v

iii

Secure Content switch

by

Ganesh Godavari

Post Graduation Diploma in MISCA 1999

Bachelor of Science 1997

A thesis submitted to the Faculty of Graduate School of the

University of Colorado at Colorado Springs

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

2002

(Copyright By Ganesh Godavari 2002

All Rights Reserved

This thesis for the Master of Science degree by

Ganesh Godavari

has been approved for the

Department of Computer Science

By

Advisor: C. Edward Chow

Jugal K. Kalita

Charles Shub

Date _____________

Ganesh Kumar Godavari

Secure Content switch

Thesis directed by Professor C. Edward Chow

Content switches examine the content of incoming requests in order to make decisions about routing them to a server among a cluster of servers. Security has become a major concern in today’s networks. This report describes the enhancement of security in a content switch using Transport Layer Security and Secure Socket Layer Protocols. OPENSSL provides extremely secure encryption and decryption capabilities that I am utilizing for handling encrypted HTTP requests. The content switch can route requests based on URL, IP address and text or XML content in application layer payload. Some of the other features of my secure content switch include session reusability for efficient and faster processing of secure HTTP requests.

CONTENTS

1INTRODUCTION

21.1. Secure Content Switch

31.2. Security Approaches For Web Traffic

51.3. Tradeoff between Layer 3 and Layer 4 security

61.4. Some content switches that support security

71.5. Focus of Thesis

81.6. Analysis of Layer 4 Protocol (TLS Ver 1)

81.6.1. Goals of TLS protocol

91.6.2. TLS Sessions and Connections

111.6.3. TLS LAYERS

121.6.3.1. TLS Handshake Protocol

151.6.3.2. TLS Record protocol

18CHAPTER 2

18SECURE CONTENT SWITCH

192.1. SSL Transactions []

212.2. OpenSSL: The Open Source toolkit for SSL/TLS []

222.3. Software architecture of secure content switch

232.3.1. Secure Content Switch Child Module.

272.4. Dynamic Forking SSL SECURE CONTENT SWITCH

332.5. Pre-Forking SSL SECURE CONTENT SWITCH

392.6. RuleModule

-
42Performance Results

443.1. Performance Test 1

45Dynamic Forking vs. Pre-forking secure content switch

463.2. Performance Test 2

483.3. Performance Test 3

513.4. Performance Test 4

543.5. Performance Test 5

563.6. Performance Test 6

57Remote rule module vs. local rule module

573.7. Performance Test 7

60Chapter 4

60Conclusion and future work

63Appendix A

63A.1. Installing of Linux Application Level Content switch

63A.1.1. Install Openssl

63A.1.2.
Install SSL Proxies for Content switch

64A.1.3. Configure secure content switch for content switch

67A.2. Configure LCS routing rules

69A.3. Compile the content switch code

71APPENDIX B

71WebBench []

FIGURES

Figure 1.1 relative Location of Security Facilities in the TCP/IP Protocol Stack
3
Figure 1.2 operations of the TLS Handshake Protocol
11

Figure 1.3 showing the operations of a TLS Record Protocol
14

Figure 2.1 shows the location of SSL in the OSI model
17

Figure 2.2 illustrates the steps taken during an SSL negotiation
17
Figure 2.3 Architecture of secure content switch
20
Figure 2.4 showing the flow of control in a Dynamic forking secure content switch
26
Figure 2.5 showing the flow of control in a Pre-forking secure content switch
31

Figure 2.6 showing the flow of control in a Rule Module
36

Figure 3.1 showing the block diagram of the secure content switch test bed
38

Figure 3.2 showing the request/sec of different types of secure content switch
43

Figure 3.3 showing the request/sec of different types of secure content switch
45

Figure 3.4 showing the block diagram of the secure content switch test bed
46

Figure 3.5 showing the Request / Second of Dynamic Forking secure content switch
48

Figure 3.6 showing the Request/sec of dynamic forking non-secure content switch
49

Figure 3.7 showing the Request/sec of secure content switch with local rule module
51

Figure 3.8 showing the Request/sec of secure content switch with remote rule module
52

Figure 3.9 showing the Request/sec of secure content switch in local node problem
54

TABLES

Table 3.1 Configuration of machines used in performance tests
39
Table 3.2 showing the request/sec of different types of secure content switch
40
Table 3.3 showing the request/sec of different types of secure content switch
42
Table 3.4 showing the request/sec of different types of secure content switch
44

Table 3.5 showing the request/sec of different types of secure content switch
46

Table 3.6 showing the Request / Second of Dynamic Forking secure content switch
47

Table 3.7 showing the request/sec of dynamic forking non-secure content switch
49

Table 3.8 showing the Request/sec of secure content switch with local rule module
50

Table 3.9 showing the Request/sec of secure content switch with remote rule module
52

Table 3.10 showing the Request/sec of secure content switch with remote rule module
53

CHAPTER 1

INTRODUCTION

The explosion of the Internet from a small network of known individuals to a huge, heterogeneous anonymous network has brought several troubles in its wake. Right from the case of a mail account password being sniffed and acquired to credit card numbers and other confidential business data being observed, attacks can occur on transmitted information in many ways. The number of commercial transactions and private data transmission that occur and the ability of malicious elements to observe and manipulate data anonymously has necessitated the growth of security measures to protect Internet users. A need to have standard security protocols that are platform and network type independent and easily implementable, usable and secure was felt.

Along with security another major issue is handling of the large volumes of data present in today’s networks. Many approaches have been devised in order to provide a solution to this problem. One solution to reduce the load is to have a paid subscription to one of the Content Delivery Network (CDN) providers such as Akamai [1], Speedera [2] and Digital Island [3]. Another approach is to distribute the large volume of requests among a group of servers where a master controller, that can be a dedicated host or a process, first receives the requests and delegates it to one of a group of servers for processing. A content switch (CS) [4] is such a load balancing system that distributes load based on the content of the received requests. A Web-switch is a content switch that distributes load based on Web requests.

1.1. Secure Content Switch

Consider the case of an e-commerce site with a large amount of traffic. The users who are accessing the site may be performing various functions like browsing, signing in or doing some profitable activity like purchasing. It makes good business sense to provide better and faster access to paying customers rather than casual surfers. One way of doing this is to provide some kind of preferential treatment like routing them to faster servers. This segregation implies that requests are routed to different servers based on their content. This kind of routing based on request content cannot be achieved by traditional layer4 and below switches, which route requests based on request characteristics like portno, or IP address, but not on the content of the request. A better approach in this direction would be to develop a mechanism, which can route request based on content, in other words, a content based switch. Some of the other functions that a content switch can be used for are:

a) Load Balancing: As a Load Balancer, a content switch can segregate incoming requests based on the HTTP meta header, URL or even the application layer payload and route them to the back end servers in the server cluster.

b) Firewall: As a firewall, a content switch can either allow or reject requests based on their content or their IP address.

c) Email Filtering: a content switch can function as an efficient spam guard or work as an anti virus device by verifying the sender and content of emails.

E-commerce transactions normally involve the transfer of sensitive or private data like personal information or credit card numbers, which are liable to active or passive attacks during transmission.

1.2. Security Approaches For Web Traffic [5]
There are several approaches to provide Web security. The approaches are similar in the services they provide and, to some extent, in the mechanisms that they use, but they differ with respect to their scope of applicability and their relative location within the TCP/IP protocol stack.

[image: image13.png]HrTe

Loap map

SECURE SOCKET LAVER

TRANSPORT LAYER

INTERNET LAVER

Application Layer

Session Layer

Transport Layer

Network Layer

[image: image14.png]HrTe

Loap map

SECURE SOCKET LAVER

TRANSPORT LAYER

INTERNET LAVER

Application Layer

Session Layer

Transport Layer

Network Layer

[image: image15.png]Web
Browser

Secure Content Switch

content

PR
routing
decision

(a) Layer3/Network Security

 (b) Transport/Layer4 Security

Figure 1.1 Relative Locations of Security Facilities in the TCP/IP Protocol Stack

One way to provide Web security is to use IP Security or IPSEC [6] as it is generally called. Figure 1.1.a shows its location in the TCP/IP protocol stack. The advantage of using IPSec is that it is transparent to end users and applications and provides a general-purpose solution. Further, IPSec includes a filtering capability so that only selected traffic need incur the overhead of IPSec processing.

Another relatively general-purpose solution is to implement security just above TCP. Figure 1.1.b shows its location in the TCP/IP protocol stack. The foremost example of this approach is the Secure Sockets Layer (SSL) [7] and the follow-on Internet standard of SSL known as Transport Layer Security (TLS) [8]. At this level, there are two implementation choices. For full generality, SSL (or TLS) could be provided as part of the underlying protocol suite and therefore be transparent to applications. Alternatively, SSL can be embedded in specific packages. For example, Netscape [9] and Microsoft Explorer [10] browsers come equipped with SSL, and most Web servers have implemented the protocol.

The goal of SSL was to deploy something totally at the user level, without needing to change the operating systems, whereas the goal of IPSec was to deploy something within the operating system and not require changes to the applications. Since everything from TCP down is generally implemented in the operating system, SSL is implemented as a user level process that calls TCP. IPSec is implemented in layer 3, which means it considers everything above layer 3 as data, including the TCP header. The philosophy behind IPSec is that if only the operating system needed to change, then by deploying an IPSec-enhanced operating system all the applications would automatically benefit from IPSec’s encryption and integrity protection services. It also provides a centralized control.

1.3. Tradeoff between Layer 3 and Layer 4 security

The following is a scenario where security provided by SSL can be breached.

Since TCP will not be participating in the cryptography, it is possible for an intruder to intercept packets and send some malicious data as the next packet with modified sequence number into the packet stream. TCP protocol entity at the receiving end will acknowledge such packet and send it up to TLS/SSL protocol entity, which will discard it because the integrity check will indicate the packet is bogus. When the real segment arrives, the TCP protocol entity at the receiving end will assume that it is a duplicate data, since it has already received a TCP segment with the same sequence number.

IPSEC on the other hand can provide protection on TCP header and data. So in theory, IPSec’s approach of cryptographically protecting each packet independently is a better approach.

Meanwhile if only the operating system changes, and the applications and the IPSEC Application Program Interface (API) to the applications do not change, then the power of IPSec cannot be fully utilized. The IPSEC API just tells the application what IP address is on a particular connection. It can’t inform the application of which user has been authenticated. That means that even if users have public keys and certificates, and IPSec authenticates them, there is no way for it to inform the application. Most likely after IPSec establishes an encrypted tunnel, the user will have to type a name and password to authenticate to the application. So it is important that eventually the IPSEC APIs and applications are changed so that IPSec can inform the application of something more than the IP address of the tunnel endpoint, but until they do, IPSec accomplishes the following:

· Encrypt traffic between the two nodes.

· As with firewalls, IPSec can access a policy database that specifies which IP addresses are allowed to talk to which other IP addresses.

· Some applications do authentication based on IP addresses, and the IP address from which information is received is passed up to the application. IPSec authentication is more secure because the IPSEC endpoint authenticates the connection based on source IP address and keys in the IPSEC payload. The application would be justified in trusting the IP address asserted by the lower layer as the source.

1.4. Some content switches that support security [11]
a) Alteon iSD-SSL Accelerator [12]: The Alteon iSD-SSL accelerator works with an Alteon Web switch to intelligently speed secure e-Commerce transactions by offloading Secure Sockets Layer (SSL) processing from local servers without imposing delays on other traffic in the same data path.

b) F5 Networks Big-IP Controller 3.1 [13]: F5 has long been a leader in the Internet Traffic Management space. It has an advanced web switching logic. Big-IP combines a strong, traditional load-balancing feature set with SSL acceleration ability. It extracts HTTP header information from the request to make traffic management decisions.

c) Foundry Networks ServerIronXL with Internet IronWare 7.0 [14]: Foundry equips its ServerIronXL with a strong Layer 2 and Layer 3 switching and Layer 5/7 load-balancing based on cookies and SSL session IDs.
1.5. Focus of Thesis

This thesis work is focused on adding security to content switch []. TLS/SSL is a good choice for securing connections in situations where user or server authentication is needed or where IPSec is not readily available. The major advantage of using TLS/SSL is that it is platform and application independent. Moreover most of the web browsers support SSL and TLS based connections. This makes it an ideal choice for handling the security aspect of content switch at application level rather than at the lower layers of the TCP/IP. Before going into the details of the implementation of a secure Content switch the following section talks about the working of the TLS protocol.

1.6. Analysis of Layer 4 Protocol (TLS Ver 1) [15]
The Transport Layer Security (TLS) protocol is based on and is similar to SSL 3.0 and is a draft standard of the IETF. The TLS working group’s first RFC (Request For Comment 2246) discusses the TLS protocol in detail. Transport Layer Security protocol makes use of a reliable transport layer, such as TCP. It provides security to any application protocol layered on top of it.

As with SSL, TLS is application protocol independent and uses a similar range of ciphers. The TLS standard, however, leaves the decisions on how to initiate TLS handshaking and how to interpret the authentication certificates to the judgment of the designers and implementers of the protocols that run on top.

1.6.1. Goals of TLS protocol

The goals of the TLS protocol are cryptographic security, interoperability, and extensibility, in that order of priority.

· Security: TLS protocol makes use of many cryptographic algorithms to encrypt data (i.e., algorithms to encipher data into a secret code), so that no one except the communicating parties can retrieve the contents of the data.

· Interoperability: i.e., facilitate exchange of security parameters between applications without knowledge of one another’s code.

· Extensibility: i.e., TLS provides a framework into which new and improved asymmetric and other encryption methods can be introduced as they become available

Since cryptographic operations are computation intensive, the TLS protocol caches necessary information required so that efficiency is increased.

1.6.2. TLS Sessions and Connections

To provide security in data exchange, TLS creates a TLS session followed by creation of one or more TLS connection(s) between the communicating applications. A TLS connection can be imagined as a transport for providing some application service between any two peers. Technically it is thought of as a peer-to-peer relationship.

TLS session is actually an association between a client and a server. A TLS session can consist of many TLS connections, which share the same security parameters. A TLS session is created using the TLS Handshake protocol. Once a session is established, if a connection between two communicating applications breaks, a new connection can be established without undergoing the procedure of establishing a new session. This avoids the overhead of negotiating new security parameters for each connection.

To identify the session, the server sends a session identifier to the client during initial negotiation. After breaking a connection, the client can use the same session by specifying the session identifier.

There are various parameters, which identify a session

· Session identifier: The server recognizes a session according to this identifier.

· Peer certificate: A certificate is used to authenticate a user. There is a possibility that the person whom we are exchanging information with may not be a legitimate person. To prove legitimacy a user can acquire a digital certificate, which is a signed document, from a universally trusted party called Certificate Authority. A server needs to have a certificate. A client may or may not have a certificate.

· Compression method: The algorithm that will be used to compress data for this particular session.

· Cipher spec: This specifies the data encryption algorithm that will be used to encrypt data for this session.

· Master secret: This is the 48 byte common key, i.e., a common secret, shared by the client and server.

A connection is defined by the following parameters:

· Server and client random: Random byte sequences that are chosen by the client and server to identify each connection.

· Server write MAC(Message Authentication Code) secret: A key (or secret) used to authenticate messages sent by the server.

· Client write MAC secret: A key used to authenticate messages sent by the client.

· Server write key: An encryption key used by the server to encrypt data sent to the client

· Client write key: An encryption key used by the client to encrypt data sent to the server

· Sequence number: A number to identify messages for a connection.

The use of these parameters would be explained later in the discussion.

1.6.3. TLS layers

TLS protocol stack consists of TLS Record protocol and TLS Handshake protocol. The TLS Record protocol provides security services to the higher-level protocols. The higher-level protocols, such as TLS Change Cipherspec protocol and TLS Alert protocol and the TLS Handshake protocol, are used for management of TLS exchanges. The TLS Handshake protocol is used to exchange authentication information and to negotiate data encryption techniques to be used between the communicating applications before the actual data is exchanged. TLS Handshake Protocol consists of a suite of three sub-protocols, which are used to allow peers to agree upon security parameters for the record layer, authenticate themselves, instantiate negotiated security parameters, and report error conditions to each other. They are TLS Change Cipherspec protocol and TLS Alert protocol and the TLS Handshake protocol itself.

