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Abstract 

Internet address lookup is a challenging problem because of increas- 
ing routing table sizes, increased traffic, higher speed links, and the 
migration to 128 bit IPv6 addresses. IP routing lookup requires 
computing the best matching prefix, for which standard solutions 
like hashing were believed to be inapplicable. The best existing so- 
lution we know of, BSD radix tries, scales badly as IP moves to 
128 bit addresses, Our paper describes a new algorithm for best 
matching prefx using binary search on hash tables organized by 
prefix lengths. Our scheme scales very well as address and routing 
table sizes increase: independent of the table size, it requires a worst 
case time of log~(address bits) hash lookups. Thus only 5 hash 
lookups are needed for IPv4 and 7 for IPv6. We also introduce Mu- 
tating Binary Search and other optimizations that, for a typical IPv4 
backbone router with over 33,000 entries, considerably reduce the 
average number of hashes to less than 2, of which one hash can be 
simplilied to an indexed array access. We expect similar average 
case behavior for IPv6. 

1 Introduction 

The Internet is becoming ubiquitous: everyone wants to join in. 
Since the advent of the World Wide Web, the number of users, hosts, 
domains, and networks connected to the Internet seems to be ex- 
ploding, Not surprisingly, network traffic is doubling every few 
months, The proliferation of multimedia networking applications 
and devices is expected to give traffic another major boost. 

The increasing traffic demand requires three key factors to keep 
pace if the Internet is to continue to provide good service: link 
speeds, router data throughput, and packet forwarding rates.’ Read- 
ily available solutions exist for the first two factors: for example, 
fiber-optic cables can provide faster links,%nd switching technol- 
ogy can be used to move packets from the input interface of a router 
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to the corresponding output interface at gigabit speeds. Our pa- 
per deals with the third factor, packet forwarding, for which current 
techniques perform poorly as network speeds increase. 

The major step in packet forwarding is to 1ooLwp the destination 
address (of an incoming packet) in the routing database. While there 
are other chores, such as updating TIL fields, these are computa- 
tionally inexpensive compared to the major task of address loolrup. 
Data link Bridges have been doing address loolrups at 100 Mbps 
[Dig951 for many years. However, bridges only do exact match- 
ing on the destination (MAC) address, while Internet routers have to 
search their database for the longestprefi matching a destination IP 
address. Thus standard techniques for exact matching, such as per- 
fect hashing, binary search, and standard Content Adressable Mem- 
ories (CAMS) cannot directly be used for Internet address loohups. 

Prefix matching was introduced in the early 199Os, when it was 
foreseen that the number of endpoints and the amount of routing in- 
formation would grow enormously. The address classes A, B. and 
C (allowing sites to have 24,16, and 8 bits respectively for address- 
ing) proved too inflexible and wasteful of the address space. To 
make better use of this scarce resource, especially the class B ad- 
dresses, bundles of class C networks were given out instead of class 
B addresses. This resulted in massive growth of routing table en- 
tries. So, in turn, Classless Inter-Domain Routing (CIDR) p93] 
was deployed, to allow for arbitrary aggregation of networks to re- 
duce routing table entries. 

To reduce routing table space, aggregation is done aggressively. 
Suppose all the subnets in a big network have identical routing in- 
formation except for a single, small subnet that has different infor- 
mation. Instead of having multiple routing entries for each subnet 
in the large network, just two entries are needed: one for the big 
network, and a more specific one for the small subnet (which has 
preference, if both should match). This results in better usage of 
the available IP address space and decreases the amount of routing 
table entries. On the other hand, the processing power needed for 
forwarding lookup is increased. 

Thus today an IP router’s database consists of a number of ad- 
dressprefires. When anIP router receives a packet, it must compute 
which of the prefixes in its database has the longest match when 
compared to the destination address in the packet. The packet is 
then forwarded to the output link associated with that prefix. For 
example, a forwarding database may have the prefixes Pl = 0101, 
P2 = 0101101 and P3 = 010110101011. An address whose first 
12 bits are 010101101011 has longest matching prefix Pl. On the 
other hand, an address whose first 12 bits are 010110101101 has 
longest matching prefix P3. 

The use of best matching prefix in forwarding has allowed IP 
routers to accomodate various levels of address hierarchies, and has 
allowed different parts of the network to have different views of the 
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address hierarchy. Given that best matching prefix forwarding is 
necessary for hierarchies, and hashing is a natural solution for ex- 
act matching, a natural question is: “Why can’t we modify hash- 
ing to do best matching prefix.” However, for several years now, 
it was considered not to be “apparent how to accommodate hierar- 
chies while using hashing, other than rehashing for each level of hi- 
erarchy possible” [Sk193]. 

Our paper describes a novel algorithmic solution to longest pre- 
lix match, using binary search over hash tables organized by the 
length of the prefix. Our solution requires a worst case complexity3 
of O(log, W), with W being the length of theaddress in bits. Thus, 
for the current Internet protocol suite (IPv4) with 32 bit addresses, 
we need at most 5 hash lookups. For the upcoming IP version 6 
(IPvG) with 128 bit addresses, we can do lookup in at most 7 steps, 
as opposed to 128 in current algorithms (see Section 2), giving an 
order ofmagnitude perfwnance improvement. Using perfect hash- 
ing, we can lookup 128 bit IP addresses in at most 7 memory ac- 
cesses, This is significant because on current RISC processors, hash 
functions can be found whose computation is cheaper than g mem- 
ory access, 

In addition, we use several optimizations to significantly reduce 
the average number of hashes needed. For example, our analysis of 
an IPv4 forwarding table from an Internet backbone router at the 
Mae-East network access point (NAP) [Mer96] show an average 
case performance of less than two hashes, where the first hash can 
be replaced by a simple index table lookup. 

The rest of the paper is organized as follows. Section2 
describes drawbacks with existing approaches to IP lookups. 
Section 3 describes our basic scheme in a series of refinements that 
culminate in the basic binary search scheme. Section 4 describes a 
series of important optimizations to the basic scheme that improve 
average performance. Section 5 describes our implementation, in- 
cluding algorithms to build the data structure and perform insertions 
and deletions, Section 6 describes performance measurements us- 
ing our scheme for IPv4 addresses, and performance projections for 
IPvG addresses. We conclude in Section 7 by assessing the theoret- 
ical and practical contributions of this paper. 

