
Virtual Resource Management*

(*AKA Server Load Balancing and Non-Server Load Balancing)

Key Technologies, Tricks of the Trade, and
Application Requirements

Version 3.0

Do Not Duplicate 1 Research Report 99001_v3.0

TABLE OF CONTENTS
1 INTRODUCTION...4
1.1 About This Report 4

1.2 What Is Virtual Resource Management? 5

1.3 Who Is Acuitive? 5

1.4 About Our Reports and Subscription Service 6

1.5 About The Authors 6
1.5.1 Mark Hoover 6
1.5.2 Dave Logan 7

2 KEY ADVANTAGES OF DEPLOYING VIRTUAL RESOURCE MANAGEMENT8

3 THE TECHONOMICS OF VRM ...9

4 THE LIFE OF A LOAD BALANCED SESSION..10
4.1 The Life of an HTTP Session 10

4.2 Being Told Where to Go: Local VRM 12

5 TECHNOLOGY AND TECHNIQUES: OVERVIEW..13
5.1 Introduction 13

5.2 The Functional Components of a VRM System 14
5.2.1 VRM “Schedulers” 15

6 SINGLE SITE VRM: FEEDBACK (RESOURCE MONITORING) ...16
6.1 Introduction 16

6.2 External Monitoring 17
6.2.1 Device ICMP Pinging (DIP) 17
6.2.2 TCP Connection Observation (TCO) 17
6.2.3 TCP Connection Verification (TCV) 18
6.2.4 Active Content Verification (ACV) 18
6.2.5 Passive Content Verification (PCV) 20
6.2.6 Dynamic Application Verification (DAV) 21
6.2.7 Remote External Probes 21

6.3 Resource-Resident Monitoring 22
6.3.1 Feedback Interfaces 22
6.3.2 Using Server-Resident Monitoring 24
6.3.3 Limitations and Recommendations 24

6.4 Summary of Local Feedback Techniques 25

7 SINGLE SITE POLICIES: SERVER SELECTION ...26
7.1 “Best Available” Server Policies 26

7.1.1 Round Robin Policy 26
7.1.2 Least Connections Policy 27
7.1.3 Packet and Byte Rate Policies 27
7.1.4 Response Time Related Policies 28
7.1.5 Server Resource Management Policies 29
7.1.6 Optimizing Potential Target Server Pools 30
7.1.7 Best Available Server Policies Summary 32

7.2 Persistency Policies 32
7.2.1 Proxy Firewalls: Ensuring That Persistency Isn’t Too Easy 34
7.2.2 Core VRM Persistence Feature Options 34
7.2.3 Addressing “Shopping Cart” Persistency 37
7.2.4 A Better Way To Handle Some Persistence? Avoid The Problem! 39
7.2.5 Persistency and URL-Based Scheduling 39
7.2.6 Persistency Options Summary 40

7.3 Preferential Services 41
7.3.1 Preferential Services User Discrimination 41
7.3.2 Preferential Services Targets 42
7.3.3 Preferential Services Mechanisms 43
7.3.4 Preferential Services Policies 44
7.3.5 Overall Analysis 44

7.4 Some Final Thoughts On Policies 45

Do Not Duplicate 2 Research Report 99001_v3.0

8 SINGLE SITE VRM: MECHANISMS...46
8.1 Immediate Binding Mechanisms 46

8.1.1 MAC Address Translation (MAT) 47
8.1.2 MAC Multicast (MAM) 48
8.1.3 Half Network Address Translation (HNAT) 49
8.1.4 Full NAT (FNAT) 52

8.2 Delayed Binding Mechanisms 52
8.2.1 TCP “Diddling” (TCPD) 52
8.2.2 TCP Gateway (TCPG) 54
8.2.3 TCP Connection Hop (TCPCH) 55
8.2.4 Value Added Features Enabled By Delayed Binding 56

8.3 Mechanisms Summary 58

9 MULTI-SITE LOAD BALANCING..59
9.1 Multi-Site Feedback 61

9.1.1 Content Site Testing: Extensions to Local Feedback 61
9.1.2 Inter-VRM Protocol (IVP) 62

9.2 Multi-Site Oriented Policies 63
9.2.1 Static Client-Site Preferences (SCP) 63
9.2.2 L3 Topological Proximity Testing (TPT) 65
9.2.3 Client Path Performance (CPP) 68
9.2.4 Routed Path Analysis (RPA) 69
9.2.5 Site Performance Measurement (SPM) 70
9.2.6 Packet Retransmission (PKTR) 72
9.2.7 Let the User Decide…. 72
9.2.8 Summary 72

9.3 Multi-Site Oriented Mechanisms 73
9.3.1 DNS Services Primer 73
9.3.2 Round Robin DNS 74
9.3.3 RR/DNS Server Extensions (RR-Ext) 75
9.3.4 DNS Redirection (DNSR) 75
9.3.5 Issues with Using DNS Redirection 76
9.3.6 Addressing The DNS Redirection Issues 77
9.3.7 Application Request Forwarding (ARF) 80

9.4 Multi-Site Persistency Issues 84

9.5 Multi-Site VRM Summary 86

10 VRM SYSTEMS REDUNDANCY...87
10.1 Hot Standby Redundancy 87

10.1.1 Keep-Alives 87
10.1.2 Topologies and Fail-Over Mechanisms 88
10.1.3 Hot Standby Suitability 91

10.2 Active-Standby Redundancy 91
10.2.1 Topologies and Fail-Over Mechanisms 91
10.2.2 Parallel V_IPs 91
10.2.3 Extending The Concept To Multiple Schedulers 92
10.2.4 Active-Standby Suitability 93

10.3 The Split Brain Problem 93

10.4 Special Case – MAC Multicast Redundancy 93

10.5 Session Assurance 94

10.6 Some Other Practical Issues 94
10.6.1 Designing Reliable Server Systems 94
10.6.2 Guarding Against Your Own VRM Product 95
10.6.3 Improving System Availability With Backup Servers 96
10.6.4 Providing Some Extra Security 96
10.6.5 Some Summary Thoughts On Increasing System Reliability With VRM 98

11 VRM SYSTEM PERFORMANCE AND CAPACITY...99
11.1 Setting Performance Goals 100

11.2 Allocating Performance Requirements 101
11.2.1 Example Application 101
11.2.2 Evaluating The Contribution of system Elements to Overall Performance 101

11.3 Determining VRM Scheduler Specifications 105

Do Not Duplicate 3 Research Report 99001_v3.0

11.3.1 Recommended Scheduler Session Rate Specifications 106
11.3.2 Scheduler Capacity 107

11.4 VRM System Architectures 108
11.4.1 Central CPU/Memory Systems 108
11.4.2 Embedded Multi-processing Systems 109
11.4.3 Hardware Assisted Systems 109

12 NON-SERVER LOAD BALANCING..110
12.1 Web Cache Servers 110

12.1.1 Forward Proxy Cache Server 110
12.1.2 Transparent Cache Server 111
12.1.3 Reverse Proxy Cache Servers 111
12.1.4 What Can’t Be Cached? 112
12.1.5 Cache Server Clustering and the Internet Cache Protocol (ICP) 113
12.1.6 Problems With The Use of Cache Servers 113
12.1.7 Cache Director Technology 114
12.1.8 Router-based Cache Director Technology 115
12.1.9 VRM-based Cache Director Requirements 115
12.1.10 Thoughts on the Web Caching Market 117

12.2 Firewall Load Balancing 118

12.3 Other Forms of Non-Server Load Balancing 122

13 VRM MANAGEMENT AND OPERATIONS ISSUES...123
13.1 Key Operations and Maintenance Issues 123

13.2 VRM Systems Can Ease The Pains Of Operations 124

13.3 Management Interfaces 124
13.3.1 The Command Line Interface 124
13.3.2 The Browser User Interface 125
13.3.3 The Installed Management Application 125
13.3.4 SNMP Support 126

13.4 Instrumentation and Reporting 126

13.5 Secure Systems Administration 127

13.6 Content Deployment 127
13.6.1 Traditional Content Deployment Schemes 127
13.6.2 Simplifying and Scaling Content Distribution Via Caching 128
13.6.3 Content Management 130

14 CHOOSING A VRM SOLUTION RIGHT FOR YOUR APPLICATION..132
14.1 Characterizing Your Application 132

14.2 Some Fundamentals Which Always Make Sense 132

14.3 Identifying More Detailed Requirements: Classifying Your Application 135
14.3.1 Local VRM, Static Content 136
14.3.2 Local VRM, Downloaded Content 137
14.3.3 Local VRM, 1-Way Dynamic Application Environment 139
14.3.4 Local VRM, 2-Way Dynamic Application Environment 141
14.3.5 Local VRM, Server Optimization 143
14.3.6 Multi-Site VRM, Site Redundancy 143
14.3.7 MS-VRM, Global Content Distribution 145
14.3.8 Co-Location/Hosting 146

Do Not Duplicate 4 Research Report 99001_v3.0

11 IInnttrroodduuccttiioonn
1.1 About This Report
This report is written for site and network architects everywhere who may benefit from the use of Virtual
Resource Management (VRM) in their network and application/web server deployments. The material is
largely for technical readers who need to better understand the considerations for using Virtual Resource
Management, the various architectural and feature-level options associated with state-of-the-art products
available today, how to evaluate specific application requirements, and how to design an optimal solution
for those requirements.

The information in this report is based on our own research, things we have learned from helping some
vendors define and deliver products, and numerous real world applications that we have designed and
implemented. Throughout the document, we provided highlighted tips and techniques, based on our
knowledge, to help you avoid some of the landmines we may have tripped over in the past 36 months or
so.

Section 2 provides a bullet-level list of the potential advantages to be gained by deploying Virtual
Resource Management.

Section 3 addresses (at a very high level) the economic reasons for deploying Virtual Resource
Management.

Section 4 is a good section to read to get an overall feel for the information flows and mechanisms
underlying Virtual Resource Management. Every aspect of VRM discussed in Section 4 is discussed in
more detail elsewhere in the document. The value of Section 4 is that it provides a higher level context to
understand the more detailed information that follows.

Sections 5-13 provide the meat of the discussion on VRM technology. Section 5 is an overview section,
defining some terms and describing how the following sections are organized. Sections 6-12 drill down
on key functional and systems areas to be considered when architecting a VRM solution into your site or
network. Section 12 discusses the concept of “Non-Server Load Balancing,” i.e. applying the concept of
VRM to devices other than servers.

Section 14 brings it all together again. Here we define several application types, one of which we hope
defines or is close to defining your application. For each application type, we identify the key technical
considerations and feature/function choices appropriate for that application. From this, you can develop a
template for how to evaluate the appropriateness of any particular vendor’s offering for your specific
application.

This report is primarily about technology. We make judgments about what technologies fit which
situations best. It’s not about vendors and their products. We have created a companion report that is
purely focused on the vendors and their products. Entitled “Virtual Resource Management: Which
Vendor Is The Right Choice For You?” this resource can guide you to an appropriate vendor/product
choice for your specific application.

Do Not Duplicate 5 Research Report 99001_v3.0

1.2 What Is Virtual Resource Management?
Acuitive uses the term Virtual Resource Management1 (VRM) for the methods and procedures associated
with making multiple networked devices “appear” to users and related components as one larger device.
Want to make six NT servers and two Solaris servers appear as one large web server? VRM. Want to
make three routers look like one large one? The answer’s VRM. Want to make multiple firewalls, VPN
devices, or proxy cache servers look like one big device? You should consider VRM.

1.3 Who Is Acuitive?
Started in 1997, Acuitive is a strategic consulting firm focused on the development and application of
emerging networked computing technologies. Acuitive provides a wide variety of technical and
marketing advisory services to equipment vendors, service providers, and enterprise network planners.
Acuitive also publishes qualitative research reports on emerging technologies, to educate end-users and
stimulate market development.

The Acuitive Network Planning and Management Group assists enterprise network clients with strategic
planning for IP services. The NPMG services address two key needs in enterprise network planning:
Network Requirements and Application Requirements. The services include baselines for networks and
applications, certification for new application rollouts, capacity planning, design of complete network
management systems, advice on Virtual Resource Management and WAN bandwidth management
strategies.

The Acuitive Business Strategy Group helps vendor clients with market strategy, business cases, target
customer requirements, product line plans, product and service requirements, alliance partnerships,
competitive evaluations, product and program management, company and product positioning, and
outbound marketing.

We’ve been involved in the development and application of VRM technology from day one. As
technologists, VRM intrigues us because it operates at the convergence point between applications and
networks. As advisors to end users, it’s critical because it is an important technical underpinning for
making new businesses and business processes based on web technology more reliable and scaleable. As
strategists consulting to vendors, it’s a technology that has spawned new product categories and
companies, and will be a key component of the IP services functions larger vendors need to offer to rise
out of the increasingly commoditized network “plumbing” market.

As a result, we’ve been involved with or have observed hundreds of deployments of the technology and
we have hands-on experience with almost all the products available on the market. We have also
consulted with several of the vendors to help them orient their products to emerging customer needs.

1 You’ll find some other terms used in the industry. The most common might be the term Server Load Balancing (VRM). But the concept has
broadened to include infrastructure devices like routers, cache servers, and firewalls. So the Server aspect of VRM term doesn’t seem
encompassing enough. Also, many of the techniques today are designed not to primarily just balance load, but to use resources in the most
effective manner, consistent with the nature of the application, it’s security mechanisms and user-state mechanisms. As you apply these
techniques to a transaction-oriented site, for instance, the goal is to ensure transaction integrity. If you can also balance the load while meeting
that goal, so much the better, but it’s not the primary goal.

On the other hand, Collaborative Research, who is the industry leader in market research associated with this category, uses the term Internet
Traffic Management (ITM). We like that term for the collection of capabilities that they encompass with it. But it’s a bit broader than what we
are addressing here, because it includes the management of traffic over inherently non-virtual entities such as WAN access links. So we have a
slightly narrower focus and use the term Virtual Resource Management.

Do Not Duplicate 6 Research Report 99001_v3.0

1.4 About Our Reports and Subscription Service
We’ve “bottled” our experiences in this area to help you get educated on the technology issues of VRM,
characterize your application, and choose the right vendor solution for your application. To that end, we
have published two comprehensive research reports.

This one, entitled Virtual Resource Management: Key Technologies, Tricks of the Trade, and Application
Requirements provides a detailed tutorial of the various approaches to building VRM solutions. The
values of various techniques and features available in the market, as related to specific application types,
are discussed. The result is a “hit list” of key attributes to look for in a VRM solution for your particular
application. The attributes are organized by: policies, mechanisms, feedback, performance,
redundancy, and management. These areas of consideration are the key aspects of a VRM system to
evaluate when architecting a solution. Some areas of technology, such as preferential services and
security, are still changing rapidly. So those who acquire this research report will automatically be
enlisted into a subscription program providing bi-monthly technical position papers on a technology area
or application note of interest through April 2000. Some subjects under consideration are “Using and
Abusing Preferential Services”, “Practical Capacity Planning”, “Famous Sites We Have Known” (case
studies), and “Designing In Iron-Clad Security.” We invite you to suggest topics. The technical position
papers will be sent to you via e-mail. We will also send out regular corrections and addenda to this report
on an as-needed basis, via e-mail.

Next you need to choose a specific vendor to implement your solution. To help in these considerations,
we also offer a second research report entitled “Virtual Resource Management: Which Vendor Is Right
For You?” This report summarizes the capabilities available from each of the key vendors in the market
today and maps their capabilities against application requirements to create a “short list” of vendors and
products to consider for various types of applications. This information is always changing, so those who
purchase this report will automatically be enlisted into a subscription program providing quarterly updates
(via e-mail) through April 2000.

For more information on the research reports, go to www.acuitive.com. There you will find additional
detailed information, including a complete Table of Contents, for each report. These reports are orderable
from the web site.

Please direct any comments, questions, opinions regarding VRM to vrm@acuitive.com.

1.5 About The Authors
1.5.1 Mark Hoover
Mark Hoover is the President and co-founder of Acuitive. Mark worked at AT&T Bell Laboratories for
about ten years, and was involved in the development of satellite transmission and fiber optic devices and
systems, high speed packet switches, and LAN products based on emerging 10-BASET and FDDI
standards. Mark also ran the team that provided technical support for the AT&T OEM agreement with
Cisco. In 1990, Mark left AT&T to join SynOptics. At SynOptics, Mark was initially responsible for the
definition and development of the (at the time) new generation hub platform – the System 5000 (although
Jim Vogt did most of the hard work). Mark went on to form the internetworking product line at
SynOptics, which ultimately resulted in the merger with Wellfleet to create Bay Networks. At Bay
Networks, Mark formed the Internet/Telco Business Unit to define, develop, and market products for the
service provider community.

Do Not Duplicate 7 Research Report 99001_v3.0

At the end of 1995, Mark retired from Bay Networks to train for the Seniors golf tour, figuring ten years
was plenty of time to prepare. After finding out that golf is a lot harder than it looks, Mark formed
Acuitive at the beginning of 1997, along with Dave Danielson.

Mark now spends his time running Acuitive (which doesn’t take much effort), studying technology and
market trends, providing strategic consulting advice to vendors in the general area sometimes called “IP
Services,” and acting as a “trusted advisor” to several companies at the CIO level. Mark stays in contact
with almost all of the key vendors in the VRM space and provides consulting advice, both formally and
informally, and learns a lot in return.

All of the key pearls of wisdom in this report were thought of and written by Hoover. All of the technical
errors (if any) were inserted by Logan2.

1.5.2 Dave Logan
Dave joined Acuitive in June 1997 as a Senior Consultant. He has over 12 years of experience in the
networking industry, focusing on end-to-end network designs and solutions, large enterprise network
management strategies, and the design and creation of networking technologies. Dave currently
specializes in consulting with networking equipment vendors on IP Services product strategies, especially
in the areas of server load balancing, bandwidth management, content caching, policy-based networking,
and device/network management.

From 1993 to 1997 Dave held various positions at Bay Networks/SynOptics Communications. Most
recently, Dave was a Senior Product Manager within the Network Management Group. In this role, he
first managed Bay's next-generation embedded management technology and RMON2 strategy, and within
a few months was running Bay's Optivity LAN team. Dave was instrumental at focusing the team on its
next-generation goals and processes.

Dave continually reminds Hoover of his skills and accomplishments, as well as their differences in age
and hair color. These reminders take on added vigor when the quarterly raises and bonuses are
negotiated. It doesn’t help Hoover in these discussions that every one of Logan’s clients have offered him
a permanent job.

2 Hoover wrote these biographical sections.

Do Not Duplicate 8 Research Report 99001_v3.0

22 KKeeyy AAddvvaannttaaggeess ooff DDeeppllooyyiinngg VViirrttuuaall RReessoouurrccee
MMaannaaggeemmeenntt

1. Reliability. By using VRM, the availability of the application is not dependent on the
availability of any one physical device, be it a server, router, firewall, VPN device, cache server,
or LAN switch. We view this as the universal reason to invest in Virtual resource
Management. For instance, even if you don’t want to do load balancing across lots of servers,
and just want to identify one server as a back-up for 10 different other servers, an investment in
VRM can be justified.

2. Disaster Recovery. Critical users and applications can be backed up at Disaster Recovery sites
with essentially no disruption of service occurring due to fail-over. The Disaster recovery site
can be a “warm spare” or an active system element that just takes on more load when required.

3. Performance Scalability. VRM allows you to match functional bandwidth to the user demand,
independent of the capability of any one component. VRM allows you to add capacity gracefully,
continually adding servers (or firewalls, or routers, etc.) incrementally as needed to meet the
demands of today. This enables one of our favorite economic tricks, which is to buy and
effectively use last year's biggest and baddest products at today’s devalued prices.

4. Efficient Geographical Application Deployment: Through WAN-oriented traffic direction
mechanisms, clients can be directed to content or an application which is closet to them or which
will provide the best response time, no matter where the client accesses the network. This
enables more efficient and scaleable global deployment of common content and applications.

5. Platform Independence. Similarly to browser platform independence, VRM based on Internet
standards gives you application server platform independence. VRM does not care whether the
servers in the Real Server group are from Sun, HP or Compaq and whether they are running
Solaris or NT. Any mix is OK. The only requirement is that they all can provide the same
application interface to the client that is accessing the Virtual Server. This is very straightforward
in a web server environment, and may be easily accomplished with other server-side applications
as well.

6. Operational Simplicity. In a VRM environment, devices can be taken out of service for
maintenance purposes, without the administrator needing to worry about the impact on users.
This results in less need for planning, scheduling, nighttime maintenance, etc.

Do Not Duplicate 9 Research Report 99001_v3.0

33 TThhee TTeecchhoonnoommiiccss ooff VVRRMM
Virtual Resource Management is an inexpensive technology with potentially huge pay back.

Unlike hubs or LAN switches, where a port is needed for every desktop user, or routers, where one is
needed for every WAN link, the cost of VRM solutions generally does not scale linearly with the physical
scale of your system. A few VRM products deployed appropriately at a few of your sites can provide
sufficient horsepower and capability for a system that supports thousands or even millions of users,
comprising of a wide range of numbers of servers, firewalls, proxy caches, routers, etc. The cost of
implementing VRM can range from free to several hundreds of thousands of dollars, depending on the
extent of your system and the complexity of the solution required.

What do you get for this investment? The main return is in the form of increased reliability. Depending
on your cost-of-downtime, a VRM investment can usually be justified just from this perspective. Do you
want your perceived service to be threatened by server failure or overload? Software failure? Router
failure? Firewall overload? Suffice it to say that all highly visible E-Brokerages and other E-Business
sites we are aware of implement some form of VRM. But also, other users, whose applications are
oriented towards customer services, business-critical internal applications, mainframe access, or just
marketing to their prospective customers, can usually easily justify an investment in VRM.

If you can’t get a good handle on the cost of your downtime, or (more likely) the increase in availability
to be expected by implementing a VRM solution, consider another factor. By enabling N devices to
combine in capability linearly, lower cost commodity items can often be used rather than the highest
scale, highest priced, and often least proven products available on the market. This economy applies to
all functions which can be “virtualized” (routers, firewalls, etc.). The figure below, provided by
HolonTech, Inc. quantifies this advantage for using multiple NT servers instead of more expensive UNIX
servers. Add in the opportunity to use last year’s routers, firewalls, cache servers, etc. and the payback
can be huge.

0

1000

2000

3000

4000

5000

6000

7000

$0 $50,000 $150,000 $250,000$100,000 $200,000 $300,000

Commodity Cluster

NT

Unix

Total System Cost

S
P

E
C

w
e

b r
e

q
u

e
st

s/
se

c

HTTP Price/Performance
(SPECweb)

Do Not Duplicate 10 Research Report 99001_v3.0

44 TThhee LLiiffee OOff AA LLooaadd BBaallaanncceedd SSeessssiioonn

4.1 The Life of an HTTP Session
1. Assume for the purposes of this example that the application being accessed by the user is browser-based and

uses HTTP for its communication protocol.
2. The user loads their browser on their computer workstation and types in or selects a website and URL, such as

www.acuitive.com/main.html.
3. The browser must communicate with the server that represents www.acuitive.com using an IP address, so it

must resolve the hostname portion of the URL (www.acuitive.com) to an IP address. The browser (really the
DNS resolver that is part of the browser) sends a DNS query to their configured local DNS server. This process
is usually referred to as DNS Resolution.

4. The local DNS will perform the necessary functions to return the IP address representing www.acuitive.com
back to the user’s workstation. It may have the address already in cache, or it may have to query one or more
known DNS servers to obtain the address.

5. Once the browser has learned the IP address for the server, it will begin the process of establishing a TCP
connection to the server to retrieve the file (main.html) specified in the URL. This process is typically called the
TCP 3-way handshake.

6. The user’s computer forms a special frame, called a TCP SYN or synchronization frame, with its own IP
address as the source IP address and the server’s IP address as the destination.

7. Part of the frame defines what application the browser is requesting data from – in the case of TCP applications,
the TCP Destination Port defines what application is being accessed. In this example, the well-known TCP
port for HTTP (port 80) is placed in the destination TCP port field.

8. The server will receive the frame, which it passes through several tests to see what to do with it:
Is the destination IP address my own IP address? (Yes)
Is the destination TCP port one that I have an application listening to? (Yes - HTTP)
Do I have resources to handle the request (Yes)

9. After passing the frame through these tests, the server will now answer the user’s browser with a TCP SYN-
ACK. Essentially, the server is informing the browser that it received its request, and that it is ready to
complete the TCP connection.

10. The user’s computer receives the TCP SYN-ACK, and after examining it, will send an ACKnowledgement
frame of its own back to the server, informing the server that the TCP connection is complete, and the browser
is ready to request data from the server.

11. The browser now sends its first data request to the server: the HTTP GET request. The GET request looks
very simple – in addition to providing information in the request that is required by the HTTP protocol, the GET
request is a clear-text message that says “GET /main.html.”

12. The server receives this GET request, examines the path/filename specified in the request, retrieves the file from
disk (or other storage location, like an NFS file server) and formulates a proper HTTP response frame with the
contents of the main.html file in it.

Do Not Duplicate 11 Research Report 99001_v3.0

13. This main.html file may look something like this:

14. This file is mostly text, with some markup tags for HTML formatting. Within this example file, you’ll notice
two “IMG SRC=…” tags specified. These tags specifically inform the browser to retrieve the files specified –
in this case, two JPEG image files. The browser would then retrieve these additional files using HTTP,
potentially using the same TCP connection or by opening additional TCP connections.

15. Displaying a web page on a browser from a website involves retrieving the first specified file, which then
informs the browser of all the subordinate files that are to be retrieved. These files may be images, additional
HTML text, sounds, java applets – whatever file types the browser/server is capable of handling.

16. The location of referenced files may even be different. The HTML page may have had a file tag in it that
specifies the browser to go to another server to retrieve the images, like images.acuitive.com/welcome.jpg. This
would require opening a separate TCP connection to this new server to retrieve the file specified.

17. After the last element on the web page has been retrieved, all TCP connections are closed with another special
TCP frame called a TCP FIN.

<CENTER><IMG SRC="welcome.jpg" </CENTER></P>

<P>Acuitive is an expert consulting firm and premier source of
information on networked computing technology. Founded in 1997,
Acuitive provides consulting services to network equipment
vendors, service providers and corporate network planners.</P>

<P>Through our Business Strategy
Group and Network Planning and
Management Group, Acuitive helps clients with their
technology utilization strategies and planning, network
architectures, high level designs, business cases, operations
and management plans, vendor assessment, training and program
management.</P>

<P><CENTER>

Do Not Duplicate 12 Research Report 99001_v3.0

4.2 Being Told Where to Go: Local VRM

When you add a local VRM solution to the equation, your HTTP session gets told where to go. This
happens to be a good thing….

1. To the browser, the VRM scheduler looks like “the web server.” The VRM “owns” the IP address that
represents www.acuitive.com because the VRM scheduler has been configured with that specific IP address. It
has also been configured to recognize some number of physical web servers “behind it” that are capable of
handling all of the web requests that are directed at it.

2. When the VRM scheduler receives a frame from the user, it inspects the frame to determine what physical
server to send it to. If the frame belongs to an existing connection or user, the frame is sent to the server already
assigned to that connection.

3. If the frame does not belong to an existing connection or user, it may signal the beginning of a new session. If
so, the VRM scheduler determines which physical server to send the request to based on some knowledge of the
health and load of the candidate physical servers, and some Policy for making such a decision.

4. Once one of the servers is chosen, the scheduler uses a re-direction Mechanism to dispatch the request to the
chosen server. The request must arrive to that server addressed to its IP address and MAC address.

5. At this time, the scheduler typically maintains some form of state information for this connection. The scheduler
maintains a binding table, which reflects the present association of users (or connections, or sessions) to
physical servers.

6. The chosen physical web server receives the frame, which has its own IP address in the destination field; thus to
the chosen web server, this looks like a perfectly normal TCP connection request.

7. If the received frame is a TCP SYN, the chosen server answers with a TCP SYN-ACK. When received by the
client, the TCP SYN-ACK must have the Virtual IP address in the Source IP Address field. Various VRM
Mechanisms achieve this in different ways. Often, the TCP SYN-ACK (and all other server-to-client traffic)
passes back through the VRM scheduler on its way back to the user. In this case, the scheduler intercepts the
frame and translates the source IP address of the frame back into the Virtual IP address.

8. What would happen if the user’s computer received a frame that had the chosen server’s IP address in the
source field instead of the virtual server’s address? The user’s computer would reject this frame with a TCP
RESET – it would notice the imbalance between the destination IP address that it sent the TCP SYN request to,
and the source IP address of the responding server for the TCP SYN-ACK.

9. The user’s computer sends an ACK for the TCP SYN-ACK, and completes the 3-way handshake. The VRM
scheduler, again, is the recipient of this frame because of the destination IP address. The scheduler inspects the
frame, determines it is associated with an existing session (based on the user’s IP address at a minimum) and
sends the frame to the same chosen server. What would happen if the scheduler did not maintain session state,
and it sent the ACK frame to a different server? The “new” server would receive a SYN-ACK ACK frame
associated with a session that was never started with a SYN, as far as it is concerned. It would reply back with
a TCP RESET.

10. For all VRM Mechanism choices, every frame coming from the client to the load balanced set of servers must
pass through the scheduler so that it can inspect the frames and perform the appropriate load balancing
mechanism.

The sequence above is correct almost 100% of the time at the level of treatment provided. In reality, at
the next level of detail, there are many perturbations, options, exceptions, and nuanced corner cases,
which make or break the value of a VRM solution. The rest of this Research report is devoted to
addressing the more detailed issues of implementation to meet specific application requirements.

Do Not Duplicate 13 Research Report 99001_v3.0

55 TTeecchhnnoollooggyy aanndd TTeecchhnniiqquueess:: OOvveerrvviieeww
5.1 Introduction

In Sections 6-13 we describe the technological foundation of Virtual Resource Management at the
protocol and system levels. It’s a complex subject. To organize the discussion, we have divided
functional process into these areas: Local VRM Feedback, Local VRM Policies, Local VRM
Mechanisms, Multi-Site VRM, Redundancy Issues, Performance Issues, Non-Server Load
Balancing and Management and Operations Issues.

The drill-downs provided in Sections 6-12 pertain mainly to web server or application server load
balancing. More detail on the issues and techniques for non-server load balancing is provided in Section
13.

Do Not Duplicate 14 Research Report 99001_v3.0

5.2 The Functional Components of a VRM System

Feedback encompasses the set of information that is available to the Virtual Resource Management
scheduler to make “best available resource” decisions. Status information can be gleaned implicitly (e.g.
by observing server response times, by pinging servers or connecting to services), or status information
can be supplied by agents or monitors which provide information about resource health and loading,
usually with a greater degree of granularity.

Policies describe the alternative methods the system can process the information obtained from the
Feedback to make “best resource” decisions. An example of a simple, policy is “send the next connection
request to the local server with the fewest present open connections.” A more complex policy might be,
“send the connection request for user D_B_Logan (as identified by his cookie) to the Sacramento site,
where his shopping cart is maintained, unless that site is unavailable in which case send him to Atlanta”.

Mechanisms describe the protocol-level algorithms a product executes to implement the policies, i.e. to
direct the traffic to the resource indicated by the policy. This includes how to modify the packet to groom
it for reception by the server or client and how to re-direct traffic to new sites or servers.

Feedback, mechanisms, and polices are not totally independent from one another. The mechanisms built
into the system, and the information available from feedback, have a direct impact on the range of
policies available. In selecting a VRM system, you need to make sure that the policies and feedback
mechanisms suit your requirements. E-Commerce applications, for example, tend to require more
security, client differentiation and authentication and site preference features than Customer Service or
Intranet applications.

Target Content
-Virtual Service
-Application
-URL
Client Differentation
-Level-of-Service
-Client Identifier (e.g. Cookie, Authenticated)
-Site Preference
Session Persistence
-Session ID Monitoring (SSL)
-Permanent/Semi-Permanent Client Binding
Server Load
-Load Measure (# connections, server
feedback, response time, etc.)
-Site selection (closest, least cost, lowest delay,
greatest bandwidth, etc.)
Site and WAN Distance Metrics
- Round Trip Delay
- Site Load
- Packets Dropped
- Routed Path Cost

Mechanisms:
Re-Direction

Policies:
Server selection

Feedback:
Resource Status

-Algorithms
-Internal protocols
-Packet translations
-State maintenance
-Statistics (for policy
tuning, capacity planning,
etc.)

Implicit Server Health Monitoring
-Hardware/Protocol Pings
-TCP Connection Requests
-Content Verification
-Response Time Monitoring
Direct Server Feedback
-CPU Utilization
-I/O Utilization
-Memory Availability
- Application Queue Length
Application Monitoring
-Application Monitor Interface
-System Monitor Interface
-Back-end Database Monitoring
Content Tracking
-Replication and Content Management system
Interfaces

Do Not Duplicate 15 Research Report 99001_v3.0

5.2.1 VRM “Schedulers”
Throughout this report we use the term scheduler liberally. The scheduler is the set of hardware/software
that:
• receives client requests

• determines the candidate server resources that could service the request

• evaluates the present health and load on the candidate servers (based on Feedback)

• computes the “best available resource” based upon the active Policy

• re-directs the client request based upon the active Mechanism

The scheduler is thus the heart and soul of a VRM system, around which other value-added features are
wrapped.

Do Not Duplicate 16 Research Report 99001_v3.0

66 SSiinnggllee SSiittee VVRRMM:: FFeeeeddbbaacckk ((RReessoouurrccee MMoonniittoorriinngg))
6.1 Introduction
Proper feedback is the most important aspect of implementing any useful VRM system.

VRM is intended to provide ironclad application-level availability. A VRM system can only do this if it
becomes aware of resource failures that impact such availability. Ignorance is not bliss in this game.
Therefore, the most important consideration in deploying your VRM solution is anticipating the potential
failure modes of your system application environment and ensuring that your VRM system can reliably
detect such failures.

Failures can be hard failures or temporary failures due to overload conditions. Failed resources could
include servers (web, application, data, file, etc.), operating systems, protocol or application software
failure, storage access failure, or network failure of any non-redundant link in the entire network from
client-to-VRM-to-web server-to-application server-to-stored data.

This section describes all the various techniques that have been invented or conceived of to date to
monitor resource health and load. Some techniques are oriented towards health only, some towards load
and others to both. The techniques oriented towards end-to-end health monitoring are the most important.
Measuring load can be useful to help extract the best possible performance out of your system. But our
experience has been that complex mechanisms to balance loads don’t result in appreciably better
performance, whereas complex mechanisms to recognize and analyze failures are vital.

We break the techniques into three major categories:

• External Monitoring – approaches that evaluate resource status by observing the response to inputs
provided externally (away from the resource)

• Resource-Resident Monitoring – approaches that observe resource availability co-resident with the
resource (i.e. a server agent) and report status back to the VRM system

• Site and WAN Metrics – measurements that provide guidance as to site health and load, WAN path
health and load, and other metrics useful for determining the best site to send a user request

External Monitoring and Resource-Resident Monitoring are generally mechanisms used within one
physical site, and addressed in this section. Site and multi-site metrics are discussed in Section 9, where
all multi-site issues (Feedback, Mechanisms, and Policies) are discussed in one integrated section.

Do Not Duplicate 17 Research Report 99001_v3.0

6.2 External Monitoring
External monitors evaluate resource status implicitly by observing the response to inputs provided
externally. The external inputs can either be generated naturally (by normal client processes, for
example), can be generated by the VRM system itself, or can be generated by 3rd party external probes.

6.2.1 Device ICMP Pinging (DIP)
This technique creates ICMP Ping tests to verify the health of the targeted device, as well as the round-
trip delay to that device. The Pings are usually generated by the VRM system.

DIP is simple. It creates some additional traffic on the network, but does not require much effort from the
target server to respond to. DIP tests the network connection to the server, the server hardware health,
and the health of the IP stack on the server.

DIP has the following disadvantages:
• Additional traffic is generated on the network and to the servers. This is not a huge deal, but just be

aware of it

• The “depth” of view of this approach is only to the IP stack of the web server

• Higher level functions on the web server, including the TCP stack, may or may not be
functioning

• In an N-tier system, this approach provides no visibility as to application server, data server,
or file server health

• Failure of one ping attempt does not necessarily mean failure of the server. Therefore, to avoid having
a lot of “false alarm” conditions, some thresholds must be set up on # of consecutive failed pings to
be observed before the server is considered failed

DIP is not, in general, a viable choice for resource monitoring in local server-oriented
environments. Too many failures can be overlooked. However, DIP may be useful or even required
in some non-server load balancing environments (see Section 13) or UDP-based application
environments.

6.2.2 TCP Connection Observation (TCO)
This technique observes the process of connection completion. As client TCP SYN packets are sent to
servers, the system observes either (a) the successful completion of the 3-way TCP handshake with the
server, or (b) the sending of a RESET by the client (indicating an unsuccessful attempt to connect).

This technique provides health feedback only.

Advantages of TCO
• TCO does not require the creation of any additional load on the network or on the servers since it just

observes communication between clients and servers. TCO tests the network connections of both the
server and the client, the server hardware health, and the health of both the IP and TCP stacks on the
server

Do Not Duplicate 18 Research Report 99001_v3.0

Disadvantages of TCO
• It applies to TCP services only

• The “depth” of view of this approach is only to the TCP stack of the server:

• Higher level functions on the server may or may not be functioning. UNIX systems will
usually not reply to a TCP connection request if the application is down, but NT 4.0 systems
often do – the application can be down but the technique would not recognize that fact.

• In an N-tier system, this approach provides no visibility as to application server, data server,
or file server health

• In periods when the load is low, there can be long gaps between when the health of a server is verified

• Some client requests must be un-serviced during the period it takes for this technique to determine a
server failure

• Failure of one connection attempt does not necessarily mean failure of the server. There can be many
reasons to reject a connection request. Therefore, to avoid having a lot of “false alarm” conditions,
some thresholds must be set up on the number of consecutive failed requests to be observed before
the server is considered failed. This is a characteristic of all external-monitoring approaches and
simply means one needs to trade off some sluggishness in the system to avoid responding to false
alarm or transient conditions

• You need to augment TCO with some other method to identify when servers come back on-line.
Some vendor implementations perform this by occasionally passing new connection requests onto the
downed server. We don’t like that approach because if the server is not back on-line, those users will
experience delays

TCO is at its best in 1-tier systems implemented with Unix servers. In any other situation, it should
be augmented with other techniques.

6.2.3 TCP Connection Verification (TCV)
TCP Connection Verification is a lot like TCP Connection Observation except that rather than waiting for
requests to come from clients, the VRM system creates TCP SYN packets, observes the response, and
tears down the TCP connections immediately. This creates some extra load on the network and the target
servers, but allows the system to keep a continual view of server health, even during times when client
requests are not being generated. That characteristic allows server failures to be observed before the real
client requests come in, which then allows those requests to be forwarded to a healthy resource.

In general, we view TCV as a slightly better mechanism than TCO, but not enough the change the bottom
line of the evaluation: TCV is at its best in 1-tier systems implemented with Unix servers. In any
other situation, it should be augmented with other techniques.

6.2.4 Active Content Verification (ACV)
Active Content Verification is generally oriented towards HTTP applications. In ACV, the VRM system
makes a request for specific content (at a specific URL) via an HTTP GET, and then (a) verifies the
receipt of content, and (b) parses the Return Code (the first bytes in the returned content). The Return

Do Not Duplicate 19 Research Report 99001_v3.0

Codes provide information about the ability to access content, if it has permanently or temporarily been
moved, if various server errors were detected, etc.

Some key Return Codes are:
200 – OK
301 – moved permanently
302 – moved temporarily
404 – not found
500s – various server errors

Note that the HTTP GET must be preceded by the successful completion of a TCP connection request, so
ACV is a superset of the TCO/TCV techniques. The advantage is that the entire set of system
components required to retrieve content is tested – the network connection to the web server, the
application, the application server and its network connection (if any), and access to the content/file
storage subsystem. This is much more powerful than TCO and TCV.

Value-Add Options
Some ACV implementations support response time monitoring. The entire time required to receive
content is a good measure of Application Response Time (ART). ART is a quality metric that is user-
perceptible and therefore useful to track site quality and to feed back into planning and (perhaps) real time
control processes to increase the performance level for selected applications and users.

