DESIGN AND ANALYSIS OF �BREADTH FIRST ONEPRONG�NETWORK RESTORATION ALGORITHM
by
Anders Hansmats

A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of requirements for the degree of
Master of Science
University of Colorado
1997
�This Thesis for the Master of Science degree by

Anders Hansmats

has been approved for the

Department of Computer Science

by

	
Advisor: C. Edward Chow

	
Jugal K. Kalita

	
Sudhansu K. Semwal

Date _____________

��University of Colorado
Abstract
design and analysis of breadth first oneprong Network restoration algorithm
by Anders Hansmats
Thesis directed by: Professor C. Edward Chow
Department of Computer Science
Abstract

Broadband optical networks require fast restoration from single-link failures, node failures and multiple-link failures. This report describes a distributed restoration algorithm based on the one prong algorithm. It uses a breadth first search approach and a time-out mechanism to explore restoration paths with shorter hop count first to reduce spare usage. It can handle single-link failures, node failures, multiple link failures and area failures.

�
Table of Contents

� TOC \t "Chapter Subtitle;2;Chapter Title;1" �LIST OF FIGURES	� GOTOBUTTON _Toc403304303 � PAGEREF _Toc403304303 �viii��
LIST OF TABLES	� GOTOBUTTON _Toc403304304 � PAGEREF _Toc403304304 �x��
NETWORK RESTORATION	� GOTOBUTTON _Toc403304305 � PAGEREF _Toc403304305 �1��
Centralized / Distributed restoration	� GOTOBUTTON _Toc403304306 � PAGEREF _Toc403304306 �1��
Link based/ Path based approach	� GOTOBUTTON _Toc403304307 � PAGEREF _Toc403304307 �2��
Definitions of network model	� GOTOBUTTON _Toc403304308 � PAGEREF _Toc403304308 �3��
Performance Metrics for Network Restoration Algorithms	� GOTOBUTTON _Toc403304309 � PAGEREF _Toc403304309 �4��
Functional Characteristics of Network Restoration Algorithms	� GOTOBUTTON _Toc403304310 � PAGEREF _Toc403304310 �7��
ONE PRONG NETWORK RESTORATION	� GOTOBUTTON _Toc403304311 � PAGEREF _Toc403304311 �10��
SEARCHING FOR RESTORATION PATHS	� GOTOBUTTON _Toc403304312 � PAGEREF _Toc403304312 �12��
Regular Breadth first search	� GOTOBUTTON _Toc403304313 � PAGEREF _Toc403304313 �12��
Regular Depth First Search	� GOTOBUTTON _Toc403304314 � PAGEREF _Toc403304314 �14��
Iterative deepening	� GOTOBUTTON _Toc403304315 � PAGEREF _Toc403304315 �15��
Iterative broadening	� GOTOBUTTON _Toc403304316 � PAGEREF _Toc403304316 �17��
Heuristic search techniques	� GOTOBUTTON _Toc403304317 � PAGEREF _Toc403304317 �18��
Searching from One Prong view.	� GOTOBUTTON _Toc403304318 � PAGEREF _Toc403304318 �19��
DEPTH FIRST ONEPRONG WITH TIMER (DFOP)	� GOTOBUTTON _Toc403304319 � PAGEREF _Toc403304319 �20��
Notification Phase	� GOTOBUTTON _Toc403304320 � PAGEREF _Toc403304320 �20��
Path Trace-out Phase	� GOTOBUTTON _Toc403304321 � PAGEREF _Toc403304321 �21��
Path Confirmation Phase	� GOTOBUTTON _Toc403304322 � PAGEREF _Toc403304322 �23��
Clean Up Phase	� GOTOBUTTON _Toc403304323 � PAGEREF _Toc403304323 �24��
BREADTH FIRST ONEPRONG WITH TIMER (BFOP)	� GOTOBUTTON _Toc403304324 � PAGEREF _Toc403304324 �25��
Notification Phase	� GOTOBUTTON _Toc403304325 � PAGEREF _Toc403304325 �25��
Path Trace-out Phase	� GOTOBUTTON _Toc403304326 � PAGEREF _Toc403304326 �26��
Path Confirmation Phase	� GOTOBUTTON _Toc403304327 � PAGEREF _Toc403304327 �30��
Clean Up Phase	� GOTOBUTTON _Toc403304328 � PAGEREF _Toc403304328 �30��
DESIGN PLAN	� GOTOBUTTON _Toc403304329 � PAGEREF _Toc403304329 �31��
Project Plan	� GOTOBUTTON _Toc403304330 � PAGEREF _Toc403304330 �31��
INTERNAL DESIGN.	� GOTOBUTTON _Toc403304331 � PAGEREF _Toc403304331 �37��
Event queue	� GOTOBUTTON _Toc403304332 � PAGEREF _Toc403304332 �38��
Eventnode data structure	� GOTOBUTTON _Toc403304333 � PAGEREF _Toc403304333 �39��
Eventrecord data structure	� GOTOBUTTON _Toc403304334 � PAGEREF _Toc403304334 �40��
Symbol node data structure	� GOTOBUTTON _Toc403304335 � PAGEREF _Toc403304335 �40��
Node data structure	� GOTOBUTTON _Toc403304336 � PAGEREF _Toc403304336 �41��
Table record data structure	� GOTOBUTTON _Toc403304337 � PAGEREF _Toc403304337 �44��
Confirm data structure	� GOTOBUTTON _Toc403304338 � PAGEREF _Toc403304338 �45��
Message history data structure	� GOTOBUTTON _Toc403304339 � PAGEREF _Toc403304339 �46��
Pack record data structure	� GOTOBUTTON _Toc403304340 � PAGEREF _Toc403304340 �46��
Internal node data structure	� GOTOBUTTON _Toc403304341 � PAGEREF _Toc403304341 �47��
List data structure	� GOTOBUTTON _Toc403304342 � PAGEREF _Toc403304342 �47��
Inode data structure	� GOTOBUTTON _Toc403304343 � PAGEREF _Toc403304343 �48��
Linkdata data structure	� GOTOBUTTON _Toc403304344 � PAGEREF _Toc403304344 �48��
Timer record data structure	� GOTOBUTTON _Toc403304345 � PAGEREF _Toc403304345 �49��
Path_ack_info data structure	� GOTOBUTTON _Toc403304346 � PAGEREF _Toc403304346 �49��
Up_info data structure	� GOTOBUTTON _Toc403304347 � PAGEREF _Toc403304347 �50��
Down_info data structure	� GOTOBUTTON _Toc403304348 � PAGEREF _Toc403304348 �51��
Program structure	� GOTOBUTTON _Toc403304349 � PAGEREF _Toc403304349 �51��
ANALYSIS USING FUNCTIONAL CHARACTERISTICS	� GOTOBUTTON _Toc403304350 � PAGEREF _Toc403304350 �59��
Path finding	� GOTOBUTTON _Toc403304351 � PAGEREF _Toc403304351 �59��
Spare Channel Contention	� GOTOBUTTON _Toc403304352 � PAGEREF _Toc403304352 �61��
Restoration Path Selection	� GOTOBUTTON _Toc403304353 � PAGEREF _Toc403304353 �61��
Message Volume Control	� GOTOBUTTON _Toc403304354 � PAGEREF _Toc403304354 �62��
Congestion control	� GOTOBUTTON _Toc403304355 � PAGEREF _Toc403304355 �65��
Race Condition Control	� GOTOBUTTON _Toc403304356 � PAGEREF _Toc403304356 �66��
Restored Path Connection	� GOTOBUTTON _Toc403304357 � PAGEREF _Toc403304357 �66��
PERFORMANCE ANALYSIS USING PERFORMANCE METRICS	� GOTOBUTTON _Toc403304358 � PAGEREF _Toc403304358 �67��
Restoration Level	� GOTOBUTTON _Toc403304359 � PAGEREF _Toc403304359 �67��
Time to restoration	� GOTOBUTTON _Toc403304360 � PAGEREF _Toc403304360 �69��
Spare Channel Utilization	� GOTOBUTTON _Toc403304361 � PAGEREF _Toc403304361 �70��
Range of Application	� GOTOBUTTON _Toc403304362 � PAGEREF _Toc403304362 �71��
Message Volume	� GOTOBUTTON _Toc403304363 � PAGEREF _Toc403304363 �72��
Restoration Level in 2 Seconds	� GOTOBUTTON _Toc403304364 � PAGEREF _Toc403304364 �72��
Example plot 1	� GOTOBUTTON _Toc403304365 � PAGEREF _Toc403304365 �73��
Example plot 2	� GOTOBUTTON _Toc403304366 � PAGEREF _Toc403304366 �74��
Example plot 3	� GOTOBUTTON _Toc403304367 � PAGEREF _Toc403304367 �76��
Example plot 4	� GOTOBUTTON _Toc403304368 � PAGEREF _Toc403304368 �78��
Example plot 5	� GOTOBUTTON _Toc403304369 � PAGEREF _Toc403304369 �81��
Conclusion and Observations of Performance Analysis	� GOTOBUTTON _Toc403304370 � PAGEREF _Toc403304370 �82��
OBSERVATIONS DONE DURING THIS PROJECT	� GOTOBUTTON _Toc403304371 � PAGEREF _Toc403304371 �85��
Reading/learning existing one prong code	� GOTOBUTTON _Toc403304372 � PAGEREF _Toc403304372 �85��
Porting one prong from UNIX GNU GCC to Win32 MSVC++	� GOTOBUTTON _Toc403304373 � PAGEREF _Toc403304373 �86��
Why Win32	� GOTOBUTTON _Toc403304374 � PAGEREF _Toc403304374 �86��
Time needed for this project	� GOTOBUTTON _Toc403304375 � PAGEREF _Toc403304375 �88��
Working abroad	� GOTOBUTTON _Toc403304376 � PAGEREF _Toc403304376 �89��
BIBLIOGRAPHY	� GOTOBUTTON _Toc403304377 � PAGEREF _Toc403304377 �89��
APPENDIX A	� GOTOBUTTON _Toc403304378 � PAGEREF _Toc403304378 �91��
Input options	� GOTOBUTTON _Toc403304379 � PAGEREF _Toc403304379 �92��
APPENDIX B	� GOTOBUTTON _Toc403304380 � PAGEREF _Toc403304380 �92��
Output interpretation	� GOTOBUTTON _Toc403304381 � PAGEREF _Toc403304381 �93��
APPENDIX C	� GOTOBUTTON _Toc403304382 � PAGEREF _Toc403304382 �95��
Accumulated Bandwidth Problem	� GOTOBUTTON _Toc403304383 � PAGEREF _Toc403304383 �95��
APPENDIX D: SIMULATION RESULTS	� GOTOBUTTON _Toc403304384 � PAGEREF _Toc403304384 �100��
ONEP NJ3.NET	� GOTOBUTTON _Toc403304385 � PAGEREF _Toc403304385 �101��
DFOP NJ3.NET	� GOTOBUTTON _Toc403304386 � PAGEREF _Toc403304386 �102��
BFOP NJ3.NET	� GOTOBUTTON _Toc403304387 � PAGEREF _Toc403304387 �103��
ONEP LATA3.NET	� GOTOBUTTON _Toc403304388 � PAGEREF _Toc403304388 �104��
DFOP LATA3.NET	� GOTOBUTTON _Toc403304389 � PAGEREF _Toc403304389 �105��
BFOP LATA3.NET	� GOTOBUTTON _Toc403304390 � PAGEREF _Toc403304390 �106��
ONEP D31.NET	� GOTOBUTTON _Toc403304391 � PAGEREF _Toc403304391 �107��
DFOP D_31.NET	� GOTOBUTTON _Toc403304392 � PAGEREF _Toc403304392 �109��
BFOP D_31.NET	� GOTOBUTTON _Toc403304393 � PAGEREF _Toc403304393 �111��
ONEP DIS5_63.NET	� GOTOBUTTON _Toc403304394 � PAGEREF _Toc403304394 �114��
DFOP DIS5_64.NET	� GOTOBUTTON _Toc403304395 � PAGEREF _Toc403304395 �119��
BFOP DIS5_64.NET	� GOTOBUTTON _Toc403304396 � PAGEREF _Toc403304396 �124��
�
�List of figures
	
