Generate Dynamic Content On Cache Server

Master’s Project Proposal by Aparna Yeddula

1.  Committee Members and Signatures

   Approved by                                           Date

   __________________________________                    _____________

   Advisor: Dr. Edward Chow                        

   __________________________________                    _____________

   Committee member: Dr. Jugal Kalita

   __________________________________                    _____________

   Committee member: Dr. Sudhanshu Semwal

2.  Introduction

My master’s project is about generating dynamic content on the cache server using Microsoft DOTNET web services and Java Server Page (JSP) utilities. In normal caching, when clients request a web page it is saved to disk. If it is requested again, the disk copy is served. The users can configure the cache to retrieve the newer copies. They can also by-pass the cache by holding shift key and hit reload. This technique is used in all modern browsers such as Internet Explorer and Netscape Navigator. In a content delivery network, browsers can be set up to request pages from a local cache server, instead of directly from the origin server. This cache acts as an intermediary by fetching document and then passing them to the browser. Additionally, it can save copies of the documents to form a collection of the documents that are available immediately when they are requested; it is usually referred to as a web proxy server. Subsequent requests from other users of the cache get the saved copy, which is much faster and does not consume Internet bandwidth over the often-congested network links. 


 





Figure 1. Content delivery with cache server

For web sites that serve dynamic content, the content on the web server can change for each individual user request or it can be updated frequently according to some schedule. For example stock quotes, auction-bidding pages, advertising banners, answer queries, news information, local time are such dynamic content. Generating dynamic web page imposes heavy burden on the original web server. To alleviate that, the generation of dynamic web pages can be done at the cache servers. One of the content delivery network providers Akamai had proposed Edge Side Include (ESI) language for specifying how a web page can be dynamically generated.

2.1. ESI specifications

The ESI language is conceptually similar in many ways to the Server Side Includes (SSI) function found in many server side script languages. It is an in-markup scripting language that is interpreted before the page is served to the client [3]. The ESI assembly model is comprised of a template containing fragments. Figure 2 below shows a web page with 4 fragments. Each fragment has its own time-to-live (TTL) attribute, which specifies how long the cache server maintains the copies. They range from 5d (days) to 15m (minutes). The template is the container for assembly, with instructions for the retrieval of fragments, and is the resource associated with the URL the end user requests. It includes ESI elements that instruct ESI processors (clients that understand ESI) to fetch and include a fragment's URI. The fragments themselves can be any textual web resource, typically Hypertext Transfer Protocol (HTML) markup. Because fragments are separate resources, they can be assigned their own cacheability and handling information. For example, a cache TTL of several days could be appropriate for the template, but a fragment containing a frequently changing story or ad may require a much lower TTL. Some fragments may require being marked uncacheable. ESI elements are specified in Extensible Markup Language (XML) with in an ESI-specific XML namespace. This allows them to be embedded in many common Web document formats; including HTML and XML based server-side processing languages.

[image: image1.png]o - - @ [ (| [Erersonaser @searth Grevortes 3|y B H B D v R

uttess [ o e ongdes vervem oo

(B&[E - (8 s EoR[E]K > M« s [OoR]

BRI EIEE

]

Template —————— =

Bookmarks

Thumbnails

Fragmemts ——
]

#J W[ 407 > M Bsxiin O] ki

3
: 1
! '
' '
[ [XYZ news, content, y
i promotions, etc. )
' TTL=5d] p
: -

TTL=2h]

&1 pone. B





Figure 2. ESI template page containing ESI fragments and their expiration policies 

2.2. Web services specifications

The web services from the DOTNET provide us a simple, flexible, standards-based model for integrating network applications together over the Internet that takes advantage of existing infrastructure and applications. Web services provide us with application integration, i.e., taking a group of applications and turning them into user-friendly web applications. Those applications can run on different operating systems, can be created with different programming languages, and built with different object models. Developers can reuse without worrying about how to implement the service. Web services provide well-defined interfaces that describe the services they represent. Developers can assemble applications by using a combination of remote services, local services, and custom code. Web services communicate by using standard web protocols and data formats, such as HTTP, XML, Simple Object Access Protocol (SOAP) and Extensible Markup Language Protocol (XMLP) [1]. 