2 Existing Approaches to IP Lookup 

We survey existing approaches to IP lookups and their problems. 
We discuss approaches based on modifying exact matching sche- 
mes, trie based schemes, hardware solutions based on parallelism, 
proposals for protocol changes to simplify IP lookup, and caching 
solutions. For the rest of this paper, we use BMP as a shorthand for 
Best Matching Prefix. 

Modlflcatlons of Exact Matching Schemes Classical fast 
lookup techniques such hashing and binary search do not directly 
apply to the best matching prefix (BMP) problem since they only do 
exact matches, A modified binary search technique, originally due 
to Butler Lampson, is described in [Per92]. However, this method 
requires log, 2N steps, with N being the number of routing table 
entr!es. With current routing table sizes, the worst case would be 17 
data lookups, each requiring at least one costly memory access. As 
with any binary search scheme, the average number of accesses is 
!og,(2N) - 1. A second classical solution would be to reapply any 
exact match scheme for each possible prefix length [Sk193]. This 
is even more expensive, requiring W iterations of the exact match 
scheme used (e.g. W = 128 for IPv6). 

3’Il~is nwmcs assuming O(1) for hashing, which can be achieved using perfect 
hushing, ahhough limited collisions do not effect performance significantly. 

lkie Based Schemes The most commonly available IP lookup 
implementation is found in the BSD kernel, and is a radix trle im- 
plementation [Sk!93]. If W is the length of an address, the worst- 
case time in the basic implementation can be shown to be O(IV2). 
Current implementations have made a number of improvements on 
Sklower’s original implementation. The worst case was improved 
to O(W) by requiring that the prefix be contiguous (previously non- 
contiguous masks were allowed, a feature which was never used). 
Despite this, the implementation requires up to 32 or 128 costly 
memory accesses (for IPv4 or IPv6, respectively). Tries also can 
have large storage requirements. 

Hardware Solutions Hardware solutions can potentially use par- 
allelism to gain lookup speed. For exact matches, this is done us- 
ing Content Addressable Memories (CAMS) in which every mem- 
ory location, in parallel, compares the input key value to the content 
of that memory location. 

Some CAMS allow a mask of bits that must be matched. Al- 
though there are expensive so-called ternary CAMS available a!- 
lowing a mask to be specified per word, the mask must typically 
be specified in advance. It has been shown that these CAMS can 
be used to do BMP lookups @4F93, MTW9.51, but the solutions are 
usually expensive. 

Large CAMS are usually slower and much more expensive than 
ordinary memory. Typical CAMS are small, both in the number of 
bits per entry and the number of entries. Thus the CAM memory 
for large address/mask pairs (256 bits needed for IPv6) and a huge 
amount of prefixes appears (currently) to be very expensive. An- 
other possibility is to use a number of CAMS doing parallel look- 
ups for each prefix length. Again, this seems expensive. Proba- 
bly the most fundamental problem with CAMS is that CAM designs 
have not historically kept pace with improvements in RAM mem- 
ory. Thus a CAM based solution (or indeed any hardware solution) 
runs the risk of being made obselete, in a few years, by software 
technology running on faster processors and memory, 

Protocol Based Solutions One way to get around the problems of 
IP lookup is to have extra information sent along with the packet to 
simplify or even totally get rid of IP !ooE~ps at routers. nvo ma- 
jor proposals along these lines are IP Switching [NMH97] and Tag 
Switching [CV95, CV96, R+96]. Both schemes require large, con- 
tiguous parts of the network to adopt their protocol changes before 
they will show a major improvement. The speedup is achieved by 
adding information on the destination to every IP packet. 

In IP Switching, this is done by associating a flow of packets 
with an ATM Virtual Circuit; in Tag Switching, this is done by 
adding a “tag” to each packet, where a “tag” is a small integer that 
allows direct lookup in the router’s forwarding table. Tag switching 
is based on a concept originally described by Chandranmenon and 
Varghese ([CV95. CV96]) using the name “threaded indices”. The 
current tag switching proposa![R+96] goes further than threaded in- 
dices by adding a stack of indices to deal with hierarchies. 

Neither scheme can completely avoid ordinary IP lookups. Both 
schemes require the ingress router (to the portions of the network 
implementing their protoocol) to perform a full routing decision. 
In their basic form, both systems potentially require the boundary 
routers between autonomous systems (e.g., between a company and 
its ISP or between ISPs) to perform the full forwarding decision 
again, because of trust issues, scarce resources, or different views 
of the network. Scarce resources can be ATM VCs or tags, of which 
only a small amount exists. Thus towards the backbone, they need 
to be aggregated; away from the backbone, they need to be sepa- 
rated again. 
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Different views of the network can arise because systems of- 
ten know more details about their own and adjacent networks, than 
about networks further away. Although Tag Switching addresses 
that problem by allowing hierarchical stacking of tags, this affects 
routing scalability. Tag Switching assigns and distributes tags based 
on routing information: thus every originating network now has to 
know tags in the destination networks. Thus while both tag switch- 
ing and IP switching can provide good performance within a level of 
hierarchy, neither solution currently does we!! at hierarchy bound- 
aries without scaling problems. 

Caching For years, designers of fast routers have resorted to 
caching to claim high speed IP lookups. This is problematic forsev- 
era! reasons. First, information is typically cached on the entire ad- 
dress, potentially diluting the cache with hundreds of addresses that 
map to the same prefix. Second, a typical backbone router of the fu- 
ture may have hundreds of thousands of prefixes and be expected to 
forward packets at Gigabit rates. Although studies have shown that 
caching in the backbone can result in hit ratios up to and exceed- 
ing 90 percent [Par96, NMH971, the simulations of cache behavior 
were done on large, fully associative caches which commonly are 
implemented using CAMS. CAMS, as already mentioned, are usu- 
ally expensive, It is not clear how set associative caches will per- 
form and whether caching will be able keep up with the growth of 
the Internet. So caching does help, but does not avoid the need for 
fast BMP lookups, especially in view of current network speedups. 

Summary In summary, a!! existing schemes have problems of ei- 
ther performance, scalability, generality, or cost. Lookup schemes 
based on tries and binary search are (currently) too slow and do 
not scale we!!; CAM solutions are expensive and carry the risk 
of being quickly outdated; tag and IP switching solutions require 
widespread agreement on protocol changes, and still require BMP 
lookups in portions of the network; finally, locality patterns at back- 
bone routers make it infeasible to depend entirely on caching. 

