
Scalable High Speed II? Routing Lookups

Marcel Waldvogelt, George Varghesel, Jon Tumeg, Bernhard Plattneri

fcomputer Engineering and Networks Laboratory
ETH Ziirich, Switzerland

{ waldvogel,plattner) @tik.ee.ethz.ch

$Computer and Communications Research Center
Washington University in St. Louis, USA

{varghesedst} @ccrc.wustl.edu

Abstract

Internet address lookup is a challenging problem because of increas-
ing routing table sizes, increased traffic, higher speed links, and the
migration to 128 bit IPv6 addresses. IP routing lookup requires
computing the best matching prefix, for which standard solutions
like hashing were believed to be inapplicable. The best existing so-
lution we know of, BSD radix tries, scales badly as IP moves to
128 bit addresses, Our paper describes a new algorithm for best
matching prefx using binary search on hash tables organized by
prefix lengths. Our scheme scales very well as address and routing
table sizes increase: independent of the table size, it requires a worst
case time of log~(address bits) hash lookups. Thus only 5 hash
lookups are needed for IPv4 and 7 for IPv6. We also introduce Mu-
tating Binary Search and other optimizations that, for a typical IPv4
backbone router with over 33,000 entries, considerably reduce the
average number of hashes to less than 2, of which one hash can be
simplilied to an indexed array access. We expect similar average
case behavior for IPv6.

1 Introduction

The Internet is becoming ubiquitous: everyone wants to join in.
Since the advent of the World Wide Web, the number of users, hosts,
domains, and networks connected to the Internet seems to be ex-
ploding, Not surprisingly, network traffic is doubling every few
months, The proliferation of multimedia networking applications
and devices is expected to give traffic another major boost.

The increasing traffic demand requires three key factors to keep
pace if the Internet is to continue to provide good service: link
speeds, router data throughput, and packet forwarding rates.’ Read-
ily available solutions exist for the first two factors: for example,
fiber-optic cables can provide faster links,%nd switching technol-
ogy can be used to move packets from the input interface of a router

‘Jn our paper, we distinguish between rowing (n process that computes a database
mnpping destinntion networks IO output links) endfonvonling (e process by which o
routing dorabase Is consulted to decide which output linku single packet should be for-
warded on.) Route computntion is less time critical then forwarding because forward-
Jng Is done for ench packet, while route computation needs to be done only when the
topology changes.

%or example, MCI is currenlly upgrading its lines from 4.5 Mbit& to 155 hlbitsls;
lhcy plnn to sv&ch to 622 Mbits/s within u year.

Permlselon to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copiea are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCOMM ‘37 Connes, France
0 1997 ACM O-89791-905.X197/0009...$3.50

to the corresponding output interface at gigabit speeds. Our pa-
per deals with the third factor, packet forwarding, for which current
techniques perform poorly as network speeds increase.

The major step in packet forwarding is to 1ooLwp the destination
address (of an incoming packet) in the routing database. While there
are other chores, such as updating TIL fields, these are computa-
tionally inexpensive compared to the major task of address loolrup.
Data link Bridges have been doing address loolrups at 100 Mbps
[Dig951 for many years. However, bridges only do exact match-
ing on the destination (MAC) address, while Internet routers have to
search their database for the longestprefi matching a destination IP
address. Thus standard techniques for exact matching, such as per-
fect hashing, binary search, and standard Content Adressable Mem-
ories (CAMS) cannot directly be used for Internet address loohups.

Prefix matching was introduced in the early 199Os, when it was
foreseen that the number of endpoints and the amount of routing in-
formation would grow enormously. The address classes A, B. and
C (allowing sites to have 24,16, and 8 bits respectively for address-
ing) proved too inflexible and wasteful of the address space. To
make better use of this scarce resource, especially the class B ad-
dresses, bundles of class C networks were given out instead of class
B addresses. This resulted in massive growth of routing table en-
tries. So, in turn, Classless Inter-Domain Routing (CIDR) p93]
was deployed, to allow for arbitrary aggregation of networks to re-
duce routing table entries.

To reduce routing table space, aggregation is done aggressively.
Suppose all the subnets in a big network have identical routing in-
formation except for a single, small subnet that has different infor-
mation. Instead of having multiple routing entries for each subnet
in the large network, just two entries are needed: one for the big
network, and a more specific one for the small subnet (which has
preference, if both should match). This results in better usage of
the available IP address space and decreases the amount of routing
table entries. On the other hand, the processing power needed for
forwarding lookup is increased.

Thus today an IP router’s database consists of a number of ad-
dressprefires. When anIP router receives a packet, it must compute
which of the prefixes in its database has the longest match when
compared to the destination address in the packet. The packet is
then forwarded to the output link associated with that prefix. For
example, a forwarding database may have the prefixes Pl = 0101,
P2 = 0101101 and P3 = 010110101011. An address whose first
12 bits are 010101101011 has longest matching prefix Pl. On the
other hand, an address whose first 12 bits are 010110101101 has
longest matching prefix P3.

The use of best matching prefix in forwarding has allowed IP
routers to accomodate various levels of address hierarchies, and has
allowed different parts of the network to have different views of the

25

address hierarchy. Given that best matching prefix forwarding is
necessary for hierarchies, and hashing is a natural solution for ex-
act matching, a natural question is: “Why can’t we modify hash-
ing to do best matching prefix.” However, for several years now,
it was considered not to be “apparent how to accommodate hierar-
chies while using hashing, other than rehashing for each level of hi-
erarchy possible” [Sk193].

