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Abstract—The ability to classify packets according to pre-defined rules ~ Our algorithm is also unique in the sense that it can take into
Is C”ticg' 10 providing many sophisticated value-added senvices, such as se-account the relative usage of the individual filters in a filter table
curity, QoS, load balancing, traffic accounting, etc. Various approaches to . . L .
packet classification have been studied in the literature with accompanying © build a more optlmall Se_a_rCh da_lta structure. This is especially
theoretical bounds. Practical studies with results applying to large number important as usage of individual filters tends to be highly unbal-
of filters (from 8K to 1 million) are rare. anced.

__Int_his paper, we take a practical approach to the problem of packet clas- our algorithm is amenable to implementation in software,
sification. Specifically, we propose and study a novel approach to packet . . .
classification which combines heuristic tree search with the use of filter har(jWare, ora .com.blnatlo'n Of_the two. We examine some of
buckets. Besides high performance and reasonable storage requirement, the |mplementat|on issues in this paper.
our glgo_nthm is unique in the sense that it can adapt to the input packet In a nutshell, our contributions are: (1) We propose and study
distribution by taking into account the relative filter usage. novel heuristi r ht ket cl ification that provid

To evaluate our algorithms, we have developed realistic models of large anovel heuristic approach to packet classificatio at proviaes
scale filter tables, and used them to drive extensive experimentation. The §00d average case performance, uses reasonable storage, and can
results demonstrate practicality of our algorithms for even up to 1 million adapt to the usage of individual filters. (2) We examine different
filters. issues concerning the practical implementation of our approach.

(3) We identify characteristics of realistic filter tables for differ-
. INTRODUCTION ent classes of router devices and develop a framework for mod-
. . e . eling them. (4) We provide benchmark results on the practical
Multi-dimensional packet classification with a large numb

! , .- performance of our proposed algorithms based on the filter table
of filter rules is a provably hard problem [4], [7], [8]. Specifi-,als of different router devices.
cally, previous work has cast it in terms of the range matchingrp, jyajance of the paper is organized as follows. In Section II,

problem in c_omputational geometry [3], where there are vario% precisely define the packet classification problem. In Sec-
known algorithms anq theoretical results. tion I, we present the details of our algorithms. In Section IV,
Most of these studies, however, focus on worst-case perf@fs examine implementation issues. In Section V, we present our

mance, and does not take into account actual filter usage stqligserimental results. In Section VI, we compare our approach
tics, nor the types of commonly occurring filter patterns. Morgg rajated work. Finally, we conclude in Section VII.
over, they provide sparse experimental results. In practice, the

asymptotic complexity does not accurately tell how the algo- 1. THE PACKET CLASSIFICATION PROBLEM

rithms scale to large number (e.g., from 8K to 1M) of filters. o ) o
In this paper, we take a more pragmatic approach. Our in.From an algorithmic perspective, the IP packet classification

terest is not as much in analytical results, but in exploring tlpéo.blem is simply a concretg Instance (.)f the abstrac'g classifi-
practical limits of packet classification and understanding p&2tion problem. In the following, we define the latter first and
formance through empirical experimentations. Our algorithl"‘f'f’ec'allze itto IP in the next subsection.

is monvated by intuitive obsgryatlop on the classification P'X  Abstract Classification Problem

cess, and is based on an efficient divide-and-conquer approach.

Specifically, we break up the classification procedure into twoA basic filter f is an ordered paitb, m) of binary strings of
main steps. In the first step, our algorithm tries to eliminatesjual length. We call thepattern andm themask m indicates

as many filters as possible by examining specific bit positioribe significantbits in b for matching purpose. For example, the
However, instead of eliminating all but one filter, the first stepasic filter (1001, 1010) means that the first and third (counting
terminates when the set of remaining filters is less than sofinem left to right) bits of “1001" are significant for matching pur-
pre-specified maximum. We call this set of filterBl@r bucket pose. Equivalently, a basic filter can be represented as a ternary
This early termination avoids the explosion that is often the retring in the alphabef0,1,*}. Specifically, all the insignificant
sult of trying to completely differentiate between a few “simibits in b are replaced by “*,” the don’t care bit. The example
lar” filters. In the second step, the filter bucket is processedabove can be denoted as “1*0*.”

find a match. Because of the limited size of a filter bucket, aThree special cases of basic filters can be defined. A basic
completely different procedure (e.g., (hardware-based) linearfitter, or equivalently called anask-basedilter, f = (b, m) is
associative search) can be used. In essence, our algorithmadsalked (1)exactif m consists of all “1"s; (2wildcard if m con-
modular composition of two procedures: the first to decompasists of all “0"s; and (3prefixif m is made up of “1"s followed
large filter table into small filter buckets of a fixed maximunby “0”s. Clearly, both exact and wildcard basic filters are special
size (from 8 to 128), and the second to process filter bucketscakes of prefix basic filters; and any basic filter can be repre-
limited size to find a match. sented as a collection of prefix basic filters. For example, the
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basic filter “*0**” is equivalent to the collection of prefix basica maximal subsequence satisfying (1)—(3). We can easily show

filters {“00**”, “10**" }.
A binary stringt matchesa basic filterf = (b, m) if ¢ andb

that such a division produces a unique gaiand7”. We call
the process of obtaininf and7” reduction and denotéT', T")

are of equal length and are identical in all significant bit positiorss thereductof F'T'.
as indicated byn. For example, “1100” matches the basic filter A filter table F'T' is said to beeducedf its reductis(FT, ().

“1*0*.”

A k-dimensional filterF is a k-tuple of basic filters. A k-
dimensional filter table of siz& is an ordered sequence bf
k-dimensional filters. We typically denote such a taBl€ by
the sequencé’, F», ..., Fy. The size of a filter tabld'T is
denoted byF'T|, i.e.,|F1, Fs,...,Fn| = N.

Let ¢t be ak-tuple (t1,...,t) of binary strings, and” a k-
dimensional filter denoted b1, . . ., f). We sayt matchesF
if forall 1 < j < k, t; matchesf;. In this caseF is called a
matchingfilter for ¢.

Given ak-dimensional filter tablé'T" of size N denoted by
Fi,...,Fy, a procedure foabstract classificatiomakes an ar-
bitrary inputk-tuplet and returns the firsk; such that matches
F; or NIL if there is no match. We calf; the best matching
filter for ¢.

B. IP Packet Classification

The IP packet classification problem can be stated as a spe-
cific instance of the abstract classification problem applied to
the domain of classifying IP packets. The specific instantiation
is defined as follows:

« The different dimensions of a filter correspond to the different
fields of interest that can be extracted from an IP packet or its
processing path.

Two forms are more popular: (1) 2-dimensional table with
source and destination IP addresses; and (2) 5-dimensional ta-
ble with source and destination IP addresses, protocol number,
source and destination TCP/UDP port numbers.

o For IP packet filtering, a general form of filter calledamge

filter, where each dimension is specified as a rangé)((s < f

An equivalent formulation of the problem is to associate eaealne integers), is sometimes used. For example, one can specify

filter with a distinctcostor priority. In which case, the classifi-

a range of port numbers to match using the range filter (6031,

cation procedure should return the matching filter with the lea&011).

cost or highest priority.

A range filter is more general than a prefix filter. It is, how-

A simple extension to the classification problem is to assever, not directly comparable to a mask-based filter. Specifically,

ciate each filte; with a weighti;. The weight represents thesome range filter (e.g., (9, 11)) can not be expressed as a single
relative match frequency of a particular filter, and is typicallgquivalent mask-based filters, and some mask-based filters (e.qg.,
derived from the distribution of the input tupteor filter usage “*01*") can not be expressed as a single equivalent range filter.

statistics. More precisely, létbe drawn from some fixed inputIn general, any range basic filter can be represented by a collec-

distribution from which thé¥V;’s are derived. Then

prob(F; is the best matching filter fay _ W;
prob(F; is the best matching filter fay ~ W;

Knowledge of the weights may help in constructing more e
ficient classification procedures. We call this extended prcﬂpl

lem theweighted abstract classification probletm the sequel,

to avoid repeated definitions, the classification problem with
weights is treated as the weighted classification problem wh

all W;'s are 1.

Filter Covering

(0]

tion (from 1 tof — s + 1) of mask-based filters.
Our proposed algorithm can potentially handle both mask-based
and range filters because of its modular nature. Specifically, the
tree search phase operates on mask-based filters, while the filter
Pucket search phase can process any type of filters.

The weighted IP packet classification is similarly derived from
e corresponding weighted abstract classification problem. In
this case, the weights are derived from the usage counters asso-
&Eted with each filter; and for performance evaluation purpose,

e incoming packets are assumed to be distributed in a way con-

sistent with the weights.
The ability to adapt search to incoming traffic is especially im-
portant for IP packet classification as filter usage tends to be

Given a filter tableF'T’, not all filters can potentially be pighly unbalanced. This distinguishes our approach from most

matched. For example, consider the 1-dimensional filter taklgisting approaches that can not easily take into account the rel-
1*, 00, 11, 01, 0%, both the filters “11” and “0*” will never giye usage of individual filters.

be returned as a match as any input matching them would have
matched earlier filters, “1*” for the former and “00” or “01” for C. Solution Requirements

the latter.

We can formalize this with a notion calledvering A set of
filters S = {F;} is said tocovera filter F' if for all input ¢, if ¢
matched’, thent also matches some filtét; in S. Given a filter
table F'T, a subsequence of filtefs ,. .., F;  is said tocover
F,if {F;,,...,F;, } coversF; andi,, < /.

Using the covering relation, we can divide a filter talbl&’
into two sub-table§” and 7" such that (1) filters ifil" and 7"’
are subsequences 617"; (2) T andT”’ form a partition of F'T,
i.e., all filters inF'T are in exactly one of or T"; (3) VF €
T' 3F;,,...,F;, € Tsuchthaty,,..., F; coverF;(4)T'"is

LIn other words, a basic filter is equivalent to a 1-dimensional filter.

In comparing solution approaches, we first fix the complexity
of filters and the number of filter rules. In this paper, we focus
mostly on2 and5-dimensional prefix-based filters and filter table
size of up to 1 million entries. Different solution approaches can
then be differentiated along the following criteria.

Speed of Classification. There are at least 3 measures for
the speed of classification: (1) worst case: the worst case search
time possible for a packet; (2) average case: the average case
search time possible for completely random collection of pack-
ets; and (3) statistical: the average case search time for packets
drawn from some a priori specified packet or filter usage distri-
bution. In this paper, we measure statistical search speed by first



index jump table

assigning weights to filters, then we generate random packet
traffic consistent with the weight distribution, and measure the . ~

average search speed.
Amountof Storage. ~ The amount of memory space occupied i search
by the search data structure is an important consideration. There B

is a clear tradeoff between search time and search space.

Large memory space not only means extra cost for memory,
but it may also force the use of slower memory (e.g., DRAM) in
place of faster memory (e.g., SRAM).

Ease of Update. There are 3 possible updates: (1) full '\‘\ /'
update: this refers to the initial construction of the search data filter buckets
structure from the filter table, or any re-construction thereafter Fig. 1. Search Data Structure

from scratch. (2) incremental update: this refers to the incremen-
tal addition or deletion of filters from a search data structure. (g keep a usage counter for each filter for statistics collection
reorganization/rebalancing: as filters are added and/or delgte@pose. An approach that can make use of such statistics is de-
over time, the search data structure may lose its efficiency. Csifable. We call such approachadaptive as they can adapt to
tain packet classification approaches may include a procedurénisut traffic characteristics.
reorganize the search data structure so as to regain its operaginghere is a clear search speed vs storage tradeoff in most
efficiency. packet classification approaches. A good approach should allow
Since we do not describe the incremental update proceduiiegible and tunable control between search speed and storage.
in this paper due to space limitation, we do not consider thépecifically, a user should have an explicit means to decrease the
further. storage requirement if she is willing to accept a higher average
search time, or vice versa.
Our approach addresses each of the above observations. At a
Our approach consists of 4 algorithms: initial construction, (@ery high-level, our approach organize the search space into 3
equivalently, full update), incremental insert, incremental deletayers (Figure 1):
and search. The first 3 are for construction and maintenanCehdex jump table — The filters are statically divided into dif-
of the search data structure, and the last one for performing tBent groups using some initial prefixes of selected dimensions.
actual classification. Due to space limitation, we will not discugssearch tree — The filters in each group are then organizedin a

