
vii

Contents

1 Introduction 1

1.1 Goals and Motivation for User Mode Linux . 1

1.2 Goals and Motivation for Multiple Path Routing 2

2 User Mode Linux Virtual Machine 3

2.1 Kgdb overview . 4

2.2 User Mode Linux Overview . 5

2.2.1 Background . 5

2.2.2 The Root File System: root_fs . 6

2.2.3 UML Kernel Executable . 7

2.2.4 How UML Could Be Used . 7

3 Technique for Multiple Path Routing 8

3.1 Iproute2 to create IP tunnels . 12

3.2 Changes in the Linux network device driver . 14

3.3 Weighted scheduler . 16

3.4 Packet buffering . 17

3.5 Utilizing the Proc File System . 18

3.6 Testing using HTB bandwidth limiting . 21

4 Performance Analysis 23

4.1 Baseline results . 23

4.2 Impact of the number of proxies on aggregated bandwidth 25

4.3 Impact of Weighted scheduler on Bandwidth . 29

4.3.1 Weighted paths and one path with small bandwidth 31

viii

4.3.2 Weighed paths, one path with small bandwidth, and additional paths band-

width controlled . 34

4.4 Impact of buffer size on multipath aggregated bandwidth 37

4.5 Summary of results . 38

5 Conclusion and future work 40

5.1 Work contributions . 40

5.2 Future work . 41

Bibliography 42

A Comments on User Mode Linux and Multipath Performance Perl Script 46

A.1 Installing the UML utilities . 46

A.2 Compile the kernel the UML kernel . 47

A.3 Creating the root_fs . 49

A.4 Resizing the root_fs . 50

A.5 Parameters for running UML . 50

A.6 Network Setup . 52

A.6.1 Ethertap . 52

A.6.2 Tuntap . 53

A.7 Once inside the UML session . 54

A.7.1 Inside of Slackware – configuring the Slackware root_fs 55

A.7.2 spawning off xtermals (setting the number of xterminals) 55

A.7.3 Setting up DNS . 56

A.7.4 Installing and uninstalling programs . 56

A.7.5 Configuring the network on startup . 57

A.8 Debugging with UML . 57

A.8.1 Installing the skas patch on the host machine 58

A.8.2 Crashing gracefully . 58

A.8.3 Using a .gdbinit . 60

A.8.4 Debugging in gdb . 61

ix

A.8.5 Gdb debugging inside Eclipse . 61

A.9 Perl script used for testing . 71

B Instruction manual 73

B.1 Building User Mode Linux . 73

B.1.1 Building a UML Kernel . 73

B.1.2 Root file system . 75

B.1.3 Installing UML tools . 75

B.2 Running UML . 75

B.3 Running the perl test files . 76

C Assessment on how INET processes TCP/IP packets 78

C.1 Overview of TCP . 78

C.2 TCP Header and Sk_buff . 79

C.3 Establishing a TCP connection . 82

C.3.1 Inet code processes SYN and SYN ACK 87

C.4 Connection established . 88

C.4.1 Inet transferring data . 94

C.5 Closing the Connection . 95

C.5.1 Inet closing a connection . 95

C.6 Window . 96

C.7 Checksum . 97

D Comments on TCP structures 99

D.1 sk_buff . 99

D.1.1 Link list . 100

D.1.2 Packet header . 100

D.1.3 Routing . 101

D.1.4 Control buffer . 102

D.1.5 Stats and Markers . 102

D.2 BSD and INET Sockets . 103

x

D.2.1 TCP connection using sockets . 103

D.2.2 INET Socket: IP routing . 105

D.2.3 INET Socket: TCP management engine 106

D.3 Kernel network tips and tricks . 109

D.3.1 Changing a packets sending address . 109

D.3.2 Sending a packet . 109

D.3.3 Receiving a packet . 110

E Media 112

E.1 DVD . 112

E.2 Writing tools . 112

xi

List of Tables

4.1 Baseline results . 25

4.2 Direct connection with bandwidth rate limiting 27

4.3 IP Tunnel with bandwidth rate limiting . 27

4.4 Multiple path routing with bandwidth rate limiting 28

4.5 Multiple path routing with buffer and bandwidth rate limiting 29

4.6 Two nodes with no buffer and weighted packet distribution 31

4.7 Five proxies without buffer and weighted packet distribution 32

4.8 Two proxies with buffer and weighted packet distribution 33

4.9 Five proxies with buffer and weighted packet distribution 34

4.10 Two proxies, without buffer, first proxy variable bandwidth, other nodes 100 kBps . 35

4.11 Five proxies, with buffer, first proxy bandwidth variable, other proxies 100 kB/s . . 36

4.12 Buffer size changing with controlled bandwidth 37

A.1 Proc values to configure the multiple path code 72

C.1 Backtrace of a syn packet arriving . 88

C.2 Backtrace of a syn ack packet arriving . 88

D.1 Backtrace of sending a packet . 110

D.2 Backtrace of receiving a packet . 111

xii

List of Figures

2.1 Computer system layers . 4

2.2 KGdb . 5

2.3 UML architecture with tuntap driver attached to host 6

3.1 Simple web request (left) and using multi-path routing (right) 9

3.2 Two two way multi-paths . 9

3.3 IP in IP encapsulation[15] . 11

3.4 When IP tunnel is not turned on . 12

3.5 IP tunnel commands . 13

3.6 Two computers establishing a tunnel . 13

3.7 Linux kernel with multiple network devices . 14

3.8 TCP routing and socket structure . 16

3.9 Kernel code for a proc file system entry . 19

3.10 Kernel code for a proc read and write methods . 20

3.11 Setting proc values . 21

3.12 Setting up tc qdisc to limit bandwidth . 22

3.13 Kernel options needed for tc to run . 22

4.1 Types of connections . 24

4.2 Baseline results . 25

4.3 Bandwidth limited scenario . 26

4.4 Direct connection with bandwidth rate limiting 26

4.5 IP Tunnel with bandwidth rate limiting . 27

4.6 Multiple path routing with bandwidth rate limiting 28

4.7 Multiple path routing with buffer and bandwidth rate limiting 29

xiii

4.8 Weighted packet distribution for a 1:6 ratio . 30

4.9 One path with bandwidth lower then the other paths 30

4.10 Two nodes with no buffer and weighted packet distribution 31

4.11 Five proxies without buffer and weighted packet distribution 32

4.12 Two proxies with buffer and weighted packet distribution 33

4.13 Five proxies with buffer and weighted packet distribution 34

4.14 Two proxies, without buffer, first proxy variable bandwidth, other nodes 100 kBps . 35

4.15 Five proxies, with buffer, first proxies variable bandwidth, other node 100 kBps . . 36

4.16 Buffer size changing with controlled bandwidth 37

A.1 Unpackaging UML tools . 46

A.2 Installing UML patch file . 48

A.3 UML Make command . 48

A.4 Uml make config screen . 48

A.5 Resizing a uml filesystem . 50

A.6 Running uml . 51

A.7 Routing table with tuntap entries . 52

A.8 Uml run with ethertap . 53

A.9 Uml run with tuntap . 53

A.10 Uml run with two tuntap interfaces . 54

A.11 Ifconfig commands for setting up the network device 54

A.12 Ifconfig commands for setting up a second network device 55

A.13 Spawning xterminals . 56

A.14 Mounting a root file system . 57

A.15 Installing and uninstalling slackware packages . 57

A.16 Checking for a uml process . 59

A.17 Locked file system panic message . 60

A.18 Stopping gdb from breaking at signals . 60

A.19 New eclipse project . 61

A.20 Starting a standard make c project . 62

xiv

A.21 Setting up a project . 62

A.22 Code indexer . 63

A.23 Deselect build automatically . 63

A.24 Run icon . 64

A.25 Creating a new run . 65

A.26 Run main window . 66

