optionally use -3) presents the user with an Open dialog to 

retrieve a correlation file.  The file is parsed and the left side is looked up in the C3D data 

and the right side is looked up in the marker set file.  The marker set file determines 

which segment to attach the marker and where on the segment.  If the marker is not to be 

used in the correlation, just put some uncorrelated name (e.g. Unknown) on the right 

hand side.

Get Motion

This menu item retrieves motion files that have been previous saved or manually 

created.  Motion files allow the user to create motion of an articulated figure based on a 

Taylor expansion of any or all degrees of freedom.

Save Motion

This menu item will save the Taylor expansions that were created when the 

“Analyze”  button is pressed in the Graphs Pane.

Save Data

This menu item will save the joint angles that were created when the “Analyze” 

button is pressed in the Graphs Pane.

Animate

This menu item will start the animation.
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Info

This menu item will enable some graphics hardware information to be displayed 

on the Animation Pane.

Close

This menu item will close the window.

8.4.2 Options Pane

The Options plane contains all of the figure, data, and animation options 

available.  On the right are all of the files that are used in the current analysis.  The 
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“Marker Set Dir”  is the directory that all marker set files are located for the correlation.  

The “Figure”  file is the currently active articulated model.  The “Motion Data”  file is the 

current C3D being analyzed.  The “Correlate Data”  file is the correlation file that binds 

the data with the hierarchical figure.  The “replace”  checkbox will replace the current 

figure with the opened figure if it is on.  Otherwise the opened file will be added to the 

scene.  The “ft->m”  checkbox will convert the motion data from feet to meters if on.  The 

“x2”  button will multiply the data sampling rate by two.  The last two buttons are there 

for convenience since the data does not always specify the correct units or sampling rate.  

Once the data is read in, the height and sampling rate text can be edited to whatever size 

and the internal data will be updated.  The same goes for the Figure information.   The 

height of the figure can be edited.

Drawing Options

The many checkboxes allow the selection of various things to be drawn in the 

Animation Pane.  “Loop Animation”  will make the animation repeat when the maximum 

time of the data is reached.  “Show Data Paths”  will display the paths taken for each 

marker in the data.  The paths will be colored lighter if the marker has been correlated to 

the figure.  “Show Figures”  will display all figures that have been read in.  “Draw Floor” 

will ... draw the floor?!  The other checkboxes draw extra little goodies on the figure.
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8.4.3 Animation Pane

This pane is where all of the action happens.  Select this pane once all of the files 

and options are set in the Options Pane.  The time of the animation is displayed in the 

upper right in seconds.  The Capture Screen button will take an exact snapshot of the 

OpenGL window and allow the user to save it as a TIFF file.  The TIFF file is a 32-bit 

ABGR8888 color file.  The “Capture Movie”  checkbox is similar except that it saves 

many TIFF files at 0.1 second intervals for the entire loop.  The “Follow Data”  starts the 

animation process which involves draw the moving figure and the skeleton in the data.  

There are options for panning the scene around.  If the Command key ( ) is held down 

while the mouse button is held down and the screen is dragged by the mouse, then the 

scene is dragged up/down or left/right.  If the Option key is held down with the mouse 
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button, the user can zoom in or out of the scene with the mouse.  With just the mouse 

button and the mouse dragging, the user can rotate the scene around the (0,0,0) point.

8.4.4 Graphs Pane

This pane was added for analysis of joint angles was just a visualization aid for 

research.  The analyze button currently were try to determine angles needed to rotate in 

order to follow the current data-set.  Once the analysis is done, a joint can be picked from 

the pop-up.  When the user slides the horizontal time bars left and right, a new Taylor 

expansion will be generated for the time window.
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8.5 Specification for Articulated Tetrahedral Model Format

The Articulated Tetrahedral Model (ATM) file format was created in order to 

bring together the necessary information to produce a jointed figure.  It is a text format 

that references other the individual segments’ mesh files.  The text file has keywords 

followed by values and sub-fields.  All words are separated by spaces.  The following are 

the list of available keywords:

FIGURE myFigure

This keyword defines the name of the entire figure.

SEGMENTS 16

The number of segments of the figure follows:
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MESH 0 chest.mesh

MESH identifies the mesh file that follows the index value.  The file is identified 

as a tetrahedral or triangular mesh in the *.mesh format defined by the freeware MEDIT 

tool for editing meshes.  The filename is for a file that is located in the same folder as the 

ATM file.

