
AMPL: Active Multi-Power Level Cluster Formation

by

Jeffrey D. Rupp

B.S.C.S University of Colorado, Colorado Springs 2000

A thesis submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

2006
ii
This thesis for the Master of Science degree by

Jeffrey D Rupp

has been approved for the

Department of Computer Science

by

Dr. Edward Chow

Dr. Sudhanshu K. Semwal

Dr. Xiaobo Zhou

 Date

iii

Abstract

Jeffrey D Rupp

AMPL: Active Multi-Power Level Cluster Formation

Thesis directed by Professor Edward Chow.

Active Multi-Power Level Cluster Formation (AMPL) uses multiple levels to broadcast an initial hello message to establish the ranges at which nodes can detect each other. Every node executes this hello protocol, so that all nodes have a mapping of all the nodes they can hear. This allows for a pro-active cluster formation process, and facilitates the transfer of cluster head duties. This algorithm does entail more messages initially, but during the life of the network the traffic is predominantly for the data flow. Traffic and thus power is not expended on re-forming clusters until it becomes necessary. To confirm the theory behind my clustering algorithm I have created a simulator, which is focused on the power consumption aspect of wireless sensor networks.

iv

Contents

Abstract
iii

Chapter 1
Introduction
1
1.1
Document Organization
1
1.2
Background Information
1
1.3
Related Work
2
1.3.1
Cluster formation Algorithms
2
1.3.2
Network Simulators
3
Chapter 2
Active Multi-Power Level Cluster Formation (AMPL) Description
4
2.1
Cluster Formation
8
2.1.1
Pseudo-Code
10
2.2
Cluster Head Transition
12
2.3
Optimizations
13
2.4
Performance analysis
14
Chapter 3
Simulator Architecture
28
3.1
Scheduler
29
3.2
Plug-in classes
31
3.3
Settable parameters
36
3.4
Automatically varied parameters
40
3.5
Simulator Main GUI
41
3.6
Debug Output
48
Chapter 4
Conclusions
49
4.1
Active Multi-Power Level Cluster Formation
49
4.2
Simulator
49
Chapter 5
Interesting Problems Encountered
51
Chapter 6
Future Work
53
Chapter 7
References
54

v

List of Figures

6Figure 1: Hello levels

Figure 2: Cluster members
6
Figure 3: Normal communication
7
Figure 4 Tired cluster head
13
Figure 5 Total simulation tics
19
Figure 6 Total Bits
20
Figure 7 Average Power Per Packet
21
Figure 8 Transmit Levels
22
Figure 9 Re-hello Percent
23
Figure 10 Nodes Per Cluster
24
Figure 11 Ramp Area
25
Figure 12 Simulator Parameters
31
Figure 13 Ramped values
39
Figure 14 Main Simulator GUI
41
Figure 15 File Menu
41
Figure 16 Setup Menu
42
Figure 17 Graphs Menu
42
Figure 18 Help Menu
42
Figure 19 About Dialog
42
Figure 20 Debug Dialog
43
Figure 21 Color Key Dialog
44
Figure 22 Node Representation
45
Figure 23 Cluster Head Node
45
Figure 24 Cluster Indication
45
Figure 25 Power Levels
46
Figure 26 Node Information
46
Figure 27 Graph Display
47

 Chapter 1 Introduction

1.1 Document Organization

The Introduction gives some background information and addresses some related work for both AMPL and the network simulator. The Algorithm Description section goes into detail on how AMPL works and the experimental findings provided by the simulator. The Simulator Architecture section describes how the simulator is constructed, providing details on how it is implemented and how to expand the simulator via the plug-in interface. The Interesting Problems Encountered section describes some of the more interesting difficulties encountered and discoveries made during the creation of the simulator and testing of the various algorithms. The Future Work section lists several areas that merit further exploration.

1.2 Background Information

Small inexpensive wireless sensors are quickly finding broad application in today’s market place. Wireless sensors are being used by commercial and military customers to monitor a wide variety of environmental parameters. As the use of these types of sensors grows, the demand for the sensors to last as long as possible becomes more and more market driven. Cluster formation is a promising approach to help meet this goal. Cluster formation allows several nodes to consolidate their data to a single cluster head, the cluster then head relays the aggregated data to the sink node. In a system utilizing clustering the child nodes are able to transmit at a lower power level to their head node. Only the head node must transmit at a higher power level to relay the data to the sink node. To allow us to test various algorithms, it is useful to have a simulator geared to measure the desired requirements.

1.3 Related Work

1.3.1 Cluster formation Algorithms

There are many cluster forming algorithms in existence already, such as: TEEN (Threshold sensitive Energy Efficient sensor Network protocol)[9] for reactive networks. Fault Tolerant Clustering of Wireless Sensor Networks [1] which addresses fail-over in networks. Scaleable Self-Assembly for Ad Hoc Wireless Sensor Networks [2] which describes a link level Ad-hoc network scheme. A Clustering Scheme for Hierarchical Control in Multi-hop Wireless Networks [6] which uses geometry, and thus knowledge of the nodes location, to for an efficient topology. Low Energy Adaptive Cluster Hierarchy with Deterministic Cluster-Head Selection [7] which modifies LEACH [16] to add determinism to the cluster head selection. Energy Efficiency of Many-to-One Communications in Wireless Networks [9] which attempts to determine the ideal minimum energy required to gather data for both flat and clustered networks. Optimal Energy Aware Clustering in Sensor Networks [10] which forms balanced clusters based on distance and node distribution. FLOC: Fast Local Clustering Service for Wireless Sensor Networks [11] which forms clusters based on distance restrictions where all nodes within a set distance become part of a cluster with no nodes farther than that distance. There have been many derivative efforts to improve a given algorithm for a specific feature [12], as well as many other efforts to produce an optimal clustering algorithm.

In this paper I compare AMPL with LEACH [16], a well known rounds based algorithm, HEED [1], a rounds based algorithm that does more work on determining the next cluster head, and a system that uses no cluster heads, instead every node must relay every message to ensure all messages reach the sink node. The LEACH [16] algorithm uses a rounds approach where the cluster head duties are transferred to a new node at predetermined intervals. LEACH [16] uses a formula that ensures every node serves a turn as cluster head over the course of the rounds. LEACH [16] uses the received power level to determine the transmit level for the child nodes, thus the child nodes do not transmit at maximum power. The HEED [1] algorithm also uses a rounds approach where the head duties are transferred at a predetermined periodic interval. HEED [1] uses more logic than LEACH [16] in selecting the next cluster head. In the HEED [1] algorithm the remaining power in a node is factored into the choice for cluster head. The non-cluster forming algorithm is included to provide a worst case example to compare the other algorithms to.

