

Java-Based Sharedraw:
A Real-Time
Computer Conference
Tool

By

Dee Patel
December 10, 1996

A Project submitted to the
faculty of the Graduate School of the
University of Colorado in fulfillment
of the requirements for the degree of
Master of Science
Department of Computer Science
1996

�TABLE OF CONTENTS
� TOC \o "1-6" �1. Abstract	� GOTOBUTTON _Toc375040237 � PAGEREF _Toc375040237 �4��
2. Introduction	� GOTOBUTTON _Toc375040238 � PAGEREF _Toc375040238 �4��
3. Design:	� GOTOBUTTON _Toc375040239 � PAGEREF _Toc375040239 �7��
3.1. Javadraw Process:	� GOTOBUTTON _Toc375040240 � PAGEREF _Toc375040240 �7��
3.2. Javadraw Message Format:	� GOTOBUTTON _Toc375040241 � PAGEREF _Toc375040241 �9��
3.2.1. “Connect” message format:	� GOTOBUTTON _Toc375040242 � PAGEREF _Toc375040242 �10��
3.2.2. “Close” message format:	� GOTOBUTTON _Toc375040243 � PAGEREF _Toc375040243 �10��
3.2.3. “Revoke” message format:	� GOTOBUTTON _Toc375040244 � PAGEREF _Toc375040244 �10��
3.2.4. “Pen/Erase/Clean” message format:	� GOTOBUTTON _Toc375040245 � PAGEREF _Toc375040245 �11��
3.2.5. “Text” message format:	� GOTOBUTTON _Toc375040246 � PAGEREF _Toc375040246 �12��
3.3. IS (Intelligent Secretary) Process:	� GOTOBUTTON _Toc375040247 � PAGEREF _Toc375040247 �12��
3.4. IS (Intelligent Secretary) Message Format:	� GOTOBUTTON _Toc375040248 � PAGEREF _Toc375040248 �14��
3.4.1. “Disconnect” message format:	� GOTOBUTTON _Toc375040249 � PAGEREF _Toc375040249 �14��
3.4.2. “List” message format:	� GOTOBUTTON _Toc375040250 � PAGEREF _Toc375040250 �14��
4. Implementation of Javadraw:	� GOTOBUTTON _Toc375040251 � PAGEREF _Toc375040251 �15��
4.1. Socket connection to IS:	� GOTOBUTTON _Toc375040252 � PAGEREF _Toc375040252 �15��
4.2. Javadraw Threads:	� GOTOBUTTON _Toc375040253 � PAGEREF _Toc375040253 �18��
4.2.1. Why Javadraw is threaded?	� GOTOBUTTON _Toc375040254 � PAGEREF _Toc375040254 �18��
4.2.2. Javadraw “main” thread functions:	� GOTOBUTTON _Toc375040255 � PAGEREF _Toc375040255 �18��
4.2.2.1. Java methods used to process mouse activity:	� GOTOBUTTON _Toc375040256 � PAGEREF _Toc375040256 �19��
4.2.2.2. Java method used to process Key activity:	� GOTOBUTTON _Toc375040257 � PAGEREF _Toc375040257 �20��
4.2.3. Communication between Javadraw Threads:	� GOTOBUTTON _Toc375040258 � PAGEREF _Toc375040258 �21��
4.2.3.1. “main” thread (“getdis” thread communication:	� GOTOBUTTON _Toc375040259 � PAGEREF _Toc375040259 �21��
4.2.3.2. “getdis” thread (“main” thread communication:	� GOTOBUTTON _Toc375040260 � PAGEREF _Toc375040260 �21��
4.2.4. Javadraw “getdis” thread function:	� GOTOBUTTON _Toc375040261 � PAGEREF _Toc375040261 �22��
5. Implementation of Intelligent Secretary (IS):	� GOTOBUTTON _Toc375040262 � PAGEREF _Toc375040262 �23��
5.1. IS (Intelligent Secretary) Threads:	� GOTOBUTTON _Toc375040263 � PAGEREF _Toc375040263 �23��
5.1.1. Why IS is threaded?	� GOTOBUTTON _Toc375040264 � PAGEREF _Toc375040264 �23��
5.1.2. IS “main” thread function:	� GOTOBUTTON _Toc375040265 � PAGEREF _Toc375040265 �24��
5.1.2.1. IS methods to create Conference list:	� GOTOBUTTON _Toc375040266 � PAGEREF _Toc375040266 �24��
5.1.2.2. IS methods to revoke a user:	� GOTOBUTTON _Toc375040267 � PAGEREF _Toc375040267 �24��
5.1.2.3. IS Revoke Timer Logic:	� GOTOBUTTON _Toc375040268 � PAGEREF _Toc375040268 �25��
5.1.2.4. IS method to close a connection:	� GOTOBUTTON _Toc375040269 � PAGEREF _Toc375040269 �25��
5.1.2.5. IS method to send message to the conference participants:	� GOTOBUTTON _Toc375040270 � PAGEREF _Toc375040270 �26��
5.1.3. IS “socket” thread function:	� GOTOBUTTON _Toc375040271 � PAGEREF _Toc375040271 �26��
5.1.3.1. IS method to create Server Socket:	� GOTOBUTTON _Toc375040272 � PAGEREF _Toc375040272 �26��
5.1.3.2. IS method to listen for messages from client:	� GOTOBUTTON _Toc375040273 � PAGEREF _Toc375040273 �26��
5.1.4. Communication between IS Threads:	� GOTOBUTTON _Toc375040274 � PAGEREF _Toc375040274 �27��
5.1.4.1. “main” thread (“socket” thread communication:	� GOTOBUTTON _Toc375040275 � PAGEREF _Toc375040275 �27��
5.1.4.2. “socket” thread (“main” thread communication:	� GOTOBUTTON _Toc375040276 � PAGEREF _Toc375040276 �29��
6. Lesson Learned:	� GOTOBUTTON _Toc375040277 � PAGEREF _Toc375040277 �29��
7. Future Directions:	� GOTOBUTTON _Toc375040278 � PAGEREF _Toc375040278 �31��
8. References	� GOTOBUTTON _Toc375040279 � PAGEREF _Toc375040279 �31��
9. APPENDIX A (Javadraw Requirements & Installation)	� GOTOBUTTON _Toc375040280 � PAGEREF _Toc375040280 �32��
9.1. Requirements:	� GOTOBUTTON _Toc375040281 � PAGEREF _Toc375040281 �32��
9.2. Download Sites:	� GOTOBUTTON _Toc375040282 � PAGEREF _Toc375040282 �32��
9.3. Javadraw Installation:	� GOTOBUTTON _Toc375040283 � PAGEREF _Toc375040283 �32��
10. APPENDIX B (JAVADRAW and IS USER’S GUIDE)	� GOTOBUTTON _Toc375040284 � PAGEREF _Toc375040284 �33��
10.1. Start Intelligent Secretary (IS):	� GOTOBUTTON _Toc375040285 � PAGEREF _Toc375040285 �33��
10.2. Start Javadraw:	� GOTOBUTTON _Toc375040286 � PAGEREF _Toc375040286 �33��
�
�
Abstract