� TOC \c "Figure" �Figure 1 Link Restoration	� GOTOBUTTON _Toc403304397 � PAGEREF _Toc403304397 �3��
Figure 2 Path Restoration	� GOTOBUTTON _Toc403304398 � PAGEREF _Toc403304398 �3��
Figure 3 Restoration level	� GOTOBUTTON _Toc403304399 � PAGEREF _Toc403304399 �6��
Figure 4 Breadth First Search	� GOTOBUTTON _Toc403304400 � PAGEREF _Toc403304400 �13��
Figure 5 Depth First Search	� GOTOBUTTON _Toc403304401 � PAGEREF _Toc403304401 �14��
Figure 6 Iterative deepening	� GOTOBUTTON _Toc403304402 � PAGEREF _Toc403304402 �16��
Figure 7 Iterative broadening	� GOTOBUTTON _Toc403304403 � PAGEREF _Toc403304403 �18��
Figure 8 DFOP Notification phase	� GOTOBUTTON _Toc403304404 � PAGEREF _Toc403304404 �21��
Figure 9 DFOP bw rejecting	� GOTOBUTTON _Toc403304405 � PAGEREF _Toc403304405 �23��
Figure 10 BFOP Notification Phase	� GOTOBUTTON _Toc403304406 � PAGEREF _Toc403304406 �25��
Figure 11 BFOP traceout information	� GOTOBUTTON _Toc403304407 � PAGEREF _Toc403304407 �28��
Figure 12 Time Plan	� GOTOBUTTON _Toc403304408 � PAGEREF _Toc403304408 �34��
Figure 13 Event queue	� GOTOBUTTON _Toc403304409 � PAGEREF _Toc403304409 �39��
Figure 14 Node Data Structure	� GOTOBUTTON _Toc403304410 � PAGEREF _Toc403304410 �42��
Figure 15 Program structure	� GOTOBUTTON _Toc403304411 � PAGEREF _Toc403304411 �52��
Figure 16. Handling of CONF messages	� GOTOBUTTON _Toc403304412 � PAGEREF _Toc403304412 �58��
Figure 17 DFOP PACK forwarding	� GOTOBUTTON _Toc403304413 � PAGEREF _Toc403304413 �60��
Figure 18 BFOP PACK forwarding	� GOTOBUTTON _Toc403304414 � PAGEREF _Toc403304414 �61��
Figure 19 Plot of 25-6cut	� GOTOBUTTON _Toc403304415 � PAGEREF _Toc403304415 �73��
Figure 20 Plot of 44-28cut	� GOTOBUTTON _Toc403304416 � PAGEREF _Toc403304416 �75��
Figure 21 Plot of 44-28cut, zoom	� GOTOBUTTON _Toc403304417 � PAGEREF _Toc403304417 �76��
Figure 22 Plot of 9-7cut	� GOTOBUTTON _Toc403304418 � PAGEREF _Toc403304418 �77��
Figure 23 Plot of BFOP N00-N03cut, different delays	� GOTOBUTTON _Toc403304419 � PAGEREF _Toc403304419 �79��
Figure 24 Plot of BFOP N00-N03cut	� GOTOBUTTON _Toc403304420 � PAGEREF _Toc403304420 �80��
Figure 25 Plot of 14cut, different TTL	� GOTOBUTTON _Toc403304421 � PAGEREF _Toc403304421 �81��
Figure 26 Distribution of ACK/CONF messages	� GOTOBUTTON _Toc403304422 � PAGEREF _Toc403304422 �83��
Figure 27 Accumulated Bandwidth Problem (1)	� GOTOBUTTON _Toc403304423 � PAGEREF _Toc403304423 �95��
Figure 28 Accumulated Bandwidth, Problem (2)	� GOTOBUTTON _Toc403304424 � PAGEREF _Toc403304424 �96��
Figure 29 Accumulated Bandwidth, Problem (3)	� GOTOBUTTON _Toc403304425 � PAGEREF _Toc403304425 �96��
Figure 30 Accumulated Bandwidth Problem (4)	� GOTOBUTTON _Toc403304426 � PAGEREF _Toc403304426 �97��
Figure 31 Accumulated Bandwidth Problem (5)	� GOTOBUTTON _Toc403304427 � PAGEREF _Toc403304427 �97��
Figure 32 Accumulated Bandwidth Problem (6)	� GOTOBUTTON _Toc403304428 � PAGEREF _Toc403304428 �98��
�

�List of tables
� TOC \c "Table" �Table 1 BFOP Message Volume	� GOTOBUTTON _Toc403304429 � PAGEREF _Toc403304429 �64��
Table 2 ONEP NJ3.NET	� GOTOBUTTON _Toc403304430 � PAGEREF _Toc403304430 �101��
Table 3 DFOP NJ3.NET	� GOTOBUTTON _Toc403304431 � PAGEREF _Toc403304431 �102��
Table 4 BFOP NJ3.NET	� GOTOBUTTON _Toc403304432 � PAGEREF _Toc403304432 �103��
Table 5 ONEP LATA3.NET	� GOTOBUTTON _Toc403304433 � PAGEREF _Toc403304433 �104��
Table 6 DFOP LATA3.NET	� GOTOBUTTON _Toc403304434 � PAGEREF _Toc403304434 �105��
Table 7 BFOP LATA3.NET	� GOTOBUTTON _Toc403304435 � PAGEREF _Toc403304435 �106��
Table 8 ONEP D_31.NET	� GOTOBUTTON _Toc403304436 � PAGEREF _Toc403304436 �108��
Table 9 DFOP D_31.NET	� GOTOBUTTON _Toc403304437 � PAGEREF _Toc403304437 �110��
Table 10 BFOP D_31.NET	� GOTOBUTTON _Toc403304438 � PAGEREF _Toc403304438 �113��
Table 11 ONEP DIS5_64.NET	� GOTOBUTTON _Toc403304439 � PAGEREF _Toc403304439 �118��
Table 12 DFOP DIS5_64.NET	� GOTOBUTTON _Toc403304440 � PAGEREF _Toc403304440 �123��
Table 13 BFOP DIS5_64.NET	� GOTOBUTTON _Toc403304441 � PAGEREF _Toc403304441 �130��
�

�Chapter 1
Network restoration
There is an increasing dependency on today’s communication networks, user demands for high-speed and economical communications service lead to the rapid deployment of high-capacity optical fibers in the network. The technological change to optical fiber based networks coincides with a time when telecommunications is a major part of a country’s infrastructure. Business, medicine, air traffic control and reservations, and the governmental offices are among those dependent on telecommunications integrity. These demands for high-reliability services raise a network survivability problem. There have been many algorithms developed to restore networks [5]. Most of them assume Digital Cross Connect System (DCS) as switching component. Among the strategies there are centralized DCS-based network restoration and distributed DCS-based network restoration.
Centralized / Distributed restoration
In centralized network restoration, a node is dedicated to be the Network Operation Center (NOC) and performs the diagnostics and restoration functions, it requires reliable links between the DCS nodes and the network restoration center. The NOC has knowledge of the topology of the entire network and uses this information along with messages received from the nodes in the network to make diagnosis and set up alternate restoration paths.
Distributed network restoration uses a simple but efficient flood search to quickly and automatically identify alternative paths. There is no need for network databases or control software as the network acts as its own database. Each node knows only its own unique identity and a set of rules that tell how to react when it sees an alarm or a message from a neighboring node.
It is usually the case that the distributed approach performs better on link failures due to the shorter delay and the centralized approach is better on node failures due to low message volume under the assumption that warning messages are consolidated[13].

Link based/ Path based approach
There are two basic approaches to reroute the disrupted traffic due to a fiber cut. The first one is called link restoration and it approaches the problem by replacing the affected link segment of a disrupted channel by a spare path between the two disrupted nodes. The restoration is initiated by nodes that are adjacent to the disrupted area.

�

�

Figure � SEQ Figure * ARABIC �1� Link Restoration

The other approach is called path restoration and it releases each disrupted channel and lets the source and destination nodes of the path handle the establishment of the connection. Since it takes some time for the messages to propagate back to the end nodes of the path, the initiation will be started later, compared to the link based approach. Path A-B-C-D and link B-C is broken. Nodes A and D will be the source and destination node respectively. They will initiate the restoration request.

���

����

�

Figure � SEQ Figure * ARABIC �2� Path Restoration

Definitions of network model
To do analysis of network restoration algorithms, the network restoration model is defined as follows[7]:
A network is defined as a system of switching nodes connected by communication lines, and can be represented as an augmented undirected graph with a set of nodes and a set of links. A link connects two nodes in the network and it has an associated bandwidth. The bandwidth of a link is divided into basic units called channels. Each channel is in one of two states: working or spare. Each link in the network is labeled with two numbers, representing the number of working and spare channels in the link. A route is specified as an ordered set of concatenated channel Ids. The hop count of a route is the number of links of the route. A path is specified by an ordered set of concatenated channel Ids. The hop count of a path is the number of channels in the path. A working path is a path where all channels are working channels while a spare path is a path where all channels are spare channels. A restoration path is a spare path that is designated for restoring a disrupted working channel due to network failure.

Performance Metrics for Network Restoration Algorithms
There are five performance metrics for evaluating Network Restoration algorithms described by John Bicknell, C.Edward Chow and Sami Syed in [8] .

Time to restoration
Level of restoration
Utilization of spare cannel resources
Range of application
Message volume

The first performance metric, time to restoration, refers to the time required by the algorithm to complete execution to whatever level of restoration it can achieve. This is an extremely important metric, since it is desirable to accomplish restoration as fast as possible to avoid call dropping. In the ideal case, an algorithm must achieve full possible restoration in less than two seconds.
The second performance metric, level of restoration, refers to how many of the lost working channels are restored. The ideal case is that all lost channels are restored. This may not always be possible, three situations can occur which limits the restoration. First, there may be not sufficient spare capacity in the network to support restoration of the lost working channels, even with an optimal algorithm. Second, there could be considerable spare capacity within the network, overall, but it is distributed in a way that restoration cannot be achieved in a specific failure scenario. Third, even when complete restoration is possible, certain network topologies can create situations which are pitfalls for distributed algorithms using a heuristic approach to path finding or restoration path selection.
 Performance metrics 1 and 2, when combined, are the most critical performance criteria for any network restoration algorithm. The ideal solution is a 100% restoration within two seconds. In situations in which an algorithm cannot accomplish full restoration within the two second limit, the rate at which it restores lost channels can be of importance.
�

�

�����

Figure � SEQ Figure * ARABIC �3� Restoration level
The above figure illustrates this. The two curves represent the rate at which two network restoration algorithms, 1 and 2, achieve increasing levels of restoration. There are three time marks shown, A, B and C. If two seconds of elapsed time occur at time mark C, then both algorithms have restored 100%. If two seconds of elapsed time occur at time mark A, then algorithm 1 is superior to algorithm 2, since it has achieved a higher level of restoration. If, however, two seconds of elapsed time occurs at time mark B, algorithm 2 is superior to algorithm 1.
Performance metric 3, utilization of spare channel resources, refers to how many spare channels that are switched to working channels to replace the lost channels. Since bandwidth is a limited resource within a network, it is desirable that as few spare channels as possible is used in the restoration solution.
Performance metric 4, range of application, refers to what different kinds of failure scenarios the algorithm can be applied to affect restoration. A number of distributed algorithms can only address single link failures. A limited number of algorithms can be used to restore lost working channels in multiple link and node failure scenarios.
Performance metric 5, message volume, refers to how many network restoration messages that are generated by a restoration algorithm. It is desirable that the number of messages an algorithm generates should be as few as possible. Not only does message volume affect performance metric 1, it also limits other network message traffic flow during the restoration process which may also be of high or critical priority.

Functional Characteristics of Network Restoration Algorithms
The following seven functional characteristics which can be attributed to distributed network restoration is presented by C. Edward Chow in [8].
Find paths
Resolve spare channel contention
Select restoration paths
Control message volume
Control congestion
Counter race conditions
Connect restored paths

Functional characteristic 1, find path, relates to how an algorithm identifies possible restoration paths. Most distributed algorithms use some form of flooding to accomplish this. There are two approaches in finding paths. One is to limit, through some mechanism, path finding to a subset of all paths in the network, the other approach is to perform a tracing of all paths in the network.
Functional characteristic 2, Resolve spare channel contention , is the situation when there are multiple request for the same set of spare channels.
Since all the candidate restoration paths in a restoration solution usually are not disjoint paths, there is some competition among these paths for available spare channels. At some point in the execution of these distributed algorithms there exists a possibility that the same spare channel have more than one reservation or attempted reservation made to use it in the restoration solution.
For example, there are two links A and B with spares available. One request reserved all spares in Link A and continue to reserve spares in Link B. The other request reserved all spares in Link B and continue to reserve spares in Link A. Both requests run into dead end and either need to back off and release all the reserved spares and try again. A priority scheme can be used and have high priority request take over the spares reserved by the lower priority request.

Functional characteristic 3, select restoration paths, refers to the process the algorithm uses to select from among the identified candidate paths, which are to be used in the restoration process. Most of the distributed algorithms use a “first come, first serve” kind of approach .

Functional characteristic 4, control message volume, refers to what mechanisms the algorithm uses to reduce the number of messages produced during execution of the algorithm. It is desirable that an algorithm generates as few messages as possible, since this has an serious impact upon the time to restore metric and affects the networks capacity to process other time critical network restoration messages not involved in the restoration algorithm.

Functional characteristic 5, control congestion, refers to what techniques an algorithm uses to control message congestion at critical nodes. Critical nodes are nodes which, because of their location within the network, will process a larger number of messages than other nodes in the network.