We now describe a scheme that has good performance, excel- 
lent scalability, and does not require protocol changes. Our scheme 
also allows a cheap, fast software implementation, and also a more 
expensive (but faster) hardware implementation. 

3 Basic Binary Search Scheme 

Our basic algorithm is based on three significant ideas, of which 
only the first has been reported before. First, we use hashing to 
check whether an address D matches any prefix of a particular 
length; second, we use binary search to reduce number of searches 
from linear to logarithmic; third, we use precomputation to pre- 
vent backtracking in case of failures in the binary search of a range. 
Rather than present the final solution directly, we will gradually re- 
!!ne these ideas in Section 3.1, Section 3.2, and Section 3.5 to arrive 
at a working basic scheme. Wedescribe further optimizations to the 
basic scheme in the next section. 

3.1 Linear Search of Hash Tables 

Our point of departure is a simple scheme that does linear search 
of hash tables organized by prefix lengths. We will improve this 
scheme shortly to do binary search on the hash tables. 

The idea is to look for a!! prefixes of a certain length L using 
hashlng and use multiple hashes to find the best matching prefix, 
starting with the largest value of L and working backwards. Thus 
we start by dividing the database of prefixes according to lengths. 
Assuming a particularly tiny routing table with four prefixes of 

Hash tables 

Figure 1: Hash Tables for each possible prefix length 

length 5,7,7, and 12, respectively, each of them would be stored 
in the hash table for its length (Figure 1). So each set of prefixes bf 
distinct length is organized as a hash table. If we have a sorted ar- 
ray L corresponding to the distinct lengths, we only have 3 entries 
in the array, with a pointer to the longest length hash table in the last 
entry of the array. 

To search for address D. we simply start with the longest length 
hash table 2 (i.e. 12 in the example), and extract the first I bits of D 
and do a search in the hash table for length I entries. If we succeed, 
we have found a BMF; if not, we look at the first length smaller 
than 1, say I’ (this is easy to find if we have the array L by simply 
indexing one position less than the position of I), and continuing the 
search. 

More concretely, let L be an array of records. L[i].lengagth is 
the length of prefixes found at position a’, and L[i].hnsh is a pointer 
to a hash table containing all prefixes of length L[i].length. The 
resulting code is shown in Figure 2. 

Function LinearSearch (* search for address D *) 
Initialize BMP to the empty string; 
i := Highest index in array L, 
While (BMP = nil) and (i 10) do 

Extract the first L[i].Zength bits of D into D’; 
BMP := Search(D’, L[i].hash); (* search hash for D’ *) 
j:=j-1; 

Endwhile 

Figure 2: Linear Search 

3.2 Binary Search 6f Hash Tables 

The previous scheme essentially does (in the worst case) linear 
search among a!! distinct string lengths. Linear search requires 
O(W) expected time (more precisely, O(IVd~ai,t), where Ivdist I 
W is the number of distinct lengths in the database.) 

A better search strategy is to use binary search on the array L 
to cut down the number of hashes to O(log, Iv&&). However, for 
binary search to work, we need markers in tables corresponding 
to shorter lengths to point to prefixes of greater lengths. Markers 
are needed to direct binary search to look for matching prefixes of 
greater length. Here is an example to illustrate the need for markers. 

Suppose we have the prefixes Pl = 0, P2 = 00, P3 = 111 
(Figure 3 (b)). Assume that thezeroth entry of L points to Pl’s hash 
table, the first to P2’s hash table, and the second points to P3’s hash 
table. Suppose we search for 111. Binary search (a) would start at 
the middle hash table and search for 11 in the hash table containing 
P2 (the triangles denote a pointer to the hash table to search). It 
would fail and have no indication that it should search among the 

4RecalIlhatBh~PstandsforBesthfatchin~PrefLT.~ Weusetbisabbreviationthrough 
the rest of the paper 
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BillaIy Hash Hash Tables 
Search Tables 

. - 
1 withMarker Total entries 1 33199 1 100% 

Entries needing no markers I 4743 I 14% 

Figure 3: Binary Search on Hash Tables 

longer prefix tables for a better matching prefix. To fix this problem, 
we simply add a marker entry 11 to the middle table. Now when 
binary search is done for 111, we will lookup 11 in the middle hash 
table and find the marker node. This can be used to direct binary 
search to the lower half of the table. 

Trie Structure 

\RI \ ma\ 

Figure 4: Binary Search on Trie Levels 

Each hash table (markers plus real prefixes) can be thought of as 
a horizontal layer of a trle corresponding to some length L (except 
that the hash table contains the complete path to that layer of each 
entry in that layer), Our basic schemes is essentially doing binary 
search on the levels of a trie (Figure 4)PWe start by doing a hash on 
prelixes corresponding to the median length of the trie. If we match, 
we search the upper half of the trie; if we fail we search the lower 
half of the trie. 

Figure 4 and other figures describing search order contain sev- 
eral elements: (1) Horizontal stripes grouping all the elements of a 
specified prefix length, (2) a trie containing the prefixes, shown on 
the right of the figure and rooted on the top of the figure, and (3) 
a binary tree, shown on the left of the figure and rooted at the left, 
which depicts all possible paths that binary search can follow. We 
will use upper /mra[fto mean the half of the trie with prefix lengths 
strictly less than the median length, We also use lower halffor the 
portion of the trle with prefix lengths strictly greater than the median 
length, It is important to understand the conventions in Figure 4 to 
understand the later figures and text. 

3.3 Reducing Marker Storage 

The following definitions are useful before proceeding. For a pre- 
Ax P in the table, define Lewel(P) to be the integer i for which 
L[i].Zength = length(P) (i.e., the index of the entry in L that 

Table 1: Marker Overhead for Backbone Forwarding Table 

points to P’s hash table). Also, “up” to refers to shorter, “down” 
to longer prefixes. 

How many markers do we need? A naive view would indi- 
cate placing a marker for prefix P at all levels in L higher than 
the level of P. However, it suffices to place markers at all lev- 
els in L that could be visited by binary search when looking for 
M entry whose BMP is P. This reduces the number of mark- 
ers to at most log, W per real prefix, which keeps the stomge ex- 
pansion modest. More precisely, if the Level(P) is written down 
in binary as al, us,. . . , a,,, then we need a marker at each level 
~~02,. . . , uk, 0, 0, . . . , 0 such that Uk = 1. (We assume that L is 
padded so that its size is a power of 2). In fact, the number of marker 
nodes is limited by the number of 1 bits in Level(P). Clearly this 
results in a logarithmic number of markers. 