A.27 Run argument window . 67

A.28 Debug Window . 68

A.29 Adding a make target . 69

A.30 Setting up make target . 70

A.31 Building make target . 70

A.32 Running the program . 71

A.33 Start the debugger . 71

B.1 Running user mode linux . 75

B.2 Ifconfig commands for inside the virtual file system 76

B.3 Example input.txt file . 77

C.1 Tcp header . 80

C.2 header section of the sk_buff . 81

C.3 Tcp header structure . 82

C.4 Tcp state diagram . 84

C.5 Sending the initial syn message . 85

C.6 SynAck message . 86

C.7 Three way handshake moving to an established connection state 87

C.8 Packet transmission . 89

C.9 More extensive header of the ip, tcp, and payload 91

C.10 Transfer of packets showing the syn and ack numbers changing 93

C.11 Inet’s modified close . 95

C.12 Window flow control . 97

C.13 Checksum fields . 98

xv

D.1 Sections of the linux networking code . 104

D.2 Socket structure . 105

D.3 Tp_pinfo union structure . 106

D.4 Abbreviated version of the tcp option structure . 108

Chapter 3

Technique for Multiple Path Routing

In this chapter we present the techniques for setting up the Linux kernel to utilize multi-path routing,

where the kernel can send a packet over the direct route, or a set of alternate indirect routes. For

indirect routes, the original packet will be first put in an IP over IP packet payload and sent to a

proxy, which relays the packet to its final destination. For direct routes, the packet is left in its

original state and is sent to the destination without going to a proxy.

Within the Linux kernel, the multi-path enhancements are able to send alternate the packets to

different proxies. For example in Fig. 3.1, ten packets are for a simple web request: six packets

send from the client and four return packets are from the server. If there are three proxies, the first

proxy could receive two packets (packets one and seven); the second proxy receives two packets

(packets three and eight) and; the third receives the remaining two packets (packets four and ten).

The ten packets transmitted are spread over the three proxies. Fig. 3.2 is an illustration of Multi-path

routing.

9

Fig. 3.1. Simple web request (left) and using multi-path routing (right)

Fig. 3.2. Two two way multi-paths

10

The most common technique for establishing an indirect route is to apply a technique called IP

tunnels where the original packet is put in the payload of an “outer” IP packet for routing and the

outer destination IP address routes to the proxy. Fig. 3.3 shows an IP in IP encapsulation header used

to route the packets[15]. In the multi-path routing network, there are two types of paths: one-way

multi-path and two-way multi-path. In one way multi-path, one end node spreads the packets over

multiple routes, the return packets are all sent through the direct routes. The other end nodes may not

have knowledge that the incoming packets are relayed by a set of proxies. The proxies supporting

the one-way multi-path will strip-off the outer IP header and forward the inside IP packet.

In two way multi-path, both end nodes spread packets over multiple routes. The proxies support

the two-way multi-paths will also strip-off the outer IP header and forward the inside IP packet, but

for both directions.

11

Fig. 3.3. IP in IP encapsulation[15]

Three modifications were made to the individual Linux machines and to the actual kernel to

achieve multi-path routing. The changes include: creating an IP tunnel to interface with the kernel

changes, modifying the destination entry’s device driver in the Linux kernel to change the routing

3.1. IPROUTE2 TO CREATE IP TUNNELS 12

path, and packet buffering the incoming TCP packets.

3.1 Iproute2 to create IP tunnels

IP Tunneling is taking the packet and wrapping it with an additional IP Header, so the packet has

two IP Headers. Generally the destination IP address, the other IP header, specifies to the proxy

destination; the destination IP address of the inner or encapsulated header specifies the final desti-

nation.

The main advantage of IP tunneling is enabling of the reroute to the proxy. For this project when

the packet is received by a proxy, the outer IP header is removed. A proxy removes the outer IP

header and forwards the inner IP packet to the destination according to the remaining IP header. The

remaining packet is repackaged with a new Ethernet frame and sent. In case of one-way multi-path

routing the return packet is sent without an encapsulated IP header and bypasses the proxies. In the

case of two-way multi-path routing, a new outer IP header is created with the IP address of the final

destination as the destination IP address and the IP address of the proxy as the source IP address.

This provides the final destination information about the proxy and can utilize this information for

measuring the round trip time of the indirect path or use the proxy for the return route.

Creating an IP tunnel is not trivial. IP Tunnels needs to be turned on in the kernel. The option is

under the "network option" in the config menu (or .config file). If the IP Tunnel option is not turned

on, an error messages like the ones shown in Fig. 3.4 will appear. If this error appears, check the

kernel options and make sure that IP Tunnel is selected. Most Linux distributions have IP tunnel

turned on and running as a module.

ioctl: No such device
SIOCSIFADDR: No such device
tunl1: unknown interface: No such device
SIOCSIFNETMASK: No such device
SIOCSIFDSTADDR: No such device

Fig. 3.4. When IP tunnel is not turned on

There are three commands used to setup IP Tunnel[1]: “ifconfig”, “ip route” and “ip tunnel”.

3.1. IPROUTE2 TO CREATE IP TUNNELS 13

“ip route” and “ip tunnel” are part of the iproute2 suite. The iproute2 suite of utilities was designed

to replace the “route” command. Many technical websites state the adaption of the new “ip route”

is is going along quickly. The “route” command has the routing information laid out differently

therefore using “ip route” takes some adjustments for the user.

client side
> ip tunnel add tunl1 mode ipip remote 172.31.0.172 dev eth0
> ifconfig tunl1 172.31.0.169 netmask 255.255.255.255 pointopoint 172.31.0.172 up
> ip route add 172.31.0.197 dev tunl1

server side
> ip tunnel add tunl1 mode ipip remote 172.31.0.172 dev eth0

Fig. 3.5. IP tunnel commands

Fig. 3.6. Two computers establishing a tunnel

The commands in Fig. 3.5 are the commands for the client with (172.31.0.169 IP address)

needed to setup an IP Tunnel between it and the proxy with IP address 172.31.0.172. This es-

tablishes the tunnel and creates a device driver. The commands in the bottom of Fig. 3.5 are the

commands for the server with 172.31.0.172 needed to create an IP tunnel pointing to the client to

be able to receive an IP in IP encapsulated packet.

