Rule Editor

Design of Rule Editor

If statements in ‘C’ language are of the form

Numerical statements

If (<term1> <logical operator><term2>)

{Sequence of actions to be performed}

String statements

If (strcmp(<term1> ,<term2>)<logical operator> 0

{Sequence of actions to be performed}

When the rules are entered in the rule editor. The rule editor outputs a flag whenever a potential conflict is detected. Potential conflicts can be

1) Duplication of the condition i.e. for same condition specifying same/different actions.

2) Numerical comparison errors, these are easily committed and difficult to detect manually,

for example:

Rule111: (xml.purchase/totalAmount > 5000) { forward the packet to mini server}

Rule122: if (xml.purchase/totalAmount > 20000) { forward the packet to cray server}

When rule matching occurs and xml.purchase/totalAmount = 30000

Rule111 will be executed first rather than Rule122, which may not be the intention of user.

Similar numerical comparison conflict can occur with “<“ opertator

The Rule Editor will help you to overcome these potential conflicts using a simple algorithm

Duplication Errors can easily be detected by checking the condition with the existing conditions

Numeric Comparison Errors are detected using the following algorithm

When a new rule is being entered

1) Check the logical operator, if it is of not “>”, “<” goto step 6

2) Check with the existing rules whether the logical operator and term1 match, if no match is found goto step 6

3) If the logical operator is “>”

Check whether match.term2 < term2 and match.ruleposition < ruleposition If true flag the user of potential conflict and goto step 6

4) If the logical operator is “<”

Check whether match.term2 > term2 and match.ruleposition < ruleposition

If true flag the user of potential conflict and goto step 6

5) Add rule to existing rules

6) Exit

Working of Rule Editor

It helps to convert a sequence of if statements entered using the editor into native c language. Fig 1 shows the rule editor

[image: image1.png]Content Switching Rules
File Edit

Rule Editor
Term1 soml.customerame

Operator

Termz oM

Action route(fastserver)

Insert Before Modify

Line No Insert After Delete

Append Clear
cade

Errar

Fig 1: Rule Editor

Insert Before: adds record before the Line No.

Insert After: adds record after the Line No.

Append: adds record at the end.

Modify: it asks for the Rule Number, if exists it allows for modification of the rule.

Delete: it asks for the Rule Number, if exists it deletes the rule.

 The operator List box contains various options as shown in Fig 2

[image: image2.png]Contains
\Cantains

Fig2: options in Operator ListBox

The logical operators are used for numeric conditions statements. When the contents of term2 are not numeric the rule editor automatically converts the condition into a strcmp statement.

The options “Contains” and “!contains”are used for handling regular expressions.

E.g. if (term1 contains term2) {sequence of actions to be performed}

Here term2 can be a regular expression like “*.gif”

Advantages

Informs the end user of a potential conflict in if statements, which are tiring to debug when written manually.

1) Automatically converts string data type into strcmp format, the native form of c string handling

2) It also handles regular expression comparisons.

Limitations

1) Currently it handles only one condition

2) Improve performance when the conditions are too many

_1043326466

_1043327301