In this report we present the design and implementation of a real-time computer conference tool, called Java-based sharedraw. It allows multiple users to share the screen image in real-time via Internet socket connections. The shared screen image can be manipulated by freehand drawing, text typing, erasing and cleaning of the screen. The tool provides the basic conference management facility for displaying the list of conferences and their participants. It also allows the creator of a conference to revoke the specific conference participant for a specified time period.

Java-based sharedraw consists of a client process, called Javadraw, and a server process, called IS (Intelligent secretary). They are implemented in Java and can be run on multiple platforms that support Java.

Introduction

In software market there are many different conference management software available (like Events for windows, Intel’s ProShare conferencing tool)[1,2,3,4]. All conference management software are platform dependent. So there is a real need of a conference management software which is not platform dependent. Java-based sharedraw is a conference management software that is platform independent. Java-based sharedraw is platform independent because it is developed using JAVA language[5,6].

Java-based sharedraw is based on sharedraw, developed by C. Edward Chow at UCCS. It allows multiple users, geographically separated, to join the conference and share their freehand drawing, typing text, erasing and clean the screen in real-time. It utilizes TCP/IP network connection to exchange data. It uses the JAVA AWT package for supporting the tool layout and graphic display. It uses the socket classes to establish the connection between the computers.

Java-based sharedraw handles the user operations like freehand drawing, text typing, erasing, establishes connection to the server, displays the list of users, and temporarily suspends a specified user. IS handles all the incoming messages and sends the message to the rest of the conference members in real time. It keeps track of the owner of the conference and allows the conference owner to revoke any member of the conference for the specified time period.

� EMBED PowerPoint.Show.4 ���
Figure 1.a

Figure 1.a shows the users using Java-based sharedraw in a computer conference. All messages are relayed via IS. Javadraw and Intelligent Secretary (IS) are stand alone Java applications.

� EMBED Paint.Picture ��� Figure 1.b, Javadraw Screen

Javadraw helps the user connect to the IS. Using Javadraw the user can perform a freehand drawing, type text, erase and clean the screen, display the list of the users on different conferences and revoke a specified user in the conference for a specified time. Javadraw allows the users to change the size of the pen and eraser. It allows the user to change the size and type of the fonts. The original sharedraw only supports one font and one fixed font size. It displays the User, IP address and Port of the current connection to server. It utilizes TCP/IP network connection to exchange data among users and IS. Javadraw uses JAVA AWT GUI package for creating the tool layout and graphic display. Javadraw uses the socket classes to establish the connection among the computers. Besides performing the operation on the local screen, Javadraw also sends a corresponding message to IS, which then relays the messages to all the conference participants.

When the user is successfully connected to the IS (Server), Javadraw sends the message to the IS. IS then sends these messages to the rest of the conference members except the sender. The messages received by a remote Javadraw are processed, and the corresponding operations are performed on the remote screen (if connected).

Using Javadraw users can share their ideas by working on their computers. Multiple users can participate in computer conference from their workstations or PCs and share their ideas.

Design:

In this section we present the protocol and message formats. The protocol consist of the two process a Javadraw and an IS (Intelligent Secretary).
Javadraw Process:

The finite state diagram of Javadraw is shown below.