On the client side, packets are sent to tunl1 and encapsulated with an additional IP header, as

shown in Fig. 3.6. The routing table is updated to guide the kernel where packets are heading and if

the packets need to be routed through a tunnel.

3.2. CHANGES IN THE LINUX NETWORK DEVICE DRIVER 14

3.2 Changes in the Linux network device driver

Fig. 3.2 shows how the packets are sent to a proxy. The standard direct connections go through

the device such as eth0; the packets destined for a proxy through an IP tunnel are sent to a device

such as tunl1. The multiple path routing takes advantage of using the INET’s underlying device

drivers. The modifications to the INET code alternates the IP tunnel addresses. Each indirect route

is mapped to a tunnel device. The corresponding proxy will be set up with two tunnel devices one

pointed to the client; the other to the server. To make the multi-path scheme work, each outgoing

packet is sent to different tunnel device (e.g., tunl1, tunl2, tunl3, tunl4, and tunl5). Selecting which

packet goes to which tunnel device is implemented in the Linux kernel in with a scheduler handling

the IP header[7].

Fig. 3.7. Linux kernel with multiple network devices

Fig. 3.7 shows the Linux kernel structure with four tunnel devices. When the Linux kernel

receives a packet, it is saved in a structure called sk_buff. Pointers are passed to reference the

headers and payload. There is a socket for each connection called an INET socket. Another socket,

called a BSD socket is used to communicate with the application process. The differences between

the INET and BSD socket are detailed in Appendix D. The INET socket which is responsible for the

connection and has routing information for the IP and Ethernet headers. This information is stored

in a structure called the dst_entry.

The dst_entry is complex. It is part of a bigger structure, called rtable as shown in Fig 3.8.

Rtable stands for “routing tables”. These routing tables structures work with the computer’s routing

table to communicate the packet’s destination and correct header and device information. Each

time a packet is sent, the INET socket’s dst_entry is consulted to determine the correct header

information. The INET socket also contains the engine maintaining the SEQ and ACK numbers for

3.2. CHANGES IN THE LINUX NETWORK DEVICE DRIVER 15

the connection stored in the tp_pinfo structure. The dst_entry’s settings for a direct connection uses

the eth0 (Ethernet) network device. And for an IP Tunnel, the dst_entry uses the tunl (IP Tunnel)

network device.

Since the dst_entry is so complex, the kernel modifications relies on values being set in the rout-

ing tables. Actual modifications are not done to the dst_entry. If the destination of the packet is not

routed through the tunnel device in the routing table and the multi-path routing kernel modifications

are activated, the kernel will try to route a packet with a dst_entry set for a direct connect oppose

to IP tunnel. This will confuse the kernel and cause it to crash. The information from the routing

tables stored in the dst_entry and the way the kernel uses this information should match.

3.3. WEIGHTED SCHEDULER 16

Fig. 3.8. TCP routing and socket structure

3.3 Weighted scheduler

When the dst_entry is being processed, the kernel modifications looks up all the network device

drivers and creates an array of network device drivers. This array allows the scheduler to choose the

path without looking up the network device driver. For this simple weight scheduler, the first tunnel

driver, labeled tunl1 is considered the path with the lower ratio.

The weight for the connection establishes how many packets are allowed through a connection.

3.4. PACKET BUFFERING 17

For example, there are two paths. The kernel receives a weight of 10 from the application layer; this

means 10 packets would go through the network device tunl2 and one packet would go through the

network device tun1.

This weight scheduler is simple and was a idea to test the validity of using a scheduler and

reporting any benefits for further work.

3.4 Packet buffering

The Linux kernel stores outbound packets in a queue. The packets in the queue are sent when the

device driver fires an interrupt and sends the packets. Multi-path routing uses multiple network

devices and causes packets to arrive out of order. If one or multiple packets get delayed and the

packet arrives out of order, the TCP protocol sends duplicate acknowledgment (dup ack) requesting

a retransmission of the delayed packet. If the sender receives three dup acks, it will retransmit

immediately the missing segment without waiting for the retransmission timer to expire. This is

called (RTT) Fast Retransmit[16]. This poses a problem and is a major hit on performance.

With multi-path routing, we experience more fast retransmits due to a persistent unnecessary

reordering of arrival packet. A solution to reduce the fast retransmits is to queue the arriving packets,

wait for the delayed packet, and delay the triggering of fast transmit. Packet buffering is proposed

and uses the INET socket. The INET socket is connection based, so there is one INET socket per

connection and is a structure containing information about the connection, e.g,. sequence number.

When the packet is queued, it is placed on the buffer in order of the sequence number with

the earliest sequence number closest to the head, and packets with duplicate sequence numbers are

removed. When the packet with the correct sequence number arrives, the packets are fed to the TCP

processing code, one packet at a time. The INET code stores the next expected sequence number

in the ip_option structure. If the next packet on the queue does not match what is expected, the

buffering continues.

If the packet is lost, the expected packet will never arrive. There are two solutions for missing

packets. The TCP timer will time out and send another acknowledgment requesting the packet.

Another solution is limit the size of the buffer. If the buffer size becomes greater than a given

threshold, the packets are processed as though the buffer did not exist and the TCP engine would

3.5. UTILIZING THE PROC FILE SYSTEM 18

send another acknowledgment.

To control the size of the buffer and various parameters of the multi-path routing in the kernel,

the proc file system is used to communicate with the kernel from the application level.

3.5 Utilizing the Proc File System

The Linux proc file system is a memory resident file system used by the Linux Kernel, and its one

purpose is to exchange information between the Kernel and the user to fine tune the Kernel’s per-

formance. The proc file system is not stored on the hard drive but resides entirely in memory. At

startup the kernel populates the proc file system and mounts it to a directory for the user and appli-

cations to access. For example, the IP routing table uses the proc to communicate the gateway and

device information needed to route incoming and outgoing packets properly. When the command

“route” is executed, the "route" program displays a file in the proc file system, /proc/net/route, to

the screen.

This project uses the proc file system[17] to turn off and on the multiple path routing, specify

the weights of the paths for spreading packets, and control other variables used for logging and

buffering. Within the Linux code, a proc directory can be created in the /proc using the command

“proc_mkdir.” Fig. 3.9 is the code to make a proc directory and populate an entry.

