v

The Design of a Web-based Management Interface for Network processor based Content Switch

Jayant Patil

Department of Computer Science

Abstract

Network Processor based Content Switch (NPCS) is a secure content switch based on Intel IXP1200 Network Processor. For NPCS, one of the requirements is to have a secure, efficient, reliable and user-friendly interface for configuring network and system operating parameters, updating content switching rules and retrieving switch status/session statistics. Some examples of such configuration parameters include the IP address of the switch and ports. The goal of this work is to determine the requirements and design a secure, efficient, reliable and user-friendly web-based management interface to the NPCS. The software architecture of the interface is presented and it is based upon OpenSSL, GoAhead webserver, VxWorks and Intel network processor SDK. The interface allows for uploading rule file, refreshing the rule matching engine and the retrieval of switch status at anytime.
1. Introduction

With the explosive growth of Internet and its increasingly important role in our lives, the traffic on the Internet is increasing dramatically [1,2]. The workload on the servers is increasing rapidly so that the servers can easily get overloaded within short time, especially for a popular web site. To overcome the problem of overloading, there are two solutions. One is single server solution, i.e. to upgrade the server to higher resources, but that soon will get consumed and the server will become overloaded.

The other is the multi-server solution, i.e. to build scalable server on a cluster of servers [1,2]. When load increases, we can simply add a new server or more into the cluster to meet increased requests. A very efficient way to accomplish this is to use a load balancer to distribute load among servers in the cluster. Load balancing can be done in two levels, transport level using layer 4 switch or application level using content switch [3].

Application level load balancing (also known as content switching) provides the highest level of control over the incoming traffic. When making a load balancing decisions, the content switch can check the header/content of every packet including HTTP meta header, URL, the payload rather than simply checking TCP/UDP port number or IP address. By examining the content of the request, these switches can make decisions on how to route the request to the real servers.

Linux-based Content Switch (LCS) developed by Weihong Wang was based on Linux 2.2-16.3 kernel and related LVS package [1]. LCS examines the content of the request, e.g. URL in HTTP header and XML payload, besides IP address and port number and forwards the request to real servers based on the predefined content switching rules [4]. LCS has been ported on to Intel’s network processor evaluation kit, IXP12EB by Longhua Li [10].

NPCS Hardware
The Intel(IXP1200 Network Processor [5] is the cornerstone of the Intel Internet Exchange Architecture (Intel(IXA). It combines the best attributes of a network ASIC with the flexibility, performance and scalability of programmable embedded processor to accelerate development of next generation Internet products. The IXP1200 Network Processor is specifically designed for network control tasks, such as wire-speed switching and routing of packets or cells in real time.

The IXP12EB Ethernet Evaluation Kit is powerful tool for developing and verifying hardware and software for IXP1200 Network Processor. It consists of a hardware board with IXP1200 network processor, two Gigabit fiber interfaces and eight fast Ethernet interfaces.
NPCS Software development environment
Tornado [7] is an integrated environment for software cross-development provided by Wind River. It provides an efficient way to develop real-time and embedded applications with minimal intrusion on the target system. Tornado comprises the following elements [7,8]:

· VxWorks [9], a high-performance real-time operating systems

· Application-building tools (compilers and associated programs)

· An integrated development environment (IDE) that facilitates managing and building projects, establishing and managing host-target communication, and running, debugging, and monitoring VxWorks applications

 The Tornado environment is designed to provide this full range of features regardless of whether the target is resource-rich or resource-constrained. Tornado facilities execute primarily on a host system, with shared access to a host-based dynamic linker and symbol table for a remote target system. The target server and target agent mediates communication between the host tools and VxWorks In our case, the host system is Dell 340 workstation running Windows NT operating system.

The development environment is already set up in our lab as shown in Figure 1.

[image: image1.emf]Host

dilbert

Target

IXP12EB

RS-232

Serial Link

Ethernet

Figure 1. Development Environment set up
2. NPCS Interface Requirements
An important requirement for any switch design is to have a secure, efficient, reliable and user-friendly interface. The importance for having such interface for NPCS was crystallized when LCS was ported to IXP12EB to form the Network Processor based Content Switch (NPCS). The implementation transitioned the content switch from a generic Intel computer system based environment running general purpose operating system like Linux to an embedded system environment running on specialize network processor IXP1200. This interface can be used to perform configuration tasks as well as other operational tasks that interact with the switch. Some examples of such configuration required are the IP address of the switch and updating one or more rules of the content switch rule set.

