Computer Science Master’s Project

Available Bandwidth Measurement using Real Time Operating Systems

Dennis S. Knoop

1. Committee Members and Signatures:

 Approved by Date

 __________________________________ _____________

 Advisor: Dr. Edward Chow

 __________________________________ _____________

 Committee member: Dr. Charles Shub

 __________________________________ _____________

 Committee member: Dr. Dushan Badal

Table of Contents

Abstract

1. Introduction
2. Real Time Operating Systems

a. Real-Time System Concepts

b. µC/OS-II

c. RTLinux

i. Time Facilities

ii. Scheduling Threads

iii. Running RTLinux Programs

3. Linux

a. Schedulers

i. SCHED_OTHER

ii. SCHED_RR

iii. SCHED_FIFO

4. Network protocols

a. TCP/IP

b. UDP

c. ICMP

5. Available Bandwidth measurement
a. Basic Concepts

b. Vern Paxson

c. Fujitsu Labs

6. Available Bandwidth Management tool - RTLinux

7. Available Bandwidth Management tool - SCHED-RR

8. Results

9. Conclusion

10. Future

Appendix A
Sample runs

Appendix B
RTLinux Installation Instructions

Appendix C
References

Abstract - I describe the process of improving the accuracy of available bandwidth measurement by using real-time capabilities of Linux. The approach taken is to improve the accuracy of the sending gap between the ICMP packets used to measure the bandwidth. I also describe some of the other real-time operating systems that I have researched in pursuit of improving the available bandwidth measurement. Results do show an improvement in the tool after implementing real-time concepts.

I. Introduction

There has been a large amount of work done in the area of bandwidth analysis and two tools used to determine bottleneck and available bandwidth are bprobe and cprobe developed by Bob Carter and Mark Crovella of Boston University [2]. Their tools use a series of ICMP echo request messages separated by known time gaps. The echo reply message gap is recorded and is used to determine the loss of the circuit in question. If the gap increases, there is not enough bandwidth for the message. The general concept is sound, but creating consistent initial gaps and messages is difficult. The start times can vary greatly over a large number of messages. Using a Real-Time Operating System should improve the accuracy of the tool.
The tools created by Carter and Crovella have been modified at the University of Colorado at Colorado Springs to create a new tool, known as the Available Band Width Management tool (ABWM). ABWM uses a known message/packet size, number of messages, and destination host, chosen by the user. The problem is that the sending gap between messages is set within the program and is dependent on the program processing through the function that sends the probe message. If the timing of the probing message can be controlled, the tool will be improved.

Real-Time Operating Systems provide a means to improve the timing of events by decreasing the number of interrupts allowed to disrupt processing. By adding another level of abstraction Real-Time Operating Systems are able to control interrupts or use a new priority system to handle the normal interrupt service routine. Time critical task are handled first and normal task are set to lower priorities. Not all real-time systems are the same and Real-Time Operating Systems can be divided into two types; hard and soft. In a Soft real-time system, tasks are preformed as fast as possible. However, in a hard real-time system, tasks have to be preformed on time.

My plan is to build a controlled environment to test a link between two nodes and determine the available bandwidth using the current ABWM tool. I plan to improve the probing by improving the accuracy of the sending time gaps. This will be the difficult part. The current ABWM tool will need modifications to run within a real-time operating system and the real-time operating system chosen will determine the modifications necessary. I propose that running the tool on a system with real-time support will improve the performance of the ABWM tool and give a more accurate measurement of the available bandwidth.

II. Real Time Operating Systems

Most general-purpose operating systems are designed to optimize average performance and try to give every process a fair share of compute time [1]. This is the case in the Linux operating system. However, real-time systems need more precise timing and predictable performance. Real-time operating systems attempt to provide this additional requirement by providing a method to prioritize the most critical portion of the code. There are several real-time operating systems and methods to increase the timing accuracy. I looked at two real-time operating systems: RTLinux and µC/OS-II. I also looked at replacing the default scheduler within the Linux operating system. But before I discuss the details of the two real-time operating systems researched, I present a few basic real-time concepts. These terms were taken primarily from the MicroC/OS-II text [7].

Real-Time System Concepts

The IEEE definition of a real-time system is “a real-time system is a system whose correctness includes its response time as well as its functional correctness” [10]. The basic difference between real-time operating systems and normal systems is the emphasis on completing task within a specified time. However, not all real-time systems have this as their core requirement. Real-time systems can be divided into two major types; Soft and Hard. In a Soft real-time system, tasks are performed by the system as fast as possible, but the tasks don’t have to finish by specific times [Labrosse]. Soft real-time systems require timeliness, but it is not critical. In Hard real-time systems, tasks have to be preformed not only correctly but on time [Labrosse]. The system must be able to meet worst-case times. If you miss a deadline, you have under performed.