Our paper describes a novel algorithmic solution to longest pre-
lix match, using binary search over hash tables organized by the
length of the prefix. Our solution requires a worst case complexity3
of O(log, W), with W being the length of theaddress in bits. Thus,
for the current Internet protocol suite (IPv4) with 32 bit addresses,
we need at most 5 hash lookups. For the upcoming IP version 6
(IPvG) with 128 bit addresses, we can do lookup in at most 7 steps,
as opposed to 128 in current algorithms (see Section 2), giving an
order ofmagnitude perfwnance improvement. Using perfect hash-
ing, we can lookup 128 bit IP addresses in at most 7 memory ac-
cesses, This is significant because on current RISC processors, hash
functions can be found whose computation is cheaper than g mem-
ory access,

In addition, we use several optimizations to significantly reduce
the average number of hashes needed. For example, our analysis of
an IPv4 forwarding table from an Internet backbone router at the
Mae-East network access point (NAP) [Mer96] show an average
case performance of less than two hashes, where the first hash can
be replaced by a simple index table lookup.

The rest of the paper is organized as follows. Section2
describes drawbacks with existing approaches to IP lookups.
Section 3 describes our basic scheme in a series of refinements that
culminate in the basic binary search scheme. Section 4 describes a
series of important optimizations to the basic scheme that improve
average performance. Section 5 describes our implementation, in-
cluding algorithms to build the data structure and perform insertions
and deletions, Section 6 describes performance measurements us-
ing our scheme for IPv4 addresses, and performance projections for
IPvG addresses. We conclude in Section 7 by assessing the theoret-
ical and practical contributions of this paper.

2 Existing Approaches to IP Lookup

We survey existing approaches to IP lookups and their problems.
We discuss approaches based on modifying exact matching sche-
mes, trie based schemes, hardware solutions based on parallelism,
proposals for protocol changes to simplify IP lookup, and caching
solutions. For the rest of this paper, we use BMP as a shorthand for
Best Matching Prefix.

Modlflcatlons of Exact Matching Schemes Classical fast
lookup techniques such hashing and binary search do not directly
apply to the best matching prefix (BMP) problem since they only do
exact matches, A modified binary search technique, originally due
to Butler Lampson, is described in [Per92]. However, this method
requires log, 2N steps, with N being the number of routing table
entr!es. With current routing table sizes, the worst case would be 17
data lookups, each requiring at least one costly memory access. As
with any binary search scheme, the average number of accesses is
!og,(2N) - 1. A second classical solution would be to reapply any
exact match scheme for each possible prefix length [Sk193]. This
is even more expensive, requiring W iterations of the exact match
scheme used (e.g. W = 128 for IPv6).

3’Il~is nwmcs assuming O(1) for hashing, which can be achieved using perfect
hushing, ahhough limited collisions do not effect performance significantly.

lkie Based Schemes The most commonly available IP lookup
implementation is found in the BSD kernel, and is a radix trle im-
plementation [Sk!93]. If W is the length of an address, the worst-
case time in the basic implementation can be shown to be O(IV2).
Current implementations have made a number of improvements on
Sklower’s original implementation. The worst case was improved
to O(W) by requiring that the prefix be contiguous (previously non-
contiguous masks were allowed, a feature which was never used).
Despite this, the implementation requires up to 32 or 128 costly
memory accesses (for IPv4 or IPv6, respectively). Tries also can
have large storage requirements.

Hardware Solutions Hardware solutions can potentially use par-
allelism to gain lookup speed. For exact matches, this is done us-
ing Content Addressable Memories (CAMS) in which every mem-
ory location, in parallel, compares the input key value to the content
of that memory location.

Some CAMS allow a mask of bits that must be matched. Al-
though there are expensive so-called ternary CAMS available a!-
lowing a mask to be specified per word, the mask must typically
be specified in advance. It has been shown that these CAMS can
be used to do BMP lookups @4F93, MTW9.51, but the solutions are
usually expensive.

Large CAMS are usually slower and much more expensive than
ordinary memory. Typical CAMS are small, both in the number of
bits per entry and the number of entries. Thus the CAM memory
for large address/mask pairs (256 bits needed for IPv6) and a huge
amount of prefixes appears (currently) to be very expensive. An-
other possibility is to use a number of CAMS doing parallel look-
ups for each prefix length. Again, this seems expensive. Proba-
bly the most fundamental problem with CAMS is that CAM designs
have not historically kept pace with improvements in RAM mem-
ory. Thus a CAM based solution (or indeed any hardware solution)
runs the risk of being made obselete, in a few years, by software
technology running on faster processors and memory,

Protocol Based Solutions One way to get around the problems of
IP lookup is to have extra information sent along with the packet to
simplify or even totally get rid of IP !ooE~ps at routers. nvo ma-
jor proposals along these lines are IP Switching [NMH97] and Tag
Switching [CV95, CV96, R+96]. Both schemes require large, con-
tiguous parts of the network to adopt their protocol changes before
they will show a major improvement. The speedup is achieved by
adding information on the destination to every IP packet.

In IP Switching, this is done by associating a flow of packets
with an ATM Virtual Circuit; in Tag Switching, this is done by
adding a “tag” to each packet, where a “tag” is a small integer that
allows direct lookup in the router’s forwarding table. Tag switching
is based on a concept originally described by Chandranmenon and
Varghese ([CV95. CV96]) using the name “threaded indices”. The
current tag switching proposa![R+96] goes further than threaded in-
dices by adding a stack of indices to deal with hierarchies.

Neither scheme can completely avoid ordinary IP lookups. Both
schemes require the ingress router (to the portions of the network
implementing their protoocol) to perform a full routing decision.
In their basic form, both systems potentially require the boundary
routers between autonomous systems (e.g., between a company and
its ISP or between ISPs) to perform the full forwarding decision
again, because of trust issues, scarce resources, or different views
of the network. Scarce resources can be ATM VCs or tags, of which
only a small amount exists. Thus towards the backbone, they need
to be aggregated; away from the backbone, they need to be sepa-
rated again.

26

Different views of the network can arise because systems of-
ten know more details about their own and adjacent networks, than
about networks further away. Although Tag Switching addresses
that problem by allowing hierarchical stacking of tags, this affects
routing scalability. Tag Switching assigns and distributes tags based
on routing information: thus every originating network now has to
know tags in the destination networks. Thus while both tag switch-
ing and IP switching can provide good performance within a level of
hierarchy, neither solution currently does we!! at hierarchy bound-
aries without scaling problems.

Caching For years, designers of fast routers have resorted to
caching to claim high speed IP lookups. This is problematic forsev-
era! reasons. First, information is typically cached on the entire ad-
dress, potentially diluting the cache with hundreds of addresses that
map to the same prefix. Second, a typical backbone router of the fu-
ture may have hundreds of thousands of prefixes and be expected to
forward packets at Gigabit rates. Although studies have shown that
caching in the backbone can result in hit ratios up to and exceed-
ing 90 percent [Par96, NMH971, the simulations of cache behavior
were done on large, fully associative caches which commonly are
implemented using CAMS. CAMS, as already mentioned, are usu-
ally expensive, It is not clear how set associative caches will per-
form and whether caching will be able keep up with the growth of
the Internet. So caching does help, but does not avoid the need for
fast BMP lookups, especially in view of current network speedups.

Summary In summary, a!! existing schemes have problems of ei-
ther performance, scalability, generality, or cost. Lookup schemes
based on tries and binary search are (currently) too slow and do
not scale we!!; CAM solutions are expensive and carry the risk
of being quickly outdated; tag and IP switching solutions require
widespread agreement on protocol changes, and still require BMP
lookups in portions of the network; finally, locality patterns at back-
bone routers make it infeasible to depend entirely on caching.

We now describe a scheme that has good performance, excel-
lent scalability, and does not require protocol changes. Our scheme
also allows a cheap, fast software implementation, and also a more
expensive (but faster) hardware implementation.

3 Basic Binary Search Scheme

Our basic algorithm is based on three significant ideas, of which
only the first has been reported before. First, we use hashing to
check whether an address D matches any prefix of a particular
length; second, we use binary search to reduce number of searches
from linear to logarithmic; third, we use precomputation to pre-
vent backtracking in case of failures in the binary search of a range.
Rather than present the final solution directly, we will gradually re-
!!ne these ideas in Section 3.1, Section 3.2, and Section 3.5 to arrive
at a working basic scheme. Wedescribe further optimizations to the
basic scheme in the next section.

3.1 Linear Search of Hash Tables

Our point of departure is a simple scheme that does linear search
of hash tables organized by prefix lengths. We will improve this
scheme shortly to do binary search on the hash tables.

The idea is to look for a!! prefixes of a certain length L using
hashlng and use multiple hashes to find the best matching prefix,
starting with the largest value of L and working backwards. Thus
we start by dividing the database of prefixes according to lengths.
Assuming a particularly tiny routing table with four prefixes of

Hash tables

Figure 1: Hash Tables for each possible prefix length

length 5,7,7, and 12, respectively, each of them would be stored
in the hash table for its length (Figure 1). So each set of prefixes bf
distinct length is organized as a hash table. If we have a sorted ar-
ray L corresponding to the distinct lengths, we only have 3 entries
in the array, with a pointer to the longest length hash table in the last
entry of the array.

To search for address D. we simply start with the longest length
hash table 2 (i.e. 12 in the example), and extract the first I bits of D
and do a search in the hash table for length I entries. If we succeed,
we have found a BMF; if not, we look at the first length smaller
than 1, say I’ (this is easy to find if we have the array L by simply
indexing one position less than the position of I), and continuing the
search.

More concretely, let L be an array of records. L[i].lengagth is
the length of prefixes found at position a’, and L[i].hnsh is a pointer
to a hash table containing all prefixes of length L[i].length. The
resulting code is shown in Figure 2.

Function LinearSearch (* search for address D *)
Initialize BMP to the empty string;
i := Highest index in array L,
While (BMP = nil) and (i 10) do

Extract the first L[i].Zength bits of D into D’;
BMP := Search(D’, L[i].hash); (* search hash for D’ *)
j:=j-1;

Endwhile

Figure 2: Linear Search

3.2 Binary Search 6f Hash Tables

The previous scheme essentially does (in the worst case) linear
search among a!! distinct string lengths. Linear search requires
O(W) expected time (more precisely, O(IVd~ai,t), where Ivdist I
W is the number of distinct lengths in the database.)

A better search strategy is to use binary search on the array L
to cut down the number of hashes to O(log, Iv&&). However, for
binary search to work, we need markers in tables corresponding
to shorter lengths to point to prefixes of greater lengths. Markers
are needed to direct binary search to look for matching prefixes of
greater length. Here is an example to illustrate the need for markers.

Suppose we have the prefixes Pl = 0, P2 = 00, P3 = 111
(Figure 3 (b)). Assume that thezeroth entry of L points to Pl’s hash
table, the first to P2’s hash table, and the second points to P3’s hash
table. Suppose we search for 111. Binary search (a) would start at
the middle hash table and search for 11 in the hash table containing
P2 (the triangles denote a pointer to the hash table to search). It
would fail and have no indication that it should search among the

4RecalIlhatBh~PstandsforBesthfatchin~PrefLT.~ Weusetbisabbreviationthrough
the rest of the paper

27

BillaIy Hash Hash Tables
Search Tables

. -
1 withMarker Total entries 1 33199 1 100%

Entries needing no markers I 4743 I 14%

Figure 3: Binary Search on Hash Tables

longer prefix tables for a better matching prefix. To fix this problem,
we simply add a marker entry 11 to the middle table. Now when
binary search is done for 111, we will lookup 11 in the middle hash
table and find the marker node. This can be used to direct binary
search to the lower half of the table.

