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Abstract

Internet applications and users have very diverse service ex-
pectations, making the current same-service-to-allmodel in-
adequate and limiting. In the relative differentiated services
approach, the network traffic is grouped in a small number
of service classes which are ordered based on their packet for-
warding quality, in terms of per-hop metrics for the queueing
delays and packet losses. The users and applications, in this
context, can adaptivelychoose the class that best meets their
quality and pricing constraints, based on the assurance that
higher classes will be better, or at least no worse, than lower
classes. In this work, we propose the proportional differ-
entiation model as a way to refine and quantify this basic
premise of relative differentiated services. The proportional
differentiation model aims to provide the network operator
with the ‘tuning knobs’for adjusting the quality spacing be-
tween classes, independent of the class loads; this cannot be
achieved with other relative differentiation models, such as
strict prioritization or capacity differentiation. We apply the
proportional model on queueing-delay differentiation only,
leaving the problem of coupled delay and loss differentiation
for future work. We discuss the dynamicsof the proportional
delay differentiation model and state the conditions under
which it is feasible. Then, we identify and evaluate (us-
ing simulations) two packet schedulers that approximate the
proportional differentiation model in heavy-load conditions,
even in short timescales. Finally, we demonstrate that such
per-hop and class-based mechanisms can provide consistent
end-to-end differentiation to individual flows from different
classes, independently of the network path and flow charac-
teristics.

1 Introduction

The Internet is currently used by business and user commu-
nities with diverse service requirements from the network in-
frastructure. In addition, many Internet applications, even
when they are adaptive, can perform well only in certain
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service-level conditions. Consequently, there is a growing de-
mand for replacing the current same-service-to-allparadigm
with a model in which packets, applications, and users are
treated differently based on their service needs. The tra-
ditional approach for addressing this problem is to replace
the existing best-effort service model with a reservations-
based architecture in which applications and users request a
certain performance level that can be guaranteed using re-
source reservation and admission control mechanisms. This
architecture, commonly referred to as Integrated Services,
faces some important difficulties, such as the deployment
and scalability of the resource reservation protocol (RSVDP)
[1], the requirement for an interdomain policy and pricing
infrastructure, and the mapping between application and
network service parameters. Although there are proposals
for alleviating some of the difficulties in the Integrated Ser-
vices architecture [2, 3], the challenge of scalable service dif-
ferentiation in the Internet remains open. A promising new
approach is the Differentiated Services (DS) work within the
Internet Engineering Task Force (IETF) [4]. The goal of the
DS effort is to define configurable types of packet forward-
ing (called Per-Hop Behaviors or PHBs), that can provide
local (per-hop) service differentiation for large aggregates of
network traffic, as opposed to end-to-end performance guar-
antees for individual Hows.

One approach within the DS architecture aims to pro-
vide the Integrated Services kind of performance measures,
but without using per-flow state in the network core. We re-
fer to this approach as absolute differentiated services, since
the user receives an absolute service profile (e.g. a certain
bandwidth) from the network. For example, assuming that
no dynamic routing occurs, the Premium Service [5] can
offer the user a performance level that is similar to that
of a leased-line, as long as the user’s traffic is limited to a
nominal bandwidth. In the Assured Service {6], packets are
classified into two levels of drop-preference (‘In’ and ‘Out’)
at the network edges, depending on whether the user follows
the allocated bandwidth profile or not. When congestion oc-
curs, ‘Out’ packets are discarded with a higher probability
than ‘In’ packets. An open question regarding the absolute
differentiated services is whether they can provide with a
high likelihood the end-to-end performance that users ex-
pect. The trade-offs in achieving high service assurance,
coarse spatial granularity (i.e., users would like a certain
end-to-end bandwidth in many or even all network paths),
and high network utilization, have becen discussed in [7]. 1t
turns out that some form of routc pinning is necessary for
implementing such services, which may constitute by itself
an obstacle for wide-scale deployment in the Internet.



A fundamentally different approach in the DS framework
is the relative differentiated services. In this approach, the
network traffic is grouped into IV classes of service which are
ordered, such that Class i is befter (or at least no worse)
than Class (1 — 1) for 1 < i < N, in terms of local (per-
hop) metrics for the queucing delays and packet losses. Note
that the elucidation ‘or no worse’ is required, since in low-
load conditions all classes will experience the same quality
level. The Class Selector PHBs, recently standardized by
the IETF [4], follow this model of relative service differen-
tiation. In this context, applications and users do not get
an absolute service level assurance, such as an end-to-end
delay bound or bandwidth, since there is no admission con-
trol and resource reservations. Instead, the network assures
them that higher classes will be relatively better than lower
classes, and so it is up (o the applications and users to select
the class that best meets their requirements, cost, and policy
constraints. In this aspect, the rclative service differentia-
tion model follows the architectural principle of end-system
adaptation, since it provides the choice of the service class
as an additional dimension in the end-system adaptation
space. It can be argued that the relative differentiated ser-
vices approach is similar with the architecture of the postal
service system, in which there are several priority classes
that operate without admission control, end-to-end resource
reservations, or service guaranteecs. We do not attempt here
a comparison between relative and absolute differentiated
services, since this is much larger an issue than the scope

of this paper. It is likely that both approaches will coexist,’

since they target differcnt applications and uses.

There are several ways in which a network can provide
relative differentiated scrvices. For example, the differen-
tiation can be strictly based on appropriate pricing (i.e.,
higher classcs are more expensive), or on careful capacity
provisioning (i.e., higher classes have more forwarding re-
sources relative to their expected loads). Such mechanisms,
however, cannot always provide consistent differentiation
between classes, because the relative differentiation between
classes varies with the class loads. Especially with the
Internet traffic, which is known to be bursty over a wide
range of timescales, there can be long intervals in which a
higher class is overloaded, to the extent that it offers worse
servicc than a lower class. Other mechanisms, such as
strict prioritization between classcs, provide consistent class
differentiation that does not depend on the load vanations,
but they do not allow the network operator to adjust the
quality spacing between classes. Such ‘tuning knobs’ are
" necessary in a practical setting, since the network operators
must be able to adjust the quality spacing between classes
depending on pricing and policy objectives. Our basic
premise, starting from these limitations ol other relative
differentiation models, is that in order for a relative
differentiated services architecture to be effective for both
users and network operators, it has to be:

e Predictable, in the sense that the differentiation
should be consistent (i.e., higher classes are better, or
at least no worse) independent of the variations of the

class loads, and

e Controllable, meaning that the network operators
should be able to adjust the quality spacing between
classes based on their selected criteria.

