� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc387641583 � PAGEREF _Toc387641583 �6��
2. Design	� GOTOBUTTON _Toc387641584 � PAGEREF _Toc387641584 �9��
2.1 Conference Client process	� GOTOBUTTON _Toc387641585 � PAGEREF _Toc387641585 �9��
2.2 Client Message Format	� GOTOBUTTON _Toc387641586 � PAGEREF _Toc387641586 �13��
2.2.1 “Background-Color” Message Format	� GOTOBUTTON _Toc387641587 � PAGEREF _Toc387641587 �14��
2.2.2 “Change-Object” Message Format	� GOTOBUTTON _Toc387641588 � PAGEREF _Toc387641588 �14��
2.2.3 “Character” Message Format	� GOTOBUTTON _Toc387641589 � PAGEREF _Toc387641589 �16��
2.2.4 “Chatting” Message Format	� GOTOBUTTON _Toc387641590 � PAGEREF _Toc387641590 �17��
2.2.5 “Close” Message Format	� GOTOBUTTON _Toc387641591 � PAGEREF _Toc387641591 �18��
2.2.6 “Connect” Message Format	� GOTOBUTTON _Toc387641592 � PAGEREF _Toc387641592 �19��
2.2.7 “Control-Character” Message Format	� GOTOBUTTON _Toc387641593 � PAGEREF _Toc387641593 �19��
2.2.8 “Delete” Message Format	� GOTOBUTTON _Toc387641594 � PAGEREF _Toc387641594 �21��
2.2.9 “Graphical-Object” Message Format	� GOTOBUTTON _Toc387641595 � PAGEREF _Toc387641595 �21��
2.2.10 “Revoke” Message Format	� GOTOBUTTON _Toc387641596 � PAGEREF _Toc387641596 �23��
2.3 Conference Server Process	� GOTOBUTTON _Toc387641597 � PAGEREF _Toc387641597 �24��
2.4 Server Message Format	� GOTOBUTTON _Toc387641598 � PAGEREF _Toc387641598 �26��
2.4.1 “Disconnect” message format	� GOTOBUTTON _Toc387641599 � PAGEREF _Toc387641599 �26��
2.4.2 “List” message format	� GOTOBUTTON _Toc387641600 � PAGEREF _Toc387641600 �27��
2.5 Design Differences Between Conference Tool 1.0 and 1.1	� GOTOBUTTON _Toc387641601 � PAGEREF _Toc387641601 �27��
3. Implementation of Client	� GOTOBUTTON _Toc387641602 � PAGEREF _Toc387641602 �30��
3.1 Client Server Connection	� GOTOBUTTON _Toc387641603 � PAGEREF _Toc387641603 �30��
3.2 Client to Server Communication	� GOTOBUTTON _Toc387641604 � PAGEREF _Toc387641604 �31��
3.3 Threading	� GOTOBUTTON _Toc387641605 � PAGEREF _Toc387641605 �32��
3.4 Graphical User Interface	� GOTOBUTTON _Toc387641606 � PAGEREF _Toc387641606 �34��
3.4.1 Image Buttons	� GOTOBUTTON _Toc387641607 � PAGEREF _Toc387641607 �35��
3.4.2 Color Palette	� GOTOBUTTON _Toc387641608 � PAGEREF _Toc387641608 �36��
3.5 Drawing Area	� GOTOBUTTON _Toc387641609 � PAGEREF _Toc387641609 �38��
3.6 Loading and Saving	� GOTOBUTTON _Toc387641610 � PAGEREF _Toc387641610 �39��
3.6.1 Zodegas File Format	� GOTOBUTTON _Toc387641611 � PAGEREF _Toc387641611 �40��
3.7 Printing	� GOTOBUTTON _Toc387641612 � PAGEREF _Toc387641612 �40��
4. Implementation of Server	� GOTOBUTTON _Toc387641613 � PAGEREF _Toc387641613 �42��
4.1 Threading	� GOTOBUTTON _Toc387641614 � PAGEREF _Toc387641614 �42��
4.1.1 NetServer Thread	� GOTOBUTTON _Toc387641615 � PAGEREF _Toc387641615 �43��
4.1.2 ClientPort Thread	� GOTOBUTTON _Toc387641616 � PAGEREF _Toc387641616 �44��
4.2 Server Client Connection	� GOTOBUTTON _Toc387641617 � PAGEREF _Toc387641617 �45��
5. JDK1.1 vs. JDK1.0.2	� GOTOBUTTON _Toc387641618 � PAGEREF _Toc387641618 �46��
5.1 A Summary of Enhancements and New Features	� GOTOBUTTON _Toc387641619 � PAGEREF _Toc387641619 �46��
5.2 AWT Enhancements	� GOTOBUTTON _Toc387641620 � PAGEREF _Toc387641620 �47��
5.3 Event Handling	� GOTOBUTTON _Toc387641621 � PAGEREF _Toc387641621 �47��
5.3.1 Old Event Model	� GOTOBUTTON _Toc387641622 � PAGEREF _Toc387641622 �47��
5.3.2 New Event Delegation Model	� GOTOBUTTON _Toc387641623 � PAGEREF _Toc387641623 �49��
5.3.3 Inheritance model compared to Delegation model	� GOTOBUTTON _Toc387641624 � PAGEREF _Toc387641624 �51��
5.4 Deprecated Methods	� GOTOBUTTON _Toc387641625 � PAGEREF _Toc387641625 �52��
5.5 Converting Programs	� GOTOBUTTON _Toc387641626 � PAGEREF _Toc387641626 �52��
5.5.1 Name Changes	� GOTOBUTTON _Toc387641627 � PAGEREF _Toc387641627 �53��
5.5.2 Change to the event delegation Model	� GOTOBUTTON _Toc387641628 � PAGEREF _Toc387641628 �53��
6. Future Development	� GOTOBUTTON _Toc387641629 � PAGEREF _Toc387641629 �55��
6.1 Server	� GOTOBUTTON _Toc387641630 � PAGEREF _Toc387641630 �55��
6.2 Client	� GOTOBUTTON _Toc387641631 � PAGEREF _Toc387641631 �55��
7. Appendix A Users Guide	� GOTOBUTTON _Toc387641632 � PAGEREF _Toc387641632 �56��
7.1 Start Server	� GOTOBUTTON _Toc387641633 � PAGEREF _Toc387641633 �56��
7.2 Start Client	� GOTOBUTTON _Toc387641634 � PAGEREF _Toc387641634 �56��
7.3 Connect to Server	� GOTOBUTTON _Toc387641635 � PAGEREF _Toc387641635 �58��
7.4 Disconnect Client	� GOTOBUTTON _Toc387641636 � PAGEREF _Toc387641636 �60��
7.5 Tools	� GOTOBUTTON _Toc387641637 � PAGEREF _Toc387641637 �60��
7.6 Font Selection	� GOTOBUTTON _Toc387641638 � PAGEREF _Toc387641638 �62��
7.7 Line Width Selection	� GOTOBUTTON _Toc387641639 � PAGEREF _Toc387641639 �63��
7.8 Color Selection	� GOTOBUTTON _Toc387641640 � PAGEREF _Toc387641640 �64��
7.9 Open File	� GOTOBUTTON _Toc387641641 � PAGEREF _Toc387641641 �65��
7.10 Save File	� GOTOBUTTON _Toc387641642 � PAGEREF _Toc387641642 �66��
7.11 Print	� GOTOBUTTON _Toc387641643 � PAGEREF _Toc387641643 �68��
7.12 Chatting Window	� GOTOBUTTON _Toc387641644 � PAGEREF _Toc387641644 �69��
8. Appendix B Requirements	� GOTOBUTTON _Toc387641645 � PAGEREF _Toc387641645 �70��
8.1 System Requirements	� GOTOBUTTON _Toc387641646 � PAGEREF _Toc387641646 �70��
8.2 Download sites	� GOTOBUTTON _Toc387641647 � PAGEREF _Toc387641647 �70��
8.3 Zodega Installation	� GOTOBUTTON _Toc387641648 � PAGEREF _Toc387641648 �70��
9. Appendix C Related Information	� GOTOBUTTON _Toc387641649 � PAGEREF _Toc387641649 �72��
9.1 Performance Measurements	� GOTOBUTTON _Toc387641650 � PAGEREF _Toc387641650 �72��
9.1.1 CaffeineMark Comparison Between JDK 1.0.2 Final and JDK 1.1 Beta	� GOTOBUTTON _Toc387641651 � PAGEREF _Toc387641651 �72��
9.1.2 Comparing Performance of the 1.0.2 Final VM to the 1.1beta VM By Running 'javac'.	� GOTOBUTTON _Toc387641652 � PAGEREF _Toc387641652 �74��
10. References	� GOTOBUTTON _Toc387641653 � PAGEREF _Toc387641653 �76��
�
�Zodega, A Real-time Platform Independent Conference Tool in Java�Anders Sandstrom
Abstracts
This report presents the design and implementation of a distributed, platform independent real-time conference tool. It allows multiple users, connected to the same conference to share information in real-time over the Internet, using Internet socket connections. The conference tool is based upon two major processes, a client process and a server process. Clients connect to a server which keeps track of conferences and conference members and relays all messages received to the correct destinations. Conference users are able to draw graphical shapes, write text, load, save and print a session. Basic conference management and chatting are other features supported.
There are two major purposes to this project, the first one is the implementatioand design and implementation of the conference tool, using the Java language [�]. The second purpose is to evaluate the current release of Java Development Kit (JDK1.1.1) and compare it to the previous release (JDK1.0.2) [�]. Due to major changes of the Java event handling methods and other overall enhancements, it is important to evaluate how the changes affect the design, implementation and of an application. Since the documentation of JDK1.1.1 up to date is scarce, there is abig great need for documentation and implementation examples.