Trie Structure

\RI \ ma\

Figure 4: Binary Search on Trie Levels

Each hash table (markers plus real prefixes) can be thought of as
a horizontal layer of a trle corresponding to some length L (except
that the hash table contains the complete path to that layer of each
entry in that layer), Our basic schemes is essentially doing binary
search on the levels of a trie (Figure 4)PWe start by doing a hash on
prelixes corresponding to the median length of the trie. If we match,
we search the upper half of the trie; if we fail we search the lower
half of the trie.

Figure 4 and other figures describing search order contain sev-
eral elements: (1) Horizontal stripes grouping all the elements of a
specified prefix length, (2) a trie containing the prefixes, shown on
the right of the figure and rooted on the top of the figure, and (3)
a binary tree, shown on the left of the figure and rooted at the left,
which depicts all possible paths that binary search can follow. We
will use upper /mra[fto mean the half of the trie with prefix lengths
strictly less than the median length, We also use lower halffor the
portion of the trle with prefix lengths strictly greater than the median
length, It is important to understand the conventions in Figure 4 to
understand the later figures and text.

3.3 Reducing Marker Storage

The following definitions are useful before proceeding. For a pre-
Ax P in the table, define Lewel(P) to be the integer i for which
L[i].Zength = length(P) (i.e., the index of the entry in L that

Table 1: Marker Overhead for Backbone Forwarding Table

points to P’s hash table). Also, “up” to refers to shorter, “down”
to longer prefixes.

How many markers do we need? A naive view would indi-
cate placing a marker for prefix P at all levels in L higher than
the level of P. However, it suffices to place markers at all lev-
els in L that could be visited by binary search when looking for
M entry whose BMP is P. This reduces the number of mark-
ers to at most log, W per real prefix, which keeps the stomge ex-
pansion modest. More precisely, if the Level(P) is written down
in binary as al, us,. . . , a,,, then we need a marker at each level
~~02,. . . , uk, 0, 0, . . . , 0 such that Uk = 1. (We assume that L is
padded so that its size is a power of 2). In fact, the number of marker
nodes is limited by the number of 1 bits in Level(P). Clearly this
results in a logarithmic number of markers.

In the typical case, many prefixes will share markers (Table l),
reducing the marker storage further. In our sample routing database
[Mer96], the storage required will increase by 25%. However, it is
easy to give a worst case example where the storage needs require
O(log, W) markers per prefix. (Consider N prefixes whose first
log, N bits are all distinct and whose remaining bits are all l’s).

3.4 Problems with Backtracking

Function NaiveBinarySearch(D) (* search for address D *)
Initialize search range R to cover the whole array L;
While R is not a single entry do

Let i correspond to the middle level in range R;
Extract the first L[i].Zength bits of D into D’;
Search(D’, L[i].hush); (* search hash table for D’ *)
If found then set R := lower half of R (*longer prefixes*)

Else set R := upper half of R; (*shorter prefixes*)
Endif

Endwhlle

Figure 5: Naive Binary Search

Binary search of hash tables can be expressed as shown in Figure 5.
Unfortunately, this algorithm is not correct as it stands and does not
take logarithmic time if implemented naively. The problem is that
while markers are good things (they lead to potentially better pre-
fixes lower in the table), they can also cause the search to follow
false leads which may fail. In case of failure, we would have to
modify the binary search (for correctness) to backtrack and search
the upper half of R again. Such a naive modification can lead US
back to linear time search. An example will clarify this.

First consider the prefixes Pl = 1, P2 = 00, P3 = 111.
As discussed above, we add a marker to the middle table so that the

28

middle hash table contains 00 (a real prefix) and 11 (a marker point-
ing down to P3). Now consider a search for 110. We start at the
middle hash table and get a hit; thus we search the third hash table
for 110 and fail, But the correct best matching prefix is at the first
level hash table - i.e., Pl. The marker indicating that there will
be longer prefixes, indispensible to find P3, was misleading in this
case; so apparently, we have to go back and search the upper half of
the range.

The fact mat each entry contributes at most log, H’ markers
may cause some readers to suspect that the worst case with back-
tracking is limited to O(!og2 W). This is incorrect. The worst case
is O(W), The worst-case example for say W bits is as follows: we
have a prefix Pi of length i, for 1 < i < W that contains all OS. In
addition we have the prefix Q whose first W - 1 bits are al! zeroes,
but whose last bit is a 1. If we search for the W bit address contain-
ing all zeroes then we can show that binary search with backtracking
will take O(W) time and visit every level in the table. (The problem
is that every level contains a false marker that indicates the presence
of something better below.)

3.5 Precomputation to Avoid Backtracking

We use precomputation to avoid backtracking when we shrink the
current range R to the lower half of R (which happens when we find
a marker at the mid point of R). Suppose every marker node M is
a record that contains a variable M.bmp, which is the value of the
best matching prefix of the marker M. M.bmp can be precomputed
when the marker M is inserted into its hash table. Now, when we
!!nd M at the mid point of R, we indeed search the lower half, but
vie also rejnetnber the value of M,bmp as the current best matching
prefix, Now if the lower half of R fails to produce anything interest-
ing, we need not backtrack, because the results of the backtracking
are already summarized in the value of M.bmp. The new code is
shown in Figure 6.