The TLS Change Cipherspec protocol is used to change the encryption algorithm and other security parameters. The TLS Alert protocol is applied to exchange error messages during an ongoing communication.

1.6.3.1. TLS handshake protocol
This is the most important and complex protocol of the TLS protocol stack. It operates on top of the TLS Record protocol. This protocol allows both the client and server to authenticate each other.

Figure 1.2 - operations of the TLS Handshake Protocol

Also this protocol decides as to what encryption algorithm the client and the server will use to encrypt data. Also what keys will be used are decided using this protocol. Since all important key exchange information is dealt in using this protocol, this protocol is used before any application data is encrypted and sent. This protocol consists of exchange of multiple messages between the client and the server.

The TLS Handshake protocol can be divided into 4 phases. Figure 1.2 shows the operations of the TLS handshake protocol

Phase I: Exchange protocol version, session-id, cipher suite, compression method.

This phase is used to establish the security parameters between the client and the server. First the client initiates the request for connection. The client sends to the server various security parameters and the server may select one of them. The message sent by the client is known as ClientHello message. The various parameters sent by the client are

· Client version: The version of the TLS protocol with which the client wishes to communicate

· Random: This is a random number generated by the client for that particular session

· Session ID: To identify the session (if zero then a new session is to be created)

· Cipher suites: List of security options supported by the client

· Compression method: List of compression methods supported by the client

Phase II: server certificate phase
In response to the ClientHello message, the server responds with the ServerHello message. Out of the many preferred options sent by the client related to encryption algorithms, key exchange algorithms & compression algorithms, the server selects one of each. The server also sends digital certificate to prove its authenticity. Depending on what encryption algorithms are used, the server may optionally need to send some key exchange parameters. Also for verifying client authenticity, the server may ask for client’s digital certificate.

Phase III: client certificate phase
In this phase, the client checks the server’s validity and sends its own digital certificate, if available. If the client does not have its own digital certificate, it may request the server to provide it with some membership parameters. These parameters can be a password or a pin number, which the server may use to authenticate the client.

Phase IV: CipherSpec Exchange phase
The secure connection is set up in this phase. After the establishment, the security parameters are passed to the TLS Record layer to affect the current connection. The client and the server also verify that both of them have the same keys used for encryption and authentication process. These keys are generated locally by both using the shared master secret. The following are the four keys generated using the master secret

· Server Write MAC key

· Client Write MAC Key

· Server Write Key

· Client Write Key

1.6.3.2. TLS Record protocol

 The TLS Record protocol performs some operations to secure the data. First it takes the application data to be transmitted and fragments it. It then optionally compresses the fragments using the compression method agreed upon during session establishment. Figure 1.3 shows the Operations of TLS Record Protocol.

The Record protocol then applies a MAC (Message Authentication Code), on the compressed data and generates a checksum, which is appended to the data. The data is then encrypted using the encryption algorithm agreed upon during session establishment. The receiver recomputes the MAC when the data arrives, in order to verify that data is sent from an authentic source.

[image: image1.png]Application deta

Fragmentation
| ! v
Compression
i v
MAC addition
v
Encryption

Figure 1.3 showing the operations of a TLS Record Protocol

To calculate MAC the master secret is used. The formula for calculating MAC is

HMAC_hash (MAC_write_secret, seq_num || TLSCompressed.type || TLSCompressed.version.|| TLSCompressed.length || TLSCompressed.fragment) where,

	HMAC_hash
	A hash algorithm (agreed upon during session establishment), which maps a message of any length into a fixed length value, which is used to authenticate the message

	||

	Concatenation

	MAC_write_secret

	Shared master secret

	seq_num
	A unique number identifying each message

	TLSCompressed.type
	Higher level protocol used to compress the fragment

	TLSCompressed.version
	The TLS version number

	TLSCompressed.length
	Length of the compressed fragment

	TLSCompressed.fragment
	If fragmentation occurs then the compressed fragment

The TLS Record protocol then adds a TLS header to the encrypted data. Finally the data is transmitted to the destination using TCP. At the receiving end, the TLS record protocol is used to retrieve the actual data from the message received.

CHAPTER 2

SECURE CONTENT SWITCH

The SSL protocol is a security protocol that sits on top of TCP at the transport layer. In the OSI model, application layer protocols such as HTTP or IMAP handle user application tasks such as displaying Web pages or running email servers. Session layer protocols establish and maintain communications channels. Transport-layer protocols such as TCP and UDP, handle the flow of data between two hosts. Network layer protocols such as IP and ICMP provide hop-by-hop handling of data packets across the network.

SSL operates independently and transparently of other protocols so it will work with any application-layer and any transport-layer protocol. This allows clients and servers to establish secure SSL connections.

 An application layer protocol sends unencrypted data to the session layer. TLS/SSL encrypts the data and hands it down to the lower layers. When its peer receives the data at the other end, it passes it up through the layers to the session layer where TLS/SSL decrypts it and hands it to the application layer. Since the client and the server have gone through the key negotiation handshake, the symmetric key used by SSL is the same at both ends.

Figure 2.1 shows the location of SSL in the OSI model

2.1. SSL Transactions [16]
To illustrate how SSL works, assume a user wants to make a purchase over the Internet and needs to send a credit card number to a secure Web site.

[image: image2.png]CLIENT VEB SERVER

Figure 2.2 illustrates the steps taken during an SSL negotiation

1. Initially, the request for an SSL session comes from the browser to the Web server.

2. The Web server then sends the browser its digital certificate. The certificate contains information about the server, including the server’s public key.

3. Once the browser has the server’s certificate, the browser verifies that certificate is valid and that the CA is listed in the client’s list of trusted CA’s. The browser also checks the certificates expiration date and the Web server domain name.

4. Once a browser has determined that the server certificate is valid, the browser then generates a 48-byte master secret key. This master secret key is encrypted using server’s public key, and is then sent to the Web server.

5. Upon receiving the master secret from the browser, the Web server then decrypts this master secret key using the server’s private key.

6. As both the browser and the Web server have the same master secret key, they use this master secret to create keys for the encryption and MAC algorithms used in the bulk-data process of SSL. Since both participants used the same master key, they now have the same encryption and MAC keys.

7. As both the browser and Web serve have the same encryption and MAC keys, they use the SSL encryption and authentication algorithms to create an encrypted tunnel. Through this encrypted tunnel, they can now pass data secure ly through the Internet.

Though the authentication and encryption process may seem rather involved, it happens in less than a second. Generally, the user does not even know it is taking place. However, the user will be able to tell when the secure tunnel has been established since most SSL-enabled Web browsers will display a small closed lock at the bottom or top of their screen when the connection is secure. Users can also identify secure Web sites by looking at the Web site address; a secure Web site’s address will begin with https:// rather than the usual http://.

2.2. OpenSSL: The Open Source toolkit for SSL/TLS [17]
OpenSSL is based on the excellent SSLeay [18] library developed by Eric A. Young and Tim J. Hudson. Open Source toolkit implements the Secure Socket Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength general-purpose cryptography library.

OpenSSL contains two important libraries:

a) OpenSSL SSL library implements the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols.

b) OpenSSL CRYPTO library implements a wide range of cryptographic algorithms used in various Internet standards. The services provided by this library are used by the OpenSSL implementations of SSL, TLS and they have also been used to implement SSH [19], OpenPGP [20], and other cryptographic standards.

In addition, the OPENSSL program is a command line tool for using the various cryptography functions of OpenSSL's crypto library from the shell. It can be used for
a) Creation of RSA [21], DH [22] and DSA [23] key parameters.

b) Creation of X.509 certificates [24] and Certificate Revocation List (CRL).

c) Calculation of Message Digests

d) Encryption and Decryption with Ciphers.

e) SSL/TLS Client and Server Tests.

f) Handling of S/MIME signed or encrypted mail
.

2.3. Software architecture of secure content switch

The following figure 2.3 shows the architecture of the current design of secure content switch.

Figure 2.3 Architecture of secure content switch

The following steps describe the process of handling secure requests using the secure content switch.

a) The web browser makes a request to the secure content switch.

b) The dispatcher module in the secure content switch forwards the request to the secure content switch child module. In the dynamic forking version of secure content switch the dispatcher module forks a child process. In the preforking version of secure content switch the dispatcher module forwards the request to a free child.

c) The secure content switch child module performs the handshake with the client and reads in the request.

d) The secure content switch child module then sends the request to the Rule module, which performs rule matching and returns the name of the server by which the request can be served.

e) The real server connects to the web browser through the secure content switch child module (not shown in the picture).

2.3.1. Secure Content Switch Child Module.
The major steps involved in the working of OpenSSL are:

a) First an SSL_CTX object is created as a framework to establish TLS/SSL enabled connections.

b) When a network connection has been created, it can be assigned to an SSL object. After the SSL object has been created using SSL_new, SSL_set_fd or SSL_set_bio can be used to associate the network connection with the object.

c) Then the TLS/SSL handshake is performed using SSL_accept or SSL_connect respectively.

d) SSL_read and SSL_write are used to read and write data on the TLS/SSL connection.

e) SSL_shutdown can be used to shut down the TLS/SSL connection.
Template 2.1 shows how the SSL handshake is performed using Openssl.
Template 2.1

 int server_verify=SSL_VERIFY_NONE;

 char szbuf[BUFSIZ], issuer[256];

 struct front_server szclient;

 SSL_CTX *ctx;

 SSL_METHOD *method=SSLv23_server_method();

 X509 *ca_cert, *client_cert;

 FILE *ca_fp=(FILE *) NULL;

 SSL_load_error_strings();

 OpenSSL_add_ssl_algorithms();

 ctx=(SSL_CTX *) SSL_CTX_new(method);

 if (ctx == (SSL_CTX *) NULL) {

 fatalError("Unable to create new SSL CTX\n");

 goto ExitProcessing;

 }

 if (!SSL_CTX_load_verify_locations(ctx,ca_file,ca_path))

 fatalError("Failed in SSL_CTX_load_verify_locations()!\n");

 /* ** Load Private Key */

 err=SSL_CTX_use_RSAPrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM);

 if (err == -1)

 {

(void) fprintf(stderr,"Error reading private key\n");

SSL_CTX_free(ctx);

 exit(1);

 }

Template 2.1 Contd..
 /* ** Load Certificate */

 err=SSL_CTX_use_certificate_file(ctx, cert_file, SSL_FILETYPE_PEM);

 if (err == -1)

 {

 (void) fprintf(stderr,"Error reading certificate\n");

SSL_CTX_free(ctx);

 exit(1);

 }

 /* ** check if the certificate and private key match */

 err = SSL_CTX_check_private_key(ctx);

 if (err == -1)

 {

(void) fprintf(stderr,"Error cerificate and private key donot match \n");

SSL_CTX_free(ctx);

exit(1);

 }

 /* ** Load randomness */

 if (!RAND_load_file(rand_file,1024*1024))

 {

 (void) fprintf(stderr,"Unable to load Randomness for generating Entropy :-(\n");

 }

 /*** read the ca certificate and save the issuer string, we'll compare

 ** the client's issuer with this one, if they match allow connection

 ** or zap him

 */

 ca_fp=fopen(ca_file,"r");

 if (ca_fp == (FILE *) NULL)

 fatalError("Failed to open Trusted CA certificate file: %s\n", ca_file);

 ca_cert=NULL;

 ca_cert=X509_new();

 if (!PEM_read_X509(ca_fp,&ca_cert,NULL,NULL))

 fatalError("Error reading trusted CA certificate fie: %s\n",ca_file);

 X509_NAME_oneline(X509_get_issuer_name(ca_cert),issuer,256);

 if (issuer == (char *) NULL)

 fatalError("No issuer for trusted CA certificate file!\n");

Template 2.1 Contd..
 if (ca_cert != NULL)

 X509_free(ca_cert);

 (void) fclose(ca_fp);

 ……………………

 /* ** open the server socket */

 sock_fd=serverSocket((u_short) SERVER_PORT ,1000);

 if (sock_fd == -1) {

 (void) fprintf(stderr,"Failed to create server\n");

 exit(1);

 }

 g_sock_fd=sock_fd;

 ………………………

 ssl=SSL_new(ctx);

 if (ssl == NULL)

 fatalError("Failed in SSL_new()!\n");

 SSL_set_fd(ssl,sock_fd);

 /* ** clean up the structures */

 SSL_clear(ssl);

 SSL_set_session(ssl,NULL);

 SSL_set_accept_state(ssl);

 /*

 ** session handling functions

 */

 SSL_CTX_flush_sessions(ctx,SSL_SESSION_CACHE_TIMEOUT);

 SSL_CTX_sess_set_new_cb(ctx, ssl_callback_NewSessionCacheEntry);

 SSL_CTX_sess_set_get_cb(ctx, ssl_callback_GetSessionCacheEntry);

 SSL_CTX_sess_set_remove_cb(ctx, ssl_callback_DelSessionCacheEntry);

 err=SSL_accept(ssl);

 if (SSL_get_error(ssl, err) == SSL_ERROR_ZERO_RETURN)

 {

 /* case where the connection was closed before any data was transferred */

Template 2.1 Contd..
 (void) fprintf(stderr, "SSL handshake stopped: connection was closed");

 goto ExitProcessing;

 return 0;

 }

 else if (ERR_GET_REASON(ERR_peek_error()) == SSL_R_HTTP_REQUEST)

 {

 /*

 ** case where OpenSSL has recognized a HTTP request => client speaks plain HTTP

 ** on our HTTPS */

(void)fprintf(stderr, "SSL handshake failed: HTTP spoken on HTTPS port; ");

goto ExitProcessing;

 return 0;

 }

 else if (SSL_get_error(ssl, err) == SSL_ERROR_SYSCALL)

 {

 if (errno > 0)

 (void) fprintf(stderr,"SSL handshake interrupted by system "

 "[Hint: Stop button pressed in browser?!]\n");

 else

 (void) fprintf(stderr, "Spurious SSL handshake interrupt"

 "[Hint: Usually just one of those OpenSSL confusions!?]\n");

goto ExitProcessing;

return 0;

 }

else if (err == -1)

 {

 fatalError("Error : unknown error in SSL_accept()\n");

goto ExitProcessing;

return 0;

 }

2.4. Dynamic Forking SSL secure content switch

Figure 2.4 shows the flow of control in the Dynamic forking SSL secure content switch. The steps involved are

a) Secure content switch is set to listen for connection requests on port 443. A successful TCP connection results in a valid socket and secure content switch creates a child secure content switch process to handle the request. Secure content switch returns to listen for the next connection request.

b) The child secure content switch process negotiates the SSL connection with the client. Secure content switch then performs the SSL handshake with the client. This step involves establishing ciphers to use and providing certificate to the client for server-authentication. As part of the SSL Handshake request, the client may provide a current or previously created SessionID to reuse for the current connection. The Secure content switch manages the SessionID and this will be used as appropriate during the SSL Handshake.

c) Secure content switch process receives the request for data and decrypts the data according to the negotiated SSL handshake.

d) When the Secure content switch process determines it has fully received an HTTP request, it performs Rule Matching on the request to determine which Real Server can serve the request.

e) The secure content switch process establishes a connection with the Real Server and forwards the request in plain HTTP.

f) The secure content switch process encrypts the data received from the server and sends the data to the client.

Figure 2.4 showing the flow of control in a Dynamic forking secure content switch

Template 2.2, and 2.3 shows how the child processes are created dynamically. Code in Template 2.2 is from dyna_secure content switch.c file and Template 2.3 is from include/msock.h file.

Template 2.2
 /* open the server socket */

 sock_fd=serverSocket((u_short) SERVER_PORT ,1000);

Template 2.3
int serverSocket(u_short port,int max_server) {

 int dummy=(-1);

 int sock_fd;

 u_short nport;

 /* convert port to netword byte word */

 nport=htons(port);

 sock_fd=getConnection(SOCK_STREAM,nport,&dummy,max_server);

 return (sock_fd);

}

/** this function listens on a port and returns connections.