�Introduction
This project is based upon earlier work done at University of Colorado Springs. Sharedraw, which was developed by Dr. Edward C. Chow and Java-based sharedraw developed by Dee Patel [�]. The concept of sharedraw and Java-based sharedraw is a real-time distributed computer conference tool, which allows multiple users geographically separated, to start or join a conference. Once connected to conference, the users can share their freehand drawing in real-time. Java-based sharedraw also provides basic conference flow control such as revoke or suspend users for a specified period. This project is an extension to the previous work described above. The conference tool implements the functionality of sharedraw and extends the drawing and editing capabilities. New features are loading, saving, and printing of a session. Clients connected to the same conference can, via a separate text-based chatting window, communicate with each other without affecting the current image. The conference tool fully utilizes the Java Abstract Window Toolkit (AWT)[�] to supply a friendlier Graphical User Interface (GUI). Contributing to this are menus with shortcuts, buttons, choice-lists, and other commonly used interfaces. Image buttons, a color palette, and a status bar are added to extend the look and feel of this application (� REF _Ref387585219 * MERGEFORMAT �Figure 1-1�).
The conference is based upon two processes: A client processes that run on a local computer and a server process that runs somewhere on the network. Network communication is established using TCP/IP sockets, to support the data exchange between clients and server. Both the client and the server are stand alone applications. The server handles all incoming messages from the clients and relays them to the conference members in real-time.
Using a simple dialog box (� REF _Ref387380291 * MERGEFORMAT �Figure 1-2�) in the client application a user can connect to the server, either by joining an already ongoing conference or starting a new one. When a client is successfully connected to the server, all user actions that affect the local screen are sent to the server process which relays the messages to the rest of the conference members. Messages received by a remote client are processed and then the corresponding action is performed at the remote screen.
� EMBED Word.Picture.6 ���
Figure � STYLEREF 1 \n �1�-� SEQ Figure * ARABIC \r 1 �1� Zodega client window.
�
Figure � STYLEREF 1 \n �1�-� SEQ Figure * ARABIC �2� Connect dialog.
�Design
This section presents the different protocols and formats used by the client and the server process.
Conference Client process
The client process is best described by the state diagram in � REF _Ref387586071 * MERGEFORMAT �Figure 2-1�. State 1 is the start state and there it waits for a valid user operation (� REF _Ref386790664 * MERGEFORMAT �Table 2-1�). If the user selects the connect operation, the client launches a connect to server dialog box and moves to state 2. In State 2 the user is asked to supply connect information such as: user name, server IP address, port number, and conference name. See the dialog box in � REF _Ref387380291 * MERGEFORMAT �Figure 1-2�. the connection information is sent to the server and the process makes a transition to state 3. An unsuccessful connection will lead to a transition back to state 1, while a successful connection will trigger a transition to state 4.
State 4 is similar to state 1 with the exception that the client is connected to the server. A valid local user operation result in a transition to state 5. The operation is executed and then transition to state 6. The same operation is relayed to the server, transition to state 4. Receiving a valid remote user operation result in a transition to state 7. The operation is executed and then transition back to state 4. These loops continue until the disconnect operation or the open chatting window operation is selected. Disconnect will send a disconnect message to the server and move to state 1, while the open chatting window operation will open a chatting window and then move to state 8.
State 8 is similar to state 4 with the addition of the chatting window being open. A valid local user operation result in a transition to state 9. The operation is executed locally and state is changed to state 10. The same operation is encoded into a message and relayed to the server, transition back to state 8. Receiving a valid remote user operation result in a transition to state 11. The operation is executed and then transition back to state 8. These loops continue until the disconnect operation or the close chatting window operation is selected.
Closing chatting window operation will close the window and then move back to state 4, and disconnect will send a disconnect message to the server and move to state 1.
��������������������� EMBED PBrush ���
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC \r 1 �1� State diagram showing client process.
�
User Operation�State���1�3�9��Clear�(�(�(��Close Chatting Window���(��Color Selection�(�(�(��Connect�(����Disconnect��(�(��Exit�(����Font Selection�(�(�(��Font Size Selection�(�(�(��Font Style Selection�(�(�(��Freehand Tool�(�(�(��Line Tool�(�(�(��Line Width Selection�(�(�(��Load�(�(�(��New�(����Open Chatting Window��(���Oval Tool�(�(�(��Pointer Tool�(�(�(��Print�(�(�(��Rectangle Tool�(�(�(��Save/Save As�(�(�(��Solid Oval Tool�(�(�(��Solid Rectangle Tool�(�(�(��Text Tool�(�(�(��Table � STYLEREF 1 \n �2�-� SEQ Table * ARABIC \r 1 �1� Valid user operations.
�Client Message Format
Message�Server version�Client version���1.0, 1.1�1.0�1.1��Background color��(�(��Change object properties���(��Character object��(�(��Chatting string��(�(��Close�(����Connect�(����Control character��(�(��Delete object��(�(��Graphical object��(�(��Revoke�(��(��Table � STYLEREF 1 \n �2�-� SEQ Table * ARABIC �2� Message formats supported.
Both client and server messages are represented by a string which includes the necessary data. There are three different messages that are intended for the server, connect, close, and revoke. All other messages applying to the format restriction are relayed to the other conference participants. This design makes the message format flexible and easy to expand (see � REF _Ref386704003 * MERGEFORMAT �Table 2-2� for supported messages).