NAME Chest

The name of the segment follows this keyword.

MASS 30.0 // kg

The mass of the segment follows this keyword.

SCALE_XYZ 0.2 0.2 1.0
TRANSLATE_X 1.5
TRANSLATE_Y 1.5
TRANSLATE_Z 1.5
TRANSLATE_XYZ 1.5 2.5 3.5
ROTATE_X 35.2
PARENT 4 // hips

The index of the parent segment is defined here.

JOINT Waist
  3 0.994765 1.002953 1.084350
DEGREES_OF_FREEDOM 1 0
  VALUE 0.0
  3 -0.257042 0.966392 -0.003915
  FROM -93.199994 TO 29.000000

The name of the joint that is proximal to this segment is defined here followed by 

joint parameters.  The center of rotation is defined immediately following the JOINT 

keyword.  First a count of how many dimensions for the vector is specified (usually 3).  
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Then, each coordinate, e.g. x y z.  After the joint position, its freedoms are defined.  

DEGREES_OF_FREEDOM is followed by two integers.  The first is the count of 

rotational freedoms, and the second is the count of translational freedoms.  Then comes 

the list of freedom parameters for which there are three for each freedom.  The current 

value is defined, then the freedom axis, then the freedom limits.  Rotational limits and 

values are in degrees and translational ones are in meters.

CHILDREN 3
  1 // Neck
  2 // Upper Left Arm
  3 // Upper Right Arm

The list of child indices are defined here

ENDMESH

Mandatory ending of the segment information

ENDFIGURE

Mandatory ending of the figure information

8.6 Proof of Positive-Definite Matrix for Rotation Point

Positive-definite is defined as hTAh> 0  for an arbitrary vector h ≠ 0.  The matrix 

of interest is

A=
1
N∑ pi(pTi − pT )

This can be re-arranged as a double sum to

A=
1
N2∑i ∑j

pi(pTi − pTj )

Then applying an arbitrary vector h
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hTAh=
1
N2∑i ∑j

hT pi(pTi h− pTj h)

Now defining qi = hT pi  simplifies the double sum

hTAh=
1
N2∑i ∑j

qi(qi−q j)

This further simplifies to 

hTAh= q2−q2

which is always positive for an arbitrary set of values qi except for one non-trivial case.  

The exception is when the pi are coplanar.  In the coplanar case, all qi are the same 

constant when h is the normal to the plane and therefore hTAh=0.

8.7 Relevant C++ Implementations

8.7.1 Minimum Variance Method

void Segment::GetDataRotationPoint()
{
    Event * e = NULL;
    unsigned int j;
    Vector p(3),p3(3);
    Vector b,r,v,p_i;
    Matrix A(3,3),P2(3,3);
    double p2 = 0.0,cn;
    
    if( CollectRelativeDataPoints() )
    {
        e = pathToFollow.beginning;
        while( e )
        {
            p_i = e->position;
            p += p_i;
            P2 += p_i.MultTranspose(p_i);
            p2 = p_i*p_i;
            p3 += p2*p_i;
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            e = e->next;
        }
        if( pathToFollow.count )
        {
            j = pathToFollow.count;
            P2 /= j;
            p /= j;
            p3 /= j;
            p2 = P2.Trace();
            
            b = 0.5*(p3 - p2*p);
            A = P2 - p.MultTranspose(p);

            // find answer based on the idea that the matrix A
            // is positive-definite
            r = A.CholeskyDecomposition().CholeskyBacksubstitution(b);
            
            // get Null vector based on a threshold
            // that is a little above the inverse of
            // the condition number
            cn = A.ConditionNumber();
            
            v = A.NullSpace(1.000001/cn).Column(0);
            relativeDataParentOneDOFaxis = DirectionVector(v);
            // project the answer onto plane if
            // the condition number is large “enough”
            if( cn > 100.0 )
            {
                r = r + v*((p-r)*v);
            }
            