3.5. UTILIZING THE PROC FILE SYSTEM 19

#define MAXDATALEN 20
char bufferOnVal[MAXDATALEN + 1];
static int initScoldProc(void){

// creates the directory in the proc file system under /proc/sys/net/ipv4/mulipath
multiPathDir = proc_mkdir("sys/net/ipv4/multipath", NULL);
// creates a proc entry /proc/sys/net/ipv4/multpath/bufferOn
bufferOnProc = create_proc_entry("bufferOn", 0644, multiPathDir);
// bufferOn is a static int. It is initialially copied into bufferOnVal
sprintf(bufferOnVal, "%d\n", bufferOn);
// sets the proc struct to use the following functions read, and write
// and sets the data value to char array, bufferOnVal.
bufferOnProc->data = bufferOnVal;
bufferOnProc->read_proc = procReadBufferOn;
bufferOnProc->write_proc = procWriteBufferOn;

}

Fig. 3.9. Kernel code for a proc file system entry

Towards the end, pointers to the functions “procReadBufferOn” and “procWriteBufferOn” are

set the “read_proc” and “write_proc.” These methods are shown in the next frame. The file system

has an API for developers to use the proc file system. Fig. 3.10 shows the two functions passed in

for read and write. These functions read in a pointer “data” and and type casts the value so the user

can easily have read and write access to the data.

There is global static int variable called bufferOn. The bufferOn variable is written to the

bufferOnProc->data during initialization. When the proc value changes, procWriteBuffer is called

and writes the value from the user into the variable bufferOn. bufferOn is synchronized with the

proc value.

3.5. UTILIZING THE PROC FILE SYSTEM 20

static int procWriteBufferOn(struct file *file, const char *buffer, unsigned long count, void *data)
{

int len;
char * inData = (char*) data;
if (count > MAXDATALEN) {
len = MAXDATALEN;
} else{
len = count;

}
// retrieve data from user
if (copy_from_user(inData, buffer, len)) {
return -EFAULT;

}
// write data to variable
// bufferOn is a static variable and used by the kernel code
inData[len] = ’\0’;
sscanf(inData, "%d", &bufferOn);
//printk (KERN_CRIT "bufferOn: %d\n", bufferOn);
return len;

}

static int procReadBufferOn(char *page, char ** start, off_t off, int count, int *eof, void *data){
int len;
char *outData = (char *) data;
len = sprintf (page, "%s", outData);
//printk(KERN_CRIT "Read bufferOn %d", bufferOn);
return len;

}

Fig. 3.10. Kernel code for a proc read and write methods

To use the proc values values at the application layer, a “cat” command can show the contents

of a variable. The proc value can be written to using “echo” with a redirection. Two examples are

shown in Fig. 3.11

3.6. TESTING USING HTB BANDWIDTH LIMITING 21

root@walrus:/proc/sys/net/ipv4/multipath# ls
bufferOn bufferSize
root@walrus:/proc/sys/net/ipv4/multipath# cat bufferOn
0
root@walrus:/proc/sys/net/ipv4/multipath# echo "1" > bufferOn
root@walrus:/proc/sys/net/ipv4/multipath# cat bufferOn
1

Fig. 3.11. Setting proc values

3.6 Testing using HTB bandwidth limiting

Rate limiting is a condition needed to test the multi-path routing. HTB (Hierarchical Token Buffer)

is a routing and traffic control tool; [18] is an interface to the IP chains in the kernel. Of the different

types of command line interfaces to IP chains, and HTB seems to be the easiest to set up. The HTB

utility can be downloaded from the maintainers’ website[19] and is included in newer version of

Iproute2[20]. Iproute2 is the software used to setup the IP Tunnels.

The HTB utility works per device. Each device can be assigned a total bandwidth. The band-

width can also be partition between different outgoing IP address using qdiscs. Qdiscs specifies tc

queueing discipline realized by the queue. For example, eth0 (default Ethernet device driver) is set

to two different destinations 128.198.60.172 and 128.198.60.173. The total bandwidth for eth0 is

1024 kb/s. The total bandwidth can be partitioned into a qdisc based on destination address. For

this example, there is a one to two ratio used for the two classes. So the qdisc with packets out-

bound to 128.198.60.172 (341 kbit/sec) has twice bandwidth as the qdisc with packets bounded to

128.198.60.173 (683 kbit/sec).

3.6. TESTING USING HTB BANDWIDTH LIMITING 22

tc qdisc add dev eth0 root handle 1: htb default 12
tc class add dev eth0 parent 1: classid 1:1 htb rate $maxSpeed ceil $maxSpeed
tc class add dev eth0 parent 1:1 classid 1:10 htb rate 341kbps speed ceil 1024kbps speed
tc class add dev eth0 parent 1:1 classid 1:11 htb rate 683kbps speed ceil 1024kbps speed
tc class add dev eth0 parent 1:1 classid 1:12 htb rate 1024kbps speed ceil 1024kbps speed
tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 match ip dst 128.198.60.172 ip flowid 1:10
tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 match ip dst 128.198.60.173 ip flowid 1:11

Fig. 3.12. Setting up tc qdisc to limit bandwidth

The Fig. 3.12 shows the commands to set up the rate limiting using tc qdiscs. There are three

sets of commands: set up the root for the eth0, set up each class, and setup each filter.

The tc filter command is used to classify packets from certain sources and map them into a spe-

cific queue or flow. For example, the last command in Fig. 3.12 maps packet from 128.198.60.173

to flowid 1=11 which has 683kbps bandwidth.

Finally there are additional kernel requirements when setting up the HTB utility. According the

HTB utilities’ website[19], the following QoS (Quality of Service) kernel options need to be set.

These QoS kernel options are listed in Fig. 3.13

#
QoS and/or fair
queueing
#
CONFIG_NET_SCHED=y
CONFIG_NET_SCH_CBQ=m
CONFIG_NET_SCH_HTB=m
CONFIG_NET_SCH_CSZ=m
CONFIG_NET_SCH_PRIO=m
CONFIG_NET_SCH_RED=m
CONFIG_NET_SCH_SFQ=m
CONFIG_NET_SCH_TEQL=m
CONFIG_NET_SCH_TBF=m
CONFIG_NET_SCH_GRED=m

CONFIG_NET_SCH_DSMARK=m
CONFIG_NET_SCH_INGRESS=m
CONFIG_NET_QOS=y
CONFIG_NET_ESTIMATOR=y
CONFIG_NET_CLS=y
CONFIG_NET_CLS_TCINDEX=m
CONFIG_NET_CLS_ROUTE4=m
CONFIG_NET_CLS_ROUTE=y
CONFIG_NET_CLS_FW=m
CONFIG_NET_CLS_U32=m
CONFIG_NET_CLS_RSVP=m
CONFIG_NET_CLS_RSVP6=m
CONFIG_NET_CLS_POLICE=y

Fig. 3.13. Kernel options needed for tc to run

23

Chapter 4

Performance Analysis

Hundreds of tests were done using a Perl script written by the author. The Perl script would establish

a connection and transmit configuration parameters for both the client and server. The script would

wait a given time to verify the settings were accepted on the server and use apache bench[21] as a

web benchmark. Apache bench contains statistical information. For many tests, the webpage was

retrieved up to five times and if the mean and median were not within a given threshold, the test

would be invalidated.