� “Background-Color” Message Format
Conference Name�User Name�Message Type�Color��0�1�2�3��
The Background-Color message delivers the current background color from one conference member to all other conference members. Here are the definitions of each field in the message:
The name of the conference connected to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “B”. Reserved character, recognized by the client.
Background color.

“Change-Object” Message Format
Conference Name�User Name�Message Type�x1 Coordinate�y1 Coordinate�(��0�1�2�3�4���x2 Coordinate�y2 Coordinate�Object Type�ID Number�Color�(��5�6�7�8�9���fill/line width�������10�������
The Change-Object message delivers changes to either a line-, oval-, rectangle-, or point-object from one conference member to all other conference members. Here are the definitions of each field in the message:
The name of the conference connected to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “CP”. Reserved character, recognized by the client.
First x coordinate of the object.
First y coordinate of the object.
Second x coordinate of the object.
Second y coordinate of the object.
Type of graphical-object (i.e. line, oval, rectangle, or freehand).
A unique Object identifier.
Object color.
If object type is either oval or rectangle the filed will indicate if the object is outlined or solid. If the object is a line or a freehand object the field will contain the line with.
� “Character” Message Format
Conference Name�User Name�Message Type�x Coordinate�y Coordinate�(��0�1�2�3�4���Character Width�Character Height�Font Size�Font Style�Font Name�(��5�6�7�8�9���Object Type�ID Number�Character position�Character �Color���10�11�12�13�14���
�
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC �2� Font metrics.
The Character message delivers a character from one conference member to all other conference members. Here are the definitions of each field in the message:
The name of the conference connected to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “T”. Reserved character, recognized by the client.
The x coordinate of the character(see � REF _Ref386791937 * MERGEFORMAT �Figure 2-2�)
The y coordinate of the character (see � REF _Ref386791937 * MERGEFORMAT �Figure 2-2�).
Character width (see � REF _Ref386791937 * MERGEFORMAT �Figure 2-2�).
Character height (see � REF _Ref386791937 * MERGEFORMAT �Figure 2-2�).
Font size.
Font style.
Font name.
Object type (i.e. TEXT).
A unique Object identifier.
The Characters position within the string.
The Characters value.
The Character color.

 “Chatting” Message Format
Conference Name�User Name�Message Type�Message String��0�1�2�3��
The Chatting message delivers a string from one conference members from the chatting window to all other conference members chatting windows. Here are the definitions of each field in the message:
The name of the conference to start or connect to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “H”. Reserved character, recognized by the client.
String to be transferred.

“Close” Message Format
Conference Name�User Name�Message Type�Local IP Address��0�1�2�3��
The close message enables a conference client to disconnect from a conference server. Here are the definitions of each field in the message:
The name of the conference to disconnect from. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “close”. Reserved word, recognized by the server.
IP Address and port number of local machine.

 “Connect” Message Format
Conference Name�User Name�Message Type�Local IP Address��0�1�2�3��
The connect message enables a conference client to connect to a conference server. Here are the definitions of each field in the message:
The name of the conference to start or connect to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “connect”. Reserved word, recognized by the server.
IP Address and port number of local machine.

 “Control-Character” Message Format
Conference Name�User Name�Message Type�ID Number�Character position�Character��0�1�2�3�4�5��
The Control-Character message delivers a control character from one conference members to all other conference members. Here are the definitions of each field in the message:
The name of the conference connected to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “C”. Reserved character, recognized by the client.
A unique object identifier.
The characters position within the string.
The control characters value (i.e. DELTE, BACK-SPACE and ENTER).
� “Delete” Message Format
Conference Name�User Name�Message Type�ID Number��0�1�2�3��
The Delete message delivers the ID number of the object to be deleted from one conference members to all other conference members. Here are the definitions of each field in the message:
The name of the conference connected to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “D”. Reserved character, recognized by the client.
A unique object identifier.

“Graphical-Object” Message Format
Conference Name�User Name�Message Type�x1 Coordinate�y1 Coordinate�(��0�1�2�3�4���x2 Coordinate�y2 Coordinate�Object Type�ID Number�Color�(��5�6�7�8�9���fill/line width�������10�������
The Graphical-Object message delivers either a line-, oval-, rectangle-, or point-object from one conference member to all other conference members. Here are the definitions of each field in the message:
The name of the conference connected to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “P”. Reserved character, recognized by the client.
First x coordinate of the object.
First y coordinate of the object.
Second x coordinate of the object.
Second y coordinate of the object.
Type of graphical-object (i.e. line, oval, rectangle, or freehand).
A unique Object identifier.
Object color.
If object type is either oval or rectangle the filed will indicate if the object is outlined or solid. If the object is a line or a freehand object the field will contain the line with.
 “Revoke” Message Format
Conference Name�User Name�Message Type�Local IP Address�Revoke Time�User to be revoked��0�1�2�3�4�5��
The revoke message enables the conference client who owns the conference (i.e. started the conference) to revoke a conference member a specified amount of time. Here are the definitions of each field in the message:
The name of the conference connected to. The name is limited to one word.
The name of the user. The Name is limited to one word.
Message Type: “revoke”. Reserved word, recognized by the server.
IP Address and port number of local machine.
Revoke time specified in minutes.
The name of the user that is to be revoked.

�Conference Server Process
The state diagram for the server process is pictured in � REF _Ref386856428 * MERGEFORMAT �Error! Reference source not found.�. State 1 is the start state, the sever will wait in state 1 until it receives any of the following message types from a client:
“Connect” message.
“Disconnect” message.
“Revoke” message.
“List” message.
Any of the user operation messages (see � REF _Ref386704003 * MERGEFORMAT �Table 2-2�).
When a message of type “Connect” is received, a transition to state 2 is made. The server will add the user, update the conference list and then move to state 3. The conference list will then be sent to the client and a transition back to state 1.
If the server receives a “Close message a transition to state 4 will occur. The server process will remove the user from the conference list and then return to state 1.
When the server receives any of the user operations, it will move to state 5. It relay the message to all other participants of that conference, and then return to state 1.
A “list” message from a client will make the server process move to state 6. The conference list is sent back to the client and then the server return to state 1.
� EMBED Word.Picture.6 ��� Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC �3� State diagram showing server process.
A “revoke” message will trigger a transition to state 7. The server will verify that sending client is the conference owner, update the revoke time and the return to state 1.
�Server Message Format
Both server and client messages are represented by a string which includes the necessary data. There are two different messages that the server can send to a client disconnect, and list. All other messages applying to the format restriction are relayed to the other conference participants. This design makes the message format flexible and easy to expand (see � REF _Ref386704003 * MERGEFORMAT �Table 2-2� for supported messages).
“Disconnect” message format
Disconnect��0��
The disconnect message is sent by the server as an acknowledgment of a close request from a client. Here is the definition of the field in the message:
Disconnect is a reserved word, recognized by clients.

� “List” message format
List�List of users��0�1��The List message is used to supply clients with the current list of users connected to the server. The list also contains information on which user is connected to which conference. Here are the definitions of each field in the message:
List is a reserved word, recognized by clients.
A list containing names of all users connected to the server, and the name of the conference they are connected to.