The goal of this project work is to determine the requirements to design a secure, efficient, reliable and user-friendly interface to the NPCS. The interface is needed for configuring the content switch, for updating the content switching rules and network parameter for improving the performance, and for retrieving the network session/statistical data. We will start by evaluating alternate technologies and comparing solutions for the interface.

Let us look at what resources are available to design the interface. First and foremost limitation is that the switch has no hard disk storage. Also, the memory available is also very limited.

One more demanding requirement is ease of operation. It means that the interface should be easy to use and secure and can be accessible from Internet.
3. NPCS Software Architecture :

Figure 2 shows the NPCS software architecture. It consists of the following components:

· OpenSSL proxy to handle the client data request
· Restructured rulemodule consisting of rule matching engine and ruleset managing component
· Ram based file system

· GoAhead webserver

[image: image2.emf]GoAhead

Webserver

Rulefile upload

Rulerefresh

Switching Stats

in-process CGI

ssl_proxy/

switching

module

VxWorks

Operating

System

Rulefile

Ram-based

Filesystem

Web-based Management Interface Module

NPCS Mgmt

Requests

NPCS

Cluster

Requests

Rule

matching

Ruleset

Refresh

Figure 2. NPCS Software Architecture
3.1 Interface Technology – GoAhead Webserver
The first prominent requirement was that of providing for changing of switching rules dynamically without rebooting the switch. This was thought to occur in following sequence of events:

1. Shut down rulemodule

2. download new rulemodule

3. startup new rulemodule and begin accepting requests for rule matching.

Looking at the requirement of ease of use, it was decided to design the interface based upon web technology.

This opened search of web servers. Being the research work, obviously, the search for appropriate web server was confined to open source world.

One major group of web servers was Java based web servers. But they required existence of JVM on the platform, and the VxWorks OS accompanying IXP12EB doesnot have JVM included. Though, Wind River Systems sell Java based solutions for VxWorks OS, those are paid licenses which eliminated Java based web servers from considerations.

After considerable searching and evaluations, I came across GoAhead webserver.

GoAhead webserver is a fully featured, open source web server designed specifically for the needs of embedded device developers. It delivers a full range of features, including support for Active Server Pages, embedded JavaScript, in-process CGI forms, SSL, Digest Access Authentication, User Management, and standard CGI, all in a 60K memory footprint. It is particularly useful for developers implementing systems management of their devices, who need to deliver dynamic content for browser-based management.
The source code for GoAhead Webserver is available free and without royalties to hardware developers. Based on open standards Based on industry standards and with free source code, GoAhead webserver has no proprietary lock-ins. Many other embedded Web servers define proprietary tags to permit dynamic data to be inserted into Web pages. These usually require proprietary tools to create the linkage between the pages and the C code which supplies the data. The GoAhead webserver offers an open standards solution for creating dynamic Web content.
GoAhead webserver uses GoForms to handle its forms processing duties. GoForms is an in-process CGI method of handling forms. GoForms enables forms to be processed without creating a new process for each browser connection. GoAhead also supports traditional CGI form processing.
The webserver supports Secure Socket Layering (SSL) for authentication and encryption over TCP/IP networks. SSL is essentially invisible to the end user. The Web browser uses a visual cue to indicate that SSL is active, or may notify the user that they are about to enter or leave a secure Web page.
Biggest advantage of using GoAhead was it was available on VxWorks platform. Also, availability of downloadable source code, made it easy to integrate the web server with the NPCS software.
3.2 In-memory File System

Next major work to make the NPCS independent from host based IXP12EB was to provide file store for the switch. The filesystem is essential to store important information including the ruleset, web pages, log files.
One way was to formulate a file system using part of ram memory available on IXP12EB similar to that of proc filesystem in Linux.

There are two pieces provided by VxWorks:

· Block device driver and

· dosFs – MSDOS Compatible file system.

We created a small ram memory based file system by making use of blocked device driver and dosFs filesystem provided by VxWorks.