Functional characteristic 6, counter race conditions, refers to how an algorithm control or respond to race condition during execution of the restoration algorithm. A network topology affects the speed with which messages propagate through a network. The timely arrival of a message or the relative arrival time of messages to a certain node may affect the performance of an algorithm. For example , if I use a random function for the message processing delay, and I modify it slightly, the message arrival patterns can change dramatically, and the outcome of the network restoration results are affected. The algorithm is subjected to the race condition.

Functional characteristic 7, connect restored paths, refers to the method used by the algorithm to make final restoration path connections. Most algorithms use a three phased approach: identify a path between the two end nodes, an acknowledgment is sent from one node to the other, the second node then sends a confirmation that the path has been connected.
Chapter 2
One prong Network Restoration
In the article [6] C. Edward Chow, Jay Shah and Dave Allen describe the Adaptive One Prong algorithm. It is a distributed algorithm and is based on an approach whereby aggregated bandwidth restoration requests are issued from one of the end nodes of the disrupted connections, the total bandwidth request for each disrupted connection is kept to be equal or under that of the lost bandwidth to allow more disrupted paths to be concurrently restored, and an intelligent retry logic is used to handle racing conditions and increase the restoration level.
The adaptive one prong lets the source node of a disrupted connection broadcast restoration messages which explore the potential paths between the two end nodes of the disrupted path. When the destination node receives the restoration request message, it recognizes that there is a potential restoration path and sends back an ACK message to reserve bandwidth. The bandwidth reserved will be equal or less than the lost bandwidth of the disrupted path.
The traditional approach aggressively reserves bandwidth on all outgoing branch with each branch up to that of the lost bandwidth during their initial restoration requests. The adaptive one prong on the other hand defers the bandwidth reservation until the destination receives a request message which indicates the hop count and therefore it has additional topology information which indicates the potential restoration paths. The adaptive one prong also apply a conservative approach whereby the sum of the reserved bandwidth on all outgoing links of a node will not exceed the aggregated bandwidth in the ACK messages it received or the available spare bandwidth.
Since multiple disrupted paths are reserving network spare bandwidth simultaneously, it is possible for a node to find that there are no more available spare on its outgoing links for a disrupted path. Some of the reserved bandwidth on those outgoing links may belong to the restoration process of the disrupted path that eventually leads to a dead end and will than be released. The adaptive one prong implements a retry mechanism which re-explore each of the outgoing links, it selects first a link with shorter hop count to the source node, and decreases a link’s selection probability, if the link frequently leads to a dead end.

Chapter 3
Searching For RESTORATION PATHs

Several different restoration path search methods were examined that could perform the actual search when the destination node got its PACK message sent by the source node and is supposed to initiate its search of restoration paths[10] [12]. But since the search is not a regular “search” in the sense that the node that is supposed to initiate the search already got the paths to the destination, the search is only supposed to come up with a “path” from source to destination that can support the bandwidth that is needed. Note, the “path” can consist of one or more sub paths, for example, if the total bandwidth lost are 20 and sub path A can support 15bw and sub path B can support 5bw, the “path” from source to destination consists of sub path A and sub path B. The following descriptions of search methods are based on [12].

Regular Breadth first search
The breadth first search could be viewed as a queue, so that newly generated children are put on the end of the list and expanded only after nodes at shallower depths have been examined. The complete ordering for the search is shown below in Figure 4.

�
�

Figure � SEQ Figure * ARABIC �4� Breadth First Search
If the branching factor is assumed to be B, the total number of nodes at depth K would be BK and all these have to be stored. To explore a tree like the above we need a search space of at least BK - 1. What about the amount of time needed? If we assume that it takes one unit of time to examine one node we would get the following. In order to reach a goal at depth K, the internal (non fringe) nodes that must be examined are all of the nodes at depths 0,1 ,2 ,....K-1 so we get
� EMBED Equation.2 ���

Since we do not know how many fringe nodes we have to examine before we reach the goal (min 1 and max. BK) we use the average = (1 + BK)/2.

So the total amount of time
� EMBED Equation.2 ���

Regular Depth First Search
This is the search technique used by the original one prong.
Depth first search the tree in the order described by the figure below.
�

Figure � SEQ Figure * ARABIC �5� Depth First Search
The time needed can be calculated like this:
If the goal is at the far left of the tree, then depth-first search will proceed directly to it, examining a total of K + 1 nodes. If it is to the far right of the tree, the entire space will be examined, a total of
� EMBED Equation.2 ���

nodes in all. If we average these two expressions, we could conclude that the number of nodes examined in the average case is the following

� EMBED Equation.2 ���

Iterative deepening
The idea of iterative deepening is to search the tree initially with an artificial depth cutoff of 1, so that any node below depth is not examined. If this approach succeeds in finding a solution at depth 1, the solution is returned. If not, the tree is searched again with a depth cutoff of 2. Each of these iterative searches proceeds in depth first fashion. The memory space needed is the same as for regular depth first search , we need to store B-1 nodes at each depth. The search order is shown below.
��

Figure � SEQ Figure * ARABIC �6� Iterative deepening

The time to search can be divided into the successful iteration and previous iterations.
The time needed for the successful iterations is given by

� EMBED Equation.2 ��� (1)

If the goal is at the far left of the tree, then we have to examine K+1 nodes. If it is to the far right of the tree, the entire space will be searched.
� EMBED Equation.2 ���

So if we take the average of these we get
� EMBED Equation.2 ���

The time needed for the previous iterations to depths 1,2,3..K-1 will need to examine the entire tree at these depths and the size of the tree at depth d is given by:
� EMBED Equation.2 ���

So the total time for the previous iterations is therefor

� EMBED Equation.2 ���

Combining this with the (1), we get:
� EMBED Equation.2 ���

Iterative broadening
Just as iterative deepening imposes artificial depth limits on the search and gradually increases those limits until a solution is found, iterative broadening imposes artificial breadth limits, increasing them until a solution is found. The figure below shows a search tree with cutoff = 2.

�

Figure � SEQ Figure * ARABIC �7� Iterative broadening

The maximum amount of time spent by the approach to reach a goal at depth K is approximately

� EMBED Equation.2 ���		

which is approximately � EMBED Equation.2 ��� for large B, and approximately BK for large K. The minimum amount of time for a goal at depth K is equal to K+1, with a artificial breadth limit of 1. If we take the average of these two we get � EMBED Equation.2 ���

Heuristic search techniques
In exploring search spaces, the trick is to use additional information about the problem being considered to avoid examining most of the nodes that conceivably will not lead to solutions. Instead of selecting the next node to expand in domain-independent way, we need to use domain-specific information when we do the selection. What we usually do is to apply some sort of “rule of thumb” or heuristic to decide what to do next. This heuristic can be simple or very complex depending on what you would like to achieve. In [10] there are lots of heuristic search techniques mentioned and the use of a heuristic approach can open new ways to finding fast restoration algorithms.
Searching from One Prong view.
By the use of the timer function and the fact that the entire search space is included in the knowledge of the finish node, makes the search space irrelevant. When the timer expires, the finish node has got information about all the paths the received PACK messages has traversed through. Based on this information and the information the finish node has about its neighboring nodes, the finish node needs to make a decision where it is going to send the ACK messages. All paths lead to a goal and the only constraint is the bandwidth available on each link in the path. The factor of importance here is the time needed to find path/paths that can support the bandwidth of the disrupted path. This makes the iterative deepening and the iterative broadening a worse choice than the breadth first search. This leaves us with the heuristic search methods as an alternative to breadth first search. But since we are using the hop count to decide which path to try, we are actually using a simple heuristic. Using a complex heuristic search could perhaps make a good network restoration algorithm, but could also result in a very complex solution. Even a rather simple heuristic search technique like the Best-First search [10] could become very complex in a network restoration environment. Since I want to minimize spare usage, breadth first search with the simple hop count heuristic is the natural step from the depth first approach used by the original one prong.
Chapter 4
Depth First Oneprong with Timer (DFOP)
The Depth First one prong with timer (DFOP) algorithm is based on the path based Adaptive one prong distributed algorithm presented by C. Edward Chow, Jay Shah and Dave Allen in [6] . The one prong was built based on the reuse of Two Prong[7] software and implemented with a simplified logic, it uses a depth first approach to find restoration paths. It uses a three way message exchange, aggregated bandwidth request and a conservative bandwidth reservation for more concurrent path restoration.
DFOP is basically a one prong equipped with a timer mechanism to allow potential PACK messages to arrive before ACK is sent and a restoration path selection based on shorter hop count. The DFOP has got four phases: Notification Phase, Path Trace out Phase, Path Confirmation Phase, and Clean UP phase.

Notification Phase
On detecting a network failure, the nodes on each side of the failure forwards FAIL messages along the paths to the end nodes releasing the working channels of the disrupted paths. When the start� node receives the FAIL message it broadcasts the network with PACK messages. Note, this is not a full broadcast, a tandem node will only broadcast PACK messages to downstream nodes for a certain up node once. This will reduce the size of the tables and the message volume. To reduce the number of messages and the protocol processing time, one PACK message can carry information about several disrupted paths.

�

Figure � SEQ Figure * ARABIC �8� DFOP Notification phase
Path Trace-out Phase
On receiving the first PACK message for a path, the finish node initiates the timer with a certain delay decided. The delay can be constant or random within up and down limits. If the constant delay is used every finish node will wait a certain amount of time, decided by the constant timer delay switch at the command line, before it sends its first ACK. If random delay is used every finish node will wait a random amount of time within the down limit and up limit. When the timer expires after a certain amount of time, the finish node will search the whole table and find the entry with the smallest number of hop and send an ACK to the corresponding upstream node. The ACK message carries an ACKHOP field that indicates the hop count of its traversed path. When the sum of the ACKHOP count and the HOP count field in the table, which was created by the PACK message, exceeds the hop count limit set at the command line, the ACK gets rejected. On receiving an ACK message, the tandem node updates the table indicating the path bandwidth now reserved and forwards the ACK message upstream. Note that an ACK message can be split into several ACK messages with smaller bandwidth request. If a node can not handle the whole requested bandwidth or just a part of the requested bandwidth in an ACK message, a CONF/CONFX message is sent back to the downstream node. A CONF(bw=0) is sent if none of the requested bandwidth could be handled, a CONFX(bw=x) with the rejected bandwidth is sent if part of the request could be handled. When the downstream node receives the reject message sent by the upstream node, it will search its table to find another up node to fulfill the request. Which up node, is decided by looking at the hop count field in the table and pick the entry with the minimum hop count.
When an ACK request is rejected, the node increases the retry number of the link by one, this is done because an ACK message is only allowed to be sent along a link a certain number of times.

�
�

Figure � SEQ Figure * ARABIC �9� DFOP bw rejecting
Path Confirmation Phase
When the start node receives an ACK message it sends a CONF message along the restoration path and confirms the establishment of the restoration path. If all the bandwidth of the path is restored, a CONFF message is sent. On receiving a CONFF message, the tandem node will release the bandwidth that is not on the confirmed path and indicate in its table that the path has been fully restored. The exchange of CONFF messages is a mechanism to allow end nodes to inform tandem nodes to stop the bandwidth restoration process.

Clean Up Phase
When all bandwidth of a path is restored, a PDONE message is flooded out to speed up the release of unneeded bandwidth.
Chapter 5
Breadth First Oneprong with Timer (BFOP)
The Breadth First one prong with timer (BFOP) algorithm is based on Depth First one prong with timer described above.
BFOP is basically a DFOP with a breadth first search approach to get a better spare usage and explore the restoration paths with shortest hop count first. The BFOP has got the same four phases as DFOP: Notification Phase, Path Trace out Phase, Path Confirmation Phase, and Clean UP phase.