Limitations
As powerful as ACV is, some limitations still exist. One limitation is that like other external monitoring
approaches, one request failure can not necessarily be interpreted as a system failure. Multiple
consecutive failures must be observed before the system can react. Another limitation is related to the
precision with which one can identify a failed resource in a complex, N-tier, application environment.

The figure above diagrams the issue.

In this example, the content verification path was through Web Server A, Application Server 1, and File
Server A. If the verification request is successful, that proves that at least some portion of the system is
available to provide the desired service. But, if Application Server 2 and Application Server 3 were both
down, the site would be running in degraded mode and that particular verification process would not
identify that.

E
th

er
ne

t

Data

File Server A

File Server B

Data

Application Server 1

Application Server 3

Application Server 2

E
th

er
ne

t

Web Server A

Web Server B

Clients

Router

- Web Servers and App
Servers shown separate
for convenience. Often
these functions co-
reside.
- Often, there is just one
Ethernet/Switched
Ethernet LAN. Again,
convenience.

Could be a single
database instead
of one or more
file systems

Example Content
Verification Path

Probing Virtual
Resource Manager

Do Not Duplicate 20 Research Report 99001_v3.0

Worse still, if either File Server A or Application Server 1 failed, the symptom would be the same – the
verification process would not succeed, yet the proper action for the scheduler to take depends on
specifically whether Application Server 1 failed or File Server A failed. If the File Server failed, re-
direction to another site where the content is replicated is the best course of action. If the Application
Server failed, simply making sure traffic passes through Application Server 2 or Application Server 3 is
the best course of action.

Another issue with ACV is that is can cause an appreciable induced load on the system – network
resources, server resources, files system resources, database resources, etc., if exercised too often.

Even with the limitations, we consider ACV and DAV (see the next section) to be the core Feedback
functions for all sites in which availability is an issue. ACV and DAV can detect far more end-to-end
problems than any other single technique and although these techniques cannot always pinpoint exactly
where the problem is, they can at least tell you where to start looking, which reduces troubleshooting time
and effort. ACV and DAV are also excellent tools for assessing the performance of a site, because they
exercise a site similarly to how a user would and measure performance in ways relevant to a user
experience (e.g. application response time).

6.2.5 Passive Content Verification (PCV)
Passive Content Verification (PAV) is similar to Active Content Verification, except that instead of the
VRM system creating requests, it monitors the response to requests made by active clients. Such
monitoring can be performed in a sampled mode (once in a while) or on all server responses.

The advantage of PCV over ACV is that no additional load is generated on the network, content servers,
application servers, or file systems. This disadvantage is that failures can only be observed related to
those resources that are in active use at the moment.

Value-Add Options
• Adjustable response sampling rate
• Passive Content Verification with Re-Direction. If the VRM system caches the original request, it

can be re-directed to another server by the VRM system if an error message response is intercepted.
The client does not even need to know that the re-direction occurred

PCV, in combination with ACV and DAV, is a powerful combination of feedback techniques.

However, be careful about PCV with Re-Direction. To work properly, the Return Code for all traffic
returning from the servers must be inspected. Thus the VRM scheduler needs to parse not only client-to-
server traffic but server-to-client traffic as well. This introduces a huge load on the scheduler. You should
test the performance in this mode before using this option in a production system.

Also, the VRM scheduler providing PCV needs to be aware of the status of the Redirection target servers
(and possibly content as well). It will not do the user any good if the VRM unit detects an invalid return
code and redirects the user to another site, which also returns an invalid return code.

If using PCV with Re-Direction, look for a solution that allows you to define which Return Codes to Re-
Direct on and which ones to ignore. We call this Return Code Filtering. For instance, if the VRM unit
is performing PCV and is redirecting on “404-Content Not Found” errors, it may be very easy for a

Do Not Duplicate 21 Research Report 99001_v3.0

malicious user to overwhelm the site and VRM unit by continually requesting URLs that did not exist.
These requests would all result in a PCV “error condition” and redirection effort to each server. Carefully
consider the implementation of PCV, and how it will affect your application and servers.

6.2.6 Dynamic Application Verification (DAV)
Dynamic Application Verification (DAV) is similar to Active Content Verification, except that the entire
content returned is examined by the VRM system. This enables the verification of dynamic applications,
such as .asp applications, cgi-scripts, forms, etc. For instance, a database query with known results might
be emulated. The receipt of the expected result is needed for the test to pass.

Some ACV implementations are capable of monitoring other Internet-type application servers, such as
mail servers, DNS servers, Telnet servers, etc.

If combined with response time measurement and monitoring, DAV can provide load information as well
as health information.

DAV and ACV are closely related and share almost all of the same strengths and limitations.

Value-Add Options
The DAV tests can be implemented as pre-packaged tests or via a scripting interface that allows
customers to design their own tests. Even if a vendor offers pre-packaged tests, some scripting is usually
required to define the specific content to expect to be returned as a result of the test.

DAV can be easily extended to test UDP applications such as DNS look-ups, by creating an occasional
request and observing the receipt of the response.

6.2.7 Remote External Probes
The ACV and DAV functions described above can be performed by the VRM system co-located with the
site. However, remote external probes can also perform them. The advantage is the health and
performance of the path to the site can be evaluated, and the true response time seen by end users is
measured. The disadvantage is that if a test fails, it is unknown whether the site is the problem or the path
to the site. Therefore, generally, a combination of remote external probing and local external probing is
preferred.

Some vendors support remote external probing as part of their core product. Others provide integration
with 3rd party products designed for site monitoring, such as Freshwater, Keynote, and others. These
products tend to be more feature rich because the vendors’ whole business is built around their use.

We think support for remote external probing is important, but we have no strong bias between intrinsic
vs. 3rd party integration, as long as the integration is simple.

In deployment, if you have more than one site, you can have each site probe another site. If you only
have a single site, it may be best to buy the external probing as a service (Freshwater and Keynote both
provide such services, as do others).

Do Not Duplicate 22 Research Report 99001_v3.0

6.3 Resource-Resident Monitoring
Resource-resident monitoring involves the deployment of distributed intelligence, via agents or
knowledge modules, on to all the key resources that are part of the end-to-end application delivery
system. This may include web servers, application servers, database servers, file servers, etc.

Generally, these agents provide the following capabilities:

• Health Verification: Through polling or other regular events, verifying the health of the
communication components of the server and the path from each component to the VRM system,
simply by verifying the ability to communicate

• Real-Time Agent Feedback: Provide regular scheduled (or polled) feedback on the health and load
of the resources within the server. Such feedback can include information about:

• CPU utilization

• Available memory

• Disk or storage i/o utilization

• Sanity timer time-outs

• Application queue lengths

• Data input and output (bytes and packets)

• NIC card utilization

• Internal bus utilization

• Application-specific resource utilization, such as table sizes vs. allocation, pointers, etc.

• Event-Driven Agent Feedback: Provide pre-processed event-driven status. This often includes
thresholding at the agent, with reporting when a threshold is exceeded, or correlating multiple events
to provide a “meta-event” notification to the VRM system

6.3.1 Feedback Interfaces
Some VRM vendors provide server co-resident agents for monitoring some server-resident resources.

Others provide an external interface that allows for integration with third party agents such as native
Operating System agents, SNMP agents, site monitors, content management systems, application resource
monitors, service level management systems, etc. There are a variety of value added capabilities from
BMC, Tivoli, NetIQ, Resolute, Peregrine, Keynote, HP, Vital Signs, FirstSense, and many others, that
one may want to leverage to enhance the VRM solution. Also, sometimes the vendors of distributed
applications or distributed databases provide monitoring internally to their systems, and an aggregated
alarm can be provided by that system to the VRM system to help ensure overall end-to-end application
availability.

The 3rd party integration interface can take many forms, some of which are:

Do Not Duplicate 23 Research Report 99001_v3.0

• An SNMP Trap Receiver function, which allows the VRM system to receive SNMP Traps
generated by a server co-resident agent. Presumably, the agent functionality could be programmed as
to what internal parameters to look at and under what conditions (usually thresholds) to emit a Trap.
The problem with this approach is that SNMP does not provide guaranteed delivery. So if a Trap
containing vital information is lost, the agent has no idea it was never received by the VRM system
and the VRM system has no idea it was ever sent. Another problem, shared with the approach in the
next bullet, is that the SNMP process on servers is usually best implemented as the lowest priority
process on the server. That means that when the server is working hard, the SNMP information may
not be up-to-date.

• An SNMP Manager/Agent function (with the VRM system using SNMP GETS to pull information
from the agent). One way to alleviate the problem associated with Traps is to have the VRM system
regularly poll the server co-resident agent and perform the thresholding itself. The disadvantage of
this approach is that both the server and the agent must perform more work to regularly communicate
the latest information, which also causes more load on the network. In practice, one would alleviate
this by polling less often, which increases the likelihood of missing a significant event or reacting
sluggishly.

• An agent-level scripting interface, which allows the creation of scripts that can be launched by a
server co-resident 3rd party agent to send a predetermined message upon recognition of a predefined
event. For instance, a BMC Knowledge Module can be programmed to send an event notification of
“turn off server 1” if it detects an application process failure or it could be programmed to send a
notification that says “application process failure of type XX occurred on server 1.” Such an agent
level scripting interface needs to be coupled to a well documented VRM interface specification that
defines the nature and flexibility of notifications that can be understood and correctly interpreted.

• A programmable API, can be used to provide 3rd party developers (and users) a set of function calls
and related parameters that they can use to define their own application, integrated into their own
environment. For instance, the vendor of a remote external probe could write some code that
generates a notification to the VRM system upon recognition that site performance has degraded
below some threshold. Or, a server co-resident agent vendor (let’s use BMC as an example again)
could write some code to generate notifications upon recognition of certain events.

The difference between a scripting interface and an API is a gray area. Different vendors use the terms
differently. An API, however, tends to result in code that can be source-controlled and maintained,
whereas scripting is not compiled and therefore can’t be managed in the same way. That being said, even
the applications created using APIs tend to have scripting interfaces to provide some flexibility of
implementation. So it doesn’t pay to be too religious in this area, but we do strongly prefer solutions
that provide the flexibility associated with APIs and/or scripting interfaces.

Event Correlation
The nature and granularity of the information sent by server co-resident agents or other 3rd party devices
depends on the VRM system’s ability to correlate and interpret information. In some cases, the VRM
system needs to be told precisely what to do (e.g., the “turn off server 1” example”) and it would take the
immediate action, but not know exactly why. In other cases, the VRM system could have the ability to
interpret the notification, possibly in the context of other notifications received, to determine the proper
action. We call this capability Event Correlation, which will eventually become one of the key measure
of a VRM system. But vendors are just rolling out such capabilities now and it will take awhile before
powerful and field-tested solutions are generally available.

Do Not Duplicate 24 Research Report 99001_v3.0

6.3.2 Using Server-Resident Monitoring
The goal for complex environments is to achieve the diagram below, with a combination of capabilities
available from the VRM vendor, integrated with appropriate 3rd party functions.

For complex environments, especially N-tier application deployments, this approach is very
powerful for precisely identifying failure and overload conditions. One can, for instance, determine
whether an Active Content Verification request fails due to the file server or the application server. One
can identify degraded situations where one of several application servers fails. Both of these examples
are ones that cannot be achieved with external monitoring.

6.3.3 Limitations and Recommendations
In and of itself, resource-resident monitoring alone is usually not powerful enough. Although you get a
lot of granular information about the availability of each component in the system, you can lose some
perspective on the performance of the site as a complete system.

Therefore, for complex applications, we recommend a combination of external monitoring (ACV
and DAV, site-based and remote) for monitoring overall site health and response times, and
resource-resident monitoring for determining more precisely where problems are if the health or
performance starts to degrade.

The instrumentation installed for server-resident monitoring should have no impact on system reliability.
If a server-side agent fails, ideally, the system would continue to be able to use that server, although with
potentially less insight into its present load. Another capability that characteristic provides is the ability
to selectively instrument just those servers that are most critical.

E
th

er
ne

t

Data

File Server A

File Server B

Data

Application Server 1

Application Server 3

Application Server 2

E
th

er
ne

t

Web Server A

Web Server B

Clients

Router

A

A

A

A

A

A

AA

A

A

Agent or
Knowledge
Module

Agent-to-VSM
Communications
(only a few shown
for clarity)

VRM Scheduler

Do Not Duplicate 25 Research Report 99001_v3.0

6.4 Summary of Local Feedback Techniques

Technique

P
at

h-
T

o-
C

lie
nt

T
es

te
d?

P
at

h
-t

o-
S

er
ve

r
T

es
te

d?
W

eb
 S

er
ve

r
H

D
W

 T
es

te
d?

W
eb

 S
er

ve
r

IP
T

es
te

d?
W

eb
 S

er
ve

r
T

C
P

 T
es

te
d?

A
pp

li
ca

ti
on

Se
rv

er
 T

es
te

d?
D

at
a/

F
ile

A
cc

es
s

T
es

te
d?

L
oa

d
D

at
a

P
ro

vi
de

d?

Notes

Device
ICMP
Pinging

No Yes Yes Yes No No No Little to none. Good for non-server (e.g.
router) applications.

TCP
Connection
Observation

Yes Yes Yes Yes Yes No No None Some information about
application health possible if
it is co-resident with the web

server on a UNIX system.
TCP
Connection
Verification

No Yes Yes Yes Yes No No Little to none. Same as above.

Active
Content
Verification

No Yes Yes Yes Yes Yes Yes Application Response
Time information – useful
for quality control, and
preferential services.

Health of Single App Server
and/or data Server and/or
File Server can be identified.
Multiple of any may result
in ambiguity.

Passive
Content
Verification

No Yes Yes Yes Yes Yes Yes Potentially – if you track
the time between a request
and a reply.

Health of Single App Server
and/or data Server and/or
File Server can be identified.
Multiple of any may result
in ambiguity.

Dynamic
Application
Verification

No Yes Yes Yes Yes Yes Yes Application Response
Time information – useful
for quality control, and
preferential services.

Health of Single App Server
and/or data Server and/or
File Server can be identified.
Multiple of any may result
in ambiguity.

Remote
External
ACV/DAV
Monitor

Yes Yes Yes Yes Yes Yes Yes Application Response
Time information, includes
WAN component. Truer
measure of user
experience.

Failures and delays may a
site problem or a WAN
problem. Both local and
remote external probing is
needed to determine cause.

Server-
Resident
Monitoring

No Yes Yes Yes Yes Yes Yes Device-level load
information can be used to
identify or predict device
overload, but not system
performance.

Preferred techniques are in bold. (A combination of the preferred techniques is the best approach).

Do Not Duplicate 26 Research Report 99001_v3.0

77 SSiinnggllee SSiittee PPoolliicciieess:: SSeerrvveerr SSeelleeccttiioonn
A request comes in for a service. VRM systems can quickly lookup what servers are available for that
service. Feedback tells the VRM system something about the health and load of the candidate servers.
The VRM system has a mechanism for sending the request to a server once it has decided which one to
send it to. But how does it decide which server to send the request to? The sets of rules that govern this
decision are called policies.

Ultimately, the thing that defines whether a VRM solution is right for you is if it can efficiently
implement the policies you require for your particular application. Everything else – feedback,
mechanisms, redundancy schemes, performance, and management – are all just means to that end.

At its simplest, policies have three basic components:

1. Policies to choose the “best available” among the candidate server resources.
2. Policies for persistence, which often override the policies for “best available.”
3. Policies for preferential services, which adjust the systems resources available for certain users,

groups of users, or applications, depending on pre-determined priorities.

But this simplistic view doesn’t reflect reality. In reality, sophisticated solutions enable policies in these
broad areas to be diced, sliced, and re-combined to form a potentially very complex set of rules.

When it seems your application would benefit from tapping into such sophistication, you need to take into
account the ease of administration and management. In general, we have found that simpler is better for
an efficiently run and more easily migrate-able site.

7.1 “Best Available” Server Policies
7.1.1 Round Robin Policy
In this VRM policy, each new connection request is sent to physical servers in a round robin fashion such
that, over time, each server gets the same amount of connection requests. This doesn’t mean that each
server will have the same number of active connections; some servers will close connections faster than
others will.

No particular feedback or tracking of connections is needed to implement this policy. It can be used with
all mechanisms and is the simplest policy to deploy.

Value-added Options

Maximum Connections.
Some vendors offer users the ability to tune a Maximum Connections policy to prevent a server from
becoming overloaded. Once a server hits this limit, it is taken out of the Round Robin pool until the
number of open connections falls beneath the limit. This is nice feature, which is also applicable as an
overload throttle in conjunction with other policies, but it’s often hard to figure out what number to use
for the Maximum Connections.

Do Not Duplicate 27 Research Report 99001_v3.0

Weighted Round Robin
Each server is given a static weighting function that is based on some view of the capacity of each server.
Servers are presented connection requests in proportion to their weighting relative to the total capacity of
the system.

As an example, suppose a customer has three servers A, B, and C, which are assigned the following
weightings.

A:10
B:10
C:20

Servers A and B each receives ¼ of the incoming connection requests and Server C will receive ½.

This is also a nice feature, but it can be hard to determine the proper weighting for servers, especially in
environments where servers are constantly being added or upgraded. We prefer methods that have an
element of “self-weighting” to them.

Auto-Weighting
It can be difficult to determine the best weights to assign to servers in Weighted Round Robin. Some
VRM systems look at the response of a server over time, as a function of offered load, and use that
information to either suggest modified weights or automatically adjust weights.

7.1.2 Least Connections Policy
In this policy, the number of active connections supported by each server is tracked. As new connections
are received, they are forwarded to the server with the fewest active connections. This is often viewed as
the “fairest” policy because those servers who can close connections faster due to inherent capacity or the
nature of the content they are serving, will naturally get forwarded more connection requests over time.
This technique is a “self weighting” system of sorts; every time a server closes down a connection (FIN-
ACK), it is essentially telling the VRM scheduler "I'm through with a connection, and ready for another."

Implementing this policy requires tracking the number of active connections for each real server.

Least Connections requires no feedback and can be easily implemented in conjunction with any
Mechanism. We have a preference for Least Connections over Round Robin because of the “self
weighting” aspect.

Value-Added Options
Maximum Connections and Weighted Least Connections are viable value-added features that can be
used with the Least Connections policy. Just as with Weighted Round Robin, static weightings are
provided to influence the amount of active connections provided to various servers when “in balance.”
The idea is that servers with greater inherent capacity should support a larger number of active
connections.

7.1.3 Packet and Byte Rate Policies
Another policy is "Least Server Packet Load." By tracking the server's packet and/or byte
receive/transmit rate, server load can be balanced in terms of packet processing. This can be a useful

Do Not Duplicate 28 Research Report 99001_v3.0

metric in situations where the number of packets transferred varies greatly from connection to connection
and thus dealing connections out in a round robin fashion or tracking open connections may not do a good
job of load balancing. For example, POP3 mail servers have a traffic pattern that is heavily server-
transmit weighted (the users are just sending ACKs) and have different traffic patterns for different users.
Some are downloading their three mail messages they received this week, others are downloading all their
mail with 3MB worth of VRM reports that are attachments. Using packet/byte rate policies in this
application environment will result in a slightly better request distribution on each server over time.

Obviously, metrics must be kept on packet rate to and from physical servers to implement this method.
Also, user control over the packet rate measurement and averaging interval to determine packet rate must
be provided. A long interval can result in poor performance because the system is responding to old
information about the load of the server. Too short an interval can result in system over-reaction and
instability.

7.1.4 Response Time Related Policies
The Least Connections and Packet/Byte policies are based on the assumption that the server with the
fewest open connections, or the one with the least traffic going to it, is the least loaded server and
therefore the best choice for servicing the next request which arrives. Sometimes, however, a server can
be struggling with a particularly difficult request, and be heavily loaded, even though the number of open
connections is low or the traffic in and out is modest.

Some policies attempt to measure the present performance of the servers to infer their load. There are
several variations on this theme.

Fastest Server TCP Connection Time
By monitoring the interval between when the SYN packet is sent to the server and when the SYN ACK
reply is returned, the time required for a server to respond to connection requests can be estimated. More
connections can be sent to those servers who are responding fastest.

A few vendors support this policy, but we do not recommend its use. The problem is that one server will
tend to be a little faster than all the others. As connections are sent to it, its response time won’t increase
significantly, resulting in more and more connections being sent to that server. At some point, some
resource in the server becomes over utilized and all of a sudden the connection response time increases
dramatically. The use of Fastest tends to drive servers into this saturation mode, even though other servers
are available and are supporting few connections.

The other issue with this approach is that it really only measures the performance of the TCP stack and
connection set-up processes. Sometimes those processes can be performing fine, but the applications
above it may be heavily loaded, or, for some reason, one particular web server may be getting slow
response from back-end application servers or data servers.

Fastest Application Response Time
Application Response Time measurements, such as received through Active Content Verification
processes, can potentially be used to drive a “best available server” policy. In practice, however, this
policy is not often useful. It suffers from the same issues as Fastest Server Connection Time, in terms of
one server potentially being slightly faster than the others, until it hits a saturation point. You don’t want
a policy to roll through your servers and drive them all into saturation, one by one.

Do Not Duplicate 29 Research Report 99001_v3.0

Possibly even more importantly, if there are significant back-end components, such as application servers,
data servers, and storage subsystems, the application response time is generally monitoring the
performance of those components as much as or more than the front-end web servers. If, in the extreme,
all data flows end up going into and out of a single database, and the database is the system bottleneck,
then all the web servers will exhibit roughly the same application response time, rendering this policy
useless.

Value-Added Options

Predictive Policy
At least one vendor supports a “Predictive” policy, where the trend of the connection response time is
used, rather than the absolute value. In other words, if a server responds faster to this request than the
previous one, give it priority for the next request over one that exhibits the opposite characteristic.

In theory, this seems like it could get around the limitations discussed above about using absolute values
for response times. But we have no practical experience using this policy and therefore can neither
endorse it nor warn you against it.

Secondary Rules and Thresholds
We never use Fastest TCP Connection Time or Application Response Time as a primary metric.
However, these can be very useful secondary rules, when used on a threshold basis, for different
purposes.

With Fastest Server TCP Connection Time, it can be useful to set up a rule that says:
“Use the primary policy (e.g. least connections) unless the server connection time exceeds X
milliseconds. When this condition occurs, reduce the send rate of new requests to that server
until the connection time descends back below X.”

You can set X by doing a test on a server, sending more and more requests to it until you see the
connection response time jump up (there is almost always a distinct knee in the Response Time curve).
Set X to slightly lower than the response time measured at the start of the knee. In this manner, you can
use a simpler primary policy but have a protection mechanism against server saturation.

It’s harder to use Fastest Application Response Time for best available server selection because it
measures the performance of so many components other than just the web server. However this is a
powerful monitored metric for overall site performance, providing an excellent insight into the
performance as experienced by your users. This metric and should be measured and charted to evaluate
trends. Also, in multi-site situations, it is an excellent metric to threshold or influence policies for traffic
re-direction between sites. This is discussed more in the multi-site section of this report.

7.1.5 Server Resource Management Policies
There are a variety of server resources one could try to balance across servers:

• % CPU Utilization

• Available memory

• Disk or storage I/O utilization

• Internal bus utilization

• NIC card utilization

Do Not Duplicate 30 Research Report 99001_v3.0

• Application queue lengths

• Application specific resource utilization (table sizes, process capacity elements, etc.)

• other

These parameters are interesting, but we are not bought into the value of server-resident monitoring for
fine tuning load balancing to squeeze a little more performance out of a site. When using such feedback,
a closed loop control system is created. The averaging intervals and delays need to be administered
carefully to make sure the system remains stable. Attempts to react too quickly to changes in server state
could result in oscillation. Reacting too slow leads to chasing one's tail. If you are going to use such
metrics in an attempt to perform real-time load balancing, make sure the feedback is smoothed (averaged
over some short time interval) and recent. Using SNMP agents, for instance, usually doesn’t work well
because of delays in turning the counter into a managed object, forming the SNMP frame, and
transmitting it through the SNMP protocol stack. Also, SNMP is usually one of the lower priority
processes on a server. When things get crazy, the SNMP data gets less accurate and feedback is slower.

Rather than using such information for real-time and fine tuned adjustments, we prefer using thresholding
to identify overload or potential overload conditions. We generally don’t care if one server is operating at
10% utilization and another is operating at 25%. Both of those servers will perform well. But we would
care if either of those servers went to 90% utilization of any internal resource that could make it more
difficult to service the next request. Such thresholding techniques can be very powerful safeguards.

The one metric we would consider using for real-time load balancing is application queue length. Other
resource metrics, like CPU load, available memory, etc., tell you something about the load on each server
right now, due to requests that it is processing right now. But a split second later, the server may
complete that action and be ready for action. Or it might have 17 requests queued up and pending.
Which line would you rather get in, the one with the busy check-out person with two more people in line
or the one with the less busy check-out person with 17 people in line? Application queue lengths can tell
you something about the “best available server.”

However, all requests are not the same. A queue of five requests for a small overhead service may take
less time to clear than one with two requests for a resource-intensive function. So, even with application
queue lengths, we prefer thresholding as a secondary rule.

7.1.6 Optimizing Potential Target Server Pools
It is often useful to support multiple different services, applications, or functions behind a single domain
name or V_IP. Delayed binding (see the Local VRM: Mechanisms section for more detail) allows the
VRM system to observe each client's URL request, and compare it against predefined rules to determine
which specific set of servers are candidates to serve that request.

Several benefits can be realized by this technique:

Do Not Duplicate 31 Research Report 99001_v3.0

• Web sites may have so much content associated with their domain name that it needs to be split up
across multiple file systems. One could allow each web server access to each file system by cross-
mounting all the file systems, but this gets unwieldy as the number of file systems gets larger and if it
routinely changes. Another approach is to assign access to portions of the directory space to certain
web server clusters, but still advertise the site under one domain name, such as www.acuitive.com.
The VRM, as a front-end to this site, must be able to inspect the URL request (including filename and
pathname) and send the requests for www.acuitive.com/marketing/ to one server, and /research/ to
another server, and /admin/ to another server, etc.

• There may be a marketing advantage to advertising a single domain name for a particular service, but
supporting specific and separate communities behind that single domain name. In that way, the
number and type of servers supporting each community can be tuned to their needs, and, if different
levels of service are warranted between the communities, traffic can be managed to achieve that

• It may be useful to have servers that generate dynamic content to be optimized for the
computation/processing function and servers that provide relatively static data (like images, HTML
text, etc.) optimized for fast retrieval from disk storage. URL awareness allows a VRM system to
look for requests with dynamic server page calls or CGI script executions, versus static web page
element requests. Dynamic requests would be sent to the application-optimized servers and the static
requests would be sent to the storage-optimized servers

An Issue With URL-Based Scheduling
There is an issue with URL load balancing that may mitigate its effectiveness in certain environments:

HTTP 1.0 requires a separate TCP connection for every element of every web page accessed. There can
be several, or even 10s of separate TCP connections established for a web page that has different frames,
graphics, buttons, etc. From a Virtual Resource Management perspective, this is convenient because it
means that access to content can be conveniently managed by controlling the flow of TCP connection
requests. But in the past, it also meant that web servers got pounded. Inefficient TCP implementations
could spend up to 50% of the CPU horsepower just managing creating and tearing down TCP
connections. Historically, that is what lead to the definition of some of the aspects of HTTP 1.1.

HTTP 1.1 allows for the establishment of a persistent connection from a client to a server as an entire
HTML file and its "children links" are downloaded. For instance, when you access www.acuitive.com,
your browser must download the primary index.html file, plus all the images and buttons, etc. referenced
in the first html file download. The retrieval of all of these individual page elements in HTTP 1.1 may be
performance enhanced by having the browser/server communicate with a single HTTP/TCP session,
instead of one per element.

With some older versions of TCP on UNIX and NT, tests have shown that the use of HTTP 1.1 can
increase web server performance by up to 2x. However, with TCP stacks shipping today in Solaris 7.x
and NT, the advantage of 1.1 has been shown to be negligible. These TCP implementations have been
redesigned such that the cost of creating and tearing down TCP connections is minute.

However, the persistent capability between HTTP 1.1 compliant browsers/servers may cause some URL
awareness to break. The first HTTP GET URL specified will be the one that URL-aware VRM products
pick up on, such that they make a server access decision on that URL information. Independent
forwarding decisions for subsequent GETs across the same TCP session are not possible, unless the VRM
system provides some kind of conversion and multiplexing between HTTP 1.1 persistent sessions from

Do Not Duplicate 32 Research Report 99001_v3.0

the client and multiple sessions to different servers. We are not aware of any devices that perform that
function today, nor understand the added value of they did.

In general, if you want to use URL-based scheduling, you should set your servers to negotiate for HTTP
1.0, not 1.13. We’ve talked to some vendors about a potential value-added feature where the VRM
system would force the browser to create a separate TCP connection for each object, and then interact
with the server in whatever mode it wants to operate in. That sounds like a good idea, but we are not
aware of any field-tested implementations yet.

7.1.7 Best Available Server Policies Summary
We think people often put too much futile effort into trying to achieve perfect load balancing. If you are
running into web server overload – add more. That’s what VRM is all about. When you have massive
imbalances of server usage, it’s usually due to persistence issues (see the next section) that can’t be solved
by adding more servers or improving the “best server” policies. So relax.

We prefer the use of simple policies, Least Connections or Weighted Round Robin. Overlaying this with
Maximum Connections as a secondary rule is often a good idea. If the site has occasional problems due
to specific server overloads, providing some additional secondary rules based on thresholds on server-
resource parameters can be useful as well. Don’t configure too many of these secondary rules in
however, because they can eat up web server horsepower. It’s OK to allocate 3-4% of the server to such
functions, but more than that and you have to start wondering about the value.

7.2 Persistency Policies
The VRM system, being the key “traffic cop” that directs users to specific web site resources, must have
enough awareness of the session and application state to ensure the successful completion of sessions.
The concept of a “session” can vary widely, and the manner in which state is stored in an application
environment also varies. So generally, a wide variety of policies are needed to meet the needs of specific
sites and applications.

3 But! We have been told that in some cases of NT 4.0 IIS, interacting with Internet Explorer 5.0, you can’t turn off persistent sessions.
Furthermore, we’ve been told that the browser behavior is to request each page element sequentially. In other words you may need to wait for a
100KB toolbar to load before the 4 KB text frame you’ve been looking for gets painted! The irony is that user perceptible performance can
degrade with such an implementation of persistent sessions. We’ve got more investigation to perform to verify this. Shame on Microsoft if it’s

SSL session

Shopping Cart Session

Database Replication Window

TCP
Connections

Packets

Time

Do Not Duplicate 33 Research Report 99001_v3.0

Routers are generally only aware of packets, which is the lowest nuclear unit of information in IP
networks. But sequences of packets form TCP connections. A VRM system must make sure that all the
packets related to a TCP connection are directed to the same content server. This is a basic form of
persistency that all products must achieve.

SSL sessions, on the other hand, generally span multiple TCP connections. In order to ensure that a client
remains connected to the server it’s authenticated with, a VRM system must ensure that the sequence of
TCP connections that underlie the SSL session are all directed to the same server.

Other forms of “user session” can exist, depending critically on the nature of how state management is
performed within the application architecture. For example, in many or most NT/IIS environments, state
that changes through user intervention are stored as part of the .asp process that co-resides with the web
server. When that’s the case, the user needs to stay bound to that server through all the operations related
to that session. An example is a “shopping cart” session, where a user browses a catalog and identifies
various items he or she may want to purchase by placing them in a “shopping cart.” If the objects
identified for a shopping cart are stored locally on the web server, the user must continually be directed to
the same server for all TCP connections associated with the shopping session. Complicating things
interestingly, at some point the user may indicate the desire to buy the items in the shopping cart, which
can result in switching from an HTTP mode to an SSL mode and back. The VRM system must keep the
user connected to the same server throughout these stages.

Another example that requires a form of persistence has less to do with a user session and more to do with
how database information is managed in a multi-site environment. If each site has a local database, users
can modify information in that database. There may be a period of time (minutes, hours, maybe more)
before the modified database is re-synchronized to the databases at other sites. During that period of
time, if the same user establishes another session, possibly to verify or update an order, they must be
directed to the same site and local database they interacted with prior or confusion will reign.

These are just a few examples of persistency policies that you might require to match your VRM solution
to your application state management characteristics.

As we discuss persistency more, it will become apparent that there are two functions that need to be
understood in order to characterize the persistency policies available in a candidate VRM system. The
first is binding; the when and how of adding entries to tables that link users to content servers. The
second is unbinding; the when and how of removing entries from the same tables. The time between
binding and unbinding is the period of persistence. Too short of a period and you may not meet the
persistency requirements of the application. Too long a period and you may not achieve effective load
balancing.

A related issue is load-balancing evenness. Evenness requirements often run contrary to persistence
requirements. Once a user is bound to a server, they need to remain bound until their session is
completed, along with a number of other users. For that period of time, the collection of users may
hammer the server with traffic, or it may just dribble in. In either case, they can’t be re-assigned to other
servers to try and even out the load. But persistence is vital while load balancing is only desirable. So
persistency issues always take precedence over load balancing evenness.

true. You lose the ability to do URL-based scheduling and get worse system performance. If anyone out there knows more about this issue,
please send us a note at vrm@acuitive.com.

Do Not Duplicate 34 Research Report 99001_v3.0

In the sections below we discuss some approaches to achieving persistency. But first, we discuss some
additional potential complicating factors.

7.2.1 Proxy Firewalls: Ensuring That Persistency Isn’t Too Easy
If life was fair, a VRM system could just look at source IP addresses to uniquely identify a user. Based
on that, various persistency policies could be implemented using fairly simple means. But proxy firewalls
complicate matters. Many enterprises and some ISPs (AOL being the most visible example) use proxy
firewalls to “hide” user IP addresses from the Internet by substituting a different or “proxy” source IP
address before transmitting over the Internet.

There are two types of proxy firewalls, which create two very different sorts of issues.

1. Proxy Firewalls that substitute an IP address from a pool of addresses allocated to the proxy (source-
address proxy). Each active connection through the firewall is allocated a temporary IP address that
is unique. But individual users cannot be distinguished by their IP address. One moment IPA is
allocated to Bob and the next it’s allocated to Dianne. Even more interestingly, as Bob sends a
sequence of TCP connections over the Internet, he will likely be assigned a different IP address for
each connection. This is the type of proxy used by AOL.

2. Proxy Firewalls that use the same IP address for all connections over the Internet distinguish different
connections by Source TCP Port instead of IP address (source-port proxy). In this case, everyone
behind the firewall looks like the same person if you only look at the Source IP address.

7.2.2 Core VRM Persistence Feature Options

Source IP Address Binding
The simplest method of achieving persistency that at least ensures TCP connection completion,
implemented by the earliest VRM vendors, is Source IP Address binding.

In its basic form, the only thing the VRM system looks at upon arrival of a packet is the Source IP
Address. If that address is not presently in the binding table, a “best available server” decision is made
and a new entry is made the Source IP address, binding it to the chosen server.

To prevent users from being connected to the same server indefinitely, activity for each source IP is
monitored. If no traffic is seen for a period determined by a sticky timer (usually configurable), the
Source IP address is unbound (removed from the table). The next time that Source IP address is seen, it
can be bound to the “best available server” of that moment. Usually, this function can be configured on a
V_IP by V_IP basis.

Source IP address binding is a low overhead approach, because the VRM system doesn’t have to monitor
the specific creation and completion of TCP connections, little address information needs to be stored per
user, and no state information needs to be stored and managed. This method is also useful for active FTP
because it can help ensure that control sessions and data sessions remain bound to the same server.

However, there are some significant issues with Source IP Address binding:

• Some load balancing “evenness” is lost. All sequential client sessions from the same Source IP
Address that are launched within the sticky timer period are sent to the same content server

• URL-based scheduling cannot be performed

Do Not Duplicate 35 Research Report 99001_v3.0

• All clients coming to the site from behind common source-port proxies (those that use the same IP
address for everyone) cannot be distinguished – they’ll all be re-directed to the same content server

• Clients coming to the site from behind source-address proxies (those that assign an IP address for a
connection instead of using the client native IP address) will only receive guaranteed persistence for a
single TCP connection. The proxy will assign a different IP address for their next TCP session

• Selection of the sticky timer value can be tricky. Make it too short and active sessions that have brief
lulls can be disconnected. Make it too long and regular users of the site will continually be sent to the
same server

Source Port Binding
To address the source-port proxy problem in order to achieve more even load balancing: Some vendors
allow the capability to perform Source Port binding. When frames arrive with a new Source Port #, a
“best available server” decision is made. If no traffic is seen for a period determined by a “sticky timer”
(usually configurable), the Source TCP Port is unbound. The next time that Source TCP Port is seen, it
can be bound to the “best available server” of that moment. The main issue with Source TCP Port binding
is that clients will only receive guaranteed persistence for a single TCP connection. Higher levels of
persistency are difficult to achieve. All methods that use the Source Port in any way must have a
mechanism to deal with fragmented packets, some of which will not contain the necessary TCP Port
information.

Source Identifier Binding
Some vendors offer the capability to perform Source Identifier binding, where the Source Identifier is
the combination of the Source IP address and the Source TCP Port. This means that persistent
connections can be maintained for a complete TCP connection, and connections can be balanced across
servers, whether they are coming from behind a source-address proxy, a source-port proxy, or none at all.
However, this approach does not lend itself to any higher-level forms of persistency as either the Source
IP Address or the Source Port is bound to change from connection to connection, whether the client is
coming from behind any kind of proxy or not. Source Identifier Binding can also lead to large table sizes.
Not only do all active Source Address/Source Port pairs need to be stored, the information needs to stay
in memory until the activity timer times out, which may be long after the connection has completed. The
section below, Unbinding Via TCP Connection Completion, helps with that issue.

Source Binding Value-Add Options
• To address the source-address proxy problem, in order to achieve persistency beyond TCP

connection persistency (e.g. SSL Session or Shopping Cart): One approach to consider is the use of
Address Range Mapping, based upon subnet masks (e.g. matching the 1st 24 bits of the Source IP
Address instead of the entire 32 bit field) or by statically configuring lists. Almost always, the
addresses used by a particular proxy are within a class C range. While this can make persistence
work, it can do so at the sacrifice of load balancing “evenness” because all users behind each proxy
would be sent to the same server. Perhaps more importantly, the administrative effort required to
maintain the masks, ranges, or lists as proxies get installed throughout the world can be overbearing,
assuming you can even get access to the information about the proxies at all. One way to address that
is to make sure the mask is general and learned, i.e. all source IPs coming from the same Class C
subnet are bound to the same server (auto-discovery). This sacrifices some more load-balancing
evenness to gain simpler administration.

Do Not Duplicate 36 Research Report 99001_v3.0

• To minimize the size of binding tables, when persistency beyond a TCP connection is not required:
The VRM system can perform TCP Connection Termination Monitoring. In this mode, the VRM
system monitors incoming packets to identify SYN packets sent by clients. When SYN packets
arrive, the VRM system makes a “best available server” decision and passes the SYN packet along to
the server. All ensuing packets for that same connection (as identified by the Source IP address and
Source TCP Port) are sent to the same server. When a FIN packet is observed, indicating the
completion of the session, the connection information may be removed from the binding tables.
Thus, the tables can be smaller – truly reflecting the status of active connections. Generally, an
activity timer is also used as a safeguard in this mode of operation, to ensure that tables do not get
crowded with information about sessions long ago completed, but not removed because a FIN was
not observed. Another advantage of this approach is that an accurate accounting of Open
Connections can be maintained, which may be used in “best available server” decisions.

• To achieve a pretty good world: Persistency policies should be configurable per TCP Destination Port
or URL-based scheduling rule. For instance, you may want to use Source Identifier Binding with
TCP Connection Termination Monitoring for HTTP, to get more even load balancing, but use Source
Address Binding with Address Range Binding for SSL.

All in all, even though it seems clunky, Source IP Binding combined with Address Range Mapping (with
auto-discovery) can be effective unless you have a large majority of users coming to you from behind a
common proxy. This is not even the case in the highly hyped AOL-proxy problem. AOL does source a
lot of traffic onto the Internet, and all users come from behind source-address proxies, but not the same
proxies. The traffic coming from each proxy can be directed to a different server. There are enough of
the AOL proxies out there that you can still usually achieve a reasonable balancing of load. If you go this
route, make sure the vendors auto-discovery option can be turned off for specific networks that you know
are not coming from behind proxies. You can regain some load balancing evenness that way.

