
Rotation Points From Motion Capture Data Using a
Closed Form Solution

Dissertation
for

Ph.D. in Computer Science
at

University of Colorado, Colorado Springs

by
Jonathan Kipling Knight

2 May 2005
(M.A. Applied Mathematics, Cal. State Fullerton, 1995)

(B.S. Physics, Cal Poly, San Luis Obispo, 1987)

Directed by Dr. Sudhanshu Kumar Semwal

Abstract
A skeleton composed of rotation points is usually made to fit motion capture data

by guessing the size and iterating until the model fits the motion. This involves a few
assumptions and approximations and sometimes produces more than one answer. This
dissertation presents a purely mathematical solution that has only one answer. This new
closed-form solution is robust in noisy and missing motion capture data. The Minimum
Variance Method produces the same accuracy as linear and non-linear Least-Squares
methods of fitting spheres, cylinders, circles and planes to generic data without the initial
guessing. The method significantly reduces the amount of work needed for calculating a
rotation point by only requiring O(N) averaging of the data and one inversion of a 3x3
positive-definite matrix for any data-set. The same matrix can be used to compensate for
cylindrical motion inaccuracies. This method aids the realism of motion data animation
by allowing the subtle nuances of human motion to be displayed. The calculations can be
reused for the same actor and marker-set allowing different data sets to be blended.

Dedicated to my wife Kiki for her patience.

© Copyright by Jonathan Kipling Knight 2005, All Rights Reserved

ii

This thesis for the degree of Philosophical Doctor by

Jonathan Kipling Knight

has been approved for the

Department of Computer Science

by

Sudhanshu Kumar Semwal, Chair

Charles M. Schub

C. Edward Chow

Bob Carlson

Jugal K. Kalita

Date

iii

Table of Contents

1. ...Introduction � 1
1.1. ...Motivation� 1

1.2. ...History� 4

1.3. ..Realism � 6

1.4. ...Real-time� 6

1.5. ...Paper Outline� 6

1.6. ..Terminology� 7

2. ..Motion Model� 8

2.1. ...Closed-Form Rotation Point Determination� 8

...Theory� 9

..Pseudo-code� 13

..Examples � 14

..Results � 20

..Limitations � 22

2.2. ...Segment Coordinate System � 23

2.3. ...Motion Capture Data � 26

..Capturing Data � 26

...Data Format � 27

..Correlating Data to Segments � 29

2.4. ..Motion Algorithm� 30

..Pseudo-code� 31

iv

3. ...Articulated Model� 34

3.1. ..Tetrahedron� 35

3.2. ...Tetrahedral Mesh� 37

3.3. ..Rigid Body � 38

3.4. ...Segment� 39

3.5. ..Figure� 39

...Converting Triangulated Surface into Tetrahedral Solid � 42

4. ...Programming Model� 45

4.1. ...Articulated Figure� 45

5. ...Products � 47
5.1. ...Walking Human Figure � 47

5.2. ...Rolling On Floor � 48

5.3. ...Break-dancing� 49

5.4. ...Salsa Dance � 50

6. ..Conclusion� 52

7. ..Bibliography� 54

8. ..Appendix� 60

8.1. ..Taylor Array Size� 60

8.2. ...Inertial Properties of a Tetrahedron� 61

8.3. ...Inertial Properties of a Rigid Body� 64

8.4. ..User’s Guide for Macintosh Application� 66

v

...Menu � 67

..Options Pane� 69

..Animation Pane� 71

...Graphs Pane� 72

8.5.Specification for Articulated Tetrahedral Model Format � 73

8.6.Proof of Positive-Definite Matrix for Rotation Point � 75

8.7. ..Relevant C++ Implementations� 76

..Minimum Variance Method� 76

...Rotation Point Calculation of Hierarchical Articulated Data� 77

..Calculation of fixed axes of data � 79

..Drawing Rotation Points with Constants of Motion� 80

8.8. ..Kalman Filter� 82

...Theory� 82

vi

1 Introduction

1.1 Motivation

Through the research into articulated motion, one fundamental problem arose

which existing method produced unsatisfactory results. The problems was to find a

skeleton under a data-set. Judgment is made by having the method satisfy the simple

criteria:

1. Quick

2. No a-priori knowledge of skeleton

3. Generalized to any shape of articulated model

Many authors uses Least-Squares techniques to fit a pre-existing skeleton into the

data by “squishing” and adjustment joints until it fits the data. This is generally termed as

inverse kinematics. O’brien (2000) produced a global optimization of least-squares

analysis of a skeleton. They claim real-time calculations but they are using a-priori

knowledge of a human shaped model to fit into the data. Their method, and many others,

involve constraints on the skeleton which include being symmetric human shapes. Other

constraints on the model must be enforced for Inverse Kinematics because there are cases

where the problem is severely under-constrained. When a problem is under-constrained,

multiple solutions exist and artificial constraints must be introduced. A good example of

this problem is when a human wants to place his hand on the table. Carnegie-Melon

University (CMU) Graphics Lab produced a similar sequence (labeled 05-05) using a

ballerina outstretching her leg. Once outstretched, the knee joint flopped between two

possible solutions in three consecutive time frames:

Knight 1

This is a well studied problem with various authors coming up with appropriate

constraints. But what if there was a method that did not need to know the skeleton

beforehand and did not have to guess at constraints and initial conditions? Various

attempts were tried in order to obtain this goal. Originally, genetic algorithms combined

with kinetics were tried and failed due to the slow nature of the genetic algorithm. Next,

Least-Squares fitting was tried but sometimes did not converge to the right answer (the

Knight 2

initial guess was not close enough). The Kalman filter was tried next but had the

tendency to converge to a biased answer or none at all. Finally, after stepping back in

frustration, the Minimum Variance equation was discovered which produced a correct

answer all of the time, excluding non-moving joints. The method does not fit into the

mold of either Kinetic or Kinematic methods but is a purely closed-form mathematical

solution of the rotation points of the skeleton inside. It satisfies the self-imposed criteria

of quick O(N); has absolutely no a-priori knowledge of an articulated figure except for a

simple association of a marker with a segment; can conform to the exact form of the

underlying actor, whether it be deformed, animal, human or robot: as long as it has

articulated non-translational joints.

Articulated motion is described as connected solid segments moving as a whole.

Examples of such bodies are the human body, insects, and robots. The approach in this

research is to have a local view of a segment’s motion. Each segment will have control

of its motion relative to its more proximal segment (e.g. the hand controls the wrist

motion). This produces a hierarchy of segments starting from the root (hips) and moving

outward to the end effectors. The hierarchy produces a set of constants that determine the

rotation point. The constants include the position of the rotation point relative to the

parent’s fixed reference frame and the null vector of the joint, which is usually the one

axis in a cylindrical joint. Once the constants of motion are found for the motion capture

data each segment will store for determining the absolute position of its rotation point at a

later time frame.

Knight 3

1.2 History

Motion capture animation has been continuously improved by many authors1.

Their contributions can be divided into two methods of analysis: kinematic and kinetic2.

In kinematic methods, scientists study the mechanical displacements of the limbs during

motion. In kinetic methods, the energies and forces on the limbs are studied during the

motion of the articulated figure leading to dynamical formulation. This new method does

not fall in either of these categories.

Kinematic methods are used in animation by determining the joint angles from

space-time constraints. Holt et al. (1997) estimated the 3D motion of an articulated

object from a sequence of 2D perspective views. They used a decomposition approach to

break down the motion of each segment. This was a good use of video motion capture to

estimate the animation of a figure. Inverse Kinematics (IK) is the backwards use of

positioning to determine which angles are necessary to get from one posture to the next.

IK is the more popular method to determine motion. Grochow et al. (2004) have a fairly

complete system building on the IK method. Their method compensates for the multiple

possible poses by a probabilistic model based on previously known styles of poses.

Kinetic methods are used in animation by analyzing the changes in energy, inertia,

or forces involved in the motion. These values determine the way the joint angles change

in time. Kinetic methods had their start in the stick and/or block figures of Jensen, et al.

in 19773. Jensen produced a system for interactive computer modeling of the

Knight 4

1 Grochow 2004

2 Aggarwal 1998

3 Semwal 1999

musculoskeletal system. A good example of this physics based motion analysis can be

seen in Semwal et al. (1999) as well. Their method allows a cyclist to visualize the leg

rotations and forces involved in the pedal movement. A straightforward physics approach

is to solve for the equation of motion whether it be Newtonian mechanics or Lagrangian

mechanics. This approach is not easily computed, usually by time consuming iterative

methods. The method involves solving simultaneous second order partial differential

equation. These complications make them not used very often. Results are mediocre in

both quality of animation and controlling the figure. A more efficient attitude to solving

these equations is using recursive methods4. Liu and Popovic (2002) presented a

SIGRAPH paper explaining a novel method of infusing physical reality into sparsely

keyed motion data. They presented an articulated figure that realistically played

hopscotch from a minimal set of predetermined positions. Their method involved a

figure composed of ellipsoids. The key-frames would be set up by the animator and the

method could correct the positions to follow physical reality. Liu and Popovic’s method

produced wonderful motions but relied on off-line calculations. The method presented in

this dissertation is an “on-line” method in which there is virtually no work involved in

following motion capture data.

Popovic and Witkin (1999) presented another novel idea to transform standard

models of motion into a diverse assortment of similar motions. For instance, their

method could take a standard run sequence and transform it into a run with a limp

sequence, while retaining physical reality. This method relies on a library of standard

motions that contain every motion regime that may be transformed.

Knight 5

4 Znamenacek 1998

1.3 Realism

This research is concerned with the realism as perceived by the viewer of the

animation. If the viewer perceives realistic motion then the motion is classified as

satisfactory. This is also known as the classic Turing test. Only a skeleton based on

joints is used so the realism relates to the algorithm producing the motion. The generated

motion has been presented to an audience who has agreed that the motion is better than

the same data-set analyzed by CMU Graphics Lab using inverse kinematics. It is the

author’s opinion that the human’s ability to identify subtleties in motion is the

determining factor of realism. The Minimum Variance Method allows for the subtleties

to still be displayed.

1.4 Real-time

The “real-time” phrase, as used in this research, relates to the aspects of the

motion algorithm. The algorithm is as fast as analyzing only ten data points for each

segment and then reusing the constants in all time frames of the data. The constants that

determine the rotation point of each segment can be reused so long as the data came from

the same actor wearing the same non-moved markers. Not much more speed can be

achieved without a-priori knowledge.

1.5 Paper Outline

This paper is structured as follows. Section 1 contains the introduction to the

research topic. In Section 2, the motion model is derived. The articulated figure model is

presented in Section 3. The programming model follows in Section 4. Section 5 contains

Knight 6

the products that have come out of the research. The conclusion is in Section 6. The

bibliography is in Section 7. The appendix contains various proofs and mathematical

details that have been derived as well as a user’s guide to the application that was

developed for the research.

1.6 Terminology

Some terms have been borrowed from biology. Distal is a description of a part of

a body that is closer to the peripherals (e.g. finger is distal to the elbow). Proximal is a

part that is closer to the central body. In this paper, these terms are used to describe parts

of the body that are placed in a tree structure representing the articulated figure. There is

always a root to the tree, which has nothing proximal. A parent segment is proximal to its

children. As explained in the next chapter, a segment’s proximity to the central body is

not strictly the same as the position in segment tree hierarchy. Throughout the paper,

vector notation is used and a caret (ˆ) symbolizes that the vector with a caret has been

normalized to have a length of unity. Also, during matrix algebra, a vector is considered

to be a column vector and a row vector is a column vector explicitly transposed (T).