User Space vs. Kernel Space

Unlike most normal user applications most real-time applications run at a kernel level. Kernel-space code compared to user-space programs is more difficult to debug, is more likely to crash or hang the system, and is less convenient to communicate with the user-space tasks [linixdevices.com 1997].

Foreground/Background Systems

Another name for this system approach is a super-loop. An application consists of an infinite loop that calls functions to perform the desired operation (background, also known as the task level) [7]. An Interrupt Service Routine (ISR) handles the asynchronous events (foreground, also known as the interrupt level). The ISR handles the critical operations to ensure they receive an adequate amount of processing time and complete in a timely manner. Many embedded systems use this technique including microwaves, telephones, and toys.

Critical sections of code

The critical code needs to be treated indivisibly, which means that once the code begins processing, the code must not be interrupted. Normally some method is used to disable interrupts until the code is complete or set the critical code to the highest priority that can not be interrupted.

Task/Thread

Tasks are programs that are simple in nature, which may be part of a larger program. Each thread is given a priority, set of registers, and its own stack. The task is normally some kind of infinite loop that can be in one of five states: ready, running, waiting, dormant or interrupted.

Kernel

The kernel is responsible for managing the tasks and the communication between tasks. It provides services such as semaphore management, mailboxes, queues, time delays, and many others. This is in contrast to the foreground/background systems that are controlled by one infinite loop.

Scheduler

The scheduler is key to the kernel and determines what task will run next. As mentioned earlier, most real-time kernels are priority based. Each tasked is assigned a priority at creation and the highest priority task is run by the CPU. When the CPU relinquishes to the next task is determined by the type of kernel; non-preemptive or preemptive.

Non-preemptive kernel

A non-preemptive kernel relies on the task to do something to give up control of the CPU. The code must handle the control back over to the system to process the next highest priority ready task. Priority task have to wait for current task to complete (See Figure 1). RTLinux is an example of a non-preemptive kernel.

[image: image5.wmf]
Preemptive kernel

The highest priority task ready to run is always given control of the CPU. When a higher priority task becomes ready to run, the current task is preempted and the higher priority task is given control (See Figure 2). The ISR controls which tasks are running and how they are re-entered into the system. Linux is an example of a preemptive kernel.

[image: image2]
Task Priority

The more important the task, the higher the priority assigned to the task.

Static Priorities

Static priorities are priorities that do not change during the execution of an application. This can cause problems if a lower priority task ties up a resource.

Dynamic Priorities

Dynamic priorities are priorities that can be changed during the execution of an application. This helps reduce the chance of deadlock situation caused by static priorities.

Mutual Exclusion

When using shared data some method must be used to ensure each task has exclusive access to the data to avoid data corruption. Some popular methods used to ensure exclusive access are:

· Disabling and Enabling Interrupts

· Test-And-Set

· Disabling and Enabling the Scheduler

· Semaphores

Interrupts

An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event has occurred [7]. When an interrupt is recognized, the CPU saves what it was working on and passes control to the ISR which processes the event. Interrupts can be nested, which means that when an interrupt in being processed another interrupt may occur. When that interrupt is complete the control is passed back to the previous interrupt and then back to the original task.

Interrupt Response

Interrupt response is the time between the reception of an interrupt and the start of the user’s code that handles the interrupt.

Interrupt Latency

The interrupt latency is the amount of time it takes to begin the first instruction of an ISR after an interrupt has been issued plus the maximum time the interrupts are disabled.

µC/OS-II

The real-time kernel µC/OS-II stands for Micro Controller Operating System Version 2. The first version was released in 1992 and µC/OS-II is widely used throughout the world in a variety of applications including cameras, medical instruments, and Automated Teller Machines (ATM) to mention a few. Most of µC/OS-II is written in ANSI C, making it a highly portable product. The remaining code is written in assembly to target specific microprocessors; 80x86 for example. µC/OS-II looks like any other DOS application and porting the available bandwidth measurement tool may be difficult, because of the inherent UNIX functions within the tool.

µC/OS-II uses interrupts to control the tasks to be run. µC/OS-II needs to disable interrupts in order to access critical sections of code and to re-enable interrupts when critical tasks are complete. The os_enter_critical() and os_exit_critical() functions are used to perform these functions. Since each processor type handles interrupts slightly different a different version of the functions must be used for different processors. One strong point is that the interrupt management function can handle up to 255 nested interrupts.

µC/OS-II was designed for simple embedded applications, which makes it a poor candidate for running the available bandwidth measurement tool. It also does not support network programming under its current version. µC/OS-II is a fully preemptive real-time kernel allowing the highest priority task to run, making the assurance that specified task will not be preempted difficult, especially if multiple tasks are in the schedule.

µC/OS-II does allow up to 64 tasks with 64 different priority levels making it a versatile kernel and capable of multitasking. Its deterministic nature allows the user to know exactly how long each task will take to execute providing consistent results.
RTLinux

RTLinux was designed with the premise that it is not feasible to identify and eliminate all unpredictability within a kernel operation [3]. Sources of unpredictability include; the Linux scheduling routine, device drivers, uninterruptible system calls, the use of interrupt disabling, and virtual memory operations [3]. The problem with Linux scheduling is that it tries to maintain maximum throughput, which is good in most applications but not ones that require real-time precision. RTLinux resolves these problems by creating a small, predictable kernel, which is separate from Linux kernel. An additional layer of abstraction is added between the standard Linux kernel and the computer hardware [3]. As far as the standard Linux kernel is concerned, the new layer appears to be actual hardware.

The new layer introduces its own fixed priority scheduler. As stated earlier, RTLinux is a small, simple real-time operating system that provides high precision while allowing normal Linux processes to continue. This is accomplished by running Linux as a task/thread and setting it as the lowest priority task. RTLinux real-time task have a higher priority then normal Linux task, providing a more precise and reliable system. Linux runs under the control of the real-time kernel (See Figure 3). When there is a real-time task to accomplish, it has priority and is run with all needed resources.

[image: image3]
RTLinux design philosophy is to split programs into small parts to handle the real-time task and larger ones to handle the more sophisticated processing. The real-time component is written as a kernel module and inserted into the running system.

With RTLinux, Linux is never allowed to disable interrupts. Instead, they handle all interrupts within their own dedicated operating system. RTLinux notes the request and then ensures that Linux behaves as though it had disabled interrupts. The technique for handling the interrupts is patented by the creator of RTLinux, Victor Yodaiken [11].

RTLinux was originally developed at the New Mexico Institute of Technology and is an open-source product released under the GPL. Non-GPL versions of RTLinux are maintained by Finite State Machines Labs (FSM Labs). The main kernel developers are Victor Yodaiken, Michael Barabanov, and Cort Dougan.

The RTLinux kernel is non-preemptive, so the task should be made small and very fast to help reduce delays of other task. According to Victor Yodaiken, worst case interrupt latency on a 486/33Mhz PC measures well under 30 microseconds, close to the hardware limit. That number has been improved with newer equipment and a newer version of RTLinux, several sources put worst-case times at 15 microseconds. Better hardware configurations produce better timings. This is much faster than some of the fast interrupt response solutions which have been timed in the one millisecond range.

Real-time tasks in RTLinux can communicate with Linux processes FIFO queues which are file-like interfaces. This allows real-time applications to use most of the non-real-time services of Linux.

“The main advantage of RTLinux over earlier RTOS designs is that it allows programmers to write applications that combine the advantage of a lean, hard real-time operating system at hardware speeds with all the features of a general purpose operating system” [1]. RTAI, which is a spin off of RTLinux, has added a large number of features while RTLinux puts emphasis on performance not features.

The very rough basics of creating Linux modules is to create an object file with the –c flag argument to gcc. The main() function within the c program is replaced with init and cleanup functions:

int init_module(); replaces the main() function and initializes the module, all code or calls to code go within this function.

void cleanup_module(); Linux requires that modules have a cleanup routine to ensure there are no dead tasks in the schedule.

The application programming interface (API) runs on x86, Power PC, and Alpha processors and supports Symmetric multiprocessor architecture (SMP).

Time Facilities

RTLinux provides several clocks that can be used for timing functionality including:

CLOCK_MONOTONIC: This clock runs at a steady rate, and is never adjusted.

CLOCK_REALTIME: Currently the same as CLOCK_MONOTONIC, in the future this clock will give the world time.

CLOCK_RTL_SCHED: This clock is used by RTLinux for scheduling

Standard Linux provides the following as its’ time structure

struct timeval {

int tv_sec;

int tv_usec;

};

Note: The time structure used in the original ABWM tool is a structure which is composed of an unsigned long for the number of microseconds.

The normal Linux time functions are available to RTLinux, however RTLinux also provides a high-resolution time when the real time library is loaded.

#include <rtl_time.h>

hrtime_t - The value is a 64-bit value that represents the number of nanoseconds

clock_gethrtime(clockid_t clock); returns a hrtime_t value rather than the normal timespec structure.