1.3.2 Network Simulators

 NS2 (http://www.isi.edu/nsnam/ns/) provides a simulation of network traffic and topology, but not the aspects of particular interest to wireless networks, power consumption and cluster formation. JSim (http://www.j-sim.org/whitepapers/ns.html) is similar to NS2 in that it concentrates more on the topology, not on the constraining factors of a wireless network. NAB (http://nab.epfl.ch/viz.html) is also a topology oriented simulator, concentrating on the flow of data rather than the power needed to achieve this flow.

 Chapter 2 Active Multi-Power Level Cluster Formation (AMPL) Description

In an effort to create clusters in a more planned fashion, I have created and tested with my simulator an algorithm that uses a multiple level neighbor finding protocol to determine cluster heads. This algorithm attempts to make more informed decisions on which nodes to cluster together based on the levels at which the nodes can hear each other. By doing so the intent is that the clusters do not have to reform regularly, as in the rounds approaches used by both LEACH [16] and HEED [1]. Also with the many level neighbor finding approach nodes are more certain of the power levels at which they need to communicate. The nodes will communicate with their cluster head at the lowest level at which they heard the cluster head node, then the cluster head aggregates the data and relays it to the sink node at a higher power level. This allows the majority of the nodes to pass their data on to their cluster head at a low power level. The cluster head duties are reassigned by the current cluster head when it reaches a level of 40% of the power it had upon assumption of cluster head duties. The current cluster head sends a proactive message to its child nodes to determine which currently has the most power, then passes the cluster head duties to that child.

AMPL uses a configurable number of broadcast levels to determine the range at which neighboring nodes can be heard. At a signal from the sink node, after the nodes have been deployed, each node broadcasts a message at each of the levels. The nodes that hear the broadcast record the source node and the lowest level at which it was heard. The initial cluster formation takes more time than with the other algorithms due to the multiple levels. This initial formation cost is balanced out by the later dynamic cluster head re-assignment logic. Once all the nodes have finished their broadcasts, the sink node sends a message telling them to begin to form clusters. The sink node begins with the transmit power level at the lowest level and works its way up until a node responds that it has heard. The node that heard the sink node’s message will begin forming clusters, by telling all of the nodes in its neighbor list below a configurable power threshold that it wants to become their cluster head. The cluster formation limits the number of nodes per cluster to a configurable quantity. The nodes that have been told to join a cluster have the option of rejecting the offer if they are cluster heads themselves or are members of anther cluster. To reject an offer of a cluster head a node sends a message to the offering node stating its rejection. Once a node has clustered all the neighboring nodes it has heard below a configurable power threshold, that node tells the neighboring nodes it heard at higher levels to form their own clusters. This process cascades until all nodes are either cluster heads, or members of a cluster.

[image: image24.wmf]

Figure 1: Hello levels shows a node with its Hello power levels drawn as dotted circles. The pink square in the upper left corner is the sink node.

[image: image25.wmf]

[image: image26.jpg]Figure 2: Cluster members shows a cluster formed based on the Hello levels. The circles around the nodes indicate cluster membership, the blue square beside a node indicates that it is the cluster head.

Once the initial cluster heads have been established the network goes into the data gathering mode. In this mode the nodes periodically transmit the sensor data they have gathered to their cluster head, at the lowest possible power level as determined by the table the node has containing the initial neighbor finding node to level mapping. The cluster head then aggregates the data to transmit it to the sink node periodically. The transmit to the sink node is done at the same interval as the data gathering, hence the cluster head relays the aggregated data after it has sampled its data. The transmit to the sink node is accomplished by transmitting at maximum power since this algorithm does not establish a path to the sink node. Also due to not having a path to the sink node, any cluster head that hears a message destined for the sink node must relay that message. This relay approach causes the cluster heads to consume power much faster than their child nodes. When the cluster head senses that it is at a power level that is 40% of the power level it had when it assumed the cluster head duties it sends a message to its child nodes to determine which has the most power. The child nodes all respond to their parent node with their current remaining power. The current cluster head then chooses from its children the node with the most power and transfers the cluster head duties to that child. Part of the transfer process is to send a list of the child nodes to the new cluster head. The now former cluster head also informs the other children of the new cluster head so that the children will transmit their sensor data to the new cluster head.

[image: image27.jpg][image: image28.jpg]Figure 3: Normal communication shows the normal communication phase. The dark blue lines are from children to their cluster heads, the light blue lines are from the Cluster heads to the sink node. The Cluster head messages all get relayed by the other cluster heads.

This algorithm places more intelligence in the nodes themselves, since they are keeping a list of neighbors and keeping track of their own power levels. This complexity provides a more precise control over the clusters and the transference of the cluster head duties.

2.1 Cluster Formation

The cluster formation process is initiated by a message from the sink node. The sink node begins by transmitting at its lowest power level and incrementally increases the transmit power level until a node responds that it heard the sink node’s message. This first node then begins the hello protocol. The nodes have a pre-determined number of levels at which they will transmit the hello message. The hello message consists of a single byte indicating the level at which the message was transmitted. This level indicator allows the nodes that hear the message to catalog the exact level at which the transmitting node was heard. The level indicator was chosen over the receiving nodes detected power level to provide a more accurate indication of the power, not dependent on the reception node’s characteristics. The transmitting node transmits one broadcast message at each predetermined level.

Each node that receives the hello message catalogs the node number that sent it and the level at which it was transmitted. Receiving nodes will mark themselves as needing to perform the hello protocol after they receive the transmitting node’s highest level transmission. This delays the next round of hello messages until after the first node completes. The subsequent nodes then rely on the transmission control protocol to avoid collisions. Eventually all nodes will execute the hello protocol, this provides all nodes with a table of their neighbor nodes and the power levels at which they were heard.

When the sink node decides that sufficient time has passed for the hello protocol to finish it sends a message to initiate cluster formation. This is accomplished in the simulator by monitoring the scheduling queue. The decision that a phase is complete is made when the scheduling queue is empty for ½ second of real-time. The message to begin forming clusters is sent out at the same power level at which the initial begin-hello message was sent, so that only one node will receive it. This first node to receive the message marks itself as a cluster head. The cluster head then chooses from its table of nodes heard the nodes it heard below a threshold, limited by a predetermined cluster size. The threshold at which a node is chosen as a child versus told to form its own cluster must be low enough that the resulting cluster will leave some nodes at higher levels in the table. This ensures that the broadcast messages will reach other cluster heads. If the child threshold is too high then the clusters will cover too large an area and the broadcast messages will not be heard by other cluster heads to be passed along to the sink node. The cluster head then sends a message to each of the chosen children that it wishes to become their cluster head. If the child node is a cluster head itself already, or is a member of another cluster, it will send a reject message back to the requesting cluster head. Eventually sink node must decide when sufficient time has passed for clusters to form to send a begin-normal-communication message. This is accomplished by the simulator through monitoring the scheduling queue once more.

