
Master Project/Thesis Proposal 

Compare different approaches of TCP 
Delayed Binding in a Content Switch in 
addition to emphasis on Load Balancing and 
Fault Tolerance 
Chandra Prakash 

1 Committee Members and Signatures: 
   Approved by                                           Date 
 
   __________________________________                    _____________ 
   Advisor: Dr. Edward Chow                         
 
   __________________________________                    _____________ 
   Committee member: Dr. Jugal Kalita 
 
   __________________________________                    _____________ 
   Committee member: Dr. Bill Ayen 
 

2 Introduction 
The tremendous growth in World Wide Web usage has become a double-edged sword for operators of large web 
sites. On the one hand, increases in request volume translate into increased subscription, advertising, and hosting 
revenue. On the other hand, scaling web sites to meet this increased demand has become more and more difficult as 
the number of requests for content exceed a particular server’s ability to respond. In the best case, users will 
experience degraded service, in the worst case the server can be driven to collapse resulting in a complete loss of 
service. 
One approach to alleviate handling of large volume of requests is to distribute their load among a group of  servers. 
A master controller, that can be a dedicated host or a process, first receives the requests and delegates it to the 
appropriate real server. This describes a typical load balancing system. A content switch (CS) is such a load 
balancing system that distributes load based on the content of the received requests.  
There are conventional ways of load balancing at the transport layer (Layer 4 of TCP/IP1). One of them is to use the 
port number of the incoming request and direct it to a real server responsible for handling the response for that 
specific port. For example, if the port number in the incoming request is 21 it can be routed to machine catering FTP 
requests and if the port number is 80 it would be routed to a host running the HTTP server. This mechanism cannot 
differentiate between requests for different content on a single web site as shown in Table 1. 
 
Scope of Layer 3 Switch <---------- >  
Scope of Layer 4 Switch <---------------------------------------------------------- >  
Scope of Layer 5 Switch <--------------------------------------------------------------------------------------------------------- > 

                                                           
1 Since WWW systems primarily use HTTP protocol which is built on top of TCP/IP, when we refer to a protocol 
layer mean it in the context of TCP/IP (which has 5 layers) and not OSI (which has seven layers) unless explicitly 
stated. 



IP (Layer 3 Switch) Transport (Layer 4 Switch) Content (Layer 5 Switch) 
Src 01/Dest 02 Port   80 http://www.yeehoo.com/news 
Src 01/Dest 02 Port   80 http://www.yeehoo.com/sports 
Src 01/Dest 02 Port   80 http://www.yeehoo.com/books 
Src 01/Dest 02 Port   80 http://www.yeehoo.com/movies 
 
 

3 Thesis Plan 
The largest deliverable of this project will be the a working software implementation of the content switch [1] whose 
architecture is as shown in the figure 1, which appears in Dr. Chow’s introduction to content switch presentation 
[10]  below: 

 
 

Figure 1: High Level Architecture of Content Switch 
 

Here is a brief description of key components shown in Figure 1: 
 
1. CS Rule Editor: CS Rule editor allows user to specify the set of rules for the content switch. 
2. CS Rules: Each rule can consist one or more boolean conditions on fields extracted from the incoming request. 

If all conditions of a rule are satisfied the request is routed to the target server as specified by the rule. Here is a 
set of sample rules: 

 
R1: if (xml.purchase/totalAmount > 52000) { routeTo(server1, STICKY); } 
R2: if (xml.purchase/customerName == "CCL") {  
        routeTo(server2, NONSTICKY); } 
R3: if (strcmp(url, "gif$") == 0) { routeTo(server3, NONSTICKY); } 
R4: if (srcip == “128.198.60.1” && dstip == “128.198.192.192” &&    dstport == 80) {  
           routeTo(LBServerGroup, STICKY); } 
 

Basic Operations of Content Switching

CS 
Rule Matching Algorithm

Header
Content

Extraction

Packet Classification

CS
Rules

Packet Routing
(Load Balancing)

CS Rule
Editor

Incoming
Packets

Forward
Packet

To 
Servers

Network Path Info

Server Load Status

CS: Content Switching



3. Header Content Extraction: This component is responsible for extracting the headers from the incoming 
requests and parsing out fields with their values that comprise the boolean conditions of the CS rules. 