RTLinux also provide several functions to convert the times from one type to another, including timespec_to_ns, timespec_from_ns, and hrt2ts.

RTLinux Scheduling Threads

RTLinux uses a pure priority driven scheduler, in which the highest priority thread is always chosen to run [3].

Running RTLinux Programs

insmod – program to load the module into the kernel

rmmod – program to remove the module from the kernel

The RTLinux make file should be included within all make files to ensure the proper libraries are available. The rtl.mk file is created during installation of the RTLinux kernel and points to the appropriate RTLinux libraries, replacing the normal user libraries.

III. Linux

Another alternative to increasing the accuracy of the sending gap is to change the default scheduler provided by normal Linux. This was attempted with very good results at the Fujitsu Labs in a similar study [6]. This study is discussed later. Using this method can be considered a soft real-time implementation to the solution, since Linux does not support true hard real-time operations. Even with only soft real-time support; improvements to the tool’s accuracy is anticipated.

Linux default scheduler is the SCHED_OTHER scheduler, however two other schedulers are available: SCHED_RR and SCHED_FIFO. Each have its own merit and is described below.
SCHED_OTHER- Processes are chosen from the static priority list and use a dynamic priority based on the nice level and the set quantum [4]. A beginning process is given a priority of zero and then dynamically assigned priorities as it processes. This time slicing and priority assignment ensures fair progress is made among all processes within the schedule.

SCHED_FIFO – This first-in-first-out scheduler is used on priorities greater than zero. Processes started with the SCHED_FIFO will preempt any normal process. If a FIFO process is pre-empted by a higher order process, it remains at the front of the queue.

SCHED_RR – Round Robin scheduling is similar to FIFO with the exception that it will only run the process for a given time quantum. If the time is exceeded the process will be put at the end of the list of processes with the same priority. If a process is the only one of the highest priority it will continue to run until complete.

IV. Network protocols

The primary protocol used by the Available Bandwidth Management Tool is the Internet Control Message Protocol (ICMP). ICMP is part of an IP implementation and is normally used to report errors in IP datagram routing. The following descriptions were taken from RFC 792.

“The Internet Protocol (IP) is not designed to be absolutely reliable. The purpose of these control messages (ICMP) is to provide feedback about problems in the communication environment, not to make IP reliable. There are still no guarantees that a datagram will be delivered or a control message will be returned. Some data grams may still be undelivered without any report of their loss. The higher level protocols that use IP (TCP) must implement their own reliability procedures if reliable communication is required.”

ICMP messages use the basic IP header, with the following values for specific fields:

Protocol = 1

Specific ICMP messages:

	Type
	

	0
	Echo Reply

	3
	Destination Unreachable

	4
	Source Quench

	5
	Redirect

	8
	Echo

	11
	Time Exceeded

	12
	Parameter Problem

	13
	Timestamp

	14
	Timestamp Reply

	15
	Information Request

	16
	Information Reply

Echo or Echo Reply Message

	Type
	Code
	Checksum
	Identifier
	Sequence Number
	Data

ICMP Fields

Type

8 for echo message

0 for echo reply message

Code - 0

Checksum - The checksum is the 16-bit ones’s complement of the one’s complement sum of the ICMP message starting with the ICMP type.

Identifier - If code = 0, an identifier to aid in matching echoes and replies, may be zero.

Sequence number - If code = 0, an identifier to aid in matching echoes and replies, may be zero.

Description - The data received in the echo message must be returned in the echo reply message.

The identifier, and sequence number may be used by the echo sender to aid in matching the replies with the echo request. For example, the identifier might be used like a port in TCP or UDP to identify a session, and the sequence number might be incremented on each echo request sent. The echoer returns these same values in the echo reply. This is done in the ABWM tool to ensure the messages are received in order, and the sending time gaps and receiving time gaps are compared correctly.

The icmp_id is set to the pid, icmp_type is set to ICMP_ECHO, icmp_code is set to 0, and icmp_seq is set to the message number.

Socket address Structures

struct in_addr {

in_addr_t

s_addr;
 /* 32-bit IPV4 address */

};

struct sockaddr_in {

unint8_t

sin_len;

sa_family_t

sin_family;

in_port_t

sin_port;

struct
in_addr
sinaddr;
/* 32-bit IPV4 address */

char

sin_zero[8];

};

[5].

V. Available Bandwidth Measurement

Basic Concepts

Available bandwidth is a quality of service issue and is the measurement of the amount of bandwidth available at any given time. This is a dynamic value based on the capacity and the current traffic on the circuit.