First we create a blocked device with desired amount of memory blocks,

#define BYTES_PER_BLOCK 512

#define SIZEKB 200

char *dev = "DEV1:";

nBlocks = SIZEKB * 1024;

nBlocks /= BYTES_PER_BLOCK;

pBlkDev = ramDevCreate (0, 512, nBlocks, nBlocks, 0);

The above code produces block device with 400 blocks of 200 KB of memory. Then we create the DOS compatible filesystem on the device with volume name “DEV1”.
status = dosFsMkfsOptionsSet (DOS_OPT_AUTOSYNC |

 DOS_OPT_LONGNAMES);

pVolDesc = dosFsMkfs (dev, pBlkDev);

Now the DEV1: volume can be used to create/store files. Following piece of code opens the rulefile on DEV1 and reads it.
 if (!(cf->fp = fopen(filename, "r")))

 FAIL("config file %s opening error\n", filename);

 if (!fgets(cf->line, MAX_STRING_LEN, cf->fp))

return -1;

3.3 Rule Module

The rule module was very much unchanged when it was ported from linux to VxWorks. But the monolithic form of it was major hurdle in on-demand changing of switching rules. To shut down the rule module, download new module and firing it up was not acceptable due to the peculiar structure of the embedded operating system, where every component is tightly integrated into OS image.
This forced us to break the rule module, into two parts: rules and rule matching engine. The rule matching engine keeps on running, receiving and processing rule matching requests. During starting up, it reads local rule file into memory buffer.

In order to make the rule structure simple to understand and specify, we borrowed the context free grammar from Secure Information Sharing project[12]. The Rule grammar for specifying rules is as shown in Figure 3.

Rulemodule match

{

if (<expression>) do <url path>

expression := <term> | <term> && <expression> | (<expression>) | ! (<expression>)

<term> := <factor> | <factor> || <term> | (<term>)

<factor> := <variable operator value>

<operator> := > | >= | < | <= | == |!= | #

}

Figure 3.Rule Syntax

The refresh function, reads the file, parses every rule and populates the memory structure holding entire ruleset.

3.4 Ruleset Update
Update of the switching ruleset goes as follows:

i. Update the local rulefile on PC with new rules OR create new text rulefile reflecting desired ruleset.

ii. Using the Upload the new rulefile form (Appendix E, Figure 8), upload the new rulefile onto NPCS. This form accepts the local filename and invokes in-process CGI module, upldForm and passes the local filename as a CGI variable to it. upldForm routine then gathers the text file data received from browser and writes it in a file onto the NPCS RAM-disk, “DEV1:”.
iii. The Refresh Rules link invokes another in-process CGI module, refreshRules. It sends message to rulemodule to refresh the ruleset.

iv. The ruleparser function in rulemodule, reads the rulefile, parses the rules, and builds rule repository.
v. The rulemodule starts using new ruleset to resolve switching requests from ssl_proxy.

3.5 Switching statistics Retrieval
Switching statistics is maintained within the switching module as a linked list of counters. When the stats is to be retrieved, the Print statistics link, invokes another in-process CGI module, printStats. It accesses the stats list, and formats response in HTML page (Appendix E, Figure 9).
3.6 Testbed
The NPCS prototype is depicted in Figure 3. IXP12EB is the target server, running the NPCS software over VxWorks operating system. The host machine, named “Dilbert” contains Wind River Tornado II environment and IXP1200 Developer Workbench. The host and target machines are connected over RS-232 interface (serial connection). The serial connection is used for VxWorks console. The host and target are also connected to Ethernet. The 10/100 Ethernet ports of IXP12EB are connected to the switch using crossover cables, and the two Giga ports are connected using optical fibers to the switch.

[image: image3.png]Internet

1XP1200-based Secure.
Content Switch

Real Server 1 Real Server 2

cow.csnet uccs.edu buck.csnetuces edu

Figure 3 NPCS test bed.
The IP address assigned to IXP12EB PCI Ethernet card is 128.198.60.32.
At the end of IXP12EB boot process, after the ram based filesystem initialization, the
web server starts running. The document root is pointed to “DEV1:/”.
4. Performance data and testing
Following table gives IP addresses and other details of test setup:

	Machine Spec
	IP Address
	O/S
	Web Server

	 IXP12EB 200MHz

(Content switch)
	Port 0 128.198.60.130

PCI Ethernet Card

128.198.60.32
	VxWorks 5.4
	GoAhead

	a) dilbert.uccs.edu

DELL Precision 330
(Client)
	128.198.60.23

	a) Windows NT, 4.0

	N/A

	a) buck.csnet.uccs.edu

b) cow.csnet.uccs.edu

HP Vectra Machines, 500 MHz, 256MB RAM

(Real Server)
	128.198.61.112

128.198.61.113

	Redhat 7.1

 (2.6.10-1.770_FC3)
	Apache httpd server

Table 1 Configuration of machines used in NPCS test

As a step towards self-containment, the webserver and the rule module run on the IXP12EB whereas the sslproxy runs in the targetserver shell window. The test data are collected by a benchmark – WebBench. The WebBench is installed on ardor. Both controller and client of WebBench are running on ardor.
The results of webbench run are shown in figure 3 and 4.
	Table 1: WebBench Summary

	C:\WebBench\Controller\Suites\Webbench\verify_ssl_wb401.tst

	Mix Name
	Requests Per Second
	Throughput (Bytes/Sec)
	
	Test Information

	1_client
	0.425
	1345.975
	
	Engine Types: http

	4_client
	0.425
	1147.525
	
	WebBench 5.0

	8_client
	0.425
	1314.850
	
	Start Suite: Thu Apr 28 03:26:35 2005

	12_client
	0.400
	1640.525
	
	Finish Suite: Thu Apr 28 03:45:59 2005

	16_client
	0.425
	1606.750
	
	Elapsed Time: 00:19:24

	20_client
	0.400
	1082.025
	
	Status: Suite completed successfully

	24_client
	0.400
	627.950
	
	Comments:

	28_client
	0.425
	739.675
	
	

	32_client
	0.425
	1403.250
	
	

	36_client
	0.425
	822.175
	
	

	40_client
	0.425
	824.225
	
	

	44_client
	0.425
	2533.825
	
	

	48_client
	0.425
	1323.575
	
	

	52_client
	0.425
	1080.550
	
	

	56_client
	0.400
	915.875
	
	

	60_client
	0.425
	2963.300
	
	

Figure 3 Table of processing times with increasing number of clients

[image: image4.emf]Overall WebBench Requests/Second

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

1_client 4_client 8_client 12_client 16_client 20_client 24_client 28_client 32_client 36_client 40_client 44_client 48_client 52_client 56_client 60_client

Mix Name

Requests / Second

Figure 4. performance Graph
Figures 5 and 6 are reproduced from Longhua’s thesis report [10] for comparison purpose.
[image: image5.jpg]Table 1: WebBench Summary
GiiwebbenchiControlfer\SuitesWebBenchwarity_ssi_whAvst

A ame Secona @ytes/sec) Test nformation
T e 0.179 570,675
‘ 4 cert 0.188 442.967
o_clent 0.188 987.875
‘ 12_ctant 0.188 426.163
16_ctent 0.188 625,079
‘ 20, ctent 0.154 441313
24_ctent 0.192 454917
‘ 26 ctant 0.179 694.283
s2_ctent 0.183 513.525
‘ 36_clent 0.192 678.217
40_ctent 0.196 702.929
‘ 44 ctant 0.179 452.221
soctent 0.183 861.154
‘ 52.clent 0.146 311.188

634.104
578.000

56_clent

Figure 5.

[image: image6.jpg]Requests/Second

1.200

1.000

WebBench Requests Per Second

i\

0.800

0.600

0400

\.,A —e—With Rule Module on <P
—s—w ithoLit Rule Module on <P

0.200 [ttt A A4

0.000

x
&
&

N

X
&

s o8 o8& &
o o
,g\,/ VQ/ V%/ ")b/

Clients

Figure 6.

From the above results, it appears that the NPCS performance is low. As described earlier, the reason is bulk of the processing is done by StrongArm core instead of the specialized microengines. The good news is the performance is pretty stable with successively higher number of clients.
Figure 7 shows the times taken to modify switching ruleset for different number of rules.

[image: image7.emf]Rule Refreshing Times

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

5 10 20 30 40 50 60 70 80 90 100

of Rules

Time

Series1

Figure 7.

Figure 8 shows time taken to retrieve switching statistics during webbench load-testing.

[image: image8.emf]Statistics retrieving times

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

Series1

Figure 8.