Punctlon BinarySearch (* search for address D *)
Initialize search range R to cover the whole array L;
Initialize BMP found so far to null string;
While R is not empty do

Let i correspond to the middle level in range R,
Extract the first L[i].Zength bits of D into D’;
M := Search(D’, L[i].hash); (* search hash for D’ *)
If M is nil Then set R := upper half of R; (* not found *)
Elseif M is a prefix and not a marker
‘Iltcn BMP := M.bmp; break; (* exit loop *)
Else (* M is a pure marker, or marker and prefix *)

BMP := Mhmp; (* update best matching prefix so far *)
R := lower half of R,

Endlf
Endwhile

Figure 6: Binary Search

The standard invariant for binary search when searching for key
Ir’ is: “K is in range R”. We then shrink R while preserving this in-
variant, The invariant for this algorithm, when searching for key K
is: “EITHER (The Best Matching Prefix of K is BMP) OR (There
is a longer matching prefix in R)“.

It is easy to see that initialization preserves this invariant, and
each of the search cases preserves this invariant (this can be estab-
lished using an inductive proof.) Finally, the invariant implies the
correct result when the range shrinks to 1. Thus the algorithm works

correctly; also since it has no backtracking, it takes O(!og, W&at)
time.

4 Refinements to Basic Scheme

The basic scheme described in Section 3 takes just 7 hash computa-
tions, in the worst case, for 128 bit IPv6 addresses. However, each
hash computation takes at least one access to memory; at gigabit
speeds each memory access is significant. Thus, in this section, we
explore a series of optimizations that exploit the deeper structure in-
herent in the problem to reduce the average number of hash compu-
tations.

4.1 Asymmetric Binary Search

24
25
26
27
2s
29
30
32
32

1 10 100 1000 10,000100,000

Frequency

Figure 7: Histogram of the Prefix Length Distribution

We first describe a series ofsimple-minded optimizatlons. Our main
optimization, mutating binary search, is described in the next sec-
tion. A reader can safely skip to Section 4.2 on a first reading.

The current algorithm is a fast, yet very general, BMP search
engine. Usually, the performance of general algorithms can be im-
proved by tailoring them to the particular datasets they will be ap-
plied to. As can be seen in Figure 7, the distribution of a typical
backbone router’s forwarding table as obtained from !&Ier96], the
entries are not equally distributed over the different prefix lengths.
All the concepts we described below apply to any set of addresses;
however, we will quantify the potential improvements using the ex-
isting table.

As the first improvement. which has already been mentioned
and used in the basic scheme, the search can be limited to those pre-
fix lengths which do contain at least one entry, reducing the worst
case number of hashes from log, W (5 with W = 32) to log2 Iv,ist
(4.5 with Wdist = 23, the number of non-empty buckets in the his-
togram), as shown in Figure 8. (While this is an improvement for
the worst case, in this case, it harms the average performance, as we
will see later.)

29

Standard Binary Search Distinct Binary Search

Figure 8: Search Trees for Standard and Distinct Binary Search

A more promising approach is to change the tree structure to
search in the most promising prefix length layers first, introducing
asymmetry into the binary tree, While this will improve average
case performance, introducing asymmetries will not improve the
maximum tree height; on the contrary, some searches will make
a few more steps, which has a negative impact on the worst case.
Given that routers can temporarily buffer packets, worst case time
is not as important as the average time. The search for a BMP can
only be terminated early if we have a “stop search here” (“termi-
nal”) condition stored in the node. This condition is signalled by a
node being a prefix but no marker (Figure 6).

But how can we select these”most promising” layers mentioned
earlier? Optimally, they would correspond to layers whose ad-
dresses are requested most - i.e. where most of the network traffic
is destined, As long as only a few entries with even fewer distinct
prefix lengths dominate the traffic characteristics, the solution can
be found easily. However, with a large number of frequently ac-
cessed entries, building an optimal tree is a complex optimization
problem, especially, because restructuring the tree also removes the
terminal condition on many markers and adds it to others.

To build a useful asymmetrical tree, we can recursively split
both the upper and lower part of the binary search tree’s current
node’s search space, at a point selected by a heuristic weighting
function, Two different weighting functions with different goals
(one strictly picking the level covering most addresses, the other
maximizing the entries while keeping the worst case bound) are
shown in Figure 9, with coverage and averagefworst case analysis
for both weighting functions in Table 2. As can be seen, balancing
gives faster increases after the second step, resulting in generally
better performance than “narrow-minded” algorithms.

Now we can see why our first attempt, while improving the
worst case, makes the average case worse: the prefixes with length
8,16, and 24 are very common and also cover a big part of the ad-
dress space, so they should be reached in early stages of the binary
tree. In the original binary search, they were reached in step 2, 1,
and 2, respectively. In the new, “optimized” approach, they were
moved to step 4,3, and 5, respectively (Figure 8, to the bottom of
the tree, Besides slowing down the search, this increased the num-
ber of pure markers required to exceed the real prefixes, resulting in

Maximize Entries,
Keeping Balance

Figure 9: Asymmetric Trees produced by two Weighting Functions

Table 2: Address (A) and Entry Q Coverage for Asymmetric Trees

a large growth in memory requirements and insertion time.

4.2 Mutating Binary Search

In this subsection, we further refine the basic binary search tree to
change or mutate to more specialized binary trees each time we
encounter a partial match in some hash table. We believe this a
far more effective optimization than the use of asymmetrical trees
though the two ideas can be combined.

In the last section, we looked at prefix distributions sorted by
prefix lengths. This resulting histogram led us to propose asymmet-
rical binary search, which can improve average speed. Further in-
formation about prefix distributions can be extracted by dissecting
the histogram: For each possible n bit prefix, we could draw 2” in-
dividual histograms with possibly fewer non-empty buckets, thus
reducing the depth of the search tree.

When partitioning according to 16 bit prefixes5, and counting
the number of distinct prefix lengths in the partitions, we discover a

51here is noddng magic about the 16 bit level. other than it king a good root for P
bimy search of 32 bit JPv4 addresses.

30

1 Distinct Lengths j

1
2

;
5
6

I

7

;
10
11
12

608
365
249
165
118
78
46
35
15
9
3

Table 3: Number of Distinct Prefix Lengths in the 16 bit Partitions
(Histogram)

nice property of the routing data (Table 3). Though the whole his-
togram (Table 7) shows 23 distinct prefix lengths with many buck-
ets containing a significant number of entries, none of the “sliced”
histograms contain more than 12 distinct prefixes; in fact, the vast
majority only contain one prefix, which often happens to be in the
16 bit prefix length hash table itself. This suggests that if we start
with 16 bits in the binary search and get a match, we need only do
binary search on a set of lengths that is much smaller than the 16
possible lengths we would have to search in naive binary search.

In general, every match in the binary search with some marker
X, means that we need only search among the set of prefixes for
which X is a prefix, This is illustrated in Figure 10. On a match we
need only search in the subtrie rooted at X (rather than search the
entire lower half of the trie, which is what naive binary search would
do,) Thus the whole idea in mutating binary search is as follows:
whenever we get a match and move to a new subtrie, we only need
to do binary search on the levels of new subtrie. In other words, the
binary search mutates or changes the levels on which it searches dy-
namically (in a way that always reduces the levels to be searched),
as it gets more and more match information.

New Trie on Failure

m = Median Length
_ gmong all prefix

/ i \ lenaths in trie

New Trie on Match

Figure 10: Showing how mutating binary search for prefix P dy-
namically changes the trie on which it will do binary search of hash
tables,

Thus each entry E in the search table could contain adescription
of a search tree specialized for al! prefixes that start with E. This
simple optimization cuts the average search time to below two steps

5 99.9% 97.8% 100.0% 100.0%
Average 1.6 2.4 1.6 2.2

Worst case 6 6 5 5

Table 4: Address (A) and Entry (E) Coverage for Mutating Binary
Search

(Table 4), assuming probability proportional to the covered address
space. Also with other probability distributions, (i.e., according to
actual measurements), we expect the average number of lookups to
be around two.

As an example, consider binary search to be operating on a tree
of levels starting with a root level, say 16. If we get a match which
is a marker, we go “down” to the level pointed to by the down child
of the current node; if we get a match which is a prefix and not a
marker, we are done; finally, if we get no match, we go “up”. In the
basic scheme without mutation, we start with root level 16; if we
get a marker match we go down to level 24, and go up to Level 8 if
we get no match.

1
Tree1 2 3 4

Figure 11: Mutating Binary Search Example

Doing basic binary search for an IPv4 address whose BMP has
length 21 requires checking the prefix lengths 16 (hit), 24 (miss),
20 (hit), 22 (miss), and finally 21. On each hit, we go down, and on
misses up.

Using Mutating Binary Search, looking for an address (see
Figure 11) is different. First, we explain some new conventions for
reading Figure 11. As in Figure 4, we continue to draw a trie on the
right. However, in this figure, we now have multiple binary trees
drawn on the left of the figure, labeled as Tree 1, Tree 2, etc. This is
because the search process will move from tree to tree. Each binary
tree has the root level (i.e., the first length to be searched) at the left;
the upper child of each binary tree node is the Iength to be searched
on failure, and whenever there is a match, the search switches to the
more specific tree.

Finally, Figure 11 has a number of prefixes and markers that are
labeled as E, F, G, H, J for convenience. Every such entry in our

31

example has E as a prefix. Thus rather than describe all the bits
in E, we denote the bits E as . , .; the bits in say F are denoted as
. , ,111, which denotes the concatenation of the bits in E with the
suftlx 111. Finally, each hash table entry consists of the name of
the node, followed by the bits representing the entry, followed by
the label of the binary tree to follow if we get a match on this entry.
The bmp values are not shown for brevity.

Consider now a search for an address whose BMP is G in the
database of Figure 11. The search starts with a generic tree, Tree 1,
SO length 16 is checked, finding E. Among the prefixes starting with
E, there are known to be only five distinct lengths (say 17, 18, 19,
20,21, and 22). So E contains a description of the new tree, Tree 2,
limiting the search appropriately. Using Tree 2, we find F, giving
a new tree with only a single length, leading to G. The binary tree
has nlutated from the original tree of 32 lengths, to a secondary tree
of 5 lengths, to a tertiary “tree” containing just a single length.

Looking for J is similar. Using Tree 1, we find E. Switching to
Tree 2, we And H, but after switching to Tree 4, we miss at length
21, Since a miss (no entry found) can’t update a tree, we follow our
current tree upwards to length 20, where we find J.

In genera!, whenever we go down in thecurrent tree, we can po-
tentially move to a specialized binary tree because each match in the
binary search is longer than any previous matches, and hence may
contain more specialized information. Mutating binary trees arise
naturally in our application (unlike classical binary search) because
each level in the binary search has multiple entries stored in a hash
table. as opposed to a single entry in classical binary search. Each
of the multiple entries can point to a more specialized binary tree.

In other words, the search is no longer walking through a single
binary search tree, but through a whole network of interconnected
trees, Branching decisions are not only based on the current prefix
length and whether or not a match is found, but also on what the best
match so far is (which in turn is based on the address we’re looking
fan) Thus at each branching point, you not only select which way
to branch, but also change to the most optimal tree. This additional
information about optima! tree branches is derived byprecomnpura-
tiolt based on the distribution of prefixes in the current dataset. This
gives us a faster search pattern than just searching on either prefix
length or address alone.