These results were collected and verified. The results below are of the average bandwidth given

in kilobytes per second. A diagram of the setup will help visualize the test scenario. The testbed

consists of 10 machines with the same configuration running Linux Fedora Core One with 600 MHz

Pentium III processors, 256 megabytes of memory, and a modified 2.4.24 Linux kernel. Kernel mod-

ifications were in the INET network implementation, and additional proc values were added to en-

able access to these kernel values. These proc values were added in the /proc/sys/net/ipv4/multipath

and /proc/sys/net/ipv4/multipath2 and are listed in Table A.1.

4.1 Baseline results

These are the baseline results with no bandwidth limiting, weighting different paths, or buffering

incoming packets. The remainder tests deals with these different scenarios. Below in Fig 4.1 shows

the four different types of connections: Direct Connect, IP Tunnel, Multiple Path Routing, and

Multiple Path Routing with Packet Buffering.

4.1. BASELINE RESULTS 24

Multiple Path Routing

Muliple Path Routing withPacket Buffering

IP Tunnel

IP Tunnel

IP Tunnel

IP Tunnel

IP Tunnel

IP Tunnel

IP Tunnel

Direct Connect

Packet buffering
for incoming packets

�

IP Tunnel

Fig. 4.1. Types of connections

Direct Connection is a connection without any modifications. IP Tunnel is a connection using

packet with IP in IP encapsulation header. The first header specifies the proxy. The second header

contains the destination’s IP address, and the packet is routed to the destination by the proxy using

the second header.

Multiple path routing uses IP tunneling and kernel modifications to spread packets over multiple

paths. Multiple Path Routing with Packet Buffering has a buffer before the normal TCP code in the

kernel. This buffer sorts out of sequence packets.

The results in Table 4.2 and Fig. 4.2 show the control bandwidth for the different types of

connections with retrieving a 2.4 MB web document.

4.2. IMPACT OF THE NUMBER OF PROXIES ON AGGREGATED BANDWIDTH 25

Fig. 4.2. Baseline results

The multiple path tests are done over five proxies. Direct Connection and IP Tunnel connections

do not include any proxies.

Number of proxies
0 or 1 2 3 4 5

Direct Connect 11228.4
Direct Connect (Other Compute) 11398.82
IP Tunnel 10651.68
IP Tunnel (Other Computer) 11244.47
Multipath 8645.98 11001.57 10010.8 10748.66 10478.11
Multipath with buffering 9875.86 10206.51 9699.83 9996.66 11049.27

Table 4.1. Baseline results

The Direct Connection and the IP Tunnel were also bench-marked on other machines to ver-

ify the tests. These two additional results were added to the table but are not in Fig. 4.2. These

additional baseline tests were done on Pentium III’s with a faster 1 Gigahertz processors.

4.2 Impact of the number of proxies on aggregated bandwidth

The first scenario is to restrict the overall connection speed to a small bandwidth and see how the

resulting bandwidth between the server and the client is affected. The purpose of this test is to

eliminate any additional factors assisting the TCP processing, e.g., high bandwidth allowing for

4.2. IMPACT OF THE NUMBER OF PROXIES ON AGGREGATED BANDWIDTH 26

quick recovery for out of sequence packets. It also provides a real world scenario because long

distance Internet connections generally do not have 100 mbps bandwidth, at least not at the time of

the writing of this thesis.

Fig. 4.3. Bandwidth limited scenario

The next set of graphs present the results based on connection types. The first two tests do

not have any intermediate nodes. There are two sets of bandwidth, the variable bandwidth and the

unrestricted bandwidth, in addition to the number of nodes. The bandwidth for each bar (located in

the key) is rate limited bandwidth. The x-axis is the resulting bandwidth between the client and the

server.

Fig. 4.4. Direct connection with bandwidth rate limiting

4.2. IMPACT OF THE NUMBER OF PROXIES ON AGGREGATED BANDWIDTH 27

20 kB/s 50 100 150 200 250 500
Direct Connect 19.16 47.89 95.68 143.57 191.1 238.93 475.91

Table 4.2. Direct connection with bandwidth rate limiting

For the Direct Connection baseline, the resulting bandwidth shows a correlation to the band-

width restrictions. For example, 19.16 kBps is the resulting bandwidth for a restricted connection

at 20 kBps. This verifies that the HTB works with a small deviation of less than 9 percents.

Fig. 4.5. IP Tunnel with bandwidth rate limiting

20 kB/s 50 100 150 200 250 500
IP Tunnel 19.18 47.91 95.84 148.8 191.5 239.81 477.58

Table 4.3. IP Tunnel with bandwidth rate limiting

One observation of the results from the Direction Connection and IP Tunnel tests is that IP

Tunnel does not impose a noticeable performance cost.

4.2. IMPACT OF THE NUMBER OF PROXIES ON AGGREGATED BANDWIDTH 28

Fig. 4.6. Multiple path routing with bandwidth rate limiting

of node 20 kB/s 50 100 150 200 250 500
1 18.59 18.94 65.78 100.45 124.91 98.13 156.43
2 34.52 75.72 160.09 215.88 284.61 342.22 823.66
3 52.62 132.81 239.66 339.72 553.93 507.35 1145.6
4 71.8 169.92 372.87 557.24 539.76 932.85 1861.99
5 90.27 235.85 378.31 700.82 943.65 1181.53 2355.65

Table 4.4. Multiple path routing with bandwidth rate limiting

One of the most important observations is with the aggregated multiple path Linux enhancement

utilizing the aggregated bandwidth of the available multiple paths. For example, the aggregated

bandwidth increases as additional proxies are added. A multi-path with one proxy is 18.59 kBps

and that with three proxies is 52.62 kBps, almost three times the bandwidth.

4.3. IMPACT OF WEIGHTED SCHEDULER ON BANDWIDTH 29

Fig. 4.7. Multiple path routing with buffer and bandwidth rate limiting

of node 20 kB/s 50 100 150 200 250 500
1 18.59 19.29 65.75 105.93 124.91 110.03 124.86
2 34.25 76.65 114.26 122.87 150.46 276.04 344.46
3 53.6 129.88 209.03 365.87 371.56 548.52 976.49
4 70.97 167.49 305.79 427.14 733.86 917.5 1831.78
5 89.35 233.55 466.35 513.21 929.92 1162.14 2325.29

Table 4.5. Multiple path routing with buffer and bandwidth rate limiting

The data from the multiple path with a buffer was a baffle. It is believed if a buffer was applied

to the enhanced kernel, the bandwidth would increase, since multi-path routing without a buffer

suffers a performance degradation caused by out of sequence packets. A solution to out of sequence

packets was to create a buffer. The results in Fig. 4.6 and Fig. 4.7 however shows that buffering

causes an additional overhead penalty and lowers the bandwidth.

