

Anders Bengtsson

MULTICAST PROGRAMMING

5/11/97

�
� TOC \o "1-3" �

1 My Project	� PAGEREF _Toc388087917 \h ��1�

2 The Audio Tool VAT	� PAGEREF _Toc388087918 \h ��1�

3 Establish a Multicast Connection	� PAGEREF _Toc388087919 \h ��1�

3.1 Parameters checking	� PAGEREF _Toc388087920 \h ��1�

3.1.1 Pseudo Code for the relationship between Time To Life (TTL) and max Bandwidth:	� PAGEREF _Toc388087921 \h ��1�

3.1.2 MBone ttl/bandwidth guidelines encoding choices:	� PAGEREF _Toc388087922 \h ��1�

3.1.3 Audio encoding supported by VAT (RTP)	� PAGEREF _Toc388087923 \h ��1�

3.1.4 Mbone port numbers guidelines:	� PAGEREF _Toc388087924 \h ��1�

4 Procedure for establish a multicast connection between two computers:	� PAGEREF _Toc388087925 \h ��1�

4.1 Socket	� PAGEREF _Toc388087926 \h ��1�

4.2 Bind	� PAGEREF _Toc388087927 \h ��1�

4.2.1 Bind for receiving socket.	� PAGEREF _Toc388087928 \h ��1�

4.2.2 Bind for sending socket.	� PAGEREF _Toc388087929 \h ��1�

4.3 Connect	� PAGEREF _Toc388087930 \h ��1�

4.4 Setsockopt	� PAGEREF _Toc388087931 \h ��1�

5 Sending and receiving multicast messages:	� PAGEREF _Toc388087932 \h ��1�

5.1 Send a multicast message	� PAGEREF _Toc388087933 \h ��1�

5.2 Receive a multicast message	� PAGEREF _Toc388087934 \h ��1�

6 RTP	� PAGEREF _Toc388087935 \h ��1�

6.1 Send RTP Audio Messages	� PAGEREF _Toc388087936 \h ��1�

6.2 Receive RTP Audio messages	� PAGEREF _Toc388087937 \h ��1�

6.3 The RTP Header	� PAGEREF _Toc388087938 \h ��1�

7 Examples of MBONE Sessions announced from 4/14 to 4/20	� PAGEREF _Toc388087939 \h ��1�

��
1 My Project

My semester project in the class CS622 Distributed Networks was to learn how to code a multicast program. I choose to look at the audio tool VAT. I especially looked at how to create a connection, how to send and receive messages, and how they implemented the Real Time Protocol (RTP).

2 The Audio Tool VAT

VAT is a real-time, multi-party, multimedia application for audio conferencing over the Internet. VAT is developed by the Network Research Group of Lawrence Berkeley National Laboratory and is mainly written by Steven McCanne (mccanne@ee.lbl.gov) and Van Jacobson (van@ee.lbl.gov). Vat is based on the Draft Internet Standard Real-time Transport Protocol (RTP). The IETF Audio/Video Transport working group developed the RTP Standard. RTP is an application-level protocol implemented entirely within vat, which means that you do not need any special system enhancements to run RTP. The network interface uses standard Berkeley sockets.

VAT can be used both for unicast, and multicast. To be able to use VAT for multicast conferencing the system must support IP Multicast, and ideally, the network should be connected to the Internet IP Multicast Backbone (MBone).

A big problem for interactive audio conferencing is providing a low latency path from the microphone to the net and the net to the speaker. Human factors studies have shown that delays of more than 200-400ms are to big because they force people to significantly change their conversational patterns. Audio is a real-time device and requires a continuous flow of data. If the stream of samples is interrupted, even for a few milliseconds, unpleasant clicks and pops will result. Vat solves this problem by using audio read completions as a `clock' for audio writes. I.e., audio reads and writes are done in the same units, typically 160 sample (20ms) frames, and as soon each one frame read completes, a one frame write is issued. Since the audio input and output are run off the same timebase, this system is flow-balanced and no backlog can build up between vat and the audio output.

Source code and pre-compiled binaries are available via anonymous ftp “ftp.ee.lbl.gov/conferencing/vat”

�
3 Establish a Multicast Connection

There are basically five steps you have to go through to make a Multicast Connection.

You have to make sure that all of the in parameters are in right form and that they are not out of range.

Create two sockets. One sending and one receiving.

Bind the two sockets to an address/name.

Make the actually connection between a local and a distant socket.

If necessary, change some of the options in the network protocol.