Design Differences Between Conference Tool 1.0 and 1.1
The biggest difference between the two versions of the client process is that the object oriented design is purer in version 1.1. This is feasible due to the new delegation event model in the current release of JDK. Instead of sub-classing a Component or a Component’s Container, events are delegated to event listeners. This fundamental difference in design, allows total separation between a Component and its functionality. The class diagrams in � REF _Ref387035922 * MERGEFORMAT �Figure 2-4� and� REF _Ref387161569 * MERGEFORMAT �Figure 2-5�, shows how the new event model helps to separate the GUI from the rest of the application.
The sever process has been undergoing minor design changes due to deprecated (no longer supported) methods in JDK1.1. More detailed information about the improved event model, deprecated methods and other differences between the Java versions will be discussed in chapter 5.

� EMBED Word.Picture.6 ���
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC �4� Class diagram of Zodega client version 1.0

� EMBED Word.Picture.6 ���
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC �5� Class diagram of Zodega Client version 1.1

�Implementation of Client
Zodega is implemented using the Java Core Application Programming Interface (API) packages, that are included with JDK [�][�]. Package java.net is used to set up the socket connections, package java.io to handle reading data from and writing data to files. Package java.awt provides an integrated set of classes to manage user interface components such as windows, dialog boxes, buttons, checkboxes, lists, menus, and text fields.
Client Server Connection
Zodega uses TCP/IP network connection, to exchange data between client and server processes. Package java.net and java.io includes all classes needed to setup a socket connection and create input and output streams to handle incoming and outgoing data. The code below shows how a client establishes connection with the server.
try{
 socket = new Socket(serverIpAddress, port);
 dataOutputStream=newDataOutputStream(socket.getOutputStream());
 dataInputStream = new DataInputStream(socket.getInputStream());
 tempPort = socket.getLocalPort();
}
catch(IOException e){
 connected = false;
 if(debug)System.out.println("Error: IO Exception");
 writeToStatusBar(LEFT, "Error: Cannot Connect to Server",false);
 return false;
}

An instance of Socket class is created in the try statement, using the servers IP address and port number. If the connection is successful, there will be an socket to socket connection between the client and the server. Otherwise the catch statement will catch the IOException thrown and display an error message in the status bar. After a successful connection instances of dataInputStream and dataOutputStream are created to pass data to and from the socket (line 3 and 4).
Client to Server Communication
The client uses the method sendDataToServer, to send messages from the client to the server. The method takes a string as input parameter, this string consists of fields 2 and higher of the messages described in section “� REF _Ref387123046 \n �2.2� � REF _Ref387123016 * MERGEFORMAT �Client Message Format�”. This string is appended to the conference name and user name (i.e. filed 0 and 1) and then written to the dataOutputStream (line 7). If an error occurs while writing, the thrown IOException will be caught by the catch statement (line 11) and an error message will be displayed in the status bar.
public void sendDataToServer(String string){
 if(!connected || string.length()==0 || idName.length()==0 ||
 conferenceName.length()==0 || dataOutputStream==null){
 return;
 }
 try{
 dataOutputStream.writeBytes(conferenceName+" "+idName+
 " "+string+"\n");
 dataOutputStream.flush();
 }�
 catch(IOException e){
 writeToStatusBar(LEFT,"ERROR: Sending data to server",false);
 }
}

Threading
To be able to process local events and at the same time handle incoming data from a socket connection, the client process is multithreaded, this means that the process is able to simultaneously execute multiple sequences of instructions.
� EMBED Word.Picture.6 ���
Figure � STYLEREF 1 \n �3�-� SEQ Figure * ARABIC \r 1 �1� Thread implementation in version 1.1.
There are two threads, a main thread that processes local user actions, and a thread called GetDataInputStream that listens to the socket and then calls the main thread to process the data input (see � REF _Ref387161630 * MERGEFORMAT �Figure 3-1�).
Version 1.0 and 1.1 of the conference tool basically implements threads the same the way. The difference is that in version 1.0, the main thread is implemented in the integrated “main” class. In version 1.1 where the design is better (section: � REF _Ref387589523 \n �2.5� “� REF _Ref387589544 * MERGEFORMAT �Design Differences Between Conference Tool 1.0 and 1.1�”) the main thread has become a separate class. The class diagrams in � REF _Ref387035922 * MERGEFORMAT �Figure 2-4� and� REF _Ref387161569 * MERGEFORMAT �Figure 2-5�, shows the difference in design.
The GetDataInputStream is started when connection has been established between client and server and stopped when connection is closed. The thread class used to implement threads is embedded in package java.lang. Below is an short example describing how to start and stop a thread.
private getDataInputStream gDIS;
...
gDIS = new getDataInputStream(); // New Instance of thread
gDIS.start();			 // Start thread
...
gDIS.stop();				 // Stop thread

�Graphical User Interface
�
Figure � STYLEREF 1 \n �3�-� SEQ Figure * ARABIC �2�	Client GUI version 1.1
The graphical user interface is implemented using the AWT, located in package java.awt. Design and implementation of the GUI is intended to have the look and feel of a regular windows application. To support this, components such as windows, dialog boxes, buttons, checkboxes, lists, menus, and text fields are used. To further improve the GUI, image buttons, a status bar, and a color palette have been developed.
Image Buttons
�
Figure � STYLEREF 1 \n �3�-� SEQ Figure * ARABIC �3� Image buttons
The ImageButton class is created by sub-classing class java.awt.Canvas and the constructor accepts either a GIF or a JPEG image as in parameter. � REF _Ref387203592 * MERGEFORMAT �Figure 3-3� shows an array of image buttons and example 1 and example 2 show how to make a new instance of an image button.
Example 1:
ImageButton pointerButton =
new ImageButton(image=toolkit.getImage("./images/pointer.gif”);

Example 2:
ImageButton textButton =
new ImageButton(image=toolkit.getImage("./images/text.jpg”);

Mouse events affecting an ImageButton component are first handled within the component to supply visual feedback to a user operation. The events are then propagated up the event hierarchy or sent to a registered EventListener depending on the version of event model being used. See section � REF _Ref387590008 \n �5.3.3�, ”� REF _Ref387590015 * MERGEFORMAT �Inheritance model compared to Delegation model�”. For a more detailed description of the difference between event models.
Visual feedback to user actions such as mouse press, mouse over, or the illusion of a disabled button is generated, either by deriving additional images from the image used as in parameter or by adding new ones. Adding Images for mouse pressed, mouse over, and disabled button is done with methods setOverImage, setArmedImage and setDisabledImage (Example 3).
Example 3:
PointerButton.setOverImage("./images/pointerOver.gif”);
PointerButton.setArmedImage("./images/pointerPressed.gif”);
PointerButton.setDisabledImage("./images/pointerDisabled.gif”);

Color Palette
�
Figure � STYLEREF 1 \n �3�-� SEQ Figure * ARABIC �4� Color palette.
The class ColorPalette is created by sub classing java.awt.Canvas. The class contains the array of colors to be used. Default the array contains the 13 predefined colors of class java.awt.Color, but colors are easily added, removed or changed by altering the array. Mouse press events affecting an ColorPalette component are first handled within the component to registry color selection. The events are then propagated up the event hierarchy or sent to a specific event listener depending on the version of event model being used. Event handling in AWT 1.0 does not support the ability to differentiate between mouse buttons. Therefore a pressed mouse button in Conference tool version 1.0 selects foreground color and a pressed mouse button together with the shift button pressed selects background color.
Event handling in AWT 1.1 supports more than one mouse button, so in Conference Tool version 1.1, a pressed left mouse button selects foreground color and a pressed right mouse button selects background color.
An instance of ColorPalette can be created with a variety of in parameters. Default palette is set to be displayed in three columns with each color field set to 20x20 pixels. The code example shows different ways the color palette can be configured.
private ColorPalette palette;
palette = new ColorPalette(); //color size 20x20 pixels, default 3 columns
palette = new ColorPalette(5); // 5 columns
palette = new ColorPalette(25,30,2); // color size 25x30 pixels, 2 columns