4. CS Rule Matching: The input to this component will consist of fields extracted by the content extraction 
module. This component will use efficient algorithms using input fields values to select the (set of) real 
server(s) that can handle the request. 

5. Load Balancing: As the name suggests this component is responsible for selecting the real server with minimal 
load among the set of possible servers that can handle the request. The decision will be based on dynamic load 
balancing policies. A few potential approaches for load balancing are discussed in sections 4.2 and 4.3. 

4 Tasks 

4.1 Improve TCP Delay Binding 
In TCP, the client will not deliver the upper layer request content until it finishes the three way handshake with  the 
server. The content switch needs to act on behalf on the real server to commit the sequence number in the 
SYN/ACK packet. After receiving the upper layer request content, the content switch establishes another three way 
handshake with the real server and serves a bridge for relaying the data packet between the client and the real server. 
This is called TCP delay binding. Since the sequence number committed by the real server and the content switch 
will be different, it is required to modify the sequence number on both direction. This is so-called TCP delay 
binding problem. This is shown in figure 2, which appears in Dr. Chow’s introduction to content switch 
presentation [10]. 
 

Figure 2: An illustration of TCP Delayed Binding in Content Switch 
 
 
 
 
 
 
 

TCP Delay Binding
client 

content switch  
server 

step1 

step2 

SYN(CSEQ) 

SYN(DSEQ) 

ACK(CSEQ+1)
 

DATA(CSEQ+1) 

ACK(DSEQ+1)
step3 

step7 

step8 

step4 
step5 

step6 

SYN(CSEQ) 

SYN(SSEQ) 
ACK(CSEQ+1) 

DATA(CSEQ+1) 
ACK(SSEQ+1) 

DATA(SSEQ+1) 
ACK(CSEQ+lenR+1) 

DATA(DSEQ+1)  
ACK(CSEQ+LenR+1)

 
ACK(DSEQ+lenD+1) ACK(SSEQ+lenD+1) 

lenR: size of http request. 
lenD: size of return document

. 



4.1.1 Investigation of Moving the Sequence Number Translation Logic to 
the Real Server 

The content switch after negotiating the initial sequence number with client and selecting the real server can send 
the sequence number translation rule to the real server. The real server will directly reply to the client with the 
correct translated sequence numbers in the outgoing response. The real server also needs to spoof the source address 
in the response to that of the content switch so that the client is not confused as it originally sent the request at 
(Virtual IP Address) VIP which is the content switch IP address. The benefit of this approach is processing at the 
content switch will be reduced and its chief task will be only to select the best server using rule matching.  

4.1.2 Comparison of Techniques for Improving TCP Delay Binding 
There are also pre-allocate server scheme and filtering scheme [10] for improving the TCP delay binding processing 
in content switching.  We will implement these three schemes in a network prototype and compare their 
performance with the basic TCP delay binding. 

4.1.3 Solution to "Potential" Problems resulting from Keep-Alive HTTP 
Session 

Even though we have observed using a sample html document containing few jpeg images  in both Netscape 
Navigator 4.5 and IE 5 browsers that in a Keep-Alive HTTP Session subsequent request is sent only when the reply 
for the previous request is received in the "same" TCP/IP connection, the HTTP/1.1 RFC relaxes this assumption. It 
specifically mentions that in a Keep-Alive (or persistent) HTTP connection requests can be pipelined in one 
connection without waiting for the results of previous requests. May be true request pipelining is used when the 
requested HTML document is very large and has many embedded links. This is yet to be ascertained. If true request 
pipelining is really present, we need to multiplex the responses from possibly multiple real servers into one 
consolidated response for the client with the right set of sequence numbers. Following are two suggested approaches 
to handle this situation. 
1. Cache the responses at the content switch and deliver it to the client as and when the response completes. This 

will allow segments for one response to be assigned one contiguous series of sequence numbers. 
2. Buffer all requests at the CS in case of multiple Keep-Alive requests. Send only one request at a time to the real 

server. As soon as its response is complete submit the next request in the input queue and so on. In this manner 
only request need to be buffered (which are usually small in size) as opposed to responses in case 1 above. 
Possibly this is the way that an HTTP server handles multiple responses in a Keep-Alive Session with multiple 
requests. 

3. Keep-Alive option is only present in HTTP/1.1. The server can deny such requests and force the client to 
resubmit that request and hence the client will learn to submit different requests in different connections 
subsequently. This mechanism is provided in HTTP for backward compatibility. 

4.1.4 Detailed Investigation of Using Direct Routing and IP Tunneling 
instead of NAT for Content Switch 

The literature for DR and IP tunneling is still under study [14].  

4.1.5 Connection Reuse 
To remove the overhead associated with connection establishment and tear-down, a set of connections between 
content switch and real servers can be set up ahead of time and reused. This has definite advantages especially when 
the response size is very small and majority of packet traffic is that of SYNs/ SYN ACKS and FINS. Also it is seen 
that due to TCP/IP slow start algorithm the bandwidth used around initiation of a TCP/IP connection is very little as 
compared to what can be achieved during steady state. 

4.2 Load Balancing Information Gathering 
Indira Semwal in her thesis report an architecture for load balancing a web clusters [13]. In her work she mentions 
about  using both the server load and characteristics of path leading to the chosen server. This work is useful when 



the chosen server can exists in a different network as that of the CS. The following are two suggestions on load 
balancing information gathering for content switch: 
1. The load balancing information can be obtained during real server startup as described before. During steady 

state, the CS can proactively send requests to real servers for their load at configurable heartbeat intervals. The 
real server will send replies containing their load information to CS for such requests. What exactly will 
comprise the load of the server is undecided at this stage and needs to be investigated. One potential way to 
obtain this information is use information provided system monitoring tools like vmstat or system activity 
report (sar). 

2. The load balancing information is collected at the CS itself that can be used to estimate primarily the network 
activity of the real server. The information will essentially be the number of active connections to the real server 
or the overall bandwidth to/from it at that instant. This can be coupled with the static system profile (obtained 
initially during registration) to come up with an index that determines most suitable server during dynamic 
server selection. 

A third approach which is a combination of schemes 1 and 2 discussed above can be used. 

4.3 Dynamic Server Selection 
The incoming request from the client will be parsed and a broad classification of the request type will be obtained by 
the CS Rule Matching algorithms [12]. Once the type of request is determined it can be mapped to a logical cluster 
that can serve this request. The elected cluster name will be used by the CS, load balancing module to pick the 
optimal choice among the members of the chosen cluster. The IP address information of the final selected real server 
can obtained from a name to IP address mapping table. This table can be either in memory or possibly stored in a 
database. Note that this mapping information is populated from the registration request sent by real servers. 
This is borrowed from ASAP/ENRP scheme [7][8] of server IP address resolution from its logical name. 

4.4 Dynamic Cluster Maintenance 
Each real server will be part of one or cluster groups. Each cluster will have a unique logical name assigned to it. 
During initial set up the real server will register with the content switch. In the registration request the real server 
will provide the cluster name it belongs to and the set of IP Addresses at which it can be contacted, if it is 
multihomed. In addition to the cluster specific information the real server will also supply its load balancing policy.  
Since present CS rules mandate fixed set of clusters, a real server will be allowed to be registered if its cluster name 
is one among the fixed set of cluster group. This mechanism allows dynamic addition and removal (via de-
registration request) of a real server from a cluster group. This solution is borrowed from ENRP [8] server 
registration scheme. 
  

4.5 Fault Tolerance 
If during steady state the connection to the selected real server breaks down due to network breakdown or host 
crash, the content switch can redirect the traffic to the next available member of that cluster. If the failure that 
resulted in connection breakdown was network related the CS can initiate the connection to an alternate IP address 
of the real server, if it is multi-homed, without client even knowing about it. The issue here might be to recover the 
state of the transaction exactly from a stage just before the breakdown.  If the state somehow cannot be recovered 
the best solution will be to report failure to the client and let it retry. I believe there are headers in HTTP responses 
that specifically tell the client to retry. This scheme is borrowed from SCTP /ASAP [6][7] fault tolerance 
mechanism. 
 
Heartbeat, Mon, and Ldirector are used in high available Linux Virtual Server system [14][15]. We will explore the 
use of two content switches to achieve a fault-tolerant highly available content switch system. 

4.6 Miscellaneous Findings and Suggestions 
�� Possible use of redirect feature of HTTP servers. What this means is if server is not able to handle the request it 

can redirect request to a different server that the client will retry the request. In this scenario content switch only 
serves to find the best server and send a redirect response to client for that real server. The possible drawback is 



problem with Keep-Alive connection would not be efficiently used as client has to reopen the connection to the 
redirected server. 