4.3 Impact of Weighted scheduler on Bandwidth

These tests were done for two reasons: to see the effect of uneven bandwidth among connections and

how weighted scheduling packets impacts the aggregate bandwidth. The enhanced kernel allows

indirect routing and can spread the traffic according to a set of weights associated with specific

connections via a proxy. A weight of 1:6 means the first proxy receives one packet while the other

4.3. IMPACT OF WEIGHTED SCHEDULER ON BANDWIDTH 30

proxies receive six packets of the seven packets sent. The weighted scheduling of 1:3:3 is shown in

Fig. 4.8.

Fig. 4.8. Weighted packet distribution for a 1:6 ratio

The goal for the weighted packet scheduling is to adapt the sending of packets to the actual

available bandwidth of a connection. Multiple path routing causes a number of out of sequence

packets; when a path to an intermediate proxy is a lower bandwidth then the other connections, out

of sequence packets happen more frequently and is more of a real world problem. The idea of one

path at a lower bandwidth than the other paths is illustrated in Fig. 4.9

Fig. 4.9. One path with bandwidth lower then the other paths

4.3. IMPACT OF WEIGHTED SCHEDULER ON BANDWIDTH 31

4.3.1 Weighted paths and one path with small bandwidth

This scenario restricts the first path by a controlled bandwidth and applies a weight to the number

of packets allowed for each path.

In the graphs, the first path is bandwidth controlled by the bandwidth in the key. The bandwidth

on the x-axis is the result bandwidth between the client and server. The y-axis is the weight ratio

for the packets going to each of the proxy. The first ratio value goes to the first proxy; remaining

ratio is equally given to the remaining paths. For these tests, only two and five proxies were tested.

A one proxy test would be a repeat from Tables 4.4 and 4.5. Since packet buffering is also being

studied, the last two tests are with packet buffering.

Fig. 4.10. Two nodes with no buffer and weighted packet distribution

Weight ratio 20 kB/s 50 100 150 200 250 500
1:1 74.73 194.04 379.29 605.41 731.56 912.91 615.69
1:5 744.43 993.16 1698.55 1064.84 2827.98 3579.81 1360.96
1:10 821.44 970.64 2980.17 3741.78 1341 4823.39 7429.3
1:15 1099.2 2766.55 4537.04 4715.12 5726.8 5537.9 9547.39
1:20 2545.89 2965.74 4677.69 5783.55 6657.01 7490.8 10312.84
1:25 1351.84 5215.93 1434.78 6791.28 7720.03 8171.29 10010.05
1:50 6735.84 1526.95 8058.24 9238.52 10543.52 9898.79 10386.47

Table 4.6. Two nodes with no buffer and weighted packet distribution

4.3. IMPACT OF WEIGHTED SCHEDULER ON BANDWIDTH 32

Fig. 4.10 shows bandwidth increases with assigning more of packets towards a paths with more

bandwidth. Fig. 4.10 has two paths. The first path has a controlled bandwidth changing from

20 kBps to 500 kBps. The remaining path is restricted by the 100 mbps router. Fig. 4.10 shows

additional bandwidth gains by placing proper weight on each of the connections. These results show

the potential of weighted scheduling. The scheduler could change weights based on measurement

of available bandwidth of a path1to further increase aggregated bandwidth.

Fig. 4.11. Five proxies without buffer and weighted packet distribution

Weight ratio 20 kB/s 50 100 150 200 250 500
1:5 429.16 473.08 861.53 969.8 1077.58 2471.8 4623.66
1:10 664.92 1340.77 2116.51 2841.25 3610.58 4262.41 7502.99
1:15 2011.95 2894.95 4061.25 4362.48 5467.36 6282.97 8777.42
1:20 1683.33 2994.02 4374.42 5525.86 6901.93 6622.7 11038.23
1:25 4862.64 5565.77 6260.65 6800 7514.78 8481.29 11058.5
1:50 7395.51 8078.38 8846.95 9471.17 10889.49 11070.3 11089.29

Table 4.7. Five proxies without buffer and weighted packet distribution

Fig. 4.11 shows the benefits of applying a weighted packet scheduling and shows the benefits of

multiple path routing where increasing the number of proxies increases the overall bandwidth.

The next two results are from tests done with a connection based buffer with a maximum buffer
1 The Linux kernel has timers and the infrastructure to monitor and determine the current bandwidth. Two examples are

the TCP timers for sending duplicate acknowledgements and the IP Chains for restricting bandwidth to a set value.

4.3. IMPACT OF WEIGHTED SCHEDULER ON BANDWIDTH 33

size of 100 packets. The buffer stores packets until the correct and expected packet arrives and sends

the sorted packets for processing.

Fig. 4.12. Two proxies with buffer and weighted packet distribution

Weight ratio 20 kB/s 50 100 150 200 250 500
1:1 65.56 170.42 285.01 482.97 484.43 798.32 1591.96
1:5 149.46 378.63 740.57 695.41 1467.37 937.25 3666.94
1:10 246.87 614 755.12 1836.36 2449.2 3051.8 5903.01
1:15 387.14 597.32 1729.88 2527.56 1228.37 4349 8113.38
1:20 459.41 1100.52 2213.77 3316.02 4421.19 5602.23 10812.94
1:25 526.93 793.25 2609.29 4059.65 5421.48 6397.25 10157.18
1:50 1039.59 2530.88 5040.78 7726 10158.86 10020.19 10026.31

Table 4.8. Two proxies with buffer and weighted packet distribution

The results in Fig. 4.12 proves that buffering the incoming packets does not necessarily yield

additional bandwidth improvements. Fig. 4.12 does further solidifies the efficiency of placing a

weight on the path.

4.3. IMPACT OF WEIGHTED SCHEDULER ON BANDWIDTH 34

Fig. 4.13. Five proxies with buffer and weighted packet distribution

Weight ratio 20 kB/s 50 100 150 200 250 500
1:5 150.08 376.09 535.07 1091.85 1467.25 1828.28 3612.16
1:10 246.84 616.7 1238.35 1842.64 2417.22 3078.82 6017.99
1:15 295.54 857.57 917.48 2615.94 3441.39 4373.17 8133.43
1:20 439.95 1104.84 2266.62 3337.03 4354.55 5606.78 10058.13
1:25 527.3 1328.11 2585.6 4024.4 5370.11 6879.43 10193.91
1:50 1041.07 2590.06 5218.48 7334.42 10258.47 11088.64 11082.53

Table 4.9. Five proxies with buffer and weighted packet distribution

Fig. 4.13 further demonstrates buffering the incoming packets causing a bandwidth degrada-

tion greater than the duplicate acknowledgements. Ethereal packet sniffing has shown the buffering

does actually significantly reduce the duplicate acknowledgements caused by the multiple path tech-

nique. Even though it does not improve aggregated bandwidth, it will reduce overall network traffic

slightly.