5. Lessons learned

At the beginning, the web server search was driven by the single most important requirement – File uploading capability. It took some time and learning about HTTP RFC to achieve file upload to server from any client over web. The initial porting ad testing of webserver was done on the gandalf machine.
It took quite a while of time and effort, to realize the roadblock in dynamic changing of switching rule set. After spending considerable amount of time and effort, we decided to change the tactic and worked on breaking rulemodule into two components. The work done by Ganesh on Secure Information Sharing project provided help in terms of modeling the dynamic ruleset component [11].
The IXP12EB software has little instability in it. Sometimes, the peth0 driver initialization fail, with error message. When that occurs, there is disconnect between the Ethernet and VxWorks kernel, and the packets are not received and processed. A good indicator of this, is failure of attempt to ping the SSL address 128.198.60.130. The easy recourse is just rebooting the IXP12EB.
Another nonstandard way is the procedure to compile and make the VxWorks boot image. Generally, the Tornado IDE takes care of complex task of compiling and linking the source code with VxWorks libraries. But the VxWorks boot image is build by a series of manual steps carried out at command prompt level (Appendix A).
The generally available distribution of PC webbench works at 40 bit encryption level. The ssl proxy software of NPCS works at much higher level encryption (128 bit). In order to perform the benchmarking in timely manner, we downgraded the encryption level of ssl proxy by replacing SSLv23_server_method() method by SSLv2_server_method().
6. Conclusions / Future Directions

We have developed a web-based management interface for NPCS and it performs well in updating the content switch ruleset and retrieving content switch status. GoAhead web server was chosen in this project for its small footprint. The in-process CGI scripts were developed for the key management functions. A in-memory file system based on the block device driver and dosFS of VxWork was created to save the content switch ruleset, the switch status/statistics, web pages, and logs.
The NPCS performance is still slow. And one of the major causes is the bulkload of switching is performed by StrongArm core instead of getting it done from the six microengines.. IXP1200 Network Processor has six microengines, which have special instruction set for packet processing. Each microengine can have 4 threads running. The microcodes used in this project for microengines are simply implemented the transfer of the packets to and from IX Bus, and did not do much work on packets processing. NPCS involves two basic tasks, “packet parsing” and “rule matching”. One possible improvement is to allocate these two tasks to microengines which they are specially designed for.
The size of ssl_proxy.out (the downloadable application for IXP1200) is 9MB. It is relatively big in an embedded system with small memory size. It probably slows the performance of NPCS. One possible future action item may be to reduce the libraries size of CryptoLib and SSLLib which are linked into ssl_proxy.out.
7. References:

[1]. “Linux Virtual Server”, http://www.linuxvirtualserver.org
[2]. High Performance Cluster Computing:Architechures and Systems, Vol 1&2, by Rajkumar Buyya(Editor), May 21, 1999, Prentice Hall

[3]. Gregory Yerxa and James Hutchinson, “Web Content Switching”, http://www.networkcomputing.com
[4]. C. Edward Chow and Weihong Wang, “Design and Implementation of a Linux-based Content Switch”, to be published in Proceedings of Second International Conference on Parallel and Distributed Computing, Applications and Techniques. http://cs.uccs.edu/~chow/pub/contentsw/status/chow1.doc
[5]. Intel(IXP1200 Network Processor http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
[6]. Intel(IXA (Internet Exchange Architecture) http://developer.intel.com/design/network/ixa.htm
[7]. WindRiver Tornado Development Tools http://www.windriver.com/products/html/tornado2.html
[8]. Tornado User’s Guide (Wondows Version) 2.0

[9]. WindRiver VxWorks, http://www.windriver.com/products/vxworks5/index.html
[10]. C. Edward Chow and Longhua Li, “The Design and Implementation of Content Switch on IXP12EB”

[11]. Ganesh Godavari, “Role Based Access Right Specification for Secure Information Sharing.

[12]. Jigsaw – W3C’s Server http://www.w3.org/Jigsaw
[13]. Avenida – 100% pure Java-based web server http://www.serverwatch.com/webserver-avenida.html
[14]. GoAhead webserver from GoAhead Software - http://www.goahead.com/

[15]. Form-based File Upload in HTML -

 http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1867.html
Appendix A

Configuring and Launching IXP12EB target server and shell with Tornado
Before beginning the following procedure, be sure that a VxWorks License Server is up and running and that an adequate number of licenses are available.
1. Launch Tornado by double-clicking the Tornado icon on your PC desktop.