** it forks returns off internally, so the calling function does not have to worry about that.

** the function will create a new process for every incoming connection, so in the listening

** process, it will never return. Only hen a connection comes in, and we create a process for it,

** will the function return. THE CALLING FUNCION SHOULD NOT LOOP

*/

int getConnection(int socket_type,u_short port,int *listener,int max_serv) {

 struct linger li;

 struct sockaddr_in address;

 int listeningSocket;

 int connectedSocket = -1;

 int newProcess;

 int one = 1;

 /* setup internet address information this is used with the bind () call */

 memset((char *) &address,0,sizeof(address));

 address.sin_family=AF_INET;

 address.sin_port=port;

 address.sin_addr.s_addr=htonl(INADDR_ANY);

 listeningSocket=socket(AF_INET,socket_type,0);

Template 2.3 Contd..
 if (listeningSocket < 0) {

 (void) fprintf (stderr,"Unable to open socket!\n");

 perror("socket");

 exit (1);

 }

if (listener != (int *) NULL)

 *listener=listeningSocket;

/*** we will resuse port */

setsockopt(listeningSocket,SOL_SOCKET,SO_REUSEADDR,(char *) &one,

sizeof(int));

 /* we will set keep alive. */

 one=1;

 setsockopt(listeningSocket,SOL_SOCKET,SO_KEEPALIVE,(char *) &one,

 sizeof(int));

 li.l_onoff=1;

 li.l_linger=30;

 setsockopt(listeningSocket,SOL_SOCKET,SO_LINGER,(char *) &li,

 sizeof(struct linger));

 if (bind(listeningSocket,(struct sockaddr *) &address, sizeof(address)) < 0) {

 (void) fprintf (stderr,"\nUnable to bind to socket at port: %d\n",

 ntohs(port));

 (void) fprintf (stderr,"Probably the port is already in use!\n");

 (void) fprintf(stderr,"Or you do not have permission to bind!\n");

 close(listeningSocket);

 exit (1);

 }

 if (socket_type == SOCK_STREAM) {

 /* queue up max_serv connections before having them automatically rejected */

 if (listen(listeningSocket,max_serv) == 0) {

 (void) fprintf(stderr,"\nhttpd listening at port: %d\n",

 ntohs(port));

 }

 else {

 perror("listen()"); }

Template 2.3 Contd..
 while (connectedSocket < 0) {

 connectedSocket=accept(listeningSocket,NULL,NULL);

 if (connectedSocket < 0) {

 /** either a real error occured or blocking was

 ** interrupted for some reason. only abort execution

 ** if a real error occured */

 if (errno != EINTR) {

 (void) fprintf (stderr,"unable to accept!\n");

 perror("accept");

 close (listeningSocket);

 exit (1);

 }

 else

 continue; /* don't fork, do the accept again*/

 }

 newProcess=fork();

 if (newProcess < 0) {

 (void) fprintf (stderr,"failed to fork!\n");

 perror("fork");

 close(connectedSocket);

 connectedSocket=(-1);

 }

 else {

 /** we have a new process (child) */

 if (newProcess == 0) {

 /** this is the new process, close our copy of the socket */

 close(listeningSocket);

 *listener=(-1);

/* closed in this process, we are not responsible for it */

 }

 else {

 /* this is the main loop. close copy of connected socket, and continue loop */

 close (connectedSocket);

 connectedSocket=(-1);

 }

 }

 }

 return (connectedSocket);

 }

 else

 return (listeningSocket); }

2.5. Pre-Forking SSL SECURE CONTENT SWITCH

Figure 2.5 shows the flow of control in the Preforking secure content switch. The steps involved are

a) Secure content switch is set to listen for connection requests on port 443. Secure content switch creates a certain number of child secure content switch processes ahead of time. A successful TCP connection results in a valid socket, which is passed, to one of the process created ahead of time to handle the request. Secure content switch returns to listen for the next connection request.

b) The Child Secure content switch process negotiates the SSL connection with the client. Secure content switch then performs the SSL handshake with the client. This step involves establishing ciphers to use and providing certificate to the client for server-authentication. As part of the SSL Handshake request, the client may provide a current or previously created SessionID to reuse for the current connection. The secure content switch process manages the SessionID and this will be used as appropriate during the SSL Handshake.

c) Secure content switch process receives the request for data and decrypts the data according to the negotiated SSL handshake.

d) When the Secure content switch process determines it has fully received an HTTP request, it performs Rule Matching on the request to determine which Real Server can serve the request.

Figure 2.5 showing the flow of control in a Pre-forking secure content switch

e) The Secure content switch process establishes a connection with the Real Server and forwards the request in plain HTTP.

f) The Secure content switch process encrypts the data received from the server and sends the data to the client.

Template 2.4 shows how the child processes are created dynamically. Code in Template x is from include/prefork.h file.

Template 2.4
/* create children specified by num */

static int fork_child(int num)
{

 int sv[2];

 pid_t child_pid;

 int wanted = num;

 while(num--) {

 if(socketpair(AF_UNIX,SOCK_STREAM,0,sv) < 0) {

 fprintf(stderr,"socketpair: %s",strerror(errno));

 shutdown_server(0);

 }

 fcntl(sv[0],F_SETFL,O_NONBLOCK);

 fcntl(sv[1],F_SETFL,O_NONBLOCK);

 child_pid = fork();

 if(child_pid == -1) {

#ifdef EAGAIN

 if(errno == EAGAIN) {

close(sv[0]);

close(sv[1]);

return (wanted - num);

 } else {

fprintf(stderr,"fatal fork: %s",strerror(errno));

shutdown_server(0);

 }

#else }

#else

 fprintf(stderr,"fatal fork: %s",strerror(errno));

 shutdown_server(0);

#endif

 } else if(child_pid == 0) {

 struct sigaction childsig;

 sigemptyset(&childsig.sa_mask);

 childsig.sa_flags = 0;

 childsig.sa_handler = SIG_DFL;

 close(sv[0]);

Template 2.4 Contd..
 sigprocmask(SIG_SETMASK,&mask,NULL);

 sigaction(SIGTERM,&childsig,NULL);

#ifdef SIGCHLD

#define CHILD SIGCHLD

#elif SIGCLD

#define CHILD SIGCLD

#endif

 sigaction(CHILD,&childsig,NULL);

#undef CHILD

 child_main(sv[1]);

 } else {

 close(sv[1]);

 add_child_to_list(sv[0],child_pid);

 child_num++;

 }

 }

 return wanted;

}

/* central code of the preforking code. */

void child_main(int sockd) {

 int length = sizeof(struct sockaddr_in);

 char message;

 int sockd2;

 while(cycle--) {

 message = READY;

 if(send_socket(sockd,(char *)&message,sizeof(message)))

 _exit(-1);

 kill(parent_pid,SIGUSR1);

 /*

 ** critical section

 ** the child processes need to get a lock so that the child

 ** processes do not fight like dogs to serve the request

 ** and once it gets a request it it moves out of the critical

 ** section

 */

 if(get_lock() < 0) {

Template 2.4 Contd..
 fprintf(stderr,"Could'nt obtain lock: %s",strerror(errno));

 _exit(-1);

 }

 if((sockd2=accept(main_sockd,(struct sockaddr *)&peer,&length))< 0) {

 fprintf(stderr,"accept: %s",strerror(errno));

 _exit(-1);

 }

 /* reducing the number of processes which we we donot have much load */

 if ((scoreboard->child_num - scoreboard->busy) > spare)

 cycle = 0;
 if(release_lock() < 0) {

 fprintf(stderr,"Could'nt release lock: %s",strerror(errno));

 _exit(-1);

 }

 /** end of critical section */

 message = BUSY;

 if(send_socket(sockd,(char *)&message,sizeof(message)) < 0)

 _exit(-1);

 kill(parent_pid,SIGUSR1);

 child_func(sockd2);

 close(sockd2);

 }

 _exit(0);

}

/* this is the startup code for setting up the child processes

** fucn is the callback function that should be invoked once it gets a request. */

void init_daemon(char *logname, int num,int max_children,int num_cycle,int perfork,int min_children, int (*func)(int),int sockd) {

 int retval;

 main_sockd = sockd;

 logstring = logname;

 initial = num;

 max = max_children;

 min = min_children;

Template 2.4 Contd..
 cycle = num_cycle;

 spare = perfork;

 child_func = func;

 parent_pid = getpid();

 mask = block_signals();

 setup_signal_handlers();

 init_lock();

 while(1) {

 if(child_num < initial) {

 retval = fork_child(initial - child_num);

 }

 if(busy >= (child_num-min)) {

 if(max > busy) {

if((max - child_num) > perfork)

 fork_child(initial);

else

 fork_child((max - child_num));

 }

 }

 if(get_lock() < 0) {

 fprintf(stderr,"Could'nt obtain lock: %s",strerror(errno));

 _exit(-1);

 }

 scoreboard->busy = busy;

 scoreboard->child_num = child_num;

 if (scoreboard->busy >= child_num) shutdown_server(0);

 if(release_lock() < 0)

 {

 fprintf(stderr,"Could'nt release lock: %s",strerror(errno));

 _exit(-1);

 }

 sigsuspend(&mask);

 }

}

2.6. RuleModule

Rule module is an iterative server (that serves one request at a time) that makes decision on which Real Server should serve the request Figure 2.6 shows the flow of control in the Rule Module processes secure content switch.

Figure 2.6 showing the flow of control in a Rule Module

The steps involved are:

i. Rule Module is set to listen for connection requests on a particular port. A successful TCP connection results in a valid socket. The secure content switch sends information like Url, Source Portno, Source IP, HTTP Headers, Data (if any) to the Rule Module.

ii. Rule Module receives the information like Url, Source PortNo, Source IP, and HTTP Headers, Data (if any).

iii. The Rule Modules checks the HTTP Method, if it is Post Request it Checks the Content-Type field in the HTTP headers, if the Content-Type is “x-www-form-urlencoded” it decodes the data and populates the values in the structure (shown in Template 2.5) with the values.

iv. The Rule Matching module then performs rule matching with the rules. The rules are simple if then statements (as shown in Template 2.6) and returns the server address, server name and port on which the server it is listening.

Template 2.5
struct ip_vs_cb_rule_field

{

 char name[512]; /* tag name*/

 char value[256]; /* value of the tag */

};

Template 2.6
R1: if (xml.purchase/totalAmount > 52000){ routeTo(server1, STICKY); }

R2: if (xml.purchase/customerName == "CCL") { routeTo(server2, NONSTICKY); }

R3: if (strcmp(url, "gif$") == 0) { routeTo(server3, NONSTICKY); }

R4: if (srcip == “128.198.60.1” && dstip == “128.198.192.192” && dstport == 80)

 { routeTo(server2, STICKY); }

Template 2.7 shows how the child secure content switch tries to connect to the rule module. If the rule module is being updated request will be send to the DEFAULT_RULE_SERVER_NAME.

Template 2.7
if((server_sock_fd=connectTo(RULE_SERVER_NAME,RULE_SERVER_PORT)) == -1) {

 (void) fprintf(stderr,"Failed to connect to the rule module %s\n",RULE_SERVER_NAME);

 if((server_sock_fd=connectTo(DEFAULT_RULE_SERVER_NAME,DEFAULT_RULE_SERVER_PORT)) == -1) {

 (void) fprintf(stderr,"Failed to connect to the rule module %s\n",DEFAULT_RULE_SERVER_NAME);

 goto GracefulExit;

 }

}

CHAPTER 3

Performance Results

This section presents the performance results of the Linux application Level Proxy for content switch. Fig shown below shows a block diagram of Secure Linux Application level content switch.

[image: image3.png]IP|TCP | SSL

SECURE CONTENT
SWWITCH
1P| TCP_| HTTP
REAL SERVER 1 REAL SERVER 2 REAL SERVER 3

Figure 3.1 showing the block diagram of the secure content switch test bed

Table 3.1 shows the hardware and software configuration of machines used in the test-bed.

	Machine Spec
	IP Address
	O/S
	Web Server

	a) calvin.uccs.edu
DELL Dimension-4100, 933 MHz, 512MB
b) oblib.uccs.edu

HP Vectra VL

512 MHz, 512MB

(Content switch)
	128.198.192.184

128.198.60.195
	Redhat 7.2

 (2.4.9-21)

Redhat 7.2

 (2.4.9-21)

	Apache 1.3.22

Apache 1.3.22

	a) dilbert.uccs.edu

b) wait.uccs.edu

c) wind.uccs.edu

(Client)
	128.198.60.23

128.198.60.202

128.198.60.204

	a) Windows NT, 4.0

b), c) Windows-2000, Advanced Server

	N/A

	a) eca.uccs.edu

b) frodo.uccs.edu

c) bilbo.uccs.edu

d) odorf.uccs.edu

e) walrus.uccs.edu

f) wallace.uccs.edu

HP Kayak Machines, 233 MHz, 96MB RAM

(Real Server)
	128.198.60.188

128.198.60.183

128.198.60.182

128.198.60.196

128.198.60.197

128.198.60.208
	Redhat 7.1

 (2.4.3-12)
	Apache 1.3.19

Table 3.1 Configuration of machines used in performance tests

The tests were performed using Web bench and the negotiated cipher suite for these tests are

Negotiated Cipher Suite
DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168)
Mac=SHA1

For instructions of how to set up Secure Linux Application level Content switch, refer to Appendix A.

3.1. Performance Test 1

Goal: check for the Performance of the Linux Application Level Content switch (secure content switch) for both SSL and NON-SSL kind of Requests

Secure content switch Configuration: One DELL Dimension-4100, 933 MHz, 512MB RAM

Real Server Configuration: Two HP Kayak Machines, 233 MHz, 96MB RAM

	Client
	Request Per Second Prefork NonSecure content switch
	Request Per Second Dynamic NonSecure content switch
	Request Per Second Apache NonSSL
	Request Per Second Dynamic Secure content switch
	Request Per Second Prefork Secure content switch
	Request Per Second Apache SSL

	1_client
	148.046
	82.588
	244.404
	26.992
	23.042
	37.450

	4_client
	146.542
	84.283
	241.296
	26.100
	20.858
	36.958

	8_client
	128.688
	82.642
	234.867
	26.113
	21.704
	37.479

	12_client
	145.521
	83.567
	230.183
	26.279
	20.246
	37.279

	16_client
	148.100
	82.017
	236.350
	26.425
	21.604
	37.396

	20_client
	147.946
	83.433
	241.475
	26.333
	19.462
	36.962

	24_client
	135.046
	82.642
	237.050
	26.358
	21.004
	37.833

	28_client
	148.058
	83.158
	234.037
	26.421
	20.279
	38.150

	32_client
	126.621
	82.767
	241.037
	26.275
	20.358
	38.346

	36_client
	123.542
	81.933
	242.046
	25.783
	20.275
	38.375

	40_client
	148.121
	81.575
	239.567
	25.625
	21.188
	37.892

	44_client
	129.762
	83.112
	232.988
	26.033
	20.163
	37.804

	48_client
	148.113
	83.421
	243.688
	26.304
	20.404
	37.571

	52_client
	147.850
	81.975
	244.037
	26.063
	21.446
	37.400

	56_client
	106.900
	82.254
	243.258
	26.350
	17.363
	37.063

	60_client
	128.879
	83.254
	243.554
	26.212
	15.800
	36.188

Table 3.2 showing the request/sec of different types of secure content switch

[image: image4.wmf]Overall WebBench Requests/Second

0.000

50.000

100.000

150.000

200.000

250.000

300.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / Second

Request Per Second

Prefork NonSSLProxy

Request Per Second

Dynamic NonSSLProxy

Request Per Second

Apache NonSSL

Request Per Second

Dynamic SSLProxy

Request Per Second

Prefork SSLProxy

Request Per Second

Apache SSL

Figure 3.1 showing the request/sec of different types of secure content switch

Dynamic Forking vs. Pre-forking secure content switch

The performance of the Dynamic forking secure content switch is better than Pre-forked secure content switch. I found out that after a while the children are created and killed immediately with out serving multiple requests. The Pre-forked server is designed to see that child SSL Processes are created ahead of time and kill them if their number exceeds a certain threshold. The reason could be that more child processes are free which implies number of requests sent by the web-bench is irregular, there by affecting the overall performance of the pre-forked secure content switch.