Two possible disadvantages of mutating binary search immedi-
ately present themselves. First, precomputing optimal trees can in-
crease the time to insert a new prefix. Second, the storage required
to store an optimal binary tree for each prefix appears to be enor-
mous. We deal with insertion speed in Section 5. For now, we only
observe that while routes to prefixes may frequently change in cost,
the addition of a new prefix (which is the expensive case) should be
much rarer. We proceed to deal with the space issue by compactly
encoding the network of trees.

ROPC A key observation is that we only need to store the sequence
of levels which binary search on a given subtrie will follow on re-
peatedfailures to&d a match. This is because when we get a suc-
cessful match (see Figure 10) we move to a completely new subtrie
and can get the new binary search path from the new subtrie. The
sequence of levels which binary search would follow on repeated
failures is what we call the Rope of a subtrie, and can be encoded
ef!lcient!y. We call it Rope, because the Rope allows us to swing
from tree to tree in our network of interconnected binary trees.

If we consider a trie, we define the Rope for the root of the trie
node to be the sequence of trie levels we will consider when doing
binary search on the trle levels while failing at every point. This
is illustrated in Figure 12. In doing binary search we start at Level
m which is the median length of the trie. If we fail, we try at the
quartile length (say n), and if we fail at n we try at the one-eight

level (say 0). The sequence m, n, 0,. . . is the Rope for the trie.

Figure 12: In terms of a trie, a rope for the trie node is the sequence
of lengths starting from the median length, the quartile length, and
so on, which is the same as the series of left children (see dotted oval
in binary tree on right) of a perfectly balanced binary tree on the trie
levels.

Figure 13 shows the Ropes containing the same information as
the trees in Figure 11. Note that a Rope can be stored using only
log, W (7 for IPv6) pointers. Since each pointer needs to only dis-
criminate among at most W possible levels, each pointer requires
only log, W bits. For IPv6,64 bits of Rope is more than sufficient,
though it seems possible to get away with 32 bits of Rope in most
practical cases. Thus a Rope is usually not longer than the storage
required to store a pointer. To minimize storage in the forwarding
database, a single bit can be used to decide whether the rope or only
a pointer to a rope is stored in a node.

Hash Tables

Rope 1 2 3 4

Note: Rope I contains the pardally invisible ktyers 16,s. 4,2. nnd 1.

Figure 13: Sample Ropes

Using the Rope as the data structure has a second advantage: it
simplifies the algorithm. A Rope can easily be followed, by just
picking pointer after pointer in the Rope, until the next hit. Each
strand in the Rope is followed in turn, until there is a hit (which starts
a new Rope), or the end of the Rope is reached.

Pseudocode for the Rope variation of Mutating Binary Search
is shown below. An element that is a prefix but not a marker (i.e.,
the “terminal” condition) specifies an empty Rope, which leads
to search termination. The algorithm is initialized with a starting
Rope. The starting Rope corresponds to the default binary search
tree. For example, using 32 bit IPv4 addresses, the starting Rope

32

contains the starting level 16, followed by Levels 8, 4, 2, 1. The
Levels 8,4,2, and 1 correspond to the “up” pointers to follow when
no matches are found in the default tree. The resulting pseudocode
(Figure 14) is elegant and simple to implement. It appears to besim-
pler than the basic algorithm.

Function RopeSearch (* search for address D *)
Initialize Rope R containing the default search sequence;
Initialize BMP so far to null string;
While R is not empty do

Pull the first strand (pointer) off R and store it in i;
Extract the first L[i].length bits of D into D’;
M := Search(D’, L[i].hash); (* search hash table for D’ *)
IfM is not nil then

BMP := M.bmp; (* update best matching prefix so far *)
R := M.rope; (* get the new Rope, possibly empty *)

Endif
Endwliilc

Figure lrb: Rope Search

4.3 Using Arrays

In cases where program complexity and memory use can be traded
for speed, it might be desirable to change the first hash table lookup
to a simple indexed array lookup, with the index being formed from
the llrst 2ua bits of the address, with 200 being the prefix length at
which the search would be started. For example, if wo = 16, we
would have an array for all possible 216 values of the first 16 bits of
a destination address, Each array entry for index i will contain the
6m.p of i as well as a Rope which will guide binary search among all
prelixes that begin with i. An initial array lookup is not only faster
than a hash lookup, but also results in reducing the average number
of lookups (to around 0.5 using the current data sets we have exam-
ined.)

4.4 Hardware Implementations

As we have seen in both Figure 6 and Figure 14, the search func-
tions are very simple, so ideally suited for implementation in hard-
ware, The inner component, most likely done as a hash table in soft-
ware implementations, can be implemented using (perfect) hashing
hardware such as described in [Dig95]. Alternatively, a fast CAM
could be used.

The outer loop in the Rope scheme can be implemented as a shift
register, Using multiple shift registers, it is possible to pipeline the
searches, resulting in one completed routing lookup per hash lookup
time.

5 Implementation

Besides hashing and binary search, a predominant idea in this paper
is prccowputalion. Every hash table entry has an associated bmp
held and (possibly) a Rope field, both of which are precomputed.
Precomputation allows fast search but requires more complex Inser-
tion routines. However, as mentioned earlier, while routes to pre-
fixes may change frequently, the addition of a new prefix (the ex-
pensive case) is much rarer, Thus it is worth paying a penalty for
Insertion in return for improved search speed.