Notification Phase
On detecting a network failure, the nodes on each side of the failure forwards FAIL messages along the paths to the end nodes releasing the working channels of the disrupted paths. When the start node receives the fail message it broadcasts the network with PACK messages. BFOP uses a full broadcast to explore every possible path. To reduce the number of messages and the protocol processing time, one PACK message can carry information about several disrupted paths. All PACK messages carry a trail field to record the path the PACK message traverse through. This packpath� will then be used by the finish node.
��

Figure � SEQ Figure * ARABIC �10� BFOP Notification Phase

�Path Trace-out Phase
On receiving the first PACK message for a path the finish node initiates the timer with a certain delay. The delay can be constant or random within up and down limits. If the constant delay is used, every finish node will wait a certain amount of time, decided by the constant timer delay switch at the command line, before it sends its first ACK. If the random delay is used, every finish node will wait a random amount of time within the down limit and up limit. When the timer expires after a certain amount of time, the finish node will search the whole table and find the entry with the smallest number of hops and send an ACK along the corresponding packpath. The information, which the finish node has got when the timer expires, can be viewed like this:
�
�

Figure � SEQ Figure * ARABIC �11� BFOP traceout information
The z, y, q, r represents the number of spares available on the first link of the packpath.
There exists several packpath with different number of hops and the finish node will send an ACK along the packpath with the minimum number of hops. Note, a restoration request for a path can be split into several ACK messages and sent along different packpaths if there is not enough spares available on the first link. The ACK message will then follow this packpath to the start node. The ACK message carries an ACKHOP field that indicates the hop count of its traversed path. When the sum of the ACKHOP count and the HOP count field in the table, which was created by the PACK message, exceeds the hop count limit set at the command line, the ACK gets rejected. On receiving an ACK message, the tandem node updates the table indicating the path bandwidth now reserved and forwards the ACK message to the upstream node in the packpath.. Note that an ACK message can not be split into several ACK messages with smaller bandwidth request at a TANDEM node as in the DFOP, the only node that does the split is the finish node.� If a node can not handle the whole requested bandwidth or a part of the requested bandwidth in an ACK message, a CONF/CONFX message is sent back to the downstream node. A CONF(bw=0) is sent if none of the requested bandwidth could be handled, a CONFX(bw=x) with the rejected bandwidth is sent if part of the request could be handled. When the downstream node receives the reject message sent by the upstream node, it will release the protected bandwidth and forward the CONF/CONFX message along the path the ACK message came back to the finish node. This means that much of the intelligence has been moved from the tandem nodes to the finish node. When the finish node receives a CONF/CONFX message it will search its table for another packpath based on the hop count and try that one instead. The retry number is not connected to a certain link like in DFOP, the retry number is connected to a certain packpath. An ACK message is only allowed to be sent along a certain packpath a certain number of times.

Path Confirmation Phase
When the start node receives an ACK message, it sends a CONF message along the restoration path and confirms the establishment of the restoration path. If all the bandwidth of the path is restored, a CONFF message is sent. On receiving a CONFF message, the tandem node will release the bandwidth that is not on the confirmed path and indicate in its table that the path has been fully restored. The exchange of CONFF messages is a mechanism to allow end nodes to inform tandem nodes to stop the bandwidth restoration process.

Clean Up Phase
When all bandwidth of a path is restored, a PDONE message is flooded out to speed up the release of unneeded bandwidth.
Chapter 6
Design plan
I have decided to treat my Thesis as a programming project with a contract between me and my Thesis committee. This contract is an agreement between me and my Thesis committee specifying that I will do a certain job within specific constraints to get my final degree. In this case the Thesis Proposal is used as the contract, defining what I am supposed to do. I have decided to do my Thesis this way because it will refresh the phases in managing a project[9] and also give my Thesis committee better knowledge of what I have done. Since I am the only project member, all decisions are made by me, or if necessary in understanding with my major advisor.

Project Plan
The project plan describes how the project will be carried out, and it has got the following sections.
Phase Plan
The project has been divided into the following phases. The plan does not have to be followed in sequential order, phases can be carried out in parallel.
Collect background information
Understand / Learn “base” code
Port “base” code from UNIX to WindowsNT.
Design modified Depth First One prong.
Implement modified Depth First One Prong.
Design Breadth First One prong.
Implement Breadth First One prong.
Test the two simulators.
Do analysis/performance testing on modified Depth First One Prong.
Do analysis /performance testing on Breadth First One Prong.
Design GUI
Implement GUI
Write report.

Collect background information. During this phase I will collect articles, books and other information needed to do this project, this phase also include getting the necessary software.
Understand / Learn “base” code. During this phase I am going to learn the “base” code, how the code is designed, what data structures are used and so on.
Port “base” code from UNIX to Win32. The “base” code is written for UNIX and compiled using GNU gcc and since I am going to work on a different platform using a different environment the code needs to be ported from UNIX, GNU gcc to WindowsNT, Microsoft Visual C++ , this is done during this phase.

Design modified Depth First Oneprong. This is the design phase for the modified Depth First One Prong.
Implement modified Depth First OneProng. This is the programming phase for Depth First One Prong.
Design Breadth First OneProng. This is the design phase for Breadth First One Prong.
Implement Breadth First OneProng. This is the programming phase for Breadth First One Prong.

Test the two simulators. This is the test phase for the two simulators. During this phase the two simulators will be tested and errors will be corrected.

Do analysis and performance testing on modified Depth First OneProng. During this phase the performance of the Depth First One prong will be measured and compared against the original one prong.

Do analysis and performance testing on Breadth First OneProng. During this phase the performance of the Breadth First One Prong will be measured and compared against the original one prong.

Design GUI. This is the design phase for the graphical user interface.
Implement GUI. This is the programming phase for the graphical user interface.
Write report. This is the final phase which includes writing the last documents and put all documents together in the Thesis report.

Time Plan
This plan show the different phases in the phase plan over time, when every phase is expected to start and finish.

�1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13

0 2 5 6 10 16 18 19 20 25 26 30
Expected time in weeks

Figure � SEQ Figure * ARABIC �12� Time Plan

Collect background information
Understand / Learn “base” code
Port code from UNIX to WindowsNT.
Design modified Depth First One prong
Implement modified Depth First One prong
Design Breadth First One prong
Implement Breadth First One prong
Test the two simulators
Do analysis / performance testing on modified Depth First One prong
Do analysis / performance testing on Breadth First One prong
Design GUI
Implement GUI
Write report

Organization Plan
This plan is supposed to define the organization during the various phases of the project, and it should define the specific responsibilities of each group/person within the organization. Since the organization consists only of one person, me, and the whole job is done only by me this plan is not necessary.

Test Plan
This section describes the tools, procedures for conducting testing of the produced software.

The debugging facilities of the program and Microsoft Visual C++ will be used to test the software.
If I find it necessary, every new function with certain complexity will be tested in a separate program outside the major program.
A major test will be done to verify the functionality of each simulator.
The test phase ends when the major test has been done and I find the simulators stable enough.

Change Control Plan
This plan describes how the changes in the plan should be handled.

All major changes will be reported to my major advisor and together we will proceed with suitable actions.
All minor changes will only be reported to my major advisor if I find it necessary.
Document Plan
This should describe all the paperwork that is done during the project. Since the Thesis report is the only document produced and it is supposed to contain all important documents produced during this project, no document plan is needed.

Chapter 7
Internal Design.
Both the Depth First One Prong simulator and the Breadth First One Prong simulator are based on the one prong simulator developed at University of Colorado at Colorado Springs which is part of the NETRESTORE [2] simulation system used for evaluating DCS-based distributed network restoration algorithms. The one prong was developed using code from the Two Prong simulator[7], but was implemented with a simplified logic. The Depth First One Prong (DFOP) uses a depth first approach to find the restoration paths, as the original one prong, but it has modifications to increase the performance. The Breadth First One prong (BFOP) uses a breadth first approach to find the restoration paths instead of the depth first approach used by the original one prong.. Both simulators contain an extensive error checking, preventing the simulators from producing wrong results. The original one prong had a Pascal to C core , which has been removed to simplify porting to other platforms. The documentation of the original one prong was very limited so by including this section in my report, it should be easier for another person to proceed with this type of work in the future.
The next parts describe the basic building blocks of the simulators, how it works, which data structures that are used, and how they are connected to each other. The basic building blocks are the same for both simulators.

Event queue
The event queue holds every event that has happen or should happen during the simulation, when a new message is sent it is put in the event queue or the event when a timer for a node should expire is also put in the queue. Each enode data structure is a node in the event list and these nodes are sorted according to the index field, which contains the time when the event should occur. Each enode also contain a pointer to an event record, the erec data structure. This data structure contains the id of the next node that should process this event and other information about an event. The erec also contains a pointer to a list of symbol node data structures, these structures are used as an associative array, used to convey different kinds of information from source to destination. The figure below shows a graphical representation of the event queue and its data structures.

�

�

�

Figure � SEQ Figure * ARABIC �13� Event queue
Eventnode data structure
A linked list of these data structures becomes the event queue.
typedef struct enode
{
float 	idx;
enode	*skip,*next,*prev;
erec 	*e;
}enode;

idx	index field contains the time of the event, when it should occur.
*skip	
*next	pointers used by the linked list.
*prev
*e	pointer to event record.

Eventrecord data structure
Eventrecord, used to keep information about a event.

typedef struct erec
{
float	time;
int	done;
long	next;
long	src;
long	dst;
symbol_node	*msg;
}erec;

time	the time of the event.
done	if it has been carried out.
next	the id of the next node that should process this event, for
	message sending this filed contains the receive id of the
	message. Note this field may be the same as the dst field, if the
	next node happens to be the destination of the message.
src	the id of the creator of this event.
dst	the id of the destination of this event.
*msg	a pointer to the associative array.

Symbol node data structure
A linked list of these data structures becomes an associative array .

typedef struct symbol_node
{
struct symbol_node *next;
char *sstr, *dstr;
}symbol_node;

*next	pointer to the next in list.
*sstr	string pointer that points to the key string
*dstr	string pointer that points to the value string.

Node data structure
The node data structure is the most complex data structure in the simulator, it holds lots of information, and this information is basically gathered in linked lists of different kind, as the simulation proceeds. The description below gives information about every data structure connected to the node. The figure below shows a graphical representation of the data structures connected to each node.

�
�

Figure � SEQ Figure * ARABIC �14� Node Data Structure

�
First there is the actual node data structure, it contains basic information about the node, most of this information is read from the network description file. This data structure also contain other data structures, the list data structure and the TimerRecord data structure described below.
typedef struct node
{
int 	id;
float	time;
float	dcx_time;
list	links;
char	name[4]
float	msg_process_delay;
float	lat,long;
tablerec	*tablehead;
tablerec	*tabletail;
packrec	*packlist;
path_ack_info	*ack_sent;
char 	packbuf[MAX_PACKET_LEN+1];
TimerRecord	*RecordHead;
} node;

id:		Internal node identification
time:		Time that the node last processed a message.
dcx_time:		Time that DXC finishes last request.
links:		Linked list of linkdata
name:		Name of node as read in from network
		description file.
msg_process_delay: 	Message processing delay, from network
 		description file.
lat, long:		Latitude, Longitude of node.
tablehead:		Pointer to start of tablerec list.
tabletail:		Pointer to end of tablerec list.
packlist:		Pointer to list of packrec
ack_sent:		Pointer to list of path_ack_info.
packbuf:		Buffer for accumulate messages.
RecordHead:	Pointer to list of TimerRecords.

Table record data structure
This data structure contains the information for one entry in the table. The whole table is a list of tablerec data structures. An entry is made when the node receives a FAIL message or a PACK message, these entries can then be copied or split as the simulation proceed and other messages arrive. Every tablerec contains information about a certain path. This data structure also contains another data structure, the confirm data structure described below.

typedef struct tablerec
{
int 	path;
int 	qos;
int 	up;
int 	hopcount;
int 	bw;
int 	down;
int 	ackhop;
int 	whichPart;
confirm 	confirmed;
float 	time_connected;
float 	time_received;
struct tablerec 	*next, *prev;
int 	path_bw;
char 	PackPath[260]; �
int 	num_ack_sent; �
} tablerec;

path:		Internal path identification number

qos:		Quality of service, 1 indicates highest
		priority
up:		Internal identification number of upstream
		node.
hopcount:		Hop count from startnode via up node
bw:		If entry references a connection, bandwidth 		of connection else bandwidth requested.
down:		Internal identification number of
		downstream node.
ackhop:		Hop count from finish node via
 		downnode.
whichpart:		Location of node on ‘path’, START,
		MIDDLE or FINISH.
confirmed:		Used to keep track of confirmed paths.
time_connected:	If the connection has been acked but not
		confirmed, time connection was acked.
		If connection has been confirmed, time the
		connection was confirmed.
time_received:		Time when information in entry was
 		received.
next, prev:		Used for linked list

Confirm data structure
This data structure is used to keep track of state of the connections and is located inside the tablerec data structure.

typedef struct confirm
{
int 	value;
message_history ack;
int 	conf_recv;
boolean 	conf_sent;
}confirm;
value:		shows the state of the
		connection, 0 unconnected,
 		CONFIRMED if entry has been
		confirmed, ACKED if entry has been
		acked but not confirmed.
ack:		used to keep record of acks received.

conf_recv:		FINAL if path has been completely
 		restored, 0 if no CONFs received for this
		connection. > 0 message number of last
 		CONF received.
conf_sent 		TRUE if CONF/CONFF has been
 		forwarded to the downstream node.

Message history data structure
This structure is used to maintain the information that allows a node to forward a CONF or CONFF to a downstream node with correct message number.

typedef struct message_history
{
int 	recv;
int 	down;
int 	up;
} message_history;

recv:	Id of last ACK received.
down:	Id number of last ACK from the downstream node for
 	which an ACK was forwarded.
up:	Id number of last ACK forwarded to the upstream node.

Pack record data structure
Used by node to keep track forwarded PACK messages.

typedef struct packrec
{
char 	id[NodeNameLength*2];
int_node 	*paths;
struct packrec 	*next;
} packrec;

id:	PACK identification number.
paths:	Pointer to list of int_node.
next:	Used by linked list.