Once the nodes receive the begin-normal-communication message, they will begin gathering the data they are designed for and passing it to their cluster heads. The child nodes will transmit to their cluster head at the level at which they heard the cluster head. Periodically the cluster head will aggregate the data received from the child nodes to transmit a broadcast message that contains a flag indicating that it is intended for the sink node. Other cluster heads are required to relay the broadcast messages to ensure that the message eventually reaches the sink node. This algorithm does not attempt to determine a path to the sink node, hence all cluster heads must relay all broadcast messages.

2.1.1 Pseudo-Code
Sink node:

transmitLevel = 1

gotResponse = false

while not gotResponse && transmitLevel <= maxLevel

TransmitHello(transmitLevel)

gotResponse = WaitForResponse(timeout)

transmitLevel++

if not gotResponse

alarm “no nodes within transmit range”

exit –1

Nodes:

Methods:

DoHello()

state = doingHello

while transmitLevel <= maxLevel

TransmitHello(transmitLevel)

transmitLevel++

state = needToDoHello

message = WaitForMessage(timeout)

if message == doHello

transmitLevel = 1

DoHello()

else if message == Hello

if not heardNode(sourceNode)

record node and level

if level == maxLevel

transmitLevel = 1

DoHello()

else if message == FormClusters and not clustered

children = 0

amClusterHead = true

clustered = true

clusterHeadPower = currentPower

while children <= maxChildren

child = NextLowestLevelHeardNeighbor()

if LevelHeard(child) <= threshold

TransmitTellHead(child, myNodeNumber)

children++

else

TransmitFormCluster(child)

else if message == TellHead

if not clustered

clustered = true

clusterHead = sourceNode

else

TransmitRejectHead(sourceNode)

else if message == RejectHead

children.remove(sourceNode)

else if message == data and amClusterHead

aggregateData

else if message == broadcast

if amClusterHead and not propagated(messageNumber)

PropagateMessage(message)

Periodic functions:

GatherData

TransmitData(clusterHead)

if amClusterHead

aggregateData

TransmitAggregateData(broadcast)

if current power == 40% * clusterHeadPower

TransmitReportPowerLevel(all children)

WhenAllChildrenReported or timedout

Tell strongest child to become clusterhead

Tell strongest child list of child nodes

amClusterHead = false

clusterHead = strongestChild

TransmitAssignNewClusterHead(strongestChild, allNodes)
2.2 Cluster Head Transition

While the nodes are doing their periodic data gathering and transmitting, the cluster head node will test if its current power level is less that 40% of the power level it was at when it assumed the duties of cluster head. If so the cluster head will transmit a message to all of its children requesting them to report their current power level. After all children have reported, or after a timeout period has elapsed to allow for dead children, the cluster head will choose the strongest child that has reported and pass the cluster head duties to it. The node that has just given up the cluster head duties will then tell all of its previous children to use the new node as cluster head, and assign the strongest child to be its cluster head. The node that has just given up the cluster head duties also transmits a message to the new cluster head that contains a list of all of its child nodes, minus the new cluster head but including itself. Once this is accomplished the one time cluster head is now identical to the other child nodes, and the strongest child node is now the cluster head.

Figure 4: Tired cluster head shows a cluster head that is getting tired. The cluster head sends a message to request the power levels of all of its children. It then picks the child with the most power and makes that the new cluster head.

2.3 Optimizations

When the cluster head is doing its periodic operations it tests to see if it has no children, if so it tests to see if it received offers from other nodes to join their cluster. If so then the node picks the cluster head it heard at the lowest level and joins that cluster. This prevents nodes that could be clustered from being a head with no children, which would be a waste of power.

2.4 Performance Analysis

The simulator gathers several metrics to determine the quality of an algorithm.

· Total tics the simulation ran: Indication of the duration that the network remained functional.

· Average power left to each node at the end of the simulation: The Average power left is most useful when running the simulation for fixed number of tics, as this shows how much power remains after a set duration.

· Average number of hops of all of the packets transmitted during the simulation: Indicates how long the trip to the sink node was for each packet of data.

· Average power consumed by each packet transmitted during the simulation: Another indicator of how long the trip to the sink node was for each packet of data (power instead of hop count)

· Total number of packets transmitted during the simulation: The total data packets to travel the network, this indicates the amount of sensor data to reach the sink node.

· Total Data Bits (the total packets * data size in bits): The total number of data bits to traverse the network shows how much sensor data was able to make it to the sink node. This is one of the most important metrics as it illustrates the quantity of data the network topology was able to support.

By allowing many variable transmission levels AMPL permits the data to travel to the sink node at a lower power per packet than the other algorithms. The most significant difference between AMPL and LEACH [16] or HEED [1] is that I methodically map out all of the transmission-reception relations between all of the nodes. This allows for a more consistent transfer of the cluster head duties. This also allows for a step that I have not implemented, which would be to pass along all of the node level reception relations back to the sink node. With all of these mappings the sink node could then develop an accurate map of the locations of the nodes and assign optimal clusters based on that mapping. The sink node could also use the mapping data to provide a shortest path route to the sink node, eliminating the need for the cluster heads to relay all broadcast messages.

A significant advantage of my clustering algorithm is the pro-active nature of the cluster head transfer. In LEACH [16] and HEED [1] the cluster head may run out of power during a round, resulting in all of the nodes using that cluster head to lose their data until the end of that round. In AMPL the cluster head will notify its members when it is getting tired and elect a new cluster head. This process keeps more nodes alive longer, and prevents child node data from being lost as easily. This problem can be alleviated in LEACH [16] and HEED [1] by shortening the round duration, however this will lead to more power consumed for the purposes of cluster head selection. LEACH [16] and HEED [1] will automatically correct for a dead cluster head during the next round, when a new head will volunteer. In AMPL if the cluster head dies before it can transfer the cluster head duties, the entire cluster is lost, hence the need to constantly monitor the power level.

The cluster formation will take an approximately calculable amount of time and power. For the initial hello is a more precisely ascertainable quantity, however the subsequent cluster formation can only be estimated as the exact number of location of the cluster heads will be determined by the network timing. The initial hello power consumed per node is given by:

Summation (1, numLevels) (i) * maxPower/numLevels * bitsPerHelloMessage * (1/data rate bits per second * 3600 seconds per hour)

Results in the watt-hours consumed per node to perform the hello protocol, which only occurs once.

Summation (1, numLevels) (i) * bitsPerHelloMessage * (1/data rate bits per second)

Results in the number of seconds to accomplish the initial hello protocol.

The power consumed by each node for the cluster formation that follows the hello sequence results in each cluster head on average sending out the cluster size number of messages, with some percentage rejected. Plus each cluster head must tell all the nodes it heard outside the cluster formation range to form their own cluster. The resulting power consumption is dependent on the node density of the network.