The basic formula for calculating the bandwidth (Bw) is

Bw = S/t

Where, S is the packet size and t is the time interval between packets

The message size can be controlled at a fixed value. The ABWM tool uses a 1000 byte message by default, but the user can change the default size by using the –s option. By decreasing the time gaps between each packet the bandwidth requirement increases. However, the sending time gap is difficult to control. In the ABWM tool a sending gap (time interval) sequence is determined, and then recorded, however the actual time the packet is sent can vary due to other processes taking up processor time. Within the ABWM tool, the time interval between each packet is calculated using the following formula:

sendingTimegap = (msgSize*8)/(bwrLowerBound+i * (bwrUpperBound-bwrLowerBound) /(noOMsgs-1))

The numerator is the message size in bits, while the denominator is the sum of the lower bandwidth bound and the upper bandwidth bound of divided by the number of messages –1. This produces an equal distribution across the bandwidth range determined by the find bandwidth program and inputs from the user.

Vern Paxson

Dr Paxon’s early work in this area researched into the difference of bottleneck bandwidth and available bandwidth. He makes the distinction between bottleneck bandwidth and available bandwidth in this way. “The bottleneck bandwidth gives an upper bound on how fast a connection can possibly transmit data, while available bandwidth is how fast the connection can transmit data while still preserving network stability [8].” He also points out that available bandwidth can never be higher than bottleneck bandwidth. The ABWM tool uses this concept to find bottleneck bandwidth first and then find the available bandwidth based on that result.

Fujitsu Labs

During experimentation with available bandwidth measurement based on variable speed probing Fujitsu Laboratories introduced the idea of modifying the default scheduler to improve bandwidth measurement [6]. They were able to able to improve their timing gaps to within a few microseconds by changing schedulers during processing to take advantage the Linux operating system’s support of real-time [6].

VI. Available Bandwidth Management - RTLinux

A couple of alternatives were attempted to test the ABWM tool using RTLinux including the following alternatives:

· ABWM using the RTLinux API time facilities only (rt-timeonly)

· ABWM using the RTLinux API and running the ABWM program as one thread within a RTLinux Module (rt-onethread)

Before beginning the modifications of the code, the normal Linux kernel needed to be patched with the RTLinux kernel modifications.

Loading RTLinux

A brief description of loading RTLinux is provided below; however for complete instructions please refer to the installation instructions provided by FSM Labs [4]. The basic idea is that the Linux kernel is modified by applying the RTLinux patch to a clean kernel

The first step to loading RTLinux is to download a clean copy of the Linux kernel. The Linux kernels can be found at ftp.kernel.org. In my research I attempted to use both the 2.2.19 kernel and the 2.4.4 kernel which are both supported by the RTLinux open source version of software. You must also download the RTLinux software which can be obtained at FSMlabs.com.

The clean kernel is then patched with the RTLinux software and then configured using either config, menu config, or xconfig. This is only the initial configuration, however the hardware chosen must be compatible with RTLinux supported devices. A list of devices is not provided, so trial an error was the only way I could find a configuration setting that worked. RTLinux does support many of the older hardware devices with the open source version, but has limited support for new devices.

The modified kernel is then compiled and a new boot image is created with new modules. The boot image is copied to the boot directory and the boot loader must be modified to allow the loading of the new boot image. In this case, I chose to use the default Linux Loader (LILO).

After a reboot the kernel must again be compiled proper and reconfigured. The proper modules must be loaded and then the system is ready to run RTLinux programs.

Hardware modifications

This was one of the largest early stumbling blocks. After loading RTLinux, the system did not initialize the Ethernet device (eth0). A network tool is not very useful without a connection to the network. During the initial configuration of the kernel several attempts were made to find a compatible network interface card (NIC). Eventually a 3-Com 905b NIC was configured successfully. The kernel had to be recompiled and the corrected boot image copied to the boot directory.

Initial Testing

Initial testing involved running the examples that were installed with the RTLinux initialization. The examples that came with the downloaded software ran without error, ensuring the kernel was loaded properly. The examples do not run under

Major Changes in Code

rtl_time – used to replace the normal time variables and functions

hrtime – high resolution time, 64-bit number of nano-seconds

a2socket replaced with inet_aton – provides simpler method to convert address from ASCII to network byte-ordered binary values

init – function to initialize module, creating thread of execution

cleanup – function used to remove any dead task in the schedule

threads – one primary thread was established to run the entire process

nanosleep – RTLinux function used to replace the waitRelativeTime function used during the sending of messages.

combining bwrange.c with abwm.c – This was done to allow the process to be combined into one thread.