� EMBED Visio.Drawing.4 ���

From Figure 2, at state 1 Javadraw waits for any user operation. User can perform any of the following operations.

Press “PEN” button and start free hand drawing.
Press “TEXT” button and start typing text.
Press “ERASER” button and start erasing the screen.
Press “CLEAN” button and clean the whole screen.
Press “CONNECT” button to connect to IS.
Press “DISCONNECT” button to disconnect from IS.
Press “CONFERNCE MANAGEMENT” button to do revoke or view the conference list of IS.
Select “Quit” from “File” menu, to quit from Javadraw.
Change pen and eraser thickness from “Tools” menu.
Change Text name, style and size from “Font” menu.

If a user presses the “CONNECT” button, Javadraw displays “Connect to Server Screen” (See Figure 6) and moves to state 2. At state 2 user enters the connect information (like user name, IP address of server, port number of server and conference to which user wants to connect to) and press “Connect” information. Javadraw then sends the “Connect” message to IS and moves to state 3. When Javadraw receives “List” message from IS, it moves to state 4. When Javadraw gets a user operation, it moves to state 5. At state 5 Javadraw sends the operation message to IS and moves back to state 4. This loop continues until the user disconnects the connection with IS by pressing the “DISCONNECT” button.

If a user selects the “Quit” menu item from the “File” menu, Javadraw application will shutdown and move to state 9.

If a user presses the “PEN”, “TEXT”, “ERASER” or “CLEAN” button, Javadraw will draw a line, display text, erase screen and clean screen respectively.
Javadraw Message Format:

Javadraw sends following messages to IS:
Connect Message
Close Message
Revoke Message
Pen/Erase/Clean Message
Text Message

Note: ALL MESSAGES are terminated by New Line character (“\n”) or Carriage Return (“\r”).
“Connect” message format:

Conference Name
(String)�Name or ID of
user.(String)�“Connect”�IPAddress:Port
of Local Machine
example:(128.198.2.227:9005)��
“Conference Name” is the name of the conference to which the user wants to join. (NOTE: Conference name has to be one word).
“User ID/Name” is the user ID or user Name. (NOTE: the name or ID of user has to be one word).
“Connect” is the String hardcoded, so IS can recognize that it is a connect message.
“IPAddress:Port” is the IP address and port of local machine.
 “Close” message format:

Conference Name
(String)�Name or ID
of user. (String)�“Close”�IPAddress:Port
of Local Machine
example: (128.198.2.227:9005)��
“Conference Name” is the name of the conference to which the user wants to join. (NOTE: Conference name has to be one word).
“User ID/Name” is the user ID or user Name. (NOTE: the name or ID of user has to be one word).
“close” is the String hardcoded, so IS can recognize that it is a close message.
“IPAddress:Port” is the IP address and port of local machine.
“Revoke” message format:

Conference
Name
(String)�Name or ID of user
(String)�“Revoke”�IPAddress:Port
of Local Machine
example:
(128.198.2.227:9005)�Revoke
Time
(in minutes)�Name or ID
of the user
to be revoked��
“Conference Name” is the name of the conference to which the user wants to join. (NOTE: Conference name has to be one word).
“User ID/Name” is the user ID or user Name. (NOTE: the name or ID of user has to be one word).
“Revoke” is the String hardcoded, so IS can recognize that it is a Revoke message.
“IPAddress:Port” is the IP address and port of local machine
“Revoke Time” is the time in minutes for which the conference user is to be revoked.
“User Name” is the name of the user that is to be revoked.

NOTE: Only the owner of the conference (i.e. the person who started the conference) can revoke a user in conference.
“Pen/Erase/Clean” message format:

Conference Name
(String)�Name or ID of user
(String)�“P”�last ‘x’
coord-inate�last ‘y’
coord-inate�current
‘x’
coord-
inate�Current
’y’
coord-
inate�Pen
Size�Erase
Size�Message type��
“Conference Name” is the name of the conference to which the user wants to join. (NOTE: Conference name has to be one word).
“User ID/Name” is the user ID or user Name. (NOTE: the name or ID of user has to be one word).
“P” is the String hardcoded, so IS can recognize that it is a Pen or erase message.
“last x” is the last (previous) x-coordinate of mouse on the local screen.
“last y” is the last (previous) y-coordinate of mouse on the local screen.
“current x” is the current x-coordinate of mouse on the local screen.
“current y” is the current y-coordinate of mouse on the local screen.
“Pen size” is the size of pen for the local screen.
“Erase size” is the size of eraser for the local screen.
If the message type is ‘1’ then the message is considered as a Pen message, if the message type is ‘2’ then the message is considered as an Erase message and if the message type is ‘3’ then the message is considered as a Clean message.