2. On the main menu, select Tools > TargetServer > Configure. A target server configuration window appears (Figure A-1).
[image: image9.jpg]Configure Target Servers 2]

Teiget Server Desciplons

Description
Remove

T~ Add deseription to menu.

Terget Server Name

 Taiget Server Propeties —[Back End i

Avallable Back Ends

Teiget Neme/IP Address

CommandLine

f

gt ene

.
| R

Figure A-1 Target Server Configuration Window 1
3. If the Target Server Descriptions box is blank, click New and the name Configuration should appear in this box.
4. Enter the name of the target server in the Target Server Name text box. This is an arbitrary name that describes these configuration settings.
5. In the Available Back Ends textbox, select wdbrpc and enter the value of the Target name and IP address in the Target Name/IP Address text box. This should be the same as the inet on ethernet parameter entered as part of the procedure shown in Figure A-2.
[image: image10.jpg]Configure Target Servers (2]

Terget Server Desciptons

New

Cory
Deserpton [Secre CotentSwich Preet |
Renove
e e

Target Server Name [IXP1200€8
Tetget Server Propettes —[Back End H

Avaiable Back Ends Timeout(sec) Rety (Count)

Target Name/IP Address [126.198.50.32

Command L
latsvi exe 128 198.60.32 -1 IXP1200EB B wdbipc |

izl

B R

Figure A-2 Target Server Configuration Window 2
6. Under the Target Server Properties field, select Console and Redirection (Figure A-3). If not already selected, select Redirect Target I/O.
7. Under the Memory Cache Size field, select Specify, and enter 15360 (i.e. 15M) (Figure A-4).
[image: image11.jpg]Configure Target Servers |

Teiget Server Desciptons

New

e

IV Add desciplion to menu

Target Server Name [IXP1200€8
Teiget Server Fiopettes [Console and Rediection]

¥ Rediect Target 10
I Create Console Window I~ 1cci

Target Name/IP Address [126.198.50.32

Command Line
lotsvr exe 128 1986032 - IXP1200EB B wdbipc =
iecti]

Lamch | Cocsl |t

Figure A-3 Target Server Configuration Window 3
[image: image12.jpg]Configure Target Servers (2]

Teiget Server Descrplons

cory
Deserpton [Secre CotentSoih Preet |
Remove
P e

Target Server Name [XP1200€8
Teiget Server Fropettes [Memary Cache Size i

© Defoul {1 M Bytes)

& Spesity K Bps) [15360]

Target Name/IP Address [128.198.50.32

CommandLine

tgtsv exe 128,198 60.32 1 IXP1200EB ¥ -m 157286408]
wabipe rediectl

i
Larch | ol |t

Figure A-4 Target Server Configuration Window 4
8. Click Launch. A command prompt appears and succeeded messages should be displayed.
9. If necessary, click OK to close the Configure Target Servers window.
10. Click the Tornado main window (Figure A-5) and click the Target Server Dropdown List. Highlight the target server configuration you have just created.

[image: image13.png]Fle Edt View Projot Buld Debug Toos Window Help

|22 Sle)e

O

Figure A-5 Tornado Main Control Window
11. To launch the VxWorks shell, click the Launch Shell button. A display such as the following should appear:
[image: image14.jpg]Shell IXP1200EB@

= [_[O1x]

LIt g0iss sssss siis ssies
SIS I A sl i
SIS A S S
D i A G iy
SIS S i sisiss siiss
D T iy Sisise ssises
e L i U T,
DS DA DA s iy
e Ui i Ui i

TORUNADO

Developnent Systen

D i T U T
e i s U T,
Vi Ui Ul i Ui Host Based Shell
I A %
A A %
e i v v e Version 2.0
e i i i i
= “ “ “ “
= “ “ “ “
o “ “ “ ~
7 B/ ~ ~ ~

Copyright 1995-1999 Wind River Systems, Inc

lC++ Constructors/Destructors Strategy is AUTOMATIC

Figure A-6 Tornado Launch Display
At this point, the VxWorks operating system is up and running on the IXP12EB board, and the shell window is ready to execute commands.
Appendix B