Internal node data structure
Used by above data structure to keep track of which nodes it has forward PACK messages for certain paths.
typedef struct int_node
{
int 	num;
int 	up;
struct int_node *next;
} int_node;

num:	Internal path identification number.

up:	Internal node identification number of up node for
	which a PACK was sent.

next:	Used by linked list.

List data structure
Linked list data structure, used as basic node in certain linked list.
typedef struct list
{
inode 	*head, *tail, *next;
unsigned short count;
} list;

head,tail,next:	Pointer to linked list

count:	Number of items in list.

Inode data structure
This is a container data structure, used for example by the node to keep track of links connected to it. Need special functions to retrieve data from list.

typedef struct inode
{
 long 	idx;
 struct inode 	*next;
 Anyptr 	e;
} inode;

idx:	Index field
next:	Used by linked list
e:	Pointer of type void, points to whatever is used.

Linkdata data structure
Used to keep track of links connected to a node.
typedef struct linkdata
{
int 	dest;
boolean 	active;
int 	work, spare;
float 	delay;
float 	last_trans;
} linkdata;

dest:		Internal identification number of
		node at the other end of link.
active:		Used to keep state of link, if true it is usable
		NOT broken.
work,spare:		work-number of working channels,
		spare-number of spare channels.
delay:		Transmission time over link
last_trans:		Ending time of last message transmission.

Timer record data structure
Used to keep track of the timers for each path at a finish node.

typedef struct TimerRecord
{
int 		initiated;
float 		expire_time;
int 		path;
float 		delay;
struct TimerRecord 	*next, *prev;
} TimerRecord;

initiated:		State of timer, 1 initiated, 0 not initiated.
expire_time:		Time the timer expire.
path:		Internal path identification number.
delay:		Delay, number of seconds a path waits
		until it can send its first ACK.
next,prev:		Used by linked list.

Path_ack_info data structure
DFOP: Each node is allowed to forward an ack message for a given path to the same upstream node a certain number of times. This data structure is used to keep track of which nodes that have been requested to participate in which restoration paths.
BFOP: Only used to keep record of number of ack messages sent.
�typedef struct path_ack_info
{
int 		path;
int 		num_acks;
up_info 		*uplist;
down_info 		*downlist;
struct path_ack_info 	*next;
} path_ack_info;

path:		Path id.
num_acks:		Not used.
uplist:		Pointer to list of up_info.
downlist:		Pointer to list of down_info.
next:		Used for linked list.

Up_info data structure
This data structure contains the information about the processing status of upstream link �.

typedef struct up_info
{
int 	up;
int 	ack_num;
boolean 	retry;
struct up_info 	*next;
} up_info;

up:	Internal identification number of the upstream node for
 	this link.
ack_num:	Number of ack messages, or retry we have done for the
 	link.
retry:	Status of retry.
next:	Used by linked list.

Down_info data structure
This data structure contains the information about the processing status of an down stream link. This structure is not used in one prong, relic from Twoprong[7].

Program structure
The code is divided into 9 bigger blocks. Each block is described below. The event loop is located inside the main function, and every time a new event should be processed, the main() function calls the Process() function, which calls the proper processing function based on what type of event it is. The figure below shows a graphical overview of the program structure.

�

��
Figure � SEQ Figure * ARABIC �15� Program structure
Since both simulators are based on the one prong discrete event simulator , the main frames of the simulators are similar. Every action is viewed as an event and put in the event queue. The detection of an error is viewed as a message sent to the nodes detection the message. The expiration of a timer is also viewed as a message sent to the node in question. The below description is only a basic description describing the main operations carried out by each function, there exists of course many other operations in each function that have not been mentioned below.
main(). This function handles the reading of the command line, the initialization, and the event loop. On every loop, a new event is retrieved from the event queue and sent to the Process function. When all events have been processed, the simulator is done and terminates.
Process(). This function receives the next event to be processed. Based on the type of the event, the appropriate event handling function is called.
SIM_Processing(). Handles the processing of failure detection messages. Failure detection messages are constructed to simulate the detection of a break, the nodes on each side of the break receives a failure detection message. If the failure detection message contains information about the loss of a node, new failure detection messages are constructed for each of the lost links and sent to the remaining active node on the end of each lost link. If the failure detection message contains information about the loss of a link, the lost channels are marked inactive. If the node is a middle node on any of the lost paths, the channels of the lost path are released and a FAIL message is sent to the affected nodes on the lost paths. If it is a start node on any of the lost paths, it initiates broadcast of PACK messages.
FAIL_Processing(). This function handles the processing of every FAIL message. FAIL messages are sent by the nodes detecting a break. A FAIL message can contain several packets, each packet containing information about the loss of a path. If a FAIL message contains several packets, the packets in the FAIL message will be considered one by one. If the node in the packet is a middle node, a FAIL message will be sent to the next node along the disrupted path. If the node in the packet is a start node, PACK messages will be broadcasted. Since a FAIL message can contain several packets, two data structures are used to keep track of which messages are to be sent. The “packs” data structure keeps track of all PACK messages to be sent by the end of the FAIL processing and the “fails” data structure keeps track of all FAIL messages to be sent by the end of the FAIL processing.
PACK_Processing(). This function handles the processing of every PACK message. The PACK messages are initially sent by the start nodes for each path and flooded over the network towards the finish node. A PACK message can contain several packets, each carrying information about the loss of a path. If the lost path in the packet has already been maximally restored and the recipient of the PACK knows that the path has already been maximally restored, no PACK message is forwarded. The “trail” field of the PACK is checked to see if the message has created a loop, if so the PACK is thrown away. One entry is added, for each packet, to the connection table with information about the lost path.
The BFOP forwards the PACK message to the downstream nodes using a full broadcast, the DFOP uses a heuristic to decide which downstream nodes the PACK messages will be forwarded to�. If the node receiving the PACK message is a finish node, there exists a path from start to finish. On receiving the first PACK message for a path, the timer is initiated with the delay given at the command line. If a node failure occurs and the lost node is a start/finish node the path can not be restored. To prevent a PACK message from running around the network forever looking for a dead finish node, a trail field is used containing a list of all nodes visited. A node may not forward a PACK to a node in the trail of a PACK message. This trail field is also used by BFOP as a packpath.
TIMER_EXP_Processing(). This function handles the event when a delay timer expires for a node. The timer expire event for a path is initiated by the finish node when it receives the first PACK message for a path. When a timer expires the finish node initiates the path trace out phase, sending ACK messages to appropriate up stream nodes. Entries with shorter hop count will be tried first. The total amount of bandwidth protected� by the ACK messages for a path, will not exceed the bandwidth of the lost path. This is done to make it possible for concurrent path restoration attempts. In BFOP, to ensure that the ACK will follow the path of the chosen PACK message from finish to start, a packpath field containing the path is included in the PACK message.
ACK_Processing(). This function handles the processing of every ACK message. The ACK message is sent out by the finish node when the timer has expired. The finish node copies the packpath field of the original PACK message that is stored in the restoration table to the ACK message and the ACK message will be sent along that path.
In BFOP, when a node receives a ACK message, the next node� in the packpath is extracted from the packpath field of the arriving ACK message. If there exists available spares on the link to the next node in the packpath, the node will protect no more than the number of spares in the request and forward an ACK along the to that node. If there are no spares available, a CONF(bw=0) will be sent back to the node the request came from. If part of the request could be handled, an ACK is sent to the next node in the packpath and a CONFX(bw=x) is sent back with the rejected bandwidth in the bandwidth field of the message.
In DFOP, on receiving of an ACK message, the node searches its restoration table to find the entry with minimum number of hops. If there exist enough spares to handle the request on that uplink, an ACK is sent to that up node. If there are not enough spares available, the table will be searched again to find the next entry with minimum number of hops. This procedure will continue until all entries for that path have been tried, if there are still bandwidth left in the request that could not be handled, a CONFX(bw=X) is sent back. If none of the bandwidth in the request could be handled, a CONF(bw=0) is sent back.
If an ACK message makes it from the finish node to the start node, a restoration path have been found. The start node will confirm and reply with a CONF or a CONFF if the path has been “maximally restored”�.
CONF_Processing(). This function handles the processing of every CONF type of message. When a node receives a CONF(bw=X) or a CONFF(bw=X), the node confirms any additional bandwidth needed to bring its confirmed bandwidth for the path up to the bandwidth in the CONF or CONFF. When the finish node receives a CONFF the path has been maximally restored and the finish node will broadcast PDONE messages over the network.
In BFOP, on receiving a CONFX(bw=x), x bw of the protected bandwidth protected by the corresponding ACK is released and the CONFX is sent back along the packpath towards the finish node. When the finish node receives a CONFX message, it will search its table to find another entry / path based on the number of hops�. Another ACK will then be sent along the packpath, retrieved from the entry, to replace the bandwidth that could not be handled.
In DFOP on receiving a CONFX(bw=x), x bw of the protected bandwidth protected by the corresponding ACK is released and the node search its table to find another entry based on the number of hops, to replace the bandwidth that could not be handled. If all or part of the rejected bandwidth in the CONFX could not be handled, a CONFX is sent back along the path from which the original ACK came.
�
�

 Figure � SEQ Figure * ARABIC �16�. Handling of CONF messages
PDONE_Processing(). This function handles the processing of every PDONE message. When a node receives a PDONE, it marks all paths in the packets of the PDONE as maximally restored, releases any reserved bandwith for the restored path and the entry, and forwards PDONE messages to all its immediate neighbors not found in the trail in the PDONE. The forwarded PDONE will contain a packet for each path that the node has just discovered to be maximally restored.

Chapter 8
Analysis using Functional Characteristics

Path finding
Both DFOP and BFOP finds paths by flooding PACK messages over the network. The path traveled by a PACK message from the start node to the finish node defines a path.
DFOP do not use a full broadcast, it uses a heuristic to reduce the message volume. The first time a node receives a PACK message for a certain path it will forward PACK messages on all outgoing links. The second time it receives a PACK message for the same path it will check if the PACK message arrived from the same up node. If so, it will not forward any PACK messages (A). If the PACK message did not arrive from the same node as the first PACK message, it will forward a PACK message along the link where the first PACK arrived (B).

�

�

Figure � SEQ Figure * ARABIC �17� DFOP PACK forwarding
In BFOP much of the intelligence has been moved from the middle nodes to the finish node. It needs all information about the paths, so the approach used by DFOP is not possible. It uses a full broadcast, the PACK message will always be forward to all outgoing links.
�
�

Figure � SEQ Figure * ARABIC �18� BFOP PACK forwarding

This produces a bigger volume of PACK messages, so BFOP needs other approaches to reduce the PACK message volume. See message volume control below.
Spare Channel Contention
Both DFOP and BFOP use Floodgating [5] to reduce spare channel contention. Unlike most other distributed approaches which will flood multiple messages over a link without regards to the total bandwidth which has been requested by these messages. DFOP and BFOP keeps track of the total requested bandwidth over a single link and will not forward requests for more bandwidth than the link can support.

Restoration Path Selection
The usual approach to select restoration path is on a “first come, first served” basis and was used by the original one prong. This is not the approach used by DFOP and BFOP. By using a timer to delay the sending of the first ACK message, the finish node hopefully get more entries to choose from. Which entry it is going to try is based on the hop count, the entries with shorter hop count will be tried first. This approach gives the finish node in the BFOP approach, full control of which path will be tried and in what order.
In the DFOP approach the finish node does not have full knowledge about the paths that will be tried, the hop count gives the finish node a hint on which link to initiate the restoration attempt. If this attempt comes to a dead end, the finish node has no control until all possibilities on that certain link have been tried.

Message Volume Control
The DFOP uses the above heuristic to decrease the volume of the PACK messages and a “trail” field to prevent looping, but it also has got other ways to control the total message volume. It uses a hop count limit on the ACK messages, preventing it from digging to deep in the tree. Floodgating [3], a mechanism used to ensure that the total amount of restoration bandwidth requested over any given link does not exceed the total number of available spares channels in that link, also serves to reduce the message volume, since many late arriving messages are not flooded once all available spare channel capacity on all links from a node has already been reserved.
The first version of BFOP had no methods to reduce the volume of PACK messages except for the “trail” field preventing loops, causing the message volume to be very high. To reduce the volume of PACK messages, several methods were implemented. The table below shows the results for the different approaches on the NJ3 net. The reason why there are different values for different cuts has to do with the way these approaches were tested. First the scheme with no message reduction was used to give a hint of the message volume, then each scheme was tried with different values for each cut, but the restoration time and restoration level were kept constant. This because I wanted to see how much I could reduce the message volume without affecting the restoration level and the restoration time. For example the N00-N04 cut had a message volume of 669 messages, and a restoration level of X percent and a restoration time of Y sec. For the TTL scheme I started with a high TTL value and decreased the TTL value until a point when it started to affect the restoration time and restoration level. The TTL value shown in the table is the last value that did not affect the restoration level or restoration time.
�

���Approach 1�Approach
2�Approach
3���delay�msg vol�Hop�msg �TTL�msg�entry�msg��cut�(sec)�no red�limit�vol�(sec)�vol�lim�vol��N00-N01�0.0�579�5�256�0.8�167�1�140��N00-N02�0.1�503�5�232�0.7�136�1�100��N00-N03�0.6�968�9�966�1.7�950�44�968��N00-N04�0.0�669�4�183�0.5�103�3�272��N00-N05�0.0�586�4�180�0.5�111�4�419��N00-N07�0.1�583�3�105�0.5�105�1�122��N01-N02�0.0�245�7�186�1.2�146�4�195��N02-N04�0.0�340�4�78�0.7�78�1�98��N03-N04�0.0�216�4�120�0.5�89�2�118��N03-N07�0.0�277�7�257�1.0�206�10�235��N03-N08�0.0�609�7�568�1.2�496�12�609��N04-N05�0.0�466�4�184�0.5�119�1�146��N04-N06�0.0�862�4�279�0.7�279�2�156��N04-N07�0.0�403�3�173�0.5�179�1�149��N04-N08�0.1�515�5�341�0.7�157�11�567��N04-N10�0.0�697�7�655�1.2�602�29�689��N05-N07�0.1�332�3�65�0.5�65�1�82��N06-N07�0.1�870�5�348�0.7�209�2�230��N07-N08�0.1�1217�3�201�0.5�201�1�224��N07-N10�0.1�769�7�665�1.2�555�15�765��N08-N09�0.1�1291�7�1181�1.2�959�14�1291��N08-N10�0.0�245�6�193�1.0�139�12�245��N09-N10�0.0�881�4�307�0.7�307�3�264��N00�0.0�1006�3�70�0.6�80�1�202��N02�0.0�78�4�29�0.7�29�1�45��N03�0.0�265�5�179�0.7�124�5�249��N04�0.0�560�5�344�0.8�249�2�248��N05�0.0�178�3�45�0.5�45�1�62��N07�0.1�655�4�297�0.5�180�2�302��N08�0.1�559�5�360�0.7�244�4�337��N10�0.0�429�6�396�1.0�338�7�417��
Table � SEQ Table * ARABIC �1� BFOP Message Volume
The first approach tried was to set a hop count limit on the PACK messages.� The second approach was to use a TTL, time to live, on the PACK messages. The third approach was to set a limit on the number of unconnected entries in a table at each node�. Of the three approaches, the TTL worked best followed by the hop count limit. The current version of BFOP has got all three possibilities to reduce the PACK message volume. BFOP also uses the Floodgating approach mentioned above. For short restoration paths and smaller networks BFOP has got a lower message volume than DFOP. But as the network and the restoration paths increases, so does the message volume. BFOP needs tuning to reduce the message volume. If wrong parameters are given, the message volume can reach substantial volumes for bigger networks. The message volume is a big drawback of BFOP. Here only the impact on the message volume is examined.

Congestion control
Both DFOP and BFOP uses message forwarding and Floodgating heuristics to control congestion. Even though the PACK messages of BFOP are distributed in an even way, they can cause trouble as the network size increases.

Race Condition Control
Both DFOP and BFOP use tables and logic to control race conditions, each node keeps a table of all messages it has seen. A logic is used to act upon each message that arrives. This logic depends on the message type received, its source, the requested bandwidth, the spare channel capacities of all links connected to the node, and the state of all entries in the message table in the node.

Restored Path Connection
For both BFOP and DFOP the connection is made on the receiving of an ACK message, but this connection can be canceled until it receives a confirmation.
Chapter 9
Performance Analysis using performance metrics
For all simulations, the default parameters have been used unless stated otherwise. This means that they have all been tested with the same parameter settings, the only difference is that DFOP has a delay parameter and BFOP has a delay parameter and a TTL parameter. I did not find it necessary to do tests with different transmission speeds, message processing delays, etc., since the main thing here was to investigate the impact of using a breadth first approach and a minimum hop based restoration path selection.
It is important to point out here that, the BFOP could not be tested in a full way. The computational power / memory of the machine I had access to, limited the time to live parameter to 4.0 sec for the d_31.net and 3.0 sec for the dis5_64.net. This caused the search depth for BFOP to be limited.

Restoration Level
For the NJ3.net, a 10 node network, the DFOP achieves equal or higher restoration level than ONOP in all but two cases. It achieves 100% restoration level in 26 of 31 cuts and so does the ONEP. The BFOP achieve equal or higher restoration level than both DFOP and ONEP in all cases. The 100% restoration level is achieved in 28 out of 31 cuts.
For the lata3.net, which also is a 10 node network, both DFOP and BFOP achieves equal or higher restoration level compared to ONEP in all cases. The 100% restoration level is equal for both DFOP and BFOP, 11 out of 21 cuts. ONEP reaches a 100% restoration level in 10 out of 21 cuts.
For the d_31.net, which is a 31 node network, the situation is a bit different. The DFOP achieves equal or higher restoration level than ONEP in all cases. In some cases the increase in restoration level is very high, more than a 100% increase.� DFOP achieves a 100% restoration level in 55 of 67 cuts, compared to 45 out of 67 for ONEP. The BFOP has equal or higher restoration level than ONEP in all cases and equal or higher restoration level than DFOP in all but one case. For this case, the 17-4 cut, DFOP achieves a 99.03 % restoration level compared to 98.00% restoration level for BFOP. BFOP has got the highest number of 100% restoration level cuts. It achieves a 100% restoration level in 59 out of 67cuts.
The dis5_64.net is a big network with 64 nodes, and in some cases the lost bandwidth is very high compared to the other three networks. The DFOP achieves equal or higher restoration level in all but two cases compared to ONEP. In one case DFOP increases the restoration level by 400% compared to ONEP. DFOP achieves a 100% restoration level in 95 out of 147 cuts, compared to ONEP which achieves a 100% restoration level in 42 out of 147 cuts. The Time to live parameter, TTL, of the BFOP limits the depth of a restoration path, for this case a maximum TTL of 3.0 sec was used. This limits the search depth for BFOP, and it is not possible to make a fair judgment for this net. When the search depth is enough BFOP achieves higher restoration level than ONEP. Based on previous tests I assume that BFOP will at least reach the same restoration levels as DFOP, or perhaps better results if a bigger TTL was used.

Time to restoration
The following comparison are based on the cases where the same restoration level are achieved.
For the NJ3.net, when the same restoration level was achieved, DFOP is faster than ONEP in all but 3 cases. Overall the DFOP is faster than ONEP, in one case the restoration time has decreased to 50% of the ONEP restoration time. The BFOP is faster than ONEP in 20 out of 31 cases. Compared to DFOP it is only faster in 3 cases.

For the lata3.net, DFOP is faster than ONEP in all cases. Here the increase in speed is more evident, it reaches 100% restoration level in less than 2 sec on several cuts and in one case the restoration time is only 26% of the ONEP restoration time. BFOP is faster than ONEP in all but 2 cuts and the scenario is the same for BFOP as for DFOP, it reaches a 100% restoration level in less than 2 sec on several cuts. Compared to DFOP, BFOP is faster on 3 occasions. In one case BFOP achieves 100% restoration level in half the time of DFOP.
For the d_31.net, when the same restoration level was achieved, DFOP was faster than ONEP in all but 4 cases. In some cases the time is only half the time needed by ONEP to achieve the same restoration level. BFOP is faster than ONEP in 22 of 34 cases when a 100% restoration level is achieved, but BFOP can also be very slow in some cases. Generally, when the restoration paths are short BFOP is faster.
For the dis5_64.net, DFOP achieves 100% restoration level faster than ONEP in all but 4 cuts. The only cut that ONEP performs much better is the 53-52cut, DFOP need 14.7 sec to complete a 100% restoration level but ONEP does it in 10.9 sec. For the other three, the difference is less severe. Overall the DFOP is faster than ONEP, the restoration time for DFOP range from 0 to 50% of the ONEP restoration time. The BFOP was not designed for speed, but it is faster than ONEP in some cases. DFOP is faster than BFOP in most cases, but in some rare cases BFOP is equally fast as DFOP.

Spare Channel Utilization
The following comparison is based on the cases where the same restoration level is achieved.
When comparing the spare usage between different cuts, the number of spares used is not best measurement. A better measurement would be to calculate the ratio between the number of spares used and the number of bandwidth lost, since the spare usage is dependent on the lost bandwidth.

� EMBED Equation.2 ���

This ratio will show how many spares that were used for each lost bandwidth.
For the NJ3.net, DFOP has better or equal spare usage compared to ONEP in all but 6 cuts. The occasions when ONEP has got the best spare usage, the difference is not that big compared to the occasions when DFOP has got the best spare usage. BFOP was designed for a small spare usage, and it has equal or better spare usage on all cuts but 1 cut compared to ONEP. There is overall a bigger difference in spare usage between BFOP and ONEP. On one occasion, ONEP reaches a spare ratio of 3.62 compared to BFOP which has got a spare quote of 2.04 for the same cut. A comparison between DFOP and BFOP shows that BFOP has equal or better spare usage than DPOP in all but 1 cut.
For the lata3.net, DFOP has equal or better spare usage on all but 2 cuts. The difference here is not that big as it was on the nj3.net. The BFOP has got equal or better spare usage on all cuts compared to both ONEP and DFOP.
For the d_31.net , DFOP has equal or better spare usage than ONEP in all but 1 cut. Overall DFOP has got a better spare usage and DFOP, but the difference is not that big. BFOP has equal or better spare usage than ONEP in all but 2 cuts. Overall BFOP has better spare usage than both ONEP and DFOP. The difference in spare usage is bigger for BFOP and ONEP, compared to DFOP and ONEP. When the same restoration level is achieved, DFOP has equal or better spare usage in all but 2 cuts. Overall the spare usage is better for DFOP. When the same restoration level is achieved, BFOP has equal or better spare usage than ONEP in all but 1 case. Overall when the restoration level is equal, the spare usage is better for BFOP. If we compare BFOP and DFOP on a equal restoration level basis, the spare usage is almost identical. In 4 cases BFOP has better spare usage and in 2 cases DFOP has better spare usage, on all other cuts the spare usage is equal.
Range of Application
The range is equal for all three algorithms. They can handle single link, multiple link, node and area failures.

Message Volume
Overall the message volumes for the DFOP and ONEP are similar, since they both use the depth first approach. The BFOP uses a breadth first approach and has not got the message volume reduction schemes that are possible to use in the depth first approach. This causes the message volume to be high for BFOP in most cases, except when the restoration paths are short. In these cases the message volume is lower than for the depth first approaches.

Restoration Level in 2 Seconds
This is not a performance metric mentioned in the earlier chapter, but it can give a hint at which rate an algorithm restores channels.
Overall both DFOP and BFOP achieve a higher restoration level than ONEP within 2 sec. It is difficult to do a overall comparison between DFOP and BFOP, sometimes BFOP is better and in other cases, DFOP is better.
�The following section contains restoration level vs. Restoration time plots of some interesting cuts.
Example plot 1

� EMBED Word.Picture.6 ���
. ._ DFOP, ONEP, ______ BFOP
�Figure � SEQ Figure * ARABIC �19� Plot of 25-6cut
�
This plot shows the 25-6 cut from the d31 net. In this case, one can clearly see the big difference in restoration time between BFOP and the other two. BFOP needs almost 200 seconds to reach a 100% restoration level, compared to DFOP and ONEP which both reach a 100% restoration level within 20 seconds. The reason for this big difference has to do with the hop count of the restoration paths and the breadth first approach. If a certain restoration path has a hop count of X hops, the breadth first approach need to search every path that has got a hop count smaller than X hops. So when the restoration paths gets long, the time needed to find them increases rapidly. The BFOP uses 771 spares (sparequote=9.18) with a message volume of 22446 messages and it reaches a 10.71 % restoration level within 2 seconds for this case. DFOP uses 770 spares (sparequote=9.17) with a message volume of 1636 messages and it also reaches a 10.71 % restoration level within 2 seconds. The original One Prong, ONEP uses 743 spares (sparequote=8.85) with a message volume of 1600 messages but it reaches 0.0 % restoration level within 2 seconds. This is an interesting case because this is one of the few cases when ONEP uses fewer spares than both BFOP and DFOP even though both BFOP and DFOP are designed for economical spare usage.

�Example plot 2

� EMBED Word.Picture.6 ���
.._._ DFOP, ONEP, ________ BFOP
Figure � SEQ Figure * ARABIC �20� Plot of 44-28cut
This plot shows a case when both BFOP and DFOP reaches a 100 % restoration level within 8 seconds and ONEP within 9 seconds. This is shown at the figure below. In this case BFOP and DFOP follow each other closely up to a 70% restoration level and then DFOP speeds up and reach a 95-98% restoration level within 4 seconds, while BFOP needs at least 6 seconds to reach the same restoration level. In the end, shown in Figure 22, they both reach a 100% restoration level within 7.8 seconds (DFOP 7.81 sec, BFOP 7.71 sec). ONEP is slower than both DFOP and BFOP and needs over 9 seconds to reach 100 % restoration level. BFOP uses 273 spares (sparequote=3.14) with a message volume of 8103. DFOP uses 269 spares (sparequote=3.09) with a message volume of 1854. ONEP also uses 269 spares (sparequote=3.09) with a message volume 1850.

� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �21� Plot of 44-28cut, zoom

�Example plot 3

� EMBED Word.Picture.6 ���
.._._ DFOP, ONEP, ________ BFOP
Figure � SEQ Figure * ARABIC �22� Plot of 9-7cut
This case shows a situation when both DFOP and BFOP achieves a much higher restoration level than the original One Prong (ONEP). It also shows that BFOP can reach a higher restoration level than both DFOP and ONEP within an acceptable restoration time. ONEP only reaches a 40 % restoration level, DFOP reaches a 90 % restoration level while BFOP reaches a 100 % restoration level. ONEP uses 162 spares and needs 526 messages to achieve a 39.44 % restoration level within 7.0 sec, DFOP uses 447 spares and needs 772 messages and achieves 91.55% restoration level in 15.8 sec and BFOP uses 563 spares and 8879 messages to achieve a 100 % restoration level within 24.6 sec.

�Example plot 4
N00-N03 NJ3.net
� EMBED Word.Picture.6 ���
 � EMBED PBrush ���
Figure � SEQ Figure * ARABIC �23� Plot of BFOP N00-N03cut, different delays
These plots shows the BFOP restoration level vs. restoration time for different delays. The 0.0 sec delay only reaches a 95 % restoration level, the 0.2 sec delay needs almost 60 seconds to reach a 100 % restoration level while the 0.6 sec delay reaches a 100% restoration level within 25 seconds. These plots shows the importance of choosing a suitable delay. The plot below show all delays in one plot.

� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �24� Plot of BFOP N00-N03cut

Example plot 5
14 cut d31.net
� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �25� Plot of 14cut, different TTL
The above plots shows the BFOP restoration level vs. restoration time plots for different TTL. If one look at the 1.0 sec TTL and the 1.5 sec TTL there is no big difference, it only looks like the plot has been cut off. If one on the other hand look at the 2.0 sec TTL and the 2.5 sec TTL, there is an interesting difference. In this case one can see that they are very similar up to a 75 % restoration level, but then the 2.5 sec TTL increases the restoration level more rapidly than the 2.0 sec TTL. The reason for this is the fact that the 2.5 sec TTL has got “more” restoration paths to choose from, while the 2.0 sec TTL has got a lack of suitable restoration paths compared to the 2.5 sec TTL.

Conclusion and Observations of Performance Analysis
From the simulation results, the following observations are considered important:

The DFOP has outperformed ONEP in most cases.
BFOP good choice if we want a economical spare usage or a high restoration level, if the restoration time is not that important.
Overall DFOP has better spare usage than ONEP but not as good as BFOP.
It is possible that the big message volume for BFOP is not as bad as it seems, since the message volume is spread over a longer time and the messages are distributed in a more even way. The PACK messages contribute to most of the messages, but they are distributed in an even way for both BFOP and DFOP. The ACK/CONF messages for BFOP are distributed in a more even way than for DFOP. The DFOP can cause a big concentration of ACK/CONF messages in certain areas of the network. The BFOP searches each restoration path in an increasing hop count based kind of way and does not produce these high concentrations of messages.

�

Figure � SEQ Figure * ARABIC �26� Distribution of ACK/CONF messages

The use of a time-out mechanism can increase the performance of an algorithm
The use of a minimum hop based restoration path selection can increase the performance of an algorithm.
The use of random delay was also tested during the early phases of the performance testing phase, but was abandon because it is hard to track the delays and the performance was not good. It is important to point out that at one occasion the random delay performed better than the constant delay. In all these tests, all nodes have used the same delay, but by using different delays for different nodes based on path or failure it is possible to increase the performance.
Breadth first approach can also be a good choice for a link based type of algorithm, since BFOP is rather fast when the length of the restoration paths are short (small hop count). For a path based algorithm the restored part� of an restoration path is equal to the restoration path, but in link based approach the restored part is a subset of the restoration path. By using the breadth first approach in a link based algorithm where the length of the restored parts could be shorter, we could get a faster algorithm with good spare usage. Note, link based approach can not solve node/area/multiple failures.
For small networks, when the restoration paths are short, BFOP has got overall better performance than DFOP and ONEP. But when the size of network increases and the restoration paths gets longer the restoration time increases for BFOP. The reason for this is that to reach a restoration path with a hop count depth K, it has to check all possible restoration paths with a depth < K.� This causes the BFOP algorithm to be slow when the restoration paths are long.
When the network size increases, it is very important that the TTL parameter be set to a suitable value.

Chapter 10
Observations done during this project
Reading/learning existing one prong code

The second phase of this project was to read and learn the one prong code from scratch. This basically included the work of going through every line of code and every detail of the code. This was a necessity if I wanted to use the code as a base. This turned out to be a very tedious and time consuming process, and the expected time was multiplied several times until I felt I had the necessary knowledge to start with the modifications. If I had been an experienced programmer, the time needed to reach this level of knowledge had probably been less, but even though I have been studying computers for many years and done some programming I felt that I had a lack of experience. The problem of this phase was not related to the syntax of the program, it was more likely related to my limited experience in connecting code to the task which the program is supposed to perform. The syntax was written in a easy read kind of way, but the connection between the code and what the algorithm was doing was sometimes very difficult to see. If I had been more used to read someone else code, this problem had been less severe.
One thing that I have learned from this, it can sometimes be easier or faster to build your program from scratch than try to use someone else code as a base and the importance of a good documentation.
Porting one prong from UNIX GNU GCC to Win32 MSVC++
To be able to work under Windows NT, I needed to port the software from UNIX GCC to Microsoft Visual C++ (MVC++). This included removing the Pascal-To-C (p2c) core that the UNIX version needed, rewrite functions that were not included in MVC++ or try to find suitable functions to replace the UNIX functions that was not available in MVC++, construct new data structures that was not available in MVC++ and recompile the whole thing in MVC++. The Pascal-To-C core was a set of library files, that was included at compile time.
When the one prong got through the compiler and the syntactical errors were corrected, a rather time consuming debugging phase followed. The whole simulator acted very unstable and many strange errors occurred and several error checking functions were added before I could find the errors.
Later during this project, after I have ported the code, I found GNU GCC for Windows NT at http://www.cygnus.com. I tried to compile the original code, using GNU GCC instead of Microsoft Visual C++ to see if I would have the same problems. The porting procedure was much easier this time.
It seems like it is not possible just to take C code from one operating system and recompile it on another operating system using a different compiler and think that it is going to work. This code did not have any GUI so I thought that it should be easy, but it took a lot more time than I expected. If one has to port code from one platform to another, it is a good idea to try to use the same compiler if it is possible.
�Why Win32
Since this project was done back home in Sweden and with no access to any UNIX workstations, I had to choose between LINUX (UNIX for PC) and Windows NT. The environment under LINUX was the text based GNU gcc compiler and its debugger, for Windows NT, I used Microsoft Visual C++ environment with a fully graphical user interface.
I decided to work on a Windows NT based system because it gave me the possibility to use a more professional, easy to use, programming environment, instead of the GNU environment on LINUX, and since it included a visual tool for building graphical user interface it was the natural choice. By using Windows NT, I also got access to better word processors, spreadsheets and the Internet. I have also included some other reasons why I wanted to work under windows NT.

The development of better operating systems for the PC like Windows NT and Win95 combined with lower prices and growing computational power has increased the industrial interest in the PC. This has made it possible for the PC to move in to areas that before was only accessible to UNIX workstations.
By porting research software like the NETRESTORE [2] simulation system to PC, we have also made it more accessible to students to make their research at other places than the university.
Windows NT is a fast growing operating system.

Time needed for this project
When I started this project, I estimated the time needed to finish this project to 26 weeks, perhaps 30 weeks of full time work. This was a poor judgment from my side. During phase 2 and 3, I noticed that I was not able to follow the expected time plan, and it got worse during the later phases. If I had taken different approaches to certain problems, some time could have been spared.
During the programming phase, the first big mistake was done. I tried to construct the simulator by taking different parts from the original one prong, mix it with my own parts, put it together and then test it in a “big bang” kind of way. This was of course the wrong approach, I ended up with a complex simulator that did not behave as I had expected in any way. After a long time of debugging, I decided to start over and try a different approach. Instead of taking parts from the original code and mix with my own code, I used the original code and transformed it in small steps, testing the code after each step. By using this approach, the code had to be written in respect to the original code, resulting in many strange solutions but I ended up with two working simulators.
I only had access to one computer, so I had to do all simulations, using that computer. This was also a time consuming part, 200 - 300 hours were needed. By running the simulations 24 hours a day, the simulation phase took about 2 weeks. During this period, I could not use my computer so my possibilities to work on the project was limited.
As a result of all these delays, the GUI had to be abandoned. After consulting with my major thesis advisor, we decided to abandon the GUI part and concentrate on the other parts.
Working abroad
All of this work was done at home in Orsa, Sweden and the only contact I had with my university in Colorado Springs, USA was by using email. This of course limited my resources in many ways. I had no access to an academic library, and if I needed information, I had to search for it on the Internet or travel 120 km to my old university in Borlänge, Sweden. The supply of more advanced computer books is also very limited compared to the United States. The only computer I had access to was my own Pentium 90 machine and all work, including simulations, were done using this machine.
Overall, if one has access to a computer at home and an Internet connection it should be possible to work this way. Of course this demands an active email reading advisor, that can answer your questions quickly. In my case it worked out very well, if I had any questions I sent them in the evening and most of the time I had the answers I needed the next morning.

�bibliography
[1] C. Edward Chow “CS622 Distributed Networks Lecture Notes.”

[2] C. Edward Chow “User Guide of Netrestore2.0”, MCI report.

[3] C.-H. E. Chow, J. Bicknell, S. McCaughey and S. Seyd “ A fast Distributed Network Restoration Algorithm” Proceedings of the 12th International Phoenix Conference on Computers and Communications, page 261-267, Scottsdale, Arizona, March 24-26, 1993.

[4] C.-H. E. Chow, J. Bicknell and S. Seyd “RREACT: A Distributed Protocol for Rapid Restoration of Active Communication Trunks”, Network Management and Control Volume 2, page 391-406.

[5] C.-H. E. Chow, "Path-based two prong network restoration algorithm," �Proceedings of IASTED applied Modeling and Simulation Conference, July 27-31, 1997, Banff, CA.

[6] C. Edward Chow, Jay Shah and Dave Allen “System and Method for Restoring a Telecommunications Network Based on an Adaptive One Prong Approach”, draft of a patent application, page 1-14.

[7] C. Edward Chow, J. Bicknell and S. Seyd “Performance Analysis of fast distributed link restoration algorithms” , International journal of communication systems vol 8, page 325-345, 1995.

[8] J. Bicknell , C. Edward Chow and Sami Seyd “ Performance Analysis of Fast Distributed Network Restoration Algorithms”, draft, to be published in Proceedings of GLOBECOM 1993.	

[9] Philip W. Metzger “Managing a Programming Project”, book, second edition, Prentice-Hall, ISBN 0-13-550772-3.

[10] Elaine Rich, Kevin Knight “Artificial Intelligence”, book, second edition, International edition, McGraw-Hill, ISBN 0-07-100894-2.

[11] Microsoft Press “Visual C++ User’s Guide Version 4 Volume one”, book, ISBN 1-55615-915-3.

[12] Ginsberg, Matt “Essentials of Artificial Intelligence”, book, Morgan Kaufman Publishers, San Mateo, California 1993.

[13] C.-H. E. Chow, V. Narasimhan, and S. Syed, "Analysis of Centralized Network Restoration," Proceedings of 2nd International Conference on Computer Communications and Networks, June 28-30, 1993, San Diego.