Java code to send Pen/Erase Message:

send_data_to_server("P" + " " +
 llx + " " +
 lly + " " +
 x + " " +
 y + " " +
 l_pen + " " +
 l_erase + " " +
 l_msgtype
);
“Text” message format:

Conference Name
(String)�Name or ID of user
(String)�“T”�‘x’
coordinate�‘y’
coordinate�Font
Name�Font
Style�Font
Size�Text
(one character
at a time)��
“Conference Name” is the name of the conference to which the user wants to join.
“User ID/Name” is the user ID or user Name.
“T” is the String hardcoded, so IS can recognize that it is a Text message.
“x” is the x-coordinate on screen where the character is to be displayed.
“y” is the y-coordinate on screen where the character is to be displayed.
“Font name” is the name of the font (e.g., Courier, Times New Roman).
“Font style” is the style of the font (e.g., Bold, Plain, Italic).
“Font size” is the size of the font (e.g., 8 pixel, 9 pixel).
“Text” is the character typed on the screen by user.

Java code to send Text message:

send_data_to_server("T" + " " +
 text_x + " " +
 text_y + " " +
 l_name + " " +
 l_style + " " +
 l_size + " " +
 temp_char_int
);

IS (Intelligent Secretary) Process:

The finite state diagram of IS is shown below.

� EMBED Visio.Drawing.4 ���

From Figure 3, IS (Intelligent Secretary) waits at state 1 to get any message from Javadraw. IS can get any of the following message from Javadraw.

Connect Message
Close Message
Revoke Message
List Message
Pen/Erase/Text/Clean Message

When IS receives a “Connect” message it moves to state 2. IS adds the user and update the conference list, and moves to state 3. After updating the conference list, it sends the update conference list back to Javadraw and moves back to state 1.

When IS receives a “Close” message it moves to state 4. IS removes the users and updates the conference list, and moves back to state 1.

When IS receives a “Revoke” message it moves to state 5. IS verifies if the sender is the creator of the conference. It then updates the revoke time of the user in conference list and moves back to state 1.

When IS receives any other message, (i.e., pen, text, erase, clean message) it moves to state 6. IS goes through the list of conference participants, and sends each participants, that is not revoked, a copy of the message and moves back to state 1.
IS (Intelligent Secretary) Message Format:

IS sends the following messages to Javadraw:
List Message
Disconnect Message
Also forwards the Pen, Erase, Text, Clean screen, message to the conference participants.

Note: ALL MESSAGES has to be terminated by New line character (“\n”) or Carriage Return (“\r”).
“Disconnect” message format:

“Disconnect”��
 “Disconnect” is the String hardcoded, so Javadraw can recognize that it is a disconnect message.
“List” message format:

“List”�List of users��
“List” is the String hardcoded, so Javadraw can recognize that it is a list message.
“List of users” is the data that is filled up with users and the conference they are participating. Example of the message send is “List John Conference1 Bob Conference1 Steve Conference2 …..”
Implementation of Javadraw:

Javadraw utilizes TCP/IP network connection to exchange data with IS and other Javadraw processes. Javadraw uses the JAVA AWT package for supporting the tool layout and graphic display. Javadraw uses the socket classes to establish the connection among IS and Javadraw processes.

Javadraw is threaded so that it can process the incoming messages and perform GUI functions concurrently.
Socket connection to IS:

Javadraw uses the Java’s socket class to establish connections with IS. The code below show how a Javadraw establishes connection with IS. It returns the error message if the connection is not established.

try
{
 socket = new Socket(serveripaddress, port);
 dos = new DataOutputStream(socket.getOutputStream());
 dis = new DataInputStream(socket.getInputStream());
 temp_port = socket.getLocalPort();
}
catch(IOException e)
{
 connected = false;
 msgtxt.setText("Error: Cannot Connect to Server");
 return false;
}

With class “Socket” Javadraw creates connection with IS (Intelligent Secretary). If Javadraw has any error connecting to the IS, “catch” part of the code is executed and error message is displayed on the “Connect to Server Screen” (see Figure 6). If the connection is successful, it will connect Javadraw socket to IS socket. IP address or host name and port number of IS (server) has to be passed in to “Socket” class.

For the code above “serveripaddress” is the IP address or host name of server and “port” is the port number of server (IS). These values are prompted in “Connect To Server Screen”.

After a successful connection, Javadraw will create a new instance of DataInputStream (dis) and DataOutputStream (dos). DataInputStream is to collect the incoming data to Javadraw and DataOutputStream is to store the data that need to be sent to IS (server). After a successful connection, Javadraw sends a “Connect” message to IS (Intelligent Secretary) to register the user.

Java Code for sending “Connect” message:
try
{
 dos.writeBytes(conf_name + " " +
 id_name + " " +
 "Connect" + " " +
 ipaddress + " " +
 "\n");
 dos.flush();
 connected = true;
 msgtxt.setText("Connected To Server");
 return true;
}
catch(IOException e)
{
 connected = false;
 msgtxt.setText
 ("Error: Cannot Connect to Server");
 return false;
}

socket = new Socket(serveripaddress, port);

Javadraw creates a new instance of class Socket. Socket tries to open connection to serveripaddress and port of server.

If Javadraw detects any error connecting to server it will jump to catch. If any error occurred, the connected flag is set to “false” to indicate the failure of the connection. It also displays a message to the user screen using following function:

msgtxt.setText("Error: Cannot Connect to Server");

and return false.

dos = new DataOutputStream(socket.getOutputStream());

Javadraw creates a new instance of class DataOutputStream. DataOutputStream creates new data output stream to write data to the specified underlying output stream.
GetOutputStream returns an output stream that writes to this connection.

dis = new DataInputStream(socket.getInputStream());

Javadraw creates new instance of class DataInputStream. A data input stream lets an application read primitive Java data types from an underlying input stream in a machine-independent way. An application uses a data output stream to write data that can later be read by a data input stream.
GetInputStream returns an input stream that reads from this open connection.

temp_port = socket.getLocalPort();

temp_port is assigned value of local machine port number.
Javadraw uses method getLocalPort to get the local port number of the machine. temp_port is local port to which IS is connected and the value of temp_port is sent to IS. IS stores the IP address and port number of the local machine.

Javadraw sends messages to IS (server) using “send_data_to_server” method. The general code for “send_data_to_server” is show below.

public void send_data_to_server(String str)
{
 if(!connected ||
 (str.length() == 0) ||
 (id_name.length() == 0) ||
 (conf_name.length() == 0) ||
 (dos == null)
)
 {
 return;
 }
 try {
 dos.writeBytes(conf_name+" "+
 id_name +" "+
 str+"\n");
 dos.flush();
 }
 catch(IOException e)
 {
 System.out.println("ERROR: Writing");
 }
}
Javadraw Threads:

Javadraw consists of two threads.
Main Thread and
“getdis” thread, which waits for incoming messages and processes the message.
Why Javadraw is threaded?

The function of Javadraw is to listen to the messages from the socket and at the same time process the local events (i.e. if it is a pen message then it has to paint the screen according to the pen message). If Javadraw is not threaded, it will be blocked until it receives another message from IS. If Javadraw is blocked, it cannot perform the local user operations. To make reception of messages, the processing messages, and the processes of the local user operations work simultaneously, we have to use threads.

Javadraw starts two threads when it starts. One thread (getdis) receives the message and another thread (main) processes the received messages and performs local user operations.
Javadraw “main” thread functions:

Functions of Javadraw “main” thread is as follows:
Detect the mouse activity.
Detect the keys pressed.
Draw lines on the screen.
Type the text on the screen.
Erase the Screen coordinates.
Open the “Connect To Server Screen” when “CONNECT” button is pressed.
Open the “Conference Management Screen” when “CONFERENCE MANAGEMENT” button is pressed.
Clean whole screen.
Change thickness of pen and eraser.
Change the size, style and name of the fonts.
Process and display the message received by “getdis” thread.
Java methods used to process mouse activity:

mouseDown:
This method is called when the mouse button is pushed inside this component. This method is usually called by handleEvent, in which case the x and y arguments contain the x and y fields of the event argument. The <x,y> coordinate is relative to the top-left corner of this component.

Java code:

public boolean mouseDown(Event evt,int x,int y)
{
 local_addScreenPoint(l_lastx,
 l_lasty,
 x,
 y,
 l_penthickness,
 l_erasethickness,
 l_color);
 repaint();
 return true;
}

“evt” value is not used in the Javadraw code. The ‘x’ and ‘y’ parameters are filled with x and y coordinate of mouse position.

mouseDrag:
This method is called when the mouse button is moved inside this component with the button pushed. This method is usually called by handleEvent, in which case the x and y arguments contain the x and y fields of the event argument. The <x,y> coordinate is relative to the top-left corner of this component.

Java code:

public boolean mouseDrag(Event evt,int x,int y)
{
 local_addScreenPoint(l_lastx,
 l_lasty,
 x,
 y,
 l_penthickness,
 l_erasethickness,
 l_color);
 repaint();
 return false;
}

“evt” value is not used in the Javadraw code. The ‘x’ and ‘y’ parameters are filled with x and y coordinate of mouse position.

mouseUp:
This method is called when the mouse button is released inside this component. This method is usually called by handleEvent, in which case the x and y arguments contain the x and y fields of the event argument. The <x,y> coordinate is relative to the top-left corner of this component.

Java code:

public boolean mouseUp(Event evt,int x,int y)
{
 local_addScreenPoint(l_lastx,
 l_lasty,
 x,
 y,
 l_penthickness,
 l_erasethickness,
 l_color);
 return false;
}

“evt” value is not used in the Javadraw code. The ‘x’ and ‘y’ parameters are filled with x and y coordinate of mouse position.
Java method used to process Key activity:

keyUp:
This method is called when the key is released and this component has the focus. This method is usually called by handleEvent, in which case the key argument contains the key field of the event argument.
This method returns true to indicate that it has successfully handled the action, or false if the event that triggered the action should be passed up to this component’s parent. Most application should return either true of the value of super.handleEvent(evt).

Java code:

public boolean keyUp(Event evt,int Key)
{
 char c_key;

 c_key = (char) Key;
 local_texttoscreen(c_key);
 return false;
}

“evt” value is not used in the Javadraw code. The ‘Key’ parameters is filled with a key value. That is, if ‘z’ key is pressed the value of Key is ‘z’.