        }
    }
    relativeDataParentRotationPoint = PositionVector(r);
}

8.7.2 Rotation Point Calculation of Hierarchical Articulated Data

void Segment::SetDataRelativeStuff() // call from root
{
    Matrix dataAxes = Matrix::Identity(3);
    PositionVector dataCenter,rot,c,v;
    unsigned int i;
    Units::Time::second t = 0.0;
    Event * e[numCorrelated];
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    // calculate the data centroid
    unsigned int n = 0,n1=numCorrelated;
    if( correlatedFrame.NextFrame(n1,e,t) )
    {
        c = 0.0;
        for( i=0; i<numCorrelated; i++ )
        {
            if( e[i] )
            {
                c += e[i]->position;
                n++;
            }
        }
        if( n )
            c /= n;
    }
    if( parent )
    {
        GetDataRotationPoint();
        if( parent->numCorrelated == 0 ) // set from parent's
            parent->relativeDataParentRotationPoint = 
relativeDataParentRotationPoint;
        t = 0.0;
        if( parent->GetDataAxes(t,dataAxes,dataCenter) )
        {
            rot = dataCenter + 
dataAxes*relativeDataParentRotationPoint;
            v = dataAxes*relativeDataParentOneDOFaxis;
        }
        else
        {
            cerr << "No parent data axes for " << name << endl;
            rot = PositionVector(0.0,0.0,0.0);
            v = PositionVector(1.0,0.0,0.0);
        }
        t = 0.0;
        if( GetDataAxes(t,dataAxes,dataCenter) )
        {
            relativeDataRotationPoint = (rot - dataCenter)*dataAxes;
            relativeDataCentroid = (c - dataCenter)*dataAxes;
            relativeDataOneDOFaxis = dataAxes.Transpose()*v;
        }
        else
        {
            cerr << "No self data axes for " << name << endl;
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        }
    }
    else // root
    {
        t = 0.0;
        if( !GetDataAxes(t,dataAxes,dataCenter) )
            cerr << "Damn, root really needs >= 3 correlated markers"
                 << endl;
        relativeDataCentroid = (c - dataCenter)*dataAxes;
        relativeDataRotationPoint = relativeDataCentroid;
        relativeDataOneDOFaxis = DirectionVector(1.0,0.0,0.0);
        relativeDataParentOneDOFaxis = DirectionVector(1.0,0.0,0.0);
        relativeDataParentRotationPoint = PositionVector(0.0,0.0,0.0);
    }
    for( i=0; i<numChildren; i++ )
        children[i]->SetDataRelativeStuff(); // recursive
}

8.7.3 Calculation of fixed axes of data

bool Segment::GetDataAxes( Units::Time::second& t,
                           Matrix& dataAxes,
                           PositionVector& dataCenter ) const
{
    Event * e[3] = {NULL,NULL,NULL};
    
    // a segment without axes data, use parent's
    if( parent && axesFrame.numElements == 0 )
    {
        if( !parent->GetDataAxes( t, dataAxes, dataCenter ) ) // 
recursive
            return false;
    }
    // for root and all segments with many points gets in here
    else if( axesFrame.numElements == 3 )
    {
        if( !axesFrame.NextAbsoluteFrame(3,e,t) )
        {
            if( t < axesFrame.maxTime )
                cerr << "Missing events for " << jointName << " t " << 
t << endl;
            return false;
        }
        dataCenter = e[0]->position;
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        dataAxes = Matrix::Axes(dataCenter,e[1]->position,e[2]-
>position);
    }
    // segment must have parent beyond this point
    else if( !parent )
    {
        return false;
    }
    else if( axesFrame.numElements == 2 )
    {
        Matrix pDataAxes;
        PositionVector pDataCenter;
        if( !axesFrame.NextAbsoluteFrame(2,e,t) )
            return false;
        if( !parent->GetSameDataAxes( t, pDataAxes, pDataCenter ) ) // 
recursive
            return false;
        dataCenter = pDataCenter + pDataAxes * 
relativeDataParentRotationPoint;
        dataAxes = Matrix::Axes(dataCenter,e[0]->position,e[1]-
>position);
    }
    else if( axesFrame.numElements == 1 )
    {
        Matrix pDataAxes;
        PositionVector pDataCenter,r2;
        
        if( !axesFrame.NextAbsoluteFrame(1,e,t) )
            return false;
        if( !parent->GetSameDataAxes( t, pDataAxes, pDataCenter ) ) // 
recursive
            return false;
        dataCenter = pDataCenter + pDataAxes * 
relativeDataParentRotationPoint;
        r2 = dataCenter + pDataAxes*relativeDataParentOneDOFaxis;
        dataAxes = Matrix::Axes(dataCenter,r2,e[0]->position);
    }
    else
        return false;
    return true;
}