Knight 7

2 Motion Model

This chapter sets forth the method used to turn an uncorrelated set of data points

into a moving human figure. The first question that must be answer is where to put the

skeleton. The skeleton is a set of rotation points with lines drawn in between. So where

are the rotation points relative to the surface data points in the data? The original motion

capture data does not come with any explicit information about the size and shape and

rotations of the actor doing the motion. The method presented next solves the local

minimization solution for a single rotation point in the articulated figure. The follow-up

question to answer is how to get a fixed coordinate frame relative to each segment in

articulated figure under the data points. Putting the two answers to these questions

together is what allows this motion model to animate a skeleton through direct

calculations from the raw data.

2.1 Closed-Form Rotation Point Determination

A more successful solution than previous method was discovered during course of

this research. It was found that a closed-form solution exists when the variance of the

square of the distance from the measurement to the point of rotation is minimized. Joint

rotations cannot be determined unless the point of rotation is determined. Most data does

not come with this information. Data comes in the form of (t,x,y,z) for a particular point

on a figure during its motion in absolute coordinates. Previous solutions5,6,7 to determine

Knight 8

5 O’Brien 2000

6 Bodenheimer 1997

7 Herda 2000

this point involve iterations on a least-squares equation or M-estimators starting from an

initial guess. This approach involves either linear or non-linear fitting of the data and has

a chance of not converging to a solution. The initial guess must be close enough to the

truth or the iterations may diverge away from the point. This chapter presents a new

closed-form solution to the center of rotation that involves no guessing and just the

inversion of a 3x3 matrix. The Minimum Variance Method is robust with noise and also

works with cylindrical motion, with a little extra work. The method is a suitable

replacement for linear and non-linear least-squares fitting of a sphere, cylinder, circle, and

a plane. The requirements in order to determine the point of rotation are as follows:

1) Fixed axes relative to the point of rotation.

2) At least 4 points far enough apart.

The problem amounts to finding the best-fit sphere for a 2 or 3 DOF joint or the

best-fit cylinder for a 1 DOF joint. According to the NIST,8 the best approach to this

problem is non-linear Least-Squares fitting. The Minimum Variance Method eliminates

the guesswork involved in least-squares fitting and produces an immediate answer.

2.1.1 Theory

Presented here is a closed form solution that has time complexity of O(N) and

involves the inversion of a 3x3 positive-definite matrix. Stated “simply”, the closed form

solution involves solving for the absolute minimum of the variance of the square of the

lengths from the point of rotation to each point in the data. A point (pi) around a rotation

point (r) can be represented as

Knight 9

8 Shakarji 1998

pi = r+Liρi

where

‖ρi‖ = 1

and Li is the distance to pi from r

The standard definition of the sampled variance of the square of the distance is

s2 ≡Var(L2) =
N

N−1
(
L4−L22

)
where

Li = ‖pi− r‖

Lk =
1
N∑‖pi− r‖k

The formula to solve after collecting the data is when the gradient of the variance

is set to zero.

Equation 2.1.1 ∇s2 = 0 where

Knight 10

∇≡
(

∂
∂x

∂
∂y

∂
∂z

)T
Taking the gradient derivative of the variance produces

∇s2 =
N

N−1
(
∇L4−2L2∇L2

)
The gradient of the mean powers of L are

∇L2 = 2(r− p) and ∇L4 =
4
N∑L2i (r− pi)

and

L2 = p2−2pT r+ r2

Substituting these in produces

∇s2 =
N

N−1
(
4L2r− 4

N∑L2i pi−4L2(r− p)
)

Further simplification produces this

∇s2 =
4

N−1
(
2∑ pi

(
pTi − pT

)
r−∑ pi

(
p2i − p2

))
∇s2 = 8(Ar−b)

Setting this to zero ends up being a simple 3x3 linear equation to solve

Equation 2.1.2 Ar = b

where

Equation 2.1.3 A=
1

N−1∑(pi− p)pTi

Equation 2.1.4 b=
1

2(N−1)∑(pi− p)pTi pi

Knight 11

The notation used here is such that

ppT =

x
y
z

(
x y z

)
=

xx xy xz
yx yy yz
zx zy zz



pT p=
(
x y z

)x
y
z

 = x2+ y2+ z2

and the mean of the data points is

p=
1
N∑ pi

The Minimum Variance Matrix A is positive-definite (cf. Appendix) so Cholesky

decomposition can be used for a more efficient solution to the equation. There are two

exceptions to this statement. The trivial case is if all points coincide, A=0. The non-

trivial case is during planar motion. If there exists a vector n such that

pTi n= constant

then A=0. All is not lost though if A is near singular. Some mathematical

concepts must be explained in order to continue solving the rotation point of planar data.

The Null Space of a matrix is a set of vectors that solve the equation An=0. This

set of vectors is inherently extracted during the Singular Value Decomposition9 (SVD) of

any matrix based on some threshold. The condition number of a matrix is a measure that

increases to infinity as a matrix becomes closer to singular. It too is extracted during

SVD. If the threshold is equal to the inverse of the condition number then a single vector

exists in the Null Space of A and that vector happens to be the normal to the plane of

Knight 12

9 Press 1992

motion and is the best-fit plane for the data. This is proven by solving for the minimum

of the variance of the distance from the plane.

pTi n= zi

The variance of the distance zi is

Var(z) =
N

N−1
(
z2− z2

)
and the gradient of the variance is

Equation 2.1.5 ∇Var(z) = 2An

Setting the gradient to zero will produce the minimum variance of z. The only

solution to this equation is the Null Space of the Minimum Variance Matrix A.

Another interesting property for this equation comes from the fact that the double

derivative matrix (Hessian) is

Equation 2.1.6 Hessian(s2)≡ 1
2∇∇

T s2 = 4A

The Hessian is positive-definite because A is positive-definite (cf. Appendix). If

the Hessian of the function is positive-definite then the solution found is an absolute

minimum. This says that the solution found for the rotation point is the absolute best to

minimize the variance of the square of the lengths.

2.1.2 Pseudo-code

The procedure to determine point of rotation is as follows:

Procedure 2.1.1

Choose one set of points on segment.
Make points relative to parent.
 M = column matrix of parent coordinate axes

Knight 13

 c = center of parent’s coordinate frame

 pi =MT (pi− c)
Calculate variance of points.

p=

1
N∑ pi

p2 =

1
N∑ pTi pi

Var(p) =

N
N−1

(
p2− p2

)
if variance of points is large then
 use spherical formula.

 A=
1

N−1∑(pi− p)pTi

 b=
1

2(N−1)∑(pi− p)pTi pi

 solve Ar0 = b
 if condition number of A is large then
 use cylindrical formula.
 solve An= 0 (n is cylinder axis or Null vector)
 return r1 = r0+nnT (p− r0)
 else
 return r0
end

2.1.3 Examples

Example #1 - Spherical Joint

Results from a-priori data are comparable to linear or non-linear least-squares

fitting. Spherical motion data is produced below with added noise. The points are in the

following table. The center of the sphere is at (0.6 -0.2 0.9)T with a radius of 1.2.

Standard deviation of the noise of each point is 0.01.

x y z

1.71641 0.0532489 0.534942

-0.257165 -0.984895 0.59321

-0.0154738 0.0295651 1.90681

Knight 14

1.19134 -0.00156902 1.9146

1.31147 0.607414 0.374474

1.2274 -0.0905109 1.91278

1.62875 -0.631279 0.507247

0.367905 0.908098 0.472217

1.74362 -0.526356 0.621037

0.510973 -1.29795 0.495898

The points in the table produce the Minimum Variance Matrix:

A=

 0.540464 0.0639822−0.0671881
0.0639822 0.462403 0.0550300
−0.0671881 0.055030 0.459960



b=

 0.251491
0.00024245
0.362261


Calculated results are as follows:

Method x y z L error

Original 0.6 -0.2 0.9 1.2 0

Min Var 0.599337 -0.189249 0.897781 1.19811 0.0109972

Least Squares 0.599084 -0.189018 0.89785 1.19818 0.0112276

The results from above tell how close the answer is for Levenberg-Marquardt

non-linear Least-Squares fitting and the Minimum Variance Method. Using the Singular

Value Decomposition of A, the condition number for A is determined as 1.63852. A

spherical solution is assumed better than cylindrical since the condition number is not

Knight 15

large. As the results show, a spherical solution from Minimum Variance or from Non-

linear Least-Squares give approximately the same answer.

Example #2 - Cylindrical Joint

An example for cylindrical data shows similar good results. The data is produced

from a circle at the same rotation point and radius and normal vector of

(0.1 0.2 0.974679)T. The same amount of noise is introduced (0.01).

x y z

0.965464 0.896476 0.641555

1.68157 0.248753 0.703445

1.61990 -0.871485 0.930594

-0.592497 -0.0747179 1.01050

-0.402654 -0.818748 1.12976

-0.0912121 -1.14638 1.16056

0.117659 -1.26534 1.16835

-0.569521 -0.403927 1.06119

1.69910 -0.702110 0.889177

1.67226 -0.724973 0.891406

The Minimum Variance equation for this data becomes

A=

 1.02288 0.110289 −0.129224
0.110289 0.448177 −0.100884
−0.129224−0.100884 0.0336710



Knight 16

b=

 0.475661
−0.119367
−0.0260505


Calculated results are as follows:

Method x y z L error

Original r 0.6 -0.2 0.9 1.2 0

Min Var 0.700154 -0.0243642 1.8404 1.534 0.961886

Least-Squares 0.60523 -0.204356 0.936388 1.19704 0.0370193

Original Null 0.1 0.2 0.974679 N/A 0

Min Var Null -0.102284 -0.194435 -0.975568 N/A 0.0060804

Least-Squares Null -0.102284 -0.194435 -0.975568 N/A 0.0060804

Min Var new r 0.60204 -0.210872 0.904606 1.19708 0.0119822

The results of this example show, once again, almost the same answer as non-

linear least-squares fitting. The condition number of this example’s matrix is 67184.8

which tells us the matrix is nearly singular. Knowing this, additional work must be done

in the Minimum Variance method. Using the cylindrical formula (projecting onto the

mean plane), a better answer than the least-squares answer is found.

Example #3 - Case study of CMU Data 60-08

The CMU Graphics Lab produced a one minute long motion capture data-set of a

salsa dance in 60-08. The data file contains 3421 time slices for 41 markers on two

figures. This case study will concentrate on analyzing the performance of the Minimum

Variance Method in determining the rotation points in the female subject. Four passes on

the data will collect rotation point calculations, each pass randomly removing from 0 to

99% of the time frames in increments of 1%. 400 calculated rotation points were

Knight 17

collected for each segment modeled. The calculated constants are the relative rotation

points as referenced in each segment’s parent’s coordinate system. The 400 calculations

were averaged and the standard deviations were calculated as well. These values are

presented in the tables below.