In comparing the various algorithms, LEACH [16] provided the most data transmitted to the sink node, while AMPL lasted the longest duration of time. The difference was due to LEACH [16] not creating as many cluster heads, typically only a few cluster heads even with 150 nodes. When this is combined with the requirement I imposed that cluster heads must relay messages destined for the sink node it results in AMPL with about 15-20 cluster heads for 150 nodes expending a lot more power as each cluster head relays each sink node message at full power. A weakness of the LEACH [16] algorithm with fewer heads is that the broadcast messages may not be heard by another cluster head, resulting is the data for that portion of the network being lost. The HEED [1] algorithm resulted in an excessive number of cluster heads, often more than half the nodes. This is due to the logic of this algorithm, wherein the probability of a node becoming a head increases with each stage of the advertisement during each round. The end result is that from one stage to the next it becomes quite likely that all the nodes will try to become cluster heads. This result could be alleviated by an optimization step wherein an advertising node backs out of its advertisement if it hears an advertisement from another node at a low power level. The disadvantage of this optimization is that the node that backed out would have to transmit a message indicating that it had done so. I did not test this optimization.

Tests were performed by implementing each of the algorithms according to their specification. The four algorithms tested were: No algorithm, each node must relay every message it hears to ensure the message reaches the sink node, every transmission done at maximum power. HEED [1], LEACH [16], and AMPL. The simulation was done ramping from 10 to 150 nodes in 10 node steps for each of the four algorithms analyzed. The node density was kept constant (i.e. the size of the simulated area changed as the number of nodes changed) with the following settings in the simulator:

Propagation type = FreeAirPropagation, Data size in bytes = 60.0, Header size in bytes = 10.0, Protocol class = Protocol_Straight, Averge nodes per 1000 units square area = 1.0, Hello level percent = 30.0, Watt hours capacity = 8.0E-4, Number of power levels = 12.0, Run to percent=10.0, Percent of nodes at run to percent = 50.0, Match number of nodes with area = true, Data transmit interval tics = 200.0, Maximum bit rate bits per second = 1000.0, Sink node Y = 0.0, Sink node X = 0.0, Thread pool size = 50.0, Packet class name = MobilePacket.
Note that the data rate was set to 1,000 bps to help shorten the duration of the simulation runs. The only time the simulation consumes power is to transmit data, and the amount of power consumed is proportional to how long it takes to send that data, hence with a slower data rate the radio is transmitting for a longer duration.

The parameters of most interest are the total number of data bits transmitted, and the number of simulation tics that the run endured for. In the following graphs these data points, as well as several others, are presented. LEACH [16] transmitted the most total data bits, at 42.3 million, with AMPL second at 8.3 million followed by HEED [1] at 3.1 million and no algorithm last at 23.4 thousand. The no algorithm case is as expected, far behind any of the clustering algorithms. HEED [1] was a bit worse as the implementation caused far too many cluster heads. LEACH [16] ahead of AMPL was not too surprising once I watched the number of cluster heads, where LEACH [16] was doing far fewer cluster heads than AMPL.

Figure 5: Total simulation tics compares the total simulation tics that transpired before the termination condition was met for the four algorithms tested. AMPL lasts for the most simulation tics of the clustering algorithms. The no algorithm case last for more simulation tics but this seems to be due to the time it takes for every node to relay every message. The X axis is in number of nodes, the Y axis is in simulation tics.
[image: image1.emf]0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

1030507090

110130150

AMPL

leach

heed

noalg

Figure 5 Total simulation tics
The number of simulation tics that a network was alive for mostly seemed to follow the data transmitted, however the no-algorithm case had a much higher number, which I attribute to the delay it took to have each node relay each message. This caused the nodes to miss their data gathering interval since they were busy relaying messages. The no-algorithm case lasted for 15.5 million tics, 8.2 million for AMPL, 2.3 million for LEACH [16], and 162.1 thousand for HEED [1]. This data seems to indicate that AMPL was able to relay data over the longest period, however I hesitate to draw any conclusions due to the aberration of the no-algorithm case.

Figure 6:Total bits shows the total bits transmitted by all four algorithms. LEACH[16] showed consistent improvement with larger numbers of nodes. I attribute this to the low percentage of cluster heads. On average AMPL placed second, with an apparent ‘sweet spot’ around 90 nodes. This indicates the algorithm’s preference for a network of a certain size. The X axis is in number of nodes, the Y axis is in bits.
[image: image2.emf]0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

1030507090

110130150

AMPL

leach

heed

noalg

Figure 6 Total Bits
Figure 7: Average Power Per Packet is the average amount of power that was consumed transmitting each packet. LEACH[16] and the no algorithm case were both higher due to the final relay power. LEACH[16] attempts to regulate the transmit power based on the receive power, but since a cluster head can be at the full range of a node this still results in more power consumed per packet on average. AMPL and HEED[1] both have more cluster heads and thus shorter range, hence the power consumed per packet was less, however since the greater number of cluster heads were required to relay each message the total data transmitted was not increased. The X axis is in number of nodes, the Y axis is in watts.
[image: image3.emf]-1.00E-04

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

1030507090

110130150

AMPL

leach

heed

noalg

Figure 7 Average Power Per Packet
I also ran the simulations at 115 nodes for the other various parameters that the simulator allows to be ramped automatically. 115 nodes was chosen as it is near the point when both LEACH [16] and AMPL showed the most data transmitted.

Figure 8: Transmit Levels varies the number of transmit levels from 6 to 30 in steps of 3. This value is applicable only to AMPL. It shows that the most data is transmitted with 18 discrete transmit levels. 18 levels improved the data bits from 8.5 million to 21.1 million.

[image: image4.emf]0

0.2

0.4

0.6

0.8

1

1.2

6912151821242730

total bits

num pacekts

avg pwr/packet

avg pwr

avg num hops

num tics

Figure 8 Transmit Levels
Figure 9: Re-hello percent shows the results when I ramped the percentage at which the re-hello occurs. This is also only applicable to AMPL as it is changing the threshold at which clustering occurs. The lower percentage translates to a higher threshold as the percentage is the point at which a node is told to form its own clusters. e.g. 10% of 12 levels means that nodes heard at level 12 are told to form their own clusters, all others are eligible to become child nodes. A higher percentage will result in many more clusters, quite probably all nodes will become cluster heads at the higher levels. The graph shows that the optimal level is at 20% (not the 30% used for the other testing). Above 50% the performance levels off, becoming similar to no algorithm since most or all of the nodes become cluster heads.
[image: image5.emf]0

0.2

0.4

0.6

0.8

1

1.2

102030405060708090

total bits

num pacekts

avg pwr/packet

avg pwr

avg num hops

num tics

Figure 9 Re-hello Percent
Figure 10: Nodes per Cluster shows the results when I ramped the number of nodes per cluster from 5 to 55 in steps of 10, note that I had to change the re-hello percentage to 10 for this to have an effect. This is again something that affects only AMPL. The interesting thing to discover here was that the total data bits transmitted peaked at both 5 nodes per cluster, then again at 45, with the bottom at 25 nodes per cluster.