8.7.4 Drawing Rotation Points with Constants of Motion

void Segment::DrawNearestEvents( double radius, Units::Time::second t )
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{
    unsigned int i;
    Matrix dataAxes,dataAxes0,dataAxes1;
    PositionVector dataCenter,dataCenter0,dataCenter1,rot,pos,ep;
    
    Color::White.glColor();
    correlatedFrame.Draw(radius*0.5,t);
    t -= 0.00001;
    if( parent && parent->GetDataAxes( t, dataAxes0, dataCenter0 ) )
    {
        rot = dataCenter0 + dataAxes0*relativeDataParentRotationPoint;   
    }
    else if( parent != NULL )
    {
        return;
    }
    if( GetDataAxes( t, dataAxes, dataCenter ) )
    {
        if( parent == NULL )
            rot = dataCenter + dataAxes*relativeDataCentroid;
    }
    else
    {
        return;
    }
    glBegin(GL_LINES);
    for( i=0; i<numChildren; i++ )
    {
        rot.glVertex();
        (dataCenter + dataAxes*children[i]-
>relativeDataParentRotationPoint).glVertex();
    }
    if( numChildren == 0 )
    {
        rot.glVertex();
        (dataCenter + dataAxes*relativeDataCentroid).glVertex();
    }
    glEnd();
    if( numChildren == 0 )
        correlatedFrame.DrawLines(t);
}
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8.8 Kalman Filter

The Kalman filter was developed in the 1960’s and has been proven successful in 

describing complex motion.  It has been used in a wide variety of applications including 

tracking missiles from radar measurements to sensor calibration for motion capture 

systems.  The complexity of defining the process and measurement errors before-hand 

makes this system unwieldy when solving a problem with no a-priori knowledge.  The 

implementation here attempts to solve the problem of finding the point of rotation of a 

joint.  Upon implementing this, it was found that the Kalman filter was not robust and 

found the solution in only a small percentage.  It tended to converge to a solution that had 

some bias or outright diverge to infinity.  Presented in this section are the equations used 

to attempt the Kalman Filter solution to the rotation point.

8.8.1 Theory

Each measurement p is assumed to be of the form

pi = r+Liρi  where

ρi =

cosθi cosφisinθi cosφi
sinφi


The Kalman Filter attempts to correct a solution by compensating for a-priori 

knowledge of the noise and a new measurement.  The measurement vector z is used to 

recalculate the current state x which is composed of both constants of motion as well as 

changing variables.  Each measurement has the same rotation point and different lengths 
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therefrom.  Each of those is a constant of the process and therefore the time derivative is 

zero.  The moveable quantities are the angles defined above for each measurement.

x=
(
rx ry rz L0 θ0 φ0 θ̇0 φ̇0 L1 · · ·)T

z=
(
p0x p0y p0z p1x p1y p1z p2x p2y p2z · · ·)T

The Jacobi matrix is the amount the measurements change with respect to the 

process variables.

Hi j =
∂zi
∂x j

H =



1 0 0 ρ0x −L0ρ0y −L0 cosθ0 sinφ0 0 0 0
0 1 0 ρ0y L0ρ0x −L0 sinθ0 sinφ0 0 0 0
0 0 1 ρ0z 0 L0 cosφ0 0 0 0
1 0 0 0 0 0 0 0 ρ1x
0 1 0 0 0 0 0 0 ρ1y
0 0 1 0 0 0 0 0 ρ1z
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 . . .


Another matrix is used during the Kalman Filter and is the amount the process 

variables change with respect to the previous process values.  Below is a simple linear 

model.

Ai j =
∂xk,i

∂xk−1, j

A=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 Δt 0 0
0 0 0 0 0 1 0 Δt 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 . . .


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A new guess of the process variables are calculated from iterating over the 

following equations:

xk = Ax′k−1

Ck = AC′
k−1AT

z′k = Hxk

G= (HCkHT )−1CkHT

x′k = xk+G(zk− z′k)

C′
k = (1−GH)Ck

This is the simple linear model for Kalman filtering and relies on the initial guess 

of the state variables and the error covariance matrix C.  Each iteration will produce a 

refinement of the process variables in x and the covariance matrix will tend towards zero.  

Once it converges, the rotation point is realized inside the vector x.  There were too many 

cases of divergence during the investigation so the method was not continued.
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