4.3.2 Weighed paths, one path with small bandwidth, and additional paths band-

width controlled

Early results indicated a smaller overall bandwidth would validate time penalty with buffering and

sorting incoming packets. This lead to this additional set of tests where one node is heavily band-

4.3. IMPACT OF WEIGHTED SCHEDULER ON BANDWIDTH 35

width limited and weights applied to each path. One sets of tests taken with: 100 kilobytes per

second overall bandwidth.

With an overall bandwidth of 100 kBps on the other node and the first path bandwidth is re-

stricted based on the bandwidth in the key. These results are for tests with two and five proxies.

Y-axis represents the weight ratio applied to the first path and the remaining paths. The X-axis is

the resulting bandwidth between the client and server.

Fig. 4.14. Two proxies, without buffer, first proxy variable bandwidth, other nodes 100 kBps

Weight ratio 20 kB/s 50 100 150 200 250 500
1:1 74.02 95.36 120.71 115.16 115.25 113.83 120.84
1:5 61.37 87.88 108.97 121.59 103.87 110.27 102.76
1:10 61.3 102.12 121.61 101.3 103.08 109.29 121.61
1:15 59.55 101.79 100.13 112.86 102.06 121.61 121.61
1:20 61.37 102.06 101.84 110.95 121.61 121.61 119.55
1:25 61.43 100.29 105.81 109.06 121.51 120.48 105.3
1:50 54.81 111.21 114.28 121.51 104.42 105.15 107.26

Table 4.10. Two proxies, without buffer, first proxy variable bandwidth, other nodes 100 kBps

Fig. 4.14 shows no major impact with rate limiting on the remaining connections. With virtual

machines where the overall bandwidth is restricted by the virtual network device, even slower band-

widths (4-5 kB/s), connection based buffering showed a overall bandwidth increase. These results

4.3. IMPACT OF WEIGHTED SCHEDULER ON BANDWIDTH 36

are proved inconclusive; Fig. 4.14 shows overall bandwidth lowered with buffering.

Additional tests were done with buffering and were similar to the differences between Fig. 4.13

and Fig. 4.11. These results were the final proof that buffering the incoming packets was more of a

cost than a benefit.

Fig. 4.15. Five proxies, with buffer, first proxies variable bandwidth, other node 100 kBps

Weight ratio 20 kB/s 50 100 150 200 250 500
1:5 192.4 344.35 471.66 378.65 379.09 471.37 379.47
1:10 121.29 322.16 466.71 466.98 467.59 467.85 467.74
1:15 127.86 326.75 467.07 467.33 465.71 467.85 467.36
1:20 127.8 319.98 467.02 467.7 467.22 466.74 467.01
1:25 127.8 319.79 315.31 467.62 377.06 466.33 467.37
1:50 127.82 319.6 465.88 466.93 375.83 467.78 466.94

Table 4.11. Five proxies, with buffer, first proxy bandwidth variable, other proxies 100 kB/s

The author debated on the necessity of the results in Fig. 4.15. It shows under further constraints

placing a weight on the intermediate packets increases bandwidth.

4.4. IMPACT OF BUFFER SIZE ON MULTIPATH AGGREGATED BANDWIDTH 37

4.4 Impact of buffer size on multipath aggregated bandwidth

These last set of results answer the question if the overall bandwidth is affected by available buffer

size. This is done by having the end nodes change their buffer size. Only one node is used and it is

restricted by a controlled bandwidth listed in the key in 4.16. Buffer size is a threshold defining the

maximum number of out of sequence packets allowed. In the experiments with debug turned on,

the number of out of sequence packets in the buffer never grew above 20. These tests restrict the

overall bandwidth on one of the proxy node connection and changed the buffer size.

Fig. 4.16. Buffer size changing with controlled bandwidth

Buffer Size 20 kB/s 50 100 150 200 250 500
1 18.93 48.25 66.4 96.97 124.91 98.32 139.51
5 19.12 48.23 65.78 100.39 124.91 98.4 153.59
10 19.12 48.25 65.78 100.38 123.93 100.68 223.16
15 19.12 48.25 66.11 100.39 114.58 105.44 199.05
20 19.1 48.25 65.76 102.05 125.43 98.46 164.55
25 18.94 48.25 65.78 96.03 124.77 98.39 144.63
50 18.93 47.1 65.65 100.32 124.91 98.39 144.08

Table 4.12. Buffer size changing with controlled bandwidth

Fig. 4.16 shows the aggregate bandwidth is mainly affected by the restriction placed on the

connection and not the buffer size. The tests done with the bandwidth limited to 250kB/s is an

4.5. SUMMARY OF RESULTS 38

anomaly because the result bandwidth is higher for 200kB/s and appears to match 150 kB/s. The

test script might have a typo and 150 was used oppose to 250, but after check the test scripts and

retesting the numbers they seem accurate. The author is not sure what is causing this drop in

performance at 250 kB/s bandwidth restriction. If this drop in performance appeared in more than

one place a further investigation might be warranted.

Additional bandwidth limiters were applied in addition to HTB[18, 20], queueing to restrict

bandwidth described in Section 3.6. Tests with a 10Mbit hub were also performed. These results

were very poor and inconsistent because of the number of collisions.

4.5 Summary of results

The experiments show multiple path routing increases bandwidth, and weighted scheduler improves

bandwidth when the available bandwidths of the paths are different.

The results from Sections 4.2 and 4.3 show the bandwidth increases as multiple path routing is

activated. The bandwidth increases almost proportionally with the number of paths. Further tests

were done to make sure that TCP was not compensating with excessive bandwidth results are shown

in 4.14, and Fig. 4.11. These results restricted the overall bandwidth between proxy nodes and show

TCP compensates for out-of-order sequences.

Tests in Section 4.3 also show the potential to further increase bandwidth by applying a proper

weight for spreading packets among paths. As the ratio changes, more packets going to paths with

higher bandwidth, the overall bandwidth increases. Fig. 4.10 and Fig. 4.11 show the increase in

bandwidth as the packet ratio changes.

Additional buffering seems to degrade the performance. Only under unreliable and low band-

width situations, it increases helps the overall bandwidth. This can be observed by looking at results

in Sections 4.2 and 4.3 with those including buffering and those same conditions without buffering,

e.g., Fig. 4.11 and Fig. 4.13.