Cluster with secure content switch vs. standalone Apache web server
The performance of a dynamic forking secure content switch was pretty good when compared to a standalone apache server. Taking into fact that amount of computation overhead involved with extracting the HTTP headers and performing a rule matching on the HTTP header data, and routing the request to one of the Real Servers.

3.2. Performance Test 2

Goal: Investigate the impact of processor on the performance of the secure content switch using machines of slower processing speed

Secure content switch Configuration: one HP Vectra VL, 512 MHz, 512MB RAM
Real Server Configuration: Two HP Kayak Machines, 233 MHz, 96MB RAM

	Clients
	Dynamic NonSecure content switch
	Prefork NonSecure content switch
	Apache Non-SSL
	Dynamic Secure content switch
	Prefork Secure content switch
	Apache MOD-SSL

	1_client
	19.754
	70.233
	209.787
	15.588
	23.446
	14.163

	4_client
	15.350
	56.375
	183.958
	14.933
	22.092
	14.383

	8_client
	19.629
	90.783
	136.775
	15.979
	21.608
	14.729

	12_client
	16.458
	95.108
	184.012
	15.571
	20.992
	14.721

	16_client
	21.554
	91.979
	182.688
	15.137
	20.438
	13.913

	20_client
	21.962
	101.000
	208.179
	14.942
	17.975
	14.758

	24_client
	24.621
	84.883
	177.971
	18.288
	21.375
	14.504

	28_client
	25.967
	84.563
	205.075
	18.871
	22.400
	14.642

	32_client
	22.679
	76.279
	183.600
	18.262
	20.708
	14.675

	36_client
	26.104
	93.758
	173.721
	15.746
	21.346
	14.663

	40_client
	27.579
	91.200
	209.475
	15.050
	20.196
	14.375

	44_client
	25.742
	87.196
	207.054
	15.467
	22.063
	14.908

	48_client
	25.179
	77.683
	180.613
	14.342
	21.742
	14.704

	52_client
	26.125
	83.575
	184.983
	18.171
	21.608
	14.742

	56_client
	26.404
	74.683
	183.721
	18.200
	16.692
	14.817

	60_client
	22.038
	88.963
	199.596
	19.017
	22.079
	14.646

Table 3.3 showing the request/sec of different types of secure content switch

[image: image5.wmf]Overall WebBench Requests/Second

0

50

100

150

200

250

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / Second

Dynamic NonSSLProxy

Prefork NonSSLProxy

Apache Non-SSL

Dynamic SSLProxy

Prefork SSLProxy

Apache MOD-SSL

Figure 3.2 showing the request/sec of different types of secure content switch

Dynamic Forking vs. Pre-forking secure content switch
Preforking secure content switch performed better than dynamic forking version of secure content switch. This is an expected result.
Cluster with secure content switch vs. standalone Apache web server

Dynamic forking and preforking versions of secure content switch performed better than Apache web server. The reason for this performance could be attributed to the distributing of the request-fetching task to the real server thereby reducing the overload on the content switch.

Impact of processor speed on content switch

There is not much impact of processor speed on the performance of secure content switch. This clearly indicates that the most of the computation is involved in TLS/SSL encryption and decryption.

3.3. Performance Test 3

Goal: Study the impact of the number of rules on the Performance of the dynamic secure content switch.

Secure content switch Configuration: One DELL Dimension-4100, 933 MHz, 512MB RAM

Real Server Configuration: Two HP Kayak Machines, 233 MHz, 96MB RAM

	Client
	SSL Requests Per Second for 250 Rules
	SSL Requests Per Second for 300 Rules
	SSL Requests Per Second for 500 Rules
	SSL Requests Per Second for 1000 Rules
	SSL Requests Per Second for 2000 Rules
	SSL Requests Per Second for 5000 Rules

	1_client
	27.096
	26.879
	27.025
	22.896
	26.917
	26.917

	4_client
	26.183
	26.650
	25.975
	22.850
	25.171
	26.063

	8_client
	26.450
	26.275
	26.058
	21.654
	26.329
	26.163

	12_client
	26.346
	26.696
	26.300
	25.863
	26.012
	24.254

	16_client
	26.496
	25.808
	26.529
	25.904
	26.354
	26.163

	20_client
	26.529
	22.579
	26.021
	25.750
	26.150
	25.779

	24_client
	26.538
	24.929
	25.908
	26.592
	25.871
	26.208

	28_client
	26.512
	25.512
	18.654
	26.400
	26.558
	26.167

	32_client
	26.629
	26.108
	23.262
	24.254
	26.313
	25.996

	36_client
	26.488
	25.504
	26.367
	22.229
	26.517
	25.342

	40_client
	26.521
	25.725
	26.608
	23.850
	26.429
	26.188

	44_client
	26.258
	25.967
	25.792
	26.363
	26.113
	26.087

	48_client
	26.554
	26.004
	26.571
	25.833
	26.225
	26.017

	52_client
	26.304
	25.792
	26.288
	25.746
	25.529
	25.954

	56_client
	21.804
	25.683
	23.025
	26.421
	26.208
	26.046

	60_client
	22.087
	26.000
	22.392
	26.317
	26.083
	25.800

Table 3.4 showing the request/sec of different types of secure content switch

[image: image6.wmf]Overall Impact of Rules on Requests/Second

0.000

5.000

10.000

15.000

20.000

25.000

30.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests/Second

SSL Requests Per Second

for 250 Rules

SSL Requests Per Second

for 300 Rules

SSL Requests Per Second

for 500 Rules

SSL Requests Per Second

for 1000 Rules

SSL Requests Per Second

for 2000 Rules

SSL Requests Per Second

for 5000 Rules

 Figure 3.3 showing the request/sec of different types of secure content switch
Observation: There is not much effect of the rules on the Dynamic Forking Secure content switch, which implies that most of the computation power is used on the decryption and encryption of the SSL requests.

	Client
	Non-SSL Requests Per Second for 250 Rules
	Non-SSL Requests Per Second for 300 Rules
	Non-SSL Requests Per Second for 500 Rules
	Non-SSL Requests Per Second for 1000 Rules
	Non-SSL Requests Per Second for 2000 Rules
	Non-SSL Requests Per Second for 5000 Rules

	1_client
	86.179
	66.412
	72.487
	84.829
	73.346
	64.121

	4_client
	88.171
	66.871
	71.954
	86.183
	73.121
	63.683

	8_client
	87.571
	68.783
	70.742
	84.912
	72.654
	64.775

	12_client
	88.342
	68.367
	72.271
	83.675
	70.825
	63.946

	16_client
	87.558
	67.642
	73.117
	86.700
	73.138
	63.650

	20_client
	88.971
	70.396
	70.671
	86.458
	71.008
	64.533

	24_client
	84.833
	58.558
	70.371
	87.204
	72.525
	64.633

	28_client
	85.996
	61.300
	72.013
	85.842
	72.792
	60.896

	32_client
	88.263
	71.346
	68.625
	86.338
	71.254
	65.175

	36_client
	87.579
	72.104
	68.029
	86.542
	72.908
	65.679

	40_client
	88.683
	71.133
	70.758
	85.929
	72.354
	66.621

	44_client
	87.808
	70.317
	70.933
	85.079
	72.279
	67.542

	48_client
	85.300
	70.900
	69.508
	84.846
	73.496
	64.721

	52_client
	83.287
	63.462
	69.800
	73.792
	72.150
	66.429

	56_client
	83.563
	71.779
	69.333
	87.287
	72.571
	68.167

	60_client
	85.133
	71.196
	69.975
	85.396
	70.075
	67.321

Table 3.5 showing the request/sec of different types of secure content switch

[image: image7.wmf]Overall Impact of Rules on Requests / Second

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / Second

Non-SSL Requests Per

Second for 250 Rules

Non-SSL Requests Per

Second for 300 Rules

Non-SSL Requests Per

Second for 500 Rules

Non-SSL Requests Per

Second for 1000 Rules

Non-SSL Requests Per

Second for 2000 Rules

Non-SSL Requests Per

Second for 5000 Rules

 Figure 3.4 showing the request/sec of different types of secure content switch

Observation: There is some impact on the performance of the Dynamic Forking Non-SSL secure content switch, the lower the number of rules the better the performance is. Overall there is no major impact of the performance of the secure content switch with increase in the number of rules.

3.4. Performance Test 4

Goal: Study the impact of the number of real servers on the performance of the dynamic forking secure content switch.

Secure content switch Configuration: One DELL Dimension-4100, 933 MHz, 512MB RAM

Real Server Configuration: one-five HP Kayak Machines, 233 MHz, 96MB RAM

	Client
	SSL Requests Per Second with 1 RealServer
	SSL Requests Per Second with 2 RealServers
	SSL Requests Per Second with 3 RealServers
	SSL Requests Per Second with 4 RealServers
	SSL Requests Per Second with 5 RealServers

	1_client
	27.433
	27.096
	27.012
	28.492
	27.392

	4_client
	26.542
	26.183
	26.029
	26.908
	24.842

	8_client
	26.296
	26.450
	24.188
	27.358
	26.387

	12_client
	25.738
	26.346
	23.217
	27.367
	25.433

	16_client
	26.221
	26.496
	26.029
	27.225
	25.179

	20_client
	25.225
	26.529
	26.396
	25.746
	26.342

	24_client
	25.221
	26.538
	25.946
	27.017
	25.371

	28_client
	25.567
	26.512
	26.042
	26.933
	25.975

	32_client
	26.154
	26.629
	25.283
	26.262
	25.746

	36_client
	25.996
	26.488
	25.758
	27.233
	26.396

	40_client
	26.333
	26.521
	26.208
	25.971
	26.542

	44_client
	25.529
	26.258
	25.675
	26.700
	25.650

	48_client
	25.871
	26.554
	25.442
	27.038
	26.462

	52_client
	26.117
	26.304
	26.329
	26.967
	26.146

	56_client
	25.762
	21.804
	26.104
	26.679
	26.392

	60_client
	26.600
	22.087
	25.988
	26.229
	25.025

Table 3.6 showing the Req/Sec of Dynamic Forking secure content switch

[image: image8.wmf]Overall impact of RealServers on Requests/Second

0.000

5.000

10.000

15.000

20.000

25.000

30.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / Second

SSL Requests Per Second

with 1 RealServer

SSL Requests Per Second

with 2 RealServers

SSL Requests Per Second

with 3 RealServers

SSL Requests Per Second

with 4 RealServers

SSL Requests Per Second

with 5 RealServers

Fig 3.5 showing the Request / Second of Dynamic Forking secure content switch
Observation: There is no impact on the performance of the dynamic forking secure content switch, with the change in the number of real servers. This clearly indicates that current version of secure content switch is the bottleneck.

	Client
	Non-SSL Requests Per Second with 1 RealServer
	Non-SSL Requests Per Second with 2 RealServers
	Non-SSL Requests Per Second with 3 RealServers
	Non-SSL Requests Per Second with 4 RealServers
	Non-SSL Requests Per Second with 5 RealServers

	1_client
	61.250
	86.179
	72.608
	74.471
	74.246

	4_client
	61.596
	88.171
	77.063
	74.504
	73.979

	8_client
	61.192
	87.571
	76.979
	72.638
	73.013

	12_client
	59.271
	88.342
	77.013
	73.500
	74.862

	16_client
	60.367
	87.558
	73.558
	73.571
	73.654

	20_client
	59.858
	88.971
	75.883
	73.354
	63.254

	24_client
	58.092
	84.833
	76.200
	74.125
	74.817

	28_client
	59.317
	85.996
	76.329
	74.396
	75.213

	32_client
	61.104
	88.263
	77.496
	72.996
	74.783

	36_client
	60.083
	87.579
	76.275
	74.737
	74.746

	40_client
	62.254
	88.683
	76.621
	74.217
	72.021

	44_client
	62.129
	87.808
	76.454
	77.967
	74.458

	48_client
	60.263
	85.300
	75.208
	79.804
	73.446

	52_client
	60.321
	83.287
	76.225
	78.917
	73.525

	56_client
	58.604
	83.563
	76.529
	78.304
	74.400

	60_client
	61.183
	85.133
	76.421
	79.583
	74.683

Table 3.7 showing the req / sec of dynamic forking non-secure content switch

[image: image9.wmf]Overall impact of RealServers on Requests/Second

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / Second

Non-SSL Requests Per

Second with 1 RealServer

Non-SSL Requests Per

Second with 2 RealServers

Non-SSL Requests Per

Second with 3 RealServers

Non-SSL Requests Per

Second with 4 RealServers

Non-SSL Requests Per

Second with 5 RealServers

 Figure 3.6 showing the Req / Sec of dynamic forking non-secure content switch
Observation: There is a major impact on the performance of the dynamic forking non-secure content switch, with the change in the number of real servers. Non-secure dynamic forking performs best with 2 real servers.

3.5. Performance Test 5

Goal: Study the impact on secure content switch of local rule module

Rule Module Server: One DELL Dimension-4100, 933 MHz, 512MB RAM

Secure Content Switch Configuration: One DELL Dimension-4100, 933 MHz, 512MB RAM

Real Server Configuration: Two HP Kayak Machines, 233 MHz, 96MB RAM

	Client
	Prefork NonSecure content switch Request Per Second
	Dynamic NonSecure content switch Request Per Second
	Dynamic Secure content switch Requests Per Second
	Prefork Secure content switch Request Per Second

	1_client
	129.121
	92.750
	13.238
	24.279

	4_client
	91.912
	103.142
	11.725
	23.621

	8_client
	122.588
	107.754
	12.613
	23.467

	12_client
	112.358
	87.621
	12.808
	23.475

	16_client
	96.225
	61.996
	12.858
	23.425

	20_client
	133.054
	90.983
	12.771
	22.650

	24_client
	116.558
	84.888
	12.663
	22.996

	28_client
	109.467
	79.158
	12.875
	22.858

	32_client
	96.829
	80.213
	12.833
	22.875

	36_client
	107.979
	80.742
	12.654
	22.779

	40_client
	113.329
	80.858
	11.488
	22.821

	44_client
	100.350
	77.612
	12.929
	23.075

	48_client
	108.300
	81.417
	12.908
	22.829

	52_client
	113.408
	80.675
	12.600
	22.254

	56_client
	80.987
	80.912
	12.871
	21.938

	60_client
	78.692
	80.858
	12.642
	22.108

Table 3.8 showing the Req/Sec of secure content switch with local rulemodule

[image: image10.wmf]Overall Request/Second with Rule Module running locally

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / second

Prefork NonSSLProxy

Request Per Second

Dynamic NonSSLProxy

Request Per Second

Dynamic SSLProxy Request

Per Second

Prefork SSLProxyRequest

Per Second

Figure 3.7 showing the Req / Sec of secure content switch with local rule module
Observation: There is a major impact on the performance of the dynamic forking secure content switch, with the creation of a rule module. The preforking secure content switch performance is independent of the creation of a rule module.