Communication between Javadraw Threads:

The communication between two threads is done by calling each other's method.
“main” thread (“getdis” thread communication:

“main” thread call the following “getdis” methods to communicate with “getdis” thread
get_sdraw()
update_dis()

public void get_sdraw(Javadraw sdraw)
{
 s = sdraw; //s used in getdis thread
}

public void update_dis(
 DataInputStream dataipstream,
 String conf_nm, String id_nm)
{
 //dis is used in getdis thread
 dis = dataipstream;
 conf_name = conf_nm;
 id_name = id_nm;
}

“get_sdraw” method is called to update the Javadraw variable.
“update_dis” is called to update the “dis” variable of the “getdis” thread.
“getdis” thread (“main” thread communication:

“getdis” thread sends the message, received from IS, to Javadraw by calling Javadraw’s method. If “getdis” got message from IS is PEN message then “getdis” calls “getdis_pen” method of Javadraw to send PEN message to “main” thread. Then “main” thread process this message.

Java code:

// Send message to Javadraw “main” thread
if (“PEN”)
{
 s.getdis_pen(r_lastx,r_lasty, r_x,r_y,
 r_penthickness,
 r_erasethickness,
 r_color);
}

“getdis” thread call following “getdis” methods to communicate with “main” thread
getdis_list()
getdis_pen()
getdis_text()

These send the conference list, pen and text message to “main” thread. getdis_pen method is used for getting pen, erase or clean messages.
Javadraw “getdis” thread function:

The function of the “getdis” thread is to get the data input stream from IS and to send it to the “main” thread.

Java code:

while(true)
{
:
:
// Read messages from IS
// Blocking read.
try
{
 inputbuffer = dis.readLine();
}
catch(IOException e)
{
 System.out.println("Error: IO Exception");
}
:
:
// Send message to Javadraw “main” thread
if (“LIST”)
{
 s.getdis_list(strarray, index);
}
:
:
if (“PEN”)
{
 s.getdis_pen(r_lastx,r_lasty, r_x,r_y,
 r_penthickness,
 r_erasethickness,
 r_color);
}
:
:
if (“TEXT”)
{
 s.getdis_text(r_x, r_y, r_name, r_style,
 r_size, temp_int);
}
:
:
}
Implementation of Intelligent Secretary (IS):

Intelligent Secretary, a server process, which also consist of two threads. “Main” thread and “Socket” thread.

IS (Intelligent Secretary) Threads:
Why IS is threaded?

The function of “IS” is to listen to the server socket and at the same time it has to process the message (i.e. connect, close, revoke, list, etc.). If “IS” is not threaded then it will be blocked until it receives another message from Javadraw. If “IS” is blocked then it cannot listen to any other socket connection request. So IS creates two threads. One thread will just wait for any socket connection request and another thread will just wait for any messages sent by Javadraw. As “IS” is threaded it can perform simultaneous functions.

IS starts two threads when it starts. One thread (socket) can process connect request from the Javadraw and another thread (main) can process messages received.
IS “main” thread function:

Function of IS “main” thread is as follows:
Process “Connect” message.
Process “Close” message.
Process “Revoke” message.
Process “List” message.
Process PEN/ERASE/CLEAN/TEXT messages.
Revoke a specified user.
Wait for the messages from the Javadraw, a client process, and sends those messages to the rest of the conference members.
Create and Maintains the list of a conference members.
Send the list of conference members to Javadraw.
Keep track of multiple conferences in progress.
Keep track of revoke timer.
Store the user socket information (i.e. IP Address and port number).
IS methods to create Conference list:

As IS supports multiple conferences, it has to create and maintain a list of conferences. The list contains information like:
user name
name of the conference to which this user is connected
the socket (IP address and port) from which this user is connected to IS
The time (revoke time) when the user will be active if revoked.
IS methods to revoke a user:

IS can handle a revoke request. When IS receives a “Revoke” message from Javadraw, IS checks if the requester is the owner of the conference. If the requester is the owner of the conference, it updates the revoke time, for the revoked user. IS keeps track of the timer (which is explained in next session).
IS Revoke Timer Logic:

When IS receives the “Revoke” messages it updates the revoke time in conference list.

Example:

“currtime = 345695385” - current time is the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this date.

“Conference1 John Revoke 10 Bob” is an example of the revoke message received.

IS checks if user “John” is the owner of the conference. If John is the owner, IS updates the revoke time to

345695385 + (10 * 60 * 1000) = 346295385
in Bob’s entry in “ClientInfo” table. If John is not the owner, it sends a message to John that he is not the owner of the conference.

IS starts sending messages to Bob only when “currtime” is greater than the revoke time.
IS method to close a connection:

When IS receives “Close” message, it will delete the user from the conference list.

Method:
public void delete_client_info(String ipkey,
 String ipadd)
{
 delete_client_ip(ipadd);
 send_to_clients(null, conf_list, true);
}

“delete_client_info” will delete the client’s IP address from the conference list. IP address is deleted using “delete_client_ip” method. After the client IP address is deleted, IS sends conference list to all the clients using the “send_to_clients” method.