[image: image2.png]A IMGUr

Bl Edt Vew Favortes

rosoft Internet Explorer

Tools

Hep  Jend |

=181

ok - = - D [ 4| [Crersonalpsr Qsesch (iravorkes 3|

s [ €] o fjwewnmqeiversty comWebP bl et sp U RL=32E . 2E% 2P Websy e 2 wssiudot s S 2E s =l 0w

it

| ¥

& ~custonize [3 |

search |~ || @ Messenger (Uf)-Bookmarks @ My Yahoo! ~ Wp Yahoo! - i Finance « [ YahoolMail - <7News - (7] Shopping - >

Web Server
with 2spx pages

Wb Server
with asmx pages

&5

XL

XNLP

Service

Client

Server
The Web services execution model involves two entities, the client and the service
provider.

Note The term "client" is often misinterpreted. In this sense, a client is a Web
browser that views the results of calling a Web service.

The slide illustration illustrates how Web services are used between a client and the
Web server. Each component has a specific role in the execution model.

Web Service Model

Tr tha Winh cnndcn madal_tha Wah canden dosnlanar:

Internet




Figure 3. Illustrate how Web services are used between client and Web server 

Web service can be used internally by a single application, or it can be used externally by many applications that access it through the Internet. Because it is accessible through a standard interface, a web service allows disparate systems to work together. The web services model is independent of languages, platforms, and object models. Each time a service request is received, a new object is created. The request for the method call, and the object is destroyed after the method call is returned. Figure 3 shows web service model.
In the web service model, the web service developer:

· Creates the .asmx file that includes the namespace, classes, properties, and methods.

· Declares methods as Web methods that can be accessed over the Internet.

The following is an example of a simple .asmx file:

Listing 1. MathService.asmx

<%@ WebService Language="VB" Class="MathService" %>\


Imports System.Web.Services
Imports System

Class MathService

    <WebMethod()> Public Function  Add(int1 As Integer, int2 As Integer) As Integer
        return(int1 + int2)
    End Function

End Class

Direct client model

1.    The client browser issues a GET HTTP request .asmx page directly to the web service. The web service sends the service description to the client about which methods are available. 

2.    When we call a web service from a browser, we access the description page, which lists the methods that are included in the Web service. The protocol that is used in this case is HTTP, and the data is returned as XML.

Web server or the proxy client model

1. The client browser issues a GET HTTP request .aspx page to the web server. The server parses and compiles the page. The code invokes the proxy to call the web service. Here the request and response between the servers is using XMLP  (shown in Figure 3). And the web server sends the response to the client in HTTP.

2.3. JSP custom tag specifications

JSP custom tag can be used to implement XML languages including ESI. To use the JSP custom tags, we need to define three separate components: the tag handler class that defines the tag’s behavior, the tag library descriptor (tld) file that maps the XML elements names to the tag implementations and the JSP file that uses the tag library [5]. 

Tag handler class 

The Java class tells the system what to do when it sees the tag. This class must implement that javax.servlet.jsp.tagext.TagSupport interface. Listing 2 is an example of a simple tag that just inserts “Custom tag example (cwp.tags.HelloWorldTag)” into the JSP page wherever the corresponding tag is used.

Listing 2. HelloWorldTag.java


package cwp.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.TagSupport;  // tells system what to do when it sees the tag

// This is a simple tag example to show how content is added to the

// output stream when a tag is encountered in a JSP page.

public class HelloWorldTag extends TagSupport {

 // doStartTag is called by the JSP container when the tag is encountered

public int doStartTag() {


  try {

        JspWriter out = pageContext.getOut();

        

out.println("<table border=\"1\">");


           out.println("<tr><td> Hello World </td></tr>");


  } catch (Exception ex) {


    throw new Error("All is not well in the world.");


  }


  // Must return SKIP_BODY because we are not supporting a body for this tag


  return SKIP_BODY;

 }

Tag library descriptor file

After we define tag handler, next we need to identify the class to the server and to associate it with a particular XML tag name. In the TLD file basically we describe the mapping between the tags and the related servlet that process the tags. For example the jspx:hello tag will be processed by cwp.tags.HelloWorldTag servlet code.

Listing 3. simple-taglib.tld 


     <!DOCTYPE taglib

        PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"


"http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_1.dtd">

    <taglib>

<tlibversion>1.0</tlibversion>

  
<jspversion>1.1</jspversion>

  
<shortname>simple</shortname>

<uri> simple-taglib.tld</uri>

  <tag>

     <name>hello</name>

    
     <tagclass>cwp.tags.HelloWorldTag</tagclass>

      
 </tag>

    </taglib>

The JSP file

In the Hello.jsp file we have taglib directive, this directive has the form ‘<%@ taglib uri="…" prefix="…" %>’. The required uri attribute refers to a tag library descriptor file like shown in Listing 4. The ‘prefix’ attribute specifies that it will be used in front of whatever tag name the tag library descriptor defined. For example, if the TLD file defines a tag named ‘hello’ and the prefix attribute has a value of ‘jspx’, the actual tag name would be ‘jspx:hello’. The tag could be used in either of the following two ways, depending on whether it is defined to be a container that makes use of the tag body:

<jspx:hello>body of the tag</jspx:hello>

or just

<jspx:hello/>

Listing 4. Hello.jsp 


<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>


<head>



<%@ taglib uri="simple-taglib.tld" prefix="jspx" %>



<title><jspx:hello /></title>


</head>


<body>



<H1 align="center"> JSP Custom Tag Test Page </H1>



<H2>First JSP Custom Tag 




<jspx:hellotest />



</H2>


</body>

</html>

3. Master’s Plan

The purpose of this project is to study how the DOTNET web services and JSP custom tags can be used to create dynamic web pages on a cache server. I will start by generating a set of dynamic web pages using the DOTNET service; examples include the creating time of the web page and stock quote. Then I will study the ESI specification by installing the ESI Test Server (ETS) [3] and examine how the ETS processes requests from the user and determines what parts of the page need to be retrieved from the original server. ETS allows dynamic content to be assembled at the edge of the network
. We will investigate the use of ESI ‘include’ and ‘choose’ tags to see how to assemble a set of fragments of a web page. Once we gain experience with ETS and ESI web page. We will study how to create a dynamic cache server for generating ESI web pages based on JSP custom tag. JSP web pages with ESI tags will be created. The related tag library files and servlets will be developed for generating those web pages.

4. Tasks

4.1. Already Complete 

1. Study how to change the date and time of the web page based on the Java Script.
2. Study how to change the date and time using DOTNET on the server side with .asmx page.

3. Study how to change the date and time using DOTNET on the server side with .aspx page.

4. Study how to use Java socket library to process the http request and response.

5. Study database access using Microsoft access and Active Server Page (ASP). 

6. Study how ESI works.
7. Study how JSP custom tags to implement ESI.

4.2.  In Progress

Testing the performance of my project with the ESI proposed by Akamai, using a simple PERL program to test the time taken to deliver the document. 

4.3.  Deliverables

My project report documenting the approach and code to the project, related work and the lessons learned in this project. 

5. References 

[1]  Microsoft DOTNET sample training modules 

 http://www.microsoft.com/traincert/training/developer/dotnet.asp

[2]  Active Cache: Caching Dynamic Contents on the Web

      http://www.cs.wisc.edu/~cao/papers/active-cache/SECTION00100000000000000000
[3]  ESI Resources  http://www.esi.org/language_spec_1-0.html 
[4]  “Core Servlets and Java Server Pages” by Marty Hall

[5]  “Core Web Programming” by Marty Hall and Larry Brown

Client 











Cache


server





Original server 





1. Client sends request for


    a document to the  


    original server





3. Http requests are sent


    only when there is no


    copy of the document in 


    cache or when TTL   


    (time to live) of the 


    document expires.



































Local cache of remote document























2. Serves request if the document is in


    cache else the document is retrieved


    from the original server and is cached 


    in the proxy for serving clients with 


    this document for any subsequent  


    requests








4.Return the 


  document   


  to the 


  cache


  server 





5. Return the 


    document to 


    the client








PAGE  
8