3.6. Performance Test 6

Goal: Study the impact on secure content switch of remote rule module

Rule Module Server: One HP Kayak Machines, 233 MHz, 96MB RAM

Secure Content Switch Configuration: One DELL Dimension-4100, 933 MHz, 512MB RAM

Real Server Configuration: Two HP Kayak Machines, 233 MHz, 96MB RAM

	Client
	Prefork NonSecure content switch Request Per Second
	Dynamic NonSecure content switch Request Per Second
	Dynamic Secure content switch Request Per Second
	Prefork Secure content switch Request Per Second

	1_client
	82.929
	49.533
	13.450
	23.521

	4_client
	99.917
	49.783
	11.771
	22.671

	8_client
	97.912
	43.188
	12.133
	22.396

	12_client
	100.683
	81.650
	11.963
	22.525

	16_client
	108.829
	82.767
	12.012
	22.121

	20_client
	87.287
	80.850
	11.988
	22.483

	24_client
	83.979
	80.588
	11.942
	21.529

	28_client
	86.075
	75.717
	12.042
	21.863

	32_client
	86.700
	64.954
	12.004
	20.271

	36_client
	86.971
	60.896
	12.042
	21.100

	40_client
	93.317
	63.196
	12.063
	21.688

	44_client
	87.254
	71.829
	11.996
	21.758

	48_client
	113.912
	64.829
	11.917
	21.629

	52_client
	100.658
	78.625
	12.046
	22.346

	56_client
	107.704
	81.217
	11.967
	22.475

	60_client
	102.021
	81.196
	12.021
	21.742

Table 3.9 showing the Req/Sec of secure content switch with remote rule module

[image: image11.wmf]Overall Requests / Second with Rule Module on Walrus

0.000

20.000

40.000

60.000

80.000

100.000

120.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / Second

Prefork NonSSLProxy

Request Per Second

Dynamic NonSSLProxy

Request Per Second

Dynamic SSLProxy Request

Per Second

Prefork SSLProxy Request

Per Second

 Figure 3.8 shows the Req/Sec of secure content switch with remote rule module

Remote rule module vs. local rule module

There is no impact on the performance of both versions of secure content switch of rule module.

3.7. Performance Test 7

Goal: Study the impact of local node feature

Rule Module Server: One DELL Dimension-4100, 933 MHz, 512MB RAM

Secure Content Switch Configuration: One DELL Dimension-4100, 933 MHz, 512MB RAM

Real Server Configuration: One DELL Dimension-4100, 933 MHz, 512MB RAM

	Client
	Prefork NonSecure content switch Request Per Second
	Dynamic NonSecure content switch Request Per Second
	Dynamic Secure content switch Request Per Second
	Prefork Secure content switch Request Per Second

	1_client
	
	73.400
	26.571
	22.254

	4_client
	
	73.662
	24.983
	22.087

	8_client
	
	74.338
	25.300
	21.988

	12_client
	
	73.942
	22.871
	21.571

	16_client
	
	74.929
	24.267
	20.758

	20_client
	
	72.521
	25.408
	20.688

	24_client
	
	73.258
	24.212
	21.212

	28_client
	
	73.442
	24.692
	21.358

	32_client
	
	74.633
	25.233
	21.375

	36_client
	
	71.929
	25.400
	21.413

	40_client
	
	74.787
	25.346
	22.175

	44_client
	
	73.733
	25.092
	22.483

	48_client
	
	74.300
	25.342
	22.050

	52_client
	
	73.237
	25.317
	20.563

	56_client
	
	74.183
	25.346
	22.192

	60_client
	
	72.975
	24.571
	21.929

Table 3.10 shows the Req / Sec of secure content switch with remote rule module

[image: image12.wmf]Overall WebBench Requests/Second for local node problem

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / Second

Prefork NonSSLProxy

Request Per Second

Dynamic NonSSLProxy

Request Per Second

Dynamic SSLProxy

Request Per Second

Prefork SSLProxy Request

Per Second

Figure 3.9 showing the Req/Sec of secure content switch in local node problem

When performing this test with both Apache as a local node and perforked secure content switch I am facing the following interesting problem

I am running the apache on port 8000, secure content switch on 80. after serving a few requests secure content switch stopped serving Requests. I stopped Apache web server, secure content switch started serving requests again. I started the Apache Web server, after serving a few requests secure content switch stopped serving Requests. This process is continuing.

The above problem indicates that secure content switch will not be able to serve requests concurrently with the local node web server. We have found that when run alone, the requests are served properly.

Chapter 4

Conclusion and future work

We have developed a content switch that performs the functions of a web switch with the added facility of SSL security at the Application Layer. The software package currently uses OpenSSL version 0.6. The features of our content switch include session id reuse and high encryption strength. We have tested it on a cluster test-bed using the industry standard benchmarking software and found its performance to be satisfactory. Based on the test results we have found that there is not much improvement in terms of processor speed,

One of the improvements that are possible is reducing the bottleneck of SSL encryption / decryption. SSL transactions are computation intensive and hence become a drain on web server resources. In cases of web servers handling a large amount of traffic, the problem can become more significant. One way to alleviate the problem is to apply parallel processing techniques. But as one ponders about a solution for this problem, we need to think about how all the web servers are going to know about the TLS/SSL session information that was negotiated by another server. There is a message in the openssl group posted by Lutz Jaenicke that talks of a future version OpenSSL 0.9.7 (not yet released) that has a new function (server side) to explicitly choose the session IDs generated (rather than random values as of now). Therefore it will be possible to include a "server ID" into the session ID so that load balancing will become easier. Once the above-mentioned version is released, a solution might be in sight.

Another performance improvement can be the caching of web pages. This aspect must be handled sensibly as most of the web documents that use SSL is dynamic in nature.

One of the ways to overcome the problem of maintaining state across multiple web processes in dealing with TLS/SSL transactions is to make the connections “sticky”. The problem with this design is that the IP addresses are constantly shifting for users coming into a site from Internet service providers that use proxy servers. So users must have a “sticky” connection to the SSL server that is independent of their IP address. This can be achieved by having a cookie which identifies which Real Server has serviced the user previously.

Another suggestion for improving the current content switch performance is to have a persistent HTTP connection between the Content switch and the Real Servers, which can be used by all the processes, for all the requests.

Each of these solutions comes with its own combination of cost, performance, and flexibility of scale—proving once again that, when it comes to Web site architecture, one size never fits all.

Appendix A

A.1. Installing of Linux Application Level Content switch

First step in installing Linux Application Level Content switch involves installing Openssl

A.1.1. Install Openssl

Fetch and extract the distribution of OpenSSL package download the source of openssl from http://www.openssl.org/source/
Template

tar -xvzf openssl-0.9.6b.tar.gz

Build OpenSSL package with the following commands.

cd openssl-0.9.6b

./config

make

cd ..

A.1.2.
Install SSL Proxies for Content switch

Download dynamic forking and Pre-Forked versions with SSL or without SSL support from http://archie.uccs.edu/~acsd/lcs03/secure content switch0.1.1.tar.gz

Template
tar -xvzf secure content switch.tar.gz

cd secure content switch

dyna_proxy.c Dynamic forking version of NON-Secure content switch for Linux Application-Level Content switch
dyna_secure content switch.c Dynamic forking version of Secure content switch for Linux Application-Level Content switch
prefork_secure content switch.c Pre-forking version of Secure content switch for Linux Application-Level Content switch
prefork_proxy.c Pre-forking version of NON-Secure content switch for Linux Application-Level Content switch

A.1.3. Configure secure content switch for content switch

All the server code share the same Configuration Section, the user should edit the configuration section provided in include/config.h. The system parameters of secure content switch server are specified in the header file. The following is the configuration section you find in the Pre-forked Version of Secure content switch. Typically, we only need to change the

SERVER_ROOT, SERVER_IP, SERVER_NAME, RULE_SERVER_NAME, RULE_SERVER_PORT, DEFAULT_RULE_SERVER_NAME, DEFAULT_RULE_SERVER_PORT.

The Editable section in Dynamic forking versions of SSL and NON-Secure content switch Server is similar.

Template
#define CLIENT_TIMEOUT

30

#define SERVER_ROOT

"/home/gkgodava/rulemodule"

#define LOG_FILE

"log/ssl.log"

#define SESS_FILE

"cache/scache"

#define SERVER_IP

"128.198.60.22"

#define SERVER_NAME

"calvin.uccs.edu"

#define RULE_SERVER_NAME

"gandalf.uccs.edu"

#define RULE_SERVER_PORT

4000

#define DEFAULT_RULE_SERVER_NAME
"calvin.uccs.edu"

#define DEFAULT_RULE_SERVER_PORT
4000

#define CA_FILE

"testssl/ca/cacert.pem"

#define CA_PATH

"testssl/ca"

#define KEY_FILE
"testssl/private/private.key"

#define CERT_FILE
"testssl/cert/newcert.pem"

#define RAND_FILE
"testssl/random/random.pem" /* random is a junk file that contains any data--ensure it is not repeated*/

#define SSL_SESSION_CACHE_TIMEOUT
300

#define STICKY_SIZE

20

 /* allocation for maximum # of the sticky connection */

/*

** It does this by periodically checking how many servers

** are waiting for a request. If there are fewer than

** MinSpareServers, it creates a new spare. If there are

** more than MaxSpareServers, some of the spares die off.

**

*/

#define MinSpareServers 2

#define MaxSpareServers 5

/*

** Number of servers to start initially --- should be a

** reasonable ballpark figure.

*/

#define StartServers 5

/*

** Limit on total number of servers running, i.e., limit on ** the number of clients who can simultaneously connect --- ** if this limit is ever reached, clients will be LOCKED

** OUT, so it should NOT BE SET TOO LOW. It is intended

** mainly as a brake to keep a runaway server from taking ** the system with it as it spirals down...

*/

#define MaxClients 25

/*

** MaxRequestsPerChild: the number of requests each child ** process is allowed to process before the child dies.

** The child will exit so as to avoid problems after

** prolonged

*/

#define MaxRequestsPerChild 50

/*

** Listen: Allows you to bind to a specific Ports

*/

#define SERVER_PORT

443

/*

** Prefork header file locks the following file

*/

#define PREFORK_LOCK "/tmp/install.log"

/*

** lock file for critical section handling

*/

#define CRITICAL_LOCK "/dev/zero"

A.2. Configure LCS routing rules

Currently the rules are specified in a function called rule_configure in each of source code. Once you make changes to the rules in the rule_configure function, you need to recompile and execute the new program.

Here is the example of the rules specified in the source code:

 u_long rule_configure(char *url, u_long saddr,u_long daddr, u_short sport, u_short dport, u_short protocol) {

if (strstr(url,"zbwb_20") != NULL) {
 return route_to("frodo.uccs.edu",NON_STICKY,saddr);
}

if (strstr(url,"zbwb_19") != NULL) {
 return route_to("eca.uccs.edu",NON_STICKY,saddr);
}

if (strstr(url,"zbwb_18") != NULL) {
 return route_to("frodo.uccs.edu",NON_STICKY,saddr);
}
....

if (strstr(url,"cs522") != NULL) {
 return route_to("frodo.uccs.edu",NON_STICKY,saddr);
}

 if (strstr(url,"cs301") != NULL) {
 return route_to("eca.uccs.edu",NON_STICKY,saddr);
 }

 if(strstr(url,"cs") != NULL) {
 return route_to("frodo.uccs.edu",NON_STICKY,saddr);
 }

 if (strstr(url,"keepalive") != NULL) {
 return route_to("eca.uccs.edu",NON_STICKY,saddr);
 }

 if (saddr == 0x80c6a2d9){
 return route_to("eca.uccs.edu",NON_STICKY,saddr);
 }

 if ((atoi(rule_fields[1].value) > 0) && (atoi(rule_fields[1].value) <50000)){
 return route_to("frodo.uccs.edu",NON_STICKY,saddr);
 }

 if (atoi(rule_fields[1].value) > 50000) {
 return route_to("eca.uccs.edu",NON_STICKY,saddr);
 }

 if (strstr(url,"lcs1") != NULL) {
 return route_to("frodo.uccs.edu",NON_STICKY,saddr);
 }

 if (strstr(url,"lcs2") != NULL) {
 return route_to("eca.uccs.edu",NON_STICKY,saddr);
 }

 return route_to("frodo.uccs.edu",NON_STICKY,saddr);

As it can be seen in this rule set, we use two real servers: frodo.uccs.edu and eca.uccs.edu. You may want to change them to the real servers, which you are using. The first 24 rules are used to spread the requests from WebBench benchmark program. Among them, the first 20 rules spread the load based on the leading text pattern of the url. The next 4 rules spread the load based on the file extension. In the production environment, you may want to remove these 24 rules.

The rules with pattern "cs522", "cs301", "cs", "lcs1", and "lcs2" are used in the demo scripts. The rule with (saddr == 0x80c6a2d9) is used to demonstrate the firewall or sticky connection. The last few rules with (atoi(rule_fields[1].value)) are related to request with XML document. The corresponding XML tag sequences are specified in

struct ip_vs_cb_rule_field rule_fields[] =
{
{"purchase:1.totalAmount:1.", "" },
{"purchase:1.subTotal:1.", "" },
{"purchase:1.subTotal:2.", "" },
{"purchase:1.unitPrice:2.", "" }
};

 Here rule_fields[1] is referred to the tag sequence with the first subTotal tag inside the first totalAmount tag. The number after the element name refers to the specific element with in the XML document structure. When the request with such XML tag sequence arrives, the content switch will extract the value and put it in rule_fields[1].value. Since it is string, we need to convert to integer using atoi().

A.3. Compile the content switch code

Once you have modified the Editable section and the rule set, type "make". In order to compile we need to specify the ssl, crypto, dbm libraries. If you are using Redhat Linux 7.2, replace ndbm with gdbm, you will avoid the problem

This is a simple make file written by Ganesh Godavari

if u have any problems with this Makefile please contact gkgodava@archie.uccs.edu

#

CC:=

gcc

INCLUDES=
–I./include –I./.

LDLIBS=-lssl -lcrypto -lndbm

all:
prefork_proxy dyna_secure content switch prefork_secure content switch dyna_proxy rulemodule

prefork_proxy:

prefork_proxy.c

$(CC) $(INCLUDES) –D RULE_MODULE –o $@ $< –L../ $(LDLIBS)

dyna_secure content switch:

dyna_secure content switch.c

$(CC) $(INCLUDES) –o $@ $< –L../ $(LDLIBS)

prefork_secure content switch:
prefork_secure content switch.c

$(CC) $(INCLUDES) –D PREFORK_SSL –o $@ $< –L../ $(LDLIBS)

dyna_proxy:

dyna_proxy.c

$(CC) $(INCLUDES) –o $@ $< –L../ $(LDLIBS)

rulemodule:

rulemodule.c

$(CC) $(INCLUDES) –D RULE_MODULE –o $@ $< –L../ $(LDLIBS)

clean:

rm –f *.o dyna_secure content switch dyna_proxy prefork_proxy prefork_secure content switch rulemodule

APPENDIX B

WebBench [24]
WebBench was selected for testing the performance of our content switch, as it is the industry standard benchmarking tool for web servers. The basic concept of WebBench is that a set of clients on PCs across a network send requests to a controller running on the machine that houses the server. The controller coordinates these requests and forwards them to the server that we are benchmarking. The idea is to simulate a number of users sending a large number of requests to the server. The performance of the server under those conditions is recorded and displayed in a easy-to-read manner.

 The controller is responsible for coordinating the requests of the client. It also sends notifications to the clients informing them when to commence and stop a test suite. It also collects information from all the clients at the end of the test. The key metrics that are measured are request rate (requests/sec) and throughput (bytes/sec).

The web server that has the maximum throughput under the condition of a high volume of requests is judged as the best server among a set of servers.

The detailed setup steps for benchmarking using WebBench are as follows:

1. Install the WebBench controller software on one machine. This is different from the client software. A HTML help file found in the drive:\webbench\Controller directory can be used as a reference manual in order to understand the installation and usage.

2. Install the client software on each of the machines that have been selected to send benchmarking requests to the controller.

3. Modify the following files

a. drive:\webbench\clientids\client.cdb

This file contains an entry for each of the clients included in the test suite. An entry has to be added for each client containing the clients IP address and a unique ID no.

b. drive:\webbench\system32\drivers\etc\hosts

This file has to be modified to contain the name and IP address of the web server and controller

4. Install the data files on the machine that hosts the Web server (to be benchmarked). The data files are bundled in a single compressed file, which can be downloaded from the same location where controller and client installation software are downloaded. For UNIX systems, the data files should be installed under the directory that is set up as document root of the Web server.