[image: image6.emf]0

0.2

0.4

0.6

0.8

1

1.2

51525354555

total bits

num pacekts

avg pwr/packet

avg pwr

avg num hops

num tics

Figure 10 Nodes Per Cluster
Figure 11 illustrates the results when I ramped the area from 100x100 to 1000x1000 in steps of 100x100. This results in the node density dropping from very dense to quite sparse. At 100x100 nearly all the nodes can hear each other at the maximum transmit value, at 1000x1000 the transmit range was only about 1/20 of the area, hence only a few nodes could hear each other. This value applies to all 4 algorithms. The interesting thing is that all four algorithms preferred the 200x200 density, which is about 3 nodes per 1000 units square area. This puts the majority of the nodes well within the maximum transmission range. Even the non clustering result was better at 200x200. LEACH [16] showed the smoothest ramp, tapering off more gently than the other algorithms. The X axis is in square units area, the Y axis is in bits transmitted.
[image: image7.emf]0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

100004000090000

160000250000360000490000640000810000

1000000

AMPL

leach

heed

noalg

Figure 11 Ramp Area
 Chapter 3 Simulator Architecture

There is a great deal of research going on in the area of cluster formation. Clusters are groups of wireless sensors intended to reduce the power required to get a packet of data to a centralized location. The main goals are to improve the longevity of the network, decrease the power needed to get data to the main sink node, get critical data to the sink node as quickly as possible, and quick formation of clusters. There are currently many network simulators, however none addresses the various aspects of wireless ad-hoc networks I wish to explore. Hence I created a Java based simulator that permits exploration of the cluster forming aspects of a wireless network as well as the longevity and general power consumption.

The simulator is written in Java, to facilitate cross platform portability. The core of the simulator is the scheduler, which determines when events are processed. Another aspect of Java is utilized to permit easy integration of the plug-ins. Reflection is the means whereby the plug-in pieces are found and integrated into the GUI’s setup. The simulator traverses the classpath searching for classes that implement the plug-in base interfaces, the classes found are then added to various combo boxes to allow the user to easily select which to use. The simulator then takes the class name from the combo box and employs reflection to instantiate the chosen plug-in. This provides flexibility for future protocols and signal propagation models this simulator. There are many parameters that the user is allowed to graphically configure, several of which can be automatically stepped through a range of values. The simulator also has a wide variety of debug output which is helpful for developing new plug-ins.
3.1 Scheduler

The core of the simulator is the scheduler class. All processes must request time from this class. The scheduler maintains a queue of requests along with the time at which they wish to be executed, and a simulation clock.

To simulate parallel processing of events, all increments to the scheduler clock contain an increment amount and the time that the caller wants the increment added to. For example if the caller wants 20 tics added to a time of 100 and the scheduler knows the current tic count time is 110, the resulting increment sets the scheduler clock to 120. Thus the increment takes place, but allows for the passage of time due to other threads also incrementing the clock. All of the scheduler methods are thread safe.

The scheduler queue is sorted by the event’s desired execution time. Thus as events are added to the queue they are placed in order of when they want to be executed, ensuring that earlier events are executed first. The scheduler has a pool of threads in which to execute events. The pool method was used rather than a thread per node to reduce the number of potential context switches for large numbers of nodes. The pool was used instead of a single thread to more accurately simulate the independent nature of all the nodes, hence a node implementation cannot rely on a single thread executing things in sequence. All execution takes place in one of the scheduler’s pool of threads. This means that when a node wants to send a message it must schedule the time at which it wants to be called back with the scheduler, then the scheduler adds the event to its queue. When the event’s time has arrived the scheduler allocates a thread from the pool in which it can execute. The multi-threaded approach allows for an accurate simulation of the 802.11 protocol for example. In the 802.11 implementation the thread initiating a message is blocked during its RTS until the destination node sends the CTS.

The multi-threaded nature allows the simulation to take advantage of multiple CPUs on a system, if the Java Virtual Machine implementation makes use of the available CPUs.

3.2 Plug-in classes

The plug-in aspect of the simulator allows for easy expansion of several of the simulated aspects. The plugable pieces are automatically found in the classpath and inserted into combo boxes in the Simulation Setup dialog.

[image: image8.png]
Figure 12 Simulator Parameters
Figure 12 shows the settable parameters and highlights the 4 plugable classes.

The plug-in interfaces are:

jdr.mobisim.NodeIF

This interface is the base for the nodes. This is utilized to implement the code that one would deploy on the actual nodes.

This interface consists of the following methods:

public interface NodeIF

{

 public String GetAlgorithmName();

 public void ReceivePacket(PacketIF packet);

 public jdr.utils.FloatPoint getLocation();

 public int getNodeNumber();

 public double GetRemainingPower();

 public void DumpNodesHeard();

 public void DumpClusterInfo();

 public void DumpNodePacketQueue();

 public void Draw(java.awt.Graphics2D graphics, java.awt.Rectangle bounds,

 double xScale, double yScale);

 public String GetClusterInfo();

 // methods to set various changable parameters

 public void setLocation(jdr.utils.FloatPoint pt);

 public void SetNumNodesPerCluster(double nodesPerCluster);

 public void SetDataRate(double dataRateBps);

 public void SetWattHours(double wattHours);

 public void SetHighliteCluster(boolean highlite);

 public void SetTransmitRingsOn(boolean ringson);

 public void setSensorDataHeaderSizeBytes(int dataheaderSize);

 public void setSensorDataSizeBytes(int dataSize);

 public void setSensorDataTicsBetweenTransmits(int dataInterval);

 public void setNumberOfHelloTransmitLevels(byte numLevels);

 public void setRehelloPercent(double rehelloPercent);

}
These methods are primarily for configuring the variable aspects of the nodes (data rate, data header size, etc.) There are also several method used by the simulator for the graphical representation and for various debug purposes.

jdr.mobisim.PacketIF

This interface is the base for the generic packets that flow through the network. It is a concrete class, with abstract methods. The concrete methods provide a few utilities, such as insertInt, and extractInt which use a consistent method to insert and extract an integer to/from a byte array. The other concrete methods provide a standard way to get new instances of the specific derived class, so that the simulator architecture can call the same static method on any of the reflection created types to get new instances of the current concrete packet class.