IS method to send message to the conference participants:

When IS receives any general messages (like Pen, Erase, Text, Clean), it relays this message to all the conference participants except the sender.
IS “socket” thread function:

The principal function of IS “socket” thread is to wait for any new connection request from the Javadraw (a client process).
IS method to create Server Socket:
IS uses following method to create server socket:

Java code:

ServerSocket server_socket = null;

try
{
 server_socket = new ServerSocket(portnum);

 while (true)
 {
 createClientPort(
 server_socket.accept());
 }
}
catch (IOException ioerror)
{
 error ("IO Error opening server socket");
}

server_socket = new ServerSocket(portnum);

This line of code creates a server socket. The code with while loop starts a forever loop to listen connection requests from a Javadraw processes.
IS method to listen for messages from client:

IS uses following method to retrieve client messages:

Java code:

try
{
 inputdata = readLine();
}
catch (IOException ioe)
{
 error ("Error reading from the
 client.\nClient probably disconnected");
}

readLine() will read any message came to the server socket. It is a blocked read. It is blocked until it reads either newline character or carriage return character.
Communication between IS Threads:

The communication between two threads is done by calling each other’s method.
“main” thread (“socket” thread communication:

“main” thread extends the following classes to communicate with “socket” thread
NetServer(int portnum)

The server's most unique responsibility is that it must listen to and accept new clients. We embody this responsibility in the abstract class NetServer. NetServer's constructor requires only one argument: the port number to which clients will attempt connections.

public abstract class NetServer extends Thread
{
 private int portnum;

 public NetServer (int portnum)
 {
 this.portnum = portnum;
 start ();
 }

NetServer is implemented as a subclass of Thread. This way, you can create a server object, and then go off and do other things while the server waits for and accepts clients. The constructor calls start(), which begins the thread of execution, and in turn calls run(), the main body of NetServer. Within run(), an instance of “ServerSocket” is constructed, using the port number we saved from the NetPort constructor. Then we begin an infinite loop to wait for and accept client connections.

public void run ()
{
 ServerSocket server_socket = null;
 try
 {
 server_socket= new ServerSocket(
 portnum);
 while (true)
 {
 createClientPort(
 server_socket.accept());
 }
 }

The thread will hang in the accept() function until a client connects, but that's why we made NetServer a thread. The NetServer thread has no other responsibilities. If you want to do something else, you will need to do it in another thread (which, by the way, could be the thread from which the NetServer constructor was called).

We will, of course, need to handle any potential IOExceptions. Finally, we should add a finally clause to the try block. This ensures that the close method will be called for the server_socket. Without it, some implementations may not release all system resources, which can cause some operating systems (such as Windows 95) to crash or hang.

catch (IOException ioerror)
{
 System.err.println (
 "IO Error opening server socket");
}
finally
{
 if (server_socket != null)
 {
 try
 {
 server_socket.close();
 }
 catch (IOException ioe)
 {
 }
 }
}

The loop in the run() method called a member function createClientPort() (discussed in next session).

“socket” thread (“main” thread communication:

“socket” thread call following method to communicate with “main” thread
createClientPort()

 protected abstract void createClientPort(
 Socket socket);

This is an abstract method and must be implemented in the protocol-specific subclass of NetServer. The expectation here is that a new thread will be started through which the server and client will communicate, using the given client socket.
Lesson Learned:

To make Javadraw portable, I used JAVA language and came across some pro’s and con’s of developing the applications using JAVA. I also had to use Java’s thread capabilities, Layout managers, and Network package.

I have found that when the threading capability is used, the code needs to be tested on different operating systems (i.e. on windows 95, UNIX, etc.). This is because Java versions on Windows 95 and UNIX implement threads differently, so one needs to test implementations on different platforms. I found a bug in thread synchronization and the code worked great on Windows 95 but not on UNIX.

For example, the method shown below is called by two threads in Javadraw. The threads calling this method are Javadraw’s “main” thread and “getdis” thread.

synchronized void addScreenPoint(int llx,
 int lly,
 int x,
 int y,
 int pen_thick,
 int erase_thick,
 int color_type,
 int lasttype)

The function of “addScreenPoint” method is to add the draw the points on the screen ‘x’ and ‘y’ coordinate value. These ‘x’ and ‘y’ coordinate values are passed by the local mouse event or by the messages received by “getdis” thread.

As “addScreenPoint” method is called by both Javadraw threads, there are chances that this method is called by both the threads at the same time. This code worked fine on Windows 95 because, Windows 95 allows one thread to finish the method and then allows the other thread to access this method. In UNIX, when both threads tried to access the same method at same time the program crashes. So I had to synchronize this method by making the thread synchronized as show above.

I also found that the Javadraw application on PC does not take tab and shift-tab key, for moving between the field entries. But it works on the version with the UNIX operating systems.

Java version on Windows 95 will not accept Quad dot notation in the 3rd and 4th methodd of the following socket class. Socket class constructors can be used in four different ways as follows:

public Socket(InetAddress ipaddress, int port_number);
public Socket(InetAddress ipaddress, int port_number, boolean stream);
public Socket(String host, int port_number);
public Socket(String host, int port_number, boolean stream);

Where:
ipaddress - is host IP address (e.g. 128.198.2.227).
port_number - is host port number (e.g. 9005).
host - is the host name (e.g. “groucho” OR “128.198.2.227”).
stream - if true it creates stream socket, if false it creates datagram socket.

If the socket is opened using 3rd or 4th constructor and host name as “128.198.2.227” on PC, it will not connect to the server. The socket connection does not work if it has to go through windows “hosts” file. Same code works great if you open the socket connection using “groucho” or “128.198.2.227” as host name on UNIX operating system. It does not work on PC’s if you enter “128.198.2.227” as host name, it works only if you enter hostname as “groucho”.

Future Directions:

In current version of Javadraw one can send and receive text, but cannot edit it. That is, one cannot do a backspace, insert, delete and other editing functionality. Currently Javadraw can change the Font name, style and size. The future release needs to improve on text editing.

In future release one can also add the drawing functionality, like drawing square, circle, rectangle and some more objects.

References

C. -H. Chow and M.Adachi, “Achieving Multimedia Communications on a Heterogeneous Network.” IEEE JSAC Vol. 8, No. 3, pp. 348-359, April 1990.

S.Sakata, “Development and Evaluation of an In-House Multimedia Desktop Conference System.” IEEE JSAC Vol. 8, No. 3, pp 340-347, April 1990.

K. Watanabe, Y. Okazaki, H. Eto and H. Kondo, “The Global Classroom Project-an educational trial of the Internet with multimedia” Proceedings of ED-MEDIA 95 - World Conference on Educational Multimedia on Hypermedia, pp. Xiii+825, 671-6.

J. J. Poggio, “CCWS: A computer-based, multimedia information system.” IEEE Comput. Mag. Vol. 18/10, pp. 92-103, Oct. 1985.

Neil Bartlett, Alex Leslie and Steve Simkin, “Java Programming”.

James Gosling, Frank Yellin and Java Team, “The Java Application Programming Interface” Volume 1 (Core Package) and Volume 2 (Window Toolkit and Applets).

�APPENDIX A (Javadraw Requirements & Installation)
Requirements:
Java Developer’s Kit version 1.0.1 or later (JKD 1.0.1)

Download Sites:
For JDK (Java Developers Kit):
http://www.javasoft.com/products/JDK/1.0.2/installation.html

For JDK Documents:
ftp://ftp.javasoft.com/docs/JDK-1_0_2-apidocs.zip

Javadraw Installation:

Initialization:
Update the path so it includes “java\bin” in your path.

Windows 95:
Get Javadraw.zip file.
Create Javadraw directory (mkdir Javadraw).
Change directory to Javadraw (cd Javadraw).
Copy Javadraw.zip file to Javadraw directory.(copy Javadraw.zip Javadraw)
Use WinZip to unzip Javadraw.zip file.

Unix:
Get Javadraw.tar file.
Create Javadraw directory (mkdir Javadraw)
Change directory to Javadraw (cd Javadraw).
Copy Javadraw.tar file to Javadraw directory.(cp Javadraw.tar Javadraw)
Untar the Javadraw.tar file. (tar -xvf Javadraw.tar)

�APPENDIX B (JAVADRAW and IS USER’S GUIDE)

Users Guide:

Start Intelligent Secretary (IS):
At the command/shell prompt type - java IS to start Intelligent Secretary. It displays the window shown below.

�

Figure 4

The bottom of the screen displays the IP address of the server where “IS” is running. It also displays port number to which the “IS” listens to or waits for the connection from Javadraw (client process).

Start Javadraw:

At the command/shell prompt type - “java Javadraw” to start Javadraw. It displays the window show below.

�

Figure 5

User can connect to the server by pressing “CONNECT” button, which will display the window shown below.

�

Figure 6

Enter the ID/Name in the field provided. “ID/Name” field should be unique. Enter IP Address of the server in the “IP Address” field (IP Address of server is shown on the bottom of “IS” window). Enter port number of the server in “Port” field (Port number of server is shown on the bottom of “IS” window). Enter the conference name you want to connect to, or to start one (Conference Name should be ONLY ONE word). Any error in data fields will be displayed on the “ERROR” field.

NOTE:
All the fields are required.
Conference should be a single word.

After a successful connection it will return to the “JAVADRAW” screen. “JAVADRAW” screen displays following:
The current user logged in.
The conference name to which the user is connected.
The socket (IP address and Port) to which the user is connected.

�

Figure 7

When the user is connected to Intelligent Secretary, user is able to view the list of the members of different conference. User can see this list by pressing “CONFERENCE MANAGEMENT” button, which displays the window shown below.

�

Figure 8

Owner of conference can revoke a desired user. A user can be revoked by selecting the user name from the list and entering the specified minutes the user is to be revoke in “Revoke Time” field. The revoked user can not see what is going on in conference but can send a request to the conference. The revoking process window is shown below.

�

Figure 9

User can change the thickness by selecting the tools and then penthickness and then the size in pixels. Window below displays some to the pen thickness.

� EMBED Paint.Picture ���

Figure 10

User can start typing text after pressing “TEXT” button and then clicking the left mouse button from where the text should start displaying on the screen. User can select different name, style and size of the fonts from the font menu.

To disconnect press “DISCONNECT” button, which disconnects the user from the conference.

User can start many clients from the same machine to connect to multiple conferences.
	Java-Based Sharedraw		

	Masters Project Report

� DATE \l �12/12/96�	� PAGE �3�	� TIME �12:00 AM�			