Drawing Area
� EMBED Word.Picture.6 ���
Figure � STYLEREF 1 \n �3�-� SEQ Figure * ARABIC �5� Class ExtendedCanvas
Class ExtendedCanvas is a sub class of java.awt.Canvas. It handles all user actions that effect the drawing area and keeps track of all objects displayed.
All objects are stored in an instance of class java.util.Vector. The Vector class is a growable array of objects. Like an array, it contains components that can be accessed using an integer index. However, the size of a Vector can grow or shrink as needed to accommodate adding and removing items after the Vector has been created.
Loading and Saving
To implement the functionality of loading and saving data from a conference session, class java.io.DataInputStream and class java.io. DataOutputStream are used. A data output stream lets an application write primitive Java data types to an output stream in a portable way, and then use a data input stream to read the data back in. Code example1 shows how method writeFile writes the contents of a vector to a file. Code example2 shows how method readFile reads a file and puts each object back in Vector v.
Vector readFile(){
 ...
 Vector v=new Vector();
 try{
 DataInputStream is=new DataInputStream(new FileInputStream(file));
 GraphicalObject[] in=readData(is);
 is.close();
 for(int i=0;i<in.length;i++){
 v.addElement(in[i]);
 }
 }
 catch(IOException e){
 System.out.println("Error: "+e);
 System.exit(1);
 }
 return v;
 }

void writeFile(){
 ...
 try{
 PrintStream os=new PrintStream(new FileOutputStream(file));
 writeData(gui.canvas.getVector(),os);
 os.close();
 }
 catch(IOException e){
 System.out.println("Error: "+e);
 System.exit(1);
 }
 }
Zodegas File Format
The file format is basically a straight forward string representation of each object. The first line in the file consists of the string CTF (Conference Tool Format), which is an identifier. The second line is an integer representation of the background color. Line 3 contains the number of objects stored. And the following lines represent each object.
ctf
-1
3
1|120|56|251|147|1745699737|0|0|8|0|0|Helvetica|0|10|-16777216
3|327|93|459|191|1745699738|0|0|8|0|0|Helvetica|0|10|-16777216
3|130|189|284|273|1745699739|0|0|8|0|0|Helvetica|0|10|-16777216

Printing
Printing the contents of the drawing area applies only to version 1.1 of the client, since support for printing is new in JDK1.1. The printing API is designed for use with the current AWT Graphics model. It is very simple and consists primarily of, method getPrintJob, class java.awt.PrintJob, and interface java.awt.PrintGraphics [�]:
Method PrintJob getPrintJob(Frame f, String jobtitle, Properties props), in class java.awt.Toolkit. Takes care of posting any platform specific print dialogs so that when it returns, the PrintJob object has already been configured to match the user's request. The "properties" parameter provides the ability to pass in any platform-dependent default property values for the print job (i.e. "printer name", "last-page-first", etc.).
Class java.awt.PrintJob is responsible for encapsulating all the information associated with a printing request. It provides access to the relevant printing properties chosen by the user, as well as the print graphics contexts used to transparently render to the print device.
The PrintJob object provides the method to obtain a handle to an object which is a subclass of Graphics and implements the java.awt.PrintGraphics interface. Since this object is a subclass of the Graphics class, it can simply be passed into existing paint() or print() methods, which use the standard Graphics drawing methods. The underlying AWT implementation takes care of translating those calls to the appropriate print device.
The code example shows how printing is implemented in Clinet1.1.
void print(){
 PrintJob printJob=getToolkit().getPrintJob(gui,"Printing Canvas",null);
 if(printJob!=null){
 Graphics pg=printJob.getGraphics();
 if(pg!=null){
 printAll(pg);
 pg.dispose();
 }
 printJob.end();
 }
}

�Implementation of Server
The conference tool server is implemented using the Java Core Application Programming Interface (API) packages, that are included with JDK [�][�]. Package java.net and third party package COM.dtai.net are used to set up socket connections, package java.io for implementation of input and output streams, and package java.lang for multithreading.
Threading
The function of the server process is to listen to the server socket for connection requests from new clients, listen for incoming messages from already connected clients and at the same time process the messages. To be able to accomplish this the server process is multithreaded, this means that the process is able to simultaneously execute multiple sequences of instructions.
There are three threads, a NetServer thread that listens for client connection requests. A ReadInput thread, which listen for incoming messages, and a third thread called ClientPort which processes incoming messages from client processes (see � REF _Ref387398772 * MERGEFORMAT �Figure 4-1�).

� EMBED Word.Picture.6 ���
Figure � STYLEREF 1 \n �4�-� SEQ Figure * ARABIC \r 1 �1� Server threads.
NetServer Thread
The NetsServer thread starts when the server program is started, it creates a sever socket and the begins an infinite loop to wait for and accept client connection requests.
The code example below shows how Netserver creates a new instance of ServerSocket (line 4) and then waits in an infinite loop creating client ports each time a connection occur. Method accept() (line 6) will block until a connection is made, which is the reason for this being a separate thread.
public void run () {
 ServerSocket serverSocket = null;
 try {
 serverSocket = new ServerSocket(portNumber);
 while (true) {
 createClientPort (serverSocket.accept ());
 }
 }
...
}

ClientPort Thread
Each accepted request will start a new ClientPort thread, which is the main thread. The functions of ClientPort is as follows:
Process “Connect” message.
Process “Close” message.
Process “Revoke” message.
Process “List” message.
Process any of the user commands.
Maintain a list of conference members
Maintain a list of all conferences in progress.
The code example below shows how client messages are retieved by an instance of ClientPort (line 2). Method readLine() will block until either a newline character or a carriage return character is read.
try{
 inputdata = readLine();
}
catch (IOException e){
 error ("Error reading from the client.\nClient probably disconnected");
}
Server Client Connection
The conference tool uses TCP/IP network connection to exchange data between server and client processes. The server socket, input and output streams handling incoming and outgoing data, are implemented with classes from packages java.net, java.io and COM.dati.net.
The code below shows the part of the NetServer thread that sets up a socket and stays in an infinite loop to listen to connection requests from client processes.
ServerSocket serverSocket;	
int PortNumber=9005;
...
try {
 serverSocket = new ServerSocket(portNumber);
 while(true){
 createClientPort(serverSocket.accept());
 }
}
catch(IOException e){
 error("IO Error opening server socket");
}