The abstract methods are:

public abstract byte[] getData();

public abstract void setData(byte[] data);

public abstract double getTransmitedBitCount();

public abstract long getTransmitTime();

public abstract long getArrivalTime();

public abstract void setPacketArrived();

These methods are utilized to set parameters used by the simulator architecture to track transit time of a packet. The byte[] affected by setData and getData is the data that would be transmitted in an actual network. The nodes in the simulation use only this data to communicate.

jdr.mobisim.PropagationIF

This interface determines how the radio signal is propagated. This is also an abstract class, with concrete methods to provide for consistent access. This plug-in provides the capacity to change how the radio signal travels from one node to another, e.g. 1/d^4 attenuation, or a derived class could provide an obstacle interface that would allow the simulator to illustrate signal loss with objects blocking the signal path. The basic function is to determine a set of nodes that will detect the transmission from a given node.

The abstract methods are:

 public abstract boolean TransmitData(long xmitTime,

 int lengthInBits,

 PacketIF packet,

 jdr.utils.FloatPoint source,

 double powerLevel);

 public abstract boolean TransmitData(long xmitTime,

 int lengthInBits,

 PacketIF packet,

 jdr.utils.FloatPoint source,

 double powerLevel,

 boolean doLogs);

public abstract boolean CarrierDetect(long xmitTime, jdr.utils.FloatPoint source);

 public abstract double GetReceiveSignalStrengthDbm(jdr.utils.FloatPoint source,

 jdr.utils.FloatPoint dest,

 double transmitPwrDbm);

 public abstract void DrawTransmitHistory(int historyCount, java.awt.Graphics2D graphics,

 java.awt.Rectangle bounds,

 double xScale, double yScale);

 public abstract void DrawTransmitsAtTime(java.awt.Graphics2D graphics,

 java.awt.Rectangle bounds,

 double xScale, double yScale, long simTime);

These methods provide the basic communication for the network. The Draw… methods are used by the GUI portion of the simulator to render the communications that are in progress.

jdr.mobisim.ProtocolIF

This interface is the basis for the protocol the network uses to negotiate traffic in the network. The propagation interface determines which nodes a radio signal will reach, the protocol interface determines what is necessary for a packet to travel from its source node to its destination node. e.g. in the 802.11 implementation a single TransmitData command results in carrier detect, RTS, CTS, MSG, ACK. This interface is also an abstract class, with several concrete methods that deal with the queue of packets being transmitted.

The abstract methods are:

 public abstract boolean TransmitData(long xmitTime,

 int lengthInBits,

 PacketIF packet,

 jdr.utils.FloatPoint source,

 double powerLevel);

 public abstract boolean TransmitData(long xmitTime,

 int lengthInBits,

 PacketIF packet,

 jdr.utils.FloatPoint source,

 double powerLevel,

 boolean doLogs);

 public abstract boolean AddPacket(PacketIF packet);

 public abstract void AddNodeHeard(NodeHeard hrd);

 public abstract void setNodeEventCallbackIf(EventCallbackIF nodeEvtIf);

 public abstract void Draw(java.awt.Graphics2D graphics, java.awt.Rectangle bounds,

 double xScale, double yScale);

Once the propagation has determined which nodes will hear a given transmission the protocol class performs the steps necessary to allow the packet to arrive at its destination node as determined by the protocol being simulated.

3.3 Settable parameters

There are many configurable parameters in the simulator. They are all set in the Simulation Setup dialog shown in figure 12.
· Number of Nodes: determines how many nodes to place in the simulated environment.

· Number of Nodes Per Cluster: if the cluster forming algorithm utilizes it, this sets the number of nodes desired per cluster

· Number of Discrete Power Levels: if the cluster forming algorithm utilizes it, this sets the number of different power levels to utilize during cluster formation

· Hello Protocol re-hello levels (percent): if the cluster forming algorithm utilizes it, this sets the percentage of the Discrete Power levels at which the cluster formation will transition from ‘join this cluster’ to ‘form your own cluster’.

· Area Width & Area Height: the desired 2 dimensional size in unspecified units into which the nodes will be placed. Note that while the units are ‘unspecified’ the propagation range is based on meters.

· Sink Node X & Y: The location of the sink node in the simulated topography

· Average number of nodes per 1000 square units area: When placing the nodes randomly this will help to reduce high densities of nodes in some areas with low density in others. This also applies to Ramping the number of nodes, and will set the size of the environment based on the number of nodes and the node density.

· Header size (Bytes): the size of the message header used during the normal data transmission phase of the network.

· Data size (Bytes): the size of the data used during the normal data transmission phase of the network.

· Number of tics between transmits: the ‘sleep time’ of the nodes between transmitting data during the normal data transmission phase of the network.

· Watt-Hours capacity of the batteries: this is used to determine how long the nodes will be alive and able to transmit. All nodes are assigned this value to start, and it is decremented by transmission of data. Note that this is the only time the simulator consumes power, is when the radio is transmitting.

· Simulation duration (tics): The total number of simulator tics to run the normal data transmission phase of the network.

· Stop Sim at % Power left & % Nodes at Level These two parameters combine to determine a point at which to halt the simulation. The %Power Left is the percentage of the original power allotted to the nodes. The % Nodes at Level is the percentage of the total number of nodes that must be at or below the % Power Left level. When the % Power Left value is non-zero this over-rides the Simulation Duration.

· Thread Pool Size: This is used by the scheduler of the simulator to set the number of threads the simulation will use

Automatically varied parameters

The simulation provides a set of parameter that can be varied one at a time by the simulator automatically. This functionality allows easy comparison of how a particular algorithm performs with a single parameter varied throughout a range. When enabled, the single chosen parameter will step through the range for the full duration of the simulation, as chosen in the Simulation Setup dialog. The data gathered from this will be presented in a graph, available through the Graphing menu.

[image: image9.png]
Figure 13 Ramped values
· Number of Nodes: Varies the Number of Nodes parameter in the Simulation Setup dialog

· Use Nodes Per 1000 Units Area To Match Size With Number of Nodes When this value is selected the size of the simulated area will be adjusted to keep the node density at the value chosen in the Parameters tab. This only applies when ramping the number of nodes. The size of the environment is always a square when this option is used.

· Transmit Levels: Varies the Number of discrete power levels parameter in the Simulation Setup dialog

· Rehello percent: Varies the Hello protocol re-hellos levels (percent) parameter in the Simulation Setup dialog

· Nodes per cluster: Varies the Number of nodes per cluster parameter in the Simulation Setup dialog

· Nodes per 1000 square units: Varies the Average number of nodes per 1000 square units area parameter in the Simulation Setup dialog

· Area: Varies the Area width & height parameter in the Simulation Setup dialog

· Max bit rate (bps): Varies the Maximum bit rate (bps) parameter in the Simulation Setup dialog

· Header size (Bytes): Varies the Header size (Bytes) parameter in the Simulation Setup dialog

· Data size (Bytes): Varies the Data size (Bytes) parameter in the Simulation Setup dialog

· Number of tics between data transmits: Varies the Number of tics between data transmits parameter in the Simulation Setup dialog

3.4 Simulator Main GUI

The main simulator GUI window contains the tools that control the running of the simulation, and a grid that shows the node positions and communication as it takes place.