Ill. ALGORITHMS

incremental update procedures in this paper. 2m-ary search tree. The search tree is constructed by examining
~ To motivate our approach, we first make a few key observa; hits of the filters at a time, and dividing them int& groups.
tions: The particularmn bits chosen for examination in each step can be

1. For efficient search, a search path should seek to eliminatg|ggyn from anym arbitrary unexamined bit positions from any
many filters as pOSSible from further consideration in the Smadjf the dimensionS, and the choice is made to minimize dup“-
est number of steps. This, however, requires global optimizgition and maximize “balancedness” of e children. Many
tion and can be extremely computationally intensive, due to thferent criteria can be defined for the division. Ours takes into
amountof look ahead. As an alternative, carefully designed logglcount the filter usage statistics, thus allowing it to adapt to the
optimization techniques can be used to obtain reasonable segfisttibution of input traffic.

paths. The division process terminates when the number of filters in a
2. Prolonged search time and/or storage explosion are often {iggje is less than some pre-defined maximum.

result of trying to separate “similar” filters. For example, sepg- Filter bucket— The set of filters left at the leaf nodes when the
rating the filters “0110” and “****” requires examining all 4 bits. division process terminates is callediléer bucket Essentially,
Therefore, to avoid explosion, “similar” filters may be separatedfilter bucket contains a set of filters that we do not wish to
using a different technique. further distinguish using the tree. Typically, a different algorithm

3. The suitability of a search algorithm is highly dependent Q8 applied to search the filter bucket for a match. In other words,
the total number of filters. For large number of filters (e.g., 8Kthe filter bucket demarcates the point where the search approach
1M), a decompositional technique with a multiplicative decreasgitches from one to another.

factor can potentially yield an exponentially smaller set of filterg filter bucket contains at most a pre-defined maximum number
in a linear number of steps. For small number of filters (e.qtypically small from 8 to 128) of filters.

< 128), simplistic search procedures (e.g., a (pipelined) lineargjen the search data structure, the search procedure is

search) can perform as well as more sophisticated schemes. Thigghtforward. A packet is first directed to a specific subtree
suggests that as search progresses, i.e., as the number of rergaifyexing via the jump table using the initial prefixes of certain
ing filters decreases, a change of the search approach mayfig ied dimensions. Then, it goes through a “sifting” process to
deswable. L ) i place it further and further down the tree by inspectimgf its

4. Filter usage statistics can provide useful hint on construgs each step, until it lands in a filter bucket. A bucket search
ing efficient search data structures. Most filter mplementaﬂo&smedure is then invoked to match the incoming packet against
the filters in the bucket.

2In real life, this comes from the filter usage statistics, or counters associa ) L .
with each filter. The tree phase is optimized to allow the search to quickly nar-
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Fig. 2. Concatenated View of IP Packet Filter Table

row down to a single filter bucket among a large set of filters (lLIpI retrn T

to 1 million filters in our experiments). The bucket phase is o
timized to quickly search through a small set of filter (up to 12
filters in our experiments) in a filter bucket to find a match.

Strictly speaking, our approach represents a class of al
rithms, rather than a specific algorithm. Specifically, by varyin
the criteria for selecting the: bits, m itself, and the amount of
lookahead in determining the beastbits to use, one can obtain
different instantiations of the algorithm. In this paper, we stud
the case for a specific bit selection criteria (to be described
Section IlI-B), m = 1, and a single step lookahead. The ey
tension to the general case is straightforward, as the key id
remain the same.

In the following, for ease of explanation, the procedures g ign = BuidTree ¢'1:="); (n.right).parent n;

shown are not optimized. An actual implementation tries
reuse as much computation as possible at each step (see
tion V).

Notations. Before we present the algorithms, some d¢g
nitions are in order. LeB be a 2-dimensional( rows bym
columns) array of ternary digits 0, 1, and *. That is edh, 5]
is either 0, 1, or *. We denote thieth row by B[, -], and thej-th
column byB([-, j]. In addition, we denote bz ~*-¥ the result-
ingn bym — (y —z + 1) array obtained by removing columas
throughy from B. We abbreviatd3—*-* by B~*. Lastly, each
row i of B has an associated weight denoted/iy

For each columry (1 < 7 < m), we define 3 quantities
NO0;(B), N1;(B) andN*;(B) as follows:

Nzj(B)= > Wi

1<i<n,Blijl=z

wherez could be 0, 1, or *. In wordsNz;(B) is the total
weights of all the rows whosg-th column isz. Furthermore,
we define

Dj(B) = [N0;(B) = N1;(B)|

*Table function BuildTable (FilterTableFT, int k1, ..., int hyg)

maxEntries= Hh 0 2

T =new FiIterTabJIe maxEntrie¥;
foreachFilter F; € FT {
for j from 1to FT.dimensior{
let p; be the prefix in thg-th dimension ofF’;;
d; = (h; > numberOfBits f;)) ? h; - numberOfBits f;) : 0;

(1.1) s; =first (h; — dj) bits ofp; @ d; bits of “0%;
1.2) f; =first (h; — dj) bits of p; @ d; bits of “17;
foreachz, € s1..f1,22 € s2..f2,..., Tk € Sk..fk

1

(1.3) addFl._ i toT[z1 Dz ® ... P w] filters;
}

P+Node function BuildTree (FilterTableFT)

{
8 n=newNode ();
(2.1) let(T, T") be the reduct of T,
_  n.reduce= (T, T');
Jo FT =T;
g if (FT| < BUCKETDEPTH) {

(2.2) n.filters= FT;
return n;
Y for j from 1to FT.dimension

.(2.3) preferencgj] = ComputePreferencéT[-, 51);
.4) b =leastj such that for allz: preferencgj] > preferencgr];
-(2.5) FT, =sub-sequence of all filters iR T" whoseb-th bit is “0” or “*”;
g.ﬁ) F'T; =sub-sequence of all filters iR'T" whoseb-th bit is “1” or “*";
€aS " n.pit= b;
n.filters= NULL ;
2.7) n.left= BuildTree (FTO_I’); (n.left).parent= n;

[0 return n;
S‘brgﬂlefunction BuildSearchStructure (FilterTabfeT, int A4, ..., int hg)
{
(1) T =BuildTable €T, hy, ..., h);
fi-  for x from 1t0 |T| {
2 T[x].tree = BuildTree {T[x].filters);
(T[x].tree).parent= T[x].tree;

return T';

Fig. 3. Initial Construction

A. Filter Bucket

The basic building block in our approach is a filter bucket. A
filter bucket has the following properties: (1) It contains a small
pre-defined maximum number of filters; typical bucket sizes are
8, 16, 32, 64, and 128. (2) The filters in a bucket are “similar”
in some way. Specifically, there is a set of bit positions such that
all filters in the bucket are “similar.® (3) A filter may appear
in multiple filter buckets. For example, a range filter typically
appears in multiple filter buckets.

Because of the small number of filters, many techniques can
be used to efficiently search a filter bucket. We describe a few

which gives the difference between the total weights of all tHtere:

rows whosej-th column isO and those whosgth column isl.
Let FT = Fi,...,Fy be ak-dimensional IP packet filter
table. By concatenating all the dimensions together, it can

o Linear Search — Though linear search may appear slow in
software, it is a decent choice for hardware implementation. By
grarching each of the filters in a pipelined fashion, the through-

viewed as a 2-dimensional array of ternary digits. In particulfut of @ M-filter linear search equals that oflafilter search.

eachF; is a fixed-length ternary digit string. Using the abov
definitions, we associate for each colughof this array an or-
dered paifN*; (F'T), D;(FT). This is summarized in Figure 2.

We also denote by,,,;»(FT) and D, (FT) respectively
the smallest and the largest values Bfi(F'T) among all
columns of FT. N*,,;»(FT) andN*,,,..(FT) are defined in
a similar fashion.

g’he matching of each dimension in a filter can proceed in paral-
lel by using multiple comparators. In other words, fafistage
pipeline implementation (with appropriate structuring of the fil-
ters into disjoint memory banks) can search a filter bucket of
depthM in the time of a single comparison.

3 is considered to be similar to both “0” and “1,” while “0” and “1” are not
“similar.”



« Binary Search — We can represent each dimension of a fil-

ter by an interval. A packet can be matched by first applying ai{”t function SearchTree (Packet p, *Nod®)

binary search on all the end points in each dimension, and then if (T'=NULL ) return NIL ;

P B B if (T filterg) /* leaf node */
combining the results from all.dlmensmns [8]. @1 retum BucketSearchy, T fiters:
o Hardware CAM — By using a content address memory else/* internal node */

; ; ; if (p[T.bif] = 0) /* go left */
(CAM) to store each dimension (prepended with the bucket ID),, ,, TeLToi Sonror o 1oty

of a filter in a filter bucket, each dimension can be searched in else/* go right */
parallel and then combined in a parallel step to obtain a mat:h(}1'3) return SearchTreex, T.right);
Hardware CAM is most useful for applications where filter up- int function Search (Packet p, *TabiE)
date; are an order qf magnitude Iess_frequent than packet fof- let 5 be the firsth bits in thej-th dimension ofy
warding rates, to avoid frequent reloading of CAM entries. 1) return SearchTreeg, Tz, & ... ® 1 ]);

For the rest of this paper (and in particular the experimental}
results), we assume the use of linear search as the search preee
dure for filter buckets. Fig. 4. Search Procedure

C. Bit Selection

The bit selected at each node determines the overall “shape” of
the tree. Thus, given some global measure of the “goodness” of
. . . ) ; a search tree, the bit selected at each node should ideally “grow”
1 < j < k, the number of bits; to be used in the Indexjumlothe tree toward some final optimal shape. In abstract terms, we

table construction. assign a preference value for each unprocessed bit position (step

The cqnstruction consists of wo _key_ steps: steps (1) a@.S)), and we pick the bit with the highest preference position
(2) of BuildSearchStructure() in Figure 3. In step (1) (step (2.4)).

(BuiIdTabIe() ), the set of filters is broadly divided into a For a search tree, a typica| “goodness’ measure is the
collection of smaller filter sets by examining the fitstbits of weighted average search path length which is defined in our case
dimension; (steps (1.1)—(1.2)). A filter is duplicated into mul-2S

tiple such filter sets if the prefix length of at least one of its di- >~ (depth of filter bucke - F; efiiter bucket; V3

mensiory is less thark; (step (1.3)® denotes the binary string wa(T) =

concatenation operator). Thi thouah te and optimal. i tationall
Typically, theh;’s are chosen such that it is at most the min- 'S measure, Inougn concrete and optima, Is computationatly

imal prefix length of thej-th dimension among all filters. Theexpensiveto calculate, as it involves comparing fully constructed
trees.

motivation is that the set of filters sharing the same prefixes I

multiple dimensions is hopefully smaller. Both indexing or ha:srtlr-1 'A;Str? comprolmtlge,l we tré/ to optimize Ioflll Teasdl{,rels It;] ? h?pe
ing can be used to map prefixes into search trees. atthey cumuiatively proguce a reasonably "good- giobal Solu-

In step (2) BuildTree() ), individual subtrees are con-tion. The “localness” of a measure is defined by the amount of

srced or eachsmaler lersetscresteiyTale) _ OOKIEASI uses s s paver wepresent reuls ontfor e
Each filter set is divided recursively (steps (2.7)—(2.8)) until it 9 P

can fit into a filter bucket (step (2.2)). Each tree node in a subtr Iuﬁ IS ?afs?dnonlyn?nti l?’\vlel Otf :I)Oli(r?rt]k??d. . mbi-
logically corresponds to a set of filters that is still under consig\— tioﬁ gfezevglu(v:eest r:n dle)§ qu)lle forrrfe?aegvigzgsaamcga-
eration. Each child of a tree node contains a subset of the filtefs c J P

in the parent’s node, and each leaf node contains a filter buckgt € ofprogress SpeC|f|caIIy, bre}nchlqg based on biwill not
eliminate more filters from consideration for the amount of traf-

The basic idea of the division is as follows: Given a particul?rc oroportional toN*;. Thus to maximize progress, the value
J ’

bit positiond,* a set of filters can be divided into 2 groups: th?\l*~ should be minimized. The latter provides a measu
j . tead s

"0"-group containing all the filters whosketh bit is "0” or **/ ancednessSpecifically, a smaller value d?; means more even
(step (2.5)) and the “1"-group containing all the filters whése . pecticaty, J
branching of traffic into the next level.

th bitis “1” or “*.” (step 2.6)). The rationale is that if thieth bit . o .
) S . , . In the experiments we report in this paper, we assign the pref-
of an input packet is “0,” then it can only match the filters in the . .
o . érence value of columpfor a filter tableF'T as
0"-group and thus only those need to be considered further, an

B. Initial Construction

For initial construction, we assume we are givenka
dimensional IP packet filter tablET", and for each dimension,

total number of filter buckets

vice versa for the “1"-group. Thus, the key is to choose “good&eferencéﬂ _ _Di(FT) = Diin (F'T) N*; (F'T) = N* i (F'T)

bit positions so that only a small number of division is needed to Dmaz(FT) = Dmin(FT)  N¥*mag(FT) — N*min (FT)
reach a leaf node. We describe our bit selection scheme in the

next subsection. Our construction approach is a “greedy” one in that it tries

The reductionin step (2.1) can be critical. By “collapsing” filto optimize only locally. The final tree it constructs can be
ters in intermediate nodes, the number of nodes generated cafskewed” by the distribution of the bits in the filter set, and may
significantly reduced. To reduce the complexity of reduction, & far from optimal. However, as we will present in Section V,
incomplete but less expensive form that removes only duplicatbs results for even very large number of realistic filters (up to 1
can be used. The use of incomplete reduction can increaserttidion) are good. In addition, unlike most existing proposals, it
size of the resulting tree. can adapt to the actual usage of the filters.

4We focus only on single bit branching in this paper; our bit selection criteriaxtends in a straightforward manner to the multibit case.
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/ \ There are 3 keys to optimizing search performance: (1) reduce
ot ree bucket search logie (near search) | | out the complexity of the basic search step; (2) reduce the number
]]]]] indgx mm | decompression/ | zmm = stage ]]]]] . . . . R
jump traversal logic DD e D of memory accesses; and (3) consider pipeline implementation.
@ i ﬁ A A @ We describe each below.
nces compressed “ wer | [er . Basic Search step. ' Our approach has 3 kinds of basic search
table tree structure bank1] [pank2 pank i | 922 steps, namely, indexing to select the correct subtree to search,

tree traversal based on a particular bit position, and the match-
ing of a packet to a single filter. The first two are extremely
D. Search primitive and map directly to hardware instructions even with a
software implementation. The third requires a number of com-
The search procedure is straightforward. Its code as shoydtison proportional to the number of dimensions. In hardware
in Figure 4is Self-eXplanatOI’y. FirSt, it concatenates the Ieadiﬂg)ugh' para”el Comparators can be used to perform the match
h; bits from each dimensiop of the incoming packet to con-jn 3 single step.
struct an index into the jump table to retrieve the root of a search o o
tree. Then, it traverses the search tree by branching accordiffmOry Organization. Careful memory organization is
to the value of the bit position stored in the current node, untilffilic@! to improving search performance. To reduce data access

reaches a leaf node. Finally, the filter bucket is searched to locifae: (1) Data that are needed in the immediate future should be
a possible match. stored close together (e.g., in the same memory page) so that they
Each phase of search, namely, index jump, bit branching 8 available without further fetching. For example, a child node

bucket search, are simple and are amenable to highly efficia puld be stored close to its parent, as that it is available as soon
implementatio;w in software or hardware as the branching decision is made. We have developed a novel

scheme for compressing and storing tree nodes such that the
nodes lying on a frequently visited tree path are stored closely
o _ o . together in a memory page. We describe our scheme below un-
In a typical implementation, initial construction and updatger Tree Compression in Section IV-C. (2) Multiple separate
are software procedures that run on a standard CPU. They blﬁi{émory banks should be used for pipelining (see below).
and maintain the search data structure in memory, which isin, . i )
turn accessed by the search procedurBhe search itself can " iPelining. By dividing the search steps into different
be implemented either as customized hardware (e.g., FPGAS@9es, and pipelining through the stages, throughput (or the
ASICs) or as part of the data path software, depending on 1rpllémbeer3 of classifications per second) can be significantly im-
particular design approach. proved: S .
Mutual exclusion is critical during update of the search dataAN €xample hardware pipelined implementation of our ap-

structure. This can be achieved by double buffering and soff@ach is shown in Figure 5. There are 4 stages in the pipeline:
form of atomic switch. (1) input/index jump, which retrieves a packet header from the

input FIFO, and look up the starting address of the appropriate
A. Initial Construction search tree from the index jump table; (2) tree traversal, which
) ) o ) reads in tree nodes by pages and makes branching decision; (3)
If weights are not available, the initial construction should bg,cket search. which has its own internal pipeline. Each stage
run w?th all weights set to.unity. Then every so often, the coRy this M-stage internal pipeline handIB&) CKETDEPTH /M
struction can t_)e re-run using actual usage statistics. The re<fars. For each stage to operate in parallel, each has its own
can also be triggered by some measure of “balancedness,” fi&nory bank for storing the selected section of the filters; (4)
number of updates, etc.. . o ~ output stage, which retrieves the action data corresponding to
The two time consuming steps in the initial construction agge match.
the reducthn and the pref_erence computatlon. The form.er can bEJsing a novel way to partition the search tree into disjoint sec-
performed inO(N log ) time wherel is the number of filters s itis possible to further pipeline the tree traversal stage. We
to be reduced. The computation can be reused from the pargh; the details here due to space limitation. The tree traversal

to the children. _ _ stage can have variable completion time, internal FIFOs are used
Preference computation can be sped up by bounding the nygiapsorb the variation.

ber of columns to be examined. This is straightforward for non-
weighted case, d‘slfj() is an incr_easing function of the column- Storage
number; within a single dimension.

Fortunately, even though the number of nodes expands at eachhe bucket size provides an effective control for the amount of
layer, the tree construction gets more efficient, as both the nusfPrage used. A bucket size of 1 means the search tree must dis-
ber of filters and the number of columns decrease at each laji@guish every single filters from one another, thus a large tree is

The former could decrease geometrically while the latter limeeded. A bucket size equal to the size of the filter table requires
early. the minimal storage, and is equivalent to a linear search.

Fig. 5. An Example Packet Classification Pipeline Implementation

IV. IMPLEMENTATION CONSIDERATIONS

5 After appropriate downloading of the structure into the memory of the searcf Though latency may increase slightly because of the transitions between
engine. stages.



0 = leaf node, 1 = internal node

structing a single search structure for all the filters, one can par-
tition the table up into 4 subtables: Table 1: all filters in which

left child: 1 = in same page, 0 = not
right child: 1 = in same page, 0 = not

) both the source and destination addresses are not wildcards; Ta-
1/o0j1 bit position ble 2: all filters in which the source address is a wildcard; Table
1]1]0 bit position 3: all filters in which the destination address is a wildcard; Table
[1[of0  bitposion | 4: all filters in which both the source and destination addresses

‘ pointer to page 2 ‘

are wildcards, which contains at most 1 filter. Corresponding to
these 4 subtables, 4 search trees can be built and searched to find
| a match.

‘ pointer to page 3 ‘

page 5 ‘ pointer to page 4 ‘

‘ pointer to page 5

page 1 V. EXPERIMENTAL RESULTS

Fig. 6. Mapping of Search Tree to Memory Pages Evaluating a heuristic algorithm is tricky, as there are always

. . - 0pathological cases that do not perform well. Evaluating a heuris-
Our algorithm does not provide a non-trivial worst-case stor- P
. o ey o tlé: approach for packet classification is even worse, as there does
age bound as it depends on the distribution of the “0”, “1”", an . . . )
o : ) ) . . . not yet exist real filter table with large number of filter rufes.
in the given filter table. It is possible to construct a highly S : .
o : ) Thus, in this paper, we resort to evaluating our algorithms by
skewed, but unrealistic, filter table that will require a large num- ; ) :
modeling what a large filter table would look like. Our model
ber of nodes. . . . L .
is based on practical observations on existing filter table, and
Tree Compression.  The search tree can be stored in a highigjecting on future applications for packet classification. Inter-
compressed form with a pointerless representation [9]. The cogatingly, the modeling of packet filter table can be considered a
pression follows 2 steps: (1) The tree is first segmented into subsearch topic in its own right, as there are many potential ap-
trees of a maximum size (number of nodes), XgywhereX is plications for packet classification with diverse requirements. A
chosen based on the size of a memory page. We use a Huffm@yimmonly agreed model can serve as a benchmark for the many
encoding [1] like procedure for the segmentation. Specificallyacket classification algorithms that have been proposed. Be-
we label each node with a weight: a leaf node’s weight is tlause applications of packet classification are not yet fully de-
sum of the weights of all filters in its bucket, an internal nodeigeloped, our model should best be understood as a first attempt
weight is the sum of weights of its children. Then we start fromm capturing the potential complexity of a filter table.
the root collecting nodes into a page by selecting the node within a nutshell, in our modeling approach, network elements
the largest weight from all the nodes adjacent to some nodeszaak classified into distinct types, some examples are workstation
ready in the pagé.This process continues until the page is fullosts, server hosts, subnet border routers, enterprise core routers,
Then a new page collection is started with one of the adjacemiterprise edge routers, ISP edge routers, ISP core routers, and
nodes. Figure 6 shows an example. (2) Each internal tree ng8P peering routers. For each class, the applications and char-
can be encoded using a 3-bit type together WwighiV bits (W is  acteristics (e.g., distribution of values in each dimension, filter
total number of bits in all dimensions) of node information (i.especificity, etc.) of their filter tables are identified. A summary
the bit position to be examined). For source and destinationdPtheir key characteristics is presented in Figure 7. These char-
address filters, each internal node can be stored in 9 bits. Eaegteristics in turn are “codified” in filter specification files of our
leaf node need a 1-bit type together with a bucket ID. As we willesign. Specific filter table instances can then be obtained by
see in Section V, a 24-bit bucket ID is far more than enough. running a filter generation tool that we have built on the filter
An example encoding of page 1 is shown in Figure 6. We nospecification file.
that for a page wittX' nodes, there are atthe mdét-1 external ~ Our particular modeling approach will certainly be scruti-
pointers. nized. It does, however, serve a purpose in establishing the fea-
Using our tree compression, a search tree with even up teihility and baseline performance of our proposed algorithm.
million nodes take up at most a few Mbytes of memory, which The results we report below are for the case of an ISP edge
is well within acceptable limits in a modern high-end router. router, which, in our opinion, would need to support the largest
umber of packet filters. Briefly, our ISP edge router filter spec-
{é?ation consists of 4 sections: (1) VPN filters that has fully
gzpecified source and destination addresses, and port numbers;

Filter Bucket Compression. Filters common to many filt
buckets need not be stored multiple times. For example, a fil
cache for theM most frequently occurring filters can be kep
in on-chip memory. The cached filters can be represented b
cache index in the filter buckets they appear.

ingress filters that apply to sources in a single subnet; (3)
ngress filters that apply to sources in multiple subnets; and (4)
ingress filters that apply to souces in an entire domain.

Wildcard Separation.  Wildcard filters are the main contrib- Our results are obtained by randomly generating a large num-
utors toward storage explosion. If a dimension contains a langér of filter table instances of varying sizes using our ISP edge
majority of wildcard filters, it may be better off to separate themputer filter specification. For each experiment, we collect the
out in another table and construct two different search trees tBgitistics (e.g., number of filter buckets (leaves), tree depth) of
must both be searched to find a match. the tree structure by explicitly constructing it, and the search

As a concrete example, consider a filter table with source apérformance by running a large number of randomly generated
destination IP addresses as the 2 dimensions. Instead of qeieying the weights) packets through it.

"This is in a way similar to Dijkstra’s algorithm for computing the shortest ®Most existing ones consist of at most hundreds of rules, and they mostly have
path. a bias toward firewall applications.



[[ Type [ #ofFilters | Use [ Address Characteristics ]
Workstation Host 8K QoS (by destination IP, applicat fixed source IP to any, most traffic goes to a small number |of
tion) fixed destination hosts, the rest is uniformly distributed ovef|a
large number of random destinations, about even ingress/egfess
traffic
Server Host 8K-64K QoS (by source IP) from any to fixed destination IP, highly unbalanced ingress/egrgss
traffic ratio, about equal traffic goes to a large number of destﬂ; a-
tion hosts with a fixed domain prefix (Intranet server) or randpm
(Internet server)
Subnet Border Router 8K-128K QoS (by L2 label, subnet), secu- from fixed subnet prefix to any, or from fixed subnet prefix ftp
rity (by subnet) fixed subnet prefix
Enterprise Core Router 8K-64K QoS (by physical port, L2 label| from fixed subnet prefix to fixed subnet prefix (Intranet), or fron
application, TOS) fixed subnet prefix to any (Internet)

Enterprise Edge Router | 64K-256K | QoS (by destination IP, appli{ from fixed domain prefix to fixed destination prefix (VPN), ¢
cation), security (by source IP)| from fixed domain prefix to any (Internet), segmented by subniet
tunneling (by source and desti-
nation IP)
ISP Edge Router 512K-1M QoS (by source IP, application| from large set of domain prefixes to another large set of dona
TOS), consistency (by source prefixes (VPN), or from large set of domain prefixes to any (-
IP), tunneling (by source and ternet), segmented by customers’ logical interfaces
destination IP)

n

B

ISP Core Router 8K-128K QoS (by application, TOS,| transit traffic vs traffic that originates and terminates in the ISH
MPLS label)
ISP Peering Router 8K-128K peering agreement enforcement transit traffic vs traffic that originates and terminates in the ISH

(by physical port, source IP)
consistency (by physical port
source IP)

Fig. 7. Filter Characteristics by Location

We have focused most of our experiments on 2 cases: (1lir&e depth proportionally, though it does increase the total num-
dimensions including source and destination IP addresses, frer of filter buckets. This apparent contradiction is explained by
tocol number, and source and destination port numbers; andtt® fact that certain filters (e.g., a wildcard filters) are duplicated
2 dimensions with only source and destination IP addresses. Tiite multiple subtrees. For example, a wildcard filter is dupli-
trends in both cases are similar. For brevity, we present only tteted inta2(6+6) = 4096 search subtrees with a 6x6 jump table.
results for the 5 dimension case.

All results are obtained from pure application-level softwar@. Search Performance
implementations of the algorithms in C on a standard deskto ; )
Pentium 1l 400MHz with 512K L2 cache. The impIementatioepFrom Figure 8(b), we see that the search performance de

) t ontimized 1 byte N h filt bﬁieases sublinearly with increase in filter table size. The perfor-
is not optimized (e.g., we use 1 byte to represent each filter ance range is from about 261,000 classifications for filter table

especially in regard to the use of linear search for filter bUCket§12e of 8K to 113,000 classifications for filter table size of 1M.

The results are summarized in Figures 8-10. Figure 8 Shoﬁ’bﬁce these results are from an application-layer program, we

the general trend as filter table size increases. Figure 9 showsthe many-fold increase in performance in an embedded soft-
el_‘fect of filter bucket size on the storage and se.arch performarw re implementation running on a dedicated CPU, and even bet-
Figure 10 shows the benefits of the first level index jump tab r performance with a customized hardware implementtion.

The notation AxB refers to the use of A and B bits respectively e note that the specific search time we obtained is highly

from the first 2 dimensions (source and destination IP addressgs : : . g
to form the jump table. We elaborate on the results below. Sewed by the time spent in the linear search phase. Specifically,

We do caution that our results here represent average Casethe tree traversal time is directly determined by the tree size, it
P 9 &lreases proportionally as the tree reduces in size.

formance using our filter table models. It is possible for one t0 ) _—
s : C We also observe that the weighted case performs significantly
construct artificial examples whose results deviate &gmﬁcan&I
t

, I}étter than the non-weighted case. In fact, the performance of
from our average case. Though, as our results show, the filier ~ . . .
. . . . e weighted case ranges from 2 to 4 times better than their non-
bucket size and the index jump table can serve as effective tun- X . : . ,
e weighted counterpart, and is relatively insensitive to the filter
able controls to temper potential “bad” filter tables. ) : : . :
table size. This provides evidence to the importance of collect-
A. Tree Statistics ing filter usage statistics and the potential benefits for a packet
i hat th b ¢ filter buck classification algorithm to exploit them.
Fron|1' Flgulre S(ﬁ),hwilsee tblat t. € nuwl erho dl terh UCKetSrom Figure 9(b), as expected with a linear search of filter
g[)owsl |ne§rr3]/ W't ”t € r']tir tfa_l € S'éle » W |eEt N fepi 9?Irlq’vﬁuckets,we see that as the filter bucket sizes increases, the search
aboutlogarithmically with the filter table size. Evenfor 1 million 5.0 yocreases. The decrease is, fortunately, sub-linear. A double

filters, less than 200’00.0 filter buckets are used. of filter bucket size does not come close to halving the search
As expected, the weighted case has a larger tree (numbe,: é

filter buckets and depth) than the non-weighted case in general

. : S . rom Figure 10(b), we see the benefits of using a jump table.
Ig;?ﬁ;?g;asgees increase is not significant though, and is beI‘PWe search rate is higher with the use of jump table. In particular,

F Fi 9 that the filter bucket si .dthe use of an 6x6 jump table can provide a speedup of more than

rom Figure (a), we see tha € TIlter bucket size providgs, oyer the case where no jump table is used.

an effective control for storage requirements. A doubling of the

filter bUCk_et size about halves the number Of filter buckets. 9A hardware pipeline implementation using parallel comparators can remove
From Figure 10(a), we see that the use of jump table decreasesgey bottlenecks: bit examination and the linear filter bucket search.
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VI. RELATED WORK geometric shapes, and map the packet classification problem to

Existing approaches to packet classification can be groupsé)dneform of geometric point-location problem. The latter refers
any other approach based on regular data structures such as

into 2 broad categories: geometry-based and non-geome{Ré .
based. The former refers to algorithms that interpret filters tges and graphs. [8] and [2] belongs to the former, while [7],



[4], [6], [5] and ours belong to the latter. as an effective tunable control to reduce memory usage at the

[8] presents 2 algorithms. The first algorithm admits a hareéxpense of increased search time. We do not claim optimality
ware implementation but does not readily scale to a large number universal applicability of our approach, but the key ideas in
of filters. The second algorithm applies only to 2 dimensioneur approach represent novel tools for tackling the problem of
and it does not appear to easily generalize to higher dimensigpacket classification. We would have liked to try our algorithms

[2] is based on space decomposition, it has worst-case sedratieal filter tables, this have proven to be very difficult. For pri-
time similar to the best existing schemes, but improves on tit&cy reasons, real filter tables are not easy to obtain. For the few
worst-case update time. ones that we do have, they are too small (hundreds of rules) to

[7] also presents 2 algorithms, namelfgrid of Tries and create any stress on our algorithm.

Crossproducting The construction of the former appears to be Our approach is also the only one we know of that can adapt
complicated, and updates can not be easily performed. A ctsthe input traffic distribution (i.e., relative filter usage). As
cade update o$witching pointersmay be triggered by a singlethe results demonstrate, taking into account the relative usage of
update. Crossproducting, as the authors admit, can suffer freaeh filter can dramatically improve search performance, by as
memory blowup. They introduce an on-demand scheme, but @idgich as 400% in some of our results.

not provide extensive results. It would be interesting to compareUnlike most existing studies, our emphasis is on the average
the average performance of crossproducting with our approagt@ase performance and practical results. To this end, we have

[4] uses an approach based atiected acyclic grapDAG). identified the different characteristics of filter tables for differ-
The approach is simple, but it requir@$N?) storage. Though €nt classes of router devices, and proposed and implemented a
both our scheme and the DAG scheme use bit positions to cimework to model filter tables.  We feel that this is an im-
struct a search tree, the details are significantly different. TRertant research area in its own right. Our effort should be con-
two key components of our algorithm, heuristic bit selection argidered a first step in this (right) direction, it is necessarily con-
the concept of a filter bucket, are unique to ours. Since no féfoversial as different people tend to have different projections
mal description was given for the DAG algorithfit is not clear 0n how large-scale packet classification will be applied. Better
how the algorithm scales to large number of filters. Again, tHBodels can be defined as more real-life applications of packet
average case comparison with ours should be interesting. ~ classification are proposed.

Both [6] and [5] represent new interesting approaches toFor ongoing work, we are exploring variations of our basic
packet classification. Recognizing the inherent difficulty of ti@Pproach. Specifically, we are looking at different bit selection
problem, both try to exploit structure within a filter table to imcriteria and multibit tree construction.
prove search performance. Specifically, [6] makes use of the REFERENCES
observation that there is typically only a small number of prefjx] T.C. Bell, J.G. Cleary, and I.H. WittenText CompressionPrentice Hall,
lengths in a ﬁ_lter table, while [S] exploits the observation th I%/I??Boljddhikot, S. Suri, and M. Waldvogel. Space decomposition techniques
“overlaps” of filter rules occur much rarer than suggested by the for fast layer-4 switching. IProceedings of IFIP Workshop on Protocols
worst case. Similar to ours, [5] is heuristic-based, while [6] pros, for é*égé‘e?geﬁﬁvﬁﬁ“gfé\lﬁg"wv&%f;ﬁg?gﬁgsb{*ggﬁa}azr;é% r%]%%?é—
poses the use of a heuristic to improve its searches. tional Geometry: Algorithms and ApplicatianSpringer Verlag, 1997.

Overall, most existing studies focus more on the worst-calh b, ecesper 2 it 0, Paulkar, nd B, Pltter, Mouter pugins: A sor
bounds. Our emphasis is on practical approach with good av- comm pages 191-202, Vancouver, Canada, August 31-September 4 1998.
erage case performance and tunable controls to deal with “b&d” ';rci‘;‘;ﬁnzr;dof” Ach\ﬁgﬁgz\:)nrwgggge{4c7lisl%8,ceg§rgb?ir(]igrg.u Il\t/llgsesgceéduss'ettlg,
cases. August 30—-September 3 1999.

[6] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple
space search. IRroceedings of ACM Sigcomipages 135-146, Cambridge,
VII. CONCLUSION Massachusetts, August 30—September 3 1999.

. _[7] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable
We proposed and studied a new approach to packet classificadayer four switching. ~ InProceedings of ACM Sigcommages 191-202,

tion. Our approach Combines two search .proce?dure_s: a h_euriﬁi Ve.lg?i?ig\é?sna?lgnﬁe/él‘_Qlijsghurﬁgﬁ.ll_ﬂ?ger‘])—tse;gggrpt#3ﬁ%ésed packet forwarding
tree search for separating a large set of filters into fixed size fil- using efficient multi-dimensional range matching. Aroceedings of ACM
ter buckets, and another search procedure for searching througlfigeom™m pages 203-214, Vancouver, Canada, August 31-September 4
fixed size filter buckets (we use linear search in our study). Tlg$ H.-Y. Tzeng. Longest prefix search using compressed treeRrolreedings
modular construction is motivated by the practical observation °f 'EEE GlobecomSydney, Australia, November 8-12 1998.
that a single search approach may not be optimal for filter table
of all sizes.
Through experiments with a large number of filter tables,
we demonstrated that our approach yielded good search speed
(around 200K classifications per second for 128K filter table
using a pure software implementation) and reasonable storage.
Though we caution that the experimental results do not consti-
tute a complete validation of our approach, we do believe they
demonstrated its general feasibility. As in all heuristic approach
though, cases can be constructed where our approach do not
work well. In those case, the filter bucket depth can be used

101t was introduced in the paper using an example.