Rotation Point Mean x (m) Mean y (m) Mean z (m)

Waist 0.13324824 -0.063898286 0.130439024

Neck -0.077279042 -0.003811468 -0.010261576

Left Ankle 0.437510805 -0.032639212 0.040255145

Left Wrist 0.110981565 -0.075779216 0.014702334

Left Elbow 0.283393628 -0.060979142 0.012893845

Left Knee -0.244076283 -0.07952933 0.009066338

Right Elbow 0.253621623 -0.146993545 -0.001828167

Right Knee 0.188950453 -0.080176833 -0.003163181

Right Ankle 0.241527156 -0.065156728 0.006255086

Right Wrist 0.211446183 -0.069707086 -0.019905695

Left Shoulder 0.01607591 -0.069950812 -0.119403856

Left Hip 0.003814737 -0.019484536 -0.198284078

Right Shoulder -0.00219989 -0.069832041 0.132929455

Right Hip 0.263017638 -0.022520684 -0.202218743

Table of Means of Rotation Points

Rotation Point σx σy σz

Waist 0.003896258 0.004605284 0.014676666

Neck 0.001768695 0.001355136 0.001206322

Left Ankle 0.01981794 0.011053845 0.011233588

Knight 18

Left Wrist 0.002071725 0.002539415 0.000947775

Left Elbow 0.015518996 0.004050952 0.00398332

Left Knee 0.011752322 0.002762332 0.003553895

Right Elbow 0.017223326 0.00815392 0.004313482

Right Knee 0.016813465 0.003744518 0.003104466

Right Ankle 0.129159355 0.034143233 0.020772927

Right Wrist 0.00163169 0.000935295 0.000834657

Left Shoulder 0.001960198 0.000852649 0.00314934

Left Hip 0.001577703 0.001635193 0.004697627

Right Shoulder 0.000891381 0.00158762 0.003755364

Right Hip 0.001447724 0.00128305 0.004635324

Table of Standard Deviations of Rotation Points.

Most of the standard deviations are less than one centimeter, but there are some

significant outliers. Further analysis of the calculated points for the ankles and elbows

show that the four runs produced two answer due to different orientations of the parent’s

reference frame. Therefore the standard deviation presented above for the ankles and

elbows are erroneously calculating the deviation from the average of two distinct means.

It is more appropriate to calculate the standard deviation from a single mean. When these

outliers are removed from the calculation of the deviation, a very informative graph can

be produced below. Every calculation for every segment is presented below as a

deviation from the single mean rotation point versus the number of sample.

Knight 19

Deviation From Mean Rotation Point

y = 0.5117x-0.8125

0.00001

0.0001

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000 3500

Number of Samples

D
e
v
ia

ti
o

n
 (

m
e
te

rs
)

As can be readily seen from the above graph, a statistically significant amount of

calculations are within one centimeter of accuracy when analyzing more than about 200

samples. The accuracy gets better on average with a power law of N-0.8125.

2.1.4 Results

As has been shown by examples above, the Minimum Variance Method produces

similar answers to the Least-Squares Method but without the initial guessing. This new

method can produce a better answer in the cylindrical case with only a little extra work.

Statistical analysis of real motion capture data reveal an error of about one

centimeter when 200 samples are analyze. The error goes down to one millimeter when

2000 samples are analyzed. Lessons learned during implementation of the equations

2.1.3 and 2.1.4 have shown the the difference from the mean must be calculated during

Knight 20

each step of the summation. If the presented equation is algebraically re-arranged,

propagation of finite math errors (as present in all computers) produce extremely

significant errors in the results. This is not uncommon with these kinds of averaging and

shows up in many “deviation” statistics. For a significant amount of motion capture data

analyzed, the determinant of the matrix is small but since the condition number does not

get very big, the matrix is not considered near singular. None-the-less, the Singular-

Value Decomposition (SVD) is recommended instead of the Cholesky Decomposition for

the fact that SVD significantly reduces the error propagation for small matrices. The

matrix can become singular though in two different cases. The matrix is singular when

the points are identical or when the points are planar. When the points are identical, the

rotation point can be any point in space. This occurs if the joint doesn’t move. When the

joint doesn’t move, then no rotation point can be calculated may just as well be modeled

as being permanently attached. When the points are planar, the rotation point can be any

point on the rotation axis. This is why the projection of the spherical answer along the

axis onto the plane compensates for the spherical assumption error. This does not occur

too often in real 3D motion capture data due to measurement errors. During any

physically determined measurements, there is always some degree of noise.

Measurement noise alone is enough to keep the matrix away from being singular. Just

like an average, the Minimum Variance equation will smooth out the noise when enough

data is sampled. This produces a very robust, deterministic answer for the rotation

points. Through the many data-files that have been analyzed, this equation has produced

visibly incorrect rotation points only if the joint didn’t move much. An example of

connecting the rotation points is in the figure below. Each rotation point is well

Knight 21

determined from the 41 markers except the waist. This motion data entitled

“ericcamper.c3d” is a figure doing some standing martial arts moves. He does not bend

at the waist during the motion. As a result, the rotation point ends up high in his chest.

There is no impact to the animation though since the joint never moved.

Figure A - Rotation Points of Data

2.1.5 Limitations

The limitations of the Minimum Variance Method for calculation are due to not

following the previously stated requirements - i.e. the joint must move significantly

Knight 22

around a rotation point that is fixed relative to a stable reference frame. If this require

fails, so does the algorithm.

2.2 Segment Coordinate System

Now to answer the question of where to get the fixed coordinate system on a

segment from the data. Most information in motion capture data comes in the form of

absolute Cartesian coordinates of markers placed on the segments of an articulated figure.

This is considered the rawest form of the data. Usually, no information is available to

determine the rotation points of the underlying skeleton. To determine these, the frames

of data must be analyzed en-mass using a hierarchical model and the Minimum Variance

Method. This method will only work if the following conditions are met for a joint:

1) No translational freedom.

2) The orientation of the parent segment can be determined.

3) The joint moves.

These restrictions are not that unreasonable since previous methods come with

more. The orientation of a segment can be easily determined if there are at least three

non-linear data points fixed to that segment, i.e. markers in a time frame. It still is

possible to determine the orientation if there is only one or two points but is less accurate.

There is a hierarchical dependency for determining the center of rotation and the

orientation. The orientation can be determined if there:

1) is one data point, rotation point, and a rotation axis (non-linear).

2) are two data points and one rotation point (non-linear).

3) are three or more data points (non-linear).

Knight 23

Requirements 1 and 2 rely on previously calculated constants as can be

determined by the Minimum Variance Method. The root of the segment tree is a special

case and must follow requirement 3. All subsequent segments of the tree can follow any

of the orientation requirements. So, for a human, the minimum number of data points is

17 for 15 segments. This N+2 absolute minimum is not a recommendation.

Requirements 1 and 2 rely on every joint below in the tree to calculate its rotation points

properly. The ripple down effect can escalate to an undesirable level if these minimal

requirements are followed. With that in mind a better number of markers to follow is 3N,

i.e. 3 for every segment.

The information can be retrieved if calculated hierarchically from root to leaf.

First, define the tree. Then, assign the data points to their appropriate segments. The root

must have three points. No center of rotation for the root can be determined. The

children of the root can determine their center of rotation relative to their parent by

Minimum Variance Method. If there are three or more points, each time frame can

contribute to the fitting. The point of rotation in absolute coordinates for a segment is

r = pc+Acr′

n̂= Acn̂′

Where r′ is the constant relative rotation point, n̂′ is the constant relative rotation

axis, pc is the center of the coordinate system, and Ac is the 3x3 matrix of column vectors

that represent the axes of the coordinate system. Ac is determined differently for

whichever requirement is followed.

Requirement 1:

x̂= n̂

Knight 24

ẑ=
p0× x̂
‖p0× x̂‖

ŷ= ẑ× x̂
pc = r

Requirement 2:

x̂=
p0− r
‖p0− r‖

ẑ=
p1× x̂
‖p1× x̂‖

ŷ= ẑ× x̂
pc = r

Requirement 3:

x̂=
p1− p0
‖p1− p0‖

ẑ=
p2× x̂
‖p2× x̂‖

ŷ= ẑ× x̂
pc = p0

Now that the three coordinate axes have been created, the rotation matrix can be

assembled from the column vectors.

Ac =
(
x̂ ŷ ẑ

)
There is hierarchical dependency here in that requirements 1 and 2 make a

segment depend on the parent segment’s coordinate system to determine his own

coordinate system. The C++ implementation of this recursive dependency is presented in

the appendix. The dependencies work quite well with each other as long as the rotation

points are accurate. This method was implement before the Minimum Variance Method

Knight 25

was discovered. During the many failures of other methods for determining the rotation

points, this dependency was nasty. With the success rate of the Minimum Variance

Method, the coordinate system calculations have become much cleaner.

2.3 Motion Capture Data

Many disciplines need in-depth analysis of motion. Ergonomic studies need

optimal reach information. Olympic runners require efficiency information for running

better/farther/faster. In order to study the particular motion, data must be acquired for the

particular motion regime. The motion capture data used in this thesis comes from the

very large database (>2GB) of motions captured by Carnegie Mellon University (CMU)

Graphics Lab. The data is freely downloadable at http://mocap.cs.cmu.edu/. The

database was created with funding from National Science Foundation grant # EIA

-0196217. There are 1576 trials in 6 categories and 23 subcategories and growing

continuously.

2.3.1 Capturing Data

Data can either be artificially generated or actual measurements from actors.

There are many different techniques that have been around for 40 years. This thesis is

not involved in the process of capturing data but relies on previously captured data.

Artificially generated data points are similar to animation key frames where an animator

would create scenes that perform an act. These points may not be realistic but are

compensated for realism with various simulation techniques. Real data is captured by

attaching sensors to various places on each moving segment of the body. If the data is

sparse, it is possible to manually insert critical data points like footsteps amongst the real

Knight 26

data. Motion capture data is usually acquired on forty or more points on the body

depending on the motion being studied.

2.3.2 Data Format

The CMU data comes in a few file formats. The raw absolute Cartesian

coordinates of the data in time are stored in the C3D file format. C3D is one of the oldest

formats for storing this kind of data. Each time frame is stored, with each frame

consisting of X,Y,Z for each marker on the body. If any data is missing from a frame,

that point is zeroed and marked. The captured motion also comes in the form of ASF and

AMC file formats. These are created after the VICON program has done analysis of the

data. The ASF format stores the skeleton and joint information to create an articulated

figure on the screen. The AMC format contains every time frame’s translation and

rotation for each bone. This work focuses on the use of raw XYZ data and therefore does

not consider the post-analysis data in the AMC or ASF files. A new file format was

produced to address the special use of tetrahedral meshes to build up the articulated

figure. This format, called Articulated Tetrahedral Model (ATM), replaces the ASF

format. A simple example is printed here of a 5R1P manipulation arm:

FIGURE 5R1P
SEGMENTS 3

MESH 0 cube.mesh
MASS 1.0
NAME Base
TRANSLATE_Z 0.5
JOINT Root
3 0.0 0.0 0.5
CHILDREN 1
1 // extendArm
ENDMESH

Knight 27

MESH 1 cube.mesh
MASS 1.0
NAME extendArm
SCALE_XYZ 0.2 0.2 1.0
TRANSLATE_Z 1.5
PARENT 0 // Base
JOINT 2R
3 0.0 0.0 1.0
DEGREES_OF_FREEDOM 2 0
VALUE 0.0
3 0.0 1.0 0.0
FROM -90.0 TO 90.0
VALUE 0.0
3 0.0 0.0 1.0
FROM -180.0 TO 180.0
CHILDREN 1
2 // Hand
ENDMESH

MESH 2 cube.mesh
MASS 1.0
NAME Hand
SCALE_XYZ 0.8 0.8 0.4
TRANSLATE_Z 2.5
PARENT 1 // extendedArm
JOINT 3R1P
3 0.0 0.0 2.0
DEGREES_OF_FREEDOM 3 1
VALUE 0.0
3 1.0 0.0 0.0
FROM -90.0 TO 90.0
VALUE 0.0
3 0.0 1.0 0.0
FROM -90.0 TO 90.0
VALUE 0.0
3 0.0 0.0 1.0
FROM -180.0 TO 180.0
VALUE 0.0
3 0.0 0.0 1.0
FROM 0.0 TO 0.4
ENDMESH

ENDFIGURE

Knight 28

The specification for the ATM format is explained in the Appendix.

2.3.3 Correlating Data to Segments

A motion capture file (e.g. C3D file) contains the data, as well as a name

associated with each set. For example, a marker is placed on the right thigh and is called

“JOE::RTHI”. Usually, the ATM file doesn’t have the same designation so a cross-

correlation must be achieved to identify which segment this data marker belongs. This

thesis has set up a two file process to cross-correlate a C3D data-set with the segments on

the ATM model. Firstly, a correlation file specifies which standard Marker Set is to be

used. It then lists the marker names in the C3D file alongside the marker names in a

standard Marker Set. An example is as follows:

42 WANDS
MARKERSET vicon512.txt

JOE::LBWT = LBWT Left back waist
JOE::RBWT = RBWT Right back waist
JOE::LFWT = LFWT Left front waist
JOE::LTHI = LTHI Left thigh
JOE::RFRM = RARM Right forearm
...

The second file is the Marker Set that specifies the markers and their locations on

the articulated model. An example of this file is as follows:

51 WANDS

WAND RFHD
SEGMENT Head
LENGTH 0.0
anterior right top

WAND LFHD
SEGMENT Head

Knight 29

LENGTH 0.0
anterior left top

WAND RSHO
SEGMENT Chest
LENGTH 0.0
right mid top
...

As the reader may notice, the format allows the placement of markers in a relative

fashion onto the specified segment of the figure. This dual level correlation allows for the

use of a single set of markers on a figure for many data-sets. This may or may not be an

advantage depending on how varied the motion capture systems are. In CMU’s case,

about 80% of the motion capture has the same marker sets.

2.4 Motion Algorithm

The motion equations are expressed in homogeneous vectors and matrices.

Homogeneous vector math is a convenience so that both translation and rotation of 3D

vectors can be combined together into a single matrix. This technique of vector

manipulation is fairly common and appears in the OpenGL standard for drawing 3D

graphics. A 3D position vector is extended to four components where the fourth is

usually set to one. A 3D direction vector is similarly extended except the fourth

component is set to zero, in essence saying it is a position located at infinity. A

homogenous matrix is a 4x4 matrix that usually contains (0 0 0 1) in the bottom row.

These definitions simplify the sequential concatenation of translations and rotations as

applied to a vector. A translation is expressed as a 4x4 matrix T multiplied to a 4x1

column vector thus:

Knight 30

T (r)a= r+a

where

T (r) =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1


The cross-product can similarly be turned into a 4x4 matrix operation

S(r)a= r×a

where

S(r) =


0 −z y 0
z 0 −x 0
−y x 0 0
0 0 0 0


A rotation around a unit vector r̂ by a counter clockwise angle θ is expressed

similarly:

Equation 2.3.1 R(θ, r̂) = I+S(r̂)[sinθ+S(r̂)(1− cosθ)]

where the angle is to be rotated around the unit vector r̂ using the Right-Hand

Rule for direction of the angle. The following pseudo-code represents the entire motion

algorithm for a generic tree-structured articulated figure.

2.4.1 Pseudo-code

Procedure 2.3.1

Procedure MoveArticulatedFigure(time)
Begin
 motion = IdentityMatrix
 MoveSegment(rootOfFigure, time, motion)
End

Knight 31

Procedure 2.3.2

Procedure MoveSegment(segment, time, motion)
Begin
 motion = motion * MovementMatrix(time)
 pointOfRotation = motion * pointOfRotation
 rotationAxes = motion * rotationAxes
 vertices = motion * vertices
 for each child of segment
 Begin
 motionCopy = motion
 MoveSegment(child, time, motionCopy)
 End
End

Function MovementMatrix(time)
Begin
 displacement = Displacement(time)
 angles = Angles(time)
 m = T(pointOfRotation+displacement-
previousDisplacement)
 for each axis of rotationAxes
 m = m * R(angles[i]-previousAngles[i], axis)
 m = m * T(-pointOfRotation)
 previousDisplacement = displacement
 previousAngles = angles
 return m
End

Function Displacement(time)
Begin
 return position of point of rotation
 relative to parent segment
End

Function Angles(time)
Begin
 return array of angles for the axes
 relative to parent segment
End

The two user-supplied functions Displacement and Angle will provide the amount

of change for each degree of freedom (DOF) for the segment’s joint. This research has

Knight 32

used Taylor series expansions to calculate these values for each DOF as well as followed

the data directly. These procedures are compatible with the Denavit-Hartenberg notation

for generic joint-link coordinate frames. These procedures are not used when the

Minimum Variance Method is calculating the rotation points. They are used subsequently

once the points are determined.

Knight 33

3 Articulated Model

Any three-dimensional simulation requires three-dimensional information. Most

of the models followed by previous authors use either stick figures; shapes defined by 2D

surfaces; or easy 3D shapes for each segment. Two-dimensional surfaces are very time

consuming to calculate volumetric information. One must perform a surface integral

approximation. The added complexity is inadequate for real-time physical simulations

making volumes and moments of inertia unnecessarily difficult to calculate. Simple

three-dimensional shapes such as blocks, ellipsoids and cylinders have been used in the

past but reduce the ability for diverse shapes. This research had the intention of using

physical calculations in its motion model. As it turns out, none of the physics was needed

by the Minimum Variance Method. The new method uses the hierarchical organization of

the segments in order to traverse the tree for calculations. None-the-less, this articulated

model is still an efficient aid to modeling and is presented here anyway. A three-

dimensional equivalent to the triangulated mesh is used. A rigid body (e.g. each segment)

is subdivided into face-connected tetrahedrons to make up a tetrahedral mesh. Each

tetrahedron will have four vertices, four triangular faces, six edges and density. The

advantage of dividing space into tetrahedrons is to have the ability to vary the mass

distribution and to ease inertial calculations. A tetrahedral mesh can approximate any

volumetric shape. The approximation of the original shape gets better when more

tetrahedrons are used within a shape.

Knight 34

To ease drawing, each face of the tetrahedra are labeled if they are on the surface

of the shape. The draw algorithm will traverse the list of tetrahedrons and draw (using

OpenGL) only those triangle faces that are labeled as on the surface.

A hierarchical approach to building the articulated figure is used in the thesis. The

figure is made of segments; the segments are made of a rigid body and a joint; the rigid

body is made of a tetrahedral mesh; the tetrahedral mesh is made of tetrahedrons; the

tetrahedra are made of triangles and vertices.

3.1 Tetrahedron

The tetrahedron is the simplest 3D shape that can fill a volume completely when

placed together face to face.

Figure B - Tetrahedron

Any arbitrary shape can be achieved by placing tetrahedrons next to each other.

Granted the resulting surface is not smooth but today’s graphics engines are specifically

designed to draw triangulated surfaces.

The tetrahedron is made of four triangle faces and four vertices. Given the

vertices !ri , the volume is easy to determine by the following formula:10.

Knight 35

10 CRC Handbook 1985

VTet =
1
6(r3− r0) · (r2− r0)× (r1− r0)

Assuming the density is constant over the tetrahedron, the center of mass is the

centroid. The centroid is easily determined by the average of the four vertices.

CVol =
1
4

3
∑
i=0

ri

There is a fairly simple algorithm if the density is assumed to be linearly changing

between the four vertices. It can be derived by doing an integration over the tetrahedron

volume of the differential mass. If each vertex has a density value associated, the center

of mass can be calculated with

Cmass =
4
5CVol +

1
20ρ

3
∑
i=0

ρiri

mTet =VTetρ

Other quantities are more difficult but can be exactly determined. The moment of

inertia and angular momentum are very desirable traits to follow during any dynamic

simulation. They both involve integrating over the tetrahedral volume. The equations

have been derived in the Appendix. The result is a matrix equation involving the

geometric tensor defined by

Q(r) = rT r− rrT =

r2− x2 −xy −xz
−yx r2− y2 −yz
−zx −zy r2− z2


where r=(x y z)T and in general

ppT =

x
y
z

(
x y z

)
=

xx xy xz
yx yy yz
zx zy zz



Knight 36

pT p=
(
x y z

)x
y
z

 = x2+ y2+ z2

and the properties of moment of inertia and angular momentum about the center

of rotation (Crot) become

ITet = mTetŵTQTetŵ

LTet = mTetQTetw

where

QTet = Q(Cmass−Crot)+
1
20

3
∑
i=0

Q(ri−Cmass)

These calculations pave the way for the macro properties and the energy

calculations, which are more interesting for studies in dynamics.

3.2 Tetrahedral Mesh

The tetrahedral mesh is a packed group of tetrahedrons (cf. Figure C), face-to-

face, producing a solid shape. This mesh has the properties of mass, volume, moment of

inertia, angular momentum, all of which can be simply added together from its

constituent tetrahedrons. The geometric tensor Q, centroid, and the center of mass are not

additive but are weighted averages of the constituent tetrahedrons.

CTotal =
∑Cimi
∑mi

The time complexity of all quantities at this level is O(n) where n is the number of

constituent tetrahedrons. A simple cube is made of five tetrahedrons as in the following

figure.

Knight 37

Figure C - Tetrahedral Mesh

3.3 Rigid Body

A tetrahedral mesh can be made a rigid body once it has been manipulated into its

final shape. This new object has the property that it cannot be molded or stretched. It

still can be translated and rotated as a whole. This has advantages because the rigid body

has a fixed volume, mass, principal moments, principal axes and relative center of mass

thereby reducing the calculations. The fixed values can be calculated at time of creation

of the body so it will not be necessary to calculate during motion. The volume and mass

are simple additions. The center of mass and geometric tensor are simple weighted

averages. The principal moments and principal axes are much more complicated but only

need to be calculated once. The principal moments and axes have been derived in the

Appendix. The simplified moment of inertia and angular momentum is composed of the

principal moments and axes, and the center of mass inertia tensor as derived in the

Appendix.

I = mŵTQ(Cmass−Crot)ŵ+ ŵT
(

2
∑
i=0

λi p̂i p̂T
)
ŵ

Knight 38

L= mQ(Cmass−Crot)w+

(
2
∑
i=0

λi p̂i p̂T
)
w

where λi are the principal moments

pi are the principal axes

These equations are much simpler than summing the calculated values for the

constituent tetrahedrons. As the rigid body is translated and rotated, so must the principal

axes and center of mass. If those are maintained throughout the figure motion, the

inertial properties will not be complex to calculate.

3.4 Segment

The segment is composed of a rigid body and a joint. The segment also has

knowledge of its parent and its children in the tree of segments that make up the whole

figure. The segment is the level at which the calculations are made for the motion model.

The segment’s motion variables are the constants defining the relative position of the

rotation point.

3.5 Figure

The articulated figure is a set of segments attached into a tree structure. There are

some segments without children and one without a parent. The one without a parent is

the root segment. The ones without children are the end-effectors.