After the controller and client software are installed appropriately and data files placed correctly on the Web server, the next step is to set up the test suites. Two key test suites are static and dynamic. In static test suites static content like, ".gif", ".jpg" etc. are returned. In dynamic test suites, dynamic content as generated from a program that runs on the Web server machine, e.g., cgi-bin programs, is tested. There can be test suites that have a combination of static and dynamic content. A test suite itself can consist of many mixes. Note that both test suites and mixes are created/edited via the controller window. With each mix, are associated a number tunable parameters, e.g.:

· Number of clients

· Length (duration) of the mix

· Delay the client waits before starting the tests in the mix once signaled by the controller

· Think time, which is the time gap between consecutive requests in a mix

· Percentage of persistent requests

· Percentage of pipelined requests

· Percentage of SSL requests

There is a work load file associated with a mix, a sample of which is shown in Template A.14.

Template A.14
DEFINE_CLASSES

CLASS_DYNAMIC: 25

CLASS_223.gif: 15

CLASS_735.gif: 7

CLASS_6040.htm: 40

CLASS_11426.htm: 8

CLASS_404: 5

DEFINE_REQUESTS

CLASS_DYNAMIC:

GET /cgi-bin/simcgi

CLASS_223.gif:

GET /wbtree/223_1.gif

GET /wbtree/zdwb_1/223_1.gif

GET /wbtree/zdwb_1/zdwb_1/223_1.gif

GET /wbtree/zdwb_1/zdwb_1/zdwb_1/223_1.gif

CLASS_735.gif:

GET /wbtree/735_1.gif

GET /wbtree/zdwb_1/735_1.gif

GET /wbtree/zdwb_1/735_2.gif

CLASS_6040.htm:

GET /wbtree/6040_1.htm

GET /wbtree/6040_2.htm

GET /wbtree/6040_3.htm

GET /wbtree/6040_4.htm

GET /wbtree/6040_5.htm

CLASS_11426.htm:

GET /wbtree/11426_1.htm

GET /wbtree/11426_2.htm

 CLASS_404:

GET /wbtree/zdwb_7/zdwb_1/zdwb_2/zdwb_2/223_1.jpg

GET /wbtree/zdwb_19/zdwb_2/zdwb_2/6040_3.html
The workload file, associated with a mix, defines distribution of various files accessed in that mix. In the sample workload file shown in Template A.14, 25 percent of the request sent in the mix will be from the dynamic class, 15 percent of the requests will be from CLASS_223.gif class and so on. The real workload files in practical are very huge, with several hundred requests in each class. Note that the request data files are of different sizes. Further details on setting up several other mix parameters can be found in WebBench help and by actual use of controller software.

There are several example test suites that come with controller installation software and are located in drive:\webbench\Controller\Suites\WebBench directory, with each test suite file having a ".tst" extension. There are also several sample workload files with ".wl" extension, located in the same directory.

Once the test suites are set up, the benchmark tests are ready to be commenced. To start the benchmarks first the controller should be started. After the controller is started, all clients (on all the machines that are setup as clients) have to be started separately. One can see a message on the bottom of client window if it was able to connect properly to the controller. Once all clients are connected to the controller, the tests can be finally be started by selecting an appropriate menu option on the controller window.

Once all the tests are completed clicking the Results menu and choosing the appropriate option can see the results.

Due to export restrictions online copy of the WebBench software supports only 40-bit encryption. Since 40-bit is a very weak encryption secure content switch does not accept connections. In order to perform web bench test one needs to order a copy of their software, which supports 128-bit encryption.

Bibliography

 [1] Akamai technologies http://www.akamai.com/index_flash.html

[2] Speedera http://www.speedera.com/flash_index.html

[3] Digitalisland http://www.digitalisland.com/

[4] George Apostolopoulos, David Aubespin, Vinod Peris, Prashant Pradhan, Debanjan Saha, "Design, Implementation and Performance of a Content-Based Switch", Proc. Infocom2000, Tel Aviv, March 26 - 30, 2000, http://www.ieee-infocom.org/2000/papers/440.ps

[5] Leon-Garcia. Widjaja, "Communication Networks: Fundamental Concepts and Key Architectures," McGraw-Hill, 2000

[6] IP Security Protocol, http://www.ietf.org/html.charters/ipsec-charter.html

[7] SSLv3 Internet Draft (obsolete). ftp://ftp.ietf.org/internet-drafts/draft-ietf-tls-ssl-version3-00.txt.

 [8] RFC2246 - "The TLS Protocol Version 1.0" ftp://ftp.isi.edu/in-notes/rfc2246.txt

[9] Netscape web browser http://www.netscape.com/

[10] Microsoft Internet Explorer web browser of Microsoft Technologies http://www.microsoft.com

[11] Gregory Yerxa and James Hutchinson, "Web Content Switching" , http://www.networkcomputing.com

[12] Web switch product of nortel networks http://www.nortelnetworks.com/products/01/alteon/isdssl/index.html

[13] web switch product of F5networks http://www.f5networks.com/

[14] Foundry ServIron Installation and Configuration Guide, May 2000. http://www.foundrynetworks.com/techdocs/SI/index.html

[15] A report submitted by Gaurav Sharma, Ajay Mansata "http://unofficial.umkc.edu/beardc/CS520/tls_sharma_mansata.doc"

[16] white paper by cacheflow http://www.cacheflow.com/files/whitepapers/wp_ssl_primer.pdf

[17] OpenSSL: The Open Source toolkit for SSL/TLS (http://www.openssl.org)

[18] The SSLeay package is copyright Eric Young and is available free for commercial and non-commercial use.

[19] ssh prtocol http://www.ietf.org/html.charters/secsh-charter.html

[20] OpenPGP the most widely used email encryption standard in the world. http://www.openpgp.org/

[21] RSA algorithm invented in 1978 by Ron Rivest, Adi Shamir, and Leonard Adleman. http://www.rsasecurity.com/

[22] The Diffie-Hellman Key Agreement, http://www.hamiltonlabs.com/links.htm

[23] NIST, FIPS PUB 186, "Digital Signature Standard", May 1994.

[24] Enchance features and performance of content switches by chandra prakash, 2001

Decrypt the data

And populate the rules with values (if any)

No

Yes

Establish Connection with Default Rule Server Module

No

IS

(Method == Post)

Perform rule matching and send back the Real Server Name, Address and Port # on which Real Server is listening

IS

(content type == x-www-form-urlencoded)

No

Yes

Send Url, Src portno, Src IP, HTTP Headers, Data (if any) to the Rule Module

Yes

Establish Connection with Rule Server Module

 LACS Child

Retrieve Server Information Rule Matching Module

Retrieve Object From the Server

Using Standard HTTP

Encrypt the Object Per Session Information and Send it to the Web Browser

Send Object Information To Rule Matching Module

Decrypt Object

Using SSL Session

Information

SSL Request

Yes

Existing

SSL Session

Yes

No

IP/IPsec

IP

TCP

HTTP IMAP FTP …

TCP

SSL or TLS

HTTP IMAP FTP …

Request From Web Browser to the LACS

Linux Application Level Content Switch (LACS)

Child 2

Child 1

Child n

Negotiate SSL Session

Yes

No

Existing

SSL Session

Retrieve Object From the Server

Using Standard HTTP

Encrypt the Object Per Session Information and Send it to the Web Browser

Retrieve Server Information Rule Matching Module

Send Object Information To Rule Matching Module

Yes

Decrypt Object

Using SSL Session

Information

Negotiate SSL Session

SSL Request

Fork ()

Child LACS

Linux Application

Level

Content Switch (LACS)

Request From Web Browser to the LACS

� EMBED PBrush ���

Phase 4:

Optionally send client certificate response if requested.

Phase 3:

Client

Server

ClientHello

ServerHello

Certificate

Certificate Request

ServerHelloDone

Certificate

Certificate Verify

ChangeCipherSpec

Handshake

ChangeCipherSpec

Handshake

Phase 2:

Establish protocol version,

session-id, cipher suite, compression method.

send server certificate and request client certificate

Change CipherSpec

and finish handshake.

Phase 1:

v

_1082551559.xls
Chart1

		1_client		1_client		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client		60_client		60_client

Dynamic NonSSLProxy

Prefork NonSSLProxy

Apache Non-SSL

Dynamic SSLProxy

Prefork SSLProxy

Apache MOD-SSL

Clients

Requests / Second

Overall WebBench Requests/Second

19.754

70.233

209.787

15.588

23.446

14.163

15.35

56.375

183.958

14.933

22.092

14.383

19.629

90.783

136.775

15.979

21.608

14.729

16.458

95.108

184.012

15.571

20.992

14.721

21.554

91.979

182.688

15.137

20.438

13.913

21.962

101

208.179

14.942

17.975

14.758

24.621

84.883

177.971

18.288

21.375

14.504

25.967

84.563

205.075

18.871

22.4

14.642

22.679

76.279

183.6

18.262

20.708

14.675

26.104

93.758

173.721

15.746

21.346

14.663

27.579

91.2

209.475

15.05

20.196

14.375

25.742

87.196

207.054

15.467

22.063

14.908

25.179

77.683

180.613

14.342

21.742

14.704

26.125

83.575

184.983

18.171

21.608

14.742

26.404

74.683

183.721

18.2

16.692

14.817

22.038

88.963

199.596

19.017

22.079

14.646

Sheet1

		

		Client		SSL Requests Per Second		Non-SSL Requests Per Second		SSL Requests Throughput (Bytes/Sec)		Non-SSL Requests Throughput (Bytes/Sec)

		1_client		14.163		209.787		46264.641		652240.000

		4_client		14.383		183.958		47634.215		585131.188

		8_client		14.729		136.775		45012.609		430850.406

		12_client		14.721		184.012		48472.375		589696.688

		16_client		13.913		182.688		44108.410		580520.438

		20_client		14.758		208.179		47999.301		653239.313

		24_client		14.504		177.971		47680.543		563046.313

		28_client		14.642		205.075		45593.816		646538.313

		32_client		14.675		183.600		48639.105		582285.625

		36_client		14.663		173.721		48950.672		549468.813

		40_client		14.375		209.475		46499.008		668593.938

		44_client		14.908		207.054		47658.148		652690.125

		48_client		14.704		180.613		46291.707		570371.188

		52_client		14.742		184.983		45786.941		592540.125

		56_client		14.817		183.721		46128.930		580065.375

		60_client		14.646		199.596		45638.602		632708.000

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

SSL Requests Per Second

Non-SSL Requests Per Second

Clients

Requests/Second

Overall WebBench Requests/Second without LACS

Sheet2

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

SSL Requests Throughput (Bytes/Sec)

Non-SSL Requests Throughput (Bytes/Sec)

Clients

Throughput (Bytes / Second)

Overall Webbench Throughput without LACS

Sheet3

		

		

_1082551594.xls
Chart1

		1_client		1_client		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client		60_client		60_client

Non-SSL Requests Per Second for 250 Rules

Non-SSL Requests Per Second for 300 Rules

Non-SSL Requests Per Second for 500 Rules

Non-SSL Requests Per Second for 1000 Rules

Non-SSL Requests Per Second for 2000 Rules

Non-SSL Requests Per Second for 5000 Rules

Clients

Requests / Second

Overall Impact of Rules on Requests / Second

86.179

66.412

72.487

84.829

73.346

64.121

88.171

66.871

71.954

86.183

73.121

63.683

87.571

68.783

70.742

84.912

72.654

64.775

88.342

68.367

72.271

83.675

70.825

63.946

87.558

67.642

73.117

86.7

73.138

63.65

88.971

70.396

70.671

86.458

71.008

64.533

84.833

58.558

70.371

87.204

72.525

64.633

85.996

61.3

72.013

85.842

72.792

60.896

88.263

71.346

68.625

86.338

71.254

65.175

87.579

72.104

68.029

86.542

72.908

65.679

88.683

71.133

70.758

85.929

72.354

66.621

87.808

70.317

70.933

85.079

72.279

67.542

85.3

70.9

69.508

84.846

73.496

64.721

83.287

63.462

69.8

73.792

72.15

66.429

83.563

71.779

69.333

87.287

72.571

68.167

85.133

71.196

69.975

85.396

70.075

67.321

Sheet1

		

		Client		Non-SSL Requests Per Second for 250 Rules		Non-SSL Requests Per Second for 300 Rules		Non-SSL Requests Per Second for 500 Rules		Non-SSL Requests Per Second for 1000 Rules		Non-SSL Requests Per Second for 2000 Rules		Non-SSL Requests Per Second for 5000 Rules

		1_client		86.179		66.412		72.487		84.829		73.346		64.121

		4_client		88.171		66.871		71.954		86.183		73.121		63.683

		8_client		87.571		68.783		70.742		84.912		72.654		64.775

		12_client		88.342		68.367		72.271		83.675		70.825		63.946

		16_client		87.558		67.642		73.117		86.700		73.138		63.650

		20_client		88.971		70.396		70.671		86.458		71.008		64.533

		24_client		84.833		58.558		70.371		87.204		72.525		64.633

		28_client		85.996		61.300		72.013		85.842		72.792		60.896

		32_client		88.263		71.346		68.625		86.338		71.254		65.175

		36_client		87.579		72.104		68.029		86.542		72.908		65.679

		40_client		88.683		71.133		70.758		85.929		72.354		66.621

		44_client		87.808		70.317		70.933		85.079		72.279		67.542

		48_client		85.300		70.900		69.508		84.846		73.496		64.721

		52_client		83.287		63.462		69.800		73.792		72.150		66.429

		56_client		83.563		71.779		69.333		87.287		72.571		68.167

		60_client		85.133		71.196		69.975		85.396		70.075		67.321

Sheet1

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

Non-SSL Requests Per Second for 250 Rules

Non-SSL Requests Per Second for 300 Rules

Non-SSL Requests Per Second for 500 Rules

Non-SSL Requests Per Second for 1000 Rules

Non-SSL Requests Per Second for 2000 Rules

Non-SSL Requests Per Second for 5000 Rules

Clients

Requests / Second

Overall Impact of Rules on Requests / Second

Sheet2

		

		Client		Non-SSL Throughput (Bytes/Sec) for 250 Rules		Non-SSL Throughput (Bytes/Sec) for 300 Rules		Non-SSL Throughput (Bytes/Sec) for 500 Rules		Non-SSL Throughput (Bytes/Sec) for 1000 Rules		Non-SSL Throughput (Bytes/Sec) for 2000 Rules		Non-SSL Throughput (Bytes/Sec) for 5000 Rules

		1_client		273350.156		174286.875		186645.781		265440.313		194099.984		167922.094

		4_client		281315.563		174107.734		190382.188		274002.313		189655.031		165736.938

		8_client		273919.906		180727.891		186078.141		276075.375		190505.859		169536.859

		12_client		282910.625		175763.797		190304.484		272610.156		186437.609		167573.563

		16_client		276275.063		175348.656		187726.984		275169.688		194004.297		168103.047

		20_client		288232.563		189890.016		182717.750		281012.594		189203.484		168943.297

		24_client		264660.531		152392.219		184528.719		277156.500		187895.484		166413.891

		28_client		274723.844		159620.219		189952.703		275250.875		186383.391		157060.969

		32_client		281403.813		183376.578		178211.063		275208.813		191127.875		172329.813

		36_client		274034.500		189631.984		179285.000		277308.781		191899.266		171461.906

		40_client		282455.406		187095.797		183661.188		277056.531		189333.563		175137.203

		44_client		280022.906		181235.516		182906.672		268958.656		191281.328		176913.594

		48_client		263755.156		186995.063		179038.734		268605.250		190328.359		167242.156

		52_client		263527.938		165140.578		185654.703		236140.250		188282.422		174321.297

		56_client		267451.313		188805.469		183325.563		282695.750		187843.438		178318.719

		60_client		271427.656		188717.750		179874.859		271215.313		183943.438		173921.047