removal of unused variables and functions – general cleanup from years of maintenance

cleanup of header file – general cleanup required due to years of maintenance

additional comments – added to clarify modifications in code

Problems with RTLinux

Unfortunately none of my attempts to get the ABWM tool to run under RTLinux were successful. After talking to the engineers at FSM Labs, they suggested that I buy the commercial version of the software to provide the shared memory capabilities and the network functions required by the ABWM tool. Unfortunately I was unable to purchase the one thousand dollar software package, and the university was unable to purchase the package at a discounted price ($200) in time to make the changes required.
VII. Available Bandwidth Management - Linux SCHED_RR

The SCHED-RR was chosen as the scheduler of choice due to its ease of use and its ability to continue at the priority chosen. The critical section of code was determined to be the sending of the message. The scheduler is switched to SCHED_RR prior to sending the message and returned to SCHED_OTHER when received. The modifications to the code are simplistic, but placement of the changes is of highest importance to ensure other processes do not interrupt the sending processes, and the receiving process is allowed to process the data as received.

Modification in code

To use the alternate schedulers the scheduler library (sched.h) must be included, a schedule must be initialized, and then the priority is set when the process has been executed. The prototype for the function that sets the scheduler is as follows:

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *p);

The function return 0 on success and if the pid is not specified the default is 0 the calling process

Within the ABWM software the scheduler is declared with all other variables within the abwm3.c program.

struct sched_param mysched;

Main()

The mysched scheduler priority is changed to the maximum priority using the following code:

mysched.sched_priority = sched_get_priority_max(SCHED_RR) -1;

However, this does not set the default scheduler or priority. The scheduler is not changed until the processes are forked from the main program and a separate process is available for each message sent. This does not set the receiving process to a high priority, which would inhibit any more messages from being sent until the current message was received. The scheduler priority is set with the following line of code:

Sched_setschedluer(0, SCHED_RR, &mysched);

The schedule is returned to normal after each message is received using the following lines of code:

mysched.sched_priority = sched_get_priority_max(SCHED_OTHER) ;

Sched_setschedluer(0, SCHED_OTHER, &mysched);

I also added a new file pointer to capture the send data of the last iteration to help in trouble shooting the results. The send.txt file records actual, and expected sending time gaps

Problems

With a large number of iteration (i.e. 100) the tool creates very few valid reports. This may be caused by conflicts with the sending and receiving processes. However, with a smaller number of iterations (i.e. 10) the tool works very well.

VIII. Results

A simple network (See Figure 4) was set up to test the modifications to the software.

 SHAPE * MERGEFORMAT

ABWM – Available Bandwidth Management tool

TGS – Traffic Generator sending workstation

TGR – Traffic Generator receiving workstation

 A traffic generator sender (TGS) and receiver (TGR) were used to load the network while the ABWM workstation recorded the bandwidth.

Sending Time gaps – Original ABWM tool, please reference Table 1 below

Sending Time gaps – RTLinux - using RTLinux time functions and inserted as RTLinux module (Not available)

Sending Time gaps – ABWM using Linux Scheduler SCHED_RR, please reference Table 1 below

	ABWM
	
	

	Actual (us)
	Expected (us)
	Delta

	32380
	40723.9
	-8343.9

	34887
	28338.1
	6548.9

	23067
	23598.0
	-531.0

	17969
	17977.0
	-8.0

	14462
	14389.0
	73.0

	13002
	13068.9
	-66.9

	13029
	13007.0
	22.0

	7017
	13057.9
	-6040.9

	7257
	7252.1
	4.9

	
	
	

	abm-rr
	
	

	Actual (us)
	Expected (us)
	Delta

	71394
	71428.1
	-34.1

	35876
	35875.0
	1.0

	23950
	23952.0
	-2.0

	17978
	17977.0
	1.0

	14389
	14389.0
	0.0

	11993
	11994.0
	-1.0

	10283
	10281.9
	1.1

	8998
	8999.0
	-1.0

	8001
	7999.1
	1.9

Table 1. Sample Results

Possible sources of error:

One source of error could be that the sending packet does not follow the same route as the returning packet. This is eliminated in the small test bed configuration shown above, because there is only one path, but in a real-world environment it could be a problem.

Another source of error may be out of order delivery, which is the case when packet 3 arrives before packet 2. The time gaps will be skewed greatly in this case and result in an invalid report.

IX. Conclusion

The results show promise in improving ICMP packet sending timing for the tool, making it a viable addition to other tools.

Switching based on current available bandwidth is much different than switching based on bottleneck measurements that give an average preferred route. This measurement can be used to dynamically make decisions on which route to place traffic on circuits based on the current load. The distribution of circuit traffic can reduce the load on the heavily used circuits and place more load on underused circuits.

X. Future

I feel that the RTLinux problems can be corrected with the use of a shared memory function not available in the open source version of the software. Every version of the RTLinux brings new features, and in the near future some of the commercial available functions should be available in the open source version.