Knight 39

Figure D - Articulated Tetrahedral Mesh

Knight 40

Figure E - Articulated Figure

For any articulated figure, there is always one root segment. It does not matter

which segment is the base since there is no physical significance (the hand serves just as

well as the chest). The hips were chosen in Figure E because it is nearest to the center of

mass of the human figure and the fact that there is usually four markers on the hips. The

root of the segment tree is the starting point for message sending. Bolt (2000) used 17

degrees of freedom (DOF) in his model of the human figure. Ko and Cremer (1996) used

34 DOF for their a-priori system. The Minimum Variance Method is independent of the

number degrees so the DOF model is a self-imposed limit for other kinds of simulations.

Knight 41

3.5.1 Converting Triangulated Surface into Tetrahedral Solid

Most figures are available as a set of triangles that completely cover the surface.

While this is easy to draw, it is difficult to calculate physical properties such as volume

and inertia tensor. Converting a triangulated surface into a tetrahedral solid would make

it easier to handle for physical simulations. The conversion is very time consuming and

should be done offline to the simulation. There are a few techniques available to produce

a tetrahedral solid. Delaunay meshes are a wonderful and well-studied technique that can

produce a tetrahedral mesh of any set of points provided it is a convex figure.

3.5.1.1 Triangulated Surface with no normals

Which way is outside? A surface without normals can only answer this by using

the 3-D equivalent of the Jordan curve Theorem. Unfortunately the theorem is only

proven for the 2D case. The 3D equivalent has known counterexamples that must be

explained in order to be useful.

Jordan Curve Theorem

A simply closed curve divides the region into two distinct areas; an inside and an

outside.

A simple test to see if a point exists inside or outside the curve involves shooting a

ray in an arbitrary direction and counting the times it crosses the curve. If the count is

odd, the point is inside; if even it is outside. This can be used in 3D keeping in mind that

there are special extreme surfaces that don’t work. The known figures that don’t work are

Knight 42

the Klein Bottle (which is not simply closed); a surface with a hole (not closed);

Alexander’s Horned Sphere (has infinitely recursive horns wrapping around itself). A

real-world limitation can exclude these known problems.

Theorem 1

A simply closed tessellated surface with finite size and finite number of elements

divides space into two distinct regions; an inside and an outside.

Lemma 1

A neighboring element of a simply closed tessellated surface has the outside on

the same side.

Lemma 2

An arbitrary ray from an outside point will cross a simply closed tessellated

surface an even number of times. An inside point will have an odd number of crossings.

Proof by Contradiction

A neighboring element has the opposite side be the outside. Look at the

intervening edge. Place a point epsilon outside of both elements such that no other

elements have been crossed and near the intervening edge. Now draw a ray from one

point through the neighboring point. The number of crossings of one point would be

exactly one more than the other number of crossings. This would specify one point is on

the inside and one point is on the outside that contradicts the starting conditions.

3.5.1.2 Central Convexity Point insertion.

Extra points carefully placed inside an arbitrary figure can produce a simple

tetrahedral mesh. The simple technique involves inserting points inside of the figure such

that the point can “see” the inside of the surface triangles in its immediate vicinity. The

Knight 43

necessary condition for this point placement is that it can be used as a vertex of a

tetrahedron as long as the surface triangle normal is pointing away from it (i.e. convex).

Once the point can no longer see contiguous surface triangles, a new point must be

inserted. The insertion continues until there are no more surface triangles left to use in a

tetrahedron.

Knight 44

4 Programming Model

4.1 Articulated Figure

The articulated figure designed for this research is for general purpose articulated

modeling. The original attempt was to use it for physical based calculations. With the

advent of the Minimum Variance Method, the model has been resigned to a simple

organizational tool for the hierarchical tree traversals. The entire implementation is

explained here for future use. The C++ object model is set up in a hierarchical manner

for the articulated figure. An articulated figure (ArtFigure.cpp) is made of segments

(Segment.cpp). A segment is a rigid body (RigidBody.cpp) that is linked to another by a

joint. The rigid body is a shape that can be translated and rotated, but not molded. The

rigid body is made of a mesh of tetrahedrons (TetrahedralMesh.cpp). The mesh is a face-

connected list of tetrahedrons. Only faces on the surface have no connected tetrahedrons

and are available for drawing. A tetrahedron (Tetrahedron.cpp) is a four sided figure with

four vertices assigned. Each side of the tetrahedron is a triangle (Triangle.cpp). Since

adjacent tetrahedrons share vertices, the tetrahedrons will contain only references to its

points. All of the points for the tetrahedral mesh will be stored in a linear array inside the

TetrahedralMesh instance. This allows easy access to the points for quick translations

and rotations without duplication of effort. The following figure is a UML Diagram

describing the relationships between objects.

Knight 45

Figure F - UML Diagram

Knight 46

5 Products

An extremely large (~4GB) set of motion capture data has been downloaded free

off the Internet. Most of the sets come from Carnegie Melon University Graphics Lab. A

large variety of motion regimes were analyzed by the Minimum Variance method. Each

of the data-sets had their different quirks like missing time frames or negligible motion

for certain joints. The Minimum Variance Method is actually independent of missing

data and time frames. As counter-intuitive as it seems, the more complicated the motion,

the easier it is to calculate the rotation points using the Minimum Variance method. The

original list of simple motions have been changed to include more complicated ones such

as break-dancing and rolling on the floor. To be fair though, an example of a weak

product is given.

5.1 Walking Human Figure

This motion regime has some issues with the Minimum Variance Method. During

normal walking, almost all of the joints exhibit either cylindrical motion or no motion at

all. As you can see, this motion regime does not fair well because of the small amounts

of motion. The left arm and the neck have produced visibly off positions.

Knight 47

CMU/02_01

5.2 Rolling On Floor

Rolling on the floor was a data-set that was avoided for a good part of the earlier

research because it was assumed the motion regime was too complex to handle for most

methods. It was the first successful data-set for the Minimum Variance Method.

Knight 48

5.3 Break-dancing

The break-dancing sequence in the CMU data-set 85-14 is a very successful

match for the requirements of the Minimum Variance Method. Nearly all of the joints are

exercised during the motion capture and therefore a strong collection of constants for the

motion. The drawing of the figure at everyday time frame looks realistic and some

reviewers have agreed that the motion animated by Minimum Variance has more realism

than that rendered by inverse kinematics from CMU.

Knight 49

CMU/85-14

5.4 Salsa Dance

The salsa dance sequence is also a difficult data-set to model. There are two

actors in the one c3d file. Inverse kinematics methods usually will consider the figures

one at a time to analyze the motion. The Minimum Variance Method can analyze both

figures and start drawing them in real-time. Separate segment trees must be maintained

and two sets of constants are calculated for each figure. The method successfully and

realistically handled the dual figure salsa dancing as can be seen in the picture below and

in movies that were generated in the research material.

Knight 50

CMU/60-8

Knight 51

6 Conclusion

The Minimum Variance Method is a very robust method in the face of

complicated motions. For a given actor and marker-set, a single set of constants can be

calculated for each joint if the actor first does a “convolution” run which involves rotating

every modeled joint to a significant degree. These constants can be calculated in the face

of sparse data and uncertain measurements. These calculations can be as accurate as one

millimeter depending on the amount of data analyzed and the quality of the data. Once

these constants are stored, they can be reused for any new motion capture as long as the

actor and markers do not change. In addition to this reusability convenience, the

algorithm is quick, O(N), depending on how many points are analyzed for each joint.

Existing methods, i.e. least-squares fitting involve more amount of work because of the

simple fact there are iterations involve in finding an optimized skeleton. Another

advantage over existing methods is the fact that there can be only one solution calculated

from the data. It has been shown at the beginning an example of this break-down.

Optimizing in placing markers on the body can be done. It is standard practice to place

markers on the joints but this does not aid this new algorithm. Ideally there should be

three non-linear markers on each segment and they should be at least 5 cm from the

rotation point unless small joints like the fingers make it scale down. This research has

shown that a stable, realistic, real-time skeleton can be retrieved directly from the data

without any interpolations or guessing. The new method has also been proven to be a

suitable closed-form replacement for linear or non-linear least-squares fitting of data to a

sphere, cylinder, circle or plane. It has further been proven that it is a significant

Knight 52

improvement on existing methods though it is not a complete replacement of Inverse

Kinematics (IK). IK is still useful in producing joint angles where there are no motion

capture data available. The Minimum Variance Method specifically solves the problem

of finding an underlying skeleton in motion capture data with significant improvement in

speed and work involved. Future research can involve building a real-looking figure on

top of the skeleton to produce either game quality figures or movie quality figures that

move to the realism that the Minimum Variance Method can achieve.

Knight 53

7 Bibliography

Aggarwal, J. K., Cai, Q., and Liao, W. “Nonrigid motion analysis: articulated and elastic

motion” Computer Vision and Image Understanding 70, no. 2 (May 1998) : 142

-56.

Aggarwal, J. K., Cai, Q., Liao, W., Sabata, B. “Articulated and Elastic Non-Rigid

Motion: A Review” Proceedings from Motion of non-rigid and articulated objects

Workshop -- Los Alamitos, CA: Austin, TX: IEEE Computer Society Press, Nov

1994: 2-15

Arikan, O., Forsyth, D. A., “Interactive Motion Generation from Examples” Proceedings

of SIGGRAPH 2002: 483-490.

Bodenheimer, B., Rose, C. Rosenthal, S. Pella, J. “The Process of Motion Capture:

Dealing with the Data” Eurographics CAS (1997)

Bolt, D.A. “Two Stage Control for High Degree of Freedom Articulated Figures” Ph.D.

Thesis for Computer Science, University of Colorado in Colorado Springs,

(2000).

Buades, J. M., Mas, R., and Perales, F. J. “Matching a Human Walking Sequence with a

VRML Synthetic Model” Articulated motion and deformable objects; Proceedings

from the International Workshop – Sep 2000: Spain: 145-158.

Cohen, M. “Interactive Spacetime Control for Animation” Computer Graphics

(SIGGRAPH 1992 Proceedings): vol. 26: 293-302.

CRC Standard Mathematical Tables 27th ed., William H. Beyer editor, CRC Press, Inc.,

Boca Raton, Florida 1985.

Knight 54

Dettman, J.W. Mathematical Methods in Physics and Engineering Dover Publications,

Inc. Mineola, N.Y, 1988.

Duff, P. and Muller, H. “Autocalibration Algorithm for Ultrasonic Location Systems” 0

-7695-2034-0/03 IEEE (2003): 62-68.

Featherstone, Roy. “A Divide-and-Conquer Articulated-Body Algorithm for Parallel

O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm”,

International Journal of Robotics Research 18, no. 9 (1999): 867-875.

Fowles, G.R. Analytical Mechanics 3rd ed. Holt, Rinehart, Winston: New York 1977.

Grochow, K., Martin, S., Hertzmann, A., Popovic, Z. “Style-Based Inverse Kinematics”

ACM Transactions on Graphics: Proceedings of ACM SIGGRAPH 2004: p 522

-531.

Herda, L., Fua, P., Plänkers, R., Boulic, R., Thalmann, D. “Skeleton-Based Motion

Capture for Robust Reconstruction of Human Motion” Computer Graphics Lab

(LIG) EPFL: Lausanne, Switzerland (2000).