Sheet2

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

Non-SSL Throughput (Bytes/Sec) for 250 Rules

Non-SSL Throughput (Bytes/Sec) for 300 Rules

Non-SSL Throughput (Bytes/Sec) for 500 Rules

Non-SSL Throughput (Bytes/Sec) for 1000 Rules

Non-SSL Throughput (Bytes/Sec) for 2000 Rules

Non-SSL Throughput (Bytes/Sec) for 5000 Rules

Clients

Throughput (Bytes / Second)

Overall impact of Rules on Throughput (Bytes / Second)

Sheet3

		

_1082551611.xls
Chart1

		1_client		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client		60_client

Non-SSL Requests Per Second with 1 RealServer

Non-SSL Requests Per Second with 2 RealServers

Non-SSL Requests Per Second with 3 RealServers

Non-SSL Requests Per Second with 4 RealServers

Non-SSL Requests Per Second with 5 RealServers

Clients

Requests / Second

Overall impact of RealServers on Requests/Second

61.25

86.179

72.608

74.471

74.246

61.596

88.171

77.063

74.504

73.979

61.192

87.571

76.979

72.638

73.013

59.271

88.342

77.013

73.5

74.862

60.367

87.558

73.558

73.571

73.654

59.858

88.971

75.883

73.354

63.254

58.092

84.833

76.2

74.125

74.817

59.317

85.996

76.329

74.396

75.213

61.104

88.263

77.496

72.996

74.783

60.083

87.579

76.275

74.737

74.746

62.254

88.683

76.621

74.217

72.021

62.129

87.808

76.454

77.967

74.458

60.263

85.3

75.208

79.804

73.446

60.321

83.287

76.225

78.917

73.525

58.604

83.563

76.529

78.304

74.4

61.183

85.133

76.421

79.583

74.683

Sheet1

		

		Client		Non-SSL Requests Per Second with 1 RealServer		Non-SSL Requests Per Second with 2 RealServers		Non-SSL Requests Per Second with 3 RealServers		Non-SSL Requests Per Second with 4 RealServers		Non-SSL Requests Per Second with 5 RealServers

		1_client		61.250		86.179		72.608		74.471		74.246

		4_client		61.596		88.171		77.063		74.504		73.979

		8_client		61.192		87.571		76.979		72.638		73.013

		12_client		59.271		88.342		77.013		73.500		74.862

		16_client		60.367		87.558		73.558		73.571		73.654

		20_client		59.858		88.971		75.883		73.354		63.254

		24_client		58.092		84.833		76.200		74.125		74.817

		28_client		59.317		85.996		76.329		74.396		75.213

		32_client		61.104		88.263		77.496		72.996		74.783

		36_client		60.083		87.579		76.275		74.737		74.746

		40_client		62.254		88.683		76.621		74.217		72.021

		44_client		62.129		87.808		76.454		77.967		74.458

		48_client		60.263		85.300		75.208		79.804		73.446

		52_client		60.321		83.287		76.225		78.917		73.525

		56_client		58.604		83.563		76.529		78.304		74.400

		60_client		61.183		85.133		76.421		79.583		74.683

Sheet1

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Non-SSL Requests Per Second with 1 RealServer

Non-SSL Requests Per Second with 2 RealServers

Non-SSL Requests Per Second with 3 RealServers

Non-SSL Requests Per Second with 4 RealServers

Non-SSL Requests Per Second with 5 RealServers

Clients

Requests / Second

Overall impact of RealServers on Requests/Second

Sheet2

		

		Client		Non-SSL Throughput (Bytes/Sec) with 1 RealServer		Non-SSL Throughput (Bytes/Sec) with 2 RealServers		Non-SSL Throughput (Bytes/Sec) with 3 RealServers		Non-SSL Throughput (Bytes/Sec) with 4 RealServers		Non-SSL Throughput (Bytes/Sec) with 5 RealServers

		1_client		245272.750		273350.156		210188.688		224150.781		222395.172

		4_client		246461.969		281315.563		228604.609		222172.156		223181.391

		8_client		248061.813		273919.906		227514.734		216987.625		218235.672

		12_client		246036.719		282910.625		226286.063		216587.188		227265.016

		16_client		241654.172		276275.063		214938.781		224141.266		225339.734

		20_client		238464.516		288232.563		224402.750		219161.922		186581.594

		24_client		231872.125		264660.531		223033.781		221808.656		225093.266

		28_client		241771.234		274723.844		224232.766		223275.344		229357.609

		32_client		248400.063		281403.813		226652.078		216007.703		223983.297

		36_client		245061.953		274034.500		219321.297		219137.906		222867.031

		40_client		254544.203		282455.406		226900.953		218138.313		218899.797

		44_client		250557.203		280022.906		224773.563		234791.266		225639.703

		48_client		237763.516		263755.156		219112.797		239690.219		220218.219

		52_client		243452.016		263527.938		225999.188		235365.313		220637.859

		56_client		234197.250		267451.313		216685.563		233299.469		221264.422

		60_client		249364.688		271427.656		227294.297		237495.594		226022.953

Sheet2

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Non-SSL Throughput (Bytes/Sec) with 1 RealServer

Non-SSL Throughput (Bytes/Sec) with 2 RealServers

Non-SSL Throughput (Bytes/Sec) with 3 RealServers

Non-SSL Throughput (Bytes/Sec) with 4 RealServers

Non-SSL Throughput (Bytes/Sec) with 5 RealServers

Clients

Throughput (Bytes/Second)

Overall impact of RealServers on Throughput (Bytes/Second)

Sheet3

		

_1082551700.xls
Chart1

		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client

Prefork NonSSLProxy Request Per Second

Dynamic NonSSLProxy Request Per Second

Dynamic SSLProxy Request Per Second

Prefork SSLProxy Request Per Second

Clients

Requests / Second

Overall Requests / Second with Rule Module on Walrus

82.929

49.533

13.45

23.521

99.917

49.783

11.771

22.671

97.912

43.188

12.133

22.396

100.683

81.65

11.963

22.525

108.829

82.767

12.012

22.121

87.287

80.85

11.988

22.483

83.979

80.588

11.942

21.529

86.075

75.717

12.042

21.863

86.7

64.954

12.004

20.271

86.971

60.896

12.042

21.1

93.317

63.196

12.063

21.688

87.254

71.829

11.996

21.758

113.912

64.829

11.917

21.629

100.658

78.625

12.046

22.346

107.704

81.217

11.967

22.475

102.021

81.196

12.021

21.742

Sheet1

		

		Client		Prefork NonSSLProxy Request Per Second		Dynamic NonSSLProxy Request Per Second		Dynamic SSLProxy Request Per Second		Prefork SSLProxy Request Per Second

		1_client		82.929		49.533		13.450		23.521

		4_client		99.917		49.783		11.771		22.671

		8_client		97.912		43.188		12.133		22.396

		12_client		100.683		81.650		11.963		22.525

		16_client		108.829		82.767		12.012		22.121

		20_client		87.287		80.850		11.988		22.483

		24_client		83.979		80.588		11.942		21.529

		28_client		86.075		75.717		12.042		21.863

		32_client		86.700		64.954		12.004		20.271

		36_client		86.971		60.896		12.042		21.100

		40_client		93.317		63.196		12.063		21.688

		44_client		87.254		71.829		11.996		21.758

		48_client		113.912		64.829		11.917		21.629

		52_client		100.658		78.625		12.046		22.346

		56_client		107.704		81.217		11.967		22.475

		60_client		102.021		81.196		12.021		21.742

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Prefork NonSSLProxy Request Per Second

Dynamic NonSSLProxy Request Per Second

Dynamic SSLProxy Request Per Second

Prefork SSLProxy Request Per Second

Clients

Requests / Second

Overall Requests / Second with Rule Module on Walrus

Sheet2

		

				Throughput (Bytes/Sec) Prefork NonSSLProxy		Throughput (Bytes/Sec) Dynamic NonSSLProxy		Throughput (Bytes/Sec) Dynamic SSLProxy		Throughput (Bytes/Sec) Prefork SSLProxy

		1_client		256761.484		153489.109		37041.508		74303.969

		4_client		315102.594		155177.250		31540.820		72322.203

		8_client		302982.500		137113.438		29749.416		69222.820

		12_client		311402.875		260967.219		35302.438		71906.969

		16_client		331622.750		260389.703		32634.820		68396.867

		20_client		279997.344		254137.938		32755.271		71404.727

		24_client		261295.750		254852.703		32587.650		66586.586

		28_client		273189.781		242143.281		32327.629		71833.055

		32_client		276840.094		210745.078		30218.195		64700.035

		36_client		275862.531		191330.578		31024.430		67582.438

		40_client		290667.844		195328.953		31818.732		68035.484

		44_client		269568.875		230262.391		32347.574		70977.547

		48_client		349311.344		204809.328		32019.051		71097.391

		52_client		312724.063		244763.719		31069.268		71452.742

		56_client		327458.875		259256.438		30947.533		71086.063

		60_client		312501.156		253738.953		31931.262		67635.219

Sheet2

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Throughput (Bytes/Sec) Prefork NonSSLProxy

Throughput (Bytes/Sec) Dynamic NonSSLProxy

Throughput (Bytes/Sec) Dynamic SSLProxy

Throughput (Bytes/Sec) Prefork SSLProxy

Clients

Throughput (Bytes / Second)

Overall Throughput (Bytes / Second) with Rule Module running on Walrus

Sheet3

		

_1082551708.xls
Chart2

		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client

Prefork NonSSLProxy Request Per Second

Dynamic NonSSLProxy Request Per Second

Dynamic SSLProxy Request Per Second

Prefork SSLProxy Request Per Second

Clients

Requests / Second

Overall WebBench Requests/Second for local node problem

73.4

26.571

22.254

73.662

24.983

22.087

74.338

25.3

21.988

73.942

22.871

21.571

74.929

24.267

20.758

72.521

25.408

20.688

73.258

24.212

21.212

73.442

24.692

21.358

74.633

25.233

21.375

71.929

25.4

21.413

74.787

25.346

22.175

73.733

25.092

22.483

74.3

25.342

22.05

73.237

25.317

20.563

74.183

25.346

22.192

72.975

24.571

21.929

Sheet1

		

		Client		Prefork NonSSLProxy Request Per Second		Dynamic NonSSLProxy Request Per Second		Dynamic SSLProxy Request Per Second		Prefork SSLProxy Request Per Second

		1_client				73.400		26.571		22.254

		4_client				73.662		24.983		22.087

		8_client				74.338		25.300		21.988

		12_client				73.942		22.871		21.571

		16_client				74.929		24.267		20.758

		20_client				72.521		25.408		20.688

		24_client				73.258		24.212		21.212

		28_client				73.442		24.692		21.358

		32_client				74.633		25.233		21.375

		36_client				71.929		25.400		21.413

		40_client				74.787		25.346		22.175

		44_client				73.733		25.092		22.483

		48_client				74.300		25.342		22.050

		52_client				73.237		25.317		20.563

		56_client				74.183		25.346		22.192

		60_client				72.975		24.571		21.929

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Prefork NonSSLProxy Request Per Second

Dynamic NonSSLProxy Request Per Second

Dynamic SSLProxy Request Per Second

Prefork SSLProxy Request Per Second

Clients

Requests / Second

Overall WebBench Requests/Second for local node problem

Sheet2

		

				Throughput (Bytes/Sec)Prefork NonSSLProxy		Throughput (Bytes/Sec)Dynamic NonSSLProxy		Throughput (Bytes/Sec) Dynamic SSLProxy		Throughput (Bytes/Sec) Prefork SSLProxy

		1_client				275759.219		80471.500		71621.805

		4_client				268974.063		82093.234		68055.086

		8_client				275519.969		80626.086		71010.422

		12_client				280069.438		72389.672		67099.391

		16_client				286027.156		75298.734		66175.117

		20_client				262870.656		83003.516		64543.605

		24_client				270692.875		79582.578		69775.406

		28_client				274561.844		77926.570		66175.719

		32_client				270275.469		77166.906		67637.672

		36_client				265850.719		81107.109		65156.535

		40_client				283632.156		78389.992		69402.820

		44_client				276335.438		79642.234		71123.813

		48_client				278227.406		81132.336		70735.117

		52_client				277182.625		79492.828		63724.527

		56_client				276733.250		80896.430		71865.547

		60_client				269583.813		78480.461		66023.602

Sheet2

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Throughput (Bytes/Sec)Prefork NonSSLProxy

Throughput (Bytes/Sec)Dynamic NonSSLProxy

Throughput (Bytes/Sec) Dynamic SSLProxy

Throughput (Bytes/Sec) Prefork SSLProxy

Clients

Throughput (Bytes/Sec)

Overall Throughput Bytes/Second for local node problem

Sheet3

		

_1082551619.xls
Chart1

		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client

Prefork NonSSLProxy Request Per Second

Dynamic NonSSLProxy Request Per Second

Dynamic SSLProxy Request Per Second

Prefork SSLProxyRequest Per Second

Clients

Requests / second

Overall Request/Second with Rule Module running locally

129.121

92.75

13.238

24.279

91.912

103.142

11.725

23.621

122.588

107.754

12.613

23.467

112.358

87.621

12.808

23.475

96.225

61.996

12.858

23.425

133.054

90.983

12.771

22.65

116.558

84.888

12.663

22.996

109.467

79.158

12.875

22.858

96.829

80.213

12.833

22.875

107.979

80.742

12.654

22.779

113.329

80.858

11.488

22.821

100.35

77.612

12.929

23.075

108.3

81.417

12.908

22.829

113.408

80.675

12.6

22.254

80.987

80.912

12.871

21.938

78.692

80.858

12.642

22.108

Sheet1

		

		clients		Prefork NonSSLProxy Request Per Second		Dynamic NonSSLProxy Request Per Second		Dynamic SSLProxy Request Per Second		Prefork SSLProxyRequest Per Second

		1_client		129.121		92.750		13.238		24.279

		4_client		91.912		103.142		11.725		23.621

		8_client		122.588		107.754		12.613		23.467

		12_client		112.358		87.621		12.808		23.475

		16_client		96.225		61.996		12.858		23.425

		20_client		133.054		90.983		12.771		22.650

		24_client		116.558		84.888		12.663		22.996

		28_client		109.467		79.158		12.875		22.858

		32_client		96.829		80.213		12.833		22.875

		36_client		107.979		80.742		12.654		22.779

		40_client		113.329		80.858		11.488		22.821

		44_client		100.350		77.612		12.929		23.075

		48_client		108.300		81.417		12.908		22.829

		52_client		113.408		80.675		12.600		22.254

		56_client		80.987		80.912		12.871		21.938

		60_client		78.692		80.858		12.642		22.108

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Prefork NonSSLProxy Request Per Second

Dynamic NonSSLProxy Request Per Second

Dynamic SSLProxy Request Per Second

Prefork SSLProxyRequest Per Second

Clients

Requests / second

Overall Request/Second with Rule Module running locally

Sheet2

		

		clients		Throughput (Bytes/Sec) Prefork NonSSLProxy		Throughput (Bytes/Sec) Dynamic NonSSLProxy		Throughput (Bytes/Sec) Dynamic SSLProxy		Throughput (Bytes/Sec) Prefork SSLProxy

		1_client		386889.156		284391.344		42171.484		76966.273

		4_client		271402.219		315767.344		38358.563		73549.367

		8_client		358219.031		324056.688		43273.348		75151.758

		12_client		336801.500		272221.344		41870.285		71847.602

		16_client		246907.734		192696.016		41932.320		72563.133

		20_client		403274.406		280100.594		39454.176		71976.352

		24_client		331846.781		269149.469		37205.324		73397.375

		28_client		328272.906		255284.250		40592.973		71770.445

		32_client		293678.063		258128.547		42188.020		67554.438

		36_client		293845.813		253553.422		38566.824		71089.977

		40_client		348990.875		259401.109		36303.141		73000.117

		44_client		272436.250		243845.313		39697.813		71393.281

		48_client		325014.938		256836.281		38792.762		72194.789

		52_client		347848.375		254855.313		41074.949		71256.867

		56_client		249079.734		260648.938		43581.328		71170.336

		60_client		236329.281		258743.766		38753.727		70538.648

Sheet2

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Throughput (Bytes/Sec) Prefork NonSSLProxy