For standard Linux, there is also a proposed new time.h library for ISO C 200x which will provide more accurate time structure with more precision, allowing a 64-bit floating point time structure.

Small steps to increase the accuracy of timing will improve the overall product, making ABWM a viable solution to the needs of many network applications.

Appendix A - Sample Run
The source code may be down-loaded from: http://cs.uccs.edu/~chow/pub/master/dsknoop/src/sched-rr/
The following files are required to run the modified ABWM tool:

· ping.h

· abwm.h

· Makefile

· abwm-rr.c

· findbwrange.c

· abm-rr.c

After downloading compile the programs by running the Makefile

$make

$make abm-rr

To run the application enter

$./abm-rr [options] host
Note: The host can be specified with hostname or IP. This address needs to have a DNS entry or in a local host file.
The following options may be set with the tool.

-d

Sets the debug flag

-n #

Set the number (#) of messages to be sent, default is 10 messages
-l ####
Sets the lower bound of the network to the number (####) specified, default is 1000 bytes
-u ####
Sets the upper bound of the network to the number (####) specified, default is 1,000,000 bytes
-s ####
Set the size of the message in bytes, default is 1000 bytes
-I ##

Set the number of iterations, default is 10 iterations
Most of the output is to the screen, however two output files are created; probeResult.txt and send.txt. The probeResult.txt file contains the basic information from the program; the report value, lower bound, upper bound, and whether the report is valid. The send.txt file contains information on the actual sending time gap (first value) and the expected time gap (second value) for the last iteration.
Sample Run:

$./abm-rr –n 5 mercury.usafa.af.mil

This will run 5 messages to the specified host. The host will need to be within your firewall because most security administrators block the ICMP protocol.

Appendix B - RTLinux Installation Instructions
Open RTLinux Installation Instructions

FSM Labs, Inc.1
http://www.fsmlabs.com
Abstract:

This document is intended to guide the user through the installation steps needed to compile and install RTLinux from the Web.

Contents

· Preparing for Installation

· Downloading Linux Kernel

· Notes on other software

· RTLinux Installation

· Post Installation and Running RTLinux Programs

· Documentation and Sources of Help

· About this document ...

Preparing for Installation

Downloading Linux Kernel

In order to compile the RTLinux kernel, first you need to download the kernel for which RTLinux was built. To do so, note that there are patches in the top-level directory by the name kernel_patch*. For RTLinux 3.1, these files are:

· kernel_patch-2.2.19, and

· kernel_patch-2.4.4

Where:

· kernel_patch-2.2.19 is for kernel 2.2.19 which can be found at http://ftp.kernel.org/pub/linux/kernel/v2.2/linux-2.2.19.tar.gz

· kernel_patch-2.4 is for Linux kernel 2.4.4 which can be found at http://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.4.tar.gz

Notes on other software

Please make sure you have all software required to run the specific kernel version. This information can be found in Documentation/Changes file in the kernel tree.

In particular, RedHat 7.0 and 7.1 systems tend to have problems with compiling RTLinux 2.4.x kernels because of wrong gcc versions in these distributions. If you use a 2.4.x kernel on a recent RedHat system, you need to change the

CC = $(CROSS_COMPILE)gcc

in the Linux kernel Makefile to

CC = kgcc

RTLinux Installation

1. Choose a directory for RTLinux installation. In this example, we will use /usr/src/rtlinux. We will also assume that you have put Linux kernels and the rtlinux distributions into /var/tmp. You can choose any other directories for your installation.

2. unpack the chosen Linux kernel into this directory:

· rm -rf /usr/src/rtlinux

· mkdir /usr/src/rtlinux

· cd /usr/src/rtlinux

· tar xzf /var/tmp/linux-2.2.19.tar.gz

3. unpack the RTLinux distribution:

· tar xzf /var/tmp/rtlinux-3.1.tar.gz

4. Patch the kernel with the RTLinux patch:

· cd linux

· patch -p1 < ../rtlinux-3.1/kernel_patch-2.2.19

OR, if you're using a 2.4.xx kernel:

· cd linux

· patch -p1 < /usr/src/rtlinux/kernel_patch-2.4.4

5. Next, you need to configure the Linux kernel:

· make config OR make menuconfig OR make xconfig

Enabling APM support is not recommended. APM BIOS calls may have unpredictable effect on real-time performance.

On Alpha machines, you need to enable RTLinux Support (CONFIG_RTLINUX). On i386 and PPC, this is done automatically.

Please make sure to specify the correct CPU type for the target machine.