Holt, R. J., Huang, T. S., and Netravali, A. N., Qian, R. J. “Determining articulated

motion from perspective views: a decomposition approach” Pattern Recognition:

30, no. 9, (1997): 1435.

Jacobs, D. W., Chennubhotla, C. “Segmenting Independently Moving, Noisy Points”

Proceedings from Motion of non-rigid and articulated objects Workshop -- Los

Alamitos, CA: IEEE Computer Society Press: Nov 1994: Austin, TX: 96-103.

Ko, H., Cremer, J. “VRLOCO: Real-Time Human Locomotion from Positional Input

Stream” Presence 5(4) (1996): 367-380.

Kovar, L., Gleicher, M. “Automated Extraction and Parameterization of Motions in Large

Knight 55

Data Sets” ACM Transactions on Graphics: Proceedings of ACM SIGGRAPH

2004: p 559-568.

Kovar, L., Gleicher, M., Pighin, F. “Motion Graphs” ACM Transactions on Graphics:

Proceedings of ACM SIGGRAPH 2002: 473-482.

Latecki, L.J. “3D Well-Composed Pictures” Graphical Models and Image Processing:

59, No. 3 (May 1997): 164-172.

Lee, J., Shin, S.Y. “A Hierarchical Approach to Interactive Motion Editing for Human-

like Figures” Proceedings of ACM SIGGRAPH 1999.

Lee, J., Chai, J, Reitsma, P. S. A. “Interactive Control of Avatars Animated with Human

Motion Data” Proceedings of SIGGRAPH 2002: 491-500.

Li, Y, Wang, T., Shum, H-Y. “Motion Texture: A Two-Level Statistical Model for

Character Motion Synthesis” Proceedings of SIGGRAPH 2002: 465-472.

Lopez, L F, Coutinho, F A B “Erratum: "Motion of articulated bodies: An application of

gauge invariance in classical Lagrangian mechanics" (Am. J. Phys. 65 (6),528

-536 (1997))” American Journal of Physics: 66, no. 3, (1998): 252.

Lopez, L F, Coutinho, F A B “Motion of articulated bodies: An application of gauge

invariance in classical Lagrangian mechanics” American Journal of Physics: 65,

no. 6, (1997): 528-536.

Liu, C. K., Popovic, Z. “Synthesis of Complex Dynamic Character Motion from Simple

Animation” Proceedings of SIGGRAPH 2002: 408-416.

Lui, Z, Gortler, S., Cohen, M. “Hierarchical Spacetime Control” Computer Graphics

(SIGGRAPH 1994 Proceedings).

Motion Lab Systems, Inc. “C3D Format User Guide”, PDF document at http://

Knight 56

www.motion-labs.com, Motion Lab Systems, Baton Rouge, LA, (2003) (98

pages)

O’Brien,J.,Bodenheimer, Jr.,R., Brostow, G.J., Hodgins, J.K. “Automatic Joint Parameter

Estimation from Magnetic Motion Capture Data” Graphics Interface (2000)

Pollard, N. S., Reitsma, P. S. A. “Animation of Humanlike Characters: Dynamic Motion

Filtering with a Physically Plausible Contact Model” Yale Workshop on Adaptive

and Learning Systems (2001).

Popovic, Z., Witkin, A., “Physically Based Motion Transformation” Computer Graphics

Proceedings, Annual Conference Series, 1999.

Press, W.H., Teukolsky, S.A., Vetterling W.T., Flannery, B.P. Numerical Recipes in C:

The Art of Scientific Computing 2nd ed., Cambridge University Press: 1992.

Rao, Kashi “Describing and Segmenting Scenes from Imperfect and Incomplete Data”

Computer Vision Image Processing: Image Understanding: 57, no. 1: Jan 1993: 1

-23.

Rose, C., Guenter, B., Bodenheimer, B., Cohen, M. “Efficient Generation of Motion

Transitions using Constraints” Computer Graphics (SIGGRAPH 1996

Proceedings).

Safonova, A., Hodgins, J., Pollard, N. “Synthesizing Physically Realistic Human Motion

in Low-Dimensioinal, Behavior-Specific Spaces” ACM Transactions on

Graphics: Proceedings of ACM SIGGRAPH 2004: p 514-521.

Semwal,S.,Parker,M.“An Animation System for Biomechanical Analysis of Leg Motion

and Predicting Injuries during Cycling”Real-Time Imaging:5(1999):109-123.

Semwal, S.K., Armstrong, J.K., Dow, D.E., Maehara, F.E. “Multimouth surfaces for

Knight 57

synthetic actor animation” The Visual Computer: 10 (1994): 388-406.

Semwal, S.K., Hightower, R., Stansfield, S. “Closed Form and Geometric Algorithms for

Real-Time Control of an Avatar” IEEE Proceedings of VRAIS 1996.

Shakarji, C.M. “Least-Squares Fitting Algorithms of the NIST Algorithm Testing

System” J. of Research of the National Institute of Standards and Technology:

103, No. 6 (1998): 633.

Stone, M., DeCarlo, D., Oh, I., Rodriguez, C., Stere, A., Lees, A., Bregler, C. “Speaking

with Hands: Creating Animated Conversational Characters from Recordings of

Human Performance” ACM Transactions on Graphics: Proceedings of ACM

SIGGRAPH 2004: p 506-513.

Tabb, K., Davey, N., Adams, R., George, S. “Analysis of Human Motion Using Snakes

and Neural Networks” Articulated motion and deformable objects; Proceedings

from the International Workshop: Sep 2000: Spain: 48-57.

Theobalt, C., Albrecht, I., Haber, J., Magnor, M., Seidel, HP. “Pitching a Baseball -

Tracking High-Speed Motion with Multi-Exposure Images” ACM Transactions

on Graphics: Proceedings of ACM SIGGRAPH 2004: p 540-547.

Tolani, D., Goswami, A, Badler, N.I. “Real-time inverse kinematics techniques for

anthropomorphic limbs” Graphical Models: 62 (2000): 353-388.

Tresadern, P. and Reid, I. “Uncalibrated and Unsynchronized Human Motion Capture: A

Stereo Factorization Approach” University of Oxford, England

Tsai, H., “Symbolic Modeling and Dynamic Analysis of an Articulated N-Link Multibody

System with Joint Compliance in a Gravitational Field”, Ph. D. Dissertation at

Auburn University, Alabama, (1995).

Knight 58

van de Panne, M., Fiume, E., Vranesic, Z. “Reusable Motion Synthesis using State-Space

Controllers” ACM Computer Graphics: 24, no. 4 (Aug 1990): 225-234.

van de Panne, “From Footprints to Animation” Computer Graphics forum: 16, no. 4

(1997): 211-223.

Wee, L-B, Walker, M. W., McClamroch, N. H. “An Articulated-Body Model for a Free-

Flying Robot and Its Use for Adaptive Motion Control”, IEEE Transactions on

Robotics and Automation: 13, no. 2 (1997): 264-277.

Wee, L., Walker, M, McClamroch, N. H. “An Articulated-Body Model for a Free-Flying

Robot and Its Use for Adaptive Motion Control”

Welch, G., Bishop, G. “SCAAT: Incremental Tracking with Incomplete Information” U.

of North Carolina at Chapel Hill: http://www.cs.unc.edu/~welch.

Wiley, D. J., Hahn, J. K. “Interpolation synthesis of articulated figure motion” IEEE

Computer Graphics and Applications: 17 (Nov./Dec. '97): 39-45

Witkin, A, Kass, M. “Spacetime Constraints” Computer Graphics (SIGGRAPH 1988

Proceedings): 22: 335-342.

Yamane, K., Kuffner, J., Hodgins, J. “Sythesizing Animations of Human Manipulation

Tasks” ACM Transactions on Graphics: Proceedings of ACM SIGGRAPH 2004:

p 532-539.

Znamenácek, J., Valácek, M. “An Efficient Implementation of the Recursive Approach to

Flexible Multibody Dynamics” Multibody System Dynamics: 2, no. 3 (1998): 227

-251.

Knight 59

8 Appendix

8.1 Taylor Array Size

The size of the array of an m-dimensional Taylor expansion is derived here since

the formula is not readily available. The Taylor expansion can be represented compactly

as

Equation 8.1.1 f (r) = e(r−a)
T∇ f (a)

where the variables are

Constant vector a=
(
a0 a1 a2 · · · am−1

)T
Input vector r =

(
r0 r1 r2 · · · rm−1

)T
Differential operator vector ∇ =

(
∂
∂r0

∂
∂r1

∂
∂r2 · · · ∂

∂rm−1

)T
The exponential operator is expanded to

Equation 8.1.2 ey =
ω

∑
i=0

yi

i!

Where ω is the terminating limit of approximation and

y= (r−a)T∇ =
m−1
∑
i=0

(ri−ai) ∂
∂ri

Each term in the expansion of Equation 8.1.2 is a multinomial expansion. There

is a recursive relationship for the number of exponential expansion terms

Knight 60

Equation 8.1.3 Nω+1(m) =
m
∑
i=1

Nω(i)

Since N1(m) = m+1 and the fact that

Equation 8.1.4

m
∑
i=0

(
n+ i
n

)
=

(
n+m+ i
n+1

)
 and

(
n+ i
n

)
=

(
n+ i
i

)

leads to the conclusion that

Equation 8.1.5 Nω(m) =
(
ω+m
m

)

8.2 Inertial Properties of a Tetrahedron

Inertial properties can be quite difficult to calculate but can be exactly determined.

The moment of inertia and angular momentum is taken from standard analytical

mechanics books11 as

Equation 8.2.1 I =
Z
‖ŵ× r‖2dm

Equation 8.2.2 L=
Z
r× (w× r)dm

Where dm = ρ dV, the density times the differential volume.

The moment of inertia and angular momentum are very desirable traits to follow

during any dynamic simulation. They both involve integrating over the tetrahedral

Knight 61

11 Fowles 1977

volume. I have derived them below using parametrized coordinates. A point inside the

tetrahedron can be uniquely determined by

Equation 8.2.3 r = a0+(a1+(a2+a3t0)t1)t2

where

a0 = v2

a1 = v3− v2
a2 = v0− v3
a3 = v1− v0

and vi are one of the tetrahedron vertices

The differential volume is determined by the parameter space change formula

dV =
∂r
∂t2

·
(
∂r
∂t1
× ∂r

∂t0

)
dt0dt1dt2

∂r
∂t2

·
(
∂r
∂t1
× ∂r

∂t0

)
6t1t22VTet

Each parameter ti varies from zero to one for inside the tetrahedron so the entire

integral results in

Equation 8.2.4 I = 6m
ZZZ 1

0
‖ŵ× r‖2t1t22dt0dt1dt2

where ŵ is the angular velocity unit vector (i.e. the spin axis) and m is the mass of

the entire tetrahedron. The density of the tetrahedron is kept constant and thus the mass

is brought out of the integrand as the density times the volume. Performing the triple

integral produces a double sum. The integral turns into the double sum

Knight 62

Equation 8.2.5

�

I = 6m ˆ w ×  a i()
j= 0

3

∑
i= 0

3

∑ ⋅ ˆ w ×  a j() t0
n0ij t1

n1 ij t2
n2ij dt0dt1dt2

0...1
∫∫∫ where

nki j =
⌊
i+ k
3

⌋
+

⌊
j+ k
3

⌋
+ k

Integrating the double sum and expanding the ai terms into vi terms produces the

equation

Equation 8.2.6 I = m
3
∑
i=0

3
∑
j=0

qi jai j

ai j = (ŵ× vi) · (ŵ× v j)

qi j =
{ 1
20 j != i
1
10 j = i

Since both qij and aij are symmetric then Equation 8.2.6 reduces to ten terms.