Another way to regain some load balancing evenness is to use Source IP Binding for SSL traffic only, and
Source Identifier Binding for HTTP. This is only an option if you don’t have requirements for Shopping
Cart persistence.

SSL Session Tracking
The SSL Session may span many, many TCP sessions. The VRM system must ensure that the client
remains connected to the originally selected (and authenticated) server for the duration of the SSL
Session. Source IP Address Binding with Sticky Timers and Address Range Binding can meet this goal,
but at the sacrifice of some load balancing evenness.

Monitoring SSL Session IDs is an alternative approach:

When a client and specific server handshake to begin an encrypted SSL Session, a unique SSL Session ID
is assigned. One way to ensure SSL persistency is for the VRM system to monitor the creation of SSL
sessions and the assignment of SSL Session IDs. When subsequent packets arrive with the same SSL
Session ID, they can be re-directed to the same server that was involved in the original SSL session
creation.

This approach requires delayed binding, enough memory to store the SSL session state information, and
enough VRM horsepower to handle all the extra filtering and packet processing required to track the SSL
handshake protocol and match Session IDs. The implementation will also require an aging algorithm, to
age out SSL Session IDs.

Do Not Duplicate 37 Research Report 99001_v3.0

SSL 2.0 operates differently from SSL 3.0.If you need this feature make sure the vendor supports the
version of SSL that your servers and clients are using.

Early providers of this feature have reported design wins based on it, and therefore all vendors either
support it now or are talking about it. We view this as a somewhat important feature, but it has
performance implications so you should only turn it on if you really need to.

As stated above, Source IP Address Binding with Address Range Mapping can provide the same
persistence, with the trade-off being less load balancing evenness. Load balancing evenness is lost
because the activity timers must be set to fairly long values – on the order of magnitude of the time you
allow Session IDs to remain valid. This may be an hour, six hours, possibly even 24 hours. For that
period of time, all traffic from the Source IP range will reset the timer, so you could end up having those
users bound to the same server forever. If you only apply the policy to SSL traffic, or if you only allow
short SSL sessions (which we generally believe is a good idea), then you don’t need to turn on the SSL
Session ID Monitoring feature. But it’s a good option to have in your back pocket in case you need it.

7.2.3 Addressing “Shopping Cart” Persistency
At some web sites, a user browses though the site and indicates items he or she may buy by placing them
into a “shopping cart.” In some application deployments, the knowledge of what items are held in a
particular shopping cart is stored on only one server until the user indicates the desire to buy the items.
The user must remain connected to that server for the duration of the shopping session (which may span
many, many TCP sessions). Then, if the purchase requires an SSL session (for communicating credit
card information, usually), the user must continue to remain connected to that server. Sometimes, when
the user comes out of the SSL session and continues with HTTP, the persistence must be maintained.

This is a tricky set of requirements. Providing appropriate persistence for this situation requires tracking
of sequences of TCP sessions from HTTP to SSL and back. Source IP Address Binding with Address
Range Mapping can provide the persistence required, but at the cost of significantly reduced load
balancing evenness if the activity timers need to be set to a long value. How long the activity timers must
be is largely related to how long you want the customer to have an active Shopping Cart before they must
make a purchasing decision. If that is hours or days, the activity timers would have to be too long for
Source IP Address Binding and Address range mapping to work effectively.

Cookie-Based Binding
Have you ever browsed to a website that you’ve been to before, and the website seems to have
“remembered” what operation you were performing the last time you were there? If so, you’ve
experienced the use of the HTTP Persistent State Cookie.

Cookies are used for keeping track of settings or data for a particular Web site you have visited, and for
identifying you as a unique user to the website that originated the cookie. When your browser requests a
page, it sends the settings that apply to that page along with the request. These settings are stored in a
website specific text file on your system.

Cookies can be temporary or permanent. Your browser retains temporary cookies while it is operational,
and deletes them when it is shut down. Temporary cookies are used to pass information between Web
pages during a single visit. For instance, a website with a “shopping cart” may use a temporary cookie to
remember your choices from one webpage to the next.

Do Not Duplicate 38 Research Report 99001_v3.0

Your browser saves permanent cookies as tiny files on your system to maintain settings or data between
multiple visits. "Permanent" cookies are actually set to expire at some time in the future (commonly
between 30 days and a year from their creation date), and are automatically deleted from your system at
that time. For instance, the following shows an example permanent cookie stored on one of our systems
when we browsed to Compaq’s online store website:

VRM systems are now beginning to offer cookie inspection and binding as a policy for persistent user-to-
server association. When a user communicates with a website that has stored a cookie on the user’s
system, the browser transmits the cookie with every request. When a (cookie capable) VRM system gets
involved, it terminates the TCP connection, waits for the URL requests to come from the user and then
performs cookie inspection. The VRM scheduler chooses a server for the user and then records a
representation of the user’s cookie within its session state tables, remembering that the user with the
inspected cookie is associated with the chosen server. Subsequent requests from the same user will
continue to go to the same server, until some timer expires the session state entry.

This persistent binding technique offers more load balancing granularity than IP Source Address based
load balancing, because the VRM system is now able to identify a specific user to send to a server. It also
holds promise for use in identifying specific users or user classes for Preferential Services capabilities.

Issues
There are a number of significant issues with the use of cookies as unique user identifiers.
• What if clients don’t accept cookies? If a user has turned off cookie-acceptance on their browser, it is

obviously not possible to identify the user by cookie. Its likely that the website the user is connecting
to will complain about its inability to set a user cookie, but if the site has a workaround, what will the
VRM scheduler do? It will have to fallback its persistent policy to one of the other methods, probably
Source IP address binding

• What portion of the cookie does the VRM administrator set persistence on? Cookies and the specific
user-identifiers within them are not human readable, and they are unique from site to site. This opens
up a whole set of problems for the VRM administrator. There is no way to simply look at the cookie
and determine what to use as the user-ID. Plus, the cookie can change structure at any time based on
the whim of the website applications programmers. Thus, close coordination between the website
programmers and the VRM administrator is required, both for initial setup and during website
changes

• Cookies can be 4096 Characters in length. Its not likely that a cookie would be this long, but
RFC2109 on HTTP State Management requires that systems implementing cookies should be capable
of handling cookies this long. Parsing user requests with cookies this long would require the
spoofing and inspection of many TCP data segments before the portion identifying the user came
through. This could be very taxing on the VRM system

ShopperManager%2Fstore
SHOPPERMANAGER%2FSTORE=52NALWB9LKS12G7X00GPBLF689ELAMX1
athome.compaq.com/store
0
2802348032
30050983
1374920960
29243240
*

Do Not Duplicate 39 Research Report 99001_v3.0

• Cookies provided across an SSL session cannot be inspected. SSL session data is encrypted. Not
human readable. Can’t be parsed. Thus, if you must maintain user persistent bindings between both
HTTP sessions and HTTP-S sessions, you’ll have to use Source IP address binding or have some
method of tracking the HTTP session to the SSL session and then back to HTTP

7.2.4 A Better Way To Handle Some Persistence? Avoid The Problem!
Many issues of persistency are caused by the application state being uniquely stored too high in the
application architecture – co-resident with the web server. The approach we like even better is avoiding
the problem by designing the application implementation more cleverly. Shopping Cart state should not
be stored on a single server, isolated from other servers. Notifications about changes in state should be
made immediately available to all application servers, so that it does not matter what content server and
application server each connection is forwarded to. That’s just better design and methods to achieve this
are readily available today. But many of these methods are not readily available in NT-oriented
application environments. So if you are in to (supposedly) cheap computing, you’ll probably have to deal
with many of the issues of persistence identified in this section (or use Linux!).

7.2.5 Persistency and URL-Based Scheduling
At first blush, it may seem that mechanisms for achieving persistency such as Source Address Binding,
are incompatible with URL-based scheduling. This does not have to be the case. It’s a matter of defining
the right sequence of applying policies.

In a URL-based scheduling environment, the persistency policy should be applied after the delayed
binding process (which identifies the group of servers that are candidates to server the request), but before
the “best available server” process. The persistency process takes precedence over “best available
server,” meaning if there is already a binding for the Source IP Address (for the particular destination
URL), send the request to the server indicated by that binding. If not, implement the “best available
server” policy and send it to the server indicated by that process.

URL-based scheduling implementations should allow for the persistency policy to be configured on a
URL-by-URL (or rule-by-rule, in some vendors’ lingo) basis. For instance, you may want no persistency
at all for the servers that implement static content, but some form of persistency for the various clusters of
application servers, each of which may have different and unique state management requirements.

Do Not Duplicate 40 Research Report 99001_v3.0

7.2.6 Persistency Options Summary
Method Persistency

Enabled
Load Balancing

Granularity
Notes

Source IP
Binding

§ TCP Connection
§ SSL Session and

Shopping Cart
unless the user is
coming from a
source-address
proxy

Moderately poor.

 All connections from the same
source go to the same server.

All users behind source-port
proxies go to the same server.

No URL-based scheduling.

Only useful if you know that few users are
coming to you from behind source-port
proxies.

Source IP
Binding with
Address Range
Mapping

§ TCP Connection
§ SSL Session
§ Shopping Cart (if

applied to HTTP
and SSL)

Poor.

All common users behind any
proxy go to the same server.

No URL-based scheduling.

Auto-discovery is a good complementary
added-value feature.

A good choice for applying to SSL traffic
(although you don’t get Shopping Cart
persistency if you limit it to just SSL)

Source Port
Binding

§ TCP Connection Moderately poor.

Solves the problem of all users
behind source-port proxies going to
the same server but trades off that
all users behind source-address
proxies go the same server.

No URL-based scheduling.

Only useful if you know that few users are
coming to you from behind source-address
proxies.

Source Identifier
Binding

§ TCP Connection Good Good LB granularity but no higher-level
persistency.

TCP Connection Completion Monitoring is a
good complementary value-added feature.

A good choice for HTTP traffic if you don’t
have Shopping Cart issues.

SSL Session ID
Tracking

§ SSL Session ID Good. Allows you to keep SSL
sessions bound to one server, but
support non-SSL requests from the
same client to other servers.

Needed if you allow long lifetimes for SSL
Session IDs

Cookie-Based
Persistence

§ Shopping Cart Good Needed if the allowed Shopping Cart sessions
are long.

Not possible while in SSL mode, need to track
transitions.

Hard to administer.

Do Not Duplicate 41 Research Report 99001_v3.0

7.3 Preferential Services
Preferential Service Policies are those that kick in when site resources become scarce, to ensure that
some users are offered better access to resources than others are. Users can be explicitly defined, such as
the CEO, or they can be mapped into larger groupings, such as ‘all users using application X.’

Preferential Service features are just now being offered by some vendors. End users are just beginning
the process of determining if, how and when to use them. We haven’t had enough experience with the
various options (some of which are still vaporware at this point) to figure what works, what doesn’t, and
what all the unexpected 2nd order effects are. Due to this, our treatment of the subject (below) is
somewhat cursory in this report. We plan on providing a more detailed treatment as part of the
subscription program.

It probably does make sense to include a vendor’s preferential services capabilities or (gasp!) plans in
your selection analysis. But when it comes right down to it, you’d be better off putting some more time
and money into capacity planning to try to prevent the need for preferential services altogether. Having
said that, we know that stuff does happen. Fast breaking news stories, special events, unexpected site
success – all of these can create changes in traffic patterns that you couldn’t have anticipated. So
providing a little protection by having the ability to prioritize applications or users isn’t a bad thing – as
long as the mechanisms work and are real world tested.

To get a full description of preferential services requirements and vendor features, one needs to
characterize the following:

• User Discrimination: How can I distinguish one user from another? How can I categorize them into
groups or communities?

• Targets: How can I define the target performance desired for a particular User Group?

• Policies: How do I set priorities or preferences between the User Groups? Once priorities are set,
what policies can I invoke for sharing resources between different user groups of different priority?

• Mechanisms: What mechanisms can I use to alter traffic patterns so that preferential access to
resources can be provided consistent with the User Groups, targets, and policies?

7.3.1 Preferential Services User Discrimination
One of the key elements of implementing Preferential Service policies is defining the user groups that the
preference will be established between. There are lots of choices. Here are a few.

Applications
All users using a particular application. This is the most common requirement we have run into so far. It
may be that you want to make sure that users who are actually sending credit card information and
completing a transaction via an SSL service, are provided a higher level of service (or more guaranteed
level of service) than those who are browsing.

Content
All users accessing specific content or directory tree branches.

Do Not Duplicate 42 Research Report 99001_v3.0

User Communities
Some set of users, such as marketing, who can be identified as part of a specific user group. Maybe
identified by source address range, login authentication, or permanent cookie.

Individual Users
Specific individual users, normally distinguished by IP Address, login authentication, or permanent
cookie.

Other
The imagination can run wild. Combinations of the above groups, logical expressions of the above
groups (if marketing, but not Joe, and not using application X or Y…..).

7.3.2 Preferential Services Targets
Preferential services functions need to be kicked off by some event. Two general categories of events can
be defined:

1. Resource-Oriented Targets: Preferential services functions kick in if a measured site resource
becomes scarce.

2. Performance-Oriented Targets: Preferential services functions kick in if site performance or
application performance degrades to some pre-set threshold.

Resource-Oriented Targets
Potentially, any resource that can be measured and is deemed to be critical to site performance is a
potential metric. This can include CPU utilization, open connections, available memory, network
utilization, WAN link utilization, etc. For the metrics that are device oriented (rather than site oriented)
such as CPU utilization or open connections, it is probably necessary to create an aggregated metric,
related to the average or summed loads on all the potential target servers.

When these metrics are measured to be at or close to pre-set targets, Preferential Services policies should
start to kick in.

The advantage of resource-oriented metrics is that some of them are easy to measure. The disadvantage is
that it can be difficult to set target values. For instance, when I have a total of 3200 open connections
spread over six content servers, am I performing well or badly? If well, how much headroom do I have
before I start to perform badly? It’s probably more obvious in the case of WAN link utilization. 99%
probably means something significant. But how do I get the measurement? And is 92% OK? How about
80%?

Generally, when using resource-oriented targets, you need to go by experience. Set a few targets and
observe (a) how often you reach the target and (b) the level of performance below the target and above
the target. You’ll probably have to iterate fairly often, especially as you introduce new devices, software,
and configurations into your site architecture.

Performance-Oriented Targets
Performance-oriented targets should be related closely to the business mission of the site and the user
experience associated with that mission. Application Response Time, % successful downloads,
Transaction Time, % Reloads, and % user “quits” are all metrics related to the quality of the user

Do Not Duplicate 43 Research Report 99001_v3.0

experience. But some metrics can be hard to measure. And in some cases the results may be more related
to the creative design and content of the site than the performance.

But when you can, you should try to tie Preferential Services to some performance-related metric that is
relevant to the user experience. We tend to like Application Response Time. It is measurable, and targets
are fairly easy to envision. If your highest priority applications exceed a target threshold, it’s time to
invoke some Preferential Services mechanisms, even if all your lower level technical dials say that
everything is working fine.

As the Preferential Services mechanisms are invoked, it’s important to continually monitor the target
metric. If the mechanisms do not improve the metric, then you need to try something else. One the target
performance is regained, you can slow down the mechanisms so that lower priority applications or users
are not impacted any more than they need to be.

7.3.3 Preferential Services Mechanisms

Differential Server Weighting
In this case, all applications run on all servers. When the performance of all the applications is below the
targets, requests from users for all applications are spread across the servers based on the core load
balancing and threshold policies. If the performance of a high priority application degrades, differential
weighting is performed, which means that quotas for resource allocation are invoked. That could mean
that the number of open connections allocated to all applications other than the highest priority one are
reduced. The sum of the allocations for all the lower priority applications should be lower than the
maximum supportable on the site. The difference between the maximum supportable and the sum of the
allocations for lower priority applications is a form of resource reservation. That difference can be
increased over time as needed to ensure the high priority application meets its target.

Server Pool Swapping
In this case, different applications or user groups are initially assigned to different server groups, although
each server in each group has access to all applications and content. If all the applications are responding
faster than the target, no Preferential Service mechanisms kick in. If the performance of the higher
priority application starts to degrade, servers are moved from the pool assigned to lower priority
applications into the high priority group. Usually, existing connections on the server being moved are
allowed to complete. As they do, more resource becomes available for the higher priority application
users.

This can be viewed as a special case of the more general Differential Server weighting case above. But in
this case the only allowable weights are 100 and 0.

Rate Shaping
TCP rate shaping has generally been targeted at managing WAN link bandwidth, a'la Packeteer, Allot,
Xedia, Checkpoint, Structured Internetworks, Netscreen, etc. Since WAN links are often the site resource
first saturated, it may be useful to implement WAN bandwidth management consistent with the overall
site policies and targets.

But whether you implement WAN link bandwidth management or not, rate shaping can be used to adjust
the flow of incoming traffic to the content servers. Rate Shaping means that when servers are congested,
you can send fewer packets to the servers related to lower priority user and applications, which frees up
resource for the higher priority users and applications.

Do Not Duplicate 44 Research Report 99001_v3.0

We like rate shaping, because it invokes an end-to-end flow control. Rate Shaping can be used to prevent
congestion (rather than just reacting to it). It can usually be implemented rather smoothly, as opposed to
mechanisms that drop packets and cause re-transmission, which usually just results in a repetition of the
congestion a short time later.

New Request Denial
Rather than slowing down the rate of packet transmission to the content servers (a’la Rate Shaping), one
could deny requests for lower priority users during periods of congestion. This could seriously impact the
perceived quality for the lower priority users and could result in deferred congestion as they hit the
Reload button. So new request denial should only be performed when other measures have been invoked,
but the target level of service has still not been achieved.

Existing Session Reset
As a last resort, VRM systems could Reset existing connections for lower priority users.

7.3.4 Preferential Services Policies
There are (roughly) zillions of different permutations of policies that one could invoke for Preferential
Services. If you’ve done any investigation of networking QoS/CoS concepts, rate shaping concepts, or
just enjoy reading a lot of esoteric literature from mathematics societies, you’ve been exposed to some of
the potential policies.

What it generally comes down to is, how much do you want to starve lower priority applications or users
if higher priority ones are suffering? You can choose strict priority, where the higher priority users will
always get preferred access as long as they are not meeting their targets. You can choose reservation
schemes where each priority level is guaranteed at least a minimum level of access to the site, and only
the “excess” resource above that is doled out preferentially. You could also establish hard upper limits,
where a certain user group cannot use more resource than the specified amount, even if no one else is
active at the moment.

We’ll get into this area in much more detail when we address Preferential Service more thoroughly as part
of the subscription program.

7.3.5 Overall Analysis
This is one of those technical areas that most people talk about a lot, a few people implement, and most
who do implement wonder later why they bothered.

Ideally, one would plan capacity in such a manner that all users would achieve good performance for all
applications at all times. But that is not always practical. We can see the advantage of having some fail-
safe Preferential Services policies in place that kick in when traffic patterns change dramatically and
unexpectedly. Generally, we believe the most bang for the buck comes from prioritizing at the
application or service level – shifting resources to an overburdened application in order to keep the
application response time below some threshold, even though it means the response times for other
applications will increase.

Do Not Duplicate 45 Research Report 99001_v3.0

7.4 Some Final Thoughts On Policies
Our general approach to policies is to define as simple a set as possible to meet site requirements. We
like VRM products that give us a lot of potential policies to implement. But we’re happiest when we
don’t have to use many of them.

We approach things in the following manner:

1. Understand the application state management requirements in detail and design in the right
persistence policies and mechanisms to address those requirements.

2. Build a foundation of simple “best available server” policies. Weighted Round Robin and Least
Connections are good candidates.

3. Overlay the simple policy with threshold-oriented secondary policies. # open connections, CPU load,
and available memory, and network link utilization that we have seen being useful in different
situations. There are probably others as well.

4. Perform continual capacity planning. One thing to track is how often the threshold-oriented
secondary rules kick in. It shouldn’t be too often and it shouldn’t be at an alarmingly increasing rate.

5. If needed, consider a final layer of Preferential Service policies. These should be indexed to site
performance as experienced by the end user – such as Application Response Time. If the ART is
temporarily above a quality target for a specific high priority application, try to improve it. Allocate
more resource to that application by slowing down (in some way) the flow of new requests by lower
priority users to some or all of the servers serving the higher priority applications.

Persistency
Policies

Load Balancing Policies

Best Available Server
Normal operational mode.

Keep it simple

Over-ride all other
polciies

Secondary Threshold, Back-Up, and Overflow Policies

Preferential service Policies

Kick in when a specific resource is saturated

Kick in when a site is saturated and the user
experience is degrading

Perform capacity planning to
keep the site in the normal
operational mode as much as
possible.

Do Not Duplicate 46 Research Report 99001_v3.0

88 SSiinnggllee SSiittee VVRRMM:: MMeecchhaanniissmmss
VRM systems make the “best available resource” decision based on the active policies, using the
available feedback information. The Mechanisms then come into play to perform whatever packet
processing is needed to direct the packet to the chosen server. Often, packets returning from the server to
the client need to be processed as well.

For purposes of discussion, we break the types of Mechanisms into three areas:

1. Local-Oriented Mechanisms: Immediate Binding. These mechanisms are generally or exclusively
used for directing traffic to a local server. Immediate binding means that the decision about which
server to send the request to is made upon arrival of the TCP SYN packet.

2. Local-Oriented Mechanisms: Delayed Binding. Delayed binding means that the decision about
which server to send the request to is made after the TCP 3-way handshake is complete, and the client
provides more information, such as the URL, session cookie, permanent cookie, SSL Session ID, or
specific application-related information.

3. Multi-Site (WAN) Oriented Mechanisms. These mechanisms could be used for local server re-
direction as well, but generally are not due to various compromises associated with their use. But
they do enable re-direction to different sites, which the local mechanisms do not.

This section discusses the local-oriented mechanisms. Multi-site mechanisms are discussed in Section 9,
where all multi-site issues (Feedback, Mechanisms, and Policies) are discussed in one integrated section.

8.1 Immediate Binding Mechanisms
Immediate binding means that the VRM system decides which server to pass the TCP connection request
to upon reception of the TCP SYN request from the client. Upon passing the TCP SYN packet along to
the selected server, the server will respond with a SYN ACK to continue the TCP 3-way handshaking
process.

Immediate binding means that no information provided by the client after the TCP connection is made
(e.g. URL, SSL Session ID, cookie) can be used in making the “best server” decision. However, in
general, the load on the VRM schedule is lower, which usually results in better price/performance. Also,
immediate binding is the best method for most non-HTTP environments (e.g. FTP, Telnet, DNS, SMTP,
POP3, non-server load balancing). Therefore most products, even if they support delayed binding for
TCP/HTTP, will support an immediate binding mechanism for all other protocols.

Do Not Duplicate 47 Research Report 99001_v3.0

8.1.1 MAC Address Translation (MAT)
In MAC Address Translation, all the Real Servers are configured with a unique IP address on their
physical (e.g. Ethernet) interface and with the V_IP on their loopback interface. When packets arrive at
the VRM scheduler, it makes a “best available server” decision and directs the packet to the chosen server
by substituting that server’s MAC address in the Destination MAC Address field of the packet.

MAC Address Translation is the required method for re-direction for many non-server load balancing
applications.

Value-Add Options
In MAT, no packet translation is needed in the server-to-client path. Thus the server-to-client packet flow
can potentially bypass the VRM scheduler completely. Since the volume of traffic in the server-to-client
path is generally five to 10 times the volume of traffic in the client-to-server direction (for many HTTP
environments), MAT can help reduce the load on the VRM system. MAT is the only immediate binding
mechanism that supports this direct-to-client feature.

Network

Et
he

rn
et

VRM Scheduler
Management IP: 192.168.2.15

Virtual IP: 192.168.2.101

Real Server A
ethernet i/f: 192.168.2.1

Loopback i/f: 192.168.2.101

Real Server B
ethernet i/f: 192.168.2.2

Loopback i/f: 192.168.2.101

Real Server C
ethernet i/f: 192.168.2.3

loopback i/f: 192.168.2.101

Client

Client

Client

Client

Router

Network

VRM Scheduler
Virtual IP: 192.168.2.101

Real Server A
ethernet i/f: 192.168.2.1

Loopback i/f: 192.168.2.101

Real Server B
ethernet i/f: 192.168.2.2

Loopback i/f: 192.168.2.101

Real Server C
ethernet i/f: 192.168.2.3

loopback i/f: 192.168.2.101

Client

Client

Client

Client

LA
N

Router

Client Traffic

Client T
raffic

Server-to-Client
Traffic

Do Not Duplicate 48 Research Report 99001_v3.0

Advantages of MAT
• Little packet translation needed in the client-to-server path

• Provides the potential for direct-to-client packet flows. This is not taken advantage of by all vendors.
But even when not taken advantage of, MAT has the advantage that the VRM system only needs to
do simple Layer 2 bridging for the traffic from the server to the client

• Lends itself to scaled solutions. Potentially, multiple VRM schedulers can schedule to the same pool
of Real Servers for the same service. For example, if there are two VRM schedulers, scheduler A can
be V_IPA and scheduler B can be V_IPB for a given service. Each Real Server is configured for both
V_IPA and V_IPB. The DNS server can then be set up to round robin between V_IPA and V_IPB, thus
spreading the load across the two schedulers, increasing effective scheduler bandwidth

• Transparent to IP-level encryption

Disadvantages of MAT
• Real servers cannot be a router hop away from the VRM scheduler

• Real servers must be configured with the V_IP address on the loopback interface – one for each
application instance of the same type (e.g. HTTP)

• For NT content servers, we’ve heard repeated reports about occasional “flakiness” when NT servers
are re-booted, with the symptom being that configuration information such as loopback interfaces is
lost

• A unique “management IP address” must be configured on each server so that you can communicate
and administer each server individually

One myth we’ve heard about MAT is it prevents IP and TCP information from being used in the “best
available server” decision. This is not true. MAT simply means that the IP and TCP information is not
changed in any way as it passes through the VRM scheduler. The IP and TCP fields can be scrutinized;
to determine the application type, to distinguish client IP address and source port numbers, etc. to provide
granular binding and other features.

8.1.2 MAC Multicast (MAM)
In MAC Multicast, all of the VRM schedulers are configured to receive Ethernet frames via an identical
Multicast MAC address. When the access router ARPs for the MAC address of a V_IP, this multicast
address is returned. From then on, when the access router forwards requests to this V_IP, it does so by
using this MAC address as the Layer Destination Address for each frame. This multicast frame is
received by all of the VRM schedulers. Each one of the VRM schedulers inspects the IP addresses in the
frame, and one of the units "chooses" to service the request based on a load-sharing algorithm. The
algorithm may be based on a bidding process or based on hashing the IP addresses in the frame. One and
only one unit will service any given user request. Keep-alives between the units ensures that each knows
how many units are in operation, so that the load-sharing algorithm may change if a unit fails or comes
back into service. The intention of this design is to allow natural redundancy (all units have the same IP
addresses for virtual services) and to allow some gross load sharing.

Advantages of MAM
• Transparent to higher level protocols – can be used for all IP services (or really non-IP as well, if

that’s interesting)

Do Not Duplicate 49 Research Report 99001_v3.0

Disadvantages of MAM
• All Real Servers must reside on the same Layer 2 broadcast domain (VLAN). All arriving packets

are broadcast within this domain, so it reduces (a little bit – server-to-client traffic is still unicast) the
advantage of using Layer 2 switches to increase site bandwidth

• Requires installing software on each Real Server – a “shim” that operates on top of the NDIS driver

• Some routers will not accept a multicast address as a response to an ARP. These routers must have
their ARP tables manually configured

In small server configurations, this methodology may be OK. If the server cluster is any larger or requires
complex application handling, we don't really care for this mechanism.

8.1.3 Half Network Address Translation (HNAT)
The basic topology for Half-NAT operation is shown below.

In Half-NAT, the destination IP address of the chosen Real Server is substituted as it passes through the
VRM, but source IP address information associated with the client is not modified.

When traffic is received by the VRM destined to a V_IP, the VRM modifies the Destination IP Address,
Destination MAC address, and L2/L3 checksum information and forwards the packet to an actual host
machine that provides the desired service using its unique IP address. Returning traffic, from the server to
the client, is modified to place the V_IP in the Source IP address field.

Network

Client

E
th

er
ne

t

VRM Scheduler
Virtual IP: 192.168.2.101

Real Server
192.168.2.1

Real Server
192.168.2.2

Real Server
192.168.2.3

Real Server
192.168.2.4

Client

Client

Client

Router

Do Not Duplicate 50 Research Report 99001_v3.0

The figure below diagrams how addresses and checksum (and CRC) information are modified in the
client-to-server direction of traffic flow.

The figure below diagrams how addresses and checksum (and CRC) information are modified in the
server-to-client direction of traffic flow.

TCP functions are transparent to the NAT functions occurring underneath them. The client and the server
engage directly in TCP functions such as connection set-up, connection completion, flow control, and
error control.

ClientClient
C_MACC_MAC

C_IPC_IP

21552155

8080

037A037A

Checksum

Dst. IP Address

Dst. Mac

Source Port

Destination Port

Checksum

V_IP
v_mac

21552155

8080

037A037A

Mac Layer V_V_macmac

c_c_macmac

21552155

8080

03780378

V_IP
v_mac

Source IP Address

Src. Mac c_c_macmac

V_V_macmac

l4_l4_vmacvmac

r_r_macmac

Server Load Balancer

C_IPC_IP

V-IPV-IP

B62AB62A

C_IPC_IP

V_IPV_IP

B62AB62A

C_IPC_IP

R_IPR_IP

B628B628

Real IPReal IP
R_MACR_MAC

R_IPR_IP

21552155

8080

03780378

r_r_macmac

l4_l4_vmacvmac

R_IPR_IP

C_IPC_IP

B628B628

IP

TCP

Client Real Server

Checksum

Dst. IP Address

Dst. Mac

Source Port

Destination Port

Checksum

Mac Layer

Source IP Address

Src. Mac

ClientClient
C_MACC_MAC

C_IPC_IP

8080
21552155
57B357B3

c_mac
r_mac

V_IPV_IP

C_IPC_IP

82E082E0

V_IP
v_mac

80 80
21552155
57B357B3

r_mac
c_mac

V_IPV_IP

C_IPC_IP
82E082E0

Real IPReal IP
R_MACR_MAC

R_IPR_IP

80 80
21552155
57B157B1

c_mac
r_mac

C_IPC_IP
R_IPR_IP

82DE82DE

Server Load Balancer

80 80
21552155
57B157B1

r_mac
c_mac

R_IPR_IP
C_IPC_IP
82DE82DE

V_IP
v_mac

IP

TCP

Client Real Server

Do Not Duplicate 51 Research Report 99001_v3.0

Value Add Options
When the VRM scheduler is a router, the topology of a NAT implementation can be improved such that
fewer wiring changes are needed to introduce the VRM scheduler into the system. This is done by
identifying the VRM scheduler as the default gateway to all the content servers.

In this configuration, all traffic still passes through the VRM in both directions, but the VRM does not
have to be physically wired into the network between the access router and the content server LAN.

Advantages of Half-NAT
• (Relative to MAT) Loopback interfaces do not have to be configured on the Real Servers for the

V_IPs

• In theory the Real Servers can be a router hop away from the VRM scheduler. But be careful. Return
traffic must pass back through the VRM scheduler, so the router topology must be well understood
and stable

Disadvantages of Half-NAT
• All traffic associated with Virtual Services must pass through the VRM scheduler in both directions

and be modified. Care must be taken in the topology to ensure that all packets return to the client
through the VRM because there is no natural reason for them to do so

• Modifications to IP addressing need to be supported by complementary modifications to IP and TCP
checksum fields. If the checksum fields are encrypted, for instance when transport-mode IPSec is
used on the server, NAT cannot be used

• When the NAT device is configured as the default gateway on the content servers, you have to make
sure that the system is properly configured to support VRM scheduler fail-over. This can get tricky
sometimes

HNAT is the most commonly used local re-direction technique today. No configuration changes need to
be made on the target servers at all, which makes deployment and on-going management simple.

Network

VRM Scheduler
Router IF IP: 192.168.10.4
Virtual IP: 192.168.2.101

Real Server A
ethernet i/f: 192.168.10.1

Default GW: 192.168..10.4

Real Server B
ethernet i/f: 192.168.10.2
Default GW 192.168..10.4

Real Server C
ethernet i/f: 192.168.10.3
Default GW 192.168.10.4

Client

Client

Client

Client

LA
N

Router

Do Not Duplicate 52 Research Report 99001_v3.0

8.1.4 Full NAT (FNAT)
In full-NAT, the IP address/checksum information of both the client and server (IP Source Address, IP
Destination Address) are modified as it passes through the VRM, in both directions.

Advantages of Full NAT

• Unlike MAT and (practically) HNAT, FNAT allows the Real servers to be installed anywhere in the
routed network. Since both the Source and Destination IP information is replaced, the server believes
that the VRM scheduler is the client, and all response frames will flow back to the VRM scheduler
through the routed network. This could even work over wide area networks, although that is
discouraged because of the extra WAN hops a packet would take to go from the client to the VRM to
the Real Server, back to the VRM and back to the client

• As with HNAT, no configuration of V_IPs on loopback interfaces on the Real Servers is needed

Disadvantages of Full NAT

• FNAT "hides" the original client's IP address from the server, making troubleshooting and server
access logging difficult. The Real Servers believe that all connections are coming from the same
client (the VRM). This disadvantage can be alleviated if the VRM system provides the granularity of
traffic information usually obtained from the server logs

• FNAT requires translation of both IP fields and well as MAC fields, and all related error checking
fields

The hiding of source IP address from the server is a big issue. Unless the VRM system can re-create all
the information that would have been derived from the server logs, we tend to avoid the use of Full NAT.

8.2 Delayed Binding Mechanisms
It is often desirable for an VRM system to use information provided by the client after the TCP session is
established to influence which Real Server a connection is sent to. For example, URL information is
provided in the HTTP method request, which is only sent after a TCP connection handshaking is
complete.

The mechanisms described in this section all provide the capability to perform “delayed binding.” In
each case, the VRM system completes the TCP handshake with the client, inspects the next packet or
packets provided by the client, and creates a connection to the chosen Real Server based on that
information. This process requires significantly more processing on the part of the VRM system, but can
result in significant system advantages, especially in the area of state management and persistence.

8.2.1 TCP “Diddling” (TCPD)
In TCP “Diddling,” the VRM system completes the TCP handshaking process with the client, fooling it
into thinking it has established a connection with a Real Server. In the process, the VRM system records
the initial Sequence # set by the client. In the handshaking process the VRM system responds with its
own Sequence # and records that information for later use.

Do Not Duplicate 53 Research Report 99001_v3.0

After the VRM System receives the desired post-connection information from the client, the VRM system
makes a “best available server” decision. The VRM system then sends a TCP connection request to that
chosen server, with the same parameters (source IP address, source port number, initial sequence number)
as in the original TCP SYN packet. The Real Server will respond with its own SYN packet and Sequence
#. The VRM absorbs that packet, but records the offset between the sequence number provided by the
Real Server and the original sequence number it provided to the client (and any other differences, such as
port numbers). The VRM system then sends an ACK to the Real Server (completing the 3-way
handshake) and follows that with the client’s GET request.

From that point on, all traffic passes directly from the client’s TCP process and the Real Server’s TCP
process, but the VRM system interdicts the traffic in the server-to-client path in order to adjust sequence
numbers to match the clients expectations based on its original handshake with the VRM.

Some corner case situations must be handled by the VRM scheduler, even though it is not completely
terminating TCP. An example of this is the handling of IP Fragmented packets. When an IP frame is
fragmented, the first fragment contains the TCP header information, but the following frames do not.
How is a VRM to handle the frames that arrive without TCP information?

• One approach would be to cache the first arriving fragment, and then re-create the original
unfragmented frames as the rest of the fragments arrive. That’s a lot of work, but would very
effectively deal with the situation

• Another approach is to drop back to Source IP binding. But that means that all traffic from that
source (for that service, i.e. HTTP) would suddenly be diverted to one server

Client VRM Real Server

IP

TCP

IP

TCP

3-way handshake
VRM records sequence #
forwards the client GET

tim
e

IP

TCP

IP

TCP

IP IP

TCP
Sequence # "diddling"

3-way handshake
VRM records sequence #
Client sends 1st GET

"Best available server" decision

IP

TCP

IP

TCP

Do Not Duplicate 54 Research Report 99001_v3.0

• Another approach is to just drop the packets. Fragmentation shouldn’t occur if the sources set the “do
not fragment” bit. MTU negotiation should prevent the need for fragmentation. Something is wrong.
Send a notification so we can go figure out what is wrong rather than trying to solve the problem

Advantages of TCPD
• Enables “delayed binding” capabilities

• (Relative to TCPG) Less overhead. TCPG does not handle true TCP processing (e.g. windowing, re-
ordering, error correction, exception handling). It just handles some TCP 3-way handshaking
functions and then modifies some bits in the TCP headers as they pass through the device

Disadvantages of TCPD
• Traffic must pass through the VRM and be modified in both directions

8.2.2 TCP Gateway (TCPG)
In the TCP Gateway mode of operation, the VRM creates separate TCP sessions to the client and to the
server. First, as client connection requests arrive, a TCP session is created to the client. After the
handshaking process is complete and the client sends to HTTP Get request, the VRM can choose a Real
Server based on the specific content or resource requested. A separate TCP session is then created to the
real server. The intermediary VRM passes information between the TCP Sessions.

Client VRM Real Server

IP

TCP

IP

TCP
3-way handshake
Client sends 1st GET

tim
e

IP

TCP

IP

TCP

IP

TCP

IP

TCP

3-way handshake
Passes on 1st client GET

"Best available server" decision

IP

TCP

IP

TCP

IP

TCP

Do Not Duplicate 55 Research Report 99001_v3.0

Advantages of TCP Gateways
• A completely general solution. Could be used as the foundation for an application gateway or for any

other mechanism where observing or modifying application data is required, such as rate shaping and
application-level traffic monitoring

Disadvantages of TCP Gateways
• Traffic must pass through the VRM scheduler in both directions

• Cost/Performance. There is a lot of TCP overhead associated with this approach. Each packet must
be pass through two TCP processes within the VRM

Because of the overhead, few VRM products we are aware of today use TCP Gateway.

8.2.3 TCP Connection Hop (TCPCH)
TCP Connection Hop is a proprietary mechanism used by only one vendor today. TCP Connection Hop
is a lot like TCP Diddling, but the functions required in the client-to-server path are separated from the
functions required in the server-to-client path. This is accomplished by installing software on each Real
Server to perform the server-to-client functions.

Network

VRM Scheduler
Management IP: 192.168.2.15

Virtual IP: 192.168.2.101

Real Server A
ethernet i/f: 192.168.2.1

Loopback i/f: 192.168.2.101

Real Server B
ethernet i/f: 192.168.2.2

Loopback i/f: 192.168.2.101

Real Server C
ethernet i/f: 192.168.2.3

loopback i/f: 192.168.2.101

Client
Client

Client

Router

TCP
Handshake TCP handshake

Server-to-Client
Traffic

TCP Diddling
performed on

the Real Server

The VRM scheduler completes the TCP connection process for the (as yet unidentified) Real Server as
connection requests arrive from clients. When further information relevant to the active policy arrives
(such as the URL), the Real Server can be chosen based on the specific content or resource requested.
The scheduler then sends a message to that Real Server telling it that it wants to establish a TCP
connection to an identified Virtual Service as a proxy for the client. It uses the same client IP address,
source port numbers and sequence number information as was established by the TCP connection set-up

Do Not Duplicate 56 Research Report 99001_v3.0

process with the client. The Real Server then “takes ownership” of the TCP connection and responds
directly to the client, in a manner that is transparent to the client.