�JDK1.1 vs. JDK1.0.2
JDK1.1 brings a many additions, alterations, and deprecations to the Core API of JDK1.0.2. Although most applications currently require JDK1.0.2, a transition to JDK1.1 is inevitable for any serious development efforts for three reasons:
The additions and enhancements of APIs.
The new architecture which enables faster, more robust implementations of the APIs, which means that the updated program will work better.
Support for the old APIs will eventually be phased out.
This section will present the most important new features and especially the ones directly affecting this application. We will also discuss how to convert programs using 1.0.2 Core APIs to 1.1.
A Summary of Enhancements and New Features
Some of the new capabilities that JDK 1.1 offers are: Internationalization, signed applets, JAR file format, JavaBeans component model, networking enhancements, Math package for large numbers, Remote Method Invocation, Reflection, database connectivity, new Java Native Interface, Object Serialization, Inner Classes, and performance enhancements. [�] But probably the most significant difference between JDK1.0.2 and JDK1.1 is the AWT enhancements, and the new delegation event model.
AWT Enhancements
The AWT enhancements include the beginnings of a richer infrastructure for larger-scale GUI development [�], including APIs for printing, easier/faster scrolling, popup menus, cursors per component, a delegation-based event model, imaging and graphics enhancements, and more flexible font support for internationalization. Also Noteworthy is that the Win32 version of AWT has been completely rewritten for improved speed, quality, and consistency with the other platforms.
Event Handling
Of all the changes and additions to AWT, the new event model will probably have the biggest impact on design and implementation of applets and applications. Here follows a comparison between the old model and the new one to show the advantages and need for the new model.
Old Event Model
The model for event processing in version 1.0 of the AWT is based on inheritance. Standard AWT components such as a Frame or a Button must be sub-classed in order to override their default behaviors. The subclass overrides the default behavior by providing new implementations of event processing methods such as action() or handleEvent(). Returning "true" from one of these methods consumes the event so it is not processed further. Otherwise the event is propagated sequentially up the GUI hierarchy until, either it is consumed, or the root of the hierarchy is reached.
The result of this model is that programmers have two means of constructing their event-handling code:
The Component that generates the Event responds to it. This is done by sub-classing the Component and overriding one of its event handling methods.
A Container of the Component that creates the event responds to it. This is done by sub-classing one of the Components Containers. This approach works because, Containers perform two functions in this event model: They control the layout of their sub-components and they handle any events not already handled by Objects lower down in the hierarchy.
The inheritance model works fine for small applications with simple interfaces, but there are several reasons for a new model:
The requirement to subclass a component in order make any real use of its functionality is cumbersome to developers; sub-classing should be reserved for circumstances where components are being extended in some functional or visual way.
The inheritance model does not support a clean separation between the application and the GUI, because application code must be integrated directly into the sub-classed components at some level.
Since all event types are filtered through the same methods, the logic to process the different event types will lead to large Case statements, and poor coding which is hard to debug.
There is no filtering of events. Events are always delivered to components regardless of whether the components actually handle them or not. This is a general performance problem, particularly with high-frequency type events such as mouse moves.
New Event Delegation Model
To solve the problems mentioned in the previous section, JDK1.1 introduces a new delegation-based event model. An event is propagated from a Source object to a Listener object, by invoking a method on the listener and passing in the instance of the event sub-class which defines the event type generated.
In the old model, events were represented by a single Event class handling all events. Programs differentiated event types based on which Component instance that generated it and the event’s numeric id.
The new model introduces a hierarchy of event classes, instead of a single Event class. The classes are grouped into low-level and semantic events. A low-level event is one which represents a low-level input or window-system occurrence on a visual component on the screen. For instance, closing a window will generate a low-level event.
Semantic events correspond to Components’ interpretations of low-level events. An example of a semantic event is clicking on a Button component. This is interpreted to mean that the user wants an actions taken. Thus the Button component generates an ActionEvent when clicked on.
There are various event listener interfaces which will listen to different EventObjects, such as MouseListener() and ActionListener(). Each interface will typically have a separate method for each distinct type of event that the event class represent. For instance methods mouseClicked() and mouseReleased().
Inheritance model compared to Delegation model
The old model handles events by inheritance (sub-classing) and consumption, while the new model uses delegation and listening. These differences of the design have significant impact on the scalability and reusability of the code:
Sub-classing a Component, will encapsulate the function in one class. It can easily be reused, but only in its present form.
Sub-classing a Component’s Container instead of the Component itself, provides separation between functionality and Component. Therefore functionality can be changed independently of the Component. However, the functionality is no longer encapsulated and thus, hard to reuse.
Event delegation provides complete separation between GUI and functionality. To receive a Component’s EventObject, a Listener only needs to register. There is no sub-classing since the listener implements the functionality.
Event delegation implies automatic event filtering, since listeners only register for the events they are interested in. This will boost the performance by reducing the volume of events generated and processed.
Deprecated Methods
Naming conventions in JDK1.1 for methods, arguments, and functionality have been made consistent. The methods that are no longer supported or recommended, are called deprecated methods and they will cause warnings when compiling old code using javac1.1. The deprecated methods are still covered in the API reference [� NOTEREF _Ref387549892 �9�], so it is esay to find a substitute. Deprecated AWT methods can be found on JavaSoft’s home page [�],[�].
Converting Programs
Programs which are compiled under 1.0, 1.0.1, and 1.0.2, will work in a 1.1 Java Virtual Machine with or without recompilation. As long as the programs don't depend on bugs in the earlier releases [�]. Even though conversion to JDK1.1 is desirable for three reasons:
The additions and enhancements of APIs.
The new architecture which enables faster, more robust implementations of the APIs, which means that the updated program might work better.
Support for the old APIs will eventually be phased out.
There are basically two steps to convert programs to run with the new API’s.
In JDK1.1 method names, arguments, and functionality have to follow a naming convention. Therefor simple name changes due to deprecated methods are necessary.
Convert to the new AWT event handling model, which is the larger and more time consuming task of the conversion.
Name Changes
This part of the conversion can be done automatically on a UNIX platform using a sed-script provided by JavaSoft [�]. The script is not available at this moment, so the name changes have to be done manually. The easiest way to do this, is to compile the old code in javac1.1, using the deprecation switch. This will generate warnings for all deprecated methods. Follow the warring messages to change the old deprecated methods, and recompile. Continue this until all warnings are gone.
Change to the event delegation Model
There are two major approaches to converting existing program to the new event model. The easiest way to convert to the new event handling model is to route events through the existing event handlers. The components that handle events will now be implemented with the new EventListener interfaces. Then the listeners must be registered with the event sources and this is usually themselves or the components they contain.
A harder and more time consuming way is to extract all the event handling code from the components and putting it in to separate classes that implement the Listener interfaces. This method benefits the reusability and scalability.

�
Future Development
Server
The current version of the server has a text-based user interface, to provide a convenient way of starting the application in a remote shell. In future release one can implement a browser-based server user interface with Java Remote Method Invocation (RMI) API [�]. RMI enables the programmer to create distributed Java-to-Java applications, in which the methods of remote Java objects can be invoked from other Java virtual machines, possibly on different hosts.
Client
It is possible to add more functionality to the tools and the conference management. Interesting features are sound video support. According to JavaSoft, they will release both a Sound API and Media Framework in quarter 3 of 1997. Other possible improvements are support for Postscript and/or PDF.