Building New VxWorks Image

Instructions of building vxworks image:

1. Recompile the microcode in ixp1200/microcode/mvrrefdes/Onproj_8_1f_hw project with modified refdes/rec_nextpac.uc
recompile the microcodes to get hex ‘c’ file. (set the option workbench -> build -> setting -> linker => generate hex ‘c’ file)
2. copy content of the file to ixp1200/sa1_corelibs/app1200/mvr_ucld.c

3. cd ixp1200\SA1_CoreLibs\SA1200Core_Build
make –f vxworks_mvr.mak NetApp_DBG
(with modified vxworks_mvr.mak and ixp1200\SA1_CoreLibs\app1200\net_app.cpp)
Notes: to set up the tornado compile environment, you must run c:\tornado\host\x86-win32\bin\torVars.bat

4. copy c:\ixp1200\vxworks_lib\VxWorks_Gig_mvr.a ./vxworks_gig.a

5. cd c:\ixp1200\BoardSupport\Boot1200
make vxWorks_gig

6. in c:\ixp1200\BoardSupport\bin you will get vxWorks_gig
Appendix C
Instructions for Creating a Certificate with OpenSSL on Linux

1. To make certificate authority:

2. mkdir CA

3. cd CA

4. mkdir certs crl newcerts private

5. echo "01" > serial

6. cp /dev/null index.txt

7. cp /usr/local/openssl/openssl.cnf.sample openssl.cnf

8. vi openssl.cnf (set values)

9. openssl req -new -x509 -keyout private/cakey.pem -out cacert.pem -days 365 -config openssl.cnf

10. To make a new certificate:

11. cd CA (same directory created above)

12. openssl req -nodes -new -x509 -keyout newreq.pem -out newreq.pem -days 365 -config openssl.cnf

13. (certificate and private key in file newreq.pem)

14. To sign new certificate with certificate authority:

15. cd CA (same directory created above)

16. openssl x509 -x509toreq -in newreq.pem -signkey newreq.pem -out tmp.pem

17. openssl ca -config openssl.cnf -policy policy_anything -out newcert.pem -infiles tmp.pem

18. rm -f tmp.pem

19. (newcert.pem contains signed certificate, newreq.pem still contains unsigned certificate and private key)

Appendix D
COMPILATION

Compiling SSL-proxy :

Make the sslproxy executable by opening Tornado workspace D:\jayant\npcs\ssl_proxy\ssl_proxy.wsp, and building the executable.

Compiling GoAhead webserver:

Compile the GoAhead source code by opening Tornado workspace D:\jayant\goahead\GoAhead.wsp, and building the executable. The object files created will be used to embed the webserver in VxWorks image.

VxWorks downloadable image :

The VxWorks image is built by invoking make utilitity in a msdos window. After opening the dos window, go to directory D:\jayant\npcs\ixp1200\BoardSupport\Boot1200. Run torVars.bat file to setup environment variables, necessary to correct compilation.

Then make the executable using following command:

make vxWorks_gig
The make file contains necessary copying and linking commands for GoAhead code and ram based filesystem code with VxWorks image.

The successful compilation and linking, will produce final downloadable VxWorks image, vxWorks_gig, in the directory D:\jayant\npcs\ixp1200\BoardSupport\bin\vb.

Generating SSL certificates:

The header file, D:\jayant\npcs\ssl_proxy\config.h indicates the certificate file names and their directories used by ssl-proxy executable. Generate the certificates and place the files in the appropriate directories.

NPCS INITIALIZATION and TESTING:

In order to download the VxWorks image and start booting process, make sure that Tornado ftp server and Tornado console windows are started and running. Reboot the IXP12EB by turning on the power switch located behind the box.

The boot parameters for IXP12EB are shown in Figure 5.

[VxWorks Boot]: p

boot device : eeE

unit number : 0

processor number : 0

host name : dilbert

file name : D:\jayant\npcs\ixp1200\BoardSupport\bin\vb\vxWorks_gig

inet on ethernet (e) : 128.198.60.32

host inet (h) : 128.198.60.23

gateway inet (g) : 128.198.60.1

user (u) : acsd

ftp password (pw) : acsd

flags (f) : 0x0

target name (tn) : acsd

startup script (s) : d:\jayant\npcs\Startup\startup.txt

[VxWorks Boot]:

Figure 5.