As a target for predictable and controllable relative dif-
ferentiation, the first contribution of this paper is o pro-
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pose the proportional differentiation model. According to
this model, the basic performance measures for packet for-
warding locally at each hop are ratioed proportionally to
certain class differentiation parameters that the network op-
eralor chooscs. Even though there is no wide consensus on
the most appropriate performance measures for packet for-
warding, it is generally agreed that a better network service
means lower queueing delays and lower likelihood of packet
losses. In this paper, we apply the proportional model to
the case of queueing delay differentiation only, leaving the
more general problem of coupled delay and loss differenti-
ation for future work. Consequently, the results presented
hcre are not directly applicable to applications and transport.
protocols that depend on both queueing delays and packet
losses (e.g. TCP). They arc applicable to delay-sensitive ap-
plications, such as IP-telephony and video-conferencing, or
to transaction-based applications. T'CP-based applications,
however, can also benefit from delay differentiation, espe-
cially in cases where the congested gatcways have a large
number of buffers and the queueing delays are a significant
component of the round-trip delay; the important effect of
queueing delays in TCP has been discussed in [8].

In the context of queueing delay differentiation, we first
discuss the dynamics of the proportional model, and then
state the conditions under which this model is feasible. We
then focus on the issue of appropriate packet schedulers for
proportional delay differentiation. We identify two sched-
ulers that can approximate the proportional delay model
in heavy-load conditions: the Backlog Proportional Rate
(BPR) scheduler, and the Waiting-Time Priority (WTP)
scheduler (originally studied by L.Kleinrock [9]). An im-
portant observation is that the two schedulers tend to the
proportional differentiation model during heavy-load condi-
tions, even in short timescales. This is a significant feature of
the schedulers, since long-term averages do not always con-
vey useful information when the traffic is bursty over long
timescales. In the absence of appropriate analytical tools for
studying the behavior of these schedulers with non-Poisson
traffic models and in short timescales, we use simulations
with bursty traffic in most of our evaluation study.

The structure of the paper is as follows. In Section 2,
we describe the proportional differentiation model and com-
pare it with other relative differentiation approaches. In Sec-
tion 3, we discuss the dynamics and feasibility conditions of
the proportional delay differentiation model. In Section 4,
we describe two packet schedulers that are designed for pre-
dictable and controllable delay differentiation, even in short
timescales. The main evaluation and comparison of the two
schedulers follows in the simulation study of Section 5. In
Section 6, we take the user’s perspective and investigate if
such local and class-based forwarding mechanisms are able
to provide consistent end-to-end differentiation to individ-
ual flows from different classes. Finally, Section 7 closes
the paper by identifying some open questions in this area of
Internet research.

2 The Proportional Differentiation Model

The proportional differentiation model ‘spaces’ certain class
performance metrics proportionally to the differentiation pa- .
rameters that the network operator chooses. If, say, g; is
such a performance measure for class ¢, the proportional dil-
ferentiation model imposes constraints of the following form

for all pairs of classes:
¢ i

q; Ci

(G,j=1...N)



where ¢; < ¢2 < ... < ¢y are the generic quality differenti-
ation parameters. So, even though the actual quality level
of each class varies with the class loads, the quality ratio
between classes remains fixed and controlled by the network
operator, independent of the class loads.

In this paper, we focus on queueing delay differentiation
only, and so we apply the proportional differentiation model
to a queueing delay metric. The simplest such metric is the
long-term average queueing delay of a class. Specifically, if
d; is the average queueing delay of the class-i packets, the
proportional delay differentiation model states that
di

6;

Suif B

(1)

for all pairs of classes ¢ and j. The parameters {d;} are
referred to as Delay Differentiation Parameters (DDPs),
and because higher classes are better, they are ordered as
61 > 62 > ...>dn > 0. Since the proportional differcnti-
ation model does not depend on the class loads, it applies
with the same semantics in all load conditions in which it
is feasible. For example, the network operator can specify
that the average delay in class-1 is double the average de-
lay in class-2, independently of whether the delays are in
the order of a few packet transmission times, or hundreds of
packet transmission times. The conditions under which this
model is feasible are shown in the next section.

It is desirable that the proportional differentiation model
holds not only in the case of average delays over long
timescales, but also for delay metrics over short timescales.
Long-term averages do not always convey useful informa-
tion, especially when the traffic is very bursty, or when the
user/application flows are short. To illustrate this, suppose
that a user generates a short packet flow (say a Web ses-
sion) in a certain class §, with the expectation that the flow
will encounter lower delays than if it had been sent in class
i (¢ < 7). Even if the long-term average delay of class j
is indeed lower than the average delay of class i, it may
happen that the flow was created during a time period in
which class ¢ encounters lower delays than class j because
of a large burst in the latter; if this happens frequently,
the relative differentiation between classes will not be con-
sistent and predictable. A formulation of the proportional
differentiation model for a short-term queueing delay met-
ric follows: let di(t,t + 7) be the average queueing delay of
the class-i packets departing in the time interval (¢,t+ 1),
where 7 > 0 is the monitoring timescale. If there are no
departing packets, d;(¢, ¢ + 7) is undefined in this time-in-
terval. The proportional delay differentiation model for a
monitoring timescale T holds between a pair of classes ¢ and
7, 1f

diltytrr) _ 6 )

dj(t,t+71) 95
for all time intervals (,¢+ 7) in which both J.-(t, t+7) and
d;(t,t+7) are defined. Unfortunately, we were unable to de-
rive the feasibility conditions for this short timescale formu-
lation of the model, given a certain value of r. Consequently,
our goal in this paper is to identify and evaluate scheduling
mechanisms that can approzimate the proportional differen-
tiation model in short timescales, even though we do not
attempt to define more formally how short the monitoring
timescale T should be, and which are the implications for
the feasibility of the model in that case. The feasibility
conditions for the case of long-term average delays, on the
other hand, are given in Section 4. We return to the ‘short
timescales’ aspect of the proportional differentiation model
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in Section 5, where we evaluate using simulations the BPR
and WTP schedulers in the context of the proportional dif-
ferentiation model of Equation 2.

2.1 Other relative differentiation models

Strict Prioritization: In this approach, the highest back-
logged class is serviced first (delay aspect), and when a
packet needs to be dropped, it is from the lowest backlogged
class (loss aspect). However, such a discipline does not lead
to controllable differentiation, because it does not provide
any means for adjusting the quality spacing between classes.
Also, the lower classes can experience starvation effects if no
restriction is placed on the load of higher classes.

Price Differentiation: A simple case of relative service dif-
fercntiation is the Paris Metro Pricing (PMP) scheme [10].
PMP uses pricing, instead of special forwarding mechanisms,
to provide relative class differentiation. It is based on the
assumption that higher prices will lead to lower loads in
the higher classes, and thus, better service quality. Pric-
ing mechanisms, however, cannot be effective over relatively
short timescales, especially when the class tariffs cannot be
changed very often. When higher classes get overloaded (be-
cause, for example, many ‘rich’ users become active at the
same time), they will offer worse packet forwarding than
lower classes. This would be a case of inconsistent (i.e.,
unpredictable) class differentiation.

Capacity Differentiation: In this model, the network op-
erator allocates the forwarding resources between classes so
that higher classes have more bandwidth and packet buffers,
relative to their long-term expected load, than lower classes,
and so they get better service. In the case of delay differenti-
ation, for example, a Weighted Fair Queueing (WFQ) type
of scheduler can be used to distribute the link bandwidth
between classes [11, 12, 13], so that the ratio of service-
to-arrival rates for higher classes is larger. Although the
WFQ variants provide the network operator with a set of
class differentiation parameters (i.e. the proportional band-
width share of cach class), the actual queueing delays at a
bandwidth allocation server depend on the bandwidth share,
and the load and traffic burstiness of each class [14]. Conse-
quently, although the bandwidth differentiation is control-
lable, the delay differentiation is not. Onc can argue that
the link shares can be set based on the ezpectedload in each
class, adjusting the long-term queueing delays to a desired
operating point. Such an approach, however, would not be
capable of providing consistent differentiation in relatively
short timescales, because the forwarding resources allocated
to each class do not follow the actual class load variations.
This issue has been illustrated in [15]. Our position is that,
instead of relying on such provisioning methods, it is the
forwarding mechanisms (i.e., packet scheduling and buffer
management) that should be capable of providing consis-
tent relative differentiation between classes, independent of
the class loads and even in short timescales. So, when a
high class becomes temporarily overloaded, the forwarding
mechanisms should dynamically assign to it a larger share
of forwarding resources so that it still remains better than
the lower classes.

Additive Differentiation: The basic idea in this model
is to ‘space’ the class service levels based on the differenti-
ation parameters that the network operator chooses, as in
the proportional model, but using additive, instead of pro-
portional, constraints. For the case of long-term average
queucing delays, the additive model states that when the
load is sufficiently heavy, the difference between the class



average delays is a specified constant, i.e,

di—d,=D;; >0 (3)
where D;; > 0 is the delay differentiation parameter for
the pair of classes (i,5). Consider a priority scheduler in
which the priority of a packet in queue s at time ¢ is pi(t) =
w;(t) + si, where w;(t) is the waiting-time of the packet at
time ¢, and 0 < s; < s2 < ... < sy are the scheduler
differentiation parameters. Simulation results show that this
scheduler tends to additive delay differentiation in heavy-
load conditions, with D;, = s; — s; [15]. This scheduler
is also discussed in [16], together with an expression for its
behavior in heavy-load conditions assuming Poisson arrivals.
We mention the additive differentiation model here, as an
interesting case of another relative differentiation model that
deserves further investigation.

(7>1)

3 The Dynamics and Feasibility of Proportional
Delay Differentiation

The objective of this section is to provide further intuition
on the dynamics of the proportional delay differentiation
model, and to show the conditions under which this model
is feasible, for the case of long-term average delays. We con-
sider a lossless and work-conserving packet scheduler that
services N queues, one for each class.! The lossless assump-
tion requires that the scheduler operates in the stable re-
gion, i.e., the offered load is less than the service capacity;
otherwise the queues can be unrealistically long. This op-
eration scenario can be achieved in practice with sources
that react to the Explicit Congestion Notification (ECN)
bit, without requiring loss-induced congestion control [17].
A more realistic case would be to model a lossy multiplexer
with sources that adjust their rates based on packet losses,
as the current TCP sources do, but we do not take this
model further, since we do not consider loss-rate differen-
tiation in this paper. The assumption of work-conserving
forwarding mechanisms is also important, because with a
non-work-conserving scheduler it is possible to set the delay
spacing between classes to arbitrary levels. We believe that
only work-conserving forwarding mechanisms will be used
in practice, because of the competition for the best possi-
ble service between providers; this is mainly a non-technical
issue however.

Let A; be the average arrival rate in class ¢, and A =
Z;‘N=1 Ai be the aggregate arrival rate in the system. Assume
that there exists a scheduling discipline which can enforce
the proportional delay differentiation model for the case of
long-term average queueing delays,

(4)

i.e., we assume that the proportional differentiation is fea-
sible. If the packet length distribution is the same in all
classes, the conservation law mandates that:

N
D di=xd(y) (5)
=1

where d()) is the average queueing delay that would result
if the aggregate traffic was serviced by a work-conserving

! We use the terms ‘class’ and ‘queue’ interchangeably.
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FCFS server of the same capacity as the scheduler that en-
forces the proportional delay model. From Little’s law, the
conservation law states that the average backlog in a work-
conserving system is independent of the scheduling disci-
pline. For a more general form of the conservation law,
which does not require the same packet length distribution
in all classes, see [16]. Note that d(A) depends strongly on
the traffic characteristics (e.g., burstiness), and it requires
detailed measurements of the actual traffic dynamics in a
certain link in order to be estimated.

Combining Equations (4) and (5), the average queueing
delay of class 1 is:

- 8 d())

IR +6 R+ +ov A

i = (i=1...N) (6)

From Equation (6) we can verify the following properties
for the ‘dynamics’ of the proportional delay differentiation
model:

1. The average delay of a class i increases® with the ar-
rival rate of each class 7.

2. Increasing the load of a higher class causes a larger
increase in the average delay of a class than increasing
the load of a lower class.

3. If the delay differentiation parameter of a class in-
creases, the average delay of all other classes decreases,
while the average delay of that class increases.

4. Suppose that a fraction of the class i load switches
to class j, while the aggregate load remains the same.
The average delay of each class increases if 1 < j, and
decreases if 1 > j.

We assumed carlier that the proportional delay differ-
entiation model is feasible, i.e., that there exists a work-
conserving scheduler that can enforce the constraints of (4).
It is easy to see that this is not always true. For example,
the average delay of a class cannot be lower than the av-
erage delay of that class in a FCFS server, with the traffic
from the other classes removed. Given the class arrival rates
{\i} and the average delay d()) of the aggregate traffic, we
say that a set of DDPs {8:} is feasible if there is a work-
conserving scheduler that can set the average delay of each
class as given in Equation (6); in that case, the constraints
of (4) are satisfied as well. Necessary and sufficient condi-
tions for the feasibility of a set of average class delays, given
the class loads, were derived in [18] (see also [19]). For gen-
eral traffic assumptions,® a set of N average delays {d;} is

feasible if and only if the following 2~ — 2 inequalities hold,

doxdi 2 O M) dD N) forall ge@

icy i€ =

(7)

where @ is the set of 2Y — 2 nonempty proper subsets of
{1,2,...N}. The term J(ZiEqS Ai) is the average queueing
delay that the aggregate traffic of the classes in ¢ € ® would
experience in a work-conserving FCFS server. These condi-
tions express the fact that the average backlog of a subset

?In the following properties we use the terms ‘increase’ and ‘de-
crease’ informally, since the actual terms should be ‘non-decrease’ and
‘non-increase’, respcctively.

3Most of [18] assumes Poisson arrivals. The particular result that
we include here holds however, as [18] also states, for a general arrival
model.



of the N classes cannot be lower than the backlog of these
classes in a FCFS server, independently of the scheduling
discipline.

It has to be noted thai these feasibility conditions can
be applied in practice only if it is possible to estimate the
average delays d( cé Ai) with measurements of the traffic
dynamics in a specific link. Such an experimental procedure
is by itself a challenging open issue, that we do not pursue
further here. An important point to keep from this discus-
sion, however, is that even if there is an ‘ideal proportional
delay scheduler’, the DDPs that a network operator spec-
ifies might not be feasible under certain conditions on the
system load, the class load distribution, and the traffic char-
acteristics. In the rest of the paper, we only consider cases of
feasible DDPs. Since it is possible to examine the conditions
stated in (7) in simulation experiments (by simply simulat-
ing the FCFS server), we have verified that the experiments
in Section 5 (and specifically in Figures 1 and 2) refer to
cases of feasible delay differentiation. Consequently, the de-
viations from the proportional delay model shown there are
due to the inefficiencies of the packet schedulers, rather than
due to the proportional model or the selected DDPs.

4 Two Packet Schedulers for Relative Delay Dif-
ferentiation

In this section, we identify two packet schedulers that are
designed for predictable and controllable relative delay dif-
ferentiation. They both approximate the proportional de-
lay differentiation model in heavy-load conditions, as the
simulation study of the next section shows, even in short
timescales.

4.1 Backlog-Proportional Rate (BPR) scheduler

The basic idea in this scheduler is to use the bandwidth dis-
tribution model of a GPS server [12], but with the following
modification: dynamically readjust the class service rates so
that they are always ratioed proportionally to the correspond-
ing ratios of class loads. The relation between class loads
is reflected on the relation of the class backlogs, since if a
certain class has received a small amount of service relative
to the amount of arrivals in a recent time interval, then that
class will also have a relatively larger backlog. Specifically,
let r;(t) be the service rate that is assigned to queue i at
time ¢. If the queue i is empty at time ¢, r;(¢) = 0. For
two backlogged queues ¢ and j, the service rate allocation in
BPR satisfies the proportionality constraint:

ri(t) _ s @i(t)
ri(t) s gi(t)

where g:(t) is the backlog of queue ¢ at time t. The ac-
tual service rate of each class during a busy period can be
calculated from the work-conservation constraint:

N
E:M0=R
i=1

where R is the link capacity. The parameters {s:} are the
Scheduler Differentiation Parameters (SDPs) that the net-
work operator selects, and as will be shown in the next sec-
tion, they are directly related to the Delay Differentiation
Parameters (DDPs) {4} in heavy-load conditions. Follow-
ing our convention on the ordering of classes, 31 < 32 <
... < 8N.

(8)

)

The main finding of the simulation study in the next sec-
tion is that the the BPR scheduler approximates the propor-
tional delay differentiation model of Equation (1) in heavy-
load conditions, with the DDP ratios tending to the inverse
of the corresponding SDP ratios, i.e.,

d; )
d, 8i (10)
Further work is required however in order to analytically ex-
amine the validity of this property for general traffic models.

A property of the BPR scheduler is that when the rel-
ative backlog of a queue is quite small, the relative service
rate given to that queue is also small. As a result, the last
few packets in a queue either before the queue gets empty or
before new arrivals occur can experience a much larger delay
than their predecessors. This causes sawtooth-type of varia-
tions in the queueing delays of consecutive packets (see Fig-
ure 4). This pathological short-term behavior is related to
the simultancous queue clearing property of the BPR sched-
uler:

Proposition 1 In a BPR scheduler, all queues that are
backlogged during a busy period become empty at the same
time.

This property is proved in Appendix-1. Since the BPR
scheduler is based on the fluid server model, it can only
be approximated in practice. A possible way to ‘packetize’
the BPR scheduler is given in Appendix-3. That is also the
algorithm implemented in our simulation study.

4.2 Waiting-Time Priority (WTP) scheduler
This is a priority scheduler in which the priority of a packet

_ increases proportionally with its waiting-time. Specifically,
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the priority of a packet in queue 7 at time ¢ is
pi(t) = wi(t) s

where w;(t) is the waiting-time of the packet at time ¢.
The Scheduler Differentiation Parameters {s;} determine
the rate with which the priority of the packets of a certain
class increases with time. As in BPR, s; < 82 < ... < sn.
The WTP algorithm was first studied by L. Kleinrock in
1964, with the name Time-Dependent-Priorities [9, 20]. Us-
ing Kleinrock’s words: The utility of this new priority struc-
ture is that it provides a number of degrees of freedom with
which to manipulate the relative waiting times for each pri-
ority group. The WTP scheduler distributes the service rate
between backlogged classes dynamically based on the load
of each class, but it does so in a different way than the BPR
scheduler. Specifically, in the WTP scheduler the load of
a queue in the recent past is reflected on the waiting-time
of the packet at the head of that queue, since if a queue
has received a small amount of service relative to the cor-
responding amount of arrivals in a recent past interval, it
will have packets with large waiting times close to its head.
As in BPR, the Scheduler Differentiation Parameters func-
tion as weights in the service rate distribution, and they are
directly related to the Delay Differentiation Parameters.
The main finding of the simulation study in the next
section is that the WTP scheduler approximates the propor-
tional delay differentiation model of Equation (1) in heavy-
load conditions, with the DDP ratios tending to thc in-
verse of the corresponding SDP ratios, as in Equation (10).
The simulation study also shows that the WTP scheduler
achieves this goal more accurately than the BPR scheduler.

(11)



Additionally, the WTP scheduler approximates the short-
timescale proportional differentiation model of Equation (2)
in time intervals of high load, even when then the monitor-
ing timescale 7 is a few tens of packet transmission times.
As in the case of BPR, though, further work is required in
order to analytically examine the validity of these properties
for general traffic models.

However, the WTP scheduler can also exhibit a problem-
atic behavior in short timescales. This behavior is probably
due to its priority nature (as opposed to the ‘simultane-
ous link-sharing’ nature of BPR). Specifically, under certain
conditions on the SDPs, an arriving burst in a high-class
queue can exclude lower classes {rom service until this burst
is completely serviced; this short-term starvation effect can
happen for arbitrarily long high-class bursts.

Proposition 2 Let Ry be the peak input rate in the sched-
uler, and R be the output link (or service) rate. If R < R;
and R

1 - = )
R1>s]'

Si

— (12)
a sequence of A consecutive class j packets that starts ar-
riving at time to will be serviced before any class © packets
that arrived at to or later, and this is true for arbitrary large
values of A.

(si < 33)

This property is proved in Appendix-2. The complexity of
the WTP scheduler is O(N), where N is the number of
classes, since a priority has to be calculated for every back-
logged class after a packet departure. For a small number
of classes, the implementation of this scheduler should be
feasible cven at very high-speed links. Also, packets have
to be timestamped upon arrival, which may be a significant
overhead in certain implementations.

5 Simulation Study A: Evaluation of BPR and
WTP

The objective of this simulation study is to evaluate the
BPR and WTP packet schedulers in the context of the pro-
portional delay differentiation model. We first investigate
the effect of the aggregate load and of the class load distri-
bution on the long-term average delay differentiation. Then,
we examine if BPR and WTP can satisfactorily approximate
the proportional delay model in short timescales. Finally, we
show instances of the ‘microscopic’ views of the queueing de-
lays in different classes, and highlight some problems in the
short-term behavior of the two schedulers.

The simulated model is as follows. A BPR/WTP sched-
uler services N=4 packet sources, with one source for each
service class. Unless stated otherwise, the Service Differ-
entiation Parameters for both schedulers are s; = 1,5, =
2,83 = 4,84 = 8. The interarrivals between packets of the
same class follow a Pareto distribution with a shape param-
eter o = 1.9; because of the infinite-variance property of this
distribution we do not determine confidence intervals for the
average-delay measurements. The class load distribution is
specified in each graph, and in most cases it is set to: Class-
1:40%, Class-2:30%, Class-3:20%, Class-4:10%. The packet
length distribution is the same for all classes (40% of the
packets are 40 bytes, 50% are 550 bytes, and 10% are 1500
bytes). Normalizing to an arbitrary link speed, the aver-
age packet transmission time (referred to as p-unit) is 11.2
time units. The following graphs show only queueing de-
lays, which are also measured in these arbitrary time units.
The utilization factor p is set to the ratio of the average
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packet transmission time and the average interarrival of the
aggregate packet stream. In most of the simulations we ex-
amine the behavior of the schedulers between moderate-load
(p = 0.70) and heavy-load (p = 0.95) conditions. As men-
tioned earlier, such stable and high-utilization operation can
be achieved in practice without packet losses only if there is
an adequately large number of packet buffers and the sources
adjust their rate successfully using the ECN bit set by con-
gested routers. If the utilization is less than around 70%,
the queueing delays are fairly small, and so, no service dif-
ferentiation is probably needed.

The effect of the aggregate load. Figure 1 shows
the ratio of the average-delays between successive classes in
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Figure 1: The ratios of average-delays between successive
classes with WTP and BPR. The traffic load distribution is
Class-1: 40%, Class-2: 30%, Class-3: 20%, Class-4: 10%.



moderate and heavy-load conditions. The average delay for
each class in these experiments is computed from the entire
simulation run (after an initial ‘warm-up period’), i.e., they
are long-term average delays. Each point in these figures
resulted from averaging over ten simulation runs with dif-
ferent seeds, while the simulation time-in each run was 10°
time units. The SDPs were chosen as s;/s;—; = 2 in Fig-
ure 1-a, and as si/si—1 = 4 in Figure 1-b. Notice that as
the aggregate load increases, the WTP scheduler tends to
proportional average-delay differentiation with:

&

d;

35
(13)
i.e., the DDP ratios are just the inverse of the corresponding
SDP ratios. The BPR scheduler has a similar trend, but it
does not converge exactly to the specified ratio, probably
because of the approximations done in the ‘packetization’ of
the scheduler (see Appendix-3).

Although these figures show only the delay ratios, the
actual average delays in the heavy-load region in which
both schedulers approximate the proportional differentia-
tion model are in the order of a few tens of packet trans-
mission times for the high classes, and of a few hundreds
of packet transmission times for the low classes. This can
be also seen in Figures 4 and 5. Such delays are common
in practice, especially for links with a high bandwidth-delay
product, and thus, we can argue that the high-load operat-
ing region in which the two schedulers perform close to the
proportional differentiation model is a realistic case, and not
an impractical regime in which even the highest classes en-
counter excessive queueing delays.

However, ncither scheduler manages to maintain the pro-
portional delay differentiation in moderate loads. For exam-
ple, when the utilization is 70% the differentiation ratio is
about 1.5 when it should be 2, and about 1.7 when it should
be 4. The deviations increase as we widen the differentia-
tion spacing between classes, by having higher SDP ratios
8;/si~1. We repeat that these experiments refer to feasible
proportional delay differentiation, and so the inaccuracies
shown are because of the schedulers, and not because of
the chosen SDPs (or DDPs). These inaccuracies are not
surprising; these schedulers were not a priori designed [or
proportional delay differentiation, but for controllable rela-
tive delay differentiation. They tend to proportional delay
differentiation only under sufficiently heavy-load conditions.
An interesting open question is whether there is a work-
conserving scheduler that can achieve the proportional delay
differentiation constraints, whenever this is feasible. '

The effect of the class load distribution. Figure 2
shows the ratio of the average-delays between successive
classes in seven different load distribution cases. The simula-
tion methodology is as in the previous paragraph. The SDPs
are chosen as 8;/s;_; = 2 in Figure 1-a, and as s;/si_; = 4
in Figure 1-b. The link utilization is 95% in all cases. Notice
that the WTP scheduler provides the specified average-delay
differentiation ratio (Equation 13) independent of the load
distribution in a very precise manner. The BPR scheduler,
on the other hand, is in a certain degree dependent on the
class load distribution. Specifically, although it can achieve
the proportional average-delay model when all classes have
the same load, it cannot do so in an accurate manner when
some classes are more loaded than others; the highly loaded
classes get higher delays than what the SDPs specify. The
deviations from the proportional differentiation model di-
minish as the aggregatc load tends to 100%. These results
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Figure 2: The symbols in this graph are as in Figure 1. The
four numbers in each bar denote the fraction of the four
classes in the aggregate packet stream, starting from class 1
up to class 4. The utilization is 95% in all cases.

strengthen the observation that WTP is better than BPR
in the coutext of proportional delay differentiation.

The behavior of BPR and WTP in short
timescales. The previous two experiments are based on
measurements of long-term averaging delays. A critical is-
sue, however, is to investigate whether the WTP and BPR
schedulers can also approximate the short-timescale propor-
tional differentiation model of Equation (2). In this ex-
periment we measure the ratios of average-delays between
successive classes in consecutive time-intervals of length 7,
where 7 is the monitoring timescale. The four values of T
are 10, 100, 1000, and 10000 p-units, where a p-unit is the
average packet transmission time (11.2 time units in this
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Figure 3: Five percentiles of the Rp measure (see text) for
four values of the monitoring timescale r. The diamonds
represent the 50% percentiles (median), the squares at the
horizontal edges of the boxes represent the 25% and 75%
percentiles, while the circles at the end points of the dashed
lines represent the 5% and 95% percentiles.

study). For example, a monitoring timescale = of 1000 p-
units corresponds to about 3 seconds in a T1 link, and to
about 30 milliseconds in an OC-3 link. The average delay
of a class in a certain time interval of length 7 is measured
as the average delay of the packets that departed in that
time interval from the queue of that class. At the end of
the simulation run we compute, for each time interval, the
ratios of average-delays between successive classes; then, we
average these ratios over all pairs of classes in order to get
a single measure 1p for the ratio of average-delays betwecen
successive classes in the corresponding time interval. When
one or more classes are not ‘active’ in a certain time inter-
val (i.e., there are no packet departures from that class), we
normalize the ratios of average delays of the ‘active’ classes
in order to compute Rp.

Figure 3 shows five percentiles of the Rp values obtained
from all time-intervals of length 7, for the four different val-
ues of 7; the five percentiles are: 50% (median), 5%, 25%,
75%, and 95%. The SDPs are s;/s;~1 = 2, and the aggre-
gate load is 95%. As we increase the monitoring timescale
T to 10000 p-units, both schedulers approximate the short-
term proportional differentiation model of Equation (2) in
almost all time-intervals of length 7. Also, if we focus in the
range between the 25 and 75 percentiles, the WTP approx-
imates the proportional constraints even with a monitored
timescale of only tens of p-units. The BPR, on the other
hand, has a quite ‘spread’ range of average-delay ratios in
timescales of hundreds of p-units or less. The improved be-
havior of WTP over BPR in short timescales is also illus-
trated in the next paragraph.

Microscopic views of the behavior of BPR and
WTP. To further illustrate the short-timescale behavior of
the two schedulers, we next show two pairs of microscopic
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Figure 4: Queueing delays with the BPR scheduler when
81 = 1,82 =2,33 = 4.

views of the queueing delays in each class. [n the microscopic
views | (Figures 4-a and 5-a) each point represents the aver-
age queueing delay of a class in consecutive time intervals of
30 p-units, for a time-window of about 15,000 packet trans-
mission times. In the microscopic views II (Figures 4-b and
5-b) each point shows the queueing delay of an individual
packet at the time of its departure, for a time-window of
about 1,000 packet transmission times. Figure 4 shows the
microscopic views in the case of BPR, while Figure 5 shows
the case of WTP. Each pair of microscopic views covers the
same simulation time interval, and the same arriving packet
streams in each class. For simplicity of illustration, the num-
ber of classes in these experiments is three instead of four.
The SDPs in both schedulers are s; = 1,82 = 2, and s3 = 4,
while the aggregate link utilization is 95%.

The microscopic views | are typical for these load con-
ditions, while the microscopic views II cover an overloaded
time interval. Notice that, as mentioned earlier, even in such
overloaded periods the actual delays for the lowest class are a
few thousands of time-units, which corresponds to a few hun-
dreds of packet transmission times, while the actual delays
for the highest class are a few hundreds of time-units, which



Waiting-Time Priority Scheduler
T T T T

1400

2000 T T T
f Class-1 —
I Class-2 -==-- 4
1800 Class-3 -
1600
1

1200

1000

Average Queueing Delay (per 30 packets)

i1 1 1
16720 186740 16760

16680 16700 16780 16800
Time (/1000)
(a) Microscopic view I
Waiting-Time Priority Scheduler
3500 T T T T T
glass-; .
lass2 +
3000 - Class-3 © .MA \ T
VAL
2500 | ”‘5' %W ]
%y
. L4
3
% 2000 | 1 ”»
a kad
2 #hye 3
]
2
3 1500 |- AR 1
g o Ry
] A T R W YW
- W b 1
1000 ™™ “."ﬂw 1
M‘ L T
500 -ﬁhw 1
o . . . . .
1108 110 112 1 1116 1118 1120

114
Departure Time (/1000)

(b) Microscopic view II

Figure 5: Queueing delays with the WTP scheduler when
81 = 1,82 =2,33 = 4.

corresponds to a few tens of packet transmission times. The
general observation for both schedulers from the microscopic
views | is that the proportional delay differentiation model
is better approximated during intervals of high load, where
the class queues and delays are large. In the case of BPR,
it is easy to note, especially in the microscopic view [l, that
it deviates quite often from the proportional delay model in
very short timescales. Specifically, the sawtooth-type of vari-
ations in the queueing delays of the microscopic view 1l are
common: the queueing delays of consecutive packets grad-
ually increase, until they suddenly drop at a certain time,
after the arrival of new packets in that class. WTP, on the
other hand, approximates more precisely the proportional
delay differentiation model, even in the microscopic view
II. Although there are several noticeable deviations, but. the
general trend is quite satisfactory. Comparing Figures 4 and
5 shows that even though both schedulers approximate the
proportional average-delay model under heavy-load condi-
tions, WTP achieves this in a more precise manner in short
timescales, while BPR creates ‘noisy’ queueing delay varia-
tions.
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Ifigure 6: The multi-hop traffic configuration in this simula-
tion study.

6 Simulation Study B: The User’s Perspective

The simulation study of the previous section focused on a
single link and on the relative delay differentiation between
different. classes. Although such a study would be of inter-
est to a network operator, the network users would obviously
be concerned for the end-to-end performance of their packet
flows. To illustrate the issues that arise in the user’s per-
spective, consider the following scenario. Suppose that two
identical flows from classes 7 and 7 (with i > j) enter a net-
work at the same time and they traverse a common path.
The network attempts to provide locally in each link propor-
tional delay differentiation in the granularity of class traffic,
but as it was shown in the previous section, this is often
impossible to do in all timescales and load conditions. The
fair question that arises in the user’s perspective is: ‘since
class 1 is higher (and probably more expensive) than class j,
will I get lower delays in this path if my packet flow belongs
to class 1 instead of class 37° More generally, the issue here
is: can a local and class-based relative differentiation lead to
consistent end-to-end and flow-based relative differentiation,
independent of the network path and user-flow characteris-
tics? If not, there is obviously a mismatch between what
the network offers and what the users expect.