�Appendix A	Users Guide
Start Server
At the command prompt, type Server to start the application. A message containing the Servers IP address and port number will show up in the shell.
C:\WINDOWS\Desktop\beta\SERVER>c:\java\bin\java Server
Usage: java Server -port PortNumber
Using port 9005 by default.
IP info: IP ADDRESS: MM3.uccs.edu/128.198.9.112 PORT NUMBER: 9005

Start Client
At the command prompt type “java Zodega” to start the client process, the window below will show up on the screen.
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC \r 1 �1� Client window.
�Connect to Server
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �2� File menu Connect…
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �3� Connect button.
To connect to the server select either “Connect…” from the file menu (� REF _Ref387327044 * MERGEFORMAT �Figure 7-2�) or press the connect button (� REF _Ref387327060 * MERGEFORMAT �Figure 7-3�).
A Connection dialog will appear on top of the client window(� REF _Ref387329459 * MERGEFORMAT �Figure 7-4�). Field Server IP, Server Port and Conference Name, have default values. Use them or type new values into the fields, then press the connect button.
IMPORTANT:
Information in all feilds are required for a sucessfull connection.
Both user name and conference name must be single word names.
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �4�	Connection dialog.
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �5�	Status bar showing connection information after a successful connection.
After a successful login the status bar at the bottom of the screen will display, user name, conference name and IP address of the server connected to (� REF _Ref387329492 * MERGEFORMAT �Figure 7-5�).
Disconnect Client
�
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �6� Disconnect button.
To disconnect from a conference select either Disconnect from the file menu (� REF _Ref387331137 * MERGEFORMAT �Figure 7-7�) or press the disconnect button (� REF _Ref387331145 * MERGEFORMAT �Figure 7-6�).
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �7� File menu Disconnect.
Tools
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �8� Tools menu.
Tool selection is made from the Tool menu (� REF _Ref387462644 * MERGEFORMAT �Figure 7-8�) or from the tool buttons.
�
�		Pointer tool: Select object.
�		Text tool: Type text.
�		Line tool: Draw Lines.			
�		Oval tool: Draw outlined ovals and circles.	
�		Solid Oval tool: Draw solid ovals and circles.
�		Rectangle tool: Draw outlined rectangles and squares.
�		Solid Rectangle tool: Draw solid rectangles and squares.
�		Freehand tool: Freehand drawing

Font Selection
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �9� Font menu.
� EMBED Word.Picture.6 ���
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �10� Font name list.
Select font name from menu Text, Font (� REF _Ref387417193 * MERGEFORMAT �Figure 7-9�) or from the font name list (� REF _Ref387417210 * MERGEFORMAT �Figure 7-10�).
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �11� Style menu.
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �12� Bold and Italic buttons.
Select font style from menu Text, Style (� REF _Ref387417577 * MERGEFORMAT �Figure 7-11�) or from buttons Bold or Italic (� REF _Ref387417591 * MERGEFORMAT �Figure 7-12�).
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �13� Size list.
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �14� Size menu.
Select font size from menu Text, Size (� REF _Ref387417730 * MERGEFORMAT �Figure 7-14�) or from font size list (� REF _Ref387417742 * MERGEFORMAT �Figure 7-13�).
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �15� Line width list.

Line Width Selection
Select line width from the line width list (� REF _Ref387417923 * MERGEFORMAT �Figure 7-15�).
Color Selection
Select color From the color palette (� REF _Ref387462018 * MERGEFORMAT �Figure 7-16�)
In Conference tool version 1.0, a pressed mouse button selects foreground color and a pressed mouse button together with the shift button pressed selects background color. In Conference Tool version 1.1, a pressed left mouse button selects foreground color and a pressed right mouse button selects background color.
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �16� Color palette.
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �17� Current Colors.
Current foreground and background color are displayed by below the color palette (� REF _Ref387462036 * MERGEFORMAT �Figure 7-17�).

Open File
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �18� File menu Open.
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �19� Open button.
To open a file, select either Open from the file menu(� REF _Ref387406120 * MERGEFORMAT �Figure 7-18�) or press the open button (� REF _Ref387406131 * MERGEFORMAT �Figure 7-19�).
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �20�	Open file dialog.
�
A file dialog window will appear on top of the client window(� REF _Ref387406422 * MERGEFORMAT �Figure 7-20�). Select file to load and press the Open button.
Save File
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �21� File menu Save
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �22� File menu Save As…
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �23� Save button
To save a file select either Save (� REF _Ref387408335 * MERGEFORMAT �Figure 7-21�) or Save As… (� REF _Ref387408348 * MERGEFORMAT �Figure 7-22�) from the file menu or press the save button (� REF _Ref387408361 * MERGEFORMAT �Figure 7-23�). Both Save and the save button will save a file without prompting for a filename, while Save As… will display a file dialog window (� REF _Ref387408394 * MERGEFORMAT �Figure 7-24�), prompting for a new name. Type a filename.ctf and press the Save button. If the session to be saved is untitled the Save As… functionality will automatically be used.
�

�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �24�	File dialog window.
�Print
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �25� Print Button
�
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �26�	Print dialog.
To print the contents of the drawing area, either select Print from the File menu (� REF _Ref387462227 * MERGEFORMAT �Figure 7-27�) or press the print button (� REF _Ref387462235 * MERGEFORMAT �Figure 7-25�). A standard platform dependent print dialog window will be displayed on top of the client window. Select printer settings and press the print Button (� REF _Ref387462186 * MERGEFORMAT �Figure 7-26�).
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �27� File menu Print

Chatting Window
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �28� Chatting button.
To open the chatting window press the chatting button (� REF _Ref387413600 * MERGEFORMAT �Figure 7-28�). The functionality is available only when the client is connected to a conference otherwise the chatting window button will be disabled. The chatting dialog consist of text filed where user input can be typed, a Text area displaying the messages from all conference members (� REF _Ref387413572 * MERGEFORMAT �Figure 7-29�).
�
Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �29�	Chatting dialog.
Appendix B Requirements
System Requirements
Zodega 1.0 requires a platform running Java Virtual Machine 1.0 or 1.1.
Zodega 1.1 requires a platform running Java Virtual Machine 1.1.
Download Sites
Java Developers Kit 1.0.2:
http://www.javasoft.com/products/jdk/1.0.2/index.html
Java Developer Kit 1.1.1:
URL: http://www.javasoft.com/products/jdk/1.1/
Zodega Installation
Get desired version of Zodega:
Zodega10.zip (Windows 95 Windows NT)
Zodega11.zip (Windows 95 Windows NT)
Zodega1.0.tar (UNIX)
Zodega1.1.tar (UNIX)
Create a new directory:
pkunzip -d Zodega##.zip (Windows 95 Windows NT).
tar -xvf Zodega#.#.tar (UNIX).

�Appendix C 	Related Information
Performance Measurements
The following measurements are obtained from JavaSofts home page[�].
They compare improvements in performance between JDK 1.0.2 Final and JDK 1.1 Beta releases.
CaffeineMark Comparison Between JDK 1.0.2 Final and JDK 1.1 Beta
The following measurements compare improvements in performance between JDK 1.0.2 Final and JDK 1.1 Beta releases. In the reports below, each program has been run 5 times and the median is shown, so you can see what kinds of variance there is. These were all run on a desktop machine in a typical work environment, so there was some background processing (such as email arriving on the Solaris machine, perfmeters, etc.). Your numbers may vary.
CaffeineMark 2.01
Browser http://wombat.eng/~pbk/CaffeineMark2.01/index.html
Appletviewer http://wombat.eng/~pbk/CaffeineMark2.01/caffeinemark2.html

Bigger is better.

run1	run2	run3	run4	run5	median
JDK1.0.2 appletviewer (P133 32M WinNT4.0)
Sieve		167	167	167	166	167	167.0
Loop		165	165	164	165	165	165.0
Logic		162	161	161	162	162	162.0
String		143	132	132	136	135	135.0
Method	170	171	169	170	171	170.0
FloatingPoint	162	157	162	162	161	162.0
Image		268	263	269	267	261	267.0
Graphics	160	181	175	168	178	175.0
Dialog		99	97	97	100	100	99.0
CaffeineMark166	166	166	166	166	166.0

JDK1.1P appletviewer (P133 32M WinNT4.0)
Sieve		457	466	465	463	459	463.0
Loop		554	556	556	558	554	556.0
Logic		493	485	485	492	486	486.0
String		129	129	129	130	131	129.0
Method	369	368	370	371	372	370.0
FloatingPoint	383	387	389	385	388	387.0
Image		416	410	417	406	414	414.0
Graphics	268	268	266	259	265	266.0
Dialog		145	147	145	145	146	145.0
CaffeineMark325	325	326	323	325	325.0
�Comparing Performance of the 1.0.2 Final VM to the 1.1beta VM By Running 'javac'.
This is a study comparing the relative performance of the Java Virtual Machine from the JDK 1.0.2 final and the JDK 1.1beta releases.
Executive Summary
The javac program is a compiler for the Java language. The test is to have javac compile a copy of itself on two different versions of the Java Virtual Machine (VM), on two different platforms. For this moderate-sized program, the JDK1.1beta VM is 1.7x the speed of the JDK1.0.2 VM on Win32, and 2.0x the speed of the JDK1.0.2 VM on Solaris.
Details
The test is to take the javac compiler from the JDK1.0.2, and have it compile the sources for the javac compiler from the JDK1.0.2. The JDK1.0.2 javac compiler consists of approximately 660K of text containing approximately 10K lines of Java code in 166 source files, generating about 550K of class files. The source files are not freely available, but they are available to all Java licensees. The classes for the JDK1.0.2 javac compiler are freely available from java.sun.com, so others should be able to produce similar results even without the sources to the compiler itself.
The tests were run on two machines: a 133MHz Pentium running WindowsNT4.0, and a 167MHz Ultra1 running Solaris2.5. In both cases, the Java heap was started at 8M, and never grew beyond that. The JDK1.0.2 javac classes were precompiled and those same javac class files were used as the compiler on both the JDK1.0.2 VM and the JDK1.1beta VM. The classes imported by javac during compilation were available in identical form (from the JDK1.0.2) during all runs. The JDK1.0.2 VM ran with the runtime classes and libraries from the JDK1.0.2, and the JDK1.1beta VM ran with the runtime classes and libraries from the JDK1.1beta (or things wouldn't have worked!). All the imported classes, VM binaries, runtime classes, and libraries were local to the machine on which the tests were run.
These tests were run on desktop machines. The machines were not intentionally doing anything else, but they had various background processes, window systems, etc., running. I show the real time, user time, and system time from 5 separate runs, and the median time for each VM on each platform.
These numbers are in seconds: smaller is better.

�Results

run#1	run#2	run#3	run#4	run#5	median

JDK1.0.2 VM on P133 32M WindowsNT4.0

real		117.4	116.2	114.9	114.7	111.2	114.9
user		99.4	98.5	98.4	98.6	97.5	98.5
sys		7.1	7.6	6.9	7.3	7.0	7.1

JDK1.1beta2 VM on P133 32M WindowsNT4.0

real		72.9	70.3	70.4	69.5	71.3	70.4
user		57.7	57.5	57.4	57.4	57.7	 57.5
sys		7.5	7.2	7.8	 7.4	 7.8	7.5

JDK1.0.2 VM on Ultra1/167 64M Solaris2.5

real		80.8	82.2	81.5	80.7	81.8	81.5
user		71.3	73.0	71.6	71.2	71.9	71.6
sys		2.0	2.0	2.0	 2.0	 2.2	2.0

JDK1.1 VM on Ultra1/167 64M Solaris2.5

real		43.6	44.3	44.2	44.8	44.4	44.3
user		35.3	35.4	35.2	35.3	35.7	35.3
sys		2.0	2.3	2.2	2.3	1.9	2.2

Compare the user times for the different VMs on the same platform. The Win32 VM went from 98.5 seconds down to 57.5, for a speed-up of 1.7x. The Solaris VM went from 71.6 seconds down to 35.3, for a speed-up of 2.0x. The scripts and sources used to generate these numbers are available upon request. I'd be interested if others can reproduce these numbers, or supply numbers for other configurations.

�References
� PAGE �4�

�PAGE �

Sandstrom � PAGE �33�

� The Java Language Specification, URL: http://www.javasoft.com/doc/language_specification/index.html, 1997.

� JDK 1.1.1 Documentation, Java Development Kit, URL: http://www.javasoft.com/products/jdk/1.1/docs/index.html, 1997.

� Patel, Dee, “Java-based Sharedraw”, A Masters Project Report, University of Colorado at Colorado Springs, URL: http://owl.uccs.edu/~chow/software.html, 1997.

� “What is the AWT ?”, The AWT Home Page, URL: http://www.javasoft.com/products/jdk/awt/index.html, 1997.

� “Java Packages”, Java API Documentation, URL: http://www.javasoft.com:80/products/jdk/1.0.2/api/, 1997

� Java API Packages, Java Platform 1.1.1 Core API, URL: http://java.sun.com/products/jdk/1.1/docs/api/packages.html, 1997.

� “Java AWT: Printing”, URL: http://www.javasoft.com/products/jdk/1.1/docs/guide/awt/designspec/printing.html, 1997.
� “Java Packages”, Java API Documentation, URL: http://www.javasoft.com:80/products/jdk/1.0.2/api/, 1997

� Java API Packages, Java Platform 1.1.1 Core API, URL: http://java.sun.com/products/jdk/1.1/docs/api/packages.html, 1997.

� JDK 1.1.1 Documentation, “Introduction”, URL: http://www.javasoft.com/products/jdk/1.1/docs/relnotes/intro.html, 1997.

� Java Report, “The JDK1.1’s New Delegation Event Model”, SIGS Publications,Volume 2, Number 4, April 1997.

� “Simple Name Changes”, URL: http://www.javasoft.com/products/jdk/1.1/docs/guide/awt/NameChanges.html, 1997.

� “Deprecated Methods in the 1.1 AWT”, URL: http://www.javasoft.com/products/jdk/1.1/docs/guide/awt/DeprecatedMethods.html, 1997.

� Incompatible Changes in the 1.1 AWT API, URL: http://www.javasoft.com/products/jdk/1.1/docs/guide/awt/IncompatibleChanges.html, 1997.

� How to Convert Programs to the 1.1 AWT API, “General Instructions”, URL: http://www.javasoft.com/products/jdk/1.1/docs/guide/awt/HowToUpgrade.html, 1997.

� “RMI - Remote Method Invocation”, URL: http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/index.html, 1997.

� Performance Measurements, Java Development Kit Version 1.1 Beta, URL: http://java.sun.com/products/jdk/1.1/performance/index.html, 1997.

Get
rem-
ote
user
opera-
tions

Send user
 operation
 to server

Send user
 operation
 to server

Receive conference list from server

Quit

Get user
operations

Close chatting
window

 Perform
 user
 operation
 on
local
 screen

Perform user
operation on
local screen

Perform user
operation on
local screen

 Perform
user
operation
on
local
 screen

Get
user
opera-
tions

Get
remote
user
operations

Get user
operations

Open
chatting
window

“Disconnect”
message to
server

“Connect”
message
to server

Perform user operation on
local screen

“Disconnect”
 message to
 server

“Connect” operation