Throughput (Bytes/Sec) Dynamic NonSSLProxy

Throughput (Bytes/Sec) Dynamic SSLProxy

Throughput (Bytes/Sec) Prefork SSLProxy

Clients

Throughput (Bytes / Second)

Overall Throughput (Bytes / Sec) with Rule Module running locally

Sheet3

		

_1082551604.xls
Chart1

		1_client		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client		60_client

SSL Requests Per Second with 1 RealServer

SSL Requests Per Second with 2 RealServers

SSL Requests Per Second with 3 RealServers

SSL Requests Per Second with 4 RealServers

SSL Requests Per Second with 5 RealServers

Clients

Requests / Second

Overall impact of RealServers on Requests/Second

27.433

27.096

27.012

28.492

27.392

26.542

26.183

26.029

26.908

24.842

26.296

26.45

24.188

27.358

26.387

25.738

26.346

23.217

27.367

25.433

26.221

26.496

26.029

27.225

25.179

25.225

26.529

26.396

25.746

26.342

25.221

26.538

25.946

27.017

25.371

25.567

26.512

26.042

26.933

25.975

26.154

26.629

25.283

26.262

25.746

25.996

26.488

25.758

27.233

26.396

26.333

26.521

26.208

25.971

26.542

25.529

26.258

25.675

26.7

25.65

25.871

26.554

25.442

27.038

26.462

26.117

26.304

26.329

26.967

26.146

25.762

21.804

26.104

26.679

26.392

26.6

22.087

25.988

26.229

25.025

Sheet1

		

		Client		SSL Requests Per Second with 1 RealServer		SSL Requests Per Second with 2 RealServers		SSL Requests Per Second with 3 RealServers		SSL Requests Per Second with 4 RealServers		SSL Requests Per Second with 5 RealServers

		1_client		27.433		27.096		27.012		28.492		27.392

		4_client		26.542		26.183		26.029		26.908		24.842

		8_client		26.296		26.450		24.188		27.358		26.387

		12_client		25.738		26.346		23.217		27.367		25.433

		16_client		26.221		26.496		26.029		27.225		25.179

		20_client		25.225		26.529		26.396		25.746		26.342

		24_client		25.221		26.538		25.946		27.017		25.371

		28_client		25.567		26.512		26.042		26.933		25.975

		32_client		26.154		26.629		25.283		26.262		25.746

		36_client		25.996		26.488		25.758		27.233		26.396

		40_client		26.333		26.521		26.208		25.971		26.542

		44_client		25.529		26.258		25.675		26.700		25.650

		48_client		25.871		26.554		25.442		27.038		26.462

		52_client		26.117		26.304		26.329		26.967		26.146

		56_client		25.762		21.804		26.104		26.679		26.392

		60_client		26.600		22.087		25.988		26.229		25.025

Sheet1

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

SSL Requests Per Second with 1 RealServer

SSL Requests Per Second with 2 RealServers

SSL Requests Per Second with 3 RealServers

SSL Requests Per Second with 4 RealServers

SSL Requests Per Second with 5 RealServers

Clients

Requests / Second

Overall impact of RealServers on Requests/Second

Sheet2

		

		Client		Throughput (Bytes/Sec) with 1 RealServer		Throughput (Bytes/Sec) with 2 RealServers		Throughput (Bytes/Sec) with 3 RealServers		Throughput (Bytes/Sec) with 4 RealServers		Throughput (Bytes/Sec) with 5 RealServers

		1_client		83488.508		89005.688		85376.328		87198.922		86649.883

		4_client		81187.320		87817.195		85917.953		87998.219		78835.102

		8_client		80762.844		84612.625		77564.086		84410.070		81547.023

		12_client		80911.766		83365.867		76965.477		83548.922		80625.523

		16_client		82852.008		86141.156		83193.555		86644.086		81729.094

		20_client		75779.227		84260.398		82509.180		84213.453		85932.828

		24_client		85887.195		85468.625		83452.398		85725.727		81054.852

		28_client		78102.672		86600.500		83551.023		84851.742		84265.297

		32_client		86951.445		83631.164		82429.492		82796.445		80845.984

		36_client		82992.539		83288.039		80396.750		85185.078		86600.250

		40_client		80798.453		85215.031		86575.016		83402.047		83325.094

		44_client		80868.711		84520.797		85090.586		86127.180		83066.828

		48_client		84629.914		82893.070		78016.719		87399.117		85160.164

		52_client		84218.930		82930.148		79787.648		83159.133		84728.914

		56_client		85253.031		66551.414		84130.961		83579.508		84994.586

		60_client		82371.500		70822.289		82585.211		85375.344		81769.594

Sheet2

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Throughput (Bytes/Sec) with 1 RealServer

Throughput (Bytes/Sec) with 2 RealServers

Throughput (Bytes/Sec) with 3 RealServers

Throughput (Bytes/Sec) with 4 RealServers

Throughput (Bytes/Sec) with 5 RealServers

Clients

Throughput (Bytes / Second)

Overall impact of RealServers on Throughput (Bytes/Second)

Sheet3

		

_1082551584.xls
Chart1

		1_client		1_client		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client		60_client		60_client

SSL Requests Per Second for 250 Rules

SSL Requests Per Second for 300 Rules

SSL Requests Per Second for 500 Rules

SSL Requests Per Second for 1000 Rules

SSL Requests Per Second for 2000 Rules

SSL Requests Per Second for 5000 Rules

Clients

Requests/Second

Overall Impact of Rules on Requests/Second

27.096

26.879

27.025

22.896

26.917

26.917

26.183

26.65

25.975

22.85

25.171

26.063

26.45

26.275

26.058

21.654

26.329

26.163

26.346

26.696

26.3

25.863

26.012

24.254

26.496

25.808

26.529

25.904

26.354

26.163

26.529

22.579

26.021

25.75

26.15

25.779

26.538

24.929

25.908

26.592

25.871

26.208

26.512

25.512

18.654

26.4

26.558

26.167

26.629

26.108

23.262

24.254

26.313

25.996

26.488

25.504

26.367

22.229

26.517

25.342

26.521

25.725

26.608

23.85

26.429

26.188

26.258

25.967

25.792

26.363

26.113

26.087

26.554

26.004

26.571

25.833

26.225

26.017

26.304

25.792

26.288

25.746

25.529

25.954

21.804

25.683

23.025

26.421

26.208

26.046

22.087

26

22.392

26.317

26.083

25.8

Sheet1

		

		Client		SSL Requests Per Second for 250 Rules		SSL Requests Per Second for 300 Rules		SSL Requests Per Second for 500 Rules		SSL Requests Per Second for 1000 Rules		SSL Requests Per Second for 2000 Rules		SSL Requests Per Second for 5000 Rules

		1_client		27.096		26.879		27.025		22.896		26.917		26.917

		4_client		26.183		26.650		25.975		22.850		25.171		26.063

		8_client		26.450		26.275		26.058		21.654		26.329		26.163

		12_client		26.346		26.696		26.300		25.863		26.012		24.254

		16_client		26.496		25.808		26.529		25.904		26.354		26.163

		20_client		26.529		22.579		26.021		25.750		26.150		25.779

		24_client		26.538		24.929		25.908		26.592		25.871		26.208

		28_client		26.512		25.512		18.654		26.400		26.558		26.167

		32_client		26.629		26.108		23.262		24.254		26.313		25.996

		36_client		26.488		25.504		26.367		22.229		26.517		25.342

		40_client		26.521		25.725		26.608		23.850		26.429		26.188

		44_client		26.258		25.967		25.792		26.363		26.113		26.087

		48_client		26.554		26.004		26.571		25.833		26.225		26.017

		52_client		26.304		25.792		26.288		25.746		25.529		25.954

		56_client		21.804		25.683		23.025		26.421		26.208		26.046

		60_client		22.087		26.000		22.392		26.317		26.083		25.800

Sheet1

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

SSL Requests Per Second for 250 Rules

SSL Requests Per Second for 300 Rules

SSL Requests Per Second for 500 Rules

SSL Requests Per Second for 1000 Rules

SSL Requests Per Second for 2000 Rules

SSL Requests Per Second for 5000 Rules

Clients

Requests/Second

Overall Impact of Rules on Requests/Second

Sheet2

		

		Client		SSL Throughput (Bytes/Sec) for 250 Rules		SSL Throughput (Bytes/Sec) for 300 Rules		SSL Throughput (Bytes/Sec) for 500 Rules		SSL Throughput (Bytes/Sec) for 1000 Rules		SSL Throughput (Bytes/Sec) for 2000 Rules		SSL Throughput (Bytes/Sec) for 5000 Rules

		1_client		89005.688		88920.219		84677.695		68804.680		88611.602		90414.641

		4_client		87817.195		86213.609		79603.297		71706.867		82284.938		81894.695

		8_client		84612.625		81345.359		81723.727		69119.406		82607.359		82854.125

		12_client		83365.867		83555.477		80861.391		83483.305		82180.867		80197.188

		16_client		86141.156		83086.594		81769.094		81108.516		83100.055		84186.508

		20_client		84260.398		71500.797		83274.898		81827.594		81537.742		82821.391

		24_client		85468.625		78297.938		81511.352		83763.578		81685.945		83387.039

		28_client		86600.500		82567.336		59202.426		83307.836		83470.281		82751.008

		32_client		83631.164		85092.633		74595.047		77160.742		88014.484		82594.555

		36_client		83288.039		82786.297		80541.523		74923.703		82392.328		81496.766

		40_client		85215.031		84915.602		84272.461		78466.352		83061.672		83090.328

		44_client		84520.797		79851.281		81618.742		83417.695		81451.023		81362.359

		48_client		82893.070		81934.352		83479.031		83569.844		85485.469		81665.125

		52_client		82930.148		87111.781		82578.680		82278.453		81018.820		84537.492

		56_client		66551.414		81528.313		72944.250		88565.703		89212.320		87343.641

		60_client		70822.289		82417.648		71443.602		85731.906		84129.188		83254.094

Sheet2

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

SSL Throughput (Bytes/Sec) for 250 Rules

SSL Throughput (Bytes/Sec) for 300 Rules

SSL Throughput (Bytes/Sec) for 500 Rules

SSL Throughput (Bytes/Sec) for 1000 Rules

SSL Throughput (Bytes/Sec) for 2000 Rules

SSL Throughput (Bytes/Sec) for 5000 Rules

Clients

Throughput(Bytes/Sec)

Overall Impact of Rules on ThroughPut

Sheet3

		

_1081771429

_1082551539.xls
Chart1

		1_client		1_client		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client		60_client		60_client

Request Per Second Prefork NonSSLProxy

Request Per Second Dynamic NonSSLProxy

Request Per Second Apache NonSSL

Request Per Second Dynamic SSLProxy

Request Per Second Prefork SSLProxy

Request Per Second Apache SSL

Clients

Requests / Second

Overall WebBench Requests/Second

148.046

82.588

244.404

26.992

23.042

37.45

146.542

84.283

241.296

26.1

20.858

36.958

128.688

82.642

234.867

26.113

21.704

37.479

145.521

83.567

230.183

26.279

20.246

37.279

148.1

82.017

236.35

26.425

21.604

37.396

147.946

83.433

241.475

26.333

19.462

36.962

135.046

82.642

237.05

26.358

21.004

37.833

148.058

83.158

234.037

26.421

20.279

38.15

126.621

82.767

241.037

26.275

20.358

38.346

123.542

81.933

242.046

25.783

20.275

38.375

148.121

81.575

239.567

25.625

21.188

37.892

129.762

83.112

232.988

26.033

20.163

37.804

148.113

83.421

243.688

26.304

20.404

37.571

147.85

81.975

244.037

26.063

21.446

37.4

106.9

82.254

243.258

26.35

17.363

37.063

128.879

83.254

243.554

26.212

15.8

36.188

Sheet1

		

		Client		Request Per Second Prefork NonSSLProxy		Request Per Second Dynamic NonSSLProxy		Request Per Second Apache NonSSL		Request Per Second Dynamic SSLProxy		Request Per Second Prefork SSLProxy		Request Per Second Apache SSL

		1_client		148.046		82.588		244.404		26.992		23.042		37.450

		4_client		146.542		84.283		241.296		26.100		20.858		36.958

		8_client		128.688		82.642		234.867		26.113		21.704		37.479

		12_client		145.521		83.567		230.183		26.279		20.246		37.279

		16_client		148.100		82.017		236.350		26.425		21.604		37.396

		20_client		147.946		83.433		241.475		26.333		19.462		36.962

		24_client		135.046		82.642		237.050		26.358		21.004		37.833

		28_client		148.058		83.158		234.037		26.421		20.279		38.150

		32_client		126.621		82.767		241.037		26.275		20.358		38.346

		36_client		123.542		81.933		242.046		25.783		20.275		38.375

		40_client		148.121		81.575		239.567		25.625		21.188		37.892

		44_client		129.762		83.112		232.988		26.033		20.163		37.804

		48_client		148.113		83.421		243.688		26.304		20.404		37.571

		52_client		147.850		81.975		244.037		26.063		21.446		37.400

		56_client		106.900		82.254		243.258		26.350		17.363		37.063

		60_client		128.879		83.254		243.554		26.212		15.800		36.188

Sheet1

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

Request Per Second Prefork NonSSLProxy

Request Per Second Dynamic NonSSLProxy

Request Per Second Apache NonSSL

Request Per Second Dynamic SSLProxy

Request Per Second Prefork SSLProxy

Request Per Second Apache SSL

Clients

Requests / Second

Overall WebBench Requests/Second

Sheet2

		

		Client		Throughput (Bytes/Sec)Prefork NonSSLProxy		Throughput (Bytes/Sec)Dynamic NonSSLProxy		Throughput (Bytes/Sec) Apache NonSSL		Throughput (Bytes/Sec) Dynamic SSLProxy		Throughput (Bytes/Sec) Prefork SSLProxy		Throughput (Bytes/Sec) Apache SSLProxy

		1_client		460286.906		184372.484		789596.375		85114.172		78864.953		116308.336

		4_client		457049.719		190094.813		775454.813		80555.852		69268.008		122499.266

		8_client		401102.250		187670.453		746146.125		86348.070		65776.078		118133.617

		12_client		449760.750		186760.578		731111.000		86811.633		63843.492		117699.695

		16_client		456938.000		183693.078		751419.938		83621.742		66725.078		122711.133

		20_client		458651.688		185482.547		774384.188		86180.789		62424.828		120067.820

		24_client		420043.375		184816.563		756966.563		85356.867		66262.789		121543.781

		28_client		457065.594		187896.828		748501.875		84752.164		65857.180		118165.078

		32_client		391589.313		182406.859		760663.375		86087.992		64590.730		119707.023

		36_client		383675.063		186311.953		763130.188		82312.445		65836.164		123210.070

		40_client		457712.219		181700.203		759762.375		79577.102		67281.219		119948.469

		44_client		402532.844		187520.313		743303.938		80657.883		64754.262		119254.148

		48_client		461619.656		186482.500		770601.688		81699.172		68547.289		123118.133

		52_client		463979.625		186189.016		769859.063		83400.344		70043.289		119558.883

		56_client		337335.219		186350.313		775373.250		83762.344		56770.445		117718.984

		60_client		407150.594		186253.734		777664.313		79303.898		51429.477		118968.945

Sheet2

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

Throughput (Bytes/Sec)Prefork NonSSLProxy

Throughput (Bytes/Sec)Dynamic NonSSLProxy

Throughput (Bytes/Sec) Apache NonSSL

Throughput (Bytes/Sec) Dynamic SSLProxy

Throughput (Bytes/Sec) Prefork SSLProxy

Throughput (Bytes/Sec) Apache SSLProxy

Clients

Throughput (Bytes / Second)

Overall WebBench Throughput (Bytes/Second)

Sheet3

		

_1079515695

_1079514621