The IXP12EB’s serial port has been connected to COM2 of “Dilbert” pc. Appearance of prompt,

->

indicates completion of IXP12EB booting.

In Tornado IDE, launch the target server. Make sure following parameter values are set.

tgtsvr.exe 128.198.60.32 -n ixp1200 -s -V -m 15728640 -B wdbrpc

In the shell window, load the ssl_proxy executable by entering,

 -> ld<D:/jayant/npcs/ssl_proxy/ARMSA110gnu/ssl_proxy.out

 -> init

This will set the ip addresses of the test servers. Then initialize Peth driver by

 -> PethDrvInit()

make sure that the Peth driver is receiving packets, by executing

 -> ifShow()

If not, then reboot IXP12EB and start from beginning.
Else, start the ssl_proxy by

-> taskSpawn("sslproxy",100,0,20000,sslproxy,0)

Now open the test page,

http://blanca.uccs.edu/~jbpatil/sslproxytest.html
to perform tests.

Click on one of the test links, and depending on the ruleset, the browser will display page from either cow.csnet.uccs.edu or buck.csnet.uccs.edu.

Appendix E
Screen shots:
[image: image15.png]»
£ 5. a

My Computer

P

Internet
Explorer

=)

Network Creal
Neighborhood

9

Recycle Bin Connec|
Inte

& e

R
14Feb2004.... viawork]

My Biifcase

=
Outleck
Erpss

-}
Free ADLE
Urlmied.

OperSSL Wiebserver
Pottingdoc using tfs.doc

FEions vermee

Figure 6. Sample compilation of sslproxy
[image: image16.png]el
Ele Edt View Favotes Ioos Hep E

&g Q@ [4 lQ &E 3 v =l e
Back Stp Refiesh Home | Seach Favorles Histoy | Mal P Edi_ Discuss
‘Addvess [€7 D:\jayantigosheadwis211-011120webinpos him =] PGo | Liks >

|

|

(] Wy Conputer

gstart] |) @ %1 % || [FhNolog fie apen - W. Tornada - Shell irp1 28Martt - WordPad | @ vawarks? - HyperTe..| BB CWINNT\Systen. |[&1 Testing NPCS - |[CDBEESI R 1151 M

Figure 7. NPCS home page

[image: image17.png]ad Demo - Microso plo =18

Fo B thw Favrtes Tk tiop | &
Q- © - [@ D] P s @2 2 B -1 B
adiress [B) 2/uplosaiin BN

NPCS

IXP1200 NETWORK PROCESSOR BASED CONTENT SWITCH
INTERFACE

Select file to upload to NPCS:
[Bowe
ol

cancel

HOME

[Eore [T [[Rdiowmmanes 7

Figure 8. File upload form

[image: image18.png]£l
Ele Edt View Favotes Ioos Hep E

= Q@ [4 lQ &E 3 5 o .
Back Slop Refiesh Home | Seach Favates Hitay | Mal Pt Edl Dsouss
Address [1 hitp:/128 16,60 32:8000/ goform/priiStats =] PGo | Liks >

=
Switching Statistics

wl #
cow.csnetuces.edu | 4

buck.csnetuces.edu | 9

® Interet

Astart| | A @ 1 9 || @vwork..| [£) 2rapt.| By Expor.. | A Tomad..| FhNokg...| (£] 28Mart.| EECWL.. | &]vehool..|[E]swite... E]dattid.| DRESIR sa4r

Figure 9. Sample switching statistics
Target Server Dropdown List

Launch Shell Button

v

- 5 -

_1176363897.vsd
Workstation�

�

Card�

�

�

�

Host
dilbert�

Target
IXP12EB�

RS-232
Serial Link�

Ethernet�

_1177180861.vsd
�

�

�

�

GoAhead
Webserver�

Rulefile upload�

Rulerefresh�

Switching Stats�

in-process CGI�

ssl_proxy/
switching
module�

�

Ruleset�

Refresh�

�

�

VxWorks
Operating
System�

Rulefile�

Ram-based
Filesystem�

Web-based Management Interface Module�

NPCS Mgmt Requests�

�

NPCS
Cluster
Requests�

�

�

Rule
matching�

