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Abstract—Relaxed real-time services that do not provide guaranteed loss
rates or delay bounds are of considerable interest in the Internet, since these
services can achieve higher utilization than hard real-time services while
still providing adequate service to adaptive real-time applications. Achiev-
ing this higher level of utilization depends on an admission control algo-
rithm that does not rely on worst-case bounds to guide its admission de-
cisions. Measurement-based admission control is one such approach, and
several measurement-based admission control algorithms have been pro-
posed in the literature. In this paper, we use simulation to compare the per-
formance of several of these algorithms. We find that all of them achieve
nearly the same utilization for a given packet loss rate, and that none of
them are capable of accurately meeting loss targets.

I. I NTRODUCTION

In an effort to better support applications with real-time con-
straints, several new per-flow packet delivery services have been
proposed for the Internet (e.g., [24], [26]).1 Lying between the
extremes ofhard real-time services (which provide worst-case
guarantees) and the vagaries of the current best-effort service are
soft real-time services that provide an enhanced quality of ser-
vice without making hard guarantees. Specifications for these
services might provide a delaytarget, rather than a bound, and
permit periodic excursions above this target [6], or they might
specify that the service provides low delay and low loss without
quantifying actual performance [26].

One key difference between hard and soft real-time services is
the nature of their admission control algorithms. Hard real-time
services necessarily useparameter-basedadmission control al-
gorithms that are based on worst case bounds derived from the
parameters describing the flow; these algorithms typically result
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in low network utilization in the face of bursty network traffic.
Soft real-time services can use less stringent admission control
algorithms. It has long been recognized thatmeasurement-based
admission control algorithms (MBACs) are more appropriate for
these soft real-time services [6], [18]. Because they base admis-
sion control decisions on measurements of existing traffic rather
than on worst-case bounds about traffic behavior, MBACs can
achieve much higher network utilization than parameter-based
algorithms while still providing acceptable service [19]. Of
course, traffic measurements are not always good predictors of
future behavior, and so the measurement-based approach to ad-
mission control can lead to occasional packet losses or delays
that exceed desired levels. However, such occasional service
failures are acceptable given the relaxed nature of the service
commitment provided by soft real-time services.

In designing a measurement-based admission control algo-
rithm, one can conceivably have two goals. One is to pro-
vide a parameter that accurately estimatesa priori the level
of service failures that will result. The other is to achieve the
highest possible utilization for a given level of service failures.
Several measurement-based admission control algorithms have
been proposed in the literature (see, for example, [7], [10], [11],
[13], [14], [15], [16], [17], [19], [20], [21]) and they implicitly
or explicitly seek to achieve one or both of these design goals.

The proposed algorithms, although embracing similar goals,
differ in four important ways. First, some algorithms areprin-
cipled, based on solid mathematical foundations such as Large
Deviation theory, and others aread hoc, in that they lack a the-
oretical underpinning. Second, the specific equations used in
making admission decisions are quite different. Third, while
all algorithms have a parameter that varies the level of achieved
performance and utilization (by making the algorithm more or
less aggressive), some algorithms attempt to calibrate this pa-
rameter and have it serve as an accurate estimate of the resulting
performance, while others leave the parameter uncalibrated; in
the latter case it is assumed the network operator will learn ap-
propriate parameter settings over time. Fourth, the measurement
processes used to produce an estimate of network load are very



different; they range from a simple point sample estimate, to
an exponentially weighted average, to estimates based on both
the mean and variance of measured load. Thus, the space of
measurement-based admission control algorithms is both heav-
ily and broadly populated.

Somewhat surprisingly, given the number of papers on the
subject, no comprehensive comparison of these algorithms ex-
ists. Previous comparisons (including our own previous work on
the subject) look only at a few test cases, and then only for a few
of the algorithms [20], [21]. In this paper we extend this previ-
ous work by considering more (although by no means all) of the
proposed algorithms, and by subjecting them to more extensive
tests. In all of these tests we use packet losses as the defini-
tion of a service failure.2 We evaluate the algorithms according
to how well they are able to meet the two goals of MBACs.
First, we compare theperformance frontieror loss-load curve
(we will use these terms interchangeably) achieved by each al-
gorithm; the loss-load curve depicts the rate of losses that occur
at a given level of utilization. Second, for those algorithms that
attempt to predict the resulting level of losses, how close is the
resulting performance to the target?

On the first goal, we find that even though the algorithms are
derived from diverse motivations and theories, they all produce
essentially the same performance frontier. The particular theory
upon which they are based and the specific admission equations
they use seem to be of little consequence. Regarding the second
goal, we find that none of the algorithms achieve the specified
performance targets consistently. However, some algorithms do
somewhat better than others; whether these differences are im-
portant, and whether future algorithms can do better, remains an
open question.

The remainder of this paper is organized as follows. In the
next section we describe the algorithms we include in our study
and briefly review previous performance comparisons of the al-
gorithms. In Section III we describe our simulation method-
ology and present experimental results comparing the perfor-
mance frontiers of the various algorithms. In Section IV we
study the extent to which algorithms can accurately predict the
resulting loss level. We summarize our findings in Section V.

II. M EASUREMENT-BASED ADMISSION CONTROL

ALGORITHMS

To give the context necessary for discussing our results, in
this section we very briefly describe the six admission control
algorithms whose performance we study. These algorithms rep-
resent a broad, though not complete, sample of existing MBACs.
Each algorithm has two key components: a measurement pro-
cess that produces an estimate of network load, and a decision
algorithm that uses this load estimate to make admission con-
trol decisions. After presenting each of the six algorithms, we
elaborate on some common features of the algorithms.

For the purposes of this study, we assume that applications
use a signaling protocol, such as RSVP [3], to make their re-
quests for service to the network. These service requests con-
tain a traffic descriptor describing the worst case behavior of the

2Violations of a delay target may also be a relevant characteristic. However,
for the fixed buffer regime we study, this is sufficiently similar to loss and so we
do not treat it separately.

application traffic. The traffic descriptor takes the form of a to-
ken bucket with parametersr andb denoting the token rate and
bucket depth, respectively.3 We measure the quality of the ser-
vice delivered in terms of packet drops. Soft real-time services
are typically intended to be scalable, therefore we only consider
MBACs that require no per-flow state; that is, the measurements
are taken on the aggregate traffic, not on individual flows. Since
measurement is done on the aggregate and admission control
decisions are made on a per flow, rather than a per packet basis,
implementation overhead is not critical [20] and is not explored
in this paper.

Some admission control algorithms do not fit within the
framework we consider and are excluded from our study. For
example, we do not include one of the MBACs described in [13]
because it depends on per-flow (rather than aggregate) measure-
ments. In addition to excluding algorithms that require per-flow
measurements, we also do not consider algorithms that make
any assumptions, either implicitly or explicitly, about the av-
erage behavior of flows. For example, we do not include the
MBAC presented in [16] because it computes a per-flow average
estimate and assumes that all arriving and departing flows con-
form to that average. We only consider algorithms that make
no assumption about what a flow’s contribution will be to ag-
gregate load beyond the worst case parameters supplied by the
flow. Similarly, when a flow departs the network, its prior con-
tribution to aggregate load can only be determined by measuring
subsequent aggregate load.

Following are brief sketches of the six admission control al-
gorithms we compare:
� Measured Sum (MS).The Measured Sum algorithm [20] ad-
mits a new flow if the sum of the token rate of the new flow and
the estimated rate of existing flows is less than a utilization tar-
get times the link bandwidth. A time window estimator is used
to derive the estimated rate of existing flows.
� Hoeffding Bounds (HB). The admission control algorithm
described in [11] computes the equivalent bandwidth for a set of
flows using the Hoeffding bounds. A new flow is admitted if the
sum of the peak rate of the new flow and the measured equiva-
lent bandwidth is less than the link utilization. An exponential
averaging measurement mechanism is used to produce the load
estimate.
� Tangent at Peak (TP).Four measurement-based admission
control algorithms are presented in [13]. The first algorithm,
based on the tangent at the peak of an equivalent bandwidth
curve computed from the Chernoff Bounds, admits a new flow
if the following condition is met:

np(1� e�sp) + e�sp
b� � �; (1)

wheren is the number of admitted flows,p is the peak rate of
the flows,s is the space parameter of the Chernoff Bound,b� is
the estimate of current load, and� is the link bandwidth. This
algorithm uses a point sample measurement process.
� Tangent at Origin (TO). A second algorithm presented in
[13] uses a tangent to the equivalent bandwidth curve at the ori-
gin. Here, a new flow is admitted if the following equation is
3Some of the admission control algorithms require a peak ratep. Following

[11], the peak rate is computed from the token bucket parameters asp = r +
b=T , whereT is the basic measurement interval used by the algorithm.



satisfied:
espb� � �: (2)

This admission control algorithm also uses the point sample
measurement process.4

� Measure CAC (MC). TheMeasureadmission control algo-
rithm [7], which is based on large deviation theory, admits a new
flow if the sum of the peak rate of the flow and the estimated
bandwidth of existing flows is less than the link bandwidth. The
estimated bandwidth takes as input a target loss rate and makes
use of the scaled cumulant generating function of the arrival pro-
cess.
� Aggregate Traffic Envelopes (TE).The admission control
algorithm in [21] uses measurements of the maximal traffic en-
velopes of the aggregate traffic, capturing variability on different
time scales. Both the average and variance of these traffic en-
velopes, as well as a target loss rate, are used as input into the
admission algorithm.

The brief descriptions presented above ignore the details of
the individual algorithms, but the key point is that the algorithms
differ both in their underlying theory and in the specific mea-
surement and admission control equations they use. While these
differences are what we seek to understand in this paper, certain
similarities are worth noting. For instance, each of these algo-
rithms has one component that derives a load estimate based on
measured traffic and another component that makes an admis-
sion decision using this load estimate. Rather than treating each
algorithm as a monolithic block, it is possible in some cases to
pair the estimation process of one algorithm with the decision
process of another. This allows us to ask whether differences
in performance derive from the estimation process, the decision
process, or both. We undertake this “mix and match” analysis in
Section III.

In addition to the equations that form the basis of the algo-
rithms described above, there are also certain MBAC features
that address specific practical concerns. For instance, when a
new flow is admitted to the network, the existing load estimates
will not immediately reflect the presence of the new flow. In
such a case, the network runs the risk of admitting too many
flows before recognizing that load has increased. To prevent
this situation, some of the algorithms (MS, HB, MC) artificially
increase the load estimate to account for a newly admitted flow.
This feature, while included in the specifications of three algo-
rithms, can be seen as an independent mechanism that can be
applied to any of them. We eliminate this feature as a source of
performance differences between algorithms by including it in
all of the algorithms in our performance comparison.5

A final observation is that each of the admission control equa-
tions has one or more parameters that control their operation.
For example, the MS algorithm has autilization targetthat af-
fects how many flows will be admitted, the MC and TE algo-
rithms use atarget loss rate, and the HB algorithm has a pa-
rameter that indicates the probability that the actual bandwidth

4A third algorithm presented in [13] is equivalent to the HB algorithm. As
described above, the fourth algorithm is excluded because it depends on per-
flow measurements.
5Results of simulations not included in this paper show the importance of this

feature. Under highly dynamic conditions, performance can degrade if estima-
tion algorithms do not account for the presence of newly admitted flows.

requirement exceeds the estimates. While these parameters were
not all intended as tuning parameters by the designers of the al-
gorithms, adjusting these parameters will make the algorithms
either more conservative or more aggressive with regard to the
number of flows they admit. Hence, instead of providing a sin-
gle level of performance, each algorithm enables a range of loss
rates and utilizations depending on the values of these param-
eters. Thus, we describe the utilization performance of these
algorithms by their loss-load curves or performance frontiers.

This paper is an extension of our earlier work [20]. In that pa-
per we compared three different measurement-based admission
control algorithms (MS, HB, and an acceptance region based
MBAC from [14] which was later generalized in [13]) and one
simple parameter-based admission control algorithm. These al-
gorithms were compared for several different traffic loads (simi-
lar to those we use here, to be described in Section III-A) and on
single link and multiple link network topologies (as we discuss
in Section III-A, we only use a single link network topology in
this paper). The simulation results in the earlier paper were de-
ficient in several respects. The algorithms were only tested at
one parameter value setting. Suchpoint comparisonscannot de-
scribe the entire performance frontier provided by an admission
control algorithm, and so do not adequately characterize the per-
formance of an MBAC. Moreover, for the particular parameter
values and traffic models used in [20], the admission control al-
gorithms recorded no losses, so only the utilization figures could
be compared. Also, there was no attempt to compare the target
loss rate with the actual loss rates, so there are no results analo-
gous to those in Section IV. Thus, this previous work did not ad-
equately answer the relevant question: how well do the various
MBACs satisfy the two goals of measurement-based admission
control?

There have been few other attempts to systematically com-
pare the performance of measurement-based admission control
algorithms. The closest work is [21], in which the performance
of the TE algorithm is compared to that of HB and the algo-
rithm specified in [19].6 The authors of [21] compare utiliza-
tion achieved for particular quality of service targets, and do not
compare the performance frontiers of the algorithms; however,
the main thrust of [21] is on achieving accurate loss estimates,
and to evaluate success along that dimension it is not necessary
to investigate the entire performance frontier.

In one other related piece of work, in a short (three page)
discussion paper [4] we briefly review some of the research pre-
sented here and then use that to argue that the research agenda
in measurement-based admission control should address certain
policy issues (such as how to allocate admission between large
and small flows, and between flows traveling many hops and
those traveling fewer hops).

III. PERFORMANCEFRONTIERS

In this section we evaluate how well each of the six algorithms
performs with respect to the first goal: achieving high network
utilization and low packet loss. We first describe our simulation
methodology and present our basic results for the MBACs with

6Based on communication with the author of [11], we do not interpret the
parameter in HB as a performance target; however, one could easily make that
interpretation, and that is what is done in [21].



several different source models. We then focus on three spe-
cific issues: the impact of heterogeneous traffic, a comparison
between MBACs and an ideal parameter-based algorithm, and
implications of long range dependent traffic on measurement-
based admission control. Throughout the discussion and accom-
panying figures, we refer to the algorithms by the abbreviations
introduced in the previous section: MS, HB, TO, TP, MC, TE.

A. Simulation Methodology

We use discrete event simulation to generate performance
frontiers for each algorithm. Simulations were carried out us-
ing thensnetwork simulator.7 In order to understand the behav-
ior of the algorithms in the most simple case, we used a simple
topology in which admission control was employed on a single
bottleneck link. While interesting issues may arise when study-
ing admission control in a multi-link scenario, the basic per-
formance aspects of these algorithms are most easily revealed
in this simpler one-link configuration, particularly since the ad-
mission control decisions for each of the algorithms are made
on a link-by-link basis. Further, we expect that issues arising
in a multi-link scenario (e.g., discrimination against larger flows
and flows traversing longer paths [4], [19]) are independent of
the particular algorithms and are, therefore, orthogonal to the
questions we ask here.8

A simulation experiment consists of a random process of flow
arrivals. Each flow requests service from the network using a
simple resource reservation protocol, and it is admitted or re-
jected according to the specifics of the algorithm in question.
A rejected flow departs the network without sending any data
packets and does not retry its service request again. A flow that
is accepted sends data packets for a flow lifetime chosen from a
random distribution. Packets are generated according to a source
model selected for the flow when it is created.

We use two kinds of source models in our experiments. The
first is anON/OFFsource, in which the source transmits at a con-
stant rate during a randomly chosenON period, and then remains
idle for a randomly chosenOFF time. The second kind of source
model uses a trace of video traffic to drive the simulation. The
specific parameters are described below. Packets generated by a
source are subject to policing by a token bucket filter. The to-
ken bucket parameters (rate and bucket depth) are included in
the reservation request that is handed to the admission control
module.

For each simulation, the average utilization and packet loss
rate are measured. Data collected during an initial warmup pe-
riod are discarded. All simulations were repeated using different
seeds to the random number generator. The number of repeti-
tions and the length of each simulation were varied depending
on the underlying variability of the source model and offered
load used in each experiment. The averages across all repeti-
tions are reported in our results.

In all experiments, the bottleneck link bandwidth is 10 Mbps.
Unless otherwise noted, packets are 128 bytes long, and there is

7http://www-mash.cs.berkeley.edu/ns/.
8This is not to say we don’t think these issues are interesting. In fact, given

the results we present here, we make the case in [4] that these issues of dis-
crimination mentioned above should be considered more seriously by MBAC
researchers.

buffering for 160 packets at the bottleneck link. In most of our
experiments, the total offered load (in terms of the number of
flows requesting service) is high, leading to a high call rejection
rate. While the actual rejection rates may be unrealistically high,
it is in the regime of overload that the behavior of the admission
control algorithms is most interesting.

Each of the algorithms has several parameters that control
how much history is maintained by the estimation algorithm.
We tried, when possible, to use parameter settings suggested in
the original references. However, in some cases we found that
changing these values yielded better performance. We suspect
that this is due to differences between our source models and of-
fered load and those used by other researchers. In all cases, we
used those parameter values that yielded the best performance
in our experiments.

B. Results

Our first experiments use homogeneous on/off sources with
exponentially distributed on and off times (325ms average). The
transmission rate during on periods is 64kbps, making the aver-
age rate 32 kbps. The token rate and bucket depth are set to
64 kbps and 1 packet, respectively (assuring no loss at the to-
ken bucket filter). These parameters are consistent with PCM
coded voice that might be produced by an IP telephony appli-
cation. On average each source consumes about .3% of the
link bandwidth. Flow inter-arrival times are exponentially dis-
tributed with a mean of 400 ms. Flow lifetimes, which are also
exponentially distributed, have a mean of 300 seconds. We re-
fer to this traffic model as the EXP1 source. Simulations were
run for 6000 simulation seconds; data collected during the first
1500 seconds was discarded. Each simulation was repeated 5
times with different seeds to the random number generator.

Results for this experiment are shown in Figure 1. This graph
plots the packet loss rate on a log scale as a function of link uti-
lization. A performance frontier is shown for each of the six al-
gorithms.9 It is difficult to distinguish between the performance
frontiers in the graph, indicating that all of the algorithms yield
very similar performance. That is, they all permit essentially
the same choices in the tradeoff between loss rate and utiliza-
tion. Further, the very slight differences in performance are not
of practical importance, because even if one algorithm yields a
marginally higher loss rate than another at a given level of uti-
lization, the loss rates can be made equivalent with extremely
small changes in utilization. Because there is variance in both
the x andy values in the figure (i.e., a given MBAC input pa-
rameter determines both the utilization and packet loss rate),
and these variations are highly correlated and not normally dis-
tributed, we do not depict these variations as error bars in our
graphs. However, the variance across simulation runs is small.

In some cases, the interfaces between the estimation and deci-
sion components of each algorithm are such that the estimation
process of one can be used with the decision process of another.
When this was possible, we “mixed and matched” the various
components. Specifically, the MS, HB, TO and TP decision al-

9Because utilization is not an independent variable in these experiments, data
points are not plotted for the samex values for each algorithm. The actual num-
ber of points plotted varies across algorithms, but we have covered an overlap-
ping range on thex axis for each curve.
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Fig. 1. Performance frontiers of measurement-based admission control algo-
rithms with EXP1 traffic

gorithms were run with the Time Window, Exponential Aver-
aging, and Point Sample estimators in order to understand the
degree to which each component impacts the results. Figure 2
shows the results for these three estimators with the four differ-
ent decision algorithms. Relative to Figure 1, the slight varia-
tions across algorithms have been reduced. This result demon-
strates two things. First, the conclusion above that each algo-
rithm has nearly the same performance frontier does not depend
on any particular coupling between estimation and decision pro-
cesses. Second, the reduced variance indicates that it is the esti-
mation process, and not the decision algorithm that is responsi-
ble for the slight variations in Figure 1.

We performed additional experiments using the following
source models:

� EXP2 – in this source model, the peak rate is increased by
a factor of 10 (640 kbps versus 64 kbps) relative to the EXP1
source while the average rate is held constant, leading to a
burstier source model.
� POO1 – this is an on/off source with the same averages as the
EXP1 source. However, they are taken from a Pareto distribu-
tion. Flow lifetimes are taken from a lognormal distribution with
a median of 300 seconds following [2], [9]. The aggregation of
these sources produces traffic that is long range dependent [8],
[25].
� STARWARS – this source model is taken from a trace file
produced by an MPEG encoding of the Star Wars motion picture
[12]. Each source starts from a random place within the trace
file in order to avoid correlation among the sources. This source
model differs from the previous ones in that it has a higher aver-
age rate (350kbps vs 32kbps) resulting in a lower degree of mul-
tiplexing, and it is characteristic of traffic produced by a video
source rather than an on/off model. With this source model,
packets are 200 bytes long and there are 500 packet buffers at
the bottleneck link.
� HET – this experiment consists of a mix of six different on/off
sources, with varying average rates, idle times and burst times.
Each arriving flow chooses from among these source models at
random. All flows have the same leaky bucket parameters, so
they appear identical to the admission control algorithm.

The results from these experiments (not shown here) reveal
that our basic result holds across different traffic models. That is,
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Fig. 2. Decision algorithms paired with different estimators for the EXP1 source
model

in the presence of burstier sources, long range dependent traffic,
lower multiplexing, traffic derived from a video trace, and het-
erogeneous traffic (with identical token bucket parameters), all
of the algorithms achieve roughly the same performance fron-
tier. In addition, we repeated the experiments with the EXP1
traffic source and more moderate offered load (yielding a lower
call rejection rate.) The essential results were unchanged under
these conditions.

C. More on Heterogeneous Traffic

We now briefly return to the issue of heterogeneous traffic.
In the simulation with heterogeneous traffic described above, all
flows had identical token bucket parameters, and so were indis-
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Fig. 3. Peak rate versus token rate versions of the MS admission control algo-
rithm with heterogeneous traffic

tinguishable to the admission control algorithms. The results
in this case were consistent with those in the homogeneous ex-
periments. We now ask what happens when the token bucket
parameters are no longer identical, allowing the admission con-
trol algorithms to admit them differentially. Not surprisingly,
when the flows are distinguishable, different admission control
algorithms lead to different mixtures of traffic, and hence to dif-
ferent performance frontiers. To illustrate this, we consider an
experiment where each arriving flow used one of the follow-
ing two source models, chosen with equal probability. The first
source model was the Star Wars trace introduced above. This
trace had an average rate of approximately 350 kbps. In order
to accommodate its burstiness, the token bucket parameters are
r = 800kbps andb = 200kb. The second source model was
a Constant Bit Rate (CBR) source sending at 800kbps. The
token bucket parameters for this source arer = 800kbps and
b = 1:6kb (to hold a single packet).

Figure 3 shows results for this heterogeneous traffic mix with
2 admission control algorithms. The first is the Measured Sum
(MS) algorithm, which uses the token rate of the new flow. The
second algorithm is a variant of Measured Sum using the peak
rate (computed asp = r + b=T , with T = 500ms in our ex-
periments) of the incoming flow, rather than its token rate, in
the admission control equation. The first version of the MS al-
gorithm does not discriminate between the two kinds of flows
because they have the same token rates. This leads to a traffic
mix that is made up of roughly equivalent numbers of the two
kinds of flows. The peak rate algorithm, on the other hand, dis-
criminates against the trace driven flows, as they have a higher
peak rate (1200kbps vs. 800kbps). This leads to a traffic mix in
which the CBR sources outnumber the video sources by a ratio
of approximately 3:1. Consequently, the peak rate algorithm has
a better performance frontier than the token rate algorithm. We
introduced the peak rate version of the MS admission control
algorithm to accentuate the extent of discrimination. One finds
similar, but less extreme, results when comparing the six admis-
sion control algorithms we have discussed in this paper under
heterogeneous traffic loads with distinguishable flows.

Note that the traffic mix admitted by the peak-rate algorithm
is, in the aggregate, less bursty than the one admitted by the
token rate algorithm; thus, the loss rate experienced at an equiv-

alent utilization is lower than is experienced with the token rate
admission control algorithm. In general, when admission con-
trol algorithms admit different mixtures of flows, the aggregate
traffic will have different degrees of burstiness, and so the per-
formance frontiers will no longer be the same. Thus, in the face
of heterogeneous and distinguishable flows, MBACs don’t nec-
essarily produce the same performance frontier.

One might think that this would undercut our observation
about the equivalence between various MBACs. However, we
think that the question of which traffic mixture should be admit-
ted is one of policy, not efficiency. Clearly one could minimize
the loss rates by admitting only CBR-like flows, but such a limi-
tation would be unwise as it would preclude bursty sources from
obtaining reasonable service. Admission control algorithms that
happen to pick less bursty flows to admit, while providing supe-
rior performance frontiers (in the presence of heterogeneous and
distinguishable traffic) are not necessarily more desirable and in
fact have only made one particular policy choice out of a broad
range of possible choices.

D. Comparison with an Ideal Algorithm

We now elaborate on our result that all of the algorithms have
similar performance frontiers. With so much effort going into
the design of measurement-based admission control algorithms,
one might have assumed that the effort would lead to improved
performance. Our simulations suggest quite the opposite, that
even very simplead hocalgorithms achieve the same perfor-
mance frontier as more complicated and more principled ones.
Given this, we ask two questions. First, why are the differences
in performance between the algorithms so small? Second, are
there untapped advantages not yet realized by any of these algo-
rithms or are they in fact all performing at or near some optimal
level? To answer these questions, we construct an “ideal” algo-
rithm.

Consider our initial experiment with the EXP1 traffic source.
In this simulation, all flows in the network were homogeneous
exponential on/off sources. The aggregate traffic generated by
these sources has no long term correlation. Further, the time
scale at which individual sources change between the idle state
and the active state (100s ms) is shorter than the time scale at
which new flows are admitted to the network (seconds). Thus,
it is impractical for the admission control algorithm to attempt
to adjust to short term fluctuations in traffic (i.e., on the time
scale of bursts). Given that there are no long term correlations
in the aggregate traffic, the ideal strategy for admission control
is to keep long term average load constant. While this might
present a challenge in reality, it is trivial in our simulation envi-
ronment when we have homogeneous flows with no long term
correlations. Hence, for present purposes we define theQuota
algorithm, which does not depend on measurements. This sim-
ple algorithm admits a newly arriving flow if there are less than
n flows currently receiving service, and rejects the flow other-
wise. The parametern controls how conservative or aggressive
the algorithm is. While this algorithm is helpful in better under-
standing the limits of the performance of MBACs, it is imprac-
tical in any real setting since it requires homogeneous flows.

Figure 4a plots the performance frontiers for the Quota algo-
rithm and for one of the measurement-based algorithms (MS)
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Fig. 4. (a) Performance frontiers for MS and Quota algorithms with EXP1 traf-
fic (b) Number of admitted flows as a function of time for the MS algorithm

with the EXP1 traffic. As the figure shows, the Quota algo-
rithm outperforms the measurement-based algorithm; across the
load levels tested, the loss rate for the measurement-based algo-
rithm is between 50% and 250% higher than that of the Quota
algorithm. Figure 4b plots the number of admitted flows as a
function of time for one simulation with the Measured Sum al-
gorithm; a similar plot for the Quota algorithm yields an essen-
tially straight line (the offered load is sufficiently high so that a
new flow arrives very soon after a flow leaves, making the ad-
mitted load very close to constant). The MS algorithm mimics
the Quota algorithm fairly well, but there is significant variation
in the number of admitted flows. Similar variations in load oc-
cur when using the other MBACs we evaluated. Note that for
the same average utilization, increased variability in load leads
to higher loss rates. Thus, with the EXP1 traffic model, it is pre-
cisely these variations in admitted load that leads to the worse
performance frontier for the measurement-based admission con-
trol algorithm. Is this variation inevitable, or can MBACs even-
tually match the performance of the Quota algorithm?

There are two distinct causes for this variation leading to
the performance degradation relative to the Quota algorithm.
The first is the way that the measurement-based algorithms
must deal with the arrival and departure of flows. Because the
measurement-based algorithms we consider use aggregate rather
than per-flow measurements, they do not know how much a de-

parting flow was contributing to the previous estimate of load.10

Measurement-based algorithms must therefore wait before ad-
mitting a new flow until new measurements reflect the departure
of the previous flow. During this time, additional flows may
depart, and the number of flows in the system may drop. The
Quota algorithm on the other hand, with its perfect but unreal-
istic knowledge of the departing flow, can immediately admit a
new flow. Similarly, when a new flow is admitted to the system,
measurement-based algorithms must assume worst case behav-
ior about the new flow until new measurements reflect its pres-
ence. In contrast, the Quota algorithm can admit flows based on
their average behavior and need not delay further admissions.

The second factor leading to variation in the number of ad-
mitted flows is that measurement-based admission control al-
gorithms, by their reliance on measurements of current traffic,
must necessarily respond to significant fluctuations in the load
even when the number of flows has not changed. That is, the
MBAC cannot distinguish between having too many flows ad-
mitted and a long fluctuation to a higher level of aggregate traffic
by a fixed set of flows; not being able to detect the difference,
the MBAC is forced to turn away flows during such a fluctuation
even when there are too few flows present and similarly, if the
current flows fluctuate to a lower level of traffic, the MBAC is
forced to admit flows even when too many are already present.

Note that there is an inherent tension between the two fac-
tors that cause MBAC performance to degrade relative to the
Quota algorithm. To avoid adapting to short term fluctuations
in load, longer measurement intervals are suggested [15], [19].
Longer measurement intervals, on the other hand, will only slow
down the reaction of the measurement-based algorithms to the
departure and arrival of flows. Therefore, it is likely that these
two factors will prevent any measurement-based algorithm from
ever performing as well as the Quota algorithm.

If MBACs could emulate the Quota algorithm, then they
would all have the same performance frontier, and our results
in Section III-B would be rendered obvious. However, the dis-
cussion above shows that MBACs cannot accurately emulate the
Quota algorithm. The surprise in our results in Section III-B is
that the set of MBACs we tested all had such similar deviations
from theidealbehavior of the Quota algorithm. One might have
thought (indeed, we did think) that different admission control
equations and different measurement procedures would make a
difference in how well this ideal was followed; our results sug-
gest that this is not the case.11

E. Long Range Dependence

Before turning to the second goal of MBACs (performance
targets) we briefly discuss long range dependence and its ef-
fect on admission control. Long range dependence has been
observed in video traffic [1], [12] and may also arise from the

10In addition, some signaling protocols may not even provide explicittear-
down messages, exacerbating the problem of updating estimates when flows
depart the network.
11Our fuller set of simulations (not presented here) suggest that the length

of the averaging periods, and the way in which new flows are treated, are much
more important than the equations themselves in determining how close MBACs
come to the performance frontier of the Quota algorithm. This is consistent
with the observations above about the two causes of the variations, since they
both relate to measurement intervals and the treatment of new flows, and are
orthogonal to the specific equations used in the admission decision.
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Fig. 5. Measurement-based algorithm vs. Quota Algorithm for long range de-
pendent traffic

aggregation of audio traffic [11], two traffic classes that may
be subject to admission control. Results for the POO1 traffic
source showed that our basic result, that the various MBACs
have similar performance frontiers, remains unchanged in the
face of long range dependent traffic. However, the relative per-
formance of the Quota algorithm, held up as anidealalgorithm
in the previous Section, is quite altered by the presence of long
range dependent traffic.

Above we showed that the Quota algorithm, which admits a
fixed number of flows, performs better than the measurement-
based algorithms with the EXP1 traffic source (which does not
give rise to long range dependent aggregate traffic.) We repeated
these experiments using the POO1 traffic source. Results are
shown in Figure 5, and for clarity we again show only the Mea-
sured Sum algorithm and the Quota algorithm. With long range
dependent traffic, we see the opposite results. In this case, the
measurement-based algorithm performsbetter than the Quota
algorithm (which one can think of as a simple, if unrealistic,
parameter-based algorithm). The explanation for this is straight-
forward. The long range dependent traffic exhibits variations
over long time scales. By keeping the number of flows fixed,
the Quota algorithm does nothing to smooth these variations.
The measurement-based algorithm, on the other hand, is able
to adjust the number of flows admitted in response to the varia-
tions. As the aggregate load increases, departing flows need not
be replaced by new ones, and when load decreases additional
flows can be admitted.

We believe the implications of this are important. The orig-
inal arguments for using measurement-based admission control
claimed that the worst-case behavior of bursty traffic is far worse
than the average case, and that it is harda priori to know the av-
erage behavior of a bursty traffic flow. Since the average behav-
ior is unknown, any parameter-based algorithm must be based
on worst-case parameters, leading to low network utilization.
However, our results here indicate that that argument should be
taken one step further. Even if theaveragebehavior of traffic
flows were known, the existence of long range dependent traffic
would still mandate the need for measurement-based admission
control in order to adapt to these long time scale fluctuations.
Thus, while it has previously been suggested that long range
dependence may present certain challenges for measurement-

based admission control [11], [23] (and we do not disagree
with those arguments), we believe that long range dependence
also provides additional motivation for the use of measurement-
based admission control. When the time scale of flow arrivals
and departures is shorter than that of the ebb and rise of traf-
fic, measurement-based admission control enables the network
to react to these traffic fluctuations.

These results on long range dependence also shed light on
another issue. Some have argued that our basic result—that
the performance frontiers of MBACs are very similar—follows
quite directly from the observation that all algorithms seek to
mimic the Quota algorithm. In Section III-B we found that there
are inherent limitations to how closely any MBAC can mimic
the Quota algorithm. Our results about long range dependence
further show that mimicking the Quota algorithm is not always
the optimal behavior.

IV. PERFORMANCETARGETS

Results in the previous section showed that all the
measurement-based algorithms are capable of making the same
tradeoff between utilization and loss. However, network opera-
tors who will deploy these algorithms may be interested in more
than just knowing that the algorithms achieve the same tradeoff.
Rather, it may be important for a network operator to knowhow
to end up at a particular point on the performance frontier, so
that a desired loss rate can be achieved. When comparing algo-
rithms, it is important to ask to what extent their input parame-
ters are useful in predicting actual performance. An algorithm
that allows an operator to control resulting performance will be
preferred over one that does not.

We note that not all of the designers of the algorithms we
study intended their algorithms to be tunable, nor did they all
make claims about how well the algorithms were able to meet a
particular performance target. Hence, we undertake this evalua-
tion not to judge whether a particular algorithm meets its design
objectives. Rather, we begin with the observation that each algo-
rithm has one or more parameters that can be adjusted to control
performance. We ask whether these parameters are able to pro-
vide functionality that network operators may find useful.

The tuning parameter in the TP and TO algorithms represents
the space parameter of the Chernoff Bound used to compute
the equivalent bandwidth curve upon which the algorithms are
based. As such, this parameter does not represent a meaningful
performance target. One may then ask whether this parameter
can be mapped into a useful performance value in a determinis-
tic way. For instance, if a particular parameter value in the TO
algorithm always yields the same loss rate, then the parameter
can be useful in predicting actual performance. However, a re-
view of our simulation results shows that this is not the case. As
an example, with the TP algorithm, a parameter value of4:0e�7

yields loss rates of:0098, :0018 and less than10�7 with the
POO1, EXP1 and Star Wars sources, respectively. These kinds
of inconsistencies were also observed with the TO algorithm.
Thus, the tuning parameter in the TO and TP algorithms can not
be used to predict actual performance.

The MS algorithm has a parameter,�, which represents a cap
on the fraction of the link bandwidth that can be used by traffic
subject to admission control. As such, its semantics are easily



understood, and we can ask whether it is useful as a utilization
target. Simulation results indicate that it is not. For example,
with the EXP1 traffic source, when� = 1:0, average utilization
is 94% of the link bandwidth. With the EXP2 traffic source, uti-
lization is only 75% of the link bandwidth with the same value
of �. Further, even if the utilization target was consistently met,
we question the value of this parameter as a performance target.
We expect loss rate to be a more relevant parameter, since loss
rate directly affects user performance.

The HB algorithm uses a parameter,�, to represent the proba-
bility that the stationary bandwidth requirement of a set of flows
exceeds the computed equivalent bandwidth of the flows. In
practice, this does not turn out to be a useful predictor of loss.
For example, in the simulations shown previously, we typically
use values of� above .9. Further, these values do not map into
actual loss in any consistent manner. For example, with� = :9,
the loss rates are .00045, .005 and less than10�7 with the EXP1,
POO1, and Star Wars source models, respectively.

Algorithm Source Target Actual
Model Loss Rate Loss Rate

TE EXP1 10�6 1:9� 10�5

TE EXP1 10�2 4:8� 10�2

TE Star Wars 10�6 5:5� 10�4

TE Star Wars 10�2 4:4� 10�3

TE EXP2 10�6 3:1� 10�5

TE EXP2 10�2 1:8� 10�3

TE POO1 10�6 1:3� 10�2

TE POO1 10�2 4:1� 10�2

MC EXP1 10�6 1:1� 10�4

MC EXP1 10�2 2:4� 10�4

MC Star Wars 10�6 3:0� 10�3

MC Star Wars 10�2 4:5� 10�3

MC EXP2 10�6 1:7� 10�4

MC EXP2 10�2 2:0� 10�4

MC POO1 10�6 1:2� 10�2

MC POO1 10�2 1:6� 10�2

TABLE I

TARGETED VERSUSACTUAL LOSSRATES FOR THETE AND MC

ALGORITHMS

The final two algorithms, TE and MC, use target loss rate as
a tuning parameter. Table I shows both the target and actual
loss rates for both algorithms and several traffic sources. These
data show that the algorithms are unable to achieve performance
close to their targeted performance in a consistent manner. In-
deed, for each algorithm the table shows examples in which the
actual loss rate is both higher and lower than the target, some-
times by 2 or 3 orders of magnitude. While the TE algorithm
comes closer to its targets in general, it still misses by a couple
of orders of magnitude in some cases. As such, even though the
targets are achieved under certain scenarios, they do not predict
performance reliably.

In sum, none of the algorithms provide tuning parameters that
are useful as performance targets. At best, these parameters can
be seen as largely uncalibrated knobs that can increase or de-
crease utilization and loss.

V. CONCLUSIONS

In this paper we compared several different measurement-
based admission control algorithms. We evaluated the algo-
rithms according to two criteria. First, what tradeoff of loss and
load do they each achieve? This criterion shows how well the
algorithms are able to balance the conflicting goals of providing
good quality of service to individual users and achieving high
network utilization (i.e., satisfying many users). Here our re-
sults were unambiguous. Across a range of traffic sources, all
the algorithms, whetherad hocor principled, achieved nearly
identical performance. This result argues that there is no partic-
ular performance benefit of one over the others. Our study also
yielded several additional insights about measurement-based ad-
mission control. First, we showed that for many algorithms,
the measurement estimation and admission decision processes
can be decoupled. Second, differences in performance caused
by flow heterogeneity are a matter to be addressed by policy,
rather than by algorithmic differences. Third, simulation results
showed that measurement-based admission control algorithms
not only cope well with long range dependence in traffic, in
some circumstances they are more adept at handling it than are
parameter-based algorithms.

The second criterion we used to evaluate the algorithms was
the extent to which they provided performance tuning knobs that
allow network operators to set a target performance level for the
network. Such a knob would allow the network operator to de-
cide where on the performance frontier the network should op-
erate. Here the results were less impressive. None of the algo-
rithms was able to reliably match actual performance to targeted
performance levels. Thus, we believe that for any of these al-
gorithms, network operators will need to monitor actual perfor-
mance in order to learn appropriate parameter settings. On the
other hand, some algorithms did better than others in this regard
in the sense that they tended to get closer to targets on average
than others. While the magnitude of the errors was in all cases
large enough to call into question the value of the knobs as per-
formance targets, whether or not this difference is important is a
subject of debate. The ability of future algorithms to improve in
this regard is an open question.
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