CS920 Independent Study Project

By Kelly Tappan

Java to Microsoft Multimedia System Interface

The Java language currently supports only the Sun "au" format for sound recording and playback. This interface will allow "wave" format sound to be played from Java.

�
Table Of Contents

� TOC \o "1-3" �RESEARCH	� GOTOBUTTON _Toc388632586 � PAGEREF _Toc388632586 �3��

DESIGN	� GOTOBUTTON _Toc388632587 � PAGEREF _Toc388632587 �3��

PLAN	� GOTOBUTTON _Toc388632588 � PAGEREF _Toc388632588 �5��

LEARNINGS	� GOTOBUTTON _Toc388632589 � PAGEREF _Toc388632589 �5��

��
Research

Research for the project was conducted prior to and during the semester. In the previous semester (Fall '96) Internet Websites were searched for information relative to the topics of Java sound methods and multimedia programming in Java and other languages.

Over the Winter Break, several books from the UCCS library where perused to garner in-depth knowledge about networked multimedia formats, as well as multimedia programming techniques for the Windows 95 operating system.

In the current semester, several hours where devoted to obtaining current documentation and SDKs for the Java language, the Windows multimedia system, The Win32 API, along with evaluation of other approaches to the project, such as Intel's Multimedia Framework for Java.

design

Background

The design of the project would have been fairly straight forward, where it not for the fact it involved the interfacing of not only two software systems (from two different vendors), but two different software paradigms. However, this dual paradigm scenario is likely to be the case in "the real world" since maintenance is a large part of the software business.

Microsoft's Windows Multimedia System is an extension to the Windows API using a C library and a structured programming paradigm. It consists of functions and structures that interface windows applications to multimedia device drivers, using the message based multitasking capabilities of the Windows operating system.

Sun's Java language is a multithreaded, object oriented programming environment, which is implemented on a virtual machine (VM) architecture. The VM is platform independent, therefore, Java code is portable from platform to platform, even in a "meta-compiled" form, known as byte code.

Because the VM is platform independent, it cannot depend on, and therefore exploit, unique hardware features of platforms, such as PC based sound cards. To access these platform dependent features, Sun developed a C library and extensions to the Java VM known as Native Methods, which has since been renamed the Java Native Interface (JNI).

Using JNI, Java programs can make calls to C/C++ based functions, and C/C++ code can access Java objects and their methods. The JNI was used in this project to allow Java objects to play sounds, in PC based formats, on the PC's sound card.

Detailed Design and Implementation.

As originally conceived, the project only had two parts: a C based Dynamically Linked Library (DLL) which made calls to the Windows Multimedia System, through the Windows API extensions; and a Java class who's methods used the C based DLL. This architecture ignored the object oriented nature of Java because the multimedia system was a class who's instances would play other objects, a.k.a. sounds. Further, the sound objects would have to be initialized with a tool class, in order to contain the sounds in wave files.

Therefore, the design evolved into the following three Java classes and C DLL:

mmio: The multimedia input/output class of objects.

AudioClass: The "Wave" format sound class of objects.

WaveTool: The initialization tool objects which "load" wave files into sound class objects.

On the Java side of the interface, the objects are encapsulation as follows:

WaveTool "knows about" the structure (format) of wave files. It also "knows" the corresponding structures in the AudioClass objects. WaveTool objects initialize AudioClass objects from wave files by parsing through the files and storing the data in the attributes of the AudioClass objects. In this respect, AudioClass objects are "using" WaveTool objects to establish their initial state.

mmio class objects contain methods and attributes for the multimedia system. They establish and modify the state of the multimedia system, based on the data stored in the AudioClass objects, through what are called "native methods." These native methods are implemented in the C DLL.

On the C DLL side of the interface, several functions are performed in addition to calls to Windows multimedia functions. This is due to the nature of the JNI.

The JNI passes the native methods a pointer to an array of pointers to functions which access the calling Java object's methods and attributes. These attributes can not be directly manipulated from the C function. Only through function calls can the Java object's attributes be retrieved or modified by the C functions. This "feature" is a side effect of making the VM platform independent, in that the function calls prevent the C code from "knowing" the internal structure of the Java object and VM. This isolation adds overhead, both in the code to copy the Java object's attributes back and forth, and in the time used to copy them.

The multimedia functions of the DLL are:

Open an output device: initializes the link between the sound object used by the mmio object and the PC sound card driver. Stores the state in the mmio object.

Write to an output device: copies the data from the sound object to the PC sound card driver.

Close an output device: breaks the link between the sound object used by the mmio objects and the PC sound card driver

Plan

The project plan was incremental in nature, which allowed the functionality of the JNI to be investigated sequentially from the simple features, like invoking a procedure in the DLL with no parameters passed, to complex interactions, like the callback of Java methods. The tasks, and order of progression, were as follows:

Use Java to invoke a high level audio service called "sndPlaySound", with the wave file name embedded in the C function.

Call "sndPlaySound", passing the wave file name string to the C function.

Pass an object from Java to the multimedia system and have the status of the system returned to Java in the object.

Open a wave file in Java and play the sound through the DLL interface to the sound card.

learnings

While the lessons learned in this project were many and varied, they could be loosely gathered in to three categories of knowledge: theory, practice and professional development.

The theoretical knowledge gained was really quite broad. I feel I now understand the messaging system used by Windows to pass control, status and data around the OS for multi-tasking. I also understand the relationship between device drivers and applications under Windows much better now. My knowledge of Java has also improved, particularly around the issues of the VM and the JNI. The project also increased in my comprehension of OOP due to the use of Java. One last area of theoretical knowledge I broached was that of networked multimedia.

The practical aspects of the project were profound! To begin with, I learned a lot about software tools! Just getting the Native Methods C library to the point where it would compile was a major task that took two weeks! Then I upgraded to JDK 1.1 with JNI and spent another week or two getting it to compile! Later, I learned that some of the "fixes" I used (like the 'typedef double __int64') were not valid and had to further troubleshoot the tools. Perhaps the most significant practical concept I have developed from this experience is that a common development environment must be used to accomplish this type of project efficiently and reliably. There are just too many parameters passed between the two software systems, in too many different contexts, to keep them all straight. One other practical issue was the lack of available information for the proprietary Windows Multimedia System vs. the wealth of (somewhat imprecise) information available for Java. Because the Java language is so popular I could supplement the flawed documents with newsgroup discussions and email.

Finally, the insight I gained from this project on my progress as a software professional was very enlightening. I seemed to constantly underestimate the work effort required to accomplish a given task. I could blame this on the difficulties of the development environment (mixed paradigm, systems, tools), but that does not fully satisfy me since I should have devoted more thought to anticipating the problems that might arise during the project. This experience has heightened my interest in system analysis and software engineering discipline.

All in all, this has been a very interesting and enjoyable project, which has capped my software training nicely. My only real regret, is that I didn't have more time to devote to it so I could have done even more with it.

�PAGE �

�PAGE �6�

