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Abstract 

Internet applications and users have very diverse service ex- 
pectations, making the current same-service-to-allmodcl in- 
adequate and limit.+. In the relative differentiated services 
approach, the network traffic is grouped in a small number 
of service classes which are ordered based on their packet for- 
warding quality, in terms of per-hop metrics for the queueing 
delays and packet losses. The users and applications, in this 
context, can adaptivelychoose the class that best meets their 
quality and pricing constraints, based on the assurance that 
higher classes will be better. or at least no worse, than lower 
classes. In this work, we propose the proportional dier- 
enliation model as a way to refme and quantify this basic 
prernise of relative differentiated services. The proportional 
differentiation model aims to provide the network operator 
with the ‘tuning knohs’for adjusting the quality spacing be- 
t,ween classes, independent of the class loads; this cannot be 
achieved with other relative differentiation models, such as 
strict prioritization or capacity differentiation. We apply the 
proportional model on queueing-delay differentiation only, 
leaving the problem of coupled delay and loss differentiation 
for future work. We discuss the dynamicsof the proportional 
delay differentiation model and state the conditions under 
which it is feasible. Then, we identify and evaluate (us- 
ing simulations) two packet schedulers that approximate the 
proportional differentiation model in heavy-load conditions, 
even in short timescales. Finally, we demonstrate that such 
per-hop and class-based mechanisms can provide consistent, 
end-to-end differentiation to individual flows from different 
classes, independently of the network path and flow charac- 
teristics. 

1 Introduction 

The Internet is currently used by business and user commu- 
nities with diverse service requirements from the network in- 
frastructure. In addition, many Internet applications, even 
when they are adaptive, can perform well only in certain 
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service-level conditions. Consequently, t,here is a growing de- 
mand for replacing the current same-service-to-al/paradigm 
with a model in which packets, applicat,ions, and users are 
treated differently based on their service needs. The tra- 
ditional approach for addressing this problem is lo replace 
the existing best-eflort service model with a reservations- 
based architecture in which applications and users request a 
certain performance level that can be guaranteed using re- 
source reservation and admission control mechanisms. This 
architecture, commonly referred t.o as Integrated Services, 
faces some import.ant difficulties, such as the deployment 
and scalabilil,y of t.he resource reservation protocol (RSVP) 
[I], the requirement for an interdomain policy and pricing 
infrastructure, aud the mapping between application and 
network service parame(;crs. Alt.hough there are proposals 
for alleviating some of the difficulties in the lnt,cgrated Ser- 
vices architecture [3, 31, the challenge of scalable service dif- 
ferentiation in the Internet remains open. A promising new 
approach is the Differentiated Services (OS) work within the 
Internet Engineering Task Force (IETF) [4]. The goal of the 
DS effort is to define configurable types of packet forward- 
ing (called Per-Hop Behaviors or PHBs), t.hat can provide 
local (per-hop) service differentiat,ion for large aggregates of 
network traffic, as opposed to end-to-end performance guar- 
antees for individual Bows. 

One approach within the DS archit,ecture aims to pro- 
vide the Integrated Services kind of performance measures, 
but without using per-flow state in the network core. We re- 
fer to this approach is absolute diflerentiated services, since 
the user receives an absolute service profile (e.g. a certain 
bandwidth) from the network. For example, assuming that 
no dynamic routing occurs, the Premium Service [5] can 
offer the user a performance level that is similar to that 
of a leased-line, as long as the user’s traffic is limited to a 
nominal bandwidth. In the Assured Service [6], packets are 
classified into t,wo levels of drop-preference (‘In’ and ‘Out’) 
at the network edges, depending on whether the user follows 
the allocated bandwidth profile or not. When conges(.ion oc- 
curs, ‘Out’ packets are discarded with a higher probability 
than ‘In’ packets. An open quesoion regarding the abso1ut.r 
differentiated services is whether they can provide with a 
high likelihood the end-to-end performance that users ex- 
pect. The trade-offs in achieving high service assurance, 
coarse spatial granularity (i.e., users would like a certain 
end-to-end bandwidth in many or even all network pat,hs), 
and high network utilization, have been discussed in [7]. It 
turns out that some form of route pinning is necessary for 
implementing such services, which may constitute by itself 
an obstacle for wide-scale deployment in the Internet. 

109 



-4 fundamentally different approach in the DS framework 
is the relative differentiated services. In this approach, t.he 
network traffic is grouped into N classes of service which are 
ordered, such that Class i is better (or at least no worse) 
than Class (i - 1.) for 1 < i 5 A’, in ter7n.s of local (per- 
hop) metrics fov the queueing delays und pucket losses. Note 
that the elucidation ‘or no worse’ is required, since in low- 
load conditions all classes will experience t.he same qua1it.y 
level. The Class Selector PHBs, recently standardized by 
the IETF [4], follow this model of rclnt.ive service differen- 
tiation. In this context, applical.ions and users do not get 
an absolute service level assurance, such as an end-to-end 
delay bound or bandwidth, since there is no admission con- 

trol and resource reservations. Instead, t.he network assures 
t.hem that, higher classes will bc relabivcly better than lower 
classes, and so it is up io the applications and users to select 
the class that best meets their requirement.s, cost, and policy 
constraints. In this aspect, the rclat.ive service dilfcrentia- 
tion model follows the architectural principle of erd-syskm 

adaptation, since it provides the choice of the service class 
as an additional dimension in I.he end-system adaptat,ion 
space. It can be argued that the relative differcntiased ser- 
vices approach is similar with the architecture of the postal 
service system, in which there are several priorily classc:s 
that operate without admission control, end-to-end resource 
reservations, or service guarantees. We do not attempt here 
a comparison between relative and absolute differentiated 
services, since this is much larger an issue than the scope 
of this paper. It is likely that both approaches will coexist,’ 
since they target different applications and uses. 

There are several ways in wllich a network can provide 
relative differentiated services. For example, the differen- 
tiation can be strictly based on appropriate pricing (i.e., 
higher classes are more expensive), or on carefill capacity 
provisioning (i.e., higher classes have more forwarding rc:- 
sources relative to their expected loads). Such mechanisms, 
however, cannot always provide consistent differentiation 
between classes, because the relative difTerentiation between 
classes varies with the class loads. Especially with t.he 
Internet traffic, which is known to be burst,y over a wide 
range of timescales, t,here can be long intervals iu which a 
higher class is overloaded, to the extent. t.hat. it, offers worse 
service than a lower class. Other mechanisms, such as 
strict priorit,ization bet.ween classes, provide consistent. class 
differentiat.ion that does not depend on the load variations, 
but they do not allow the n&work operator to adjust. the 
quality spacing betweeu classes. Such ‘t.uning knobs’ are 
necessary in a practical setting, since the network operators 
must be able to adjust the quality spacing between classes 
depending on pricing and policy objectives. Our basic 
premise, starting from these limitations or other relative 
differentiation models, is that in order for a relative 
differentiated services architecture to be efIective for both 
users and network operators, it has to be: 

l Predictable, in the sense that the differentiation 
should be consistent (i.e., higher classes arc bc(.ter, or 
at least no worse) independent of the variations of the 
class loads, and 

l Controllable, meaning t.hat, the nel.work operators 
should be able to adjust. the quality spacing between 
classes based on their selected criteria. 

As a target for predictable and controllable relative dif- 
ferentiation, the first contribubion of this paper is lo pro- 

pose the proportional cliflererdiation model. According to 
this model, the basic performance measures for packet for- 
warding locally at each hop are ratioed proportionally to 
cert.ain class diflerentiationparameters Aat the network op- 
cralor chooses. Even though there is no wide consensus on 
the most appropriate performance measures for packet for- 
warding, it is generally agreed that a better network service 
means lower queueing delays and lower likelihood of packet. 
losses. In this paper, WC apply the proportional model to 
t.he case of queucing delay differentiation only, leaving the 
more general problem of coupled delay and loss differenti- 
ation for fixture work. Consequently, l.he results presented 
here are not directly applicable to applications and transport, 
protocols that depend on both queueing delays and packet 
losses (e.g. Tel’). They arc applicable to delay-sensit.ive ap- 
plicat,ions, such as IP-t.elephony and video-conferencing, or 
t.o transaction-based applicat.ions. TCP-based applications, 
however: can also benefit, from delay differentiation, espe- 
cially in cases where the congested gateways have a large 
number of buffers and the queueing delays are a significant 
component of the round-trip delay; the important. effect of 
queucing delays in TCP has been discussed in [8]. 

In the coutext of queueing delay differentiat.ion, we first. 
discuss t.he dynamics of the proportional model, and then 
state the conditions under which this model is feasible. WC 
then focus on the issue of appropriate packet, schedulers for 
proportional delay differentiation. We identify two sched- 
ulers that can approximate the proportional delay model 
in heavy-load conditions: the Backlog Proportional Rate 
(BPR) scheduler, and the Waiting-Time Priority (WTP) 
scheduler (originally studied by LJileinrock [9]). An im- 
portant observation is that the two schedulers tend to the 
proportional differentiation model during heavy-load condi- 
tions! even in short timescales. This is a significant feature of 
the schedulers, since long-term averages do not always con- 
vey useful informabion when the t,raffic is bursty over long 
timescales. In the absence of appropriate analytical t.ools for 
studying the behavior of these schedulers with non-Poisson 
traific models and in short t,imescales, we use simulations 
with bursty t.raffic in most, of our evaluation study. 

The structure of t,he paper is as follows. In Section 2, 
we describe the proportional differentiation model and com- 
pare it. with other relat,ive differentiation approaches. In Sec- 
tion 3: we discuss the dynamics and feasibility conditions of 
the proportional delay differentiation model. In Sect.ion 4, 
we describe two packet schedulers that arc designed for pre- 
dict,able and controllable delay differentiation, even in short 
timescales. The main evaluation and comparison of t,he two 
schedulers follows in the simulation study of Section 5. In 

Section 6, we take the user’s perspect,ive and investigate if 
such local and class-based forwarding mechanisms are able 
to provide consistent end-lo-end differentiation to individ- 
ual flows from difFerent classes. Finally, Section 7 closes 
the paper by identifying some open questions in this area of 
Internet research. 

2 The Proportional Differentiation Model 

The proportional differentiation model ‘spaces’ certain class 
performance met.rics proportionally to the differentiation pa- 
rameters that the network operator chooses. If, say, q, is 
such a performance measure for class i, the proportional dif- 
ferentiation model imposes constraints of t.he following form 
for ill1 pilh of classes: 

crr=c’ (i,j= l...N) 
% c3 
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where cl < cz < . . . < CN are the generic quality difierenti- 
ation parameters. So, even though the actual quality level 
of each class varies with the class loads, the quality ratio 
between classes remains fixed and controlled by the network 
operator, independent of the class loads. 

In this paper, we focus on queueing delay differentiation 
only, and so we apply the proportional differentiation model 
to a queueing delay metric. The simplest such metric is the 
long-term average queueing delay of a class. Specifically, if 
CT, is the average queueing delay of the class-z’ packets, the 
proportional delay differentiation model states that 

(1) 

for all pairs of classes i and j. The parameters (6;) are 
referred to as Delay Differentiation Parameters (DDPs), 
and because higher classes are bett,er, they are ordered as 
61 > 62 > . . > 6~ > 0. Since the proportional differcnti- 
ation model does not depend on the class loads, it applies 
with the same semantics in all load conditions in which it 
is feasible. For example, the network operator can specify 
that the average delay in class-l is double the average de- 
lay in class-?, independent,ly of whether I he delays are in 
the order of a few packet transmission times, or hundreds of 
packet transmission times. The conditions under which this 
model is feasible are shown in the next section. 

It is desirable that the proportional differentiation model 
holds not only in the case of average delays over long 
timescales, but also for delay metrics over short timescales. 
Long-term averages do not always convey useful informa- 
tion, especially when the traffic is very bursty, or when the 
user/application flows are short. To illustrate this, suppose 
that a user generates a short packet flow (say a Web ses- 
sion) in a certain class j, with the expectation that the flow 
will encounter lower delays than if it had been sent in class 
i (i < j). Even if bhe long-term average delay of class j 
is indeed lower than the average delay of class i, it may 
haDDen that the flow was created during a time Deriod in . . 
which class i encounters lower delays than class 3 because 
of a large burst in the latter; if this happens frequently, 
the relative differentiation between classes will not bc con- 
sistent and predictable. A formulation of the proportional 
differentiation model for a short-term queueing delay met- 
ric follows: let di(t, t + T) be the average queueing delay of 
the class-i packets departing in the time interval (t, t + T), 
where T > 0 is the monitoring timescale. If there arc no 
departing packets, d;(t, t + T) is undefined in this time--in- 
terval. The proportional delay difTerent.iation model for a 
monitoring timcscale T holds between a pair of classes i and 
i. if “, 

d;(t, t + T) 6, 

&(t, t + T) = a, 

fcr all time intervals (t, t + T) in which both d;(l, t + T) and 
d, (t, t+ T) are defined. Unfortunately, we were unable to de- 
rive the feasibility conditions for this short timescale formu- 
lation of the model, given a certain value of T. Consequently, 
our goal in this paper is to identify and evaluate scheduling 
mechanisms that can approximate the proportional differen- 
tiat,ion model in short Gmescales, even though we do not 
attempt to define more formally how short the monitoring 
timescale T should be, and which are the implications for 
the feasibility of the model in that case. The feasibility 
conditions for the case of long-term average delays, on the 
other hand, are given in Section 4. We return to the ‘short. 
timescales’ aspect of the proportional differentiation model 

in Section 5, where we evaluate using simulations the BPR 
and WTP schedulers in the context of the proportional dif- 
ferentiat,ion model of Equation 2. 

2.1 Other relative differentiation models 

Strict Prioritization: In this approach, t,he highest back- 
logged class is serviced first (delay aspect), and when a 
packet needs to be dropped, it is from the lowest backlogged 
class (loss aspect). However, such a discipline does not lead 
to controllable differentiat.ion, because it does not provide 
any means for adjusting Lhe quality spacing between classes. 
Also, the lower classes can experience starvation effects if no 
restriction is placed on the load of higher classes. 
Price Differentiation: A simple case of relative service dif- 
fercntiation is the Paris Metro Pricing (PMP) scheme [lo]. 
PMP uses pricing, instead of special forwarding mechanisms, 
to provide relative class differentiat,ion. It is based on the 
assumption that higher prices will lead to lower loads in 
the higher classes, and thus, better service quality. Pricl 
ing mechanisms, however, cannot be effective over relatively 
short t.imescales, especially when the class tariffs cannot be 
changed very often. When higher classes get overloaded (be- 
cause, for example, many ‘rich’ users become active at, the 
same time), they will offer worse packet forwarding than 
lower classes. i’his would be a case of inconsistent (i.e., 
unpredictable) class differentiation. 
Capacity Differentiation: In this model, the network op- 
erator allocates the forwarding resources between classes so 
that higher classes have more bandwidth and packet buffers, 
relative to their long-term expected load, than lower classes, 
and so they get better service. In the case of delay differenti- 
ation, for example, a Weighted Fair Queueing (WFQ) type 
of scheduler can be used to distribute the link bandwidth 
between classes [ll, 12, 131, so that the rat,io of service- 
to-arrival rates for higher classes is larger. Although the 
WFQ variant,s provide the network operator with a set of 
class differentiation parameters (i.e. the prdportional band- 
width share of each class), the actual queueing delays at a 
bandwidth allocation server depend on the bandwidth share, 
and the load and brafic burstiness of each class [14]. Conse- 
quently, alt,hough the bandwidth differentiation is control- 
lable, the delay differentiation is not. One can argue t.hat 
the link shares can be set based on the expected load in each 
class, adjusting the long-term queueing delays to a desired 
operating point. Such an approach, however, would not be 
capable of providing consistent different,iation in relatively 
short timescales, because the forwarding resources allocated 
to each class do not follow the actual class load variations. 
This issue has been illustrated in [15]. Our position is that, 
instead of relying on such provisioning methods, it is t,he 
forwarding mechanisms (i.e., packet scheduling and buffer 
management) that should be capable of providing consis- 
tent relative differentiasion between classes, independent of 
the class loads and even in short timescales. So, when a 
high class becomes t.emporarily overloaded, the forwarding 
mechanisms should dynamically assign to il a larger share 
of forwarding resources so that it st,ill remains better than 
the lower classes. 
Additive Differentiation: The basic idea in this model 
is to ‘space’ the class service levels based on the differenti- 
ation parameters that the network operator chooses, as in 
the proportional model, but using additive, instead of pro- 
port,ional, const.raints. For the case of long-term average 
qucueing delays, the additive model states that when the 
load is sufficiently heavy, the difference between the class 
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average delays is a specified constant, i.e, 

& -- a3 = Di,, > 0 (j > i) 

where D,?, > 0 is the delay differentiation parameter for 
the pair of classes (i, j). Consider a priority scheduler in 
which the priority of a packet in queue i at time t is pi(t) = 
w;(t) + sir where w,(t) is the waiting-time of the packet at 
time t, and 0 < SI < s2 < . . . < SN are the scheduler 
diflerentiation paramelers. Simulation results show that this 
scheduler tends to additive delay differentiation in heavy- 
load conditions, with D,,, = .sJ - si [15]. This scheduler 
is also discussed in [16], together with an expression for its 
behavior in heavy-load conditions assuming Poisson arrivals. 
We mention the additive different,iation model here, as an 
interesting case of another relative differentiation model that 
deserves further investigation. 

3 The Dynamics and Feasibility of Proportional 
Delay Differentiation 

The objective of this section is to provide further intuition 
on the dynamics of the proportional delay differentiation 
model, and to show the conditions under which this model 
is feasible, for the case of long-term average delays. We con- 
sider a lossless and zuorlz-conserving packet scheduler that 
services N queues, one for each class.’ The lossless assump- 
tion requires that the scheduler operates in the stable re- 

. 
glen, I.e., the offered load is less than the service capacity; 
otherwise the queues can be unrealistically long. This op- 
eration scenario can be achieved in practice with sources 
that react to the Explicit Congestion Notific&ion (ECN) 
bit, without requiring loss-induced congestion control [17]. 
A more realistic case would be to model a lossy multiplexer 
with sources that adjust their rates based on packet losses, 
as the current TCP sources do, but we do not take this 
model further, since we do not consider loss-rate differen- 
tiation in this paper. The assumption of work-conserving 
forwarding mechanisms is also important, because with a 
non-work-conserving scheduler it is possible to set the delay 
spacing between classes to arbitrary levels. We believe that 
only work-conserving forwarding mechanisms will be used 
in practice, because of the competition for the best possi- 
ble service between providers; this is mainly a non-technical 
issue however. 

Let Xi be the average arrival rate in class i, and X = 

cf”=, X; be the aggregate arrival rate in the system. .4ssumc: 
that there exists a scheduling discipline which can enforce 
the proportional delay differentiation model for the case of 
long-term average queueing delays, 

i.e., we assume that the proportional differentiation is fea- 
sible. If the packet length distribution is the same in all 
classes, the conservation law mandat,es that: 

2 A; cs, = Ad(A) (5) 
t=l 

where 2((x) is the average queueing delay that would result 
if the aggregate traffic was serviced by a work-conserving 

FCFS server of the same capacity as the scheduler that en- 
forces the proportional delay model. From Little’s law, the 
conservation law states that the average backlog in a work- 
conserving system is independent of the scheduling disci- 
pline. For a more general form of the conservation law, 
which does not require the same packet length distribution 
in all classes, see [16]. Xote that d(X) depends strongly on 
the traffic characteristics (e.g., burstiness), and it requires 
detailed measurements of the actual traffic dynamics in a 
certain link in order to be e&mated. 

Combining Equations (4) and (5), the average queueing 
delay of class i is: 

& = 
61 4 + 62 + + . + 6N + 

From Equation (6) we can verify the 
for the ‘dynamics’ of the proportional 
model: 

(i = 1.. . Iv) (6) 

following properties 
delay differentiation 

The average delay of a class i iucreases’ with the ar- 
rival rate of each class j. 

Increasing the load of a higher class causes a larger 
increase in the average delay of a class than increasing 
the load of a lower class. 

If the delay differentiation parameter of a class in- 
creases, the average delay of all other classes decreases, 
while the average delay of that class increases. 

Suppose that a fraction of the class i load switches 
to class j, while the aggregate load remains the same. 
The average delay of each class increases if i < j, and 
decreases if i > j. 

We assumed earlier that the proportional delay differ- 
cntiation model is feasible, i.e., that there exists a work- 
conserving scheduler that can enforce the constraints of (4). 
It is easy to see that this is not always true. For example, 
the average delay of a class cannot be lower than the av- 
erage delay of that class in a FCFS server, with the traffic 
from the other classes removed. Given the class arrival raks 
{A,} and the average delay d(X) of the aggregate traffic, we 
say thaf a set of DDPs {ai} is jeasible if there is a work- 
conserving scheduler that can set the average delay of each 
class as given in Equation (6); in that case, the constraints 
of (4) are satisfied as well. Necessary and sufficient condi- 
tions for the feasibility of a set of average class delays, given 
the class loads, were derived in [18] (see also [19]). For gen- 
eral traffic assumptions,3 a set of N average delays {Ji} is 

feasible if and only if the following 2N - 2 inequalities hold, 

xxi Cs, 2 (C Xi) d(CXi) for all 4 E @ (7) 

is+ iE+ ISO 

where @ is the set of 2N - 2 nonempty proper subsets of 
{I, 2,. . . N}. The term a(x,,, Xi) is the average queueing 

delay that the aggregate traffic of the classes in 4 E @ would 
experience in a work-conserving FCFS server. These condi- 
tions express the fact that the average backlog of a subset 

‘In the following properties we use the terms ‘increase’ and ‘de- 
crease’ informally, since the actual terms should be ‘non-decrease’ and 
‘non-increase’. respectively. 

3Most of [;8] &sumes k’oisson arrivals. The particular result that 
we include here holds however, as [18] also states, for a general arrival 
model 

‘We use the terms ‘class’ and ‘queue’ interchangeably. 
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of the N classes cannot be lower than the backlog of these 
classes in a FCFS server, independently of the scheduling 
discipline. 

It has to be noted that these feasibility conditions can 
be applied in practice only if it is possible to estimate the 
average delays d(C,,+ Xi) with measurements of the traffic 

dynamics in a specific link. Such an experimental procedure 
is by itself a challenging open issue, that we do not pursue 
further here. An important point to keep from this discus- 
sion, however, is that even if there is an ‘ideal proportional 
delay scheduler’, the DDPs that a network operator spec- 
ifies might not be feasible under certain conditions on the 
system load, the class load distribution, and the traffic char- 
acteristics. In the rest of the paper, we only consider cases of 
feasible DDPs. Since it is possible to examine the conditions 
stated in (7) in simulation experiments (by simply simulat- 
ing the FCFS server), we have verified that the experiments 
in Section 5 (and specifically in Figures 1 and 2) refer t,o 
cases of feasible delay differentiation. Consequently, the de- 
viations from the proportional delay model shown there are 
due to the inefficiencies of the packet schedulers, rather thau 
due to the proportional model or the selected DDPs. 

4 Two Packet Schedulers for Relative Delay Dif- 
ferentiation 

In this section, we identify two packet schedulers that are 
designed for predictable and controllable relative delay dif- 
ferentiation. They both approximate the proportional de- 
lay differentiation model in heavy-load conditions, as the 
simulation study of the next section shows, even in short 
timescales. 

4.1 Backlog-Proportional Rate (BPR) scheduler 

The basic idea in this scheduler is to use the bandwidth dis- 
tribution model of a GPS server [12], but with the following 
modification: dynamically readjust the class service rates so 
that they are always ratioed proportionally f.o the correspond- 
ing ratios of class loads. The relation between class loads 
is reflected on the relation of the class backlogs, since if a 
certain class has received a small amount of service relative 
to the amount of arrivals in a recent time interval, then that 
class will also have a relatively larger backlog. Specifically, 
let r;(t) be the service rate that is assigned to queue i at, 
time t. If the queue i is empty at time t, r,(t) = 0. For 
two backlogged queues i and j, the service rate allocation in 
BPR satisfies the proportionality constraint: 

rz(t) Pi(t) 98 
qr)= s3 %tt) (8) 

where q,(t) is the backlog of queue i at time t. The ac- 
tual service rate of each class during a busy period can be 
calculated from the work-conservation constraint: 

N 

zr,(t) = R 

i=l 

where R is the link capacity. The parameters {s,} are the 
Scheduler Diflerentiation Parameters (SDPs) that the net- 
work operator selects, and as will be shown in the next sec- 
tion, they are directly related to the Delay Differentiation 
Parameters (DDPs) {a;} in heavy-load conditions. Follow- 
ing our convention on the ordering of classes, s1 < sz < 
. . < SN. 

The main finding of the simulation study in the next sec- 
tion is that the the BPR scheduler approximates the propor- 
tional delay differentiation model of Equation (1) in heavy- 
load conditions, with the DDP ratios tending to the inverse 
of the corresponding SDP ratios, i.e., 

d, 6, Sj 

r+-=- 3 6, Si 
(10) 

Further work is required however in order to analytically ex- 
amine the validity of this property for general traffic models. 

A property of the BPR scheduler is that when the rel- 
ative backlog of a queue is quite small, the relative service 
rate given to that queue is also small. As a result, the last 
few packets in a queue either before the queue gets empty or 
before uew arrivals occur can experience a much larger delay 
than their predecessors. This causes sazutooth-type of varia- 
tions in the queueing delays of consecutive packets (see Fig- 
ure 4). This pathological short-term behavior is related to 
the simultaneous queue clearing property of the BPR sched- 

Proposition 1 In a BPR scheduler, all queues that are 
backlogged during a busy period become empty at the same 
time. 

This property is proved in Appendix-l. Since the BPR 
scheduler is based on the fluid server model, it can only 
be approximated in practice. A possible way to ‘packetize’ 
the BPR scheduler is given in Appendix-3. That is also the 
algorithm implemented in our simulat,ion study. 

4.2 Waiting-Time Priority (WTP) scheduler 

This is a priority scheduler in which the priority of a packet 
increases proport.ionally with it,s waiting-t,ime. Specifically, 
the priority of a packet in queue i at time t is 

pi(t) = W;(t) 98 (11) 

where w;(t) is the waiting-time of the packet at time t. 

The Scheduler Differentiation Parameters {si} determine 
the rate with which the priority of the packem of a certain 
class increases with time. As in BPR, sr < s2 < . < SN. 
The WTP algorithm was first. studied by L. Kleinrock in 
1964, with the name Time-Dependent-Priorities [9, 201. Us- 
ing Kleinrock’s words: The utility of this new priority struc- 
ture is that it provides a number of degrees of freedom 7uith 

which to manipulate the relative coaiting time.s for each pri- 
ority group. The WTP scheduler distributes the service rate 
between backlogged classes dynamically based on the load 
of each class, but it does so in a different way than the BPR 
scheduler. Specifically, in the WTP scheduler the load of 
a queue in the recent past is reflected on the waiting-time 
of the packet at the head of that queue, since if a queue 
has received a small amount of service relative to the cor- 
responding amount of arrivals in a recent past interval, it 
will have packets with large waiting times close to its head. 
As in BPR, t.he Scheduler Differentiation Parameters func- 
tion as weights in the service rate distribution, and they are 
directly related to the Delay Differentiation Parameters. 

The main finding of the simulation study in the next 
section is that the WTP scheduler approximates the propor- 
tional delay differentiation model of Equation (I) in heavy- 
load conditions, with the DDP ratios tending to the in- 
verse of the corresponding SDP ratios, as in Equation (10). 
The simulation study also shows that the WTP scheduler 
achieves this goal more accurately than the BPR scheduler. 
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Additionally, the WTP scheduler approximates the short- 
timescale proportional different.iation model of Equation (2) 
in time intervals of high load, even when then the monitor- 
ing timescale r is a few tens of packet transmission times. 
As in the case of I3PR, though, further work is required in 
order to analytically examine the validity of these properties 
for general traffic models. 

However, the WTP scheduler can also exhibit a problem- 
atic behavior in short timescales. This behavior is probably 
due to its priority nature (as opposed to the ‘simultane- 
ous link-sharing’ nature of BPR). Specifically, under certain 
conditions on the SDPs, an arriving burst in a high-class 
queue can exclude lower classes from service until this burst 
is completely serviced; this short-term starvation effect can 
happen for arbitrarily long high-class bursts. 

Proposition 2 Let RI be the peak input rate in lhc sched- 
uler, and R be the output link (or service) rate. If H < RI 
and 

(12) 

a sequence of A consecutive class j packets that starts ar- 
riving at time to will be seruiced before any class i packets 
that urrived at to or later, and this is true for arbitrary large 
values of A. 

This property is proved in Appendix-2. The complexity of 
the WTP scheduler is O(N), where N is the number of 
classes, since a priority has to be calculated for every back- 
logged class after a packet departure. For a small number 
of classes, the implementation of this scheduler should be 
feasible even at very high-speed links. Also, packets have 
to be timestamped upon arrival, which may be a significant 
overhead in certain implementations. 

5 Simulation Study A: Evaluation of BPR and 
WTP 

The objective of this simulation study is to evaluate the 
BPR and WTP packet schedulers in the context of the pro- 
portional delay differentiation model. We first investigate 
the effect of the aggregate load and of the class load distri- 
bution on the long-term average delay differentiation. Then, 
we examine if BPR and WTP can satisfactorily approximate 
the proportional delay model in short timescales. Finally, we 
show instances of the ‘microscopic’ views of the queueing de- 
lays in different classes, and highlight some problems in the 
short-term behavior of the two schedulers. 

The simulated model is as follows. A BPR/WTP sched- 
uler services N=4 packet sources, with one source for each 
service class. Unless stated otherwise, the Service Differ- 
entiation Parameters for both schedulers are sr = 1, s2 = 
2,s~ = 4,~ = 8. The interarrivals between packets of the 
same class follow a Pareto distribution with a shape param- 
eter cy = 1.9; because of the infinite-variance property of this 
distribution we do not determine confidence intervals for the 
average-delay measurements. The class load distribution is 
specified in each graph, and in most cases it is set to: Class- 
1:40%, Class-2:30%, Class-3:20%, Class-4:10%. The packet 
length distribution is the same for all classes (40% of t,he 
packets are 40 bytes, 50% are 550 bytes, and 10% are 1500 
bytes). I\iormali&g to an arbitrary link speed, the aver- 
age packet transmission time (referred to as p-unit) is 11.2 
time units. The following graphs show only queueing de- 
lays, which are also measured in these arbitrary time units. 
The utilization factor p is set to the ratio of the average 

packet transmission time and the average interarrival of the 
aggregate packet stream. In most of the simulations we ex- 
amine the behavior of the schedulers between moderat,e-load 

(P = 0.70) and heavy-load (p M 0.95) condit,ions. As men- 
tioned earlier, such stable and high-utilization operat.ion can 
be achieved in practice without packet losses only if there is 
an adequately large number of packet buffers and the sources 
adjust their rate successfully using the ECN bit set. by con- 
gested routers. If the utilization is less than around 70%, 
the queueing delays are fairly small, aud so, no service dif- 
ferentiation is probably needed. 

The effect of the aggregate load. Figure 1 shows 
the ratio of the average-delays between successive classes in 
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Figure 1: The ratios of average-delays between successive 
classes with WTP and BPR. The traffic load distribution is 
Class-l: 40%, Class-2: 30%, Class-3: 20%, Class-4: 10%. 
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moderate and heavy-load conditions. The average delay for 
each class in these experiments is computed from t.he entire 
simulation run (after an initial ‘warm-up period’), i.e., they 
are long-t,erm average delays. Each point in these figures 
resulted from averaging over ten simulation runs with dif- 
ferent seeds, while the simulation time in each run was lo8 
time units. The SDPs were chosen as si/st-l = 2 in Fig- 
ure l-a, and as st/si-l = 4 in Figure l-b. Notice that as 
the aggregate load increases, the WTP scheduler teuds to 
proportional average-delay differentiation with: 

(13) 

i.e., the DDP ratios are just the inverse of the corresponding 
SDP ratios. The BPR scheduler has a similar trend, but it 
does not converge exactly to the specified ratio, probably 
because of the approximations done in the ‘packetization’ of 
t,he scheduler (see Appendix-3). 

Although these figures show only the delay ratios, the 
actual average delays in the heavy-load region in which 
both schedulers appro?rimate the proportional differentia- 
t.ion model are in the order of a few tens of packet. trans- 
mission times for the high classes, and of a few hundreds 
of packet transmission times for the low classes. This can 
be also seen in Figures 4 and 5. Such delays are common 
in practice, especially for links with a high bandwidth-delay 
product, and thus, we can argue that t.he high-load operat- 
ing region in which the two schedulers perform close to the 
proportiond different.iation model is a realistic case, and not 
an impractical regime in which even the highest classes en- 
counter excessive queueing delays. 

However, neither scheduler manages to maintain the pro- 
portional delay differentiation in modcrate loads. For exam- 
ple, when the utilization is 7OYo the differentiation ratio is 
about 1.5 when it should be 2, and about 1.7 when it should 
be 4. The deviations increase as we widen the different,ia- 
tion spacing between classes, by having higher SDP ratios 
Yi/st-l. We repeat that these experiments refer to feasible 
proportional delay differentiation, and so the inaccuracies 
shown are because of the schedulers, and not because of 
the chosen SDPs (or DDPs). These inaccuracies are not 
surprising; these schedulers were not a priori designed for 
proportional delay differentiation, but for controllable rela- 
tive delay differentiation. They tend to proportional delay 
differentiation only under sufficiently heavy-load conditions. 
An interesting open quest.ion is whether there is a work- 
conserving scheduler that can achieve the proportional de_l?y 
differentiation constraints, whenever this is feasible. 

The effect of the class load distribution. Figure 2 
shows the ratio of the average-delays between successive 
classes in seven different load distribution cases. The simula- 
tion methodology is as in the previous paragraph. The SDPs 
are chosen as si/si-l = 2 in Figure l-a, and as st/si-l = 4 
in Figure l-b. The link utilization is 95Yo in all cases. Notice 
that the WTP scheduler provides the specified average-delay 
differentiation ratio (Equation 13) independent, of the load 
distribution in a very precise manner. The BPR scheduler, 
on the other hand, is in a certain degree dependent on the 
class load distribution. Specifically, alt,hough it can achieve 
the proportional average-delay model when all classes have 
the same load, it cannot do so in an accurate manner when 
some classes are more loaded than others; the highly loaded 
classes get higher delays than what the SDPs specify. The 
deviations from the proportional differentiation model di- 
minish as the aggregate load tends to 100%. These results 
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Figure 2: The symbols in this graph are as in Figure 1. The 
four numbers in each bar denote the fraction of the four 
classes in the aggregate packet stream, starting from class 1 
up to class 4. The utilization is 95% in all cases. 

strengthen the observation that WTP is better than RPR 
in the context of proportional delay differentiation. 

The behavior of BPR and WTP in short 
timescales. The previous two experiments are based on 
measurements of long-term averaging delays. A critical is- 
sue, however, is to investigate whether the WTP arId BPR 
schedulers can also approximate the short-timescale propor- 
tional differentiation model of Equation (2). In this ex- 
periment we measure the ratios of average-delays between 
successive classes in consecutive time-intervals of length T, 
where 7 is the monitoring timescale. The four values of T 
are 10, 100, 1000, and 10000 p-unit.s, where a p-unit is the 
average packet. transmission time (11.2 time units in this 
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Figure 3: Five percentiles of the RD measure [see text) for 
four values of the monitoring timescale T. The diamonds 
represent the 50% percentiles (median), the squares at the 
horizontal edges of the boxes represent the 25% and 75% 
percentiles, while the circles at the end points of the dashed 
lines represent the 5% and 95% percentiles. 

study). For example, a monitoring timescale 7 of 1000 p- 
units corresponds to about 3 seconds in a Tl link, and to 
about 30 milliseconds in an OC-3 link. The average delay 
of a class in a certain time interval of length T is measured 
as the average delay of the packets that departed in that 
time interval from the queue of that class. At the end of 
the simulation run we compute, for each time interval, the 
ratios of average-delays between successive classes; t,hen, we 
average these ratios over all pairs of classes in order to get 
a single measure Ru for t,he ratio of average-delays between 
successive classes in the corresponding time interval. When 
one or more classes are not ‘active’ in a certain time inter- 
val (i.e., there are no packet. departures from that class), we 
normalize the ratios of average delays of the ‘active’ classes 
in order to c0mput.e RD. 

Figure 3 shows five percentiles of the RD values obtained 
from all time-intervals of length T, for the four different val- 
ues of r; the five percentiles are: 50% (median): 5%, 25%, 
75%, and 95%. The SDPs are sZ/sl-l = 2, and the aggre- 
gate load is 95%. As we increase the monitoring timescale 
7 to 10000 p-units, both schedulers approximate the short- 
term proportional differentiation model of Equation (2) in 
almost all time-intervals of length 7. Also, if we focus in the 
range between the 25 and 75 percentiles, the WTP approx- 
imates the proportional constraints even with a monitored 
timescale of only tens of p-units. The BPR, on the other 
hand, has a quite ‘spread’ range of average-delay ratios in 
timescales of hundreds of p-units or less. The improved be- 
havior of WTP over BPR in short timescales is also illus- 
trated in the next paragraph. 

Microscopic views of the behavior of BPR and 
WTP. To further illustrate the short-timescale behavior of 
the two schedulers, we next show t.wo pairs of microscopic 

(a) Microscopic view I 

Figure 4: Queueing delays with the BPR scheduler when 
Sl = 1,SZ = 3, ss = 4. 

vs’ews of the queueing delays in each class. In the microscopic 
views I (Figures 4-a and 5-a) each point represents the aver- 
age queueing delay of a class in consecutive time intervals of 
30 p-units, for a time-window of about 15,000 packet trans- 
mission times. In the microscopic views II (Figures 4-b and 
5-b) each point shows the queueing delay of an individual 
packet at the time of its departure, for a time-window of 
about 1,000 packet transmission times. Figure 4 shows the 
microscopic views in the case of BPR, while Figure 5 shows 
the case of WTP. Each pair of microscopic views covers the 
same simulation time interval, and the same arriving packet 
streams in each class. For simplicity of illustration, the num- 
ber of classes in these experiments is three instead of four. 
The SDPs in bot.h schedulers are s1 = 1, s2 = 2, and s3 = 4, 
while the aggregate link utilization is 95%. 

The microscopic views I are typical for these load con- 
ditions, while the microscopic views II cover an overloaded 
time interval. Notice that, as mentioned earlier, even in such 
overloaded periods the actual delays for the lowest class are a 
few thousands of time-units, which corresponds to a few hun- 
dreds of packet. transmission times, while the actual delays 
for the highest class are a few hundreds of time-units, which 
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(a) Microscopic view I 

(b) Microscopic view II 

Figure 5: Queueing delays with the WTP scheduler when 
Sl = 1,sz = 2,s3 = 4. 

corresponds to a few tens of packet transmission times. The 
general observation for both schedulers from the microscopic 
views 1 is that the proportional delay differentiat.ion model 
is better approximai.ed during intervals of high load, where 
the class queues and delays are large. In the case of BPH, 
it is easy to note, especially in the microscopic view II, that 
it deviates quite often from the proportional delay model in 
very short timescales. Specifically, the sawtoo&typeof vari- 
ations in the queueing delays of the microscopic view II are 
common: the queueing delays of consecutive packets grad- 
ually increase, until they suddenly drop at a certain t.ime, 
after the arrival of new packets in that class. WTP, on the 
other hand, approximates more precisely the proportional 
delay differentiation model, even in t.he microscopic view 
II. Although there are several noticeable deviations, but, the 
general trend is quite satisfactory. Comparing Figures 4 and 
5 shows that. even though both schedulers approximate the 
proportional average-delay model under heavy-load condi- 
tions, WTP achieves this in a more precise manner in short 
timescales, while BPR creates ‘noisy’ queueing delay varia- 
tions. 
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Figure 6: The multi-hop traffic configuration in this simula- 
t.ion study. 

6 Simulation Study B: The User’s Perspective 

The simulation study of the previous section focused on a 
single link and on lhe relative delay differentiat,ion between 
different. classes. Alt,hough such a study would be of intrr- 
est. t,o a network operator, the network users would obviously 
be concerned for the end-to-end performance of their packet 
j-lows. To illustrate the issues t,hat arise in the user’s per- 
spective, consider the following scenario. Suppose t.hat two 
identical flows from classes i and j (with i > j) enter a net- 
work at the same time and they traverse a common path. 
The nel.work attempts to provide locally in each link propor- 
tional delay differentiation in the granularity of class traffic, 
but. as it was shown in t.he previous section, this is often 
impossible to do in all timescales and load condit.ions. The 
fair question that arises in the user’s perspective is: ‘since 
class i is higher (and probably more expensive) than class j, 
will I get lower delays in this path if my packet flow belongs 
to class i instead of class j?’ More generally, the issue here 
is: can a local und class-based relative difJerentiation lead to 
consistent end-to-end andflow-based relative differentiation, 
independent of the network path and user-flow ciraructeris- 

tics? If not, there is obviously a mismatch between what 
the network offers and what lhe users expect. 

We attempt. a first. investigation of this critical issue using 
simulations that we performed with ns-v2 [21]. The sim- 
ulated model is based on t.he previous scenario: -4 set. of 
X(=4) identical flows, one from each class, traverse a con- 
gested network path that consists of li hops. Each flow has 
a length of F packets (500 bytes per packet) which are peri- 
odically transmitted at l.SMbps to generate an average rate 
of R, kbps. Note that the periodic nature of these flows is 
just a technicality to ensure that the corresponding packets 
enter the network at the same t,ime; alternatively, WL’ could 
use bursty precomputed arrivals, common for all flows. In 
the rest of this section? these N flows are referred to as U.qer 
flows. The network patlr is also loaded with Cross-frofic. 
The Cross-t.rafic at each node is generated from C(=8) 
sources that randomly generate packets (500 bytes) from 
different classes, following the dist.ribution: Class-1:40%, 
Class-2:30%, Class-3:20X, Class-4:10X. These sources have 
Pareto-distributed interarrivals (ct = 1.9). Their average 
rate IZ, is adjusted based on the desired average utiliza- 
tion p in each network link. The traffic configuration that 
we simulated is shown in Figure 6. The bandwidth of the 
network links is 35Mbps. Each link uses a WTP scheduler 
(since it performs better than BPR), and the SDPs are: 
s1 = l.,sz = 2, s3 = 4,sq = 8. In order to examine the 
effectiveness of the relative delay differentiation, we ignore 
propagat,ion and transmission delays (which are common to 
all packets) and focus only on qlkeueing delays. The parame- 
ters that we vary in this model, together with the two values 
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1 Ii-=4 11 2.3 2.2 2.2 2.1 

Table 1: ‘I’he metric RD: Ideally, iL should be 2.00 in all 
cases. These resulls have been consistent in five simulation 
runs wit.h different. random seeds. 

that have been simulated for each parameter, are: 
a) the length F of the User flows (10 and 1.00 packets), 
b) the rate R, of the User flows (50 and 200 kbps), 
c) the ut.ilization p of the network links (85% and 9jYo), 
d) the number of (congested) hops K in the network path 
(4 and 8 hops). 
The first two refer to the characteristics of t,he User flows! 
while the last two refer to the network path. 

The simulation methodology is as follows. After ‘warm- 
ing up’ the net.work for 100 seconds, we generate in every 
second M ident.ical User flows, one from each class. Each of 
these periodic event,s is referred to as a ‘user experiment’,, 
since it is what a user would do in order to evaluate Lhc 
end-to-end delay dif?erentiation between classes in a certain 
network path. The simulation runs long enough to generate 
M=lOO user experiments. At the end of t.he simulation run, 
we process the packet delays of each User flow, and calcu- 
late the ten end-Lo-end delay perceniiles: lo%, SO%, .90%, 
and 99%. In the last, step of the process, we compare the 
corresponding delay percentiles of Lhe M flows in each user 
experiment. If in a certain user experiment a flow from a 
higher class experienced larger delays than a lower class, in 
terms of any of these percentiles, we identify a case of incon- 
sistent delay difJrenliution. Finally, we compute the end- 
to-end delay ratio ii0 between successive classes, averaged 
over the N- 1 pairs of successive classes, over the M user ex- 
periments, and over the ten delay percentiles. Although Ko 
is a very ‘spread’ average, it provides a simple figure-of-merit 
for the end-to-end queucing delay relative different,iat,ion. 

The first, and perhaps most important, result. of this sim- 
ulation study is that there were no cases of inconsistent de- 
lay differentiation observed in any simulation run. In other 
words, the local and class-based differentiation lrnnslat.cs to 
consistent end-to-end andfEou!-based dijj’crentiation. The re- 
sults for the metric lin are also quite salisfactory, as shown 
in Table 1. In most cases 11, is quite close to 2.0, which is 
the value that would result. in the case of ideal proportional 
delay differentiation with &/6, = sj/s;. As expected, fiu 
tends to 2.0 as the load increases, because WTP converges bo 
the proportional delay differenliation model. It is interesL- 
ing that as the number of path hops increases, the per-hop 
deviations from the proportional differentiation model (.c:nd 
to cancel-out, leading to a better iin. It has to be noted, 
finally, thaL one of the reasons f?~ is so close to the ideal 
differentiation ratio, is because it is an average over three 
dimensions: all successive class pairs, all user cxperiment,s, 
and all delay percent.iles. The deviations from the propor- 
tional differentiation model can be larger when we focus on 
individual llser experiment,s, or class pairs. 

7 Conclusions and Open Issues 

The relative differentiated services architecture is a promis- 
ing approach for addressing the issue of scalable service dif- 
ferent,iat,ion in the Internet. Attempting a preliminary invcs- 
t.igation of Lhc problems that arise in this context, Lhis paper 
made two contributions. First, we proposed the propor- 
tional differentiaLion model as a t.arget for predictable and 
cont,rollable relative differentiation bet.ween classes. Second, 
we ident.ified and evaluated two packet, schedulers that ap- 
proximate the proportional delay differentiation model in 
heavy-load conditions, even in short. timescales. Although 
bot,h schedulers are appropriate for relative delay differenti- 
ation. our studies illustrate that WTP is significantly better 
than BPR in the cont.ext of proportional delay differenlia- 
tion. 

We emphasize that. our work is far from conclusive and 
that there are several open issues that, need to be further 
invcsligated. First, is t,he proportional delay differcntia- 
tion model, as formulated in this paper, the most appropri- 
ate means for predict,able and controllable differentiation? 
Another choice could be the additive differentiation model, 
briefly described here, which promises an absolute differ- 
encc between the class delays, when the load is sufficiently 
high. A different approach would be to provide some type 
of controllable differenliation Mween two classes, only in 
the int,ervals where bottl these classes are backlogged. How- 
ever! it, is is not clear if such differentiation wonld be of any 
value for the users, since they cannot know or conLrol when 
classes are simultaneously backlogged. Second, the propor- 
tional differentiation model has to be ext,ended in the di- 
re&on of coupled delay and loss differentiation, since boLh 
performance measures are significant in most applica(.ions 
and Lransport protocols. BPR and WTP may not be good 
schedulers in t.hat context! since t.hey perform well when the 
queues arc sufficicnLIy long (i.e., in heavy-load condilions). 
In the presence of limited buffers aud losses, however, the 
queues may not be long, even when the offered load is high. 
This issue is also related with the poor behavior of W’l’P and 
BPR in moderate loads or large SDP ratios; in either case, 
the: class queues are not sufficiently long for these schedulers 
to distribute the class delays as in the proportional differ- 
entiation model. It is int.eresLing to know t,he form of an 
‘optimal proportional differentiation scheduler’, even if it is 
LOO complicated to be praclical. Third, it. is important to 
combine the feasibility conditions present.ed here with expcr- 
imental procedures and measurements, in order to be able 
to determine efficienLly the space of feasible DDPs for a ccr- 
tain network link. Even though it, is hard to come up with 
a ‘universal’ model for the Imernet traffic, it may be pos- 
sible to estimate the required delay-vs-rate curve d(X) for 
a specific link? perhaps as a function of time too. Finally, 
a major question from a net.work operator’s point of view 
is how to choose Lhe class differentiation parameters. This 
issue, which is also related with the the space of feasible 
DDPs, can be answered if the network operator knows a 
typical ‘profile’ of the qua1it.y requirement,s and tariff con- 
st.raints of the user population in that network link. ‘I’he 
exact algoriLhms for solving this network-design and pricing 
problem: however, require further research. 
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Appendix 1: Proof of Proposition 1 

Consider a busy period in which a queue i is backlogged. 
Let tl be the time instant that queue i becomes empty. If tl 
is also the end of the busy period, then either all backlogged 
queues become empty at 1-1, which is what we want to show, 
or queue i was the only backlogged queue before tl, which 
is a trivial case that we can ignore. So, assume that t.he 
busy period does not end at tl and that there is another 
queue, say j, that was backlogged before tl and remains 
backlogged at tl. We show next that this assumption leads 
to a contradiction. 

Let lo be the time of the last arrival in any queue before 
tr. We focus on the time interval (to, tl]. Since there are no 
arrivals, the backlog of class i is decreased with the service 
rate ri(t) that is given to this queue: 

hi(t) _ lim q%(t) - qi(t - ~1 = 
dt d.0 E 

-hi ri(t - C) (14) 

Note that the backlog function q;(t) is differentiable in the 
interval (to, tr 1, because there are no arrivals and the server 
follows the fluid model. The service rate r;(t), however, is 
not necessarily continuous from the left at tl. In fact, for 
t = tl the service rate converges from the left to 

limr,(tl-e)=limqi(tl-e) >O 
40 40 e 05) 

(because qi(tl) = 0, qi(tl -E) > 0, and q;(t) is differentiable 
at t = tl), while ri(tl) = 0. 

From the definition of the BPR scheduler, however, we 
have that for any t E (to, tl] 

r;(t) = E r,(t) $$ 
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because queue j is backlogged during this interval. q;(t) 
tends continuously to zero 

Iii qi(tl - 6) = 0 (17) 

while qj(tl) and rj(tl) were assumed to be non-zero. So, 

Iii r;(tl - e) = 0 08) 

which contradicts (15). Consequently, queue i cannot be- 
come empty while queue j is backlogged, and since this holds 
for any queues i and j, all the backlogged queues become 
empty at the same time. Note that when all queues be- 
come empty at tl we cannot use Equation (16) to calculate 
lirn,Jo q;(tl -e) because both q,(t) and qj(t) tend to zero. 

Appendix 2: Proof of Proposition 2 Ties are broken in favor of higher classes. 

Without loss of generality, let to = 0. Starting at to, a se- 
quence {n,“, k= 1,2,... A} of class j packets starts arriving 
at the system in the peak input rate RI, and so the arrival 
time of the Ic’th packet of the sequence is (k - l)/Rr. Ad- 
ditionally, a class i packet in,! arrives at to. We next show 
using induction over the range {I; = 1,2,. . . A} that if the 
condition (12) holds, X: will be transmitted before rt for 
any k = 1,2, *. A. For simplicity, we assume that all pack- 
ets have the same unit length. 

The complexity of the packet scheduler is O(N), whcrc 
N is the number of classes. For a small number of classes, 
the BPR scheduler should be implementable even in very 
high-speed links. Notice that there are two approximations 
in this packetized version of the BPR scheduler. First, the 
service rate r,(tk) that is allocated to a backlogged queue 
after a packet departure is assumed to remain constant until 
the next departure. This is not the case in the BPR fluid 

We first show that independent of the backlog in each 
queue at t = 0, the packet ZT~ will be transmitted before 
the packet 7rt. Both these packets arrive at to, and so they 
encounter the same waiting time in the interval that they 
are both queued. Since si < sj, the priority of of will be 
always higher than the priority of of, and because WTP 
serves higher priority packets first, r: will be transmitted 
before of. 

Assume, now, that packet ~5 (1 5 k < A) has just been 
transmitted at tk. From the inductive assumption, ri is 
still at the head of queue i. At least Ic packets have been 
transmitted in [0, tk], and hence, tk 2 k/R. At tk, the 
priority of rf is 

pi(tk) = tk 81 (19) 

and the priority of I$+~, which is now at the head of queue 
j, is 

Pj(tk) = (tk - $) sj (20) 

and so, 

server, but we make this approximation in order to simplify 
the packet scheduler. Additionally, the virtual service vZ(t), 
as computed here, approximates the service that a packet 
would have received by the fluid server, if it had started be- 
ing serviced when it reached the head of the queue in the 
pocket scheduler, and not in the the fluid server. Conse- 
quently, we carmot argue that the packets leave the packet 
scheduler in the same order that they would leave the fluid 
server. It is likely that there are more accurate packetized 
approximations of the BPR fluid server, but we do not pur- 
sue this issue further here. 

pj(tk) -pi(tk) = tk(s, - si) - lsj 2 (i - $)8j - isi 

RI I 

It is easy to see now that if the condition (12) holds, p3 (tk) - 

pi(tk) > 0, and SO X$” will be transmitted before xi. This 
completes the inductive proof. 

Appendix 3: A packetized BPR scheduler 

The BPR packet scheduler is based on a virtual service func- 
tion vi(t) for each queue i. v,(t) approximates the service 
that the packet at the head of queue i at time t in the BPR 
packet scheduler would have received by t,hat time if it was 
serviced by the BPR fluid server. 

Let t’ t2 tk be the departure times from the 
BPR packet ‘.%kduier: The service rate r;(t) that is al- 
located to a queue i is computed from Equations (8) and 

(9) after each departure. Let B(t”) be the set of backlogged 
queues at tk. If i 4 B(tk), ri(tk) = 0 and Vi(tk) = 0. Oth- 
erwise, if i E B(t”), the virtual service function ui(tk) is 
computed as follows: 

0 if tk-’ 5 a, 
Ui(tk) = 

{ vi(tk-‘) + r;(tk-‘) (t” - tk-‘) otherwise 

where oi is the arrival time of the packet at the head of 
queue i at tk. After computing the virtual service function 
for all queues, the BPR packet scheduler chooses the packet 
to transmit next as follows: if Li is the length of the packet 
at the head of queue i, the scheduler services t.he queue j 
with 

3 = argmmieB(+)[L, - Ui(tk)] (21) 
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