Advantages of TCP Connection Hop
• As with TCP Gateways, more explicit resource, content, or user information (such as cookies) can be

used to influence the decision about which server to direct the request

• As opposed to TCP Gateways and TCP Diddling, the VRM is only involved in traffic flow from the
client to the server, which are generally just ACKs. After the initial connection set-up process, these
packets just require simple encapsulation. All packets from the server-to-the-client bypass the
scheduler completely. This is the only delayed binding mechanism that supports the direct-to-client
feature

• The “hiding” of real server IP addresses is maintained

• Solution can be scaleable because of the partitioning of functions performed between the scheduler
and Real Server

Disadvantages of TCP Connection Hop
• Requires special and proprietary software on each Real Server

• Represents an added load on each Real Server (however this may be more than offset by the reduced
load on the scheduler)

8.2.4 Value Added Features Enabled By Delayed Binding

URL Based Scheduling
Delayed binding allows the VRM system to observe each client's URL request, and compare it against
predefined rules to make a decision about which server to send the request to.

URL-aware schedulers can also potentially support the following two value added features:

• URL Repetition. At least one vendor has suggested that examining the most recently accessed URLs
(files) and sending similar requests back to the same servers will further optimize the load balanced
system. It is argued that the recently accessed URLs/files will still be cached on the web server, and
therefore the content can be more quickly accessed with less load on the web server by sending
requests for the same URL/file to the same server. The advantage gained here is totally dependent
on:

• how much time has passed since the file was last accessed

• how busy the server is that had recently retrieved the file

• whether the VRM latency to provide the feature is smaller than the latency advantage gained
by achieving a cache hit

Do Not Duplicate 57 Research Report 99001_v3.0

• Passive Content Verification with Re-Direction. Many products today parse the content returned
by web servers to examine the Return Codes (the first bytes). This can be used to identify failed
servers, applications, access to databases and file systems, etc. The 400, and 500 level Return Codes
sometimes indicate problems with a particular entity or path in the site, which can be alleviated by re-
sending the original request to another server. The Passive Content Verification with Re-Direction
feature achieves this. When a TCP connection is established to a server, information about the
original request by the client is stored. If the response from the originally chosen server indicates a
problem that may not exist on another server, the initial request is re-sent, but to a different server.
The client is potentially completely transparent to this process, receiving no error messages, requiring
no reloads, etc.

SSL Session ID-Based Binding
When a client and server decide to engage in an encrypted session, they must negotiate various
parameters associated with authenticating the client, how the encryption and compression will be
performed, what the shared key to de-encrypt is, and a few other factors. In SSL 3.0, once that
negotiation is complete, an SSL session ID is agreed to, which is communicated in clear text format,
between the client and server for all interactions related to that session. The session itself may extend
across many, many TCP Connections, with (sometimes) long gaps of time between TCP Connections.

The VRM system should ensure that all TCP Connections related to a particular SSL session are
delivered to the same content server. Delayed binding allows the VRM system to look at the SSL Session
ID information, which is only sent after the TCP handshaking process has been completed.

Cookie-Based Binding
Sites can set cookies on client browsers, for either permanent use or temporary (session) use. The client
browser communicates these cookies with each HTTP GET request. The VRM system must perform
delayed binding in order to be able to view the HTTP GET and therefore, the cookie.

The cookies can be useful to track for either persistence reasons or preferential services reasons. In the
first case, the cookie can be tracked throughout a shopping cart session, with only issue being tracking a
user as they go in and out of an SSL phase. In the second case, a site could authenticate a user via a
password, and then set cookies to identify them as a gold customer, silver customer, or “proletariat.”
Such labeling could be used if the site becomes congested and preferential services policies start to kick
in.

Do Not Duplicate 58 Research Report 99001_v3.0

8.3 Mechanisms Summary

Mechanism Delayed
Binding?

Direct to
Client?

Avoid Loopback i/f
Administration?

Avoid Software
on Real

Servers?

Multiple
Schedulers for
same services?

MAC Address Translation No Yes No Yes Yes

MAC Multicast No Yes No No Yes

Half NAT No No Yes Yes No

Full NAT No No Yes Yes Yes

TCP Diddling Yes No Depends Yes No

TCP Gateway Yes No Yes Yes No

TCP Connection Hop Yes Yes No No Yes

In general, except for the smallest and most stable applications, we recommend choosing products that
have an option for a mechanism that performs delayed binding as well as an option for a
mechanism that performs immediate binding. You’ll sometimes use delayed binding for HTTP and
immediate binding for all other protocols.

Within those categories, it doesn’t matter too much what the exact mechanism is. MAT is required for
some non-server load balancing applications. And MAT is generally adequate for server load balancing.
But if you need to have Real Servers sit behind routers, or if you want to avoid server re-configuration,
Half-NAT is a better choice. We wouldn’t base a product decision based on whether it performs MAT or
Half-NAT; we’d base it on other factors and then use whatever options the product offers.

For Delayed Binding, TCP Connection Hop has some technical allure, allowing direct-to-client traffic
flows. But it requires deployment of software on the Real Servers (which doesn’t bother us but does
others). More importantly to us is that it is a proprietary mechanism supported by only one vendor. So
choosing that mechanism implies choosing a specific vendor, which is not something we can generally
endorse. If the vendor meets your requirements for other reasons, by all means take advantage of the
mechanism. If not, choose a vendor who supports the right set of features for your application and use
their TCP Diddling mechanism. In most cases, that also works well.

Do Not Duplicate 59 Research Report 99001_v3.0

99 MMuullttii--SSiittee LLooaadd BBaallaanncciinngg
Multi-site load balancing is the logical extension of local load balancing: applications and content are
distributed to multiple geographically dispersed sites. It allows you to make the application/content being
served that much more available and scaleable by avoiding the potential major outage or congestion that a
single site may experience. It has the potential additional benefit of placing the content closer to your
major user populations, which can improve user experience and lower the cost of transporting the content
by conserving WAN bandwidth.

Consider, for example, an online media-store such as Amazon.com. Clearly, their site is popular and they
have customers scattered across the world that they want to provide the best browse-and-purchase
experience that they can. By performing web server log analysis, they can easily track from where the
majority of their customers access their site.

Imagine they determine that 30% of their customers are located in Europe. By performing further
analysis, they determine that many network retransmissions occur from their servers when serving users
in Europe, and they have a higher than normal “stop button hit rate” when serving requests from Europe.
From this straightforward analysis, one can easily come to the conclusion that European users are
suffering from the network constraints between North America and Europe, their user experience may be
poor and this may affect their purchasing behavior.

This data may lead them to establish a European mirror site of their North American site(s). A simple
deployment model might involve them only placing relatively static content at the site, such that the site
handles “catalog browsing” but the primary North American site handles purchasing. This site would
also be used as a backup in the event that any other mirror site became unavailable due to failure or
capacity limitations.

The Multi-Site Solution Model
A multi-site solution does involve a more complex topology and setup, but it can really be described
simply.
• A multi-site solution is a group of individual sites that generally have some number of servers

deployed in a full network, with the same content and applications available to them (let’s call them
content sites)

• There are one or more multi-site capable VRM schedulers (MS-VRM) that are aware of each content
site. These may be deployed at one or more of the content sites, or they may be deployed at a central
location

• User requests arrive at one of the MS-VRM schedulers, are evaluated by the configured multi-site
policy, and are then dispatched to one of the content sites for application/content serving. User
requests may arrive at the MS-VRM as a DNS Request, which comes from the user’s local DNS
server or they may arrive as TCP/UDP requests

• Local load balancing solution is really an option at each site; it’s recommended but not required. The
content site can be just a network and one server

• Similarly to local VRM solutions, multi-site VRM solutions use Feedback to determine general site,
server and application availability; they use Policies to determine how to distribute users and requests
among the sites and servers ; they use Mechanisms as the method of dispatching users and requests
to multiple sites

Do Not Duplicate 60 Research Report 99001_v3.0

See the World:
The Life of an HTTP Session during Multi-site Load Balancing
Remember our lowly HTTP session and its life experiences? First, it experienced direct server
communication; then it was told where to go by a load balancer. Now it gets to see the world… the
destinations your lowly HTTP request could see! Paris, Tokyo, Madrid, Detroit…

1. The user loads their browser application, and selects a site to communicate with – www.acuitive.com.
The browser executes a DNS lookup for the fully qualified hostname.

2. This DNS lookup request is directed at the user’s local DNS server. If this local DNS server has an
IP address in cache corresponding to the hostname, it will respond directly back to the user’s browser.
If it does not, it continues the DNS resolution process. (A more descriptive treatment of the DNS
process can be found in a later section).

3. This is the first opportunity for an MS-VRM scheduler to get involved. Some MS-VRM units act as
DNS Servers, and as such, they serve as the Authoritative Name Server for the hosts-domains for
which they are configured. The DNS request arrives at the MS-VRM unit, and it uses one of the
Multi-site VRM Policies discussed in a later section to determine which site to dispatch the user to. It
dispatches the user to the chosen site by answering the DNS request with an IP address that
corresponds to a server (real or virtual) at that site.

4. The DNS response goes back to the users local DNS server as one or more IP addresses, that in turn
forwards them to the user’s system.

5. Once the user’s system has an IP address to connect to, it begins the TCP connection process. This is
the second point at which an MS-VRM system may get involved. The MS-VRM system may be the
target of the TCP connection request, and may choose to dispatch the user to the site deemed best
using a Multi-Site Policy.

6. If the TCP request arrives at a local VRM, it is handled with the local VRM policies and mechanisms
discussed in the previous section. Thus, the entire VRM system may be built from MS-VRM systems
dispatching users to sites, and local VRM systems processing user requests at each site.

7. If an MS-VRM system (or a local VRM system with certain features) receives a request it cannot
fulfill locally, the user’s request may be redirected to the next best site/server using one of several
Multi-Site Mechanisms, discussed in the following sections.

Do Not Duplicate 61 Research Report 99001_v3.0

9.1 Multi-Site Feedback
At a minimum, multi-site VRM products need to know the status and health of the content sites to which
they may dispatch users, to ensure user requests do not go unfulfilled. They must also support some form
of load distribution capability, and they may use feedback systems to learn the available capacity from
each content site. Most multi-site feedback implementations today involve extending local feedback
capabilities, and many implement a proprietary protocol to communicate status and performance
information between the content sites and the MS-VRM schedulers.

9.1.1 Content Site Testing: Extensions to Local Feedback
The techniques used for local server health awareness are also attractive as multi-site health awareness
solutions.

It is possible to extend most of the local feedback mechanisms (Device ICMP PING, TCP Connection
Verification, Server Resident Monitoring, etc.) to serve as feedback mechanisms in a multi-site VRM
system. However, we tend to only recommend Active Content Verification (ACV) and Dynamic
Application Verification (DAV). ACV/DAV can be used to test content sites and their respective servers,
to ensure:
• that the site’s network is healthy: it can pass requests and responses

• that, if there is one present, the local load balancing solution is working: it can accept and locally
handoff application requests

• that at least one server is functional: ACV/DAV requests are fulfilled by an application/content server

This technique does not require any real modifications to the ACV method, as long as the MS-VRM
scheduler is capable of sending an ACV request anywhere. It simply requires configuring some different
parameters than you would for local load balancing. A local VRM scheduler is normally configured to
recognize its locally attached servers, which it then performs ACV/DAV on to verify health. Configuring
a MS-VRM scheduler usually requires configuring one or more “remote servers,” which might be V_IPs
running in each site’s own VRM scheduler, or they might simply be geographically remote servers
installed on a network.

Issues
• The testing from the MS-VRM scheduler to a content site requires the application/content server to be

the responding entity from the site. Even though the application requests may be directed at a local
VRM scheduler at the content site, the request should be dispatched to a local server for request
fulfillment. In other words, the MS-VRM scheduler must not simply check the local VRM scheduler,
but the servers/applications as well. That is why ACV and DAV are good remote testing options

• If the content site has a local VRM scheduler, using ACV/DAV does not imply that all servers at a
content site are tested during each health check interval. To the receiving VRM scheduler, the ACV
request should look like any other client request, and it will dispatch it to the best local server
according to its configured policies. During that health check interval, only a single server is tested

• Health checking parameters from a MS-VRM scheduler for content site testing will have to be more
forgiving than they would be for local server testing. The delays expected when testing a site in
Australia from an MS-VRM scheduler in Montana, USA will be significant; thus, you would not
want to set your health check period to an interval of two seconds. Any other tunable parameters
such as timeouts and retries should also be set accordingly, and may take some experimentation

Do Not Duplicate 62 Research Report 99001_v3.0

• We don’t consider the other methods of feedback (ICMP, TCO, TCV) to be viable in a multi-site
solution. If there is no ACV/DAV capability for a certain application in a multi-site environment, we
suggest using a reliable external probe monitoring system that can signal any/all of the MS-VRM
(and potentially local VRM) units of an application or server failure

• TCV and DIP are not useful because they simply don’t provide enough visibility into server
application availability. While they might indicate basic site and server status, we feel that any multi-
site VRM system is a large investment towards reliability, and you do not want to compromise that
reliability by using sub-par feedback methods

• Server-based resource monitoring may be a useful extension in this environment to have better
awareness of server application health. However, relying on the server-to-VRM protocols in a multi-
site environment may be problematic. Only use them as additions to ACV or DAV, and only if the
server-to-VRM protocol will be robust

9.1.2 Inter-VRM Protocol (IVP)
Most multi-site VRM vendors that support both multi-site and local VRM products has a proprietary
VRM-to-VRM protocol (IVP) that passes between the VRM schedulers at content sites and the MS-VRM
schedulers, and/or between MS-VRM schedulers. These protocols can be used to exchange server health,
client proximity, site load and performance information, can also be used as keep-alives, and are very
vendor specific. In general, a VRM scheduler may use IVP to provide the following information:
• Server Health: The local VRM scheduler informs the MS-VRM scheduler how well its servers are

performing (push protocol). Another variation is for the MS-VRM scheduler to ask all the local
VRM schedulers how well their local servers are doing (pull protocol from all sites)

• Client Proximity/Performance Info Exchange: A client is trying to connect to a content site
through an MS-VRM scheduler. The MS-VRM scheduler asks all the local VRMs to perform a test
back to the client to see how far they are away from each site (site proximity request). Once all sites
have completed the test, the schedulers at each site inform the polling MS-VRM of the client’s
proximity (proximity responses). See the Policy section below for additional information

• Site Load and Performance: Each local VRM scheduler has awareness of its own site load and
performance (users, connections, other 2nd order metrics) that can be communicated to the MS-VRM
scheduler. This information is then used to make user request distribution decisions. At least one
vendor has used ACV in combination with response time measurement information that is published
to all sites from all sites. See the Policies section below for further information

• Keep-Alives: IVP can also be used as keep-alives, where if a local VRM fails to push any new
information out or fails to respond to pull requests, the site is considered unhealthy, and potentially
ineligible to receive user requests. This keep-alive technique should only enhance, but not replace the
ACV/DAV multi-site extensions to monitor site/server health

Issues
• As with the other health check methods, IVP protocol timers should be set accordingly, taking into

account the fact that sites are separated by potentially slow and/or latent links

• These protocols can behave very much like routing protocols on a small scale, where the availability
and performance metric information is exchanged in either regular or triggered fashion. However,
each vendor’s implementation is different, so there should be no expectation of interoperability, and
you should make sure you examine each vendor’s capabilities

Do Not Duplicate 63 Research Report 99001_v3.0

• Make sure the vendor has awareness of all local VRM schedulers in each content site. They should
communicate information to/from any standby units that are installed at the site, not just the active
units

• Make sure any multi-site vendor you are considering is not using a clear-text protocol for their IVP,
since these protocols may flow across the Internet and may result in the alteration of behavior of a
critical resource

Value-Added Options
Its is possible to exchange content availability information using IVP, where each MS-VRM scheduler
not only knows the status of each server, but also the status of the content on each server as well. Used in
combination with URL Parsing and HTTP-Redirect, this allows them to more accurately dispatch user
requests to the best site/server. Each MS-VRM scheduler knows which other units have access to the
content being requested, and knows the performance and availability of those sites; therefore the user can
be directed at the best content site.

9.2 Multi-Site Oriented Policies
A local load balancing VRM product makes a decision on what server to send the user request to, using
local policies. A multi-site load balancing VRM product makes decisions on what site to send the user to,
based on one or more of the multi-site policies described in this section.

The usefulness behind the policies available is in the eye of the beholder. The content publisher is going
to mostly be interested in providing the best user experience, so in addition to the reliability factor, they
may want to determine the best site to send their users to based on responsiveness metrics. The service
provider may be interested in reducing their WAN backbone by preventing requests from traveling across
the country or the world “unnecessarily.”

9.2.1 Static Client-Site Preferences (SCP)

Source Address Preference
The easiest multi-site policy to explain involves the use of static tables that define client subnet-to-site
preferences.

Examine the following example table:
Source
Subnet

Subnet
Mask

Preferred Site #1 Preferred Site #2 Preferred Site #3

193.128.0.0 255.255.0.0 vrm-rtp.acuitive.com vrm-sanjose.acuitive.com vrm-paris.acuitive.com
204.165.121.0 255.255.255.0 vrm-boston.acuitive.com vrm-rtp.acuitive.com vrm-paris.acuitive.com
172.176.0.0 255.255.252.0 vrm-rtp.acuitive.com vrm-boston.acuitive.com vrm-sanjose.acuitive.com
etc… … … … …

This table shows source subnets of some size (as defined by the subnet mask) and the static site
preferences of the administrator. Each client within the source subnets should prefer to go to the site
listed in Site #1, then prefer Site #2, then prefer site #3.

Do Not Duplicate 64 Research Report 99001_v3.0

Thus, it is very easy to describe how a given client will be directed to a site to get access to applications
and content. A client request arrives at one of the multi-site VRM schedulers, the SCP table within that
unit is consulted for site preference information, and the client’s request is dispatched to the preferred site.

Without any automation of the generation of these tables, the potential scale of table sizes and
administrative complexity may make this implementation difficult to use. In the above table, there are at
least four sites that distribute applications and content for Acuitive: San Jose, Boston, RTP and Paris.
Acuitive, having a wildly popular website, has the potential of receiving requests from anywhere in the
entire Internet, which means there are millions of possible source subnets that might access our content.
Well, administering millions of static client-site preference entries by hand is not very feasible, so let’s
explore the alternatives.

• You could assume that the table will just contain the exceptions to a generalized set of site rules. But,
it would be hard to come up with a set of general rules to calculate client-site preferences, so that
won’t work

• You could use longest prefix matching algorithms, where you start the table with defined networks of
long masks (255.255.255.0) and end the table with short masks (255.0.0.0). Any overlap between the
long mask entries and the short mask entries will be evaluated with the long mask entries “winning
the overlap tie.” You’ll make your life easier by making further assumptions that any class A network
will be summarized with only a few entries. The drawback here is that you’re still administering lots
of entries, and organizations that have class A addresses (like IBM and General Electric) will have no
site choice granularity

• You can write an application or script to use the content site routers’ BGP tables to automatically
compute a list of static entries. The script would retrieve the border routers BGP tables on a periodic
basis, and compute the best-site static table entries based upon the available path-vector information
to other AS’s, and the networks contained in them. This would allow you to automatically compute
how far each content site is from every potential source network by AS-hop count. This method
should be very reasonable to implement, assuming you have access to the BGP tables in the routers at
each content site, and you write the application to compute AS hop distances and make comparisons
between each of the content sites

• You can be more analytical about analyzing your clients’ properties, like what their source networks
are and what their performance experience is, and then use additional automated methods to compute
the static client-site preference tables. For instance, and application that analyzes your web server
logs could produce the topN list of most popular source networks, which you could then use to create
the static source preferences

Source Domain Lookup
Another method that is similar to Source Address Preferences is called Source Domain Lookup. This
involves the creation of static tables that reflects site preference based on the Source DNS domain the
request is originating from. Thus, we could create a static table that looks like:

Source Domain Preferred Site #1 Preferred Site #2 Preferred Site #3
.ibm.net vrm-rtp.acuitive.com vrm-sanjose.acuitive.com vrm-paris.acuitive.com
.mit.edu vrm-boston.acuitive.com vrm-rtp.acuitive.com vrm-paris.acuitive.com
.fr vrm-paris.acuitive.com vrm-boston.acuitive.com vrm-sanjose.acuitive.com
etc… … … …

Do Not Duplicate 65 Research Report 99001_v3.0

When a user request arrives at the MS-VRM scheduler, it performs a Reverse DNS lookup on the source
address of the request. The MS-VRM unit scans the Source Domain Preference table and finds the most
exact entry that matches the RDNS response. The MS-VRM scheduler then dispatches the user to the site
listed within the preference entry.

This policy allows an administrator to quickly setup site preferences that are human-understandable, and
can be as short or as long as the VRM administrator cares. If the administrator wants simple policies that
points users within specific countries to the appropriate site, then they have about 200 entries to create.
To further optimize the access within North America, they could identify the top 10, top 100, or top 1000
sources of requests from their webserver logs and configure them as well.

Value Added Options
Using some of the second order metrics described later, such as Packet Retransmission monitoring or Site
Performance Testing makes SCP a fairly good methodology.

Advantages of SCP
• Can (potentially) keep traffic localized into broad geographical regions or predictable topologies

• Prevents system over-reaction and instability

Disadvantages of SCP
• Doesn’t react automatically to changes in network and site performance

• Does not provide granular balancing of load between sites

• Requires manual administration (or partially automated administration) of the SCP preferences

9.2.2 L3 Topological Proximity Testing (TPT)
This policy allows clients to be dispatched to sites based on the topological closeness to the
service/application resource. Client requests arrive at one of the multi-site VRM schedulers, which
evaluates its knowledge of this client’s Layer 3 proximity to one of the content sites. If it has prior
knowledge of the best content site to dispatch this client to, it quickly reverts to one of the multi-site
dispatch mechanisms described later. If it does not have knowledge of the client’s proximity to one if the
content sites, it must use the TPT method to determine the best site to dispatch the client to.

This process requires the VRM schedulers at each site to be capable of performing TPT functions, which
means they are either multi-site capable themselves, or are local VRM products with multi-site testing
extensions.

Do Not Duplicate 66 Research Report 99001_v3.0

How TPT Works

1. An unknown client’s request arrives at an MS-VRM scheduler (LDNS or Client TCP).
2. The MS-VRM scheduler tells some/all of the VRM schedulers at the content sites (via IVP) to

perform a proximity test back to the client. As an Added Value option, the MS-VRM scheduler may
dispatch the client to a “default site” to avoid long testing latencies (Initial Client Pass-Through).

3. Each content site VRM scheduler tests the proximity of the client, usually via PING, Traceroute or a
TCP connection. Once a response to the test comes back, the proximity of the client is determined by
inspecting the IP TTL remaining, which (sort of) represents router hop count to the client.

4. Once a given VRM scheduler determines the proximity of the client, it informs the MS-VRM
scheduler via IVP. Once the MS-VRM scheduler that received the client’s request hears back from
the content site VRMs, it can compare all of the returned TTL values and should now know which
site is closest to the client. This MS-VRM scheduler will inform any other MS-VRM scheduler that
will receive multi-site client requests of the client’s proximity information, so that they may also
make appropriate multi-site decisions based upon this learned information.

5. If the MS-VRM did not use Initial Client Pass-Through, it will now respond back to the client request
to inform them of the best site.

6. Subsequent requests from this client (and in practical implementation terms, any client from the same
subnet) will be evaluated with this client network distance information, and may be dispatched to the
closest site, assuming the site has available resources.

MS-VRM Site

Site 1 Site 4

Site 2

Clients LDNS

Site 3

Client System

Client
Network

1

2

2

2

2

4

4

4
3

3

3

3

5

6

Client
Location

State

Do Not Duplicate 67 Research Report 99001_v3.0

Advantages of TPT
• TPT is simple and can be applied regardless of how many networks, types of routers, etc. are

associated with all the various possible paths from a client to a VRM site
• It can provide data that may directly correlate to the topological closeness of clients and the sites they

may access for content and applications. This is especially true if the clients and the sites/servers are
all controlled by one organization, or if the number of paths between a limited number of clients and
the sites is well understood

Disadvantages of TPT
• Each MS-VRM scheduler must maintain a certain amount of state information on each client source,

to be able to make an intelligent multi-site decision the next time the opportunity comes up. The state
information required includes source network plus site proximity. For busy application/content sites
with lots of source clients, this may require significant amounts of memory to be dedicated to just
remembering this state information. Luckily, memory is cheap, but make sure that your multi-site
VRM vendor can support maintaining proximity tables that could occupy 16MB or more of RAM, in
addition to all the other features you’d like

• For every unknown client (subnet), there will be traffic generated from at least (1) test per content site
and two IVP exchanges per site. Assume two packets per event, per site – that’s six packets (plus
protocol overhead for either TCP or UDP) per new client, per site. For a busy site, assume 750 new
clients / client lookups per minute x 6 packets = 4500 packets per minute. Hmmm…

• Testing using PING, Traceroute and/or TCP connections, TPT may or may not make it through to the
client, because of security and traffic policies all along the network path from the VRM to the client.
Vendors have assured us that they have worked out various techniques to avoid the pitfalls of trying
to test back to a client that is behind a firewall, but we remain skeptical. Imagine if there were
multiple paths to the client, and one VRM system’s TPT made it through, and one did not. Which
site is better? How can you be sure?

• Using Layer-3 hop count (really TTL) as a metric does not take into account Layer-2 topologies that
might negatively (or positively) affect the outcome of the tests. Frame relay, ATM, application
proxies and firewalls may skew the TTL values returned by the VRM schedulers, or render them
useless. Is it really better to take a path that has 36 Frame Relay hops and two router hops than to
take one with 4 router hops? That’s the decision that TRT would make

• By the time the VRM schedulers test back to the clients, the information might be old news. To
combat this and the inaccuracy possibilities mentioned above, periodic re-tests of client source
networks and statistical calculations on the results will be required to ensure the data remains at least
somewhat useful. We’re not sure if any vendor implements this re-test technique today, so make sure
you ask

• As we’ll discuss later, the VRM scheduler may actually be testing the client’s DNS server instead of
the client. This is often not an accurate representation of how far the real client is away from the
application/content sites. Also discussed later is the issue of DNS caching in the client’s computer as
well as their local DNS server, and how it may negatively impact multi-site load balancing and failure
recovery behavior

We don’t believe that TPT is very useful in the real world.

Do Not Duplicate 68 Research Report 99001_v3.0

9.2.3 Client Path Performance (CPP)
This policy allows clients to be dispatched to sites based on content site-to-client path performance.

The method involves much of the same algorithms and evaluations as TPT, but uses measured client
response time or path packet drop rate as the metric rather than TTL or hop count values. Each
(capable) local VRM scheduler measures the response time (and/or packet drop rate) from each site to the
requesting client by sending a PING or TCP connections request and timing the response. The response
time (or packet loss rate) information is then passed off to the MS-VRM scheduler, which analyzes it to
see which site experiences the most responsive communication.

Advantages of CPP
• It can provide data that may directly correlate to the (basic) performance of clients for the sites they

can access. This is especially true if the clients and the sites/servers are all controlled by one
organization, or if the number of paths between a limited number of clients and the sites is well
understood

• If your goal is to maximize user experience, then CRT is one of the choices to help you optimize for
that goal

• In theory, CPP can allow you to avoid points of congestion in the Internet or at content sites

 Disadvantages of CPP
• Measuring client response time or packet loss rate across the Internet may produce results that swing

by as much as a factor of 10 from one period of time to the next. This may result in improper
preference of one site over another, simply because of a period of network congestion encountered on
the ‘Net. This issue makes CPP just as inaccurate as hop count testing

• Same packet exchange problem as TPT
• This method requires the same amount of state information on each client source, just as TPT does
• This has all the pitfalls associated with testing using PING, Traceroute and/or TCP connections
• Periodic re-tests of client source networks and statistical calculations on the results are required, the

same as TPT. In the case of packet loss rate, a significant amount of traffic may need to be
introduced into the network obtain recent, relevant, and statistically significant information

• The same DNS issue exists with this method as with TPT

We don’t believe that CPP should be used as a primary Policy. However, we do believe that CPP can
be useful as a secondary/threshold-oriented policy. E.g. “Always send users form geographical area Z to
content site 6, unless the delay for the user to get to that site exceeds 4 seconds, in which case send them
to the site deemed to have the least delay path.” As a secondary policy, we prefer using delays over
packet loss rates.

Do Not Duplicate 69 Research Report 99001_v3.0

9.2.4 Routed Path Analysis (RPA)
This methodology is slightly different than the above two methods: it does not require much active
testing, but instead relies on the routing topology tables that each Internet BGP-speaking border router
and/or each interior router maintains to route traffic across the Internet and interior networks.

BGP deals with Autonomous Systems, which are collections of networks as defined by the network
administrator. When a BGP border router is setup, it informs it peer routers about all of the networks that
can be accessed through it, and learns what networks it can access through its peers. This information is
represented in a routing table that is a summary of all the AS’s the router can get to, the routed path to get
there and the networks along the path.

These routing tables contain what are called path vectors that show the AS-hop-by-hop path between the
border router and any destination AS that is out some particular interface. Thus, the path vectors can be
examined and you can determine how many AS’s must be crossed, or hopped through, to get to any
endpoint AS. This information can be used to calculate the rough topological distance from any multi-site
VRM data center, and any client source AS.

Example: There are four multi-site VRM data centers in the world for acuitive.com, each with Internet
BGP-speaking border routers. Assume that these border routers can each get to every destination in the
Internet. The BGP tables within the routers are periodically downloaded and path vector analysis is
performed on them for every destination AS. This analysis will determine which VRM data centers are
closest to each potential client AS in the world.

BG
P Path Vector

info via IVP

B
G

P

P
a

t
h

V

e
c

t
o

r
in

fo

v
ia

IV

P

 B
G

P
Pa

th
 V

ec
to

r

in
fo

 v
ia

 IV
P

 B
GP Path Vector

info via IVP

Site 1 Site 4

Site 2

AS

AS

AS

AS

ASAS

AS

AS

Clients LDNS

Site 3

AS

AS

AS

Target AS
#5024

AS

AS

MS-VRM Site

Do Not Duplicate 70 Research Report 99001_v3.0

For instance, if a particular client AS is #5024, and is reachable from each VRM data center, we can use
AS path vector analysis determine the best data center to host clients coming from AS#5024:

Data Center #1 à AS#4092 à AS#9023 à AS#8921 à AS#11321 à AS#5024

Data Center #2 à AS#2214 à AS#112 à AS#4321 à AS#5024

Data Center #3 à AS#349 à AS#123 à AS#5024

Data Center #4 à AS#4092 à AS#1013 à AS#5932 à AS#11321 à AS#5024

Based on analyzing the distance from each data center to AS#5024, we know that data center #3 is
topologically closest, according to AS hop counts.

Value Added Option
Interior Route Path Cost. If there are two or more target content sites within the Autonomous System, it
might be useful to take into account the path cost between the border of the AS and the candidate content
sites. This requires IVP enabled border routers at the content AS, to determine which interior content site
is closer to the ingress point of the requests.

Advantages of RPA
This method is better in certain respects than TPT or CPP testing, because it can be done on a scheduled,
periodic basis and does not have to be performed in “real time.” Thus, the site preferences for any
particular client community (as contained in a given AS) can be pre-determined. Also, this method
allows for an external application to perform the analysis, which generates output that could be loaded
onto multi-site VRM schedulers that support static client-site preference capabilities.

Disadvantages of RPA
In certain respects, this method is worse than the TPT or CRT methods, because it represents a gross
approximation of where the client is in relation to the available data centers. It does not take into account
how each AS is built and doesn’t account for the speed at which traffic will transit into and through each
AS. The path to AS#5024 may be shortest from Data Center #3 from an Internet perspective, but it may
have to traverse twice as many physical router hops or cross slower links, as compared to anyone of the
other paths.

Also, this method implies access to routing information from routers at each of the content sites and
potentially some routers close to the BGP borders. This may require running special versions of routing
code, or running yet another device near the content site to gather routing topology information.

This method may introduce a significant amount of IVP traffic, if this method is used in real time as user
requests arrive at a MS-VRM scheduler.

We don’t tend to use or recommend RPA.

9.2.5 Site Performance Measurement (SPM)
One vendor has extended the use of ACV to perform application response time checking between content
sites, which are considered to be peers. When an MS-VRM scheduler at a site performs ACV to another
site, it measures the total time elapsed from the beginning of the ACV (TCP SYN) until the final frame of
the session is passed (FIN ACK). Since the testing involves ACV from one site to another, most of the

Do Not Duplicate 71 Research Report 99001_v3.0

major components at each site will be tested for availability and throughput (routers, local networks, local
load balancers, servers, etc).

Performance data from all tested content sites is collected by the testing MS-VRM scheduler, and is then
distributed among all sites using an IVP. Every site conducts these ACV tests, and communicates the
results via an IVP. All of this information is aggregated by each site, which results in each site computing
the same [N x (N-1)] matrix of information for N sites. Thus, if there are six content sites within the
multi-site system, each one will test its five peer content sites, resulting in 30 individual response time
tests.

An example response time matrix is shown below:

Site Performing Test
(measured in ms)

A B C D E F

Site Under Test
A 3155 107 343 113 641
B 292 1314 378 813 187
C 1364 207 3869 995 3883
D 197 2490 1997 1190 3390
E 3702 1106 1743 2344 468
F 1759 1409 683 2235 419

Using this response time matrix and statistical calculations, client request distribution decisions can be
influenced, with the intent to send client requests to the “best performing” sites. Looking across the rows
at how well each site responded to tests, sites A, B and D are performing well, compared to site E.
Therefore, [A B D] would be preferred over [E] when user requests are answered.

Issues
• The number of sites that are involved in the site performance testing matrix will dramatically affect

the statistical significance of the computation. If there are only two sites, there will only be one piece
of response time data available per site

• If there are a large number of sites, the amount of testing goes up dramatically

• The path between the sites may be different than the path taken by clients to get to the sites, throwing
into question the value of the data in those situations. An example of this would be a back-channel
network between the sites that is different than the Internet connections that clients will take to access
the site

• Depending on the number and location of the sites, this may be useful only as a second-order or
additional metric. For instance, if there are 4 data centers in the same geographic region (i.e. state),
then this method of client-site dispatch will work fine. For many geographically dispersed sites, if
this is the only methodology for determining sites to dispatch clients to and there is no correlation
between clients and location, this method could easily lead clients to sites that are not the best for
them

Similar to most other methods that attempt to capture a snapshot of performance across the network, we
would not use SPM as our primary multi-site policy. But it is a good choice for a secondary/threshold
policy as it requires far less testing and state information storage than CPP, yet still provides an indication
of both network and site load.

Do Not Duplicate 72 Research Report 99001_v3.0

9.2.6 Packet Retransmission (PKTR)
Another interesting second-order metric is the use of packet retransmission data to better fine-tune the site
choice for clients. Depending on what characteristic you are trying to optimize (reduction of transmission
cost, better client experience, etc), the use of comparative retransmission data from every peer site for
each set of clients might be important.

For instance, assume you have a data center in Europe and a data center in the United States. Which site
do you send your Australian clients to? Using the topologically closest or the response time method, you
might find that the U.S. site is “best” for the Australian clients. But what happens if the packet loss and
retransmission rate is significantly higher when comparing Australia-to-US as opposed to Australia-to-
Europe? You’d probably consider re-tuning the system to prefer Europe for Australian clients if it made
sense within your client experience goals.

PKTR may be more efficient than CPP with packet-loss measurement in taking packet loss into account
for “best site” decisions -- less additional and spurious traffic needs to be introduced into the WAN.
Instead, you are looking at the re-transmissions of live traffic to glean the needed information.

Accomplishing this really requires several steps:
• Each content site VRM scheduler would have to sample TCP data transfer between each site and their

clients, and record data retransmissions over time in a statistically relevant manner

• Comparison data will have to be captured with each content site communicating with each client
constituency. In other words, each client has to be given a chance at communicating with each
content site to be able to measure the packet retransmission rate for that site. How else are you going
to decide that Australian clients really need to be sent to Europe as opposed to the U.S. You have to
have data comparing retransmission rates from the U.S. to Australia versus Europe to Australia

• Data will have to be compared for each of the content sites, and normalized against the other policy
metrics. While retransmission rates may be interesting, it will do no good if clients are directed at a
site that is halfway around the world, but has just a slightly better retransmission rate

If we were to use PKTR, we would use it as a secondary/threshold policy.

9.2.7 Let the User Decide….
One multi-site policy we haven’t mentioned doesn’t involve any VRM technology. It simply involves
letting the user choose the site they’d like to connect to. Assuming you are distributing website content or
web-based applications among multiple sites, the home page could display a list of sites available for the
user to connect to. This will allow the user to choose what will probably turn out to be the best site for
them. In the background, multi-site VRM systems can ensure availability of the content and applications,
so that if the site they pick becomes unavailable, they will be directed at another available site. The VRM
system can also add value by making sure the client stays persistently connected to a site in order to
complete a transaction, even if the client accidentally tries to connect to a different site in mid-stream.

9.2.8 Summary
In choosing a Multi-Site Policy, it is very easy to get caught up in an attempt to perform fine-grain load
balancing and forget that all the Multi-Site approaches available today are fundamentally flawed and
cannot achieve good stable load balancing.

Do Not Duplicate 73 Research Report 99001_v3.0

Instead, look at Multi-Site VRM as a way to help ensure greater system availability, and to put content
closer to users spread across widely dispersed geographical areas to reduce response times.

The majority of the content accessed in the world today exists in the United States. Most multi-site
implementations will have two content sites; one near the U.S. east coast and one near the U.S. west
coast. Sometimes there will be a content site anywhere in the U.S., and the other one will be either on the
east or west coast.

Because of these facts, we recommend a multi-site implementation that uses Static Client-Site Binding,
using Source Domain Lookup for users that are outside the U.S. and Source Address Preference for users
within the U.S. The Source Domain Lookup tables should be administered by country (i.e. France = .fr,
United Kingdom = .uk, etc). The automated BGP table analysis process mentioned within this section
should be used to administer the Source Address Preferences.

The reason we recommend static configuration is simplicity, and because it achieves the primary goals of
Multi-Site VRM. There’s no need to be too dynamic about client-site policies, because it generally does
not lead to any more optimization. Getting too serious about any one of these methods is like trying to
optimize the last 20% of the problem with 80% of the effort. As secondary/threshold rules, to help ensure
the user response/performance experience, you can pick some form of dynamic testing like Client Path
Performance, Site Performance Measurement or Packet Retransmission Rate.

9.3 Multi-Site Oriented Mechanisms

Multi-site distribution of clients/client requests works best in a two-tier design model. Clients are
dispatched by an MS-VRM to the “best” site for them to access applications and content, for a given host
like www.acuitive.com. Then client requests are distributed among the sites local resources using a local
load balancing VRM product. Distributing clients to sites is straightforward in the most general sense,
but complicated in how the entire system actually behaves.

The distribution of clients to sites takes place through really only one of three major Mechanism types:
through the use of DNS Servers, through the use of Application Request Forwarding, and through the use
of HTTP Redirect.

9.3.1 DNS Services Primer
Computer systems that use the Internet Protocol communicate with each other using IP addresses, which
are 32 bit numbers. Humans don’t read or remember IP addresses very well (except for the default
gateway address at our last job that we PINGed to see if the network was working). The name
www.acuitive.com is easier to remember than 192.168.211.10, and it has a certain structured logic too.
Thus, Domain Name Services (DNS) was invented to allow humans to represent host systems that have
IP addresses with aliases that are readable and memorable.

Here’s how it works:
1. When you type in a hostname into your browser as a URL, like www.acuitive.com, the browser

executes a DNS resolve request to help your computer learn the IP address of the end-system you are
trying to communicate with.

Do Not Duplicate 74 Research Report 99001_v3.0

2. The request leaves your local computer via UDP, and arrives at your local DNS (LDNS) server,
which is typically the DNS server that has been statically configured in your IP stack’s
configuration.4

3. The LDNS examines its configured DNS tables and hostname cache for the hostname that’s
contained in the request. If it has an entry for the hostname, it will return the corresponding IP
address to your system.

4. If the LDNS does not have an entry matching the hostname in the request, it forwards the request to
the next server it knows to ask for the hostname. Assuming it doesn’t know what server owns
acuitive.com, it asks the Internet DNS root server that owns the “.com” domain.