[image: image10.png]
Figure 14 Main Simulator GUI

[image: image11.png]
Figure 15 File Menu

The File menu in Figure 15 has the ability to save and restore the values in the Simulation Setup & Ramping dialogs. This saves all the settable parameters and the ramp values so that a simulation can be re-run.

The random positioning uses the same seed every time, so the positions will be the same. However the Java Virtual Machine controls the context switching on the threads in the pool, so no two simulation runs will be exactly identical.

The Setup menu in Figure 16 brings up the Simulation Setup dialog.

[image: image12.png]
Figure 16 Setup Menu
The Graphs menu in Figure 17 opens the graphing dialog (shown later)

[image: image13.png]
Figure 17 Graphs Menu

[image: image14.png]
Figure 18 Help Menu
[image: image15.png]
Figure 19 About Dialog

The Help menu in Figures 18 and 19 has the About dialog providing information on the simulator author.

The Restart button resets the simulation to initial values and re-runs. Generally it is better to exit and re-run the simulator between runs to ensure a clean start.

The Pause button causes the scheduler to stop processing the queue.

The Go button resumes after a Pause.

[image: image16.png]
Figure 20 Debug Dialog

The Debug button opens a dialog shown in Figure 20 that allows various debug actions to be taken (discussed later).

The Color Key button opens a dialog shown in Figure 21 which describes what all the colors used in the main simulator GUI mean.

[image: image17.png]
Figure 21 Color Key Dialog
The Enable Visualization check box turns on the drawing of the communication lines, disable this if you want the simulation to run a little faster. The GUI is updated with the simulation values every 400 milli seconds.

The Sim Time at the bottom shows the current simulation time in tics.

Optionally, if Ramping is enabled, the ramped value name, and current value are displayed to the left of the Sim Time.

The slider above the Sim Time causes the scheduler to sleep between processing events on the schedule queue. All the way to the right is zero delay, all the way to the left equates to 100 milli-seconds delay between each event.

Figure 22 shows how a node is drawn in the main simulator GUI. Each of the nodes is represented by a circle and has an associated ½ circle ‘fuel gauge’ that shows the percentage of power remaining to that node.

[image: image18.png]
Figure 22 Node Representation

[image: image19.png]
Figure 23 Cluster Head Node

Figure 23 shows how cluster heads have a cyan (light blue) square attached at their upper left corner.

[image: image20.png]
Figure 24 Cluster Indication

Figure 24 shows how clicking on a node draws a white circle around that node and all the other nodes in its cluster.

[image: image21.png]
Figure 25 Power Levels

Figure 25 illustrates how CTRL + click shows the transmit range at each of the discrete power levels.

[image: image22.png]
Figure 26 Node Information

Figure 26 illustrates how ALT + click shows information on the node.

Figure 27 is an example of the output from the graphing function which shows the values of various parameters at the end of a simulation run, and graphs them in an auto-scaled graph. The X axis of the graph is the parameter that was Ramped, the Y axis is different for each of the graphed values, but is scaled such that each graphed value has the maximum resolution. The data is also written to a file for each of the lines consisting of the X axis, Y axis. The files are stored in the dataFiles directory where the application is run.

[image: image23.png]
Figure 27 Graph Display
The metrics collected are:

· Total tics the simulation ran

· Average power left to each node at the end of the simulation

· Average number of hops of all of the packets transmitted during the simulation.

· Average power consumed by each packet transmitted during the simulation.

· Total number of packets transmitted during the simulation.

· Total Data Bits: the total packets * data size in bits.

3.5 Debug Output

All of the classes have various logging output available. Some of these logs are compile time flags to reduce the runtime overhead. All of the output is logged to a Log4j log manager. For the fastest possible running it is recommended that no logger be used, second best is to use a file appender. When using the LogFactor5 graphical appender the logging process slows the simulation significantly.

Some example log output to the file appender:

246422 DEBUG Thread-28 jdr.mobisim.MobileNode (1150)- node: 17 telling node: 96 to form its own cluster, power level: 8

246422 DEBUG Thread-2 jdr.mobisim.MobileNode (1150)- node: 33 telling node: 47 to form its own cluster, power level: 9

246422 DEBUG Thread-21 jdr.mobisim.MobileNode (1150)- node: 3 telling node: 8 to form its own cluster, power level: 9

246422 DEBUG Thread-45 jdr.mobisim.MobileNode (1150)- node: 96 telling node: 87 to form its own cluster, power level: 9

246422 DEBUG Thread-4 jdr.mobisim.MobileNode (1150)- node: 46 telling node: 74 to form its own cluster, power level: 9

 Chapter 4 Conclusions

4.1 Active Multi-Power Level Cluster Formation

After ramping all the available parameters and using the optimal results the comparison between AMP and the LEACH [16] algorithm became a bit closer, however the LEACH [16] algorithm still showed more data bits moved during the network life span. I think that this is still indicative of the implementation of LEACH [16] wherein there are fewer cluster heads and thus less nodes propagating messages at maximum power. If he sink node chooses optimal clusters and provides paths to the sink node, then I think AMPL would perform favorably, if not in a superior fashion. An aspect where AMPL worked better was in the loss-less transfer of cluster head duties. Since AMPL is constantly monitoring its own power it will not die while it is still the cluster head. Another aspect where AMPL is promising is that with the nodes selected in a fashion that ensures overlap at maximum power, the network is guaranteed that all nodes have a path to the sink node. AMPL requires more initial time to set itself up but the time is recouped to some degree during normal running of the network since the nodes don’t have to go through the advertise phase that the other clustering algorithms require.

4.2 Simulator

The simulator implementation allows relatively easy future enhancements with its plug-in architecture and the built-in ramping functions make it easy to find the optimal points for the various parameters. The built in graphing also facilitates the rapid comparison of different parameters. This simulator provides a tool to test the behavior of various wireless sensor attributes without the need to deploy hundreds of sensors. This will enable the field to test new ideas very quickly, and thus take rapid strides towards maturity.

 Chapter 5 Interesting Problems Encountered

How to tell when the initial cluster formation has completed. I addressed this in the simulator by monitoring the scheduling queue, in a real network this would have to be done via timing, or by the sink node monitoring the network traffic.

How to prevent interference. I used the same assumption as LEACH [16], using spreading in the modulation will prevent cross talk between clusters. I also simulated the 802.11 protocol, but the overhead was excessive for a power-constrained network, so all simulations were done using the Straight protocol. The Straight protocol assumes no interference and sends the packet immediately to the destination node.

Threading to allow blocking in the 802.11 protocol.

Scalability is still an issue. It takes a lot of processing power to be able to simulate all the message traffic going on in a wireless sensor network of median density. To optimize the scheduling queue I transitioned from a straight Vector, where every insert required a binary search to keep the queue in order, to a sorted map from times to vectors. This creates a vector for every time slice, resulting in many bins, one for each time any event is scheduled for. Hence if the time an event wishes to execute is already in the map the new event is added to the end of the vector for that time. If the time is not in the map a new vector is created and the event is added to that. This scales much better, now instead of doing binary sorts on a queue of 400,000 elements on nearly every transmit, the scheduled event is added to the end of a vector, which is found via a hash map lookup. This modification to the scheduling queue reduced the time to iterate from 10 to 150 nodes in 10 node steps on the no algorithm case from several hours to less than 15 minutes. The no algorithm case is the worst for queue usage due to every node in range relaying every message heard.

 Chapter 6 Future Work

The multiple level hello protocol would allow reasonably accurate localization of the nodes if the data were all transmitted to a single sink node. The sink node could do intersection of circles in 2 dimensions or intersection of spheres in 3 dimensions to determine the relative locations of all the nodes. Using this mapping the sink node could then push an optimal cluster structure out to all of the nodes.

Concurrent with the localization one could perform path mapping to instruct the nodes on the shortest path to the sink node. This would eliminate the need to have each cluster head relay every other cluster head’s broadcast messages, resulting in greatly increased network longevity.

To scale to very large networks it will be necessary to distribute the simulation across several computers. The plug-in nature of the simulator would be amenable to such a distribution, requiring only a new propagation class that would translate some of the message traffic to network traffic.

 Chapter 7 References

[1] Gaurav Gupta, Mohamed Younis Fault-Tolerant Clustering of Wirelses Sensor Networks Dept. of Computer Science and Electrical Engineering 2001 http://axp1.csie.ncu.edu.tw/local/research/conf/WCNC/WCNC2003/DATA/59_01.PDF
[2] Katayoun Shorabi, William Merrill, Jeremy Elson, Lewis Girod, Fredric Newberg, William Kaiser Scaleable Self-Assembly for Ad Hoc Wireless Sensor Networks Sensoria Corporation http://www.sensoria.com/pdf/ad-hoc-networks.pdf
[3] Xiaohua (Edward) Li, N. Eva Wu Power Efficient Wireless Sensor Networks with Distributed Transmission-Induced Space Spreading Department of Electircal and Computer Engineering State University of New York at Binghamton 2003 http://ucesp.ws.binghamton.edu/~xli/old/papers/asi2003.pdf
[4] Koen Langendoen, Niels Reijers Distributed localization in wireless sensor networks: a quantitative comparison Faculty of Information Technology and Systems, Delft University of Technology http://www.isa.its.tudelft.nl/~reijers/documents/compnw.pdf
[5] Bhaskar Krishnamachari Wireless Intelligent Systems Laboratory, School of Electrical and Computer Engineering Cornell University, Deborah Estrin Laboratory for Embedded Collaborative Systems Department of Computer Science University of California Loas Angeles, Stephan Wicker Wireless Intelligent Systems Laboratory School of Electrical and Computer Engineering Impact of Data Aggregation in Wireless Sensor Networks 2004 http://ceng.usc.edu/~bkrishna/research/papers/DataAggregationSensorNetworks2.pdf
[6] Suman Banerjee, Samir Khuller A Clustering Scheme for Hierarchical Control in Multi-hop Wireless Networks University of Wisconson 2001 http://www.cs.wisc.edu/~suman/pubs/infocom01.pdf
[7] M.J. Handy, M. Haase, D. Timmermann Low Energy Adaptive Clustering Hierarchy with Derterministic Cluster-Head Selection Institute of Applied Microelectronics and Computer Science University of Rostock 2002 http://www-md.e-technik.uni-rostock.de/veroeff/MWCN2002.pdf
[8] Enrique J. Duarte-Melo, Mingyan Liu Energy Efficiency of Many-to-One Communications in Wireless Networks Electrical Engineering and Computer Science Department University of Michigan http://www.eecs.umich.edu/~mingyan/pub/mwscas.pdf
[9] Arati Manjeshwar, Dharma P. Argawal TEEN: A Routing Protocol for Enhanced Efficiency in Wireless Sensor Networks Center for Distributed and Mobile Computing ECECS Department University of Cincinnati 2001 http://axp1.csie.ncu.edu.tw/local/research/conf/ipps/2001/DATA/PDC_12.PDF
[10] Sohell Ghiasi, Ankur Srivastava, Xiaojian Yang, Mjid Sarrafzadeh Optimal Energy Aware Clustering in Sensor Networks Computer Science Department University of California Los Angeles 2002 http://crewman.uta.edu/~choi/senssor_clustering.pdf
[11] Murat Demirbas, Anish Arora, Vineet Mittal FLOC: A Fast Local Clustering Service for Wireless Sensor Networks Department of Computer Science and Engineering The Ohio State University 2004 ftp://ftp.cis.ohio-state.edu/pub/tech-report/2004/TR18.pdf
[12] Kemal Akkaya Mohamed Younis A Survey on Routing Protocols for Wireless Sensor Networks Department of Computer Science and Electrical Engineering University of Maryland 2003 http://www.cs.umbc.edu/~kemal1/mypapers/Akkaya_Younis_JoAdHocRevised.pdf
[13] Sidney I. Rubey Wireless Sensor Network Coverage: Managing Power, Critical Time Period, Coverage Efficiency University of Colorado at Colorado Springs 2004/2005 http://cs.uccs.edu/~chow/pub/master/sirubey/doc/ Rubey_Fall04_ThesisProp.doc
[14] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-efficient communication protocol for wireless sensor networks in the Proceeding of the Hawaii International Conference System Sciences, Hawaii, January 2000.

[15] S. Lindsey and C. S. Raghavendra, PEGASIS: Power Efficient GAthering in Sensor Information Systems Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, March 2002.

[16] Wendy Rabiner Heinzelman, Anatha Chandrakasan, and Hari Balakrishnan
Energy-Efficient Communication Protocol for Wireless Microsensor Networks
Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

� EMBED Word.Picture.8 ���

Figure � SEQ Figure * ARABIC �1� Hello levels

Figure � SEQ Figure * ARABIC �3� Normal communication

Figure � SEQ Figure * ARABIC �2� Cluster members

Figure � SEQ Figure * ARABIC �4� Tired Cluster Head

_1200329900

_1200330247

_1200330395

_1200330446

_1200330259

_1200329938

_1200329797

_1200329870

_1200329465

_1200050106.doc
[image: image1.png]