6. Compile the Linux kernel and modules:

· make bzImage On PPC and Alpha use make vmlinux

· make modules

Install the Linux kernel and modules:

· make modules_install

· cp arch/i386/boot/bzImage /boot/rtzImage For non-x86, please use procedures appropriate for your boot loader.

7. (x86-only) Configure LILO. To do so, edit /etc/lilo.conf to contain the following piece (you only need to do this once):

8. image=/boot/rtzImage

9. label=rtlinux

10. read-only

11. root=/dev/hda1

WARNING: replace root=/dev/hda1 in the above with your root filesystem. The easiest way to find out which filesystem it should be, take a look at the existing entry in your /etc/lilo.conf for "root=". Alternatively, type "df", and look for the line for "/" in the "mounted on" column. The corresponding entry in the "Filesystem" column is your root filesystem.

12. Install LILO:

· /sbin/lilo

Restart the computer:

· /sbin/shutdown -r now

Load the RTLinux kernel: At the LILO: prompt, press "Shift" or "Tab". This will give you a listing of the available kernels. Enter:

· rtlinux

The RTLinux kernel should boot.

The next step is to compile RTLinux proper.

· cd /usr/src/rtlinux/rtlinux-3.1

· ln -sf /usr/src/rtlinux/linux linux

13. Configure RTLinux:

· make config OR make menuconfig OR make xconfig

14. Compile RTLinux:

· make

· make devices

Post Installation and Running RTLinux Programs

To be able to run any programs, you must first load the rtlinux modules. To do so, type:

· cd /usr/src/rtlinux/rtlinux-3.1

· scripts/insrtl

You can also try running the examples. To do so, simply go to the appropriate directory under /usr/src/rtlinux/rtlinux-3.1/examples and follow the instructions in the corresponding README file.

Documentation and Sources of Help

The docs/html/GettingStarted document contains a brief introduction to RTLinux. Additional documents in docs/html also provide information about other aspects to RTLinux such as web installation, CD installation, FAQ, and RTiC-Lab.

In case of problems, please consult the FAQ first, available in the docs/ directory.

If all of the above fails, you can obtain help from your peers via the rtl@rtlinux.org mailing list for which you can un/subscribe to via http://www.rtlinux.org/mailing_lists.html .

FSM Labs further provides commercial support, development, and training. Please contact FSM Labs at

business@fsmlabs.com

or visit their website at

http://www.fsmlabs.com

for additional information.

Copyright: 2001 FSM Labs, Inc.

Footnotes

... Inc.1

support@fsmlabs.com

Appendix C - References

[1] M. Barabanov, E. Hilton and V. Yodaiken, “ RTLinux FAQ”, http://www.rtlinux/documents/faq.html
[2] R. Carter and M. Crovella, “Measuring bottleneck link speed in packet- switched networks,” TR BU-CS-96-006, Boston University, 1996.

[3] FSM Labs, Inc., “ Getting Started with RTLinux”, http://www.RTLinux.com
[4] FSM Labs, Inc., “Open RTLinux Installation Instructions”, http://www.RTLinux.com
[5] B. Hall, “Beej’s Guide to Network Programming” 2001.

[6] J. He, Y. Lu, C.E. Chow, and T. Chujo, “ Available Bandwidth Measurement, Implementation and Experiment”, Fujitsu Laboratories of America, Inc.

[7] J. Labrosse, MicroC/OS-II, CMP Books, Lawrence, Kansas 1999.

[8] V. Paxson, “End-to-End Internet Packet Dynamics”, IEEE/ACM Transactions on Networks, Vol 7, No 3 June 1999.

[9] W. Stevens, UNIX Network Programming, Prentice Hall, Upper Saddle River, NJ. 1998.

[10] V. Yodaiken, “An Introduction to RTLinux”, http://www.linuxdevices.com/articles/at3694406595.html, 1997.

[11] V. Yodaiken, “The RTLinux Manifesto”, Department of Computer Science, New Mexico Institute of Technology.

Last Modified: April 30, 2002

Linux Process 1

Linux Process 2

Linux Kernel

Real-Time Kernel

An RT-Process

TGR

TGS

Fig 3. Real-Time Linux [11]

ABWM

Switch

Switch

Fig 4. Test-bed Set-up

Software Interrupts

Scheduling

Hardware Interrupts

High-Priority Task

Low priority task relinquishes the CPU

ISR makes the high-priority task ready

ISR

Time

Low-Priority Task

Fig 1. Non-preemptive Kernel [7]

Fig 2. Preemptive Kernel [7]

High-Priority Task

ISR makes the high-priority task ready

ISR

Time

Low-Priority Task

PAGE
23

[image: image1]