Since these results differed from the initial results done on virtual machines, a couple of hypoth-

esis arose:

• The first packet in the TCP’s three way hand shake was always going to the slow path and

could slow the overall connection speed. This theory was disproved with unpublished results

4.5. SUMMARY OF RESULTS 39

where the first packet went to a higher bandwidth path.

• The having unlimited bandwidth (100 megabits per second) on the remaining connections

would allows the TCP protocol to recover from out of order sequences packets. Other tests

done with the overall bandwidth capped, showed the TCP protocol still recovered from out of

sequence packets without excessive bandwidth.

The results in Section 4.4 also show the size of the buffer does not affect bandwidth. However it

also shows that buffering the incoming packets can remove duplicate packets and is a good area for

future studies.

BIBLIOGRAPHY 42

Bibliography

[1] Y. Cai. (2004, October) Ip over ip tunnel. [Online]. Available:

http://cs.uccs.edu/ scold/iptunnel.htm

[2] W. Wang, “Design and implemenatation of a linux lvs based content switch,” Master’s thesis,

University of colorado at colorado springs, 2001.

[3] C. Prakash, “Enhance features and performance of conetnet switches,” Master’s thesis, Uni-

versity of colorado at colorado springs, 2001.

[4] M. Gerla, S. Lee, and G. Pau, “Tcp westwood simulation studies in multiple path cases,” Proc.

international symposium on performance evaluation of computer and telecommunication sys-

tems (spects), 2002 2002.

[5] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka, “Tcp-pr: tcp for persistent packet

reordering,” 23rd International Conference on Disributed Computing Systems, pp. 222–23,

2003.

[6] C. Chow, Y. Cai, D. Wilkinson, and G. Godavari, “Secure collective defense system,” in Global

Telecommunications Conference, no. 4. GLOBECOM ’04. IEEE, Dec 2004, pp. 2245 – 2249.

[7] Y. Cai, “Linux kernel enhancements for multipath collection,” September 2004, uccs network

research seminar.

[8] Emc company. Vmware worstation 4.5. [Online]. Available: http://www.vmware.com

[9] Microsoft corporation. Microsoft virtual server 2005. [Online]. Available:

http://www.microsoft.com/windowsserversystem/virtualserver/default.mspx

BIBLIOGRAPHY 43

[10] J. Dike. User mode linux. [Online]. Available: http://user-mode-linux.sourceforge.net

[11] J. W. Ross and G. Westerman, “Preparing for utility computing: the role of it architecture and

relationship management.” IBM Systems Journal, vol. 43, no. 1, pp. 5–19, 2004.

[12] L. Spitzner, Honeypots: tracking hackers. Addison-Wesley Professional, 2002.

[13] A. S. Tanenbaum, Modern operating systems, 2nd ed. Prentice-Hall, Upper Saddle River,

2001.

[14] D. Grothe. (2001) Kgdb: linux kenrel source level debugger. [Online]. Available:

http://kgdb.linsyssoft.com/

[15] W. Simpson. (1995, October) Rfc 1853: ip in ip tunneling. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc1853.txt

[16] W. Stevens. (1997, January) Rfc 2001, tcp slow start, congestion avoidance, fast retransmit,

and fast recovery algorithms. [Online]. Available: http://www.rfc-editor.org/rfc/rfc793.txt

[17] E. Mouw. (2001, June) Linux kernel procfs guide. [Online]. Available:

http://www.kernelnewbies.org/documents/kdoc/procfs-guide.pdf

[18] M. Devera. (2002, may) Htb linux queuing discipline manual - user guide. [Online].

Available: http://luxik.cdi.cz/ devik/qos/htb/manual/userg.htm

[19] B. Hubert. Linux advanced routing and traffic control. [Online]. Available: http://lartc.org/

[20] F. Echantillac, F. Chanussot, and P. Primet. (2004, Febuary) A tool for routing and traiffic

control. [Online]. Available: http://perso.ens-lyon.fr/francois.echantillac/Docs/index.html

[21] J. Zawodny, “Benchmarking with apache bench,” Linux Magazine, no. no. 49, 2003.

[22] L. Torvalds. The linux kernel archives. [Online]. Available: http://www.kernel.org

[23] G. Beekmans. Linux from scratch. [Online]. Available: http://www.linuxfromscratch.org

[24] R. Binns. Uml builder. [Online]. Available: http://umlbuilder.sourceforge.net/

[25] J. Brokmeier, “Run linux on linux learn how to build user mode linux filesystems,” Linux

magazine, no. 60, January 2004.

BIBLIOGRAPHY 44

[26] V. L. Systems. e2fsprogs. [Online]. Available: http://e2fsprogs.sourceforge.net/ext2.html

[27] J. Dike, “Running linux on linux,” Linux magazine, no. no. 28, 2001.

[28] J. Ward. (2003, April) Compiling the linux kernel on redhat 7.1. [Online]. Available:

http://www.jsward.com/linux/redhat-kernel.html

[29] K. Lowe. Kernel rebuild guide. [Online]. Available:

http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html

[30] D. Seager. (2001, February) Linux software debugging with gdb. [Online]. Available:

http://www-106.ibm.com/developerworks/library/l-gdb/

[31] D. Coulson. (2002) User-mode-linux community site. [Online]. Available:

http://usermodelinux.org/index.php

[32] I. S. Institute. (1981, September) Rfc 793, transmission control protocol (tcp/ip). [Online].

Available: http://www.rfc-editor.org/rfc/rfc793.txt

[33] B. Hall. (2001, October) Beej’s guide to network programming. [Online]. Available:

http://www.ecst.csuchico.edu/ beej/guide/net/bgnet.pdf

[34] D. Comer, Interworking with tcp/ip principles, 4th ed. Prentice-hall, upper saddle river, 2000,

vol. Vol. 1.

[35] A. Cox, “Kernel korner: network buffers and memory management,” Linux journal, no. no.

30, 1996.

[36] A. Rubini, Linux device drivers. O’Reilly and assocates, Sebastopol, 2001.

[37] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. VerWornerz, Linux kernel

programming. Addison-Wesly, London, 2002.

[38] H. Welte. (2000, October) Linux network buffers. [Online]. Available:

http://gnumonks.org/ftp/pub/doc/skb-doc.html

[39] V. Guffens and G. Bastin. (2002, May) Modeling of the linux switch architecture. [Online].

Available: http://www.auto.ucl.ac.be/ guffens

BIBLIOGRAPHY 45

[40] G. Insolvibile, “Inside the linux packet filter,” Linux journal, no. 94, April 2002.

[41] E. Troan, “Introduction to system calls,” Linux magazine, 1999.

[42] Whatis.com, the leading it encyclopedia and learning center. [Online]. Available:

http://whatis.techtarget.com/