In the typical case, many prefixes will share markers (Table l), 
reducing the marker storage further. In our sample routing database 
[Mer96], the storage required will increase by 25%. However, it is 
easy to give a worst case example where the storage needs require 
O(log, W) markers per prefix. (Consider N prefixes whose first 
log, N bits are all distinct and whose remaining bits are all l’s). 

3.4 Problems with Backtracking 

Function NaiveBinarySearch(D) (* search for address D *) 
Initialize search range R to cover the whole array L; 
While R is not a single entry do 

Let i correspond to the middle level in range R; 
Extract the first L[i].Zength bits of D into D’; 
Search(D’, L[i].hush); (* search hash table for D’ *) 
If found then set R := lower half of R (*longer prefixes*) 

Else set R := upper half of R; (*shorter prefixes*) 
Endif 

Endwhlle 

Figure 5: Naive Binary Search 

Binary search of hash tables can be expressed as shown in Figure 5. 
Unfortunately, this algorithm is not correct as it stands and does not 
take logarithmic time if implemented naively. The problem is that 
while markers are good things (they lead to potentially better pre- 
fixes lower in the table), they can also cause the search to follow 
false leads which may fail. In case of failure, we would have to 
modify the binary search (for correctness) to backtrack and search 
the upper half of R again. Such a naive modification can lead US 
back to linear time search. An example will clarify this. 

First consider the prefixes Pl = 1, P2 = 00, P3 = 111. 
As discussed above, we add a marker to the middle table so that the 
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middle hash table contains 00 (a real prefix) and 11 (a marker point- 
ing down to P3). Now consider a search for 110. We start at the 
middle hash table and get a hit; thus we search the third hash table 
for 110 and fail, But the correct best matching prefix is at the first 
level hash table - i.e., Pl. The marker indicating that there will 
be longer prefixes, indispensible to find P3, was misleading in this 
case; so apparently, we have to go back and search the upper half of 
the range. 

The fact mat each entry contributes at most log, H’ markers 
may cause some readers to suspect that the worst case with back- 
tracking is limited to O(!og2 W). This is incorrect. The worst case 
is O(W), The worst-case example for say W bits is as follows: we 
have a prefix Pi of length i, for 1 < i < W that contains all OS. In 
addition we have the prefix Q whose first W - 1 bits are al! zeroes, 
but whose last bit is a 1. If we search for the W bit address contain- 
ing all zeroes then we can show that binary search with backtracking 
will take O(W) time and visit every level in the table. (The problem 
is that every level contains a false marker that indicates the presence 
of something better below.) 

3.5 Precomputation to Avoid Backtracking 

We use precomputation to avoid backtracking when we shrink the 
current range R to the lower half of R (which happens when we find 
a marker at the mid point of R). Suppose every marker node M is 
a record that contains a variable M.bmp, which is the value of the 
best matching prefix of the marker M. M.bmp can be precomputed 
when the marker M is inserted into its hash table. Now, when we 
!!nd M at the mid point of R, we indeed search the lower half, but 
vie also rejnetnber the value of M,bmp as the current best matching 
prefix, Now if the lower half of R fails to produce anything interest- 
ing, we need not backtrack, because the results of the backtracking 
are already summarized in the value of M.bmp. The new code is 
shown in Figure 6. 

Punctlon BinarySearch (* search for address D *) 
Initialize search range R to cover the whole array L; 
Initialize BMP found so far to null string; 
While R is not empty do 

Let i correspond to the middle level in range R, 
Extract the first L[i].Zength bits of D into D’; 
M := Search(D’, L[i].hash); (* search hash for D’ *) 
If M is nil Then set R := upper half of R; (* not found *) 
Elseif M is a prefix and not a marker 
‘Iltcn BMP := M.bmp; break; (* exit loop *) 
Else (* M is a pure marker, or marker and prefix *) 

BMP := Mhmp; (* update best matching prefix so far *) 
R := lower half of R, 

Endlf 
Endwhile 

Figure 6: Binary Search 

The standard invariant for binary search when searching for key 
Ir’ is: “K is in range R”. We then shrink R while preserving this in- 
variant, The invariant for this algorithm, when searching for key K 
is: “EITHER (The Best Matching Prefix of K is BMP) OR (There 
is a longer matching prefix in R)“. 

It is easy to see that initialization preserves this invariant, and 
each of the search cases preserves this invariant (this can be estab- 
lished using an inductive proof.) Finally, the invariant implies the 
correct result when the range shrinks to 1. Thus the algorithm works 

correctly; also since it has no backtracking, it takes O(!og, W&at) 
time. 

4 Refinements to Basic Scheme 

The basic scheme described in Section 3 takes just 7 hash computa- 
tions, in the worst case, for 128 bit IPv6 addresses. However, each 
hash computation takes at least one access to memory; at gigabit 
speeds each memory access is significant. Thus, in this section, we 
explore a series of optimizations that exploit the deeper structure in- 
herent in the problem to reduce the average number of hash compu- 
tations. 

4.1 Asymmetric Binary Search 
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Figure 7: Histogram of the Prefix Length Distribution 

We first describe a series ofsimple-minded optimizatlons. Our main 
optimization, mutating binary search, is described in the next sec- 
tion. A reader can safely skip to Section 4.2 on a first reading. 

The current algorithm is a fast, yet very general, BMP search 
engine. Usually, the performance of general algorithms can be im- 
proved by tailoring them to the particular datasets they will be ap- 
plied to. As can be seen in Figure 7, the distribution of a typical 
backbone router’s forwarding table as obtained from !&Ier96], the 
entries are not equally distributed over the different prefix lengths. 
All the concepts we described below apply to any set of addresses; 
however, we will quantify the potential improvements using the ex- 
isting table. 

As the first improvement. which has already been mentioned 
and used in the basic scheme, the search can be limited to those pre- 
fix lengths which do contain at least one entry, reducing the worst 
case number of hashes from log, W (5 with W = 32) to log2 Iv,ist 
(4.5 with Wdist = 23, the number of non-empty buckets in the his- 
togram), as shown in Figure 8. (While this is an improvement for 
the worst case, in this case, it harms the average performance, as we 
will see later.) 
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Standard Binary Search Distinct Binary Search 

Figure 8: Search Trees for Standard and Distinct Binary Search 

A more promising approach is to change the tree structure to 
search in the most promising prefix length layers first, introducing 
asymmetry into the binary tree, While this will improve average 
case performance, introducing asymmetries will not improve the 
maximum tree height; on the contrary, some searches will make 
a few more steps, which has a negative impact on the worst case. 
Given that routers can temporarily buffer packets, worst case time 
is not as important as the average time. The search for a BMP can 
only be terminated early if we have a “stop search here” (“termi- 
nal”) condition stored in the node. This condition is signalled by a 
node being a prefix but no marker (Figure 6). 

But how can we select these”most promising” layers mentioned 
earlier? Optimally, they would correspond to layers whose ad- 
dresses are requested most - i.e. where most of the network traffic 
is destined, As long as only a few entries with even fewer distinct 
prefix lengths dominate the traffic characteristics, the solution can 
be found easily. However, with a large number of frequently ac- 
cessed entries, building an optimal tree is a complex optimization 
problem, especially, because restructuring the tree also removes the 
terminal condition on many markers and adds it to others. 

To build a useful asymmetrical tree, we can recursively split 
both the upper and lower part of the binary search tree’s current 
node’s search space, at a point selected by a heuristic weighting 
function, Two different weighting functions with different goals 
(one strictly picking the level covering most addresses, the other 
maximizing the entries while keeping the worst case bound) are 
shown in Figure 9, with coverage and averagefworst case analysis 
for both weighting functions in Table 2. As can be seen, balancing 
gives faster increases after the second step, resulting in generally 
better performance than “narrow-minded” algorithms. 

Now we can see why our first attempt, while improving the 
worst case, makes the average case worse: the prefixes with length 
8,16, and 24 are very common and also cover a big part of the ad- 
dress space, so they should be reached in early stages of the binary 
tree. In the original binary search, they were reached in step 2, 1, 
and 2, respectively. In the new, “optimized” approach, they were 
moved to step 4,3, and 5, respectively (Figure 8, to the bottom of 
the tree, Besides slowing down the search, this increased the num- 
ber of pure markers required to exceed the real prefixes, resulting in 

Maximize Entries, 
Keeping Balance 

Figure 9: Asymmetric Trees produced by two Weighting Functions 

Table 2: Address (A) and Entry Q Coverage for Asymmetric Trees 

a large growth in memory requirements and insertion time. 

4.2 Mutating Binary Search 

In this subsection, we further refine the basic binary search tree to 
change or mutate to more specialized binary trees each time we 
encounter a partial match in some hash table. We believe this a 
far more effective optimization than the use of asymmetrical trees 
though the two ideas can be combined. 

In the last section, we looked at prefix distributions sorted by 
prefix lengths. This resulting histogram led us to propose asymmet- 
rical binary search, which can improve average speed. Further in- 
formation about prefix distributions can be extracted by dissecting 
the histogram: For each possible n bit prefix, we could draw 2” in- 
dividual histograms with possibly fewer non-empty buckets, thus 
reducing the depth of the search tree. 

When partitioning according to 16 bit prefixes5, and counting 
the number of distinct prefix lengths in the partitions, we discover a 

51here is noddng magic about the 16 bit level. other than it king a good root for P 
bimy search of 32 bit JPv4 addresses. 
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1 Distinct Lengths j 

1 
2 

; 
5 
6 

I 

7 

; 
10 
11 
12 

608 
365 
249 
165 
118 
78 
46 
35 
15 
9 
3 

Table 3: Number of Distinct Prefix Lengths in the 16 bit Partitions 
(Histogram) 

nice property of the routing data (Table 3). Though the whole his- 
togram (Table 7) shows 23 distinct prefix lengths with many buck- 
ets containing a significant number of entries, none of the “sliced” 
histograms contain more than 12 distinct prefixes; in fact, the vast 
majority only contain one prefix, which often happens to be in the 
16 bit prefix length hash table itself. This suggests that if we start 
with 16 bits in the binary search and get a match, we need only do 
binary search on a set of lengths that is much smaller than the 16 
possible lengths we would have to search in naive binary search. 

In general, every match in the binary search with some marker 
X, means that we need only search among the set of prefixes for 
which X is a prefix, This is illustrated in Figure 10. On a match we 
need only search in the subtrie rooted at X (rather than search the 
entire lower half of the trie, which is what naive binary search would 
do,) Thus the whole idea in mutating binary search is as follows: 
whenever we get a match and move to a new subtrie, we only need 
to do binary search on the levels of new subtrie. In other words, the 
binary search mutates or changes the levels on which it searches dy- 
namically (in a way that always reduces the levels to be searched), 
as it gets more and more match information. 

New Trie on Failure 

m = Median Length 
_ gmong all prefix 

/ i \ lenaths in trie 

New Trie on Match 

Figure 10: Showing how mutating binary search for prefix P dy- 
namically changes the trie on which it will do binary search of hash 
tables, 

Thus each entry E in the search table could contain adescription 
of a search tree specialized for al! prefixes that start with E. This 
simple optimization cuts the average search time to below two steps 

5 99.9% 97.8% 100.0% 100.0% 
Average 1.6 2.4 1.6 2.2 

Worst case 6 6 5 5 

Table 4: Address (A) and Entry (E) Coverage for Mutating Binary 
Search 

(Table 4), assuming probability proportional to the covered address 
space. Also with other probability distributions, (i.e., according to 
actual measurements), we expect the average number of lookups to 
be around two. 

As an example, consider binary search to be operating on a tree 
of levels starting with a root level, say 16. If we get a match which 
is a marker, we go “down” to the level pointed to by the down child 
of the current node; if we get a match which is a prefix and not a 
marker, we are done; finally, if we get no match, we go “up”. In the 
basic scheme without mutation, we start with root level 16; if we 
get a marker match we go down to level 24, and go up to Level 8 if 
we get no match. 

1 
Tree1 2 3 4 

Figure 11: Mutating Binary Search Example 

Doing basic binary search for an IPv4 address whose BMP has 
length 21 requires checking the prefix lengths 16 (hit), 24 (miss), 
20 (hit), 22 (miss), and finally 21. On each hit, we go down, and on 
misses up. 

Using Mutating Binary Search, looking for an address (see 
Figure 11) is different. First, we explain some new conventions for 
reading Figure 11. As in Figure 4, we continue to draw a trie on the 
right. However, in this figure, we now have multiple binary trees 
drawn on the left of the figure, labeled as Tree 1, Tree 2, etc. This is 
because the search process will move from tree to tree. Each binary 
tree has the root level (i.e., the first length to be searched) at the left; 
the upper child of each binary tree node is the Iength to be searched 
on failure, and whenever there is a match, the search switches to the 
more specific tree. 

Finally, Figure 11 has a number of prefixes and markers that are 
labeled as E, F, G, H, J for convenience. Every such entry in our 
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example has E as a prefix. Thus rather than describe all the bits 
in E, we denote the bits E as . , .; the bits in say F are denoted as 
. , ,111, which denotes the concatenation of the bits in E with the 
suftlx 111. Finally, each hash table entry consists of the name of 
the node, followed by the bits representing the entry, followed by 
the label of the binary tree to follow if we get a match on this entry. 
The bmp values are not shown for brevity. 

Consider now a search for an address whose BMP is G in the 
database of Figure 11. The search starts with a generic tree, Tree 1, 
SO length 16 is checked, finding E. Among the prefixes starting with 
E, there are known to be only five distinct lengths (say 17, 18, 19, 
20,21, and 22). So E contains a description of the new tree, Tree 2, 
limiting the search appropriately. Using Tree 2, we find F, giving 
a new tree with only a single length, leading to G. The binary tree 
has nlutated from the original tree of 32 lengths, to a secondary tree 
of 5 lengths, to a tertiary “tree” containing just a single length. 

Looking for J is similar. Using Tree 1, we find E. Switching to 
Tree 2, we And H, but after switching to Tree 4, we miss at length 
21, Since a miss (no entry found) can’t update a tree, we follow our 
current tree upwards to length 20, where we find J. 

In genera!, whenever we go down in thecurrent tree, we can po- 
tentially move to a specialized binary tree because each match in the 
binary search is longer than any previous matches, and hence may 
contain more specialized information. Mutating binary trees arise 
naturally in our application (unlike classical binary search) because 
each level in the binary search has multiple entries stored in a hash 
table. as opposed to a single entry in classical binary search. Each 
of the multiple entries can point to a more specialized binary tree. 

In other words, the search is no longer walking through a single 
binary search tree, but through a whole network of interconnected 
trees, Branching decisions are not only based on the current prefix 
length and whether or not a match is found, but also on what the best 
match so far is (which in turn is based on the address we’re looking 
fan) Thus at each branching point, you not only select which way 
to branch, but also change to the most optimal tree. This additional 
information about optima! tree branches is derived byprecomnpura- 
tiolt based on the distribution of prefixes in the current dataset. This 
gives us a faster search pattern than just searching on either prefix 
length or address alone. 

Two possible disadvantages of mutating binary search immedi- 
ately present themselves. First, precomputing optimal trees can in- 
crease the time to insert a new prefix. Second, the storage required 
to store an optimal binary tree for each prefix appears to be enor- 
mous. We deal with insertion speed in Section 5. For now, we only 
observe that while routes to prefixes may frequently change in cost, 
the addition of a new prefix (which is the expensive case) should be 
much rarer. We proceed to deal with the space issue by compactly 
encoding the network of trees. 

ROPC A key observation is that we only need to store the sequence 
of levels which binary search on a given subtrie will follow on re- 
peatedfailures to&d a match. This is because when we get a suc- 
cessful match (see Figure 10) we move to a completely new subtrie 
and can get the new binary search path from the new subtrie. The 
sequence of levels which binary search would follow on repeated 
failures is what we call the Rope of a subtrie, and can be encoded 
ef!lcient!y. We call it Rope, because the Rope allows us to swing 
from tree to tree in our network of interconnected binary trees. 

If we consider a trie, we define the Rope for the root of the trie 
node to be the sequence of trie levels we will consider when doing 
binary search on the trle levels while failing at every point. This 
is illustrated in Figure 12. In doing binary search we start at Level 
m which is the median length of the trie. If we fail, we try at the 
quartile length (say n), and if we fail at n we try at the one-eight 

level (say 0). The sequence m, n, 0,. . . is the Rope for the trie. 

Figure 12: In terms of a trie, a rope for the trie node is the sequence 
of lengths starting from the median length, the quartile length, and 
so on, which is the same as the series of left children (see dotted oval 
in binary tree on right) of a perfectly balanced binary tree on the trie 
levels. 

Figure 13 shows the Ropes containing the same information as 
the trees in Figure 11. Note that a Rope can be stored using only 
log, W (7 for IPv6) pointers. Since each pointer needs to only dis- 
criminate among at most W possible levels, each pointer requires 
only log, W bits. For IPv6,64 bits of Rope is more than sufficient, 
though it seems possible to get away with 32 bits of Rope in most 
practical cases. Thus a Rope is usually not longer than the storage 
required to store a pointer. To minimize storage in the forwarding 
database, a single bit can be used to decide whether the rope or only 
a pointer to a rope is stored in a node. 

Hash Tables 

Rope 1 2 3 4 

Note: Rope I contains the pardally invisible ktyers 16,s. 4,2. nnd 1. 

Figure 13: Sample Ropes 

Using the Rope as the data structure has a second advantage: it 
simplifies the algorithm. A Rope can easily be followed, by just 
picking pointer after pointer in the Rope, until the next hit. Each 
strand in the Rope is followed in turn, until there is a hit (which starts 
a new Rope), or the end of the Rope is reached. 

Pseudocode for the Rope variation of Mutating Binary Search 
is shown below. An element that is a prefix but not a marker (i.e., 
the “terminal” condition) specifies an empty Rope, which leads 
to search termination. The algorithm is initialized with a starting 
Rope. The starting Rope corresponds to the default binary search 
tree. For example, using 32 bit IPv4 addresses, the starting Rope 
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contains the starting level 16, followed by Levels 8, 4, 2, 1. The 
Levels 8,4,2, and 1 correspond to the “up” pointers to follow when 
no matches are found in the default tree. The resulting pseudocode 
(Figure 14) is elegant and simple to implement. It appears to besim- 
pler than the basic algorithm. 