The angular momentum is very similar with the integral

Equation 8.2.7

�


L = 6m  r ×  w ×  r ()t1t2

2dt0dt1dt2
0...1
∫∫∫

Equation 8.2.8 L= m
3
∑
i=0

3
∑
j=0

qi jbi j

bi j = vi× (w× v j)

In this case, bij is not symmetric so all sixteen terms must be calculated. A much

simpler form of these equations occurs when a body has a coordinate system that is

Knight 63

centered on its center of mass and is aligned to its principal axes. This simplification will

be approached in the next section. The following matrix equations separate out the

purely geometric quantity Q from the spinning quantity ŵ .

Equation 8.2.9 ITet = mTetŵTQTetŵ

Equation 8.2.10 LTet = mTetQTetw

QTet(r) = Q(Cmass− r)+
1
20

3
∑
i=0

Q(vi−Cmass)

Q(r) = rT r− rrT =

r2− x2 −xy −xz
−yx r2− y2 −yz
−zx −zy r2− z2


The time complexity of QTet is 30 multiplications + 54 additions. For each of the

above equations, the vectors are relative to the center of rotation. To generalize, one must

subtract the center of rotation from the four vertex vectors.

8.3 Inertial Properties of a Rigid Body

A rigid body has the property that it cannot be molded, stretched or deformed. It

still can be translated and rotated as a whole. This has advantages because it has a fixed

volume, mass, principal moments, principal axes and relative center of mass thereby

reducing the calculations for the inertial properties. The fixed values can be calculated at

time of creation of the body so it will not be necessary to recalculate during motion. The

center of mass and geometric tensor are simple weighted averages. The principal

moments and principal axes are much more complicated but only need to be calculated

once. The principal moments and axes are calculated by solving the eigensystem Ax = λx

where A is a symmetric matrix, λ are the eigenvalues (principal moments) and x are their

Knight 64

corresponding eigenvectors (principal axes). The system is usually solved by iterative

techniques like the Jacobi method (Press et al. 1992). In the case of the inertial body, the

symmetric matrix A is the Inertia Tensor, which is the mass times the geometric tensor, in

the center-of-mass reference frame. The center-of-mass geometric tensor can be isolated

by noting that, for a rigid body, the angular momentum is

LRB =∑LTeti

where the sought after tensor for the tetrahedral mesh is

Equation 8.3.1 QRB(r) =
1
mRB∑miQTeti−Q(CmassRB− r)

Each tetrahedron’s contribution must be calculated relative to the rigid body’s

center of mass. The eigensystem equation to solve then becomes

Equation 8.3.2 mQp̂= λ p̂

which has three real solutions for λ and their corresponding p. The eigenvectors p

are orthogonal12 and therefore any vector can be represented with components in the

three directions. The angular velocity vector is thus

w=
2
∑
i=0

wi p̂i

where wi = w · p̂i

Using this solution for a rigid body greatly simplifies the calculation efforts for

the dynamically changing moment of inertia and angular momentum. The formulae

become

Knight 65

12 Dettman, 1988

Equation 8.3.3

�

I = ˆ w i
2λi + m ˆ w TQ


C mass −

 r ()
i= 0

2

∑ ˆ w

Equation 8.3.4

�


L = wiλi ˆ p i + mQ


C mass −

 r ()
i= 0

2

∑  w

The complexity of these equations no longer depend on the number of

tetrahedrons that make up the rigid body. As long as the center-of-mass Cmass and p̂ are

continually updated as the body moves then this formula can be used directly.

8.4 User’s Guide for Macintosh Application

The following sections describe the use of the application that was built for the

research. The application was designed using the Xcode 1.5 integrated development

environment available for free from Apple and comes with the MacOSX 10.3 operating

system. There are 41558 lines of code with a total McCabe's Cyclomatic Complexity

Number of 7503. The application follows the recommended Macintosh human interface

and is compatible with MacOSX 10.1, 10.2, and 10.3 though only tested on 10.3. The

engine that drives the calculations are written entirely in standard portable C++ and the

graphics panes are written in OpenGL. The user interface is written in ObjectiveC that

compliment the NIB files for Interface Builder. Everything except the user interface is

portable. The code was compiled for the G4 processor and was tested on a PowerBook

G4.

Knight 66

8.4.1 Menu

The File Menu provides the basic file saving and retrieving capabilities some of

which are available in the Options Pane as well.

Add Figure

The Add Figure menu item (optionally use -1) allows the user to add a figure to

the graphics. A figure can be an Articulated Tetrahedral Mesh (ATM) file (as explained in

this Appendix); a MESH formatted file (both tetrahedral and triangulated); and a PLY

formatted file. Only the ATM file can be used for the hierarchical analysis of the motion

capture data. When this menu item is picked, a standard Open dialog is presented for

choosing a file. When a file is chosen, the file is parsed and presented in the Animation

Pane. The Options Pane text for the figure is filled out with the path of the file and the

height of the figure is filled out.

Get Data

This menu item (optionally use -2) will present a standard Open dialog to allow

the user to choose a C3D motion capture data file. The selected file will associate the

data with the currently active figure (see the Options Pane). Once chosen, the file is

parsed and connected lists of data frames are filled out.

Save Temp Correlation

This menu item allows the user to save a temporary correlation text file associated

with the C3D data file that was previously chosen. The text file can then be edited to

allow a hierarchical correlation of the data markers with segments on the figure. The

number of markers are stated on the first line (e.g. 41 WANDS). The marker set file

name is stated on the second line (e.g. MARKERSET vicon512.txt). Then comes a list of

Knight 67

marker correlations (e.g. Jim:RTHI = RTHI Right thigh). The left side of the equals sign

is the single word that the marker is labeled as in the data (e.g. Jim:RTHI). The right side

has a single word that corresponds to a marker in the above mentioned marker set file

followed by a free-form description.

Get Correlation

This menu item (optionally use -3) presents the user with an Open dialog to

retrieve a correlation file. The file is parsed and the left side is looked up in the C3D data

and the right side is looked up in the marker set file. The marker set file determines

which segment to attach the marker and where on the segment. If the marker is not to be

used in the correlation, just put some uncorrelated name (e.g. Unknown) on the right

hand side.

Get Motion

This menu item retrieves motion files that have been previous saved or manually

created. Motion files allow the user to create motion of an articulated figure based on a

Taylor expansion of any or all degrees of freedom.

Save Motion

This menu item will save the Taylor expansions that were created when the

“Analyze” button is pressed in the Graphs Pane.

Save Data

This menu item will save the joint angles that were created when the “Analyze”

button is pressed in the Graphs Pane.

Animate

This menu item will start the animation.

Knight 68

Info

This menu item will enable some graphics hardware information to be displayed

on the Animation Pane.

Close

This menu item will close the window.

8.4.2 Options Pane

The Options plane contains all of the figure, data, and animation options

available. On the right are all of the files that are used in the current analysis. The

Knight 69

“Marker Set Dir” is the directory that all marker set files are located for the correlation.

The “Figure” file is the currently active articulated model. The “Motion Data” file is the

current C3D being analyzed. The “Correlate Data” file is the correlation file that binds

the data with the hierarchical figure. The “replace” checkbox will replace the current

figure with the opened figure if it is on. Otherwise the opened file will be added to the

scene. The “ft->m” checkbox will convert the motion data from feet to meters if on. The

“x2” button will multiply the data sampling rate by two. The last two buttons are there

for convenience since the data does not always specify the correct units or sampling rate.

Once the data is read in, the height and sampling rate text can be edited to whatever size

and the internal data will be updated. The same goes for the Figure information. The

height of the figure can be edited.

Drawing Options

The many checkboxes allow the selection of various things to be drawn in the

Animation Pane. “Loop Animation” will make the animation repeat when the maximum

time of the data is reached. “Show Data Paths” will display the paths taken for each

marker in the data. The paths will be colored lighter if the marker has been correlated to

the figure. “Show Figures” will display all figures that have been read in. “Draw Floor”

will ... draw the floor?! The other checkboxes draw extra little goodies on the figure.

Knight 70

8.4.3 Animation Pane

This pane is where all of the action happens. Select this pane once all of the files

and options are set in the Options Pane. The time of the animation is displayed in the

upper right in seconds. The Capture Screen button will take an exact snapshot of the

OpenGL window and allow the user to save it as a TIFF file. The TIFF file is a 32-bit

ABGR8888 color file. The “Capture Movie” checkbox is similar except that it saves

many TIFF files at 0.1 second intervals for the entire loop. The “Follow Data” starts the

animation process which involves draw the moving figure and the skeleton in the data.

There are options for panning the scene around. If the Command key () is held down

while the mouse button is held down and the screen is dragged by the mouse, then the

scene is dragged up/down or left/right. If the Option key is held down with the mouse

Knight 71

button, the user can zoom in or out of the scene with the mouse. With just the mouse

button and the mouse dragging, the user can rotate the scene around the (0,0,0) point.

8.4.4 Graphs Pane

This pane was added for analysis of joint angles was just a visualization aid for

research. The analyze button currently were try to determine angles needed to rotate in

order to follow the current data-set. Once the analysis is done, a joint can be picked from

the pop-up. When the user slides the horizontal time bars left and right, a new Taylor

expansion will be generated for the time window.

Knight 72

8.5 Specification for Articulated Tetrahedral Model Format

The Articulated Tetrahedral Model (ATM) file format was created in order to

bring together the necessary information to produce a jointed figure. It is a text format

that references other the individual segments’ mesh files. The text file has keywords

followed by values and sub-fields. All words are separated by spaces. The following are

the list of available keywords:

FIGURE myFigure

This keyword defines the name of the entire figure.

SEGMENTS 16

The number of segments of the figure follows:

Knight 73

MESH 0 chest.mesh

MESH identifies the mesh file that follows the index value. The file is identified

as a tetrahedral or triangular mesh in the *.mesh format defined by the freeware MEDIT

tool for editing meshes. The filename is for a file that is located in the same folder as the

ATM file.

NAME Chest

The name of the segment follows this keyword.

MASS 30.0 // kg

The mass of the segment follows this keyword.

SCALE_XYZ 0.2 0.2 1.0
TRANSLATE_X 1.5
TRANSLATE_Y 1.5
TRANSLATE_Z 1.5
TRANSLATE_XYZ 1.5 2.5 3.5
ROTATE_X 35.2
PARENT 4 // hips

The index of the parent segment is defined here.

JOINT Waist
 3 0.994765 1.002953 1.084350
DEGREES_OF_FREEDOM 1 0
 VALUE 0.0
 3 -0.257042 0.966392 -0.003915
 FROM -93.199994 TO 29.000000

The name of the joint that is proximal to this segment is defined here followed by

joint parameters. The center of rotation is defined immediately following the JOINT

keyword. First a count of how many dimensions for the vector is specified (usually 3).

Knight 74

Then, each coordinate, e.g. x y z. After the joint position, its freedoms are defined.

DEGREES_OF_FREEDOM is followed by two integers. The first is the count of

rotational freedoms, and the second is the count of translational freedoms. Then comes

the list of freedom parameters for which there are three for each freedom. The current

value is defined, then the freedom axis, then the freedom limits. Rotational limits and

values are in degrees and translational ones are in meters.