�� Possible use of caching techniques at CS. The cache can be validated using proper cache coherency algorithms 
as suggested in the RFC of HTTP/1.1[4]. This can significantly reduce the response time and server processing 
overhead for idempotent requests like GET and HEAD. The cache need not be very large.  A size of around a 
few megabytes or few 100 kilobytes can perform well using good caching algorithms. 

�� Other issues like security, best rule matching algorithms etc., can also be looked into depending on the thesis 
progress and time constraints. 

5 Deliverables 
• A working software implementation of content switch.  
• A thesis report documenting the design, implementation and performance benchmarks of Content Switch. 

In addition a description on related technologies and scope for future improvements. 

6 Timeline of Thesis work 
Based on a first hand estimate of effort involved in the identified tasks, here is the tentative schedule of work to be 
done in the thesis: 
�� Improve TCP Delay Binding: February-20 - March 15. 
�� Load Balancing Information Gathering: March-16 - April 15. 
�� Dynamic Server Selection: April 16 - May 15. 
�� Dynamic Cluster Maintenance: May 16 - June 15. 
�� Fault Tolerance, Miscellaneous Findings and Suggestions: June 16 - July 15. 
�� Thesis Report Writing: July 16 - July 30. 

7 References  
1. George Apostolopoulos, David Aubespin, Vinod Peris, Prashant Pradhan, Debanjan Saha; 

“Design, Implementation and Performance of a Content-Based Switch.” 
http://cs.uccs.edu/~chow/pub/contentsw/paper/contentsw/apostolopoulosum.pdf    

2. RFC 793, Transmission Control Protocol (TCP/IP), ftp://ftp.isi.edu/in-notes/rfc793.txt. 
3. RFC 1945, Hypertext  Transmission Protocol (HTTP) / 1.0, ftp://ftp.isi.edu/in-notes/rfc1945.txt 
4. RFC 2068, Hypertext  Transmission Protocol (HTTP) / 1.1, ftp://ftp.isi.edu/in-notes/rfc2068.txt 
5. Jeffery C. Mogul; The Case for Persistent Connection HTTP, Digital Western Research Laboratory, 

http://www.research.compaq.com/wrl/publications/abstracts/95.4.html. 
6. RFC 2096, Stream Control Transmission Protocol, IETF proposed standard, ftp://ftp.isi.edu/in-

notes/rfc2960.txt. 
7. Aggregate Server Access Protocol (ASAP), IETF draft standard for highly available data transfer mechanism in 

pool of servers using a name based communication model, http://www.ietf.org/internet-drafts/draft-xie-
rserpool-asap-01.txt. 

8. Endpoint Name Resolution Protocol (ENRP), IETF draft standard to provide a fully distributed fault-tolerant 
real-time translation service that maps a name to a set of transport addresses pointing to a specific group of 
networked communication endpoints registered under that name, http://www.ietf.org/internet-drafts/draft-xie-
rserpool-enrp-01.txt. 

9. Douglas E. Comer. Internetworking with TCP/IP, Principles, Protocols and Architecture. 
10. C. Edward Chow, “Introduction to Content Switch,” http://cs.uccs.edu/~cs622/doc/contentsw.ppt. 
11. C. Edward Chow and Weihong Wang, “Design and Implementation of a Linux-based Content Switch,” UCCS 

Tech Report EAS-CS-2001-3, submitted to the Second International Conference on Parallel and Distributed 
Computing, Applications, and Techniques, http://cs.uccs.edu/~chow/pub/contentsw/status/chow1.doc. 

12. C. Edward Chow Ganesh Godavari, and Jianhua Xie, “Content Switch Rules and their conflict Detection,” 
UCCS Tech Report EAS-CS-2001-4, submitted to the Second International Conference on Parallel and 
Distributed Computing, Applications, and Techniques, 
http://cs.uccs.edu/~chow/pub/contentsw/status/chow2.doc. 

13. Indira, Semwal, Improving web server cluster performance using load balancing agents. 
14. Linux Virtual Server (LVS) documentation, http://linuxvirtualserver.org/Documents.html 



15. High Availability Linux Project, http://www.linux-ha.org/. 
 