5. The root server receives the request, and will respond back to the LDNS with the address of the server
(called the NS or Name Server) that owns acuitive.com. The LDNS will now poll the NS address for
www.acuitive.com.

6. This server happens to be the Authoritative Server (AS) for www.acuitive.com. The AS will respond
back with one or more IP addresses to the LDNS, called A-records.

7. The LDNS sends the returned A-record(s) to the requesting system, and then caches the hostname/IP
address information for the next user to make a request, so that it may answer quickly.

8. Notice that the root server and Acuitive’s DNS server both quickly get out of the way of DNS lookup
requests. The LDNS is largely responsible for the polling of servers and the reception of responses.
It asks the first server it knows about (the root server), and receives a message of “I don’t have it, but
[this server] might.” This process continues until the LDNS server no longer has any other server to
ask, or it receives a correct response, or it times out.

Because DNS is used to resolve a client request to an IP address, and because it is universally used, it has
been extended to dynamically determine what IP address it will respond with when posed with a resolve
request. This has proven as a very useful technique for distributing clients to sites within multi-site load
balancing systems.

9.3.2 Round Robin DNS
Many people have used Round-Robin DNS (RR/DNS) based techniques to create an early and primitive
form of load balancing. To implement this capability, a table of IP addresses are supplied in the DNS
look-up table for a given domain name. When requests arrive at the DNS to resolve a domain name to an
IP address, the various IP addresses are returned in a circular, round-robin fashion. This function is
available in all DNS servers today.

RR/DNS is primitive because there is no feedback between the servers associated with the IP addresses in
the table and the DNS server itself. If a server is overloaded or completely failed, the DNS will happily
continue to direct traffic to it.

RR/DNS alone is only a good choice for small unsophisticated environments. However, RR/DNS
combined with VRM local load balancing is a viable approach that often merits consideration. In other
words, if the IP addresses in the DNS look-up table are virtual addresses (discussed in the next section),
rather than actual physical server addresses, then RR/DNS as a mechanism to spread traffic across
different VRMs (often at different sites) can be a good approach.

Thus, it is possible to setup a multi-site VRM solution where your DNS server issues IP addresses (which
are representative of V_IPs) to clients, sending them “randomly” to the distributed data centers you have

4 Its possible to automatically configure DNS information in end systems through the use of DHCP, but DHCP has not gained widespread
acceptance, regardless of how much we like it.

Do Not Duplicate 75 Research Report 99001_v3.0

established for your applications. Application requests are then handled by the local load balancing
systems, smoothing out capacity and availability issues.

While primitive, the solution does work, as long as the sites never go offline and as long as you don’t care
about random client/traffic distribution.

9.3.3 RR/DNS Server Extensions (RR-Ext)
Some Service Providers and Content Publishers have extended their DNS systems to be smarter about
how they respond to client requests. There are as many implementations as there are companies that have
extended DNS, but the extensions can be generalized:
• The DNS servers have some forms of Feedback incorporated within them to understand basic server

health and load

• The DNS servers have some multi-site Policy capabilities, such as BGP AS hop count metrics
combined with packet retransmissions. This information is compiled and used on a periodic basis to
create static DNS response tables

• The RR/DNS responder has been extended to dynamically be updated based on the above
information. It dynamically chooses what IP address to respond with based upon the static tables
created by the above server availability and policy metrics

• When a client request arrives at the DNS server, the server examines the (probably large) static tables
to determine what IP address it should respond with, based on the source IP address of the request

• The RR/DNS system may be outfitted to respond with V_IPs that are running in local load balancing
products. The RR/DNS system is performing more intelligent multi-site dispatch, and local load
balancing is smoothing out local capacity and availability issues

9.3.4 DNS Redirection (DNSR)
Multi-site capable VRM systems almost universally support being able to be the Authoritative Name
Server for the domain name or service being requested. As requests come in, the VRM scheduler can
decide which of many various IP addresses to respond with, each of which support the requested service.
Instead of simple Round-Robin mechanisms, the decision could be based on knowledge gleaned from the
Feedback and Policies mentioned earlier. The use of this method in a multi-site VRM system is called
DNS Redirection.

Do Not Duplicate 76 Research Report 99001_v3.0

1. The client loads their browser on their computer workstation and types in or selects a website and
URL, such as www.hoov.com/main.html.

2. The browser must communicate with the server that represents www.hoov.com using an IP address, so
it must resolve the hostname portion of the URL (www.hoov.com) to an IP address. The browser
(really the DNS resolver that is part of the browser) sends a DNS query to their configured local DNS
server.

3. The local DNS server (LDNS) passes the request along the DNS foodchain until it reaches one of the
multi-site VRM schedulers.

4. This MS-VRM scheduler, acting as the DNS server for www.hoov.com, examines the source of the
request (the clients LDNS) and uses its Policies (static tables, topology tests, etc) to determine which
site is best for the client. The VRM scheduler then responds back to the client’s LDNS with the V_IP
that is the best site for the client to communicate with, contained in the DNS response.

5. The local DNS will perform the necessary functions to return the IP address representing
www.hoov.com back to the client’s workstation.

9.3.5 Issues with Using DNS Redirection
There are a lot of issues with DNS Redirection and how it behaves when trying to optimize a multi-site
VRM solution. Its not that it is a bad protocol; its actually very good at scaling to the size of the Internet
and handling problems and failures. But when you are trying to optimize how your multi-site load
balancing solution works, it presents some challenges:

MS-VRM Site

Site 1

Site 2

Clients LDNS
Client System

enters URL: www.hoov.com

Client
Network

where is
www.hoov.com?

www.hoov.com (1)
V_IP: 204.165.11.22

www.hoov.com (2)
V_IP: 192.168.13.10

www.hoov.com
is 204.165.11.22

1

2

4
3

Client
Location
State Info

Policies

Internet

where is
www.hoov.com?

www.hoov.com
is 204.165.11.22

5

Do Not Duplicate 77 Research Report 99001_v3.0

• Once clients resolve the IP address, they cache it for a period of time that you can’t necessarily
control. Therefore the next time the client wants to access that service, it will use the same IP address,
even though at that time the load or availability on that server may have changed radically

• VRM products that examine source IP addresses when using DNS to make multi-site dispatch
decisions are not looking at the clients source IP address – they are looking at the client’s local DNS
server’s IP address. Thus, any static tables or Active Testing used with this mechanism will be a
(further) gross approximation of where the client is located

For example, Acuitive uses a certain dial-access providers for mobile Internet access who has us
statically configure our local DNS server address in our systems. This DNS server is located in San
Jose, CA, but this dial-access provider has dial-POPs all over the U.S. that we regularly dial into. If
one of us is dialing in on the East Coast, and we access a multi-site content provider that has a VRM
scheduler performing topology testing, their system will find our LDNS in San Jose, not on the East
Coast. Thus, we will be directed at a West Coast site instead of an East Coast site. So much for
topology optimized content access.

• DNS / re-resolution behavior in client systems is not well understood. Some client systems /
applications will re-lookup an IP address via DNS if the target server becomes unresponsive. Some
wait until the application is shut down and restarted before executing another DNS lookup. This is an
important issue to those VRM customers who are unwilling to tolerate any significant client
downtime. If a content site goes offline due to a major issue (like a power outage) then any client that
was communicating with that site will have to execute another DNS lookup to be directed at an
available site. If the client’s system is not well behaving, it might be minutes before the client
connects to a valid site, or it might require shutting down the application and restarting. We’re sure
that someone has explored these issues; we just don’t have a definitive source or the different client
application behaviors right now. (Please let us know if you do)

9.3.6 Addressing The DNS Redirection Issues

Multiple Record Return (MRR)
So, we’ve explained how DNS can be used to point users at sites. But, what happens if the MS-VRM unit
acting as the AS for a domain fails? User requests (really, LDNS requests) will be dropped.

What happens if the VRM system or servers to which users are making application requests becomes
overloaded or fails? User requests will be dropped. To make matters worse, local DNS servers that have
cached the hostname/IP address of the system that has no failed will continue to issue that IP address in
response to lookups.

Luckily, there are at least two portions of the DNS protocol/application that eases this situation a bit, both
having to do with a DNS server returning multiple records to the requesting server. The first is the
technique of defining and returning multiple NS records, which you should remember are pointers to
other name servers. The second is the value-added technique of returning multiple A-records, which are
the IP addresses of the hosts the user is trying to communicate with.

Protecting Against Authoritative Server Failures

DNS servers, or MS-VRM schedulers acting as DNS servers, can be deployed in multiple quantities, and
would be configured to be secondary or slave name servers. When the DNS server for the domain
receives a request that it must return an NS record for, it can/will return all of the IP addresses of the

Do Not Duplicate 78 Research Report 99001_v3.0

secondary NS’s (the MS-VRM schedulers). Thus, the requesting LDNS receives multiple target name
server possibilities in response to its lookup request.

The LDNS then picks one of the name servers at random from the list of NS records to query for the
hostname. The LDNS measures the name server’s response time to this request. Over time, it will have
used all of the name servers to query for hostname lookups (assuming the cache for the hostnames expires
quickly) and will have measured each of their responses. Each time the LDNS needs to lookup a
hostname, it will query the fastest name server in its list.

This technique ensures that if an MS-VRM unit acting as a name server fails, as long as there is more than
one defined as an NS, the users’ DNS lookup requests will get resolved. This technique is also useful for
ensuring that the LDNS chooses their “best site”, based on measured response time of each of the NS
servers.

 Protecting Against VRM and Site Failures

DNS Redirection eventually re-directs clients away from failed sites. But when a failure occurs, clients
who have already been directed to the failed site may continue to try and use it for a long time unless
measures are taken to prevent that. One measure is setting low TTLs (see the next section). Another is to
populate the client with multiple A-records. The expectation is that the client will use the first A-record
in the list, but if that fails, it will move to using the 2nd A- record, and so on.

DNS servers are capable of returning more than one IP address (called A-records) in their responses to a
lookup request. For example, when a browser asks for the IP address of www.acuitive.com, the
authoritative DNS server may return [193.182.102.10, 204.168.121.21, 211.191.21.189] as addresses that
all correspond to that host. DNS servers acting on behalf of a client, and DNS clients themselves are
capable of receiving multiple A-records returned from a DNS server. Some servers and clients are more
well behaved than others, but the potential exists to take advantage of this protocol feature.

Multiple A-record return is a value-added option on some MS-VRM schedulers.

With MRR, four distinct benefits can be realized:

• MS-VRM Failure reliability: If an LDNS loses communication with an NS server, and it has
additional NS server choices, it will use the next fastest NS server in the list returned to attempt to
resolve lookup requests

• VRM and Site Failover Acceleration: If a client loses communication with a server that it has
received multiple A-records for, it will use the next A-record (IP addresses) in the list returned to
attempt to communicate with a different server. If the A-records correspond to different V_IPs for
the same service at different sites, then the client is essentially performing site fail-over. This client
behavior has been demonstrated with the latest Microsoft and Netscape browsers. But there is no
standard that mandates such behavior

Do Not Duplicate 79 Research Report 99001_v3.0

• Request Distribution: If a local DNS server requests the IP address for a host and receives multiple
A-records returned from the authoritative DNS server, it may choose to distribute them in a local
round robin rotary method. When additional clients local to that DNS server make requests for the
same host, the local DNS server may distribute the addresses in a round robin manner (if your LDNS
supports this function). Instead of all clients in a particular network going to the same server for their
content, they will be distributed in a round robin manner across all the servers returned as A-records.
This ensures that a single site failure (corresponding to one of the A-records) will not result in all
users losing communication to the application. User will have been distributed among the
sites/servers in a proportional manner

• LDNS Chooses Best Site: When multiple NS records are returned to the LDNS from a DNS server
for a particular hostname, the LDNS will then choose (over time) the best NS server to contact for
Hostname-IP Address resolution5. If the MS-VRM schedulers are co-located (or in the same unit) as
the local VRM schedulers, then you may achieve the same benefits as CPR without the overhead.
One issue with this is that we’re not sure if all LDNS systems will us multiple NS records in this
manner

DNS TTL
Another portion of the DNS protocol that many multi-site VRM vendors use is the ability to set the Time-
To-Live (TTL) value within each of their DNS responses. This value, measured in seconds, is meant to
force any caching DNS server to re-resolve the hosts it has cached within the timeout period if it gets
another lookup request for the same host. Thus, if the TTL value was set to 60 seconds on each A-record
returned by the MS-VRM scheduler, any local DNS server receiving those A-records should purge them
from their cache within 60 seconds of reception.

The intents behind setting TTL low are to (1) allow for more granular distribution of requests via DNS,
and (2) enable DNS-Re-direction mechanism to allow fast re-direction of users away from a failed site.
Without setting a TTL, a local DNS server at a large client network might send hundreds or thousands of
clients to the same content site, and continue to do so if that site fails. This behavior might overwhelm the
site that the clients were sent to. By setting the TTL to some low value, the MS-VRM hopes that it at
least gets a chance to spread the thousands of clients across multiple content sites.

Alternatively, one may want to set TTL to a high value, so that clients won’t re-resolve as often and
therefore will stay persistently connected to a single site.

Unfortunately, there are a couple of issues working against this feature. First, there is some percentage of
local DNS servers and DNS caches that don’t pay attention to the TTL value. We don’t know what the
exact figures are, but this issue always comes up in conversation. That means those servers won’t re-
resolve hosts when they are really supposed to. Second, if the TTL value returned is too low and the
content site is popular, then the MS-VRM scheduler acting as the DNS server could become
overwhelmed with DNS requests.

In the opposite case, where TTL is set high, the clients could be susceptible to slow reaction to site
failures.

5 We understand this may be dependent on the version of DNS software on the LDNS, but we don't have definitive information on what versions
of DNS have what behavior.

Do Not Duplicate 80 Research Report 99001_v3.0

If the LDNS’s and clients behave nicely in regards to Multiple A-Record behavior, the ideal combination
is a long TTL (to achieve multi-site persistence and to reduce the load on the DNS system) with multiple
A-Record return (to provide fast reaction to site failures)

A Final Issue With DNS Re-Direction: Client Location Ambiguity
We mentioned in the Policies section an issue with DNS and those active testing methods that attempt to
determine the best site for the client. Its time to discuss it. There are essentially two points of time when
you choose what site is best for the client. MS-VRMs can choose the best site when it receives the
client’s local DNS lookup request, or it can choose when the client connects to the content site using
TCP/UDP requests.

This is where the problems come in. The general goal behind client/site optimization is to dispatch a
client to a particular site because it is determined that the given site is best for the client. If the MS-VRM
attempts to choose the best site during the DNS lookup, you’re choosing the best site for the clients
LDNS, not the client themselves. The source (IP address) of the DNS request is, unfortunately, the
client’s local DNS server, which could be installed anywhere. The request does not contain any
information like “I’m asking on the behalf of client XXXX.” Thus, there is no way for the MS-VRM
scheduler to tell who the client really is until the client connects to the content site using a TCP/UDP
application.

If you wait for the actual client’s TCP/UDP request to come through, you now know who the client is (by
IP address), but the MS-VRM scheduler is kind of stuck. There’s no good way for it to now tell the client
to connect up to a different site. First, the MS-VRM may not be located at the content site—there may
only be a local VRM scheduler at the content site. Second, even if there is an MS-VRM capable system
at the content site, there’s no protocol available for it to redirect the client to it optimal site in an efficient
manner.

The conclusion: client/site optimization isn’t optimal unless you’re willing to assume that the client’s
DNS server is a good enough representation of where the client is. If you are not, then you must adopt
some form of Application Request Forwarding as a multi-site traffic management mechanism (see the
following section).

9.3.7 Application Request Forwarding (ARF)
Application Request Forwarding is another technique used to spread client requests among all available
application/content sites. It can be used as a method of real-time client request distribution, or it can be
used as a method of last resort, depending on your preferences and optimization goals.

One thing to keep in mind: These are useful for multi-site client request distribution, as opposed to DNS,
which is useful really only for client distribution.

There are three primary methods for ARF: Triangulation, IP Proxy and HTTP Redirect.

Triangulation
Triangulation is a method where arriving client TCP connection requests (SYN packets) can be sent to
another site better suited to service the request. The Triangulation method uses special “shadowed” V_IP
addresses at each other site that traffic might be forwarded to. When that site sees something arriving to
the unique “shadowed” VIP, it knows that the packet was re-directed to it, and what site specifically
performed the re-direction. That information is necessary, because on the return path (server-to-client),

Do Not Duplicate 81 Research Report 99001_v3.0

the VRM scheduler must put the original V_IP, from the site the client originally addressed, into the
source IP field. That way, the traffic can return directly to the client. That’s what creates the triangle;
client to original site, site A to site B, site B back to client.

It works something like this…

1. Client A has received the IP address of Virtual Server A.1 through a DNS query for the domain
acuitive.com. When the client sends an FTP-Get request to V_IP A.1, VRM-1 realizes that this site
cannot service this request. Therefore, VRM-1 decides to send this request to the closest site that can
process and respond.

2. VRM-1 sends the original request to the VRM–1 Triangulation V_IP of VRM-2 (B.2). VRM-2
recognizes packets arriving to this address to be associated with the virtual service provided by V_IP
B1, but that the packet has been sent from VRM-1. VRM-2 forwards the packet to a local server that
can best handle its needs. When the packet is ready to be returned to Client A, VRM-2 uses the source
IP address of A.1, the original virtual address for VRM-1 that the client originally used.

3. The responses are returned to Client A, which thinks it is still communicating with A.1. When Client
A sends another packet to the acuitive.com domain (ack, etc.), it uses the A.1 address. In this manner,
WSD-1 maintains a table of Triangulated sessions, performs the necessary header manipulations, and
forwards the packet to the unique “Triangulation IP Address” of the VRM-2 site until the Client A
session is complete.

Advantages of Triangulation
• Requests are fulfilled as long as the receiving VRM is available.

• The VRM has an opportunity to send the client to their best site. Best site is determined using the
Client’s source address as opposed to the LDNS’s address

• The client frames do not need to pass through the first receiving VRM unit to go back to the client,
saving some bandwidth and response latency

WAN or Internet

Santa Clara, U.S.A. Boston, U.S.A.

Server
B.20

Server
B.30

Server
B.10

Server
A.20

Server
A.30

Server
A.10

Virtual IP A.1

Client A

Real IP A.100

VRM-1

Virtual IP B.1
Real IP B.100

VRM-2

Triangulation IP B.2

1
3

2

www.acuitive.com

VRM Scheduler VRM Scheduler

Do Not Duplicate 82 Research Report 99001_v3.0

Disadvantages of Triangulation
• Content site #2, with the Triangulated V_IP, must have a routing topology that supports site #1’s

subnet as a valid egress subnet. In other words, do the routers at site #2 or anywhere downstream
allow source IP addresses from site #1 to leave that portion of the network? If not, you must run
source routing, which almost defeats the advantage of Triangulation

• Increased latency for the first client connection to the eventual server

• Some protocols (such as ACTIVE FTP) may not be supported, because of the IP address information
that is communicated across the CONTROL connection

IP Proxy (IPP)
This method is similar in effect as Triangulation, but different in mechanism and setup. It is typically
used as a mechanism of last resort between content sites, where a multi-site capable VRM unit at a site
serves as a Proxy for user application requests, such that they are fulfilled from another site.

1. A user’s POP3 TCP SYN request is received by the V_IP at site #1. The MS-VRM scheduler (also
acting a local VRM scheduler) at that site determines that there are no local resources to handle the
request.

2. The MS-VRM rewrites the request, such that it now contains a Proxy IP address as the IPSA, and the
V_IP at site #2 as the IPDA.

3. The MS-VRM at site #2 receives the TCP SYN (POP3) request at its V_IP that looks like a normal
SYN frame, and thus, performs local load balancing policy decisions and mechanisms.

4. A server at site #2 receives and processes all requests for this session.
5. All response frames from site #2 are sent to the VRM scheduler at site #1.
6. The VRM at site #1 rewrites these frames, and sends them to the client.

This cycle of user à site#1 à site#2 (servers) site#2 à site#1 à user continues until the user request is
satisfied.

Site 2

Site 1

Client

Internet

Tower box Tower box

1

6

4

3

2

5

Do Not Duplicate 83 Research Report 99001_v3.0

Advantages of IP Proxy
• Requests are fulfilled as long as the receiving VRM is available

• The VRM has an opportunity to send the client to their best site. Best site is determined using the
Client’s source address as opposed to the LDNS’s address

• IP Proxy does not require source routing because response frames first go back to the intermediate
VRM scheduler

Advantages of IP Proxy
• Response frames must pass back through the VRM scheduler, increasing the traffic load and response

time to fulfill user requests

• Increased latency for the first client connection to the eventual server

• Some protocols (such as ACTIVE FTP) may not be supported, because of the IP address information
that is communicated across the CONTROL connection

HTTP Redirect
You have to love the WWW Consortium and all the folks who brought us HTTP, HTML and related
technologies. Not only have they enabled a few people make a lot of money off of free technology,
they’ve also given us HTTP Redirect as part of the HTTP 1.0 specification. This is the only IP
application protocol that I know of that provides the means to send a client or client request somewhere
else if it needs to.

The HTTP 1.0 (and later) protocol standard specifies that an HTTP server can redirect a client GET
request to another server for a number of different reasons. If a VRM scheduler at a content site is
capable of using this feature, it will (normally) use it to redirect clients away from a site that has servers
that are either overloaded or down. The VRM scheduler receives an HTTP GET request, determines the
servers it is destined for are down or overloaded, and formulates either an HTTP 301 (Moved
Temporarily) or HTTP 302 (Moved Permanently) response code message, with the address of the
appropriate server to contact. This requires that the VRM to be able to terminate the initial TCP
connection prior to receiving the HTTP GET request, and it requires that the VRM scheduler know
another server’s IP address that can handle the request.

Advantages of HTTP Re-Direction
• The client and (new) server can communicate directly with one another, using whatever is the best

network path is between them (there is no need for an intermediate “hop” through a VRM)

• The VRM has an opportunity to send the client to their best site

Disadvantages of HTTP Re-Direction
• It only works for HTTP

• Increased latency for the first client connection to the eventual server

Value Added Options
It is possible to use URL parsing in a multi-site environment when performing ARF mechanisms on user
requests. The local VRM unit can utilize dynamic or static URL information to determine content site to
forward a user request to that it could not handle locally.

Do Not Duplicate 84 Research Report 99001_v3.0

This technique may be used in combination with Reverse Caching servers at the content sites. The basic
deployment model requires one or two primary data center sites, and some number of distributed content
sites that have reverse cache servers in them. The MS-VRM unit makes a user dispatch decision based on
the configured policy, optimizing the decision to send the user to the most appropriate cache. For
instance, if a content site with reverse caches is deployed on UUNET’s backbone, then any user passing
through UUNET’s network could be directed at the UUNET content site. The local VRM at the UUNET
content site could examine the user request, and by parsing the URL, determine if the local cache can
handle the request, or if it will simply go to one of the data center sites. This allows the optimization of
the reverse cache, such that it only needs to process requests that it can normally handle.

ARF Summary
We don’t consider the ARF mechanisms to be useful as primary multi-site mechanisms. To illustrate,
suppose a VRM scheduler did wait for the client to connect to a site (as opposed to the client’s local DNS
server) before determining the “best site.” The “real” best site is now determined, but now there is the
added traffic expense of ARF for potentially every client request. True or False: Application requests are
small (they’re just HTTP GETs, after all), therefore the expense and latency of forwarding them is
negligible. Time’s up… false. Granted, most clients experience a 10:1 ratio in Receives:Transmits, but
many HTTP requests are big, approaching 512 bytes or more. Headers, cookies, parameters on queries…

However, IP Proxy, Triangulation and/or HTTP Re-Direct can be useful options to augment the
foundation DNS Redirection capability. If a site becomes temporarily overloaded, possibly because the
DNSR mechanisms doesn’t have enough granularity to differentiate between clients (a heavy load all
coming from clients behind one local DNS, for example), one can re-direct traffic to another site to spread
the load. Or, if a site’s content servers fail, these mechanisms can be used to re-direct traffic from clients
who have cached the IP address from a previous DNS resolve. Finally, if you can create a topology
where an ARF Multi-Site VRM can interdict traffic before it gets to a site, entire site failures or WAN
link failures can be quickly re-directed around.

9.4 Multi-Site Persistency Issues
As with local persistency requirements, when the multi-site application requires persistency, the
combination of local and multi-site VRM systems must be able to persistently bind users to sites and
servers. The fact that the application is now distributed across multiple data centers complicates matters
significantly, and some key questions need to be considered:

• If state information is recorded on the local servers in a shared fashion, does the state information
need to be shared between sites as well?

• If using a distributed database, how often will the database systems be synchronized between sites?
How much will this contribute to WAN bandwidth consumption, and how will it affect the users at
the synching sites?

• How will you ensure that a user that has updated a database or server state data at a content site
continues to “prefer” that site until the data is synched between sites? In other words, how do you
ensure user-site persistency?

• What is your policy on ARF mechanisms when user-site persistency is desired? Do you forward user
requests to other sites regardless of the persistency need? Do you only forward requests you know do
not require persistent user handling?

Do Not Duplicate 85 Research Report 99001_v3.0

What does this mean for the MS-VRM systems and the local VRM schedulers, in terms of policy and
mechanism extensions?

• Static policies used to choose user/site preferences will be more stable, because the user will always
be sent to a particular site unless the site is unavailable. Dynamic user-site preference determination
may easily lead to a given user being sent to multiple sites over a period of time or hours or a single
day. If the data-synch timers for the entire system is long, dynamic user-site policies will easily result
in a user’s data being spread to multiple content sites if they connect more than once per day

• Alternately, the MS-VRM dynamic site determination policy must have timers associated with any
learned user information such that a user always is directed back to the same site for a period of time
longer than the synch timers. Effectively, this means that all users of an LDNS system will be sent to
the same site for a long period of time. This generally negates the advantages of all dynamic user-site
policies

• Server-based monitoring and control systems would be advantageous, such that they know the status
of data and synching processes between sites. These monitoring/control systems could be used to
signal the MS-VRM or local VRM units on site conditions and appropriate behavior. For instance, if
data-synching is occurring from Site 1 to Site 2, then perhaps those sites are no longer “available” for
new user requests, and the control system can signal the MS-VRM schedulers to this condition

• Local VRM schedulers that are capable of Application Request Forwarding should be capable of
specifically tuning ARF to only forward requests that are not associated with persistent user sessions.
This may require URL parsing (to determine simple static requests as part of a larger persistent
session) or it may require more complex policy setups on the VRM scheduler

Do Not Duplicate 86 Research Report 99001_v3.0

9.5 Multi-Site VRM Summary

Method Benefits Issues Extensions
to VRM at

Content
Site?

Notes

Feedback
Content Site Testing • Site/Server Availability

Assurance
• Simple extension to local

feedback

• Doesn’t test all servers at each site
• Requires parameter tuning to

avoid too much WAN traffic
Not

Required

• Don’t use TCV, DIP
• Only use Server-resident

monitoring as extension

IVP • Allows exchange of
feedback and policy
information between VRMs

• May create significant WAN
traffic

• Ensure protocol is not clear-text
Required

Policies
SCP • Simple to understand and

plan
• Requires no additional WAN

traffic to perform

• May be an admin burden if too
many static policies needed

• Not dynamic. Any significant
environment changes requires a
manual policy change

• No granular LB between sites

Not
Required

• Use in combination with
SPM, PKTR as second
order metrics

• Use external app and data
to produce static tables

• Our recommended
method

TPT • Allows site selection based
on dynamic determination of
client location

• Used in conjunction with DNS
results in misleading client
location

• Introduces WAN traffic
• Can’t really use the info if you

wait for client’s address

Required
• Not recommended. Just

doesn’t work very well.

CPP • Allows site selection based
on client performance to
sites

• Same problems as TPT

• Internet Response time is a
fleeting metric

Required
• Not recommended.

RPA • Allows site selection based
on dynamic determination of
AS hops between sites and
client

• May require router agents or
additional hardware

• Counting AS hops is a gross
approximation.

Required
• Method has same

granularity as static
configs, so why bother
with the issues?

SPM • Measures site performance
using ACV extensions

• Requires just the right amount of
sites (3-5). Too little-inexact. To
many-too much WAN traffic.

• Are you testing site-site path or
client-site path?

Required
• Useful as second-order

metric

PKTR • Measure client QoS by
recording retransmits from
client/site

• Requires the client to
communicate to each site to get
overall view

• Requires significant horsepower
and storage on local VRM unit

Required
• Useful as second order

metric

Mechanisms
RR/DNS • Basic user dispatch method

• Easy to setup
• Very gross load balancing
• No use of feedback mechanisms

unless DNS software has been
extended

Not
Required

• Not recommended, but
popular today because of
legacy installs.

DNSR • MS-VRM acts as DNS
server to dispatch users to
sites.

• Gross load balancing method, but
better than RR/DNS because of
feedback and policy information.

Depends on
policy.

• Our recommended
method. This is the
method that has the fewest
issues.

ARF • MS-VRM dispatches
individual user requests to
other sites.

• Could be used for more
granular LB.

• Granular LB with this method
requires too much overhead. Depends on

policy, but is
likely.

• Required as a second-
order method to redirect
around congestion and
server failure.

Do Not Duplicate 87 Research Report 99001_v3.0

1100 VVRRMM SSyysstteemmss RReedduunnddaannccyy
VRM systems are generally deployed to enhance overall application and server availability. Therefore it
should be obvious that they themselves should not make the system any less reliable. Most (if not all)
VRM systems achieve enhanced reliability through VRM scheduler redundancy. The technologies that
have been developed to support VRM redundancy are described in the following section.

10.1 Hot Standby Redundancy
Many VRM systems support this mode of redundancy. Two VRM schedulers are installed in the
network, typically in very close proximity to each other. One of the schedulers actively load balances
traffic for all of the Virtual Services that have been configured for the pair. The other unit is not actively
doing anything except waiting for the first unit to fail. Upon detecting a failure, the standby unit adopts
all active load balancing functions.

10.1.1 Keep-Alives
There is typically a keep-alive protocol flowing between the two units, in both directions. If the keep-
alives stop flowing between the units, the Standby unit recognizes that the Active unit has failed, or it
serves as an indicator to the Active unit that the Standby is no longer available. If the Standby believes
the Active unit has failed it will take over all VRM functions for all configured virtual services after a
short hold-down period. The hold-down period is used to assure that the lack of reception of keep-alives
is truly due to scheduler failure and not due to a temporary disruption of the path between the schedulers.

These keep-alives may traverse either a dedicated RS232 cable between units, or a dedicated LAN
connection between the units or one of the shared network connectivity points (a hub or switch that's also
attached to the router or servers). Each of these connectivity methods has its advantages and
disadvantages:

• If an RS-232 link is used, the schedulers generally must be in close proximity with one another. This
might not be ideal. You might want to have the Standby unit across the campus, on a different power
grid or closer to an alternative access link. Also, the RS-232 link is a low bandwidth connection.
That doesn’t matter if all that is being communicated is keep-alives. But it prevents a lot of
information from being shared between the units, such as is needed if session tables are being shared
to achieve session assurance (see the section on this subject below)

• A direct LAN connection between the boxes provides distance flexibility and bandwidth flexibility.
The only disadvantage is the cost of the extra LAN interfaces and the cabling

• An in-band network connection gives you complete distance flexibility (within the topological
constraints of whatever re-direction mechanism you are using) and doesn’t cost you anything more
because you have to connect to the network anyway. The down side is that you have to adjust the
hold-down period to be longer. You don’t want to falsely detect an Active scheduler failure when the
real problem was a temporarily congested network or a network undergoing a topology change due to
Spanning Tree or router protocol actions

We have a slight preference for a direct LAN connection between schedulers, possibly with an RS-232
connection or in-band communication as a back-up.

Do Not Duplicate 88 Research Report 99001_v3.0

10.1.2 Topologies and Fail-Over Mechanisms
The mechanism schedulers’ use to fail-over depends on the topology.

In-Line Topology

In the in-line topology scenario, when the Standby unit decides to become Active, it generally “trains” the
access routers to send traffic to it by sending out a Gratuitous ARP (GARP) which associates its MAC
address with the V_IP.

For this to work, surrounding routers need to pay attention to GARPs and modify ARP tables when they
see a change. They don’t all do this.

Also, in this mode, the Standby VRM should not respond to ARPs for the V_IP or forward any traffic
received on the server-side network interface.

Network

Client

E
th

er
ne

t

E
th

er
ne

t

Standby VRM
Virtual IP

(192.168.2.101)
MACB

Real Server
192.168.2.1

Real Server
192.168.2.2

Real Server
192.168.2.3

Client

Client

Client

Router

Active VRM
Virtual IP

192.168.2.101
MACA

failover link

Do Not Duplicate 89 Research Report 99001_v3.0

Network Connection – MAC Address Translation
The mechanisms are pretty simple when the topology is not in-line and the mechanism is MAT.
In this case there are no issues with training the server-to-client traffic to go a certain path because that
traffic bypasses the schedulers. The issue is only how to get the access router to send to the Active
scheduler. That is usually achieved by having the Standby issue a GARP when it becomes active, so that
MACB becomes associated with the V_IP instead of MACA.

Network Connection – HNAT
Things get a little trickier when HNAT is used. A list of Default Gateways must be configured on each
content server. The content servers will prefer the use of the first Default Gateway in the list. If traffic is
sent to the Standby (which is likely to occur occasionally), and if the Standby is still receiving keep-alives
from the Active, the Standby should send an ICMP route-unreachable message back to the transmitting
content server. This ensures the content server will use the next Default Gateway in its list.

Network

Active VRM
Real IP: 192.168.10.15
Virtual IP: 192.168.2.101
MACAddr:A

Real Server A
ethernet i/f: 192.168.10.1

Default GW: 192.168.10.15 ,
192.168.10.16

Real Server B
ethernet i/f: 192.168.10.2

Default GW 192.168.10.15 ,
192.168.10.16

Real Server C
ethernet i/f: 192.168.10.3

Default GW 192.168.10.15 ,
192.168.10.16

Client

Client

Client

Client

LA
N

Router

Standby VRM
Real IP: 192.168.10.16
Virtual IP: 192.168.2.101
MACAddr:B

Active VRM
Real IP: 192.168.2.15
Virtual IP: 192.168.2.101
MACAddr:A

Network

Real Server A
ethernet i/f: 192.168.2.1

Loopback i/f: 192.168.2.101

Real Server B
ethernet i/f: 192.168.2.2

Loopback i/f: 192.168.2.101

Real Server C
ethernet i/f: 192.168.2.3

loopback i/f: 192.168.2.101

Client

Client

Client

Client

LA
N

Router

Client Traffic

Client Traffic

Server-to-Client Traffic

Back-Up VRM
Real IP: 192.168.2.16
Virtual IP: 192.168.2.101
MACAddr:B

Standby VRM

Do Not Duplicate 90 Research Report 99001_v3.0

An alternate configuration would have only one Default Gateway IP address per Real Server, and would
require the VRM unit to support some type of router interface redundancy protocol, such as VRRP.

Multi-Port VRM Topology
Some SOAS devices and all Switching VRMs support a meshed implementation topology that easily
eliminates any single points of failure.

Example Starting Configuration

Example Response to A Link Failure

Devices that can be mesh configured can respond to failures of various external, redundantly deployed,
switch/router products and trunks.

Network

Client Client

Client

Client

Router

Router

Server

Server

Server

Server

Switch

Switch

Switch

Switch

Network

Client Client

Client

Client

Router

Router

Server

Server

Server

Server

Switch

Switch

Switch

Switch

new active path

Do Not Duplicate 91 Research Report 99001_v3.0

10.1.3 Hot Standby Suitability
The Hot Standby mode of redundancy is perfectly adequate, but it does have one drawback. It requires
purchasing two of the same VRM units and using them in an implementation where only one is active at
any one time. To some, this seems like dedicating a chunk of hardware to sit there and wait for
something bad to happen. To us, it is doing what's necessary to ensure uptime in an obviously critical
portion of the network.

10.2 Active-Standby Redundancy
Some VRM systems support what we call the "Active-Standby" mode of redundancy. In this mode both
VRMs are actively performing VRM functions, but for different V_IPs. One VRM unit actively provides
services for one half of the configured virtual servers, the other VRM unit handles the other half. A keep-
alive protocol between the units ensures that each VRM unit knows the health of the other. If one of the
units should fail, the other unit takes over all the VRM services and handles the entire load. Each unit is
acting as a "standby" for the other.

10.2.1 Topologies and Fail-Over Mechanisms
The potential topologies and fail-over mechanisms for Active-Standby redundancy are essentially the
same as for Hot Standby. It may just be a little trickier to configure the system correctly.

10.2.2 Parallel V_IPs
The Active-Standby approach brings up the question, “What if I have the V_IPs on the different
schedulers serving traffic for the same content and applications.” The goal would be to increase overall
bandwidth for a given service by increasing scheduler horsepower.

Balancing the load between the schedulers can be done via two methods:

1. DNS Round Robin. For instance, configure both V_IPA and V_IPB in a list of IP addresses to be
returned for www.acuitive.com. You won’t get perfect load balancing, but you will get a spread of
load between the two schedulers.

2. Symmetrical Path Routing: In this case, multiple VRMs use standard routing protocols to advertise
equal path routes to the subnets that the V_IPs are associated with. The access router must be running
OSPF with Symmetrical Path Routing” enabled. In this mode, the access router “sprays” traffic
across all equal path routes by balancing the number of active IP SA/DS pairs per path. Up to four
equal paths can be supported.

If you are using direct-path-return (via MAT), you are done. In this case, all content servers can be target
content servers for both V_IPA and V_IPB. There is an implementation issue to be aware of here, though.
If the “best available server” policy is Least Connections, and two separate schedulers are sending traffic
to the same content servers, each scheduler individually won’t have an accurate view of the total number
of connections on the server – only the ones it established. So load balancing can get a bit uneven,
possibly resulting in the saturation of a server. If you use a direct measurement of the server load, such as
CPU utilization, either directly or as a secondary threshold policy, the issue becomes resolved.

When you have multiple schedulers sending requests for the same services to the same servers, with
load balancing between those servers preserved, we call that feature Active-Active scheduling,
which is the optimal characteristic from both a reliability and performance perspective.

Do Not Duplicate 92 Research Report 99001_v3.0

But remember, when you are using MAT, you cannot have both direct-path-return and delayed binding.
So, you may need to use a mechanism where the server-to-client traffic passes back through the
scheduler. In this case, the trick is to get the traffic to return back through the same scheduler that the
client-to-server traffic passed through.

In the HNAT case, this is almost impossible to do.

When the devices are in-line (see the relevant topology diagram in the section above), server-to-client
traffic will generally “show up” at both the schedulers. The schedulers would have to smart enough to
know which traffic to ignore and which traffic to process and pass through onto the client. At present, we
are not aware of any trick that results in such a capability.

If the devices are network connected (see the relevant topology diagram in the section above), then the
content servers will use the active default gateway address for all returned traffic, regardless of which
scheduler sent the traffic to the content server. That breaks the system. The only solution here is to
divide the servers up. Half are scheduled by one scheduler (and are configured with a default gateway
address to return traffic to that scheduler) and the 2nd scheduler schedules to the other half. That’s pretty
close to Active-Active, but not quite, because if the servers scheduled to by one scheduler are busy, the
scheduler has no way of taking advantage of available resource in the other group of servers. However,
it’s not a bad option if that’s your only choice.

So, other than the TCP Connection Hop approach, the only way to achieve Active-Active and to have
delayed binding is to perform Full NAT (swap the Source IP address as well as the Destination IP
Address). Each scheduler would use a different IP Address in the Source field. The content servers will
then return the traffic to the Source IP it came in on. The (big) downside of this approach is that server
logs based on client IP addresses are no longer useful for management purposes. They are all indexed to
just a small number of IP addresses now (one per scheduler). If the information that would have been
provided by the logs is stored and provided by the scheduler, then that issue becomes resolved.

10.2.3 Extending The Concept To Multiple Schedulers
Active-Standby and Active-Active can be extended to more than two VRM units. For example, let's say
there are five VRM units installed to handle 50 virtual services - 10 V_IPs per unit. Any given VRM unit
is designated as the MASTER for its 10 primary V_IPs, and the BACKUP for some number of the 40
remaining ones. Each V_IP will have one VRM designated as its MASTER and two or three designated
as its BACKUPs. If one of the schedulers should fail (as detected by the keep-alive protocol) the
BACKUPs go through an election or bidding process to determine which of the BACKUPs takes over the
VRM functions for the 10 V_IPs.

VRRP
The Virtual Router Redundancy Protocol (VRRP) can be used by VRM systems, which holds promise for
making the multiple-active redundancy capability take on a more standards-based flavor. It’s not likely
that cross-vendor VRM system interoperability will result soon from this effort, but at least there will be a
standard way of thinking about redundant IP-based services in hosts, routers and VRM systems.

Do Not Duplicate 93 Research Report 99001_v3.0

10.2.4 Active-Standby Suitability
Some VRM vendors will argue that Active-Standby redundancy is a useful feature because it allows the
deployment of multiple systems that can both experience simultaneous usage. In general, we agree it’s a
good thing. However, be wary of any vendor who pushes this too strongly. They may be covering up the
fact that their system does not have the horsepower to run your applications effectively, and they're
counting on being able to split the load.

Active-Active, however has almost no downside, unless you need to modify Source IP Addresses to
achieve it. Active-Active gives you a way to scale the scheduler performance, so that it never becomes
the system bottleneck. There is also no “split brain” issue (discussed in the section below) associated
with Active-Active.

10.3 The Split Brain Problem
What happens if you unplug the connection between the VRM units (whether it is a serial or LAN)? A
potential problem can arise that most people call the "split-brain problem." The split brain problem can
occur in both the Hot Standby and Active-Standby configurations when both the Active and Standby
VRM units no longer see each other, and so they both think "I'm the Active unit." It’s kind of like you
and your spouse both thinking you’re in charge of picking up dinner for the evening, and so you end up
having twice as much food as you really need. And you don't have a refrigerator or enough table space
for it all, so it becomes quite messy.

What happens in a VRM system split brain problem is equally messy. Both units try to "take over" all the
virtual IP addresses in the system, they start sending out gratuitous ARPs which forces the upstream
router (and maybe the servers) to think that the virtual IP addresses keep moving between multiple
systems. User requests keep getting directed at one VRM scheduler, and then the other, and back again.
No one gets any real service from the application.

Now, this is such a potentially huge problem that we think that vendors must have solved it in their
implementation. But its such a scary potential problem that you should ask your vendor(s) how they
solve this problem, and then test it by unplugging the designated keep-alive links during test/load activity.

10.4 Special Case – MAC Multicast Redundancy
At least one redundancy implementation involves a configuration with two or more VRM schedulers,
with the same virtual services (i.e. the same IP addresses) configuration on each scheduler. All of the
VRM units are in the same layer 2 broadcast domain (VLAN), and are configured to receive Ethernet
frames via an identical Multicast MAC address. When the upstream router is forwarding requests to this
virtual service, it does so by transmitting a multicast frame, which is received by all of the VRM units.
Each one of the VRM units inspects the IP addresses in the frame, and one of the units "chooses" to
service the request based on a load-sharing algorithm. The algorithm may be based on a bidding process
or based on hashing the IP addresses in the frame. One and only one unit will service any given user
request. Keep-alives between the units ensures that each knows how many units are in operation, so that
the load-sharing algorithm may change if a unit fails or comes back into service. The intention of this
design is to allow natural redundancy (all units have the same IP addresses for virtual services) and to
allow some gross load sharing.

In 3-6 server configurations, this methodology may be OK. If the server cluster is any larger or requires
complex application handling, we don't really care for this methodology.

Do Not Duplicate 94 Research Report 99001_v3.0

10.5 Session Assurance
Certain types of applications may require that the user experience almost no transaction failures or system
hiccups. For example, imagine you are about to complete a transaction at Amazon.com where you had
just spent three hours filling a (virtual) shopping cart with 23 books. (Everything is virtual in our world,
except time and money). Now the active VRM system experiences a power failure, the backup takes
over, but doesn't know anything about your current session. You get redirected to a different server who
doesn't know anything about your three hour shopping spree. Your shopping cart is lost, and you're upset.

Some VRM products have an answer for this situation, which we call session assurance. Session
assurance ensures that user-session state (persistence information) is shared between active and standby
VRM systems, so that when a failure occurs, the (now) active unit knows what application(s) and
server(s) your client system is associated with. One or more virtual services on the VRM unit are
designated as needing session assurance. Every time the active VRM unit accepts new requests to that
virtual service or eliminates completed requests, it can inform the standby unit of the user-session state
change.

At least one vendor has attempted to use duplicate IP addresses and MAC addresses on their VRM
product to ensure state-sharing between redundant configurations. This configuration requires a topology
of shared media hubs on the "client side" of the VRM units, so that every frame seen by the active unit is
also seen (and recorded) by the standby unit. This may create some topological inflexibility, but that
should be weighed in your mind against not having session assurance for the virtual services that need it.

Shared session state between redundant systems comes at a price. It is possible (even likely) that the
VRM systems must be setup in an Active-Standby configuration as opposed to an Active-Active
configuration. Or, each system would have to double the amount of memory it needs, because each unit
has to maintain state information on its OWN sessions as well as its peer's sessions. There is also a
performance penalty. Not only does the VRM unit have to process user requests and perform background
tasks, it has to signal its peer VRM unit that states changes have occurred. If there are 2,000 new user
requests per second, then the VRM unit must find a way to tell the other VRM unit about it in a timely
fashion (it can't wait too long) and must not consume too many CPU cycles to do it. This is another
reason that an Active-Standby mode of operation may be necessary.

We think that session assurance is vital for many types of applications or websites. E-commerce and
stateful applications can definitely benefit from this capability. But due to the potential performance
issues, we believe that if you do need session assurance, it’s OK if it is limited to the state-oriented, or
persistent connections (Shopping cart, SSL, FTP, HTTP downloads, etc.). Trying to maintain state for
HTTP connections that are grabbing a graphics object, or a page frame, of a 8KB test file is not generally
useful. Look for a vendor solution that allows you to explicitly choose which types of connections are
assured and which are not.

10.6 Some Other Practical Issues
10.6.1 Designing Reliable Server Systems
It’s a somewhat obvious requirement that the servers that are front-ended by a VRM product be reliable
and easy to operate and maintain. But it is important to consider the individual server components and
how their failure will be detected and overcome by the VRM product.

Do Not Duplicate 95 Research Report 99001_v3.0

The server hardware design (for both front-end and back-end servers) should be as reliable as the
application requires. A non-stop application requires everything to be redundant either locally or through
multi-site VRM support, or both. Also, there should be enough servers on the front-end (i.e. being load
balanced by the VRM product) to allow for up to 25% of the servers to be down with no significant
impact on the general behavior of the system.

When deploying VRM products in redundant mode, be sure to think about how the servers will attach to
the network:
• Will the servers be single-attached or dual-homed? If single attached, are they all connected to the

same hub or switch (single point of failure)? If they are connected to multiple hubs/switches, can you
afford to lose a significant percentage of your servers if the device they are attached to fails?

• If dual-attached, how will the servers’ default gateways be configured? How will session-assurance
work if the NIC (and IP address) that the users were communicating with becomes unavailable?

Another key consideration is the robustness of the server operating system:
• How does the server OS behave under heavy load?

• Is it possible that when the server is busy with CPU or network traffic processing that the server will
no longer respond to VRM feedback? Is this a good thing or a bad thing?

• It could be a bad thing if the VRM periodically registers false “server unavailable” conditions and
doesn’t handle this condition well. If the VRM product doesn’t used methods to combat “false
negatives,” then it may send active users requests served by that particular server to other servers
within the system, even though the server is really not down

Here are some additional general recommendations:

• Make sure you are employing discrete, well tested and integrated OS and application components

• Create appropriate layers and boundaries between servers and applications (and other servers).
Creating and understanding these boundaries will help you determine what capabilities the VRM
system must have and also aid you during troubleshooting

• Keep things as simple as possible. Avoid new technology for new technology’s sake, and use tools
and components that are well understood

• For complex application environments, consider server and applications management software that is
capable of quickly determining when/where a particular server or software component has failed

10.6.2 Guarding Against Your Own VRM Product
The VRM product itself is a combination of some hardware and a lot of software, and its operational
stability is largely based on several factors:

• The software is relatively complex, and it does muck around with packets

• All of the VRM products are built by companies that have incentive to get software releases out as
soon as possible

• The more software releases available for a product, the more complex the overall software becomes.
This leads to difficulties in testing every possible combination of feature and capacity configuration.
Although, it is also arguable that more cumulative test time has taken place on the product

These factors work against the stability of the product. Regardless of what any vendor tells you, there are
bugs in their software and they always take a managed risk when releasing a software load to customers.

Do Not Duplicate 96 Research Report 99001_v3.0

There are bugs they do know about, but are "minor" and its time to get the product out. Or, they are
major, and it requires the alignment of the planets (which is next week, when you're installing the
software) to find them.

Make sure your VRM system design takes into account the possible necessity to flip-flop services
between active VRM units (i.e. make sure you're configuring redundant systems). Make sure you have
good operational practices, such as change control procedures and good documentation.

10.6.3 Improving System Availability With Backup Servers
Many VRM products support the definition of a Backup Server, which is activated when one or more
designated servers are unavailable.

Typically, the admin configures the servers that will be used to service one or more applications, and
places them into a logical group or farm. The admin then designates a different server to be the backup
server for the group, or possibly one or more individual servers within the group. This backup server is
activated when the VRM unit detects either the entire farm is out of service or the designated servers are
out of service. The backup server then becomes eligible to receive VRM-processed client requests just as
if it were part of the original server group.

Once the original server(s) come back online and begin to accept client requests again, the backup server
is gracefully taken out of the server group; existing client sessions bound to the backup server continue to
be serviced until the load balancing policy dictates otherwise.

The backup server is usually a server that the admin would normally not choose to send client requests to.
It should be considered to be the server of last resort. For instance, if the application being load balanced
is Web Services and there is an NFS server on the back end that stores all of the content for the website,
the NFS server could be designated as a backup to the web server group. It will have to run a web server
application and have access to all the same data and services that the other web servers have, but it will
normally not be acting as a web server. The benefit of having a server of last resort outweighs the
negative impact that the extra applications have on the NFS server, especially since they will not be active
that often.

Some vendors have extended the concept of a backup server to represent an Overflow server. See the
Performance and Capacity section below for details.

10.6.4 Providing Some Extra Security
Most VRM systems act as a front end to servers, and as such may be able to provide a little or a lot of
Server Protection. Server Protection mostly involves ensuring that the requests that servers receive are
identified (as much as possible) as valid user requests, thereby preventing certain types of malicious
attacks on the servers. This, in turn, should prevent the servers from filling their buffers or session state
management systems and rebooting. This is can be accomplished using a few techniques:

Server MaxConns
One technique found in most VRM products allows the admin to set a maximum connections policy on
the servers, such that the VRM unit will not allow more than MaxConns numbers of connections to a
server to be opened and active. If the MaxConns setting is set well below what the server is capable of
tolerating, then this setting can be used as a method of protecting the servers. It's not great, but it might
work if you have nothing else to use.

Do Not Duplicate 97 Research Report 99001_v3.0

A corollary to this technique is to use server MaxConns per source IP address or subnet. This allows the
admin to only allow a certain number of connections to be established from the specified network(s),
possibly preventing resource starvation by a DoS attack. This assumes that the source (and source
address) of the attack is constant, and not being spoofed by the attacker.

SYN Metering
Another technique employed by some vendors is to use SYN Metering, which involves the VRM unit
measuring the rate at which user requests are coming into the system and metering their flow. User
requests are only allowed to flow to the servers at a rate that is at or below the administrative meter
setting. For example, an admin could set the Meter rate to be 2000 connections per second to a V_IP.
During any one-second interval, if the connection rate exceeds this number, those connections will be
dropped.

This capability is useful only if the servers themselves have the ability to rapidly age out bogus TCP
connections. Else, their buffers and state tables become full, and they will become unstable.

Be careful of vendors that claim their technique is to use SYN Metering; they may be actually simply
setting a MaxConns on a V_IP, which means that they are not doing rate measurement; they are simply
preventing too many concurrent connections to be opened to the V_IP.

TCP Connection Termination
Significant protection for the servers can be created when the VRM product is terminating all TCP
connections prior to allowing requests to go through. Many DoS attacks designed to make servers crash
are performed with spoofed IP source addresses. If the VRM product is terminating all TCP connections,
then the TCP sessions from the spoofed sources of DoS attacks will never be completed. Each (bogus)
TCP connection request will result in a SYN-ACK being sent from the VRM product. They will be sent
out the 'Net and end up in a black hole, or at a legitimate (but very confused!) end station who will
promptly send back a TCP reset to the VRM unit.

Obviously, this does not work for UDP.

Integrated Firewalling
Firewalling is a site-wide necessity for most application environments. All traffic going in and out of any
site, at least the clean side, must pass through a firewall. If the VRM product you are considering
includes firewalling features, make sure they provide protection from the SYN and DoS attacks, and are
not just simple packet filters. While packet filters are useful, they do not necessarily protect you from the
types of attacks that will bring down your servers.

We don't recommend using a VRM product as your only form of firewalling. It does depend on the
application and topology you are deploying, but the LAN/WAN boundary is not necessarily where to will
want to deploy VRM systems. If you do decide to use the VRM unit as a firewall then you take on a
bigger performance issue. Not all packets will be to V_IPs, but the VRM product will need to inspect
them, because it is also the firewall, whereas deployed elsewhere, it wouldn’t have had to otherwise.

Do Not Duplicate 98 Research Report 99001_v3.0

10.6.5 Some Summary Thoughts On Increasing System Reliability With VRM
• VRM systems that provide local load balancing capabilities are useful for enhancing the availability

of one or more applications in a single data center. They will solve server-side problems only --
server hardware, OS and application failures. They will not solve problems related to components
external/in front of the VRM system, such as routers, service provider network problems, network
congestion, etc.

• VRM systems that provide distributed load balancing capabilities are useful for solving many
failures that may be related to a single site or data center. For instance, assume that Amazon.com
hosts their website in two data-centers, and there is a power loss in the building housing one of the
data-centers. It is possible that using a VRM system with distributed capabilities will allow most
users to connect to the only remaining data center, thereby allowing Amazon to continue their
business operations, albeit in a degraded mode

• Basic server applications should be monitor-able directly from the VRM product. For instance, if the
application being improved is an HTTP-based application, the HTTP server processes should be
checked directly from the VRM product and not require extensive integration or setup time

• A complex application structure requires a more comprehensive "application availability intelligence"
capabilities on the VRM system. This may include any of 3rd party monitoring and control systems,
server-side agents, or very intelligent polling systems on the VRM product. If the overall VRM
solution does not meet the basic needs of detecting conditions that could lead to user transaction
failure, then it should be eliminated in your mind as a viable solution

• The VRM system itself should be redundant and scaleable so it never adversely impacts application
availability or performance

Do Not Duplicate 99 Research Report 99001_v3.0

1111 VVRRMM SSyysstteemm PPeerrffoorrmmaannccee aanndd CCaappaacciittyy
The ability to scale the "capacity" of an application -- really the aggregate capacity of the servers handling
the application -- is the function that people most often associate with VRM systems. That's why the
products are typically referred to as load balancers. While we think that the functions of HA and O&M
are the first issues to consider, the ability for a VRM system to scale capacity is a close third. A VRM
system will generally allow you to easily add servers to the mix until the numbers of servers allocated can
handle a nominal amount of user requests.

Here’s an example:
A large enterprise organization has converted its sales order and information system from a pure mainframe
based application to one that is web-based. The company continues to use the mainframe as a back-end
database and reporting system, but all of the interactive applications have been converted and now run on a
few web servers. Users access order entry, order lookup and inventory information in real time by
launching a browser and accessing the applications from the web servers -- one application per web server.

But the average time to "flip screens" is generally slower than it was than when users accessed the
applications from the mainframe. Users are complaining, and productivity is down. The network
engineering and information technology groups get together and perform bottleneck analysis. It is quickly
determined that the web servers are overloaded with user requests due to inefficient application design, and
their CPU utilization is generally above 75% during the working day. It is found that the majority of the
CPU cycles are spent executing user requests.

The network engineering team suggests deploying a local load balancing product and increasing the
number of servers dedicated to each application. The local load balancer is placed into service in front of
the web servers, and the number of web application servers dedicated to each application is changed from
one to four.

The load balancer accepts user requests, examines which application these requests are for and chooses the
best server to handle the request based on the selected load balancing policy. All of the request
examination and dispatch occurs with little added latency, and the average CPU utilization of each server is
now 15%. In general, the users' requests are now satisfied quicker than they were on the mainframe.

Over a period of a couple of more months, the team analyzes the statistical information gathered by the
load balancer, and the team decides they will need to add an average of (3) more servers per quarter to keep
up with the increasing demand. Adding these servers will be a simple matter of physically installing them
and their software, and reconfiguring the load balancer to recognize they are now available to dispatch
application requests to.

There are a growing number of applications similar to the above example where performance scalability
is vital. These are usually applications where the users cross the Internet to access the service. In such
situations, there are billions of potential users. If you get known as a “hot” site, the demand can increase
by orders of magnitude in a matter of months, weeks, or even days. While researching this report, the
1999 Masters golf tournament was being played. We know from the architects that the web site providing
updates on the Masters was getting 5,000 to 10,000 hits per second (peak). And that’s from a bunch of
golfers, who aren’t the twitchiest group in the world. One can imagine other events, popular sites, etc.
that could potentially excite a demand of 50,000 or 100,000 hits per second.

With VRM, the content servers should never be the system bottleneck. Other elements of the system
which are more expensive or difficult to scale should be the bottleneck – the database server, high cost
application servers, or WAN bandwidth.

Do Not Duplicate 100 Research Report 99001_v3.0

In the future, even WAN bandwidth may fall off the list. Bandwidth in the LAN has jumped up in recent
years due to switching, and now huge increases in WAN bandwidth are also forthcoming. This is most
apparent at co-location/hosting sites, where OC-48s are being installed as fast as possible and OC-192s
are being planned. Once this bandwidth is in place, co-locators will “sell” the bandwidth to users
differently than they do now, offering one level of pricing for a fixed amount of bandwidth. They will
also offer support for peak loads well beyond the fixed contract, to enable their customers to handle the
more dynamic, bursty load patterns typical of the Internet.

Another thing that should never be the system bottleneck is the VRM system itself. How will VRM
systems scale to meet future demands? Riding the Intel processor curve to higher performance is not the
answer. That will help, but Internet usage and WAN bandwidth growth is far outpacing processor
technology advancements. When you think about it, that’s why server load balancing is needed in the
first place.

An increasing number of applications will require VRM performance greater than a single CPU-based
scheduler can provide. We believe these applications will require multi-processing in some form or
another. Now, don’t assume that multi-processing for scheduler scalability implies a particular product
category. There are existence proofs today that one can attain such scalability in each of the product
categories: Software, SOAS, and Switching VRMs. Look for all the vendors to replicate these
approaches or develop their own unique approach. You may not need the scale today, but who knows
about tomorrow?

11.1 Setting Performance Goals
The key metric of site performance is user experience. That experience is a complex mixture of the
quality of the information on the site, how it is organized, the user’s visceral reaction to how the
information is presented, and the performance of the site. It is often difficult to separate the performance
aspect of the user experience from the others.

But an attempt should be made to define some high level metric, for which quality goals can be set. We
generally call this metric Application Response Time (ART). The target should be established from the
client’s perspective. But a site-level component to ART should then be derived (after allocating some

WAN Bandwidth
Provisioning

Moore’s Law

Internet UsageYou are here.

Time

Do Not Duplicate 101 Research Report 99001_v3.0

time for traversing the network to get to the site, which may include the Internet). The specifics of the
ART metric depend heavily on the application. It may be measured as the time required to download a
page. It may be the time required making a database query. It may be the time required executing a
search. It may be the time required downloading a file. Or it may be some combination or sequence of
actions that results in the completion of a “session.” However, it makes no sense to establish a quality
metric that can’t be measured, so depending on the monitoring tools or services available to you, you
may be limited in your choices of defining an ART specific to your function. Just get as close as
possible.

11.2 Allocating Performance Requirements
11.2.1 Example Application
For illustrative purposes in this section, we are going to analyze the following application environment.

• Dominated by requests for static content (web pages)

• HTTP 1.0

• The average web page has 10 objects and the average object size is 8KB

11.2.2 Evaluating The Contribution of system Elements to Overall Performance
There are many factors that determine overall system response times. Some of these are:

• Wide Area Network (WAN) latency and throughput

• Client performance

• Application server capacity

• Database and/or file server capacity

• Web (Content) server capacity

• VRM scheduler scheduling rate, throughput, and capacity

Other components, such as routers or LAN hubs/switches are rarely system bottlenecks. If they are, a few
well-placed dollars can solve that.

We’ll talk about each of the items in the list above in sub-sections which follow, but first a few overall
words on the philosophy of designing to meet performance requirements:

Our approach is generally to make sure that the system components that cause the bottlenecks are either
the most expensive portions of the system or those that are inherently out of your design control. For
instance, database servers are generally expensive and, if heavily used, can easily be the component that
limits overall site performance and capacity. If that’s the case, the design goal for the rest of the
components is to make sure that they perform at least slightly better than the database server so that the
capacity that is available on the database server is 100% utilized.

Often, it’s not as simple as this. There may be several components that can be the system bottleneck at
different times based on different load and usage conditions. In general, however, one can say this – the
content servers and the VRM system itself should rarely be the system bottleneck. Except for under
some unique situations related to persistency, VRM provides you the ability to add inexpensive content

Do Not Duplicate 102 Research Report 99001_v3.0

servers so there can always be a little extra capacity at that level of the hierarchy. The VRM scheduler
itself can almost always be scaled so that it is not the bottleneck (see the section below). Therefore, it is
usually the WAN, the database server, or the application servers that are the system bottleneck.

Wide Area Network (WAN) and Web Server Latency
WAN latency can be a significant factor in end-to-end response times. Latency includes store-and
forward delays on client and server access links, fixed network propagation delays due to both distance
and equipment latencies, and variable network delays due to congestion. Latency impacts performance in
a variety of ways:

• Since HTTP doesn’t kick in until the TCP handshaking is completed, there is an initial set up delay
while packets must traverse the network three times (see the diagram below)

• The first GET provided by the client retrieves the HTML index file for the desired page
• Once the index file is retrieved, the client can then launch a set of TCP connection requests in order to

retrieve each object indicated by the index file. These requests can occur relatively simultaneously,
but an additional TCP handshaking delay is experienced

• Even though the TCP requests and ensuing GET requests can be launched simultaneously, the
responses must queue up to go over the server and client access links

The diagram below shows a simplified view of the packet interactions that occur over a network in order
to retrieve a web page.

Client ServerNetwork

Server access link store-and-
forward delay

Client access link store-and-
forward delay

 SYN

SYN ACK

ACK ACK

HTTP GET (/index)

Return /index

 SYNs (1 per object required)

SYN ACKs (1 per SYN)

 ACK ACKs

HTTP GET (1 per object)

Data frames (~ 8 KB, may be 14-30 frames)
Receive ACKs (small, to keep data coming)

FIN handshaking

Start

End

� Propagation delays (speed-of-light, equipment)
� Congestion and queuing delays

content
retieval

content
retieval

Do Not Duplicate 103 Research Report 99001_v3.0

Access Link store-and forward delay depends on the access speed and frame size. Some approximate
numbers:

Effective Access Link
Speed

Store-and Forward Delay:
64 Byte packet

Store-and-Forward Delay:
512 Byte packet

28.8 Kbps 18 msec 144 msec

V.90 (receive) 10 msec 80 msec

128 Kbps 4 msec 32 msec

512 Kbps (Fractional T1) 1 msec 8 msec

1.536 Mbps (T1) 0.33 msec 2.5 msec

45 Mbps (DS-3) 11 usec 88 usec

152 Mbps (OC-3) 3 usec 24 usec

608 Mbps (OC-12) 0.8 usec 6.4 usec

2.4 Gbps (OC-48) 0.2 usec 1.6 usec

For high-speed terrestrial domestic networks, you can approximate these delays using the following rule-
of-thumb:

Delay = (# miles)*(1 msec/100 miles)
= 20 msec for 2000 miles

This factor can be much higher for international links, up to 200 msec. If satellite links are used, add 600
msec.

For the application example being used in this section, you can put this all together to create the following
equation for the overall Application Response Time. The italicized items are those that you as a site
architect whose users are accessing you over the Internet can do something about.

= 10*(Fixed Network Delay + Excess Network Delay)
+ 2*Server Content Retrieval Delay
+ 36*Client Access Link Delay (small packets)
+ 36*Server Access Link Delay (small packets)
+ 30*Client Access Link Delay (large packets)
+ 30*Server Access Link Delay (large packets)

If the client is using a V.90 modem, there is no Excess Network Delay, your access link speed is DS-3,
this comes out to be about 3 seconds, plus 2*Server Content Retrieval Delay6. Most of this is due to the
store-and-forward delays of the returned content (large packets) over the client access link. If the client is
off a T1 pipe, the equation changes to about 300 msec plus 2*Server Content Retrieval Delay.

Depending on the nature of the application, it might be useful to set three seconds as a target for
Application Response Time. If ART is measured, locally (at the site) the WAN components need to be

6 These numbers assume that the client already has the IP address of the V_IP and does not need to proceed the process with a DNS look-up.

The equation also presumes that the web server delay in setting up TCP connections is negligible.

Using HTTP 1.1 would not improve performance related to WAN latencies, because the dominant delays are set-up and store-and forward delays
over access links.

Do Not Duplicate 104 Research Report 99001_v3.0

subtracted from the target. For T1 client access speeds, the equation above says to subtract off 300 msec,
but we like to add in another factor of 800 msec on top of that to take into account variable latency over
the Internet due to congestion7. That means that for this example, the local Server Content Retrieval
Delay target (which can be measured by Active Content Verification) becomes 0.95 seconds. This
should be a pretty easy target to meet if the VRM system is able to keep all content servers from being
saturated.

This is just one example of how to look at some of the systems parameters that influence overall end-to-
end performance and how to set performance targets for the portions of the system you control. The next
few sections discuss a few more complicating factors.

Client Performance
In Internet-related applications, there is not much you can do about client-side performance. For
Intranets, make sure the clients have enough memory so that they don’t have to perform a lot of
unnecessary hard drive swaps.

In general, you’ll find that the time applications spend in the client is less than 2% of the overall time.

Web (Content) Server Capacity
The web server will add some delay, to process packets and to either access content or pass on a request
to an application. Content access is much faster if there is a local cache hit. If you can do anything to
increase the percentage of cache hits, go for it. But you can’t count on anything close to 100% cache hits,
so you need to design your system so that performance objectives are met even when there is not a cache
hit.

Web server delays can go up significantly if the web server starts to run out of CPU, available memory, or
disk I/O resource. When possible, use secondary, threshold-based policy rules to identify servers that are
nearing saturation states and temporarily stop the flow of new requests to them (consistent with the
persistency policies, of course). This implies there is another server to send those request to. In theory,
VRM allows you to add enough content servers such that this is always true. Use trend analysis
applications to help you plan capacity and add content server resource just before it is needed.

Usually, content servers should not be a big contributor to delay or be the limiting element of overall
capacity.

Database, Application Server and/or File Server Capacity
Database servers, application servers and file servers tend to be slower than web servers, and are more
costly to upgrade to higher speeds, if an upgrade is possible at all. In a well-designed system, these
components will be the devices that contribute the most to the overall Application Response Time. So for
dynamic environments where such components are used, it is important to calibrate the performance of
these devices and set user performance expectations. You want to make sure that you don’t set ART
targets, for instance, that are not achievable without kicking off Preferential Services functions, or else the
system will go into a tailspin trying to achieve the impossible.

7 Look at this as the combined effect of Internet congestion and access link congestion. However, for high priority users you can minimize the
component due to access link congestion by prioritization or (even better) bandwidth management via rate shaping.

Do Not Duplicate 105 Research Report 99001_v3.0

11.3 Determining VRM Scheduler Specifications
 The ability for a VRM system to speed up application response time is directly related to the system's
throughput and session rate under load. The throughput of the system is measured by its maximum bit-
rate forwarding capacity while performing VRM functions plus background tasks and management
functions. In other words, how many Mbits per second can the VRM system forward through from user-
to-server, and from server-to-user while processing sessions and other system functions, like routing,
SNMP, etc.

The session rate of the system is measured as the total number of user session requests the system can
process in a given amount of time, with a given number of options enabled. In other words, how many
sessions per second can the system accept and perform the necessary VRM mechanisms on? This metric
becomes important when you perform delayed binding or if the scheduler monitors TCP connections in
order to unbind complete connections as fast as possible for granular load balancing. The session rate
metric is not at all important if the load balancing mechanism is just based on Source IP addresses.

Generally, you want the VRM throughput and session rate to exceed the capability of other elements of
the system so that the scheduler performance itself is not a factor in overall performance. One of the
easier system elements to match scheduler performance to is WAN access link bandwidth. For
throughput, if the scheduler capability is 20% above the WAN access link capability with all required
features and functions turned on and operating, it shouldn’t be the limiting factor. However, take into
account that you may add more WAN bandwidth next week or next year as needs warrant. If you co-
locate, and as your provider starts to add in more OC-3, OC-12, and OC-48 links, it will be possible to
afford as much bandwidth as you need, both for normal operations and occasional peak periods.

The WAN bandwidth also has an impact on the session rate requirement. The session rate requirement is
greatest for HTTP, static content-oriented sites. In HTTP 1.0, each GET is associated with a TCP
connection. So the average file size returned by an HTTP GET is a major influence on the steady state
arrival rate of new TCP connection requests (from existing users). The table below shows approximate
maximum steady state connection request rates as a function of WAN speed and average returned file
size.

WAN Link 4 KB File 8 KB File (typical) 750 KB file (download)
Fractional T1 (512Kb) 16 connections/sec 8 connections/sec 1 download every 12 seconds

T1 48 connections/sec 24 connections/sec 1 download every 4 seconds

DS-3 1400 connections/sec 700 connections/sec 7.5 downloads/sec

OC-3 4500 connections/sec 2250 connections/sec 25 downloads/sec

OC-12 18000 connections/sec 9000 connections/sec 100 downloads/sec

We like to use 8KB as an average file size.

Do Not Duplicate 106 Research Report 99001_v3.0

When assessing VRM vendor options in light of the above information, please remember the following:

• Vendors (and test labs) provide test data under the best possible conditions, with no added value
features turned on, optimal average frame sizes, etc. You need to either make sure they are providing
performance data that is relevant to your application, or test it yourself. The VRM system that is
performing immediate binding and MAC Address Translation will have better performance than one
performing NAT, which will have better performance than ones performing delayed binding. If you
turn on…

• Active Content Verification and/or Dynamic Application Verification
• multi-site agent functions
• SSL Session Tracking
• cookie-based persistency
• multi-site re-direction
• bandwidth management
• firewalling
• capacity monitoring

… or a whole bunch of other value-added features, performance will reduce as well (although the
system may operate better due to the value of the features). We have found that real-world
performance can easily be 10x less than the best “hero” numbers provided by vendors or promoted by
various test labs doing fairly simple tests. If a vendor gives you their numbers when performing
100% delayed binding, that gets you closer to a usable number. De-rate that by another 1.5x to take
into account the overhead of value-added features

• The numbers in the table above quantify the request arrival rate if requests are exactly matched to the
capacity of the site to return the requested data. In reality, in the long run this balance will be
achieved, but at any particular moment, a burst of requests may arrive which can only be responded to
slowly due to WAN link saturation. You still want your site to be able to handle these peaks, because
in the next second the arrival rate of new requests may diminish, allowing the system to “catch up.”
Therefore we recommend a scheduler design target of 1.5x the steady state rate, to handle such short
term peaks

• You may have a mix of objects and file sizes. Even though 8KB is the average, a short term burst of
requests for 4KB files could overload the system if designed solely for 8KB files. We recommend
another 1.5x safety factor to take file size variation into account

11.3.1 Recommended Scheduler Session Rate Specifications
Our overall recommendations for session rate (for HTTP-oriented sites) is:

WAN Access Link Speed Recommended Session Rate Target Vendor Performance
Number (w/ Delayed Binding)

T1 100 connections/sec 150 connections/sec

DS-3 1600 connections/sec 2400 connections/sec

OC-3 5000 connections/sec 7500 connections/sec

OC-12 20000 connections/sec 30000 connections/sec

Do Not Duplicate 107 Research Report 99001_v3.0

These numbers don’t have to be achieved with a single scheduler. If the vendor supports the Active-
Active redundancy feature (see the Redundancy section), then multiple schedulers can conspire to meet
the overall system requirement.

Also note that if the site supports a significant amount of longer term TCP sessions, due to FTP traffic,
HTTP-based software downloads, UDP traffic, or the use of HTTP 1.1, the required session rate can be
reduced dramatically. Each of these applications eats up bandwidth but does not result in lots of
connection requests.

11.3.2 Scheduler Capacity
The other key issue for schedulers is capacity - how many simultaneous active and inactive users can the
VRM system support. How many simultaneous TCP and persistent sessions can the system support?
How many users can the system "remember" - even if they are inactive?

The capacity of the VRM system must be looked at from several angles.

As mentioned above, there is user capacity, which is the number of users that can simultaneously be
processed and have state maintained within the VRM product. This is totally driven by the amount of
memory available to the VRM unit for maintaining user-server state information, and is usually expressed
in terms of numbers of simultaneous connections or users.

Some policies and mechanisms lend themselves to more efficient use of memory than others. The most
efficient is IP Source Binding with Address Ranges. The only thing the VRM needs to keep track of is a
relatively small number of address masks. Hundreds or thousands of users may actively be using the site
with-in each mask, but the VRM system does not care about that. Of course, load balancing even-ness is
sacrificed to achieve this level of memory use efficiency. Less efficiency, but greater granularity is
achieved as you work through the following options (in order):

• 32 bit source address binding

• source ID binding (source address plus source port)

• source ID binding with TCP connection monitoring (SYN/FIN)

• Delayed binding

• SSL Session ID Tracking

In addition, a number of multi-site, feature and management options can influence the amount of memory
available for tracking user session. Examples include keeping tables of delays from sits to IP addresses,
per user/server/service traffic statistics, and keeping state for bandwidth management and firewalling.

It’s important that you get a feel for the number of simultaneous connections a VRM solution can support
with all the policies, mechanisms, and features turned on that you need to operate your site the way you
want to. All vendor specifications are measured as the maximum number with no memory-intensive
features enabled.

There is also feature capacity, a term we use to reflect how many services can be configured
simultaneously, such as the number of Virtual Servers, server farms or groups, servers within the groups,
plus all the additional features that you may find in a VRM product. Again, the numbers of configurable
features and elements will largely be driven by the amount of memory, and FLASH, NVRAM or other

Do Not Duplicate 108 Research Report 99001_v3.0

persistent storage. From our survey of the VRM product landscape, all of the VRM products provide
more than adequate feature capacity for the individual user or company. The only type of VRM customer
that should inspect feature capacity is the Hosting or Co-location Service Provider, who potentially wants
to configure tens or hundreds of their own customers behind the VRM products they install.

Capacity is an area where software solutions and products built on PC-based platforms have an edge over
embedded systems and switching VRMs. If you find you don’t have enough capacity, you can generally
just quickly add a big block of low cost memory to the PC-based products.

11.4 VRM System Architectures
The metrics of performance and capacity dependent largely upon the architecture on which the VRM
system is built, and the feature capacities of the VRM product.

11.4.1 Central CPU/Memory Systems
The majority of VRM systems fall under this category. The product may be what we call a "software-on-
a-stick", (see the Acuitive VRM Vendor research report) which is nothing more than a PC running a
flavor of UNIX OS with VRM functions running on top of it. It may be a switch with a centralized CPU
to perform all the VRM functions. It may be an embedded system that is somewhere between a SOAS
box and a switch (or router).

All of the interesting VRM functions in these products execute on a central CPU, which has some amount
of central memory available to it. The speed of the CPU, the user request rate, the number of interfaces in
the VRM product, and the number of VRM options turned on will all affect the performance and latency
of the system.

These metrics all affect a central CPU system's performance:
• CPU speed

• Code space: how many functions are implemented at the kernel/driver levels and how many are
executed in user space?

• Memory architecture ; memory speed; amount of memory

• numbers of simultaneous user requests; rate of user requests

• numbers of activated VRM options

• numbers of related VRM functions (bandwidth management)

• numbers of background functions (routing protocols, management functions)

The user capacity of the VRM system is directly related to the amount of memory that the VRM system
has installed. Details of each session from a user to a server through a VRM system must be recorded in a
state table in memory. Memory is also used for frame/session buffering, executing code, storing routing
tables, and other functions. If the VRM system must also maintain user persistency information for a
long period of time (minutes), then the system must be able to maintain user state information for both
existing sessions as well as past user sessions.

Do Not Duplicate 109 Research Report 99001_v3.0

11.4.2 Embedded Multi-processing Systems
At least one VRM switch vendor has an architecture that uses CPUs embedded in each switch port ASIC
to perform VRM processing. It allows the distribution of user-side processing to the switch ports that
have user requests flowing through them as well as the distribution of server-side processing to the switch
ports that are attached to servers. As more ports are connected to the user-side network or to the servers,
the more total CPU horsepower is added for session processing.

There is a price for everything, however. Just as with central CPU systems, the number of VRM options
enabled and the amount of memory available will serve to limit the performance and capacity of a
distributed architecture. Sharing state information between distributed CPUs with their own memory can
also be a burden. If the memory architecture is distributed, then available memory in the system may not
necessarily be pooled together, and thus you may be limited to what is available on the portions of the
system that are active.

11.4.3 Hardware Assisted Systems
While most of the value and interesting features of a VRM product are based on software, it is possible to
enhance a VRM system by accelerating some low-level functions in specialized hardware. For instance,
once a user TCP session has been associated with a particular server, the VRM system may then be doing
simple adjustments to IP addresses and checksum values on each frame thereafter. It would be very easy
to take this frame adjustment and forwarding process and burn it into an ASIC to significantly speed the
process up.

As more low-level VRM functions become well understood, we see them moving into hardware (i.e.
ASICs or FPGAs) to enhance their performance and lower the function cost. Just as the IP Forwarding
process has moved from software-centric routers to hardware-centric L3 switches, we see the same
occurring with VRM functions as well. The challenge for any vendor with these goals will be to ensure
that the software flexibility and enhancement capability still exists while the low-level repeatable
functions are sped up and cheap.

There are at least a few startup companies, such as Netboost and Network Engines that are working to
create "accelerator" products that can be employed by companies that build network-centric software
solutions. Vendors that create VRM, firewall and bandwidth management products are all key target
customers for these accelerator companies. To our knowledge, no significant use of these accelerators
has taken place yet. To a great extent, the use of these accelerators will largely depend on their value and
cost as compared to the general purpose CPU system improvements (go Intel!) and the ability for some of
the switch vendors to burn functions in ASICs.

Do Not Duplicate 110 Research Report 99001_v3.0

1122 NNoonn--SSeerrvveerr LLooaadd BBaallaanncciinngg
What's a non-server? What's non-server load balancing? We use the term to generally refer to the use of
VRM systems on devices which may not be applications servers, such as web cache servers that are "data
mirrors," or may not be a server at all such as firewalls or routers. The following treatments of a couple of
different non-server load balancing scenarios are by no means comprehensive, but are provided to give
the reader a better understanding of the issues involved.

12.1 Web Cache Servers
As the usage of Internet resources grows, available bandwidth for organizations and service providers on
the Internet becomes increasingly valuable. In some countries, the cost of increasing bandwidth to the
Internet is extremely high.

Therefore, solutions for caching Web information, such as Cache (Proxy) servers, are becoming more and
more popular. Typically, such solutions cache Web data when its first accessed by an end user, and reuses
it when another user requests the same information. This saves time for the end user and bandwidth for
the organization.

Caching solutions are based on the assumption that large groups of end users share common interests, and
therefore the same information will often be accessed more than once. Caching information from dynamic
site applications (for example, applications that have content created on the fly from an
application/database) is pointless.

Content Caching Servers come in three forms, Forward Proxy Caches, Transparent Proxy Caches and
Reverse Proxy Caches.

12.1.1 Forward Proxy Cache Server
HTTP 1.0 and later specifies that proxies may be configured in users' browsers so that they may act on
behalf of a user to retrieve objects via HTTP (HTML, gifs, jpgs, sounds, etc.).

A proxied URL request includes a host header:url pathname such as
http://www.yahoo.com/dailynews/1298/index.html. This is called an Absolute URI. This
informs the proxy not only of what file to retrieve, but where to retrieve it. The proxy does DNS lookup,
TCP connection, data retrieval, etc.

Proxy cache servers are typically deployed where users' browsers are configured to use the Proxy for all
HTTP requests. These types of proxy servers, also called Forward Proxy Servers also happen to be
caching the objects that users request, so that when a duplicate request comes in, the object can be
returned locally from cache instead of having to come from the origin server on the 'Net.

Enterprises mostly use Proxy servers (if they use caches at all). So far, there has been little uptake (thus
far) by enterprises on caching technology. It mostly depends on their prior security implementations
(were they using proxy servers anyway?) and their WAN bandwidth consumption level of pain from users
accessing the 'Net. There has been more penetration, relatively, in Europe than the U.S. due to the higher
WAN bandwidth costs in Europe.

Do Not Duplicate 111 Research Report 99001_v3.0

12.1.2 Transparent Cache Server
Transparent proxy servers do not require end system (browser) configuration. The browser believes it is
directly accessing the content it desires and does so by sending out non-proxied requests. A non-proxied
(typical) URL request includes only the URL pathname, because it is assumed that a TCP connection has
been made to the original server from where the data will be retrieved. This is called the Relative URI.

Transparent proxy cache servers are different from proxy cache servers in the following ways:

• they are capable of re-assembling a relative URL into an absolute URI by taking the host header
which appears later in the HTTP request from the client

• they can typically accept in any IP frame into their stack, regardless of the IPDA. This allows the
frame to be processed with specific filtering software to determine if the frame is an HTTP request
and should be handed off to the cache. Keep in mind that the IPDA received by the cache is going to
be the IPDA of the origin server that the client's browser resolved via DNS

• they typically act as IP forwarding devices (i.e. a router), where they can be interpreted as the "next
hop" by clients or routers, so that all frames get sent through them (for inspection). If they don’t act
as a router, they must be physically deployed so that they interdict all traffic flows

If an ISP has deployed caching technology, most have done so with transparent caching solutions. As
transparent caching solutions mature (they are relatively new – twelve months or so), they may catch on
in the Enterprise as well, to eliminate the management costs of configuring all browsers.

12.1.3 Reverse Proxy Cache Servers
Reverse Proxy Cache Servers also do not require end system (browser) configuration. The browser
believes it is directly accessing the content it desires by sending out requests directly to the cache server.
The browser resolves a hostname (www.reversed.com) to an IP address (123.123.123.10), which
corresponds to an IP address within the Reverse cache. The browser then opens a TCP connection to the
cache, and issues an HTTP request. The request URL (a relative URL with a simple path/filename) is
inspected, and the cache server uses the following decision sequence to determine how to respond back to
the browser:

• Is the URL specifically configured within the cache as a “bypass URL?” For instance, the cache
might be configured to automatically forward any request with “cgi” anywhere the URL

• If the request is for locally cached content, the cache returns the requested content to the client

• If the request is for cacheable content that is not locally cached, the cache server examines the its
configuration parameters to determine which server is responsible for handling the request. A URL-
to-Server map will be created on the cache server, which might look something like:

• /marketing/ à marketing.reversed.com/docs/

• /finance/ à finance.reversed.com/public/

• /hr/ à humres.reversed.com/pubdocs/

• / à wwwserver.reversed.com/

Do Not Duplicate 112 Research Report 99001_v3.0

This content mapping allows the cache to quickly determine which server needs to handle any
application request, and it tells the cache server which origin server has all the static content it needs
to refresh its cache. Thus, after evaluating the URL, the request is forwarded to the appropriate
server, the response is stored locally, and the data is forwarded to the browser. That content is now
cached for future requests for the same content

• If the request is for non-cacheable content (either by configuration or by definition), the cache
evaluates the same content-server map, and forwards the request to the appropriate server. The
response is then forwarded to the user

In the figure above, a Reverse Proxy Cache Server is setup in front of a web server farm. The Blue client
makes a request for cacheable content, and receives a direct response back from the Proxy Cache, which
retrieves the content from its local disk. The Red client makes an application, or non-cacheable request,
which is still processed by the Reverse Proxy cache. It parses the request, and forwards it to the web
server farm, which responds back to the Proxy, which in turn responds back to the client.

Reverse proxy cache servers are different from proxy cache servers in the following ways:

• they must be specifically configured (i.e. statically configured) to recognize which “real” servers
process which URLs

• they are specifically communicated with via their own IP address, but receive a Relative URI as
opposed to an Absolute URI.

12.1.4 What Can’t Be Cached?
There are several types of client "requests" which are fundamentally not cacheable. Examples include:

• requests for dynamically generated information (quotes.html?symbol=
bay&symbol=csco&symbol=inkt&symbol=dow) via CGI or ASP applications

• HTTP POSTS and PUTS

HTTP responses may be tagged with meta-tags, which "prevent" a cache server from caching content, or
may be labeled with expiration tags where the expiration timer is immediate. However, some cache

Network

Client

Client

Router

Reverse Proxy
Cache Server

Web Server

Content
and Apps

Web Server

Web Server

request forcacheable content

Content
and Apps

Content
and Apps

Cached
Content

data returneddirect from cache cache
refresh

request for

application data

app data proxied

through cache
proxy request for
app data

app data returned
to proxy cache

Do Not Duplicate 113 Research Report 99001_v3.0

software can be configured to ignore such tags, so the use of these cache-busting techniques might be a
non-starter. Hopefully the work of the industry and the IETF to educate content providers on how to tune
their content tags will continue. This may result in a nice balance between the ability to cache content
that doesn’t change that often, and the ability to quickly recognize and forward appropriate requests to the
origin sites.

12.1.5 Cache Server Clustering and the Internet Cache Protocol (ICP)
Most cache servers support some form of clustering (peered or hierarchical) where multiple systems may
act as a single "cache group." ICP defines hierarchical caches. It provides a means for cache servers to
communicate with each other to prevent caching inefficiencies. There are two types of hierarchical
caches: sibling and parent-child. In a sibling design, a cache that doesn't have a requested page requests
the data from all other caches in the group. In a parent-child design, the cache hierarchy is vertical: the
child cache only asks its parent for a page. Both designs use ICP version 2, specified in RFCs 2186 and
2187.

12.1.6 Problems With The Use of Cache Servers

Single Cache Servers
• Single Point of Failure: Using a single proxy cache server creates a single point of failure; if the

server is down, all users configured to it cannot access the Internet. If the Transparent proxy is
installed in-line as a router, then its failure will cause significant disruption. All traffic that would
normally flow through it will be dropped, which may be all traffic to/from the Internet

• Scalability: All traffic must path through the cache servers (whether proxy or transparent proxy).
This creates an obvious bottleneck

Multiple Proxy Cache Servers
Using more than one cache server creates additional problems that need to be dealt with in order to
optimize the use of Internet caching.

• Cost of Operations and Lack of Scalability. For proxy cache servers, when more than one cache
server is used, end users are divided into groups according to the number of cache servers, with each
group of users being configured to one of the cache servers. As new cache servers are added, large
groups of end user browsers need to be re-configured to balance the number of people “pointing to”
each cache server. Since each user is configured to a single cache server, there is no relation between
the caching operations on each server. If we consider the assumption that groups of users, with
common interest areas, often access the same Web information, then such use of multiple cache
servers will result in the caching of some Web pages more than once on a number of different cache
servers. This situation results in inefficient use of caching disk space

• Lack of Fault Tolerance. Once end users are configured to a specific cache server they do not
benefit from the other cache servers on the site. For example, redundancy and fault tolerance are
absent between the cache servers despite the investment of deploying more than one cache server.
Thus, if one cache server fails the result is the same as having a single cache server, meaning that
users can’t access the Internet while the server is down. There are semi-automated techniques within
various browsers and caches to combat this problem, but it’s unclear if they work in a reliable,
scaleable manner

Do Not Duplicate 114 Research Report 99001_v3.0

• ICP Limitations. There are significant drawbacks to using ICP. First, it’s not supported by all cache
servers, therefore there might be a backward compatibility problem when adding a new cache server
that needs to operate with an existing one. In addition, multiple cache servers that operate together
through ICP are far less efficient than cache servers that are managed by a cache-directing device.
This is because for each request, the cache servers need to communicate with each other to ascertain
that the requested data has been previously cached, or not. On the other hand, a cache-directing
device may know where the requested data should be cached, and will be able to immediately direct
the request to the correct server. Another limitation of ICP operation is that it does not offer a solution
for load sharing and balancing between cache servers, and therefore does not ensure maximal cache
server performance

Multiple Transparent Cache Servers
The transparent cache servers have no way of directing traffic to one another to ensure traffic load
balancing across the servers. They are only capable of using a clustering protocol to balance the lookup
and proxy load. An external function is needed to load balance traffic and requests to multiple transparent
cache servers.

12.1.7 Cache Director Technology
A Cache Director is a generic name used to describe a network device that intercepts HTTP requests
from end users, redirecting them to one or more cache servers. Such a device should be transparent both
to the end users accessing the Internet and to the caching technology deployed on the network.

Three types of Cache Directors have evolved over the past 12-18 months:

Proxy Cache Server Directors: These devices enable a level of scalability and redundancy for proxy
cache servers, without requiring browsers to be re-configured to utilize multiple proxies. As requests
come into the single IP DA the browsers are configured for, they are forwarded to a chosen proxy server
for service. Value-add can be associated with monitoring proxy server health and taking out of service or
overloaded servers out of the mix, and examining URLs and partitioning the proxy servers into “domains”
so they don’t all have to cache the entire universe of content. This type of Cache Director is somewhat
similar to Server Load Balancing as the Cache Address takes on the role of the “Virtual Service IP
Address.”

Transparent Proxy Cache Server Directors : These are devices that simply intercept requests to a
specified port (usually Port 80) and send them to a Transparent Proxy Cache Server. The advantage of
these devices is that it gets the Transparent Proxy Cache servers out of the path of non-cacheable traffic
(e.g. FTP, SMTP, POP3, DNS). Value add capabilities in such devices could include re-directing based
on IP DA and/or DA rules, and examining requests and not forwarding requests for dynamic or other non-
cacheable traffic. Re-direction to the Transparent cache servers is generally performed by MAC Address
Translation (not NAT) or IP Encapsulation.

Proxy-to-Transparent Proxy Converters: These devices turn clusters of proxy cache servers into
“apparent” transparent proxy clusters, by off-loading the routing, NAT and absolute URI re-generation
functions from the cache servers, which means that standard proxy cache servers can be used, without
requiring browser re-configuration to enable caching. This allows the cache server vendors to focus on a
single type of cache technology development and ignore all the network and protocol “plumbing” issues
while at the same time allowing the ISP or Enterprise customer the freedom and simpler operations of a
transparent proxy system.

Do Not Duplicate 115 Research Report 99001_v3.0

12.1.8 Router-based Cache Director Technology
The predominant method has been to configure a filtering access list in a Cisco router, which will
recognize TCP Destination Port 80 frames and send them to an alternate "next hop," which is a cache on a
subnet directly attached to the filtering router.

To enable multiple cache server operation, Cisco has their own proprietary implementation to allow
cooperation between their Cache Engine and their routers, with a registration protocol called WCCP. A
WCCP-capable cache registers itself with a local router (and also use WCCP for keep-alives), that will
dynamically start to send HTTP requests to it. If the cache goes away, the router stops sending requests
to it.

12.1.9 VRM-based Cache Director Requirements
Some ISPs have chosen VRM products to perform the HTTP interception/redirection/load balancing
function to alleviate the above implementation concerns.

Devices such as these should have the following properties:

• Eliminate End-User Configuration. A Cache Director should eliminate all the configuration
procedures in the end user’s browser. It should transparently intercept all users’ requests to the
Internet and direct them to one or more cache servers

§ Eliminate Single Points of Failure. To ensure uninterrupted access to the Internet and maximum
cache usage, the cache director should be able to detect any type of cache server failure, such as H/W
or S/W, and direct cache requests to another cache server when a server is out of service. In cases
where all the cache servers are out of service, the cache director should redirect the request directly to
the Internet

• Provide Control over Caching Policies. Allow the systems manager to define which users will
access the Internet directly and which will use caching facilities. This means that the inconvenience
of configuring individual users can be avoided, and users can’t change the definition themselves

• Enable Caching Scalability. Allow for additional cache servers to be deployed, increasing the
effective cache service and storage bandwidth, with no end-user browser re-configuration required.
Achieve caching efficiency by:
§ Directing requests for previously cached pages to the cache server holding the cached data
§ Directing new requests to the least loaded cache server
§ Ensuring, over time, that cached pages are spread evenly across the cache servers for efficient

load sharing; meaning, taking into account the popularity of specific cached pages

• Support Cache Director Redundancy. One of the reasons for using a cache director device is to
avoid a single point of failure on the cache server. Moving the single point of failure to the cache
director is therefore undesirable. In order to ensure complete, uninterrupted and efficient Internet
access, one can implement a redundant configuration of cache directors. Such a device needs to be
capable of having a redundant unit that takes over automatically once the other units fails to operate.
This means, it has to recognize not only a functional failure but also a problem in the network links
that are disrupting operation

Do Not Duplicate 116 Research Report 99001_v3.0

• Flexibility in Cache Servers Topology. Topological limitations such as having all the cache servers
residing on the same segment should not be imposed by the cache-directing device. The cache
director should be able to execute the same operations even if the servers are spread across the
network and sit behind routers

VRM Cache Director Technology – Transparent Proxy Caches
The technology behind VRM cache director technology is largely based on local VRM technology. The
biggest difference between local VRM technology and VRM transparent cache director technology is
“who owns the destination IP address.” In the case of local VRM technology, the VRM scheduler owns
the IP address (or at least rents it). Requests are directed at the VRM scheduler. In the case of
transparent cache directors, there is no Virtual IP address. User requests are sent to the Destination IP
associated with the site at which the desired content resides.

With transparent cache director technology, the VRM scheduler happens to be in a topologically
convenient place. It inspects requests as they pass through the VRM scheduler, inspecting the frames as
they go through to find and redirect HTTP requests.

VRM Cache Director Technology – Forward Proxy Caches
VRM technology for Proxy Caches is the same as one for web servers. TCP/HTTP requests will arrive at
a V_IP in a VRM scheduler, and will be issued among the available Proxy Caches. A basic VRM
scheduler will use a round robin or least connections policy to distribute requests, requiring the cache
servers to execute some clustering protocol to ensure only a single copy of any content is maintained
between all caches. A URL-capable scheduler would be able to parse the Absolute URI for the hostname
the client is attempting to retrieve data from, and would be able to send all requests for the same host to
the same cache.

HTTP to B

INTERNET

HTTP to A
HTTP to B

HTTP to C

Host A

Host B

Host C

Cache YCache X

Web Cache
Redirector

WCD Intercepts and
redirects to Caches

Do Not Duplicate 117 Research Report 99001_v3.0

Feedback
ACV or DAV should be used to poll cache server objects to ensure cache server availability.

Policies
Redirection typically occurs based on a simple policy of “redirect all frames with Destination TCP Port
80 to the cache farm.” The specific server will typically be chosen from the group of servers based on
either the destination IP address (which will be the original Internet host’s IP address) or based on
information found in the URL if URL parsing is enabled. Either server-selection policy will generally
result in the same cache server caching content for the same Internet host.

URL-parsing capable VRM schedulers are generally capable of determining what requests can be handled
by the cache, and what requests must go to the origin server, either by configuration (send any “cgi” to
the origin server) or by definition (send all POSTS to the origin server). They may be able to further
optimize cache farm usage by only caching specific desired content (like *.jpg, *.gif) and by ensuring the
same site’s content is cached by the same server by examining host headers. This technique will work
even if the “site” is represented by many IP addresses, such as in a multi-site environment that uses DNS
to issue multiple A-records for a site.

Additional policies may be useful, or required, to provide cache-bypass mechanisms for sites that should
not be cached, or to provide “opt-out cache bypass” capabilities for users that do not want their requests
passing through the cache.

Mechanisms
For transparent caches, the two most used mechanisms are MAT, where the destination MAC address of
the frames are translated, and IP Encapsulation, where the frames are encapsulated in another IP frame
that can be accepted by the cache’s IP stack. For URL-parsing caches, TPCD is the common mechanism,
combined with either of the above methods.

12.1.10 Thoughts on the Web Caching Market
Web Caching is a technology and set of solutions that we think is experiencing shifting importance and
methods of implementation. The majority of web caching takes place today in two places: on every
desktop computer with a browser, and in transit and access ISPs. Browsers employ caching directly on
the desktop to ensure that the user’s web experience is maximized and that the bandwidth required
accessing their popular destinations in minimized. Many ISPs employ caching today to minimize
bandwidth usage on high cost WAN links, and to ensure quicker response times to users.

But there are several issues that are working against the deployment of shared web caching:

• The legal and business issues surrounding web caching
• The availability of content distribution services from companies like Sandpiper Networks and

Akamai, who solve content hit rate reporting issues that basic web caching systems don’t solve
• Similarly, transit ISPs are beginning to deploy their own content distribution services that content

providers can rent time/space on
• The technical ability for content providers to prevent the caching of their content
• The cheapening of Internet bandwidth within the U.S.

We’re not sure how this sub-market is going to play out. The need to conserve bandwidth internationally
and the ability for users to connect to the Internet at speeds greater than 56Kbs will both drive the caching

Do Not Duplicate 118 Research Report 99001_v3.0

sub-market. But the ability to drive bits faster and faster across the world (or at least the U.S.) will serve
to deflate the need for caching, and it’s not clear that the enterprise customer needs to use caching to
conserve their Internet connection bandwidth. Without a problem (lack of bandwidth) and without a big
market (the enterprise), the caching market will have to evolve.

As mentioned in other sections, we like the use of web caches in a reverse proxy mode to create
inexpensive content sites, in multi-site VRM system deployments.

12.2 Firewall Load Balancing
Firewalls and security functions are an integral part of every Internet-attached network that we’ve ever
seen (well, every network we’ve seen). The firewall may be integrated within a router or switch as a
simple set of packet filters, providing basic security protection and traffic engineering functions for the
network beyond. It may be as complex as a combination stateful firewall-VPN tunnel that provides
security services for the entire network beyond the firewall, as well as establishing a DMZ network with
partial protection.

As such an integral part of every network, there is a clear requirement to make the firewall as robust a
component as possible. You have the same reliability goals for your firewall technology as you do for
any other network device. Various vendors have created firewall hot standby software that can be added
onto the firewall to create a redundant firewall system. However, VRM technology can come into play as
well, offering Active-Active firewall deployment scenarios and short failure-detect and failure-resolve
times.

Additionally, first tier firewall vendors such as Checkpoint continue to innovate their product lines,
adding other adjacent security and policy enforcement functions to provide their customers with the most
integrated capabilities possible, including:

• VPN services

• Intrusion detection and prevention

• Virus filtering

• SPAM filtering

These new capabilities, combined with the increasing bandwidth available on Internet links, are causing
the firewall platform scalability problems. Thus, another use for VRM.

Do Not Duplicate 119 Research Report 99001_v3.0

Examine the diagram below, which depicts the typical firewall deployment model.

Traffic from the clean network and the dirty network must pass through the firewall and its policy
enforcement systems. If the firewall is a stateful firewall, which maintains state information about each
user session flowing through the firewall, simply adding another firewall in parallel is not really possible.
Without some intelligent device controlling the flow of sessions through the firewall, there is no
guarantee that session flow through one firewall in the CleanàDirty direction will result in the same
firewall being used for the same sessions flowing in the DirtyàClean direction.

Thus, the requirement for an intelligent firewall load-balancing device was realized. This device must be
able to perform all the feedback, policy decisions and mechanisms that could be encountered with any
other VRM-enabled application. With a firewall VRM scheduler, the topology now looks like this:

External
Clients

Internal
Clients

Protected
Servers

Internet Server

Internet Server

Firewall

Clean
Network

Dirty
Network

External
Servers

Router

External
Clients

Internal
Clients

Protected
Servers

Internet Server

Internet Server

External
Servers

Firewall
VRM

Firewall
VRM

Firewall #1

Dirty
Network

Clean
Network

Do Not Duplicate 120 Research Report 99001_v3.0

Identifying Session Flows
Stateful firewalls must process all traffic between two particular communicating systems that are on each
side of the firewall. Thus, if an HTTP session is initiated by a Clean Client PC to a Dirty Internet Server
through Firewall #1, the traffic from ClientàServer and from ServeràClient must be processed by the
same firewall. We call communication sessions between systems on both sides of the firewall session
flows.

Frames that ingress the VRM from the Clean network, or the VRM from the Dirty network are classified
into session flows. These flows are balanced between both firewalls, with each VRM scheduler handling
the appropriate traffic flow direction.

Firewall Load Balancing Policies
Traffic or session flows can be characterized based on L3 header information (the combination of IP
Source and Destination Addresses), L4 header information (UDP/TCP port numbers) or both. In a typical
deployment, performing an algorithm on both IPSA and IPDA identifies session flows, such that session
communication in either direction will always flow through the same firewall. This allows the same
stateful inspection firewall to perform its inspection on every frame between any two communicating
hosts.

This method does not provide deterministic load balancing, but instead provides statistical load
balancing. If there are a significant number of hosts on one side of the firewall communicating with a
significant number of hosts on the other side of the firewall, the general load balancing between the
systems will be fine. If there are only a few hosts as communication endpoints on one side or the other,
there could easily be an imbalance of activity between the firewalls.

An alternate method could include L4 information as part of the load balancing policy. This would result
in better load balancing granularity if you have few devices on one side of the firewalls that will be
sources or destinations of requests. You could also choose policies that forces certain application types
through a single firewall, statically distributing the applications as evenly as possible between them. For
instance, if Web and E-mail are your top two applications forwarded through the firewall, you could
distribute all HTTP requests through one firewall, and mail protocols through the other. Then you could
choose to distribute all other protocols evenly through both.

You’ll notice that the drawing has two VRM units in it, on each side of the firewall. This is a general
requirement for stateful firewall environments, where you must have an intelligent device managing
traffic flow and determining firewall-forwarding state on both sides of the firewalls.

Mechanisms
Most stateful firewalls operate as transparent IP forwarding devices. The mechanism used in most
firewall VRM deployments is MAT, where frames that are forwarded by each VRM scheduler have their
Destination MAC addresses changed to the chosen destination firewall’s MAC address. The MAT-
modified frames are then capable of passing through the firewalls’ NIC adapter, and are then processed
by the firewall normally. The VRM mechanism is asymmetric -- the VRM schedulers perform this MAT
mechanism immediately prior to the frames entering the firewall. In the previous drawing, the blue
traffic entering each Firewall VRM scheduler is inspected by the VRM and is modified accordingly.
They should never have to perform frame modification on the black session flows.

Do Not Duplicate 121 Research Report 99001_v3.0

Feedback
The VRM system is using some feedback technique (today, its typically DIP) to ensure that the path
through each firewall is valid. While this is adequate, we’d like to see the firewall VRM vendors develop
more intelligent techniques of firewall health monitoring, such as Server-resident monitoring.

The general requirements for a Firewall VRM scheduler are:
• IP Forwarding or Routing

• Firewall Path Health checking (DIP from one VRM to the other, through the firewall)

• Session flow classification on IP addresses at a minimum, optionally on TCP/UDP information

• Session flows must be managed so that they always flow to the same firewall for each classified flow,
regardless of the VRM scheduler that is classifying the traffic, and regardless of frame direction flow.
These flows may be identified using IPSA:IPDA and might optionally include TCP/UDP port
information within the flow identification algorithm.

Redundancy
Most Firewall VRM systems can be deployed in a redundant configuration using many of the methods
used in the local VRM redundancy section of this report.

Issues
• Many customers have also deployed Proxy Server firewalls, where the Proxy server must be directly

targeted by the session originating host for traffic to pass from one side of the firewall to the other.
This is a non-transparent firewall deployment, and may require specific Proxy Server support from
the Firewall VRM scheduler. It may require something as simple as local VRM functions for the
pool of Proxy Servers

• Some firewalls are deployed with Network Address Translation enabled, performing translation
services from clients on the Clean side of the network with private or non-Internet routable IP
addressing schemes. Outbound traffic that is coming from the clean side of the network will have IP
Source Addresses of private networks (like 10.x.x.x). The Clean VRM scheduler will perform flow
classification on these addresses. The traffic will pass through the firewalls and will have the IPSAs
translated into routable addresses (like 204.165.211.x). When the return traffic comes from the
Internet destined for the clean network, the Dirty VRM scheduler will be classifying flows based on
these different addresses. Thus, there is an imbalance between how the Clean VRM and the Dirty
VRM classifies session flows. One way around this is to ensure that one firewall performs NAT
using one pool of IP addresses, and the other firewall uses another unique pool of addresses. The
Dirty VRM can simply direct the appropriate frames (based on IPDA) to the appropriate firewall

• The team deploying the solution must know a lot about networking and protocols. They need
intimate knowledge about routing, VRM systems, firewalls, firewall policies, how redundancy
protocols work and how application protocols flow through the network. These solutions should not
be deployed by the average network admin

Do Not Duplicate 122 Research Report 99001_v3.0

12.3 Other Forms of Non-Server Load Balancing
VRM solutions are available for many different types of products and environments. There is a greater
chance that your particular server-based application or IP management device can be deployed in a VRM
environment than not. Here are some other example VRM-viable environments.

Routers
If you have multiple routers connected to the same internal network that can route to the same destination
networks (i.e. they have equal costs to all of the same destinations), you can use a VRM scheduler to load
balance all egress traffic through those routers. Load balancing traffic to two Cisco HSRP routers on a
LAN is a common deployment model. Typical installations use DIP as the feedback method and MAT as
the mechanism.

VPN devices
Multiple VPN tunnel and transport servers may be deployed in a high availability and load balancing
configuration using VRM technology. Use DAV or DIP for feedback and MAT as the mechanism.

Application Gateways
Application gateways such as TN3270 Mainframe front-ends may be load balanced with VRM solutions.
This requires DAV or resource resident monitoring ; many forms of mechanisms are possible including
HNAT and TCPD.

Do Not Duplicate 123 Research Report 99001_v3.0

1133 VVRRMM MMaannaaggeemmeenntt aanndd OOppeerraattiioonnss IIssssuueess
The operations and maintenance issues regarding the introduction of any new application or VRM system
are clearly important to consider. If the VRM system does not easily integrate into management
frameworks, or if the operations staff is uncomfortable with its capabilities and controls, overall systems
reliability becomes poor.

Consider for example an Internet-based search engine such as Hotbot or Lycos…

They might have a systems design that includes a front-end local VRM product, 20 web servers with the
user search applications and a back end database cluster with all of the content that can be searched against.
The VRM product is providing HA and capacity/scalability services for the 20 web servers -- any user
making a search request will be directed at one of the servers.

One of the web servers stops responding to user requests. At the same time, the VRM system detects the
server is not responsive, removes it from the active server pool, and sends an alert to various monitoring
systems in use. The operations staff uses the VRM monitoring systems to determine that the server's web
server process is not responsive, but that the server is responding to PING requests. They login to the
server and determine that the web server process has failed.

In the course of troubleshooting the problem, the operations staff determines there is a bug in the web
server software that is fixed in the most recent release. How will they upgrade 20 web servers to prevent
this from occurring again? Instead of scheduling a downtime (which is difficult in the 24x7 Internet world
- there is no 2:00am) they use the VRM system to gracefully shutdown the first web server. Existing user
requests eventually get serviced, and web activity to the web server stops. The operations staff may now
replace the web server software, and re-activate the server.

After testing, they place the server back into service, and the VRM system begins to allow user requests to
flow back to the recently rebooted server. Because the VRM system is smart, it recognizes the server has
only recently come back online, and it only sends a small percentage of user requests to the server, until is
has a chance to "warm up." Then the Operations staff starts the graceful maintenance process with the next
web server, and continues over a period of four hours until the process is complete.

You can tell from the simple narrative example that the VRM system employed was a quite important
component in the overall system. It detected a problem and alerted the staff, provided some
troubleshooting information, and was useful as a "user request valve." It was employed in no less than
four key moments during the operation.

13.1 Key Operations and Maintenance Issues
• What will happen to the system when one of the system components needs to be taken out of service

for maintenance reasons? Is it possible for the VRM system to compensate? Can user requests be
directed away from the component being maintained?

• Does the VRM system add significant value to the O&M process? Can it "ease the pain" associated
with scheduled downtime?

• Does the VRM system allow the operations team to quickly deploy new servers for capacity reasons
or new applications?

• How will you integrate the VRM system (and any other new application system components) into
operational systems, policies and procedures?

Do Not Duplicate 124 Research Report 99001_v3.0

• Does the VRM system's management interfaces fit into your existing monitoring capabilities and
systems? Does the VRM system provide real time alerting capabilities?

• How much training and experience will the operations staff need to become comfortable with the
VRM system (and any other new components)?

• Is the VRM system itself easily maintainable? (The VRM redundancy design will have a large effect
on this issue)

13.2 VRM Systems Can Ease The Pains Of Operations
• Since most VRM systems are directly monitoring the availability of the applications and the servers

they reside on, they become a central monitoring system that can be polled or examined for status and
event information. In short, VRM systems know what is up and running, what is not running, and
when conditions change. Thus, they can be used as a source of availability information for any
existing monitoring systems

• VRM systems can be used to troubleshoot application problems or server failures. If the VRM
system thinks the server or application is unresponsive, that's useful information during a
troubleshooting exercise

• VRM systems include at least a minimum amount of instrumentation to record numbers of users or
user requests processed. These statistics can be used in real time to gauge potential capacity issues,
and can also be used for capacity planning purposes over longer periods of time

• VRM systems are (typically) a central point of control for user requests and how they are distributed
among the available servers. They can be used to prevent users/requests from being sent to a
particular server so that the server may be taken out of service for maintenance reasons. Good VRM
systems allow the admin to take a server/application out of service in a graceful manner, so that
existing users/requests continue to receive service, and all new users/requests are spread among the
other available servers. Good VRM systems allow servers to be re-activated in a graceful manner as
well

• Well-designed VRM systems make it obvious when it’s necessary to add servers for capacity reasons
and how they can best be deployed.

13.3 Management Interfaces
The user interfaces and instrumentation available within the VRM product will dictate its manageability
in your server and network environment. They will determine how easy or hard it is to install, maintain
and troubleshoot the new system you are about to install.

13.3.1 The Command Line Interface
Every VRM system should provide a command line interface allowing you to perform any management
function on the system, whether it is configuration of new services or the monitoring of the operations of
the VRM product and the servers it controls. Without a CLI, it will be a challenge at best to manage the
system from a remote console and impossible to manage via a dial-up connection to a serial port. Plus,
most users of VRM systems have "grown up" using CLIs and many people prefer the quickness of
command execution (i.e. typing speed) that a CLI gives you.

When evaluating a VRM product's CLI, be sure to examine the following issues:

• Are all of the VRM unit's configuration and monitoring functions available from the CLI?

Do Not Duplicate 125 Research Report 99001_v3.0

• Is the CLI well thought out and designed? Does it make sense to you?

• Does the CLI help provide you with the details you need globally and per command to (potentially)
avoid the documentation as a command reference?

• Is the CLI capable of walking you through the different configuration and monitoring commands?
Does it prompt you through a menu-like structure? Does it provide command line variables help
when you goof a command?

• Is it available both through a serial/console port and a network application like Telnet?

If the VRM product you are evaluating does not meet the above minimum criteria, then consider the
issues that your organization may face because of the limitations. Is it possible or likely you'll encounter
a scenario that would then force you to be physically next to the unit to resolve the issue?

13.3.2 The Browser User Interface
Web browser-based interfaces have gained in popularity over the past three years as a browser-to-device
management system. They typically allow you to fire up your browser, type in a hostname or IP address
in the URL field, authenticate to the device and then begin immediately monitoring and configuring the
device. BUI's were originally hailed as replacements for command line interfaces, with the universal-
manage-from-anywhere interface. We think these statements may be a bit over the top, but BUI's are
useful. The browser interface is most useful when performing repetitive configuration tasks, when
monitoring status and statistical information and when the user needs prompting during typical tasks or is
only used to a GUI-like interface.

When considering a VRM system that supports a browser-based interface, consider the following
questions:
• Similar to the CLI issues, how well is the BUI designed? Does it allow the user to configure or

monitor any system function?

• What technology or browser versions does the browser interface require? Does it use a straight
HTML implementation, Javascript, or use Java or dynamic HTML? How will the requirements that
the BUI has affect you when trying to access the VRM unit from any browser in your network? From
offsite?

• What security or authentication technology does the BUI support?

• Does the BUI allow direct browser to VRM unit access, or does it require the installation of a proxy
server or application? If the BUI does not allow direct access, and requires the installation of some
application and/or server, then we strongly question its value

• How extensive is the BUI? Does it merely provide the same functions as the CLI or has it been
extended to include browser-capable interesting features, such as graphing of statistical data?

13.3.3 The Installed Management Application
The installed management application (usually called something-view) was popularized in the late '80s
and mid '90s as a better tool for managing networking devices. It involves installing software onto a
Windows or UNIX system which users can fire up and point at the managed device, and typically uses
SNMP as its communications protocol. Every networking vendor on the planet that sold to enterprise
customers had a graphical element management application. It was a market requirement, because every
customer asked about it and every product marketing person wanted to demo it. At the time, they were
very valuable for presenting graphical data and for prompting users for the information needed to

Do Not Duplicate 126 Research Report 99001_v3.0

configure a device or feature. Times have changed somewhat. The BUI, if designed well, is generally
capable of supplanting single device management applications, and the management application is really
required when performing simultaneous multi-device management tasks. These tasks might include
multi-unit provisioning or reporting.

For VRM systems, we recommend avoiding an installed management application unless the vendor can
prove it has significant value over and above a device-based management interface. You have to install
the application on one or more computers, maintain the software for each new release of VRM device
software, and may not be able to access the management system universally in the network. There are
secondary issues of allowing the management protocols to flow over your network (try UDP/SNMP over
the Internet) and the latency associated with the protocols. However, if the management app provides
configuration "wizards," significant evaluation, reporting and graphing of statistical data, or events-driven
status reporting capabilities, then it may be worth the trade-off of having to install and maintain yet
another management application.

13.3.4 SNMP Support
SNMP began to show its age as a management protocol a couple of years ago -- it really just doesn't scale
very well, especially when trying to use it to configure complex networking devices. However, it's still
very good at allowing the communication of statistical data to popular SNMP consoles like HP-
OpenView or dedicated management applications.

For VRM systems, the minimum requirement for SNMP support is very simple:
• must support any significant VRM unit event (server out of service, VRM redundant unit switch over)

as SNMP TRAPs

• must support any status or statistical instrumentation through a standard or private SNMP MIB that
can be loaded onto a popular SNMP platform

13.4 Instrumentation and Reporting
Since the clear values of implementing VRM technology centers on reliability and performance, there is a
requirement for the VRM product to provide significant feedback to the administrator. It must instrument
and report on the performance and status of the entire VRM system, including the VRM device and the
servers it controls and monitors.

It may seem obvious, but any feature or function supported by the VRM unit must have instrumentation
associated with it to report on changing conditions. Thus, the VRM unit must provide statistical
instrumentation on any Policy used to make load balancing decisions, such as octet counters or
connection counters. The VRM unit should provide status and event information for each server
Feedback function.

Additionally, the system should provide feedback on site performance from the perspective of the
operations performed by an end user. Good examples of this are Site Availability and Application
Response Time. Whatever the parameter, we want to know what it is now, what is was in the past, and
where it is trending. It should provide access to data on the underlying resource loads that may be
correlated to the site level performance. Ideally, we’d like the management system to point us to
bottlenecks and provide guidance on how to add new resources, weight servers, modify policies, or
otherwise change operations to improve performance.

Do Not Duplicate 127 Research Report 99001_v3.0

13.5 Secure Systems Administration
In certain types of customer environments, it may be desired or required to support a secure method of
managing the VRM units installed in the network. For example, any significant management functions
across the Internet should really take place in a secure manner, which requires authentication of
administrators and encryption of management protocols. For authentication, look for your VRM product
to support either RADIUS or TACACS for authentication; for encryption, look for support for SSL, SSH
or IPSEC transport-mode. There is also the option of attaching an "admin-encryption" server to the VRM
unit via a console connection, which will serve as a secure-admin proxy.

13.6 Content Deployment
How to replicate content, data and applications among multiple servers is the first consideration that
people have after they have deployed more than one server to handle an application. This issue can get
especially thorny in a multi-site, highly dynamic application environment.

13.6.1 Traditional Content Deployment Schemes
Web Server content is generally deployed in one of two manners:

1. On local hard drives.
2. On back end file systems, usually NFS-based.

Local Hard Drive Storage
All web servers have a local hard drive that is at least used for caching recently requested content, but is
also often used to store the entire content. This method is low cost and eliminates the need for a back-end
network (for static content).

For single web servers, using the local hard drive is a common and simple method. But for clusters of
servers, where content must be replicated across an ever-changing number of servers, this approach is
usually not taken except for some small and slowly changing sites.

NFS
If you have a large amount of discrete file-based content that every load balanced server must access, the
use of a back-end NFS or CIFS file server is a common approach to tackling the content deployment
problem. Every front-end server mounts file systems from the fileserver, and can access the same content
in the same manner. Content management is reduced to updating a set of directories and files in a single
location. If performance (or rather file access latency) becomes a concern, the use of a caching file
system on the front-end servers can be utilized.

There are two ways to create a network that allows multiple content servers to access a common file
system. One is to attach the file system to the same network that supports client access to the servers. As
long as network utilization is low, that works fine. Be sure, however, that the VRM system can tolerate
traffic from the servers to the file system on the same wire as client-to-server and server-to-client traffic
or that there is no performance degradation if the server-to-file system traffic must pass back through the
VRM scheduler.

More commonly, local site applications have the benefit of a separate fast back-end network, which
allows local distribution of content, databases, and applications with generally no bandwidth or

Do Not Duplicate 128 Research Report 99001_v3.0

performance repercussions. This requires a 2nd NIC in each content server and a separate set of
networking devices.

13.6.2 Simplifying and Scaling Content Distribution Via Caching
For some reason, content caching is sometimes seen as competitive or compromising to Virtual Resource
Management. It is not. In fact, caching can be complementary to Virtual Resource Management and can
save you a fair amount of money if you leverage it right.

Caching is discussed in some detail in section 13.1. For our purposes here, the key things to remember
are:
• Caching is useful for recording static content only (which is usually a lot of content). You need to

make sure that your caching solution does not degrade dynamic application performance.

• At present, no generally implemented best accepted practice exists for content sources to inform
caches that content has aged. There are several HTTP protocol header options, such as expiry timers,
but most are used to prevent caching rather than enhance it. But in a closed system that you control,
you can integrate content updating and cache refreshing to ensure that caches don’t distribute stale
information.

Using Reverse Proxy Caches to Reduce Multi-Site Costs
As discussed in section 9, deploying servers close to end users across geographically dispersed areas can
increase both system reliability and performance. But deploying a large number of web sites with
multiple web servers, application servers, and complete VRM solutions can be expensive as well as
difficult to maintain. If the nature of your site application is that a large amount of the requests coming to
the site are for static content, you may have an opportunity to use caching to your advantage. One way to
do this is to build a couple of your sites as full functioned sites (call them data center sites), which include
content servers, application servers, database servers, and complete VRM solutions.

Complementing these data center sites would be a number of sites that have only Proxy Caches, operating
in what is typically called Reverse Proxy mode. In Reverse Proxy mode, the cache server will receive
requests from users as if they were just another webserver.

Internet

Data Center Site

� Content servers
� Application servers
� File System
� Database
� Content Management

Cache Site

Cache Site

Data Center Site

Client

Client Request For

 Static Content

� If static and cached, immediate return.
� If static and not cached, pull content and return.
� If dynamic, proxy from data center site.

Proxy Dynamic or
Stale Content Requests

Cached Static Content

Returned Directly

Do Not Duplicate 129 Research Report 99001_v3.0

The requests formed by the user will have a relative URI within them (see the Non-server Load Balancing
section for an explanation), which means the cache server must be statically configured to evaluate the
requests specified in the URL. These static configurations within the cache determine which data center
server is the origin for the information. When the cache receives a request, it performs the following
actions to determine how to handle the request:
• The URL is parsed, and compared against the configuration to determine which server handles the

request

• If the request is for locally cached content, the cache returns the requested content to the client

• If the request is for cacheable content that is not locally cached, the cache server examines the
Reverse Proxy configuration parameters to determine which Data Center server is responsible for
handling the request, and then forwards the request. In an MS-VRM environment, this will likely be
a V_IP in a VRM scheduler, which will forward the request to the local servers. The cache then
retrieves the content from the Data Center site and returns it to the client. That content is now cached
for future requests for the same content

• If the request is for non-cacheable content (either by configuration or by definition), the cache, using
typical proxy methods, forwards the request. It may also be possible/useful to use a VRM scheduler
in front of the proxy cache that is evaluating URLs and is bypassing the cache for non-cacheable
content

Behind the scenes, a content management system is used to update content at the core sites. When this
occurs, a beneficial enhancement to the content management system would be the use of a protocol
message sent to the cache sites to tell them to flush their old content as new content is created/updated at
the primary sites. The cache servers are also built to properly refresh their content on an as-needed basis.
This refresh process could be triggered by an expiry timer meta-tag returned with the content, or by an
administrative schedule.

The Multi-Site VRM system could be set up so that all sites are potential targets for all requests. Thus, if
performing DNS redirection, the VRM system could potentially answer DNS requests with IP addresses
that correspond to the data center sites, or the caching distributed content sites.

The primary benefits of deploying reverse caches at content sites is that it gives you the capability of
deploying static, potentially frequently accessed data close to your client base, at a lower entry and
administrative cost. You don’t have to build out a complete data center at the distributed content sites –
no apps servers, no database servers. You simply need to deploy some number of reverse cache servers,
and potentially a local VRM system for cache farm optimization. Your administration is limited to
simple operation and maintenance of the cache servers. You get the added benefit of not (necessarily)
needing to include your cache servers on the list of servers that need to have their content managed by a
human or automated process.

This approach works best if the number of requests for dynamic content that goes to the cache sites is
minimized. One way to do that would be to define specific virtual services for static content and others
for dynamic content. If that is possible, the MS-VRM could then send all requests for dynamic content
directly to the core sites. This technique may also benefit you for persistent site/server requirements in a
multi-site environment.

Solutions involving reverse caches could potentially be deployed locally or in a multi-site configuration.
We feel they make the most sense in the multi-site configuration. Deploying local reverse caches strikes

Do Not Duplicate 130 Research Report 99001_v3.0

us as being a little weird, since to be a viable solution, you’d have to add a layer of VRM in front of the
cache server to make it more reliable and scaleable. You potentially have to implement a layer of VRM
for the web servers for the same purpose. By the time you do all that, what have you achieved? It’s
possible that if the web servers are very busy handling application requests, overall site responsiveness
would improve if the Proxy handled all the static requests. But why would you not simply scale the web
server farm up to be able to handle the entire load? Why is the web server not just as capable of handling
the requests for static content from its own disk cache or disk?

We know of customers that have deployed Reverse Caches immediately in front of their websites, with
the local VRM units providing some intelligent decision making on whether requests should be sent to the
cache or to the real web servers. At this point, we’re waiting for “how did it work” feedback from these
sites because we’re generally skeptical of the benefits in a local environment.

Consider this: If the VRM solutions themselves supported some front-end caching, adding a new
component into the configuration (a proxy cache server) would not be necessary at all.

Content Caching Services and Outsourcing
You can get some help to deploy the system described above.

There are at least two services/service companies that have been announced in the past 12 months that are
focusing on content caching in a distributed or multi-site environment: Sandpiper Networks and Akamai.
They have at least two goals: let you manage your content locally only, and allow you to get worldwide
content availability. By signing up for their services, you generally just need to change your content at
your one or two primary data centers, and their systems do the rest to update all the mirror sites that they
operate. When user requests come in to your site, they may be "redirected" to another site that is closest
to them or best to serve the data. As far as we know, they only currently manage HTTP accessible static
content. However, we anticipate them expanding their applications and capabilities coverage going
forward to offer better solutions and get more customers.

We also fully anticipate various co-location, hosting and transit service providers getting into the same
game. If the majority of your users' requests were coming from Sprint, AT&T and UUNET, wouldn't you
sign up a service with each of them to mirror your content for you and provide you with statistics and
accounting information on the content that your users' accessed? We think you would, and we bet they do
to. Look for similar services to spring up with these types of organizations. It really just takes some good
multi-site VRM decision-making technology and a reverse proxy cache.

13.6.3 Content Management
After you have deployed content, the next issue that occurs to people is how to handle revision control,
rolling forward to new versions of content or applications, rolling back if problems occur. Instead of
simply FTP’ing a set of files to a server on a periodic basis, now you have to be concerned about:

• the versions of content that have been transferred to what servers

• whether you are updating a live site or server

• how you update servers that are scattered throughout the world

• how you update 100 servers with megabytes of changed data

• safely updating servers that are physically not near you

• managing huge directories of files in a tree structure you didn’t necessarily create or want

Do Not Duplicate 131 Research Report 99001_v3.0

To a great extent, the content management problem can be viewed as document management, applications
management and server operations management problems all rolled into one.

Some VRM vendors are coming out with content management systems in their product lines. The intent
is that these be good stand-alone solutions, but that they are even better when integrated with the VRM
scheduler. Whether your content management system comes from your VRM vendor, is integrated with a
3rd party content management system, or interacts with your home-grown content management system,
there are some value added features that you should be aware of.

Does your VRM system integrate with your content management system in the following ways?

• Auto-configuration. Feedback from the content management system (or searching by the VRM) to
determine precisely what servers can access which content and applications, and automatic
maintenance of V_IP-to-content server tables with-in the VRM scheduler

• Update management. As content gets updated, narrow the target server set to the updated servers,
adding servers to the group as they become updated, until all servers are again targets for the updated
content

• Content and application launching. Upon recognition of application performance degradation by
the VRM system, control the content management system to deploy content and applications on new
servers to increase the available resource to server the application

Do Not Duplicate 132 Research Report 99001_v3.0

1144 CChhoooossiinngg AA VVRRMM SSoolluuttiioonn RRiigghhtt FFoorr YYoouurr
AApppplliiccaattiioonn

Well, we’ve spent a lot of pages to explain the technology and techniques that make VRM products what
they are – now its time to take a step back (or at least a step to the side) and ask a key question:

Given all the different approaches, feature options, and implementation nuances, how do I choose a
VRM solution that fits my need?

In the final section of this VRM report, we provide some guidelines for thinking about your application
and what key the requirements are to help hone your thinking how to choose a VRM solution.

We believe in simplicity. So we’ll admit right now that these guidelines to not address nuances, second
order issues, and subtleties of a lot of applications and VRM systems. So be it. Following these
guidelines will get you into the right ballpark. Getting to the right seat from there takes a bit of work.

For a more detailed treatment of application requirements and the VRM products that support those
application, see the Acuitive report entitled Virtual Resource Management - Which Vendor is Right for
You?

14.1 Characterizing Your Application
First of all, characterize the nature of your the application at a high level. There are various ways to do
this, but some of the key parameters to nail down are:

• What are the application requirements for state management? This is a huge issue and will determine
the type of persistence policies and mechanisms you need in your solution

• What is the scale expected, now and in two years. Hits per second. Number of simultaneous users.
Bandwidth. These can be estimated either from usage projections or by projecting the maximum
capacity of key elements of the system – WAN link size, database server capacity, application server
capacity, and then mapping that back into the performance parameters

• Application architecture. 2-Tier? N-tier? Migrating over time? This has a big impact on the way you
approach monitoring resource health and load

For a final design you’ll need a lot more information than this. But the above is a good foundation to
work from. It helps narrow the list of alternatives. You can then use more detailed information to make
good choices within the narrower set of alternatives.

14.2 Some Fundamentals Which Always Make Sense
Different applications drive different VRM requirements. There are a million permutations of application
environments. But when selecting a VRM solution, some things make sense no matter what the
application.

Performance and Scalability
Unless you know that your application is going to have modest performance requirements and always
will, then we recommend going with solutions that will never be a bottleneck for either processing

Do Not Duplicate 133 Research Report 99001_v3.0

incoming requests (measured in connections/sec) or flowing return traffic back to the clients (measured in
Mbits/sec).

The first of these generally requires a method for multiple schedulers to be able to support the same
service, using a common set of content servers. A single scheduler is always at risk of becoming the
bottleneck, no matter how powerful the underlying CPU.

The second of these either requires a scheduler that can efficiently process packets in the return path from
the server-to-the-client, or an approach where such traffic bypasses the scheduler entirely.

Redundancy
VRM is primarily about reliability. So the last thing you want is for your scheduler to be a reliability risk.

All the vendors have viable redundancy schemes. This is usually not the consideration that drives you
towards one solution or another. Having said that, we do have preferences for redundancy schemes which
allow us to:

• Actively use the multiple schedulers when all are healthy, which then take on more responsibility for
more clients as schedulers fail (this is related t the performance section above)

• Physically locate back-up schedulers in different locations of a campus – in different Data Centers, on
different power grids, etc.

• Maintain the state of existing persistent connections when fail-over occurs.

Operations and Management
People talk about ease-of-use all the time, and point to GUIs as examples of how to achieve that. We’re
not so into GUIs in and of themselves, and we don’t really care if initial set-up is a little difficult, because
you only do that once. What we really care about is ease-of-on-going-operations. To that end, some key
features we look for are:

• Feedback on site performance from the perspective of the operations performed by an end user. Good
examples of this are Site Availability and Application Response Time. Whatever the parameters, we
want to know what it is now, what is was in the past, and where it is trending

• Access to data on the underlying resource loads that may be correlated to the site level performance.
Ideally, we’d like the management system to point us to bottlenecks and provide guidance on how to
add new resources, weight servers, modify policies, or otherwise change operations to improve
performance.

• The ability to play “what-if” scenarios. Load patterns can change quickly. Traditional trending
techniques do not necessarily do a good job of predicting future loads and behaviors. We’d like to be
able to simulate a variety of possible loads on a system to evaluate what the critical bottlenecks may
be in the future.

• Secure management interfaces are critical.

Functional Characteristics
The list of possible Feedback, Policy and Mechanism features is enormous. Our over-riding advice is
“don’t go nuts.” Many of the techniques are unproven, can cause harm, or don't provide enough value to
justify the effort to implement and maintain them.

Do Not Duplicate 134 Research Report 99001_v3.0

Feedback on resource health and load is critical. We believe that all VRM deployments should use
Active Content Verification (ACV) with response time monitoring as a core feedback technique.

• Within a site, other types of server-resident feedback can be overlaid on top of that core technique to
create some threshold-based safeguards.

• For dynamic application environments, Dynamic Application Verification (DAV) should be
performed in the background on a regular basis.

• For multi-site scenarios, ACV is generally good enough.

For site level Mechanisms, we believe that you should almost always choose a vendor that provides you
the opportunity of doing delayed binding. You may not need it now, but in the future it’s a good bet that
some aspect of state management or site architecture will require it.

For multi-site scenarios, there is no perfect Mechanism. The ultimate solution probably has not been
invented yet. Given that, we like to use DNS Re-Direction as a core technique, often supplemented by
another re-direction technique (such as HTTP Re-Direct and/or or Triangulation) to deal with corner cases
and short-term issues that DNS Re-Direction does not adequately address.

Policies are a complex subject. We do believe, once again, that simpler is better. Don’t try to put in too
much complexity to try and squeeze another 10% of capacity out of your site by performing more
balanced load balancing. You’ll find that you either don’t achieve the goal or it wasn’t worth the effort.
Weighted Round Robin or Least Connections are usually the best policy choices for the “best server”
choice locally, especially if supplemented with a safeguard mechanism or two related to thresholds –
either thresholds on connections or thresholds on key server load parameters (e.g. CPU utilization or
available memory).

Some simple QoS policies related to moving resources between applications during times of stress of a
high priority application make sense to us. But only rely on them for dealing with short term issues that
couldn’t have been anticipated. Longer term, the best thing to do is design the site so that resources are
not saturated with peak loads (sometimes that is not economically viable, but it should be the design
target).

In the WAN, as mentioned above, we believe that the best policy is “use a site in your region unless it’s
on fire.” Static user mapping, augmented by some techniques to automatically populate the static tables,
is a reasonable starting point for multi-site VRM, and one that many people will never have to venture
beyond. Trying to track ever-changing delays or packet drop rates or stuff like that dynamically is
generally futile and can lead to more harm than good.

Overlaying all of this, make sure you have the right persistence policies. Persistence always takes
precedence over better load balancing, because persistence determines whether the user can effectively
interact with the application, while load balancing just provides incremental performance improvements.
Again, persistency should be approached as simply as possible. Unless you require persistency that spans
long periods of inactivity, the simplest and most general approach is to use Source IP Binding with
Address Range Mapping. In some circumstances, adding SSL Session ID Tracking and/or user cookie
tracking might make sense.

Do Not Duplicate 135 Research Report 99001_v3.0

14.3 Identifying More Detailed Requirements: Classifying
Your Application

As stated above, different applications drive different VRM requirements. There are a million
permutations of application environments. But in general, if you can define your application to be in one
of the following categories, you can pretty quickly determine the driving feature requirements for your
VRM solution.

We provide a description of some common application environments in this section. The application
types include:

• Local VRM, Static Content: Sites that are dominated by HTTP requests for [.html] files of modest
size. This is typical of informational-oriented company.com and web sites, publishing sites, and
many Intranet sites.

• Local VRM, Downloaded Content: This is a special case where the vast majority of content
downloaded is large files. This is typical of software distribution sites, document distribution sites,
and many multi-media source sites.

• Local VRM, 1-Way Dynamic Application Environment: Sites where the user interacts with the
site for a short period of time, modifying information during the period of the session, but the
modifications are “forgotten” after the session is complete. Examples are search engines, comparison
shopping sites, or business intelligence reporting front-ends.

• Local VRM, 2-Way Dynamic Application Environment: Sites where there is a two-way
interaction between the user and the site, resulting in a change to the information stored at the site
when the user session is complete. Examples include almost all kinds of E-commerce sites and e-
mail sites.

• Local VRM, Server Optimization: This is an overlay requirement which could be added to any one
of the applications above, where the content or application deployment behind a common domain
name (or V_IP) needs to be further subdivided so that servers can be optimized for specific roles
(applications) and/or content is divided up into more manageable domains.

• Multi-Site VRM, Site Redundancy: This is the situation where applications and content are
deployed at a small number of locations, often 2, primarily to ensure application availability, but also
to scale the application bandwidth somewhat.

• Multi-Site VRM, Global Content Distribution: This is the situation where applications and content
are deployed at multiple locations, often throughout the world, to reduce latencies for content access,
reduce WAN costs, and to scale content availability.

For these applications, we identify the key features to look for in a VRM solution.

Your site might support more than one of these applications. If so, you can combine the requirements and
required VRM attributes for each application to create an overall requirement. In doing so, make sure
that “tougher” requirements driven by one application supersede “easier” requirements acceptable for
other applications. In addition, you may need to add some requirements related specifically to the
merging of applications, such as making sure the system can apply policies differently for the different
applications,

Do Not Duplicate 136 Research Report 99001_v3.0

14.3.1 Local VRM, Static Content
The simplest case is one that is dominated by HTTP traffic, for accessing relatively static files. All
informational-oriented web sites are of this type.

Application Characteristics
• The application is dominated by HTTP and does not record any user state information between

individual user requests
• Primary requirement is to provide server redundancy. For high load sites, an additional requirement

is to scale the site.
• TCP connections are fairly short. Files retrieved per TCP connection range between 4 KB and

100KB.
• Traffic flow is asymmetric, with server-to-client traffic being roughly 5-10x greater than client-to-

server traffic.
• It is a non-tiered application architecture (applications run directly on the servers being load

balanced)
• The system for the most part is distributing common and relatively static information to the users
• The information to be distributed is either stored locally on each server, or is shared with a file server
• Servers are local, co-located to the VRM
• Example applications are publishing sites, a lot of corporate.com informational sites, and

departmental web sites

• The application flow basically consists of:
1. client opens TCP connection
2. user request
3. server index response
4. client opens TCP connections to request all objects indicated in index
5. server responses
6. closure of all TCP connections

VRM Scheduler Requirements
This is the simplest solution to design for, with many vendor solutions to choose from. This is the
application that most low-end VRM solutions are targeted at. Pick a VRM product that matches your
needs, while requiring as little environment modifications as possible. You may not even need a specific
VRM product at all. Your needs may be met by features available in your server Operating System,
application software suite, or multi-purpose IP appliance (e.g. firewall, bandwidth manager, intrusion
detector).

Feedback: requires at least some form of TCP connection verification. In addition, ACV is highly
desirable to ensure that the HTTP processes and storage subsystems are working properly.

Policies: Round Robin is an acceptable load balancing policy. Weighted Round Robin is recommended if
there is a wide variance in server capacity. MaxConns as a 2nd order threshold policy is good to make
sure that any particular server does not get overloaded

Least Connections is also very suitable, and probably better than Round Robin, because of the short
duration of the TCP connections. Again, MaxConns as a 2nd order threshold policy would be useful.
Response time as a secondary policy might be useful if server load fluctuates due to data rate variance.

Do Not Duplicate 137 Research Report 99001_v3.0

The only persistency you have to worry about here is ensuring that all packets associated with each TCP
connection are directed to the same server. But that’s basic VRM. All vendors support that capability (or
else their products would be broken). If you have a small number of content servers and are worried
about large groups of users coming from behind a common address-based proxy firewall, then consider
binding on Source Port number or Source Identifier instead of just the Source IP address.

If your site supports multiple different services associated with different V_IPs, and some are deemed
more important than others, then some sort of simple Preferential Services policies indexed to Application
Response Time would be useful. This protects you against changing load patterns that cannot be
anticipated.

Mechanisms: Delayed binding is generally not required for this application. You can use any immediate
binding mechanism that the vendor supports. Half NAT and MAT are the most likely candidates.

Performance: Focus on TCP connection binding rate when selecting your VRM system. The
connection rate load offered to the system will be limited by the WAN access link speed, but will be a
high number relative to that speed, due to the short duration of connections. Since this application does
not require delayed binding or very many resource-intensive features, all vendors’ products support
multiple T1 access, and most have products that can support DS-3 speeds (1600 connections per second)
or a little higher.

If you are a heavily accessed publishing site, or for other reasons have or plan to have OC-3 or higher
access to your site, then you have to worry a bit more about scalability. Look for a solution that can
support 5,000 – 10,000 connections per second (immediate binding) either in a single scheduler or via an
Active-Active multiple scheduler redundancy method.

Redundancy: Requires Hot Standby. Active-Active should be explored for high data rate sites that
require VRM optimization.

• Application Requirements Table
14.3.2 Local VRM, Downloaded Content
Another common case is one that is dominated by FTP or HTTP traffic for downloading large files, often
software images of multiple megabytes.

Application Characteristics
• HTTP and FTP dominate the application.
• For FTP, persistence is required to make sure the control channel and data channels are bound to the

same content server.
• Client TCP connections last from minutes to hours, depending on client access speed.
• Highly asymmetric traffic flows. Little traffic from the user to the server (small ACK packets). Many

packets from the server to the user. The asymmetry can be as much as 20-40x.

• The information to be distributed is either stored locally on each server, or is generally shared with
via a back-end file server or database-oriented file system.

• Servers are local, co-located to the VRM
• Example applications are shareware and retail software sites, software company customer service

sites, and document management sites (such as the IETF Standards documents site).
• The application flow basically consists of:

Do Not Duplicate 138 Research Report 99001_v3.0

1. client TCP connection
2. user index request (small)
3. server response
4. closure of TCP connection
5. client TCP connection
6. user file request (large)
7. server response
8. closure of TCP connection

VRM Scheduler Requirements
Feedback: The best form of feedback for this scenario is a combination of PCV (if the download
protocol is HTTP) and DAV, where a download request is made for a small file and the VRM system
monitors the ability of the system to deliver that file. Requires ACV or DAV. Resource resident
monitoring and/or application response time monitoring (coupled with appropriate policies) may be useful
if there is a wide variance in server load due to data rate fluctuations. Since the request rate is low in this
scenario, the PCV mechanism can operate on all request responses, not just a sampled few.

More for planning purposes than real-time operation, a tool for measuring and monitoring successful
downloads is desirable.

Policies: The best policy here is a packet rate policy – the number of packets sourced by each server in
the server-to-client path. A good secondary/threshold policy can be LAN utilization. If multiple servers
are connected on the same LAN, their aggregate load can congest the attached LAN, in which case
servers attached to an uncongested LAN should be preferred.

Least Connections or Round Robin Weighting don’t work very well in this scenario because there is just
one connection per download but each download may have a widely varying impact on server utilization,
depending on the speed of connection of the client.

One type of persistency you have to worry about here is ensuring that all packets associated with each
TCP connection are directed to the same server. But that’s basic VRM. All vendors support that
capability (or else their products would be broken).

Another form of persistency you need to worry about is download re-start. Sometimes in a long
download the connection can terminate for reasons having nothing to do with the health of the server or
the VRM system. When that occurs, and the client re-connects to re-establish the connection, you’ll want
to make sure the connection goes to the same server the client was initially attached to if the download
application software you have supports some form of re-start (picks up the download where it left off).
Thus you may want to bind to the Source IP address. To protect against changing Source IP addresses
from clients behind proxy firewalls, you’ll also need the Address Range Mapping value-added option.
Response time as a secondary policy might be useful if server load fluctuates due to data rate variance.

Mechanisms: Delayed binding is generally not required for this application. You can use any immediate
binding mechanism that the vendor supports. Half NAT and MAT are the most likely candidates. If the
site uses FTP as a mechanisms for downloads, the VRM system must support Active FTP, ensuring that
the control channels and data channels are bound to the same server.

Do Not Duplicate 139 Research Report 99001_v3.0

Since most of the traffic will be from the server-to-the-client, MAT with direct-path-return might be
slightly preferred here offload the VRM scheduler from any packet processing responsibility in the return
path. But if the VRM devices is a high-speed switch or has lot’s of excess capacity, who cares?
Use the VRM mechanism that requires the least modification to the environment (network, servers). The
most likely mechanism choices include Half NAT and direct server-to-client return.

Performance: Connection rate will be low. Server-to-client data rate will be high (limited by the WAN
access link speed). This is the one case where vendor’s throughput specifications are more useful than the
connection rate specification. Almost all VRM products on the market can support the connection rates
associated with this type of environment. Depending on the WAN bandwidth, they can’t all necessarily
handle the packet-processing rate required in the server-to-client path. If your WAN speeds are greater
than DS-3, look carefully at this and either choose a high-speed switch or a VRM scheduler that allows
for direct-path-return.

Redundancy: Due to the low connection rates, Hot Standby is good enough.. Requires Session
Assurance. After 2 hours of a download you don’t want to have to start all over again.

14.3.3 Local VRM, 1-Way Dynamic Application Environment
This application environment has some amount of dynamic-ness, such as data lookup, calculation, or
performing a search. The user must stay connected to the entity that is aware of the calculation for the
duration of the session. But after the user is done, the site does not need to modify any information or
“remember” the results of the action.

Application Characteristics
• The application uses a simple TCP or UDP protocol, but it records some state information about the

user-sessions locally on the server. It may be a non-tiered application architecture (applications run
directly on the servers being load balanced), or it might have access to a lightweight back-end
database

• User sessions are persistent for short duration while the recorded state information is not stale
(minutes). Individual TCP connections will be short-lived (seconds to minute)

• Example applications that match this environment are a web-enabled lookup or reporting application,
or a web-based search and display system

• The application flow basically consists of:
1. new client TCP connection
2. user dynamic request
3. server performs lookup, records user/client state locally
4. server response
5. closure of TCP session
loop

6. same client connects via TCP
7. user dynamic request, based on previous state
8. server performs lookup, based on previous state
9. server response
10. closure of TCP connection

loop until application session completes
maintain binding until inactivity timer expires user state

Do Not Duplicate 140 Research Report 99001_v3.0

VRM Scheduler Requirements
Feedback: Requires ACV. Enhanced by DAV. Resource resident monitoring and/or application
response time monitoring (coupled with appropriate policies) may be useful if there is a wide variance in
server load due to application request variance.

Policies: Least Connections is acceptable. Application Response Time or server resource as
secondary/threshold policies might be required if server load fluctuates due to application request
variance (which is generally true).

Persistency is required. But the persistency policy can be simple -- IP Source-based binding, with sticky
timer time-out, is OK. If users are coming from behind address-based proxy firewalls, Address Range
mapping as a value-added option is required.

Mechanisms: Delayed binding is generally not required for this application. You can use any immediate
binding mechanism that the vendor supports. Half NAT and MAT are the most likely candidates.

Performance: This is generally a connection rate-limited application. Focus on TCP connection binding
rate when selecting your VRM system. The connection rate load offered to the system will be limited by
the WAN access link speed, but will be a high number relative to that speed, due to the short duration of
connections. Since this application does not require delayed binding or very many resource-intensive
features, all vendors’ products support multiple T1 access, and most have products that can support DS-3
speeds (1600 connections per second) or a little higher.

If you have or plan to have OC-3 or higher access to your site, then you have to worry a bit more about
scalability. Look for a solution that can support 5,000 – 10,000 connections per second (immediate
binding) either in a single scheduler or via an Active-Active multiple scheduler redundancy scheme.

Redundancy: Requires Hot Standby. Make sure that the stickiness “state” is shared with the back-up
scheduler so that Session Assurance can be maintained upon scheduler fail-over.

Active-Active should be explored if the performance requirements demand it.

Do Not Duplicate 141 Research Report 99001_v3.0

14.3.4 Local VRM, 2-Way Dynamic Application Environment
This application environment builds on the one above, and has a large amount of two-way data interaction
between the user and the server. A user will regularly be pushing new or updated data towards the server,
where the server will store it for a period of time, and possibly push off to a central data-store. It has the
following different or additional characteristics:

Application Characteristics
• The application may use either a simple TCP protocol, or a complex set of parent-child or control-

data protocols. HTTP and SSL are both often used in these application environments

• Significant state information about the user-sessions and user-data is directed at each server, but then
(probably) sent to a central datastore

• It uses a tiered application architecture, with the users interacting with an application server, which in
turn interacts with a database and/or fileserver. The tiered system may be extended further, such that
the users interacts with an application server, which in turn interacts with a compute server, which in
turn interacts with a database

• User sessions are persistent for a long duration (minutes to many minutes, hours). TCP sessions may
be long (minutes, hours) or short (seconds, minutes) depending on the application

• The topology is somewhat complex, with a front-end network for the VRM system and application
servers, as well as a back-end network for the database and fileservers

• Client/Server traffic won’t be as asymmetric as static sites or download sites traffic patterns. Traffic
direction and data rate will widely vary based on user and user action at any given time.

• Example applications that match this environment include web-based email, client/server-based
email, a transaction oriented application, such as an order management system, and a browse and
transact system, like a “classic” consumer E-commerce site

• The application flow basically consists of:
1. client TCP session connection
2. user identification and authentication
3. server records state about user’s session
Loop

4. client TCP connection
5. user request/post
6. server lookup
7. server response / accept
8. data update
9. closure of TCP session

Loop until inactivity timer expires user state
10. Server may need to sync with other servers
11. Server forgets user state

VRM Scheduler Requirements
This is the environment where you generally can’t allow a lot of corner cases to exist. Simplicity isn’t as
much of an option here as in most other cases. You’ll have to pull a lot of tricks out of your bag and your
VRM vendors’ bag. This is the application that most high-end VRM features are targeted at.

Feedback: Requires ACV and DAV, with resource-based monitoring and feedback. Sampled PCV is
also a useful value-added feature.

Do Not Duplicate 142 Research Report 99001_v3.0

Benefited by integration with 3rd party instrumentation at all levels of the tiered application with a rich set
of correlation rules for taking action or aiding troubleshooting based upon the set of feedback received.

The management system should provide feedback relevant to the user experience such as Application
Response Time, % reloads, average session duration, etc. This information isn’t necessarily all for real-
time site operation, but for longer term planning.

Policies: Least connections can be used as a core load balancing policy, but it must be augmented with
threshold and Preferential Service secondary and tertiary policies. Some candidates:

• Server-resident resource metrics, such as CPU utilization, available memory, and disk i/o, on a
threshold basis. This protection might be required if server load fluctuates due to application request
variance

• Application Response Time as a threshold metric that kicks off Preferential Services policies. Target
user groups can be all users accessing a particular critical application, or subsets of users, usually
identified by cookies set which identify the class of service that user has subscribed to

• “Hot Flash” policies, where specific content is replicated to previously unused servers (for that
content) when the demand for that content builds up quickly and unexpectedly

If you are lucky, persistency policies can be simple -- IP Source-based binding, with address range
mapping may be adequate. But this application generally includes SSL sessions. If SSL Sessions are
allowed to be lengthy, SSL Session ID Tracking is needed. If User State is stored at the web server level,
SSL Session ID tracking needs to be integrated with other persistency schemes to achieve “shopping cart”
persistency. This may require cookie-based persistence.

If the site also supports a significant amount of non-persistent traffic, it is useful to be able to set different
persistency policies, depending on the content and application being accessed.

Mechanisms: This application almost always requires, or significantly benefits from, delayed binding
and the array of value-added features enabled by delayed binding (URL-based scheduling, SSL Session
ID tracking, cookie-based persistence and/or Preferential Services).

Make sure you can use lower overhead immediate binding Mechanisms for other applications supported
at the site which don’t require the delayed binding value added features.

Performance: From the VRM system point of view, sites that support this type application are usually
pretty heavily stressed. Performing the delayed binding functions and related value-added features
creates a heavy load on the VRM scheduler. Some low-end devices (if they have the features, which they
generally do not) can’t handle the load even if the access speeds are only a couple of T1 lines.

You need to make sure your selected product can support the load for your present and anticipated short-
to-intermediate term growth, with the features turned on that you need to make your site robust. That
means that a VRM scheduler should be able to handle around 3,000 connections per second (with delayed
binding) for DS-3 access rates, and proportionally higher for higher speed access rates. You don’t
necessarily have to support such performance from a single scheduler if the vendor supports an Active-
Active redundancy scheme.

Do Not Duplicate 143 Research Report 99001_v3.0

Redundancy: Requires Active-Backup (at a minimum), with a logical split of activity between each
scheduler. Requires Session Assurance. Active-Active should be explored if the performance
requirements demand it.

14.3.5 Local VRM, Server Optimization
Server optimization is not usually an application in and of itself, but an architectural design choice that
can be made in the context of all the local applications above.

The goal of server optimization is to reduce the role of some server clusters to a specific set of
applications or content space. The way to do that in HTTP environments is to perform URL-based
scheduling. Thus requests for [.html] can go to some servers and [.asp] or [cgi] requests can go to others.
Directory structures can be examined to partition the overall content space.

URL-based scheduling is also required if you want to perform any cookie-inspection functions for
purposes of persistence or preferential services.

If you decide to use server optimization via URL-based scheduling, look for the following attributes in a
VRM system:

VRM Scheduler Requirements
• Active-Active redundancy and scalability is preferred, especially for high use sites. Delayed binding

requires a lot of scheduler horsepower. Packets must be heavily processed in both directions. You
must choose a solution that will scale as your needs change

• Scheduling rules and persistency policies should be configurable on a per-service basis, where
services are defined as the set of applications and content partitions that the URL-based scheduling
can re-direct to

• Ideally, the solution should allow you to perform URL-based scheduling only where needed, with
immediate binding elsewhere. This should be configurable on a per-V_IP basis

14.3.6 Multi-Site VRM, Site Redundancy
By supporting application and content availability at two to three sites, the application can be made even
more reliable, while providing some increase in scalability.

This section and the next one address the unique incremental requirements associated with supporting
applications and/or content across multiple sites. At each site, you still need to characterize the
environment of that site and apply the local site guidelines in the sections above.

Application Characteristics
• This application is fairly straightforward, building off the local static site and dynamic one-way

application characteristics
• The primary goal is high availability through the deployment of multiple VRM systems at two to

three data centers, which includes the VRM schedulers, the front end servers and back end servers (if
any). Secondary goals include spreading user load among multiple data centers/content sites and the
operational advantages multiple data centers offers (whole data center downtime, for instance)

Do Not Duplicate 144 Research Report 99001_v3.0

• The application flow basically consists of:
1. client determines site through DNS request (DNSR assumed – the guidelines given here do not

depend on that assumption)
2. client opens TCP connection
3. user request
4. server index response
5. client opens TCP connections to request all objects indicated in index
6. server responses
7. closure of all TCP connections

If the multi-site application is more dynamic in nature, where significant data updates go from user to
application/server, the characteristics change in the following ways:

• Requires more persistence if there are databases/data stores at different sites. Users must always be
associated with the same site/server until data can be synched between sites

• Requires better resource monitoring to know at any given time if every request could be satisfied
from each site

MS-VRM Scheduler Requirements
Any VRM at each content site/data center has the same VRM requirements as the local applications.
Follow our basic multi-site rules.

Feedback: Content site testing requires ACV from the MS-VRM to the content sites. If VRMs are at the
content site, an IVP is required to communicate health and load information for use in secondary policies.
Site response time monitoring (coupled with appropriate policies) may be useful as a secondary feedback
method.

When dynamic applications are supported at multiple sites, content site testing requires DAV, and
potentially integration with 3rd part monitoring systems to ensure that all application requests can be
fulfilled from each site.

Policies: Determine site for the user based on static client preferences. Router table import is a useful
option to automate this process. This approach provides automatic persistence. If secondary
Mechanisms are used to re-direct traffic away from overloaded sites, a site persistence policy must
override that Mechanism for selected users or applications.

Mechanisms: DNS Redirection as primary mechanism, with HTTP Redirect as secondary mechanism.
Use ARF (IP Proxy, Triangulation) for non-HTTP applications. Multiple A-record return may be a useful
mechanism to ensure quicker site/server failure recovery. This Mechanism must be disabled for services
that require site persistency.

Redundancy: Hot Standby MS-VRM units are required. Combined MS-VRM/local VRM units with
multiple NS-Record return is also viable.

Do Not Duplicate 145 Research Report 99001_v3.0

14.3.7 MS-VRM, Global Content Distribution
In this multi-site scenario, applications and content are deployed at multiple locations, often throughout
the world, to reduce latencies for content access, reduce WAN costs, and to scale content availability.

Application Characteristics
• Building off the Site Redundancy characteristics, the desired goal in this application to make content

available as close to the applications’ major user populations as possible

• Primary goals include reduction of application response time for as much content as possible and the
reduction of both predictable and unpredictable traffic load on the data center sites

• This solution can easily be built with the Reverse Proxy Cache Server solution described in a
previous section, were there are Data Center sites and Content Sites. The Data Center sites have the
same characteristics as the Site Redundancy application. The Content Sites have one or more cache
servers configured in Reverse Proxy mode. The best design would include VRM schedulers with the
cache farm at each of the Content Sites, with appropriate numbers of cache servers to handle
anticipated request load. These VRM schedulers would be capable of communicating with the MS-
VRM system via an IVP

• Determining optimal content site placement is a matter of statistical analysis of available user
information, such as source network or source domain. For instance, you could select an arbitrary
source-network traffic threshold of 5%, such that if more than 5% of your sites traffic comes from a
certain network provider or domain, you try to build a content site near that user population

• Content site placement may require you to contract with a Service Provider that is capable of hosting
your content (either on your servers or their servers) close to your designated user populations. You
may want to choose the Service Provider to manage the servers to avoid the operational overhead, as
long as your entire system can be built around its availability (or unavailability)

MS-VRM Scheduler Requirements
 They don’t change much. Here are some additional requirements to consider.

Feedback: Extended IVP capabilities between the content site VRMs and the multi-site VRMs. Consider
integration with the Service Provider’s (if you use one) monitoring systems as another set of feedback and
input. For instance, the SP’s monitoring system near a content site may help the MS-VRM system
determine which Data Center site is best for the Content Site to retrieve content from.

Policies: Still use the static method, based on IP address ranges or source domains. You’ve already done
the analysis, you know where your users are. Determine secondary policies based on the likelihood and
effects of any one Content Site becoming unavailable. If a major content site goes down, how will that
affect your traffic load at other sites?

Mechanisms: No suggested changes.

Redundancy: No suggested changes.

Do Not Duplicate 146 Research Report 99001_v3.0

14.3.8 Co-Location/Hosting
Co-location services have experienced significant growth in their use over the past several years, and
more recently have improved the diversity of their services. One year ago, you could rent time/space on a
shared web server or rent rack space to put your own servers in. Value added options at the time included
basic systems admin and operational services. Now you have the options of multi-site support where you
can place your servers in multiple data centers, as well as defining service levels that you want met as part
of your service. Additionally, a new type of service provider -- the Application Service Provider – has
emerged to provide application hosting services, where you buy user licenses/time/bandwidth to access
hosted applications like Peoplesoft and SAP.

Most online companies that were born as a result of the Internet (for instance, Yahoo) did not have the
time nor the “company genetic history” to be able to build out their own data centers. No time to plan, no
time to build, no time to wait. Companies like this usually have the motto of Just Do It8. They don’t
build their own data centers – they co-locate!

The primary reason to use a co-location or hosting service provider is to offload your operational staff
from day-to-day activities, to lower your entry cost into 24x7 computing and to place your application
near a source of wide bandwidth to the Internet. Its no longer necessary to build your own glass house
data center to get redundant power and cooling, tight security and room for growth. These guys do all the
heavy lifting in those areas, allowing you to focus on what you’re going to deliver to your users.

This section (and this report) is not really targeted at the architects of the co-location services and
networks; it’s targeted at those who need to know how to integrate a VRM system a co-location
environment.

• First of all, if you are going to co-locate, it’s your responsibility to select a VRM solution. The co-
locator might recommend something, but that’s usually because they have a deal with the vendor they
are proposing and get commissioned if it is selected. If you’re going to choose your own servers,
your operating system, your applications because they will be the best for your purposes, you should
also choose the best VRM solution for your purposes

• You’re not going to be physically near the VRM system, unless you’re in the same building as the co-
locator. You need to choose a VRM scheduler that has good remote management and
troubleshooting features

• Choose a solution with a compact design – rack height costs you money
• If the co-locator offers High-Availability as a service, make sure the service requirements don’t make

you compromise anything you would have done had you built the VRM solution into your application
yourself

• If they offer VRM solutions as part of their service offerings, they will either do so in a shared
fashion (everyone shares WAN bandwidth, some number of customers share the VRM system) or
they may offer a dedicated VRM system. Again, as above, make sure you’re not compromising
anything. Also, be aware that co-location/hosters have some unique things to worry about in a shared
VRM solution:

• They need lot’s of V_IPs (100s), lot’s of real servers (1000s), lot’s of simultaneous
connections (100,000s), lots of throughput

• They need the ability to set different rules and policies per V_IP

8 This sounds familiar. Probably trademarked by someone.

Do Not Duplicate 147 Research Report 99001_v3.0

• They may choose to implement bandwidth management, usually in the form of hard limits to
how much traffic can go to a V_IP or collection of V_IPs owned by a singe customer

• They need a management interface that allows them to view collections of V_IPs in the
context of a customer (and a different collection in the context of a different customer)

• They should have the ability to give a customer-admin access to the VRM management
interface for just their own partitioned services (i.e. the customer admin can look at their own
stats, their own configuration, but no one else’s)

• They need to ensure that as provisioning of new customers occurs, no other customer is
affected

With all the benefits that a co-location environment has, it can be a challenge as well, given the scale of
implementations that need to be planned for and operated. Make sure that as you choose to co-locate
your applications, you’re doing so in a way that does not require you to give anything up as you gain the
tremendous advantage the co-location service offers.