CHILDREN 3
 1 // Neck
 2 // Upper Left Arm
 3 // Upper Right Arm

The list of child indices are defined here

ENDMESH

Mandatory ending of the segment information

ENDFIGURE

Mandatory ending of the figure information

8.6 Proof of Positive-Definite Matrix for Rotation Point

Positive-definite is defined as hTAh> 0 for an arbitrary vector h ≠ 0. The matrix

of interest is

A=
1
N∑ pi(pTi − pT)

This can be re-arranged as a double sum to

A=
1
N2∑i ∑j

pi(pTi − pTj)

Then applying an arbitrary vector h

Knight 75

hTAh=
1
N2∑i ∑j

hT pi(pTi h− pTj h)

Now defining qi = hT pi simplifies the double sum

hTAh=
1
N2∑i ∑j

qi(qi−q j)

This further simplifies to

hTAh= q2−q2

which is always positive for an arbitrary set of values qi except for one non-trivial case.

The exception is when the pi are coplanar. In the coplanar case, all qi are the same

constant when h is the normal to the plane and therefore hTAh=0.

8.7 Relevant C++ Implementations

8.7.1 Minimum Variance Method

void Segment::GetDataRotationPoint()
{
 Event * e = NULL;
 unsigned int j;
 Vector p(3),p3(3);
 Vector b,r,v,p_i;
 Matrix A(3,3),P2(3,3);
 double p2 = 0.0,cn;

 if(CollectRelativeDataPoints())
 {
 e = pathToFollow.beginning;
 while(e)
 {
 p_i = e->position;
 p += p_i;
 P2 += p_i.MultTranspose(p_i);
 p2 = p_i*p_i;
 p3 += p2*p_i;

Knight 76

 e = e->next;
 }
 if(pathToFollow.count)
 {
 j = pathToFollow.count;
 P2 /= j;
 p /= j;
 p3 /= j;
 p2 = P2.Trace();

 b = 0.5*(p3 - p2*p);
 A = P2 - p.MultTranspose(p);

 // find answer based on the idea that the matrix A
 // is positive-definite
 r = A.CholeskyDecomposition().CholeskyBacksubstitution(b);

 // get Null vector based on a threshold
 // that is a little above the inverse of
 // the condition number
 cn = A.ConditionNumber();

 v = A.NullSpace(1.000001/cn).Column(0);
 relativeDataParentOneDOFaxis = DirectionVector(v);
 // project the answer onto plane if
 // the condition number is large “enough”
 if(cn > 100.0)
 {
 r = r + v*((p-r)*v);
 }

 }
 }
 relativeDataParentRotationPoint = PositionVector(r);
}

8.7.2 Rotation Point Calculation of Hierarchical Articulated Data

void Segment::SetDataRelativeStuff() // call from root
{
 Matrix dataAxes = Matrix::Identity(3);
 PositionVector dataCenter,rot,c,v;
 unsigned int i;
 Units::Time::second t = 0.0;
 Event * e[numCorrelated];

Knight 77

 // calculate the data centroid
 unsigned int n = 0,n1=numCorrelated;
 if(correlatedFrame.NextFrame(n1,e,t))
 {
 c = 0.0;
 for(i=0; i<numCorrelated; i++)
 {
 if(e[i])
 {
 c += e[i]->position;
 n++;
 }
 }
 if(n)
 c /= n;
 }
 if(parent)
 {
 GetDataRotationPoint();
 if(parent->numCorrelated == 0) // set from parent's
 parent->relativeDataParentRotationPoint =
relativeDataParentRotationPoint;
 t = 0.0;
 if(parent->GetDataAxes(t,dataAxes,dataCenter))
 {
 rot = dataCenter +
dataAxes*relativeDataParentRotationPoint;
 v = dataAxes*relativeDataParentOneDOFaxis;
 }
 else
 {
 cerr << "No parent data axes for " << name << endl;
 rot = PositionVector(0.0,0.0,0.0);
 v = PositionVector(1.0,0.0,0.0);
 }
 t = 0.0;
 if(GetDataAxes(t,dataAxes,dataCenter))
 {
 relativeDataRotationPoint = (rot - dataCenter)*dataAxes;
 relativeDataCentroid = (c - dataCenter)*dataAxes;
 relativeDataOneDOFaxis = dataAxes.Transpose()*v;
 }
 else
 {
 cerr << "No self data axes for " << name << endl;

Knight 78

 }
 }
 else // root
 {
 t = 0.0;
 if(!GetDataAxes(t,dataAxes,dataCenter))
 cerr << "Damn, root really needs >= 3 correlated markers"
 << endl;
 relativeDataCentroid = (c - dataCenter)*dataAxes;
 relativeDataRotationPoint = relativeDataCentroid;
 relativeDataOneDOFaxis = DirectionVector(1.0,0.0,0.0);
 relativeDataParentOneDOFaxis = DirectionVector(1.0,0.0,0.0);
 relativeDataParentRotationPoint = PositionVector(0.0,0.0,0.0);
 }
 for(i=0; i<numChildren; i++)
 children[i]->SetDataRelativeStuff(); // recursive
}

8.7.3 Calculation of fixed axes of data

bool Segment::GetDataAxes(Units::Time::second& t,
 Matrix& dataAxes,
 PositionVector& dataCenter) const
{
 Event * e[3] = {NULL,NULL,NULL};

 // a segment without axes data, use parent's
 if(parent && axesFrame.numElements == 0)
 {
 if(!parent->GetDataAxes(t, dataAxes, dataCenter)) //
recursive
 return false;
 }
 // for root and all segments with many points gets in here
 else if(axesFrame.numElements == 3)
 {
 if(!axesFrame.NextAbsoluteFrame(3,e,t))
 {
 if(t < axesFrame.maxTime)
 cerr << "Missing events for " << jointName << " t " <<
t << endl;
 return false;
 }
 dataCenter = e[0]->position;

Knight 79

 dataAxes = Matrix::Axes(dataCenter,e[1]->position,e[2]-
>position);
 }
 // segment must have parent beyond this point
 else if(!parent)
 {
 return false;
 }
 else if(axesFrame.numElements == 2)
 {
 Matrix pDataAxes;
 PositionVector pDataCenter;
 if(!axesFrame.NextAbsoluteFrame(2,e,t))
 return false;
 if(!parent->GetSameDataAxes(t, pDataAxes, pDataCenter)) //
recursive
 return false;
 dataCenter = pDataCenter + pDataAxes *
relativeDataParentRotationPoint;
 dataAxes = Matrix::Axes(dataCenter,e[0]->position,e[1]-
>position);
 }
 else if(axesFrame.numElements == 1)
 {
 Matrix pDataAxes;
 PositionVector pDataCenter,r2;

 if(!axesFrame.NextAbsoluteFrame(1,e,t))
 return false;
 if(!parent->GetSameDataAxes(t, pDataAxes, pDataCenter)) //
recursive
 return false;
 dataCenter = pDataCenter + pDataAxes *
relativeDataParentRotationPoint;
 r2 = dataCenter + pDataAxes*relativeDataParentOneDOFaxis;
 dataAxes = Matrix::Axes(dataCenter,r2,e[0]->position);
 }
 else
 return false;
 return true;
}

8.7.4 Drawing Rotation Points with Constants of Motion

void Segment::DrawNearestEvents(double radius, Units::Time::second t)

Knight 80

{
 unsigned int i;
 Matrix dataAxes,dataAxes0,dataAxes1;
 PositionVector dataCenter,dataCenter0,dataCenter1,rot,pos,ep;

 Color::White.glColor();
 correlatedFrame.Draw(radius*0.5,t);
 t -= 0.00001;
 if(parent && parent->GetDataAxes(t, dataAxes0, dataCenter0))
 {
 rot = dataCenter0 + dataAxes0*relativeDataParentRotationPoint;
 }
 else if(parent != NULL)
 {
 return;
 }
 if(GetDataAxes(t, dataAxes, dataCenter))
 {
 if(parent == NULL)
 rot = dataCenter + dataAxes*relativeDataCentroid;
 }
 else
 {
 return;
 }
 glBegin(GL_LINES);
 for(i=0; i<numChildren; i++)
 {
 rot.glVertex();
 (dataCenter + dataAxes*children[i]-
>relativeDataParentRotationPoint).glVertex();
 }
 if(numChildren == 0)
 {
 rot.glVertex();
 (dataCenter + dataAxes*relativeDataCentroid).glVertex();
 }
 glEnd();
 if(numChildren == 0)
 correlatedFrame.DrawLines(t);
}

Knight 81

8.8 Kalman Filter

The Kalman filter was developed in the 1960’s and has been proven successful in

describing complex motion. It has been used in a wide variety of applications including

tracking missiles from radar measurements to sensor calibration for motion capture

systems. The complexity of defining the process and measurement errors before-hand

makes this system unwieldy when solving a problem with no a-priori knowledge. The

implementation here attempts to solve the problem of finding the point of rotation of a

joint. Upon implementing this, it was found that the Kalman filter was not robust and

found the solution in only a small percentage. It tended to converge to a solution that had

some bias or outright diverge to infinity. Presented in this section are the equations used

to attempt the Kalman Filter solution to the rotation point.

8.8.1 Theory

Each measurement p is assumed to be of the form

pi = r+Liρi where

ρi =

cosθi cosφisinθi cosφi
sinφi


The Kalman Filter attempts to correct a solution by compensating for a-priori

knowledge of the noise and a new measurement. The measurement vector z is used to

recalculate the current state x which is composed of both constants of motion as well as

changing variables. Each measurement has the same rotation point and different lengths

Knight 82

therefrom. Each of those is a constant of the process and therefore the time derivative is

zero. The moveable quantities are the angles defined above for each measurement.

x=
(
rx ry rz L0 θ0 φ0 θ̇0 φ̇0 L1 · · ·)T

z=
(
p0x p0y p0z p1x p1y p1z p2x p2y p2z · · ·)T

The Jacobi matrix is the amount the measurements change with respect to the

process variables.

Hi j =
∂zi
∂x j

H =



1 0 0 ρ0x −L0ρ0y −L0 cosθ0 sinφ0 0 0 0
0 1 0 ρ0y L0ρ0x −L0 sinθ0 sinφ0 0 0 0
0 0 1 ρ0z 0 L0 cosφ0 0 0 0
1 0 0 0 0 0 0 0 ρ1x
0 1 0 0 0 0 0 0 ρ1y
0 0 1 0 0 0 0 0 ρ1z
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 . . .


Another matrix is used during the Kalman Filter and is the amount the process

variables change with respect to the previous process values. Below is a simple linear

model.

Ai j =
∂xk,i

∂xk−1, j

A=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 Δt 0 0
0 0 0 0 0 1 0 Δt 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 . . .



Knight 83

A new guess of the process variables are calculated from iterating over the

following equations:

xk = Ax′k−1

Ck = AC′
k−1AT

z′k = Hxk

G= (HCkHT)−1CkHT

x′k = xk+G(zk− z′k)

C′
k = (1−GH)Ck

This is the simple linear model for Kalman filtering and relies on the initial guess

of the state variables and the error covariance matrix C. Each iteration will produce a

refinement of the process variables in x and the covariance matrix will tend towards zero.

Once it converges, the rotation point is realized inside the vector x. There were too many

cases of divergence during the investigation so the method was not continued.

Knight 84