Function RopeSearch (* search for address D *) 
Initialize Rope R containing the default search sequence; 
Initialize BMP so far to null string; 
While R is not empty do 

Pull the first strand (pointer) off R and store it in i; 
Extract the first L[i].length bits of D into D’; 
M := Search(D’, L[i].hash); (* search hash table for D’ *) 
IfM is not nil then 

BMP := M.bmp; (* update best matching prefix so far *) 
R := M.rope; (* get the new Rope, possibly empty *) 

Endif 
Endwliilc 

Figure lrb: Rope Search 

4.3 Using Arrays 

In cases where program complexity and memory use can be traded 
for speed, it might be desirable to change the first hash table lookup 
to a simple indexed array lookup, with the index being formed from 
the llrst 2ua bits of the address, with 200 being the prefix length at 
which the search would be started. For example, if wo = 16, we 
would have an array for all possible 216 values of the first 16 bits of 
a destination address, Each array entry for index i will contain the 
6m.p of i as well as a Rope which will guide binary search among all 
prelixes that begin with i. An initial array lookup is not only faster 
than a hash lookup, but also results in reducing the average number 
of lookups (to around 0.5 using the current data sets we have exam- 
ined.) 

4.4 Hardware Implementations 

As we have seen in both Figure 6 and Figure 14, the search func- 
tions are very simple, so ideally suited for implementation in hard- 
ware, The inner component, most likely done as a hash table in soft- 
ware implementations, can be implemented using (perfect) hashing 
hardware such as described in [Dig95]. Alternatively, a fast CAM 
could be used. 

The outer loop in the Rope scheme can be implemented as a shift 
register, Using multiple shift registers, it is possible to pipeline the 
searches, resulting in one completed routing lookup per hash lookup 
time. 

5 Implementation 

Besides hashing and binary search, a predominant idea in this paper 
is prccowputalion. Every hash table entry has an associated bmp 
held and (possibly) a Rope field, both of which are precomputed. 
Precomputation allows fast search but requires more complex Inser- 
tion routines. However, as mentioned earlier, while routes to pre- 
fixes may change frequently, the addition of a new prefix (the ex- 
pensive case) is much rarer, Thus it is worth paying a penalty for 
Insertion in return for improved search speed. 

5.1 Basic Scheme Built from Scratch 

Setting up the data structure for the Basic Scheme is straightfor- 
ward, as shown in the BuildBasic function (Figure 15, with a com- 
plexity of O(N log, IV)). For simplicity of implementation, the list 
of prefixes is assumed to be sorted by increasing prefix length in ad- 
vance (O(N) using bucket sort). For optimal search performance, 
the final hash tables should ensure minimal collisions. 

Function BuildBasic; 
For all entries in the sorted list do 

Read next pair (Prefix, Length) from the list; 
Let .Indez be the index for the Length’s hash table; 
Use Basic Algorithm on what has been built by now 

to find the BMP of Prefix and store it in BMP; 
Add a new prefix node for Pref ix in the hash table for Index; 
(* Now insert all necessary markers “above” *) 
For ever do 

(* Go back one level in the binary search tree *) 
Clear the least significant one bit in Index; 
If~nnde?: = 0 then break; (* end reached *) 
Set Length to the appropriate length for Index; 
Shorten Prefix to Length bits; 
If there is already an entry for Pref ix at InHex then 

Make it a marker if it isn’t already; 
break; (* higher levels already do have markers *) 

Else 
Create a new marker Prefix at Inde.~’ hash table: 
Set it’s bmp field to BMP; 

Endif 
Endfor 

Endfor 

Figure 15: Building for the Basic Scheme 

5.2 Rope Search from Scratch 

Building a Rope Search data structure balanced for optimal search 
speed is more complex, since every possible binary search path 
needs to be optimized. To find the bmp values associated with 
markers, it helps to have an auxiliary trie. Thus we have two passes: 

Pass 1 builds a conventional trie. Each trie node contains a list 
of all prefix lengths used by its “child” nodes (subtree length set, 
SLS). If a weighting function is being used to optimize accesses 
based on known or assumed access patterns, further statistics and 
forecasts should be summarized. All this additional information is 
kept up-to-date while inserting, in O(NTV) time. 

In the second pass, all prefixes are inserted into the hash tables, 
starting with the shortest prefix: for each prefix, it’s Rope and the 
BMP for it’s markers are calculated and then the markers and the 
prefix are inserted. This takes O(iVlog* W), as we will see later. 

Inserting from shortest to longest prefix has the nice property 
that all BMPs for the newly inserted markers are identical and thus 
only need to be calculated once. This can easily be seen by recalling 
that each marker is (1) a prefix of all the entries it guides the search 
to, (2) that the marker’s BMP is also a prefix of the marker, and (3) 
inserting entries longer than tbe marker’s length cannot change it’s 
BMl? 

There are at most O(log W) markers to insert for each real pre- 
fix, and each prefix and marker needs a rope, which can be cab 
culated from the SLS in O(logIV).6 The overall work thus is 

‘hingfidfirsr bir instructions; precomputed mmys would be O(1) 
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Rope Search 
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O(N) 
O(N log W) 
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O(N log W) 
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Basic 1 Rope i Array ] Radix 

~ 

Table 6: Performance Comparison 
Table 5: Speed and Memory Usage Complexity 

O(N m&W, log*(W))). W e are working on a faster and more el- 
egant algorithm for building the Rope Search data structure in time 
O(N log*(W)) (that also does not require building a trie). We will 
describe this and other optimizations in a future paper. 

One problem for the insertion is that the number of markers for 
each length is not known in advance, which makes it difficult to al- 
locate memory for the hash table in advance. This problem can be 
avoided by putting all entries in asingle hash table and including the 
prefix length in the hash calculation. Since there is an upper limit of 
log W markers per real prefix. we can size the single hash table. For 
typical IPv4 forwarding tables, about half of this maximum number 
is being used. 

5.3 Insertions and Deletions 

Adding and removing single entries from the tree can also be done, 
but since no rebalancing occurs, the performance of the lookups 
might slowly degrade over time. However, addition and deletion 
are not trivial, Adding or deleting a single prefix can change the 
bmp values of a large number of markers, and thus insertion is po- 
tentially expensive in the worst case. Similarly, adding or deleting 
a new prefix that causes a new prefix length to be added or deleted 
can cause the Ropes of a number of entries to change. The simplest 
solution is to batch a number of changes and do a complete build 
of the search structure, Such solutions will have adequate through- 
put (because whenever the build process falls behind, we will batch 
more efficiently), but have poor latency. We are working on fast in- 
cremental insertion and deletion algorithms, but we do not describe 
them here for want of space. Our incremental insertion and deletion 
algorithms still require the tree to be rebuilt after a large number of 
different inserts and deletes. 

6 Performance Evaluation 

Recollecting some of the data mentioned earlier, we show measured 
and expected performance for our scheme. 

6.1 Complexity Comparison 

Table 5 collects the (worst case) complexity necessary for the differ- 
ent schemes mentioned here. Be aware that these complexity num- 
bers do not say anything about the absolute speed or memory usage. 
See Section 2 for a comparison between the schemes. For Radix 
Tries, Basic Scheme, Asymmetric Binary Search, and Rope Search, 
W is the number of distinct lengths, Memory complexity is given 
in W bit words. 

6.2 Measurements for IPv4 

So far we have described how long our algorithm takes (in the av- 
erage or worst case) in terms of the number of hash computations 
required. It remains to quantify the time taken for a computation on 
an arbitrary prefix length using software. To do so, we ran the fol- 
lowing experiments on a 200 MHz Pentium Pro from C code using 
the compiler’s maximum optimization (Table 6). The forwarding 
table was the same 33,000 entry forwarding table wer-961 used be- 
fore. 

Basic Scheme Memory usage is close to 1.2 MByte, for the pri- 
mary data structures (the most commonly accessed hash tables for 
length 8,16, and 24) fit mostly into second level cache, so the first 
two steps (which is the average number needed) are very likely to be 
found in the cache. Later steps, seldom needed, will be remarkably 
slower. 

Rope Search Although the average number of search levels and 
thus the number of marker entries needed decreases, the memory 
needed per node increases. 

Rope Search starting with Array Lookup This array fully fits 
into the cache, leaving ample space for the hash tables. The array 
lookup is much quicker, and there will be less total lookups needed 
than for the Rope scheme. 

Radix l&s The Radix Trie functions were extracted from opti- 
mized NetBSD kernel code and put into user space for measure- 
ment. 

6.3 Projections for IP Version 6 

IPv6 address assignment principles have not been finally decided 
upon. However, three methods are currentIy being discussed in 
the IPng working group of the Internet Engineering Task Force 
(IETF). All of them use hierarchical schemes to provide as much 
routing aggregation as possible: provider-based addressing [R+97], 
geographical addressing, and “GSF’ (Global, Site, End-system) 
[O’D97]. 

All these schemes help to reduce routing information. In the op- 
timal case of a strictly hierarchical environment, it can go down to 
a handful of entries, But with massive growth of the Internet to- 
gether with the increasing forces for connectivity to multiple ISPs 
(“multihoming”) and meshing between the ISPs, we expect therout- 
ing tables to grow. Another new feature of IPv6, Anycast addresses 
[HD96, DH96], may (depending on how popular they will become) 
add a very large number of host routes and other routes with very 
long prefixes. 
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So most sites will still have to cope with a large number of rout- 
ing entries at different prefix lengths. There is likely to be more dis- 
tinct prelix lengths, so the improvements achieved by binary search 
will be similar or better than those achieved on IPv4. 

For the array access improvement shown in Section 4.3, the im- 
provement may not be as dramatic as for IPv4. Although it will im- 
prove performance for IPv6, it is less attractive, because addresses 
will be longer. Good starting points may require rather large pre- 
lixes (i.e. 24 bits or longer). With 224 necessary entries, it is no 
longer feasible to have a whole array stored in memory, requiring 
us to select a less optimal starting point to still gain improvement 
from the array access. Depending on the actual data, this may still 
be a win. All other optimizations are expected to yield similar im- 
provements. 

7 Conclusions and Future Work 

We have designed a new algorithm for best matching search. The 
best matching prefix problem has been around for twenty years 
in theoretical computer science; to the best of our knowledge, the 
best theoretical algorithms are based on tries. While inefficient al- 
gorithms based on hashing [Sk1931 were known, we have discov- 
ered an extremely efficient algorithm that scales with the logarithm 
of the address siu: and so is very close to the theoretical limit of 
O(log log N). 

Our algorithm contains both intellectual and practical contri- 
butions, On the intellectual side, after the basic notion of binary 
searching on hash tables, we found that we had to add markers and 
use precomputation, to ensure logarithmic time in the worst-case. 
Algorithms that only use binary search of hash tables are unlikely 
to provide logarithmic time in the worst case. Among ouroptimiza- 
tions, we single out mutating binary trees as an aesthetically pleas- 
ing idea that leverages off the extra structure inherent in our partic- 
ular form of binary search. 

On the practical side, we have a fast, scalable solution for IP 
lookups that can be implemented in either software or hardware. 
Our software projections for IPv4 are SO ns and we expect 1% 
200 ns for IPv6. Our averagecasespeed projections are based on the 
sttuctureofexistingroutingdatabases that we examined. We expect 
most of the characteristics of this address structure to strengthen in 
the future, especially with the transition to IPv6. Even if our pre- 
diclions, based on the little evidence available today, should prove 
to be wrong, the overall performance can easily be restricted to that 
of the basic algorithm which already performs well. 

With algorithms such as ours, we believe that there is no more 
reason for router throughputs to be limited by the speed of their 
lookup engine, We also do not believe that hardware lookup engines 
are required because our algorithm can be implemented in software 
and still perform well. For similar reasons, we do not believe that 
there is a compelling need for protocol changes to avoid lookups as 
proposed in Tag and IP Switching. Even if these protocol changes 
were accepted, fast lookup algorithms such as ours are likely to be 
needed at several places in the network. 

Future work on our algorithm includes theoretical work on a 
choice of balancing function, hopefully yielding an improvement 
over our ad-hoc heuristic functions. Other avenues of research in- 
clude thechoiceofa heuristic function based on actual network traf- 
iic, and work on faster insertion algorithms. We are also trying to 
optimize the building and modification processes. Our algorithm 
belongs to a class of algorithms that speed up search at the expense 
of insertion; we are looking for other applications and generaliza- 
tions of our algorithm. 

In spite of potential improvements, we believe our algorithm 
is ready for practical use. To prove this, it will be incorporated 

into the Crossbow project [Df97], a joint project between ETH and 
Washington University. The goal of Crossbow is to build a extensi- 
ble framework for IPv6 as well as a high-speed IPv6 cell-switched 
router with QoS guarantees. 
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