�Appendix A

Input options
Command Format:
BFOP netfile [options] for Breadth First one prong.
DFOP netfile [options] for modified Depth First one prong

 Options

/s=XXX Stoptime (default /s=300.0 sec)
/l=XXX LCS (default /l=0.05)
/i=XXX Index (default /i=1.5) fiber refractive index, 1.5 equivalent to 5 µs/km
/n=XXX Noise (default /n=0.00001)
/o=filename, where filename=Outputfilename (default /o=NETSIM.OUT)
/b=XX-YY linkbreak between XX and YY, /b=ZZ nodebreak node ZZ
/x=XXX Transmission speed (default /x=8.0kbps)
/p=XXX Port CPU Delay (default /p=0.100 sec)
/m=XXX msg/signature processing delay (default /m=0.004 sec)
/c=XXX dcs connectd time (default /c=0.02 sec)
/y=X parallel DCS mode, default =1 for sequential mode
/d=XXX Debug 100=debug,110=debugPath,101=debugNode (default /d=000)
/r=XXX Hoplimit (default /r=25)
/a=XXX Acklimit (default /a=1)
/t=X Algorithm type (default /t=1)
/k=XXX Timer Delay=XXX (Constant) Turns off Random Delay(which is default)
/z=XXX RandomTimerDelay (UP)Limit, TimerDelay 0-XXX sec (default=1.0 sec)
/q=XXX RandomTimerDelay (DOWN)Limit, TimerDelay XXX-1.0 sec (default=0.0 sec)
 The /z and /g switches are ignored if /k=XXX is set
/u=X PACK Time to live (default /u=30.0 sec) **
/v=X Unconnected Table Entry Limit (default = 100) **
/e=X Table Entry Limit (default=100)**
** Only available in BFOP.
�Appendix B
Output interpretation

E:\timer_onep>BFOP nj3.net /b=N04 > out
N04 path=20/10/3/2/5=30.00%/20.00%/50.00% bw=232/31/74=41.89% in2p=1/0/9=10.00%/0.00%/90.00%
in2bw=9/74=12.16% lrt=3.033093 wam=2.296818 ham=2.186093 msgs=405 spares=0/82/82

E:\timer_onep>BFOP nj3.net /b=N04 > out
N04 path=A/B/C/D/E=F%/G%/H% bw=I/J/K=L% in2p=M/N/O=P%/Q%/R%
 in2bw=S/T=U% lrt=V wam=W ham=X msgs=Y spares=0/Z/XZ

A: 	number of lost path
B:	number of non restorable paths
C:	number of fully restored paths
D:	number of partially restored paths
E:	number of paths that could not be restored
F:	percentage of restorable paths that got fully restored
 	(C / (A-B))
G:	percentage of restorable paths that partially restored
	(D / (A-B))
H:	percentage of restorable paths that could not be restored
	(E / (A-B))
I:	total bw of non restorable paths :
J:	bw of restored paths:
K:	bw of restorable paths
L:	percentage that got restored (of restorable paths)
M:	The number of paths that are fully restored within 2
	 seconds.
N:	The number of paths that are partially restored
	within 2 seconds
O:	The number of paths that are not restored within 2
	seconds
P:	The percentage of full restored paths within 2 seconds .
	(M/(A-B))
Q:	The percentage of partially restored paths within 2
	 seconds (N/(A-B))
R:	The percentage of not restored paths within 2 seconds.
	(O/(A-B))
S:	bw restored in 2 seconds.
T:	bw of restorable paths
U:	restoration level after 2 seconds
V:	time of last restoration
W:	weighted arithmetic mean of restoration time
X:	harmonic mean of restoration time
Y:	message volume
Z:	spares
XZ:	spares

Appendix C
Accumulated Bandwidth Problem

The use of accumulated bandwidth in the ACK message can in certain cases be a danger, causing the simulator to produce wrong result. Since both DFOP and BFOP are based on the One prong software, this problem was not discovered until late in the project when both simulators were going through the test phase. It is a problem that does not occur often, but when the message exchange gets high in a certain area it can occur. It took many hours of searching and debugging before the problem was identified and what caused the problem. I have called it the “accumulated bandwidth problem”. This problem has been solved in DFOP and BFOP.
Assume the network area shown in Figure 27. An ACK has already traversed through A-B-F-H, requesting 15 bw. Another ACK arrives from D requesting 6 bw and forwards to F. The accumulated bw is now 15+6 =21 to F.

�

Figure � SEQ Figure * ARABIC �27� Accumulated Bandwidth Problem (1)

Another ACK arrives at B from C requesting 5 bw. An ACK is forwarded to F. The accumulated bw is now 15+6+5=26 to F.

�

Figure � SEQ Figure * ARABIC �28� Accumulated Bandwidth, Problem (2)

The ACK from D arrives at F, but can not be handled by F, a CONF(bw=0) is sent back to B. The accumulated bw =15 down to B.

�

Figure � SEQ Figure * ARABIC �29� Accumulated Bandwidth, Problem (3)
A CONF message arrives from E releasing 2 bw down to E.
�

�

Figure � SEQ Figure * ARABIC �30� Accumulated Bandwidth Problem (4)
The second ACK(bw=26) arrives at F, F calculates the actual bw request to 26-15=11 bw, but only 4 bw could be handled, a CONFX(bw=7) is sent back to B and ACK messages are sent to E and G.
�

Figure � SEQ Figure * ARABIC �31� Accumulated Bandwidth Problem (5)
Some time later the CONFX message arrives at B, and node B calculates how much bw that could be handled by F. The corresponding entry in the table is equal to5 bw and the bw field in the message is equal to 7, results in 5-7= -2 a negative and wrong result.

�

Figure � SEQ Figure * ARABIC �32� Accumulated Bandwidth Problem (6)
The reason is that node F calculates the actual requested bw to 11 when it is supposed to be 5, resulting in a request that is bigger than it is supposed to be. This is just one of the cases that can occur because of this problem, there could be other situations messing up the network.
Assume that there initially were accumulated bw =16 bw to F.
A request for 4 bw arrives at B and B forward it to F (acc_bw=20)
F receives the this request, calculates can not handle it, forwards a CONF back to B.
B receives another request for 4 bw and forward it to F (acc_bw=24)
F receives a message that releases 2 bw on F-E link and 2 bw on F-G link.
F receives the request from B (acc_bw=24) and calculates the actual request to 24-16=8. Forward an ACK with actual request for 2 bw along link F-E, an ACK with actual request of 2 bw along F-G and forward a CONFX(bw=4) back to B.
Some time later B receives the CONFX message, finds the entry in its table with bw=4, calculates that 0 bw could be handled. B now tries another link, requesting the 4 bw that B think could not be handled.

Now there are bw protected from F to G and F to E, and they can later be fully/partially rejected causing a reject message to be sent back to B. The messages can also traverse all the way to the start node, and get confirmed, causing situations that can not be handled.
To prevent this DFOP and BFOP include a field with the actual requested bw in the ACK message, this value is compared to the calculated actual bw, if this calculated value is bigger than the actual value it is replaced.
�Appendix D: SIMULATION RESULTS

This Appendix contains the best simulations results for DFOP, BFOP and ONEP for the NJ3 net, the LATA3 net, the D_31 net and the DIS5_64 net.
The complete simulation results in Microsoft Excel 4 format can be downloaded from URL:
ftp:// owl.uccs.edu/~chow/pub/master/aohansma/doc/results.zip
�
ONEP NJ3.NET
� EMBED Excel.Sheet.5 ���

Table � SEQ Table * ARABIC �2� ONEP NJ3.NET
�DFOP NJ3.NET
� EMBED Excel.Sheet.5 ���
Table � SEQ Table * ARABIC �3� DFOP NJ3.NET
�BFOP NJ3.NET
� EMBED Excel.Sheet.5 ���

Table � SEQ Table * ARABIC �4� BFOP NJ3.NET

�ONEP LATA3.NET
� EMBED Excel.Sheet.5 ���

Table � SEQ Table * ARABIC �5� ONEP LATA3.NET

�DFOP LATA3.NET
� EMBED Excel.Sheet.5 ���

Table � SEQ Table * ARABIC �6� DFOP LATA3.NET

 �BFOP LATA3.NET
� EMBED Excel.Sheet.5 ���
Table � SEQ Table * ARABIC �7� BFOP LATA3.NET

ONEP D31.NET
� EMBED Excel.Sheet.5 ���
� EMBED Excel.Sheet.5 ���
Table � SEQ Table * ARABIC �8� ONEP D_31.NET
�DFOP D_31.NET
� EMBED Excel.Sheet.5 ���
� EMBED Excel.Sheet.5 ���
Table � SEQ Table * ARABIC �9� DFOP D_31.NET

�BFOP D_31.NET
� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���
Table � SEQ Table * ARABIC �10� BFOP D_31.NET

�ONEP DIS5_63.NET
� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���
Table � SEQ Table * ARABIC �11� ONEP DIS5_64.NET

�DFOP DIS5_64.NET
� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���
Table � SEQ Table * ARABIC �12� DFOP DIS5_64.NET

�BFOP DIS5_64.NET
� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���

� EMBED Excel.Sheet.5 ���
Table � SEQ Table * ARABIC �13� BFOP DIS5_64.NET
� A start node is one of the end nodes of the disrupted path that are arbitrarily chosen to initiate the research of restoration path. The other end node of the disrupted path is called the finish node. The arbitration mechanism can be based on the node ID.
� The packpath is the path along which the PACK message traversed from the start node to the finish node. The trailfield of the PACK message is copied to the PackPath field of tablerec datastructure.
� This has to do with the breadth first approach and the use of the packpath. Every ACK message correspond to a certain packpath, and the ACK message must follow this packpath and can thereby not be split at a tandem node, since then the ACK message will not follow the packpath.
� Only used by Breadth First Oneprong to store the path the PACK message traversed through. The trail field of the PACK message is copied to PackPath.
� Only used by Breadth First Oneprong to track how many ACK have been sent along a certain path.
� In BFOP the retry is connected to a certain “packpath” and therefor the BFOP tablerec datastructure has a field for number of ack messages sent for that “packpath”, the ack_num is only used as a record in BFOP.
� See Chapter 8 , Path Finding. The BFOP full broadcasting causes a much higher volume of PACK messages compared to DFOP.
� Each node keep record of all available bandwidth on each link. An ACK message “protects” or reserves bandwidth on a link, meaning this bandwidth can not be used by someone else until it is released.
� The next node in the path (packpath) that the ACK message has to traverse to reach the start node. Each ACK message follow a distinct path decided by the packpath field of the ACK message. This is the “next node” in that distinct path (packpath), where to forward the ACK message next.
� There are two situations where the source node recognizes that the disrupted path are restored to the highest restoration level , called maximally restored, that can be achieved. One is 100% and the other is that all available outgoing spares of the source node has been used.
� Minimum number of hop restoration path selection.
� A PACK message carries the information about how many hops it has traversed through, if the PACK message exceeds the hop count limit it is thrown away.
� Each PACK message produces an unconnected entry in the restoration table, if the number of unconnected entries is equal to the “unconnected table entry limit”, the PACK message is thrown away.
� 9-7cut DFOP 91.55 % restoration level, ONEP 39.44 % restoration level . 30-5cut DFOP 100% restoration level, ONEP 48.72 % restoration level.
� Restored part. The part of a restoration path that is different from the original path.. Eg path A-B-C-D-E, C-D cut is restored by A-F-G-H-E using a path based algorithm, the restored part is A-F-G-H-E. For a link based approach the restoration path is A-B-C-H-D-E, the restored part is C-H-D.
� See Breadth First Search Chapter 3, Searching for restoration paths.

�PAGE �v�

�PAGE �v�

� PAGE �iii�

� PAGE �viii�

�PAGE �v�

�PAGE \# "'Page: '#'�'" ��

 X

Node

	Link restoration

 G

 F

 E

 D

 C

 B

 A

 X

Node

Restoration
level

A

B

C

Time

1

2

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

6

10

3

4

5

7

8

9

11

12

13

1,2,6

3,7

4,11

5,15

5,8

6,9

7,10

8,12

9,13

10,14

11,166

12,17

13,18

 X

Fail message

Fail message

 S

 F

1.

 X

 S

 F

2.

Pack messages

2.

ACK

3.

CONF

1.

ACK

4.

ACK

 X

Fail message

Fail message

 S

 F

1.

 X

 S

 F

2.

Pack messages

Packpath
 A

Packpath
 B

Packpath
 C

Packpath
 D

 F

N hops

N + 1 hops

N + X hops

z

y

q

r

enode

erec

symbol_node

 node

 Table
 rec

inode

path_ack_info

up_info

linkdata

down_info

packrec

int_node

pointer

list of items

Timer
rec

 main()

 Process()

 SIM_Processing()

 FAIL_Processing()

 PACK_Processing()

 TIMER_EXP_Processing()

 ACK_Processing()

 CONF_Processing()

 PDONE_Processing()

BFOP

ACK

CONFX

Finish node

CONFX

ACK

Finish node

DFOP

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 A1.

 A2.

PACK#1

PACK#2

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 B1.

 B2.

PACK#1

PACK#2

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 1.

 2.

PACK#1

PACK#2

BFOP

FINISH NODE

FINISH NODE

DFOP

H

 A

 B

 C

 D

 E

 F

 G

ACK(bw=21)

 H

 A

 B

 C

 D

 E

 F

 G

ACK(bw=26)

 H

 H

 A

 B

 C

 D

 E

 F

 G

CONF(bw=0)

 H

 H

 A

 B

 C

 D

 E

 F

 G

CONF

 H

 H

 A

 B

 C

 D

 E

 F

 G

ACK messages

CONFX

 H

 H

 A

 B

 C

 D

 E

 F

 G

 H

 H