We allempt a first investigation of this critical issue using
simulations that we performed with ns-v2 [21]. The sim-
ulated model is based on the previous scenario: A set of
N(=4) identical flows, one from each class, traverse a con-
gested network path that consists of X hops. Each flow has
a length of F packets (500 bytes per packet) which are peri-
odically transmitted at 1.5Mbps to generate an average rate
of R, kbps. Note that the periodic nature of these flows is
just a technicality to ensure that the corresponding packets
enter the network at the same time; alternatively, we could
use bursty precomputed arrivals, common for all flows. In
the rest of this section, thesc /N flows are referred to as User
flows. The network path is also loaded with Cross-traffic.
The Cross-traffic at each node is generated from C(=8)
sources that randomly generate packets (500 bytes) from
different classes, following the distribution: Class-1:40%,
Class-2:30%, Class-3:20%, Class-4:10%. These sources have
Pareto-distributed interarrivals (@ = 1.9). Their average
rate R. is adjusted based on the desired average utiliza-
tion p in each network link. The traffic configuration that
we simulated is shown in Figure 6. The bandwidth of the
nelwork links is 25Mbps. Each link uses a WTP scheduler
(since it performs better than BPR), and the SDPs are:
s1 = 1,82 = 2,53 = 4,84 = 8. In order to examine the
eflectiveness of the relative delay differentiation, we ignore
propagation and transmission delays (which are common to
all packets) and focus only on queueing delays. The parame-
ters that we vary in this model, together with the two values



F=10 F=10 F=100 | F=100
,:=50 | R,=200 | R,=50 | R.=200
K=4 2.3 2.2 2.2 2.1
p=85%
K=4 2.1 2.1 2.1 2.0
p=95%
K=8 2.0 2.0 2.0 2.0
p=85%
K=8 2.0 2.0 2.0 2.0
p=95%

Table 1: The metric Rp: ldeally, it should be 2.00 in all
cases. These results have been consistent in five simulation
runs with different random seeds.

that have been simulated for each parameter, are:
a) the length F of the User flows (10 and 100 packets),
b) the rate R, of the User flows (50 and 200 kbps),
c) the utilization p of the network links (85% and 95%),
d) the number of (congested) hops K in the network path
{4 and 8 hops).
The first two refer to the characteristics of the User flows,
while the last two refer to the network path.

The simulation methodology is as follows. After ‘warm-
ing up’ the network for 100 seconds, we generate in every
second M identical User flows, one from each class. Each of

these periodic events is referred to as a ‘user experiment’,:

since it is what a user would do in order to evaluate the
end-to-end delay differentiation between classes in a certain
network path. The simulation runs long enough to generate
M =100 user experiments. At the end of the simulation run,
we process the packet delays of each User flow, and calcu-
late the ten end-to-end delay perceniiles: 10%, 20%, . ..90%,
and 99%. In the last step of the process, we compare the
corresponding delay percentiles of the M flows in each user
experiment. [f in a certain uscr experiment a flow from a
higher class experienced larger delays than a lower class, in
terms of any of these percentiles, we identify a case of incon-
sistent delay differentiation. Finally, we compute the end-
to-end delay ratio Rp between successive classes, averaged
over the N —1 pairs of successive classes, over the M user ex-
periments, and over the ten delay percentiles. Although Rp
is a very ‘spread’ average, it provides a simple figure-of-merit
for the end-to-end queucing delay relative differentiation.

The first, and perhaps most important, result of this sim-
ulation study is that there were no cases of inconsistent de-
lay differentiation observed in any simulation run. In other
words, the local and class-based differentiation translates to
consistent end-to-end and flow-based differentiation. The re-
sults for the metric Rp are also quite satisfactory, as shown
in Table 1. In most cases I%p is quite close to 2.0, which is
the value that would result in the case of ideal proportional
delay differentiation with 6;/6;, = s;/si. As expected, Rp
tends to 2.0 as the load increases, because WTP converges (o
the proportional delay differentiation model. It is interest-
ing that as the number of path hops increases, the per-hop
deviations from the proportional differentiation model tend
to cancel-out, leading to a better Rp. It has to be noted,
finally, that one of the reasons Rp is so close to the ideal
differentiation ratio, is because it is an average over three
dimensions: all successive class pairs, all user experiments,
and all delay percentiles. The deviations from the propor-
tional differentiation mode! can be larger when we focus on
individual user experiments, or class pairs.
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7 Conclusions and Open Issues

The relative differentiated services architecture is a promis-
ing approach for addressing the issue of scalable service dif-
ferentiation in the Internet. Attempting a preliminary inves-
tigation of the problems that arise in this context, this paper
made two contributions. First, we proposed the propor-
tional differentiation model as a target for predictable and
controllable relative differentiation between classes. Second,
we identified and evaluated two packet schedulers that ap-
proximate the proportional delay diflerentiation model in
heavy-load conditions, even in short timescales. Although
both schedulers are appropriate for relative delay differenti-
ation, our studies illustrate that WTP is significantly better
than BPR in the context of proportional delay differentia-
tion.

We emphasize that our work is far from conclusive and
that there are several open issues that need to be further
investigated. First, is the proportional delay differcntia-
tion model, as formulated in this paper, the most appropri-
ate means for predictable and controllable differentiation?
Another choice could be the additive differentiation model,
bricfly described here, which promises an absolutc differ-
ence between the class delays, when the load is sufficiently
high. A dilferent approach would be to provide some type
of controllable differentiation between two classes, only in
the intervals where both these classes are backlogged. How-
ever, it is is not clear if such differentiation would be of any
value for the users, since they cannot know or control when
classes are simultaneously backlogged. Second, the propor-
tional differentiation model has to be extended in the di-
rection of coupled delay and loss differentiation, since both
performance measures are significant in most applications
and transport protocols. BPR and WTP may not be good
schedulers in that context, since they perform well when the
queues arc sufficiently long (i.e., in heavy-load conditions).
In the presence of limited buffers and losses, however, the
queues may not be long, even when the offered load is high.
This issue is also related with the poor behavior of WT'P and
BPR in moderate loads or large SIDP ratios; in either case,
the class queues are not sufficiently long for these schedulers
to distribute the class delays as in the proportional differ-
entiation model. It is interesting to know the form of an
‘optimal proportional differentiation scheduler’, even if it is
too complicated to be practical. Third, it is important to
combine the feasibility conditions presented here with exper-
imental procedures and measurements, in order to be able
to determine efficiently the space of feasible DDPs for a cer-
tain network link. Even though it is hard to come up with
a ‘universal’ model for the Internet traffic, it may be pos-
sible to estimate the required delay-vs-rate curve d(}) for
a specific link, perhaps as a function of time too. Finally,
a major question from a network operator’s point of view
is how to choose the class differentiation parameters. This
issue, which is also related with the the space of feasible
DDPs, can be answered if the network operator knows a
typical ‘profile’ of the quality requirements and tariff con-
straints of the user population in that network link. The
exact algorithms for solving this network-design and pricing
problem, however, require further rescarch.
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Appendix 1: Proof of Proposition 1

Consider a busy period in which a queue i is backlogged.
Let t1 be the time instant that queue iz becomes empty. If £,
is also the end of the busy period, then either all backlogged
queues become empty at ¢y, which is what we want to show,
or queue ¢ was the only backlogged queue before ¢;, which
is a trivial case that we can ignore. So, assume that the
busy period does not end at t; and that there is another
queue, say j, that was backlogged before t; and remains
backlogged at t;. We show next that this assumption leads
to a contradiction.

Let to be the time of the last arrival in any queue before
t,. We focus on the time interval (to, t1]. Since there are no
arrivals, the backlog of class 1 is decreased with the service
rate r;(¢t) that is given to this queue:

dgi(t)

. qi(t) =gt —e)
at lim ——————~

€l0 € (14)

= —Limri(t—
€E)lr(lt €)

Note that the backlog function g;(t) is differentiable in the
interval (to, ¢1], because there are no arrivals and the server
follows the fluid model. The service rate r;(t), however, is
not necessarily continuous from the left at ¢;. In fact, for
t = t, the service rate converges from the left to

. i(t1 —
lim i (£ — €) = lim 2(8.7€)
el0 el0 €

>0 (15)
(because gi(t1) = 0, gi(t1 —e€) > 0, and g;(t) is differentiable
at t = t1), while r;(¢;) = 0.

From the definition of the BPR scheduler, however, we
have that for any t € (to, 1]

a:(t)

g;(¢) (16)

ri(t) = j_J 0



because queue j is backlogged during this interval. g:(t)
tends continuously to zero

(17)

i i(ti —e) =0
lggq(l €)

while g;(£1) and r;(t1) were assumed to be non-zero. So,

l:ﬁ)l ri(ti —€)=0 (18)
which contradicts (15). Consequently, queue i cannot be-
come empty while queue 7 is backlogged, and since this holds
for any queues i and 7, all the backlogged queues become
empty at the same time. Note that when all queues be-
come empty at t; we cannot use Equation (16) to calculate
lim.yo gi(¢1 — €) because both ¢;(t) and g;(t) tend to zero.

Appendix 2: Proof of Proposition 2

Without loss of generality, let to = 0. Starting at to, a se-
quence {7r;-°, k=1,2,...A} of class j packets starts arriving
at the system in the peak input rate R, and so the arrival
time of the k’th packet of the sequence is (k — 1)/R;. Ad-
ditionally, a class 1 packet 7} arrives at to. We next show
using induction over the range {k = 1,2,...A} that if the
condition (12) holds, #¥ will be transmitted before = for
any k = 1,2,...A. For simplicity, we assume that all pack-
ets have the same unit length.

We first show that independent of the backlog in each
queue at t = 0, the packet 77; will be transmitted before
the packet n}. Both these packets arrive at to, and so they
encounter the same waiting time in the interval that they
are both queued. Since $; < s;, the priority of 7r; will be
always higher than the priority of n}, and because WTP

serves higher priority packets first, 1r}- will be transmitted

before 7},

Assume, now, that packet 7§ (1 < k < A) has just been
transmitted at ¢x. From the inductive assumption, w} is
still at the head of queue i. At least k packets have been
transmitted in [0, £x], and hence, tx > k/R. At tk, the
priority of @} is

pi(tx) =tk 8 (19)
and the priority of 1r;-‘+1, which is now at the head of queue
7,18

k
pi(te) = (b — 7-) 8 (20)
1
and so,
k k k k
pite) = pilts) = tals; = si) — g8 2 (5~ g)ei — g

It is easy to see now that if the condition (12) holds, p; (tx)—
pi(tx) > 0, and so ‘rr;-‘+1 will be transmitted before «}. This

completes the inductive proof.

Appendix 3: A packetized BPR scheduler

The BPR packet scheduler is based on a virtual service func-
tion v;(t) for each queue i. v;(t) approximates the service
that the packet at the head of queue ¢ at time t in the BPR
packet scheduler would have received by that time if it was
serviced by the BPR fluid server.

Let t',¢%,...,t*,... be the departure times from the
BPR packet scheduler. The service rate r;(t) that is al-
located to a queue ¢ is computed from Equations (8) and

120

(9) after each departure. Let B(t*) be the set of backlogged
queues at t*. If i ¢ B(t*), ri(t*) = 0 and v;(t¥) = 0. Oth-
erwise, if i € B(t*), the virtual service function wv;(t*) is
computed as follows:

. { 0 if 51 <a
v,—(t ) =
vi(tF ) 4 i (851 (tF — t*71)  otherwise

where a; is the arrival time of the packet at the head of
queue i at t*. After computing the virtual service function
for all queues, the BPR packet scheduler chooses the packet
to transmit next as follows: if L; is the length of the packet
at the head of queue 2, the scheduler services the queue j
with

J = argmin;e g(ox)[Li - vi(tH)] (21)

Ties are broken in favor of higher classes.

The complexity of the packet scheduler is O(N), where
N is the number of classes. For a small number of classes,
the BPR scheduler should be implementable even in very
high-speed links. Notice that there are two approximations
in this packetized version of the BPR scheduler. First, the
service rate r;(t*) that is allocated to a backlogged queue
after a packet departure is assumed to remain constant until
the next departure. This is not the case in the BPR fluid
server, but we make this approximation in order to simplify
the packet scheduler. Additionally, the virtual service v;(t),
as computed here, approximates the service that a packet
would have received by the fluid server, if it had started be-
ing serviced when it reached the head of the queue in the
packet scheduler, and not in the the fluid server. Conse-
quently, we cannot argue that the packets leave the packet
scheduler in the same order that they would leave the fluid
server. It is likely that there are more accurate packetized
approximations of the BPR fluid server, but we do not pur-
sue this issue further here.