3.1 Parameters checking

3.1.1 Pseudo Code for the relationship between Time To Life (TTL) and max Bandwidth:

 	If (TTL < 0 or TTL >255) then print "Invalid TTL value"

If (TTL <= 16) then set MaxBandWidth = 3072

If (TTL <= 64) then set MaxBandWidth = 1024

If (TTL <= 128) then set MaxBandWidth = 128

If (TTL <= 192) then set MaxBandWidth = 53

If (TTL > 192) then set MaxBandWidth = 32

3.1.2 MBone ttl/bandwidth guidelines encoding choices:

If ttl>160, pcm format is not allowed.

If ttl>192, pcm2 & pcm4 format not allowed.

If ttl>200, only gsm & lpc allowed

�
3.1.3 Audio encoding supported by VAT (RTP)

Pcm �
78Kb/s 8-bit mu-law encoded 8KHz PCM (20ms frames)�
�
Pcm2 �
71Kb/s 8-bit mu-law encoded 8KHz PCM (40ms frames)�
�
Pcm4 �
68Kb/s 8-bit mu-law encoded 8KHz PCM (80ms frames)�
�
Dvi �
46Kb/s Intel DVI ADPCM (20ms frames)�
�
Dvi2 �
39Kb/s Intel DVI ADPCM (40ms frames)�
�
Dvi4 �
36Kb/s Intel DVI ADPCM (80ms frames)�
�
Gsm �
17Kb/s GSM (80ms frames)�
�
Lpc4 �
9Kb/s Linear Predictive Coder (80ms frames)�
�

3.1.4 Mbone port numbers guidelines:

PORT NUMBER:�
PRIORITY:�
USED FOR:�
�
0, 16384�
-Lowest priority�
unclassified �
�
16384, 32768�
-High priority�
i.e. audio�
�
32768, 49152�
-Medium priority�
i.e. whiteboard�
�
49152, 65536�
-Low priority�
i.e. video�
�
�
4 Procedure for establish a multicast connection between two computers:

4.1 Socket

First you must create two sockets; one receiving and one sending socket.

The socket system call creates an end point for communication and returns a descriptor to the socket.

Creating a socket using socket:

int fd;

if (fd = socket(AF_INET, SOCK_DGRAM, 0) < 0)

"error handling"

fd is the socket descriptor.

AF_INET = ARPA Internet address. It specifies the address format.

SOCK_DGRAM = Socket datagram. It specifies the semantic of the communication.

0 = Internet protocol (IP). It specifies the protocol to be used with the socket.

�
4.2 Bind

When a socket is created with socket, it exists in a name space but has no name assigned. It is therefore necessary to bind a name to the socket. When binding a name to the socket in the UNIX domain, a socket in the file system is created.

Binding a name to a socket with the command bind.

4.2.1 Bind for receiving socket.

Try to bind the multicast address as the socket *dest address.

sin.sin_family = AF_INET;

sin.sin_port = port;

sin.sin_addr.s_addr = local.sin_addr.s_addr;

if (bind(fd, (struct sockaddr *)&sin, sizeof(sin)) < 0)

"error handling"

 fd is the socket descriptor for the socket to be bind.

sin is a pointer to the struct containing the address format, the port value and the name.

4.2.2 Bind for sending socket.

 		sin.sin_family = AF_INET;

sin.sin_port = port;

sin.sin_addr.s_addr = addr;

if (bind(fd, (struct sockaddr *)&sin, sizeof(sin)) < 0)

"error handling"

�
4.3 Connect

Now we need to initialize a connection on the sockets.

The connect call specifies the peer with which the socket is to be associated; this address is that to which datagrams are to be sent, and the only address from which datagrams are to be received

connect for receiving socket:

sin.sin_port = 0;

sin.sin_addr.s_addr = addr;

if (connect(fd, (struct sockaddr *)&sin, sizeof(sin)) < 0)

"error handling"

connect for sending socket:

sin.sin_family = AF_INET;

sin.sin_port = port;

sin.sin_addr.s_addr = addr;

if (connect(fd, (struct sockaddr *)&sin, sizeof(sin)) < 0)

"error handling"

fd is the socket.

sin is a pointer to the struct containing the address format, the port value and the socket to connect to .

�
4.4 Setsockopt

You might have to modify options associated with the socket. When manipulating socket options, you must specify at what level in the protocol the options are in.

Now, we must enable support for TTL in the sending socket.

u_char t;

t = (ttl > 255) ? 255 : (ttl < 0) ? 0 : ttl;

 		/* if ttl is greater than 255 set t=255, if ttl is less than 0 set t=0 */

if (setsockopt(fd, IPPROTO_IP,

IP_MULTICAST_TTL,(char*)&t, sizeof(t)) < 0)

perror("IP_MULTICAST_TTL");

t contains the TTL value.

IPPROTO_IP is the level the where the option is to be change. In this case the IP level.

IP_MULTICAST_TTL the options to be change, in this case the TTL value.

We also want to disable Multicast Loop Back, since we do not need that.

c = 0;

if (setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, &c, 1) < 0)

"error handling"

c is the value the we want to set the IP_MULTICAST_LOOP to, in this case we will disable the Multicast Loop Back.

�
5 Sending and receiving multicast messages:

5.1 Send a multicast message

To be able to send a message with send the socket must be in connected state.

void Network::send(u_char* buf, int len)

{

if (crypt_)

buf = crypt_->Encrypt(buf, len);

dosend(buf, len, ssock_);

}

void Network::dosend(u_char* buf, int len, int fd)

{

int cc = ::send(fd, (char*)buf, len, 0);

if (cc < 0) {

"error handling"

fd is the socket the messages will be sent to.

buf is the message to send.

len the length of the message.

�
5.2 Receive a multicast message

To be able to receive a message with recvfrom the socket may or may not be in connected state.

int Network::recv(u_char* buf, int len, u_int32_t& from)

{

if (crypt_) {

if (len > wrkbuflen_)

expand_wrkbuf(len);

int cc = dorecv(wrkbuf_, len, from, rsock_);

return (crypt_->Decrypt(wrkbuf_, cc, buf));

}

return (dorecv(buf, len, from, rsock_));

}

int Network::dorecv(u_char* buf, int len, u_int32_t& from, int fd)

{

sockaddr_in sfrom;

int fromlen = sizeof(sfrom);

int cc = ::recvfrom(fd, (char*)buf, len, 0,

(sockaddr*)&sfrom, &fromlen);

if (cc < 0) {

"error handling"

}

fd is the socket the messages will be received from.

buf is where the received message is stored.

sfrom the senders address.

fromlen the returned value contains the received message length.

�
6 RTP

The RTP is totally embedded in the application, which makes it hard to understand. I do not understand how the actual encryption is done because it is very complex. Therefor I will only generally describe the procedure to follow when sending/receiving audio messages.

6.1 Send RTP Audio Messages

The general procedure to send a message is when the raw audio data is ready to be sent (finished sampling), the data will be encrypted with selected encryption technique and a RTP header [see 6.3] will be added. The RTP header contains a sequence number and timestamp, so the receiver knows in what order the messages shall be played.

�

�

�

�

�

�

�

		Flowchart 1 Sending RTP audio message.�

6.2 Receive RTP Audio messages

The general procedure is that when data is received the received message is being decrypted. In what way it will be decrypted depends on what audio encryption the sender used. The message got a RTP header containing sequence number and timestamp, so you know in what order the received messages shall be played.

�

�

�

�

�

���

�

��

�

		Flowchart 2 Receiving RTP audio message.

6.3 The RTP Header

/* Basic RTP header */

struct rtphdr 										u_int16_t rh_flags;									u_int16_t rh_seqno;	/* sequence number */					u_int32_t rh_ts;	/* media-specific time stamp */				u_int32_t rh_ssrc;	/* synchronization src id */						};

�
7 Examples of MBONE Sessions announced from 4/14 to 4/20

Name: Proto: Addr/Port: TTL: Media:

cisico PIM users RTP 224.2.191.234/29716 127 Audio

 udp 224.2.160.153/46781 127 Whiteboard

COST237 Euroseminar RTP 224.2.176.208/21876 127 Audio

 RTP 224.2.193.44/64850 127 Video

 udp 224.2.195.93/40674 127 Whiteboard

Fred Baker and Russel RTP 224.2.150.134/21428 230 Audio

Sutherland udp 224.2.187.65/40297 230 Whiteboard

FreeBSD Lounge RTP 224.2.100.100/16400 127 Audio

 RTP 224.2.100.102/49200 127 Video

 udp 224.2.100.101/32800 127 Whiteboard

 udp 224.2.100.103/32900 127 Text

High-Performance RTP 224.2.221.160/30452 127 Audio

Digital Communications RTP 224.2.185.79/61192 127 Video

Workshop

Hugh Test RTP 224.2.207.236/23066 68 Audio

 RTP 224.2.227.90/65134 68 Video

 udp 224.2.170.29/38484 68 Whiteboard

 udp 224.2.179.241/62610 68 Text

IMJ -- Channel1 RTP 224.2.1.1/19960 127 Audio

 RTP 224.2.21/61000 127 Video

IMJ -- Channel2 RTP 224.2.1.2/19960 127 Audio

 RTP 224.2.2.2/61000 127 Video

Infocom'97

(Re-Broadcast) Channel1 RTP 224.2.244.32/24564 127 Audio

 RTP 224.2.135.235/59462 127 Video

Infocom'97 RTP 224.2.167.141/17054 127 Audio

(Re_Broadcast) Channel2 RTP 224.2.157.47/63088 127 Video

LabWeb - The Spectro- RTP 224.2.195.166/30274 127 Audio

Microscopy RTP 224.2.195.166/30270 127 Video

Collaboratory RTP 224.2.195.166/30272 127 Video

MBone RTP Audio RTP 224.2.0.1/23456 191 Audio

Michigan State RTP 224.2.248.10/26400 127 Audio

University ITV RTP 224.2.135.51/54686 127 Video

MPOLL Test: General udp 224.2.180.212/54662 127 ?

Questions

MSRC Directors RTP 224.2.211.227/29706 63 Audio

Conference RTP 224.2.251.43/62228 63 Video

 udp 224.2.184.102/45767 63 Whiteboard

 udp 224.2.185.197/58533 63 Text

PIM RTP 224.2.134.250/25998 127 Audio

 udp 224.2.198.37/45387 127 Whiteboard

 udp 224.2.221.38/65354 127 Text

Rara Avis RTP 224.2.176.20/19304 127 Audio

 RTP 224.2.164.234/60468 127 Video

UCS-CS dgroup VR RTP 224.2.212.30/45144 75 Audio

conference room udp 224.2.212.30/65304 75 Whiteboard

(private) udp 224.2.212.30/59378 75 Text

UW CSE 588 RTP 224.2.254.253/60528 127 Video

 RTP 224.2.165.1/18278 127 Audio

VINT (private) RTP 224.2.211.93/32390 127 Audio

 udp 224.2.163.53/44600 127 Whiteboard

 udp 224.2.131.36/52627 127 Text

UFSCar -2 RTP 224.2.253.144 127 Video (?)

KBS 2 FM RTP 224.2.157.130/31972 127 Audio

 RTP 224.2.156.12/50382 127 Video

MSRI Sweeps Week - RTP 224.2.205.185/17286 127 Audio

April 15-17 RTP 224.2.205.185/55832 127 Video

Shinbiro RTP 224.2.195.132/24804 127 Audio

 RTP 224.2.167.5/58478 127 Video

 udp 224.2.248.71/51423 127 text

UW CSE 588 RTP 224.2.254.253/60528 127 Video

 RTP 224.2.165.1/18278 127 Audio

AT&T DISC Development RTP 224.2.248.36/21536 127 Audio

Lab in Herndon, RTP 224.2.147.145/56174 127 Video

Virginia

Radio Free Vat (Music!) RTP 224.2.253.119/42148 191 Audio

 udp 224.2.180.126/51629 191 Text

Radio RIX RTP 224.2.216.228/27798 127 Audio

TeleEducation NB RTP 224.2.176.191/25810 127 Audio

 RTP 224.2.245.121/53138 127 Video

 udp 224.2.196.68/52756 127 Text

UCB Multimedia Seminar RTP 224.2.242.81/25378 127 Audio

 RTP 224.2.178.217/49780 127 Video

 udp 224.2.167.198/46760 127 Whiteboard

239 RTP 239.2.251.107/18300 70 Audio

239.192 RTP 239.192.225.59/22680 70 Audio

GRIT! The talk of the RTP 239.109.100.200/20100 127 Audio

Internet! via MS

NetShow

Anders Bengtsson								Multicast programming

� HYPERLINK mailto:aobengts@sanluis.�uccs.edu ��Error! Bookmark not defined.�

�Cs622	� DATE \@ "MM/dd/yy" �05/12/97�	� PAGE �17�

Raw audio data to be sent

Encrypt message

Add time stamp and sequence number to the RTP header.

Send message

Message received

Decrypt message

Check time stamp and sequence number in the RTP header. Is the current message is the one to be played?

No

Put message in queue.

Yes

Play message