5.1 Basic Scheme Built from Scratch

Setting up the data structure for the Basic Scheme is straightfor-
ward, as shown in the BuildBasic function (Figure 15, with a com-
plexity of O(N log, IV)). For simplicity of implementation, the list
of prefixes is assumed to be sorted by increasing prefix length in ad-
vance (O(N) using bucket sort). For optimal search performance,
the final hash tables should ensure minimal collisions.

Function BuildBasic;
For all entries in the sorted list do

Read next pair (Prefix, Length) from the list;
Let .Indez be the index for the Length’s hash table;
Use Basic Algorithm on what has been built by now

to find the BMP of Prefix and store it in BMP;
Add a new prefix node for Pref ix in the hash table for Index;
(* Now insert all necessary markers “above” *)
For ever do

(* Go back one level in the binary search tree *)
Clear the least significant one bit in Index;
If~nnde?: = 0 then break; (* end reached *)
Set Length to the appropriate length for Index;
Shorten Prefix to Length bits;
If there is already an entry for Pref ix at InHex then

Make it a marker if it isn’t already;
break; (* higher levels already do have markers *)

Else
Create a new marker Prefix at Inde.~’ hash table:
Set it’s bmp field to BMP;

Endif
Endfor

Endfor

Figure 15: Building for the Basic Scheme

5.2 Rope Search from Scratch

Building a Rope Search data structure balanced for optimal search
speed is more complex, since every possible binary search path
needs to be optimized. To find the bmp values associated with
markers, it helps to have an auxiliary trie. Thus we have two passes:

Pass 1 builds a conventional trie. Each trie node contains a list
of all prefix lengths used by its “child” nodes (subtree length set,
SLS). If a weighting function is being used to optimize accesses
based on known or assumed access patterns, further statistics and
forecasts should be summarized. All this additional information is
kept up-to-date while inserting, in O(NTV) time.

In the second pass, all prefixes are inserted into the hash tables,
starting with the shortest prefix: for each prefix, it’s Rope and the
BMP for it’s markers are calculated and then the markers and the
prefix are inserted. This takes O(iVlog* W), as we will see later.

Inserting from shortest to longest prefix has the nice property
that all BMPs for the newly inserted markers are identical and thus
only need to be calculated once. This can easily be seen by recalling
that each marker is (1) a prefix of all the entries it guides the search
to, (2) that the marker’s BMP is also a prefix of the marker, and (3)
inserting entries longer than tbe marker’s length cannot change it’s
BMl?

There are at most O(log W) markers to insert for each real pre-
fix, and each prefix and marker needs a rope, which can be cab
culated from the SLS in O(logIV).6 The overall work thus is

‘hingfidfirsr bir instructions; precomputed mmys would be O(1)

33

Algorithm
Binary Search
Tric

Build Search Memory
O(NlogN) O(log(2N)) O(N)
OW W aw OW W

Radix Trie’ O(N wj oiw
Basic Scheme O(Nlog W) O(log W)
Asymmetric BS $; 1Wg)W) $2 IV]
Rope Search
Ternarv CAMS O(N) O&

O(N)
O(N log W)
O(Nlog W)
O(N log W)
O(N)

Basic 1 Rope i Array] Radix

~

Table 6: Performance Comparison
Table 5: Speed and Memory Usage Complexity

O(N m&W, log*(W))). W e are working on a faster and more el-
egant algorithm for building the Rope Search data structure in time
O(N log*(W)) (that also does not require building a trie). We will
describe this and other optimizations in a future paper.

One problem for the insertion is that the number of markers for
each length is not known in advance, which makes it difficult to al-
locate memory for the hash table in advance. This problem can be
avoided by putting all entries in asingle hash table and including the
prefix length in the hash calculation. Since there is an upper limit of
log W markers per real prefix. we can size the single hash table. For
typical IPv4 forwarding tables, about half of this maximum number
is being used.

5.3 Insertions and Deletions

Adding and removing single entries from the tree can also be done,
but since no rebalancing occurs, the performance of the lookups
might slowly degrade over time. However, addition and deletion
are not trivial, Adding or deleting a single prefix can change the
bmp values of a large number of markers, and thus insertion is po-
tentially expensive in the worst case. Similarly, adding or deleting
a new prefix that causes a new prefix length to be added or deleted
can cause the Ropes of a number of entries to change. The simplest
solution is to batch a number of changes and do a complete build
of the search structure, Such solutions will have adequate through-
put (because whenever the build process falls behind, we will batch
more efficiently), but have poor latency. We are working on fast in-
cremental insertion and deletion algorithms, but we do not describe
them here for want of space. Our incremental insertion and deletion
algorithms still require the tree to be rebuilt after a large number of
different inserts and deletes.

6 Performance Evaluation

Recollecting some of the data mentioned earlier, we show measured
and expected performance for our scheme.

6.1 Complexity Comparison

Table 5 collects the (worst case) complexity necessary for the differ-
ent schemes mentioned here. Be aware that these complexity num-
bers do not say anything about the absolute speed or memory usage.
See Section 2 for a comparison between the schemes. For Radix
Tries, Basic Scheme, Asymmetric Binary Search, and Rope Search,
W is the number of distinct lengths, Memory complexity is given
in W bit words.

6.2 Measurements for IPv4

So far we have described how long our algorithm takes (in the av-
erage or worst case) in terms of the number of hash computations
required. It remains to quantify the time taken for a computation on
an arbitrary prefix length using software. To do so, we ran the fol-
lowing experiments on a 200 MHz Pentium Pro from C code using
the compiler’s maximum optimization (Table 6). The forwarding
table was the same 33,000 entry forwarding table wer-961 used be-
fore.

Basic Scheme Memory usage is close to 1.2 MByte, for the pri-
mary data structures (the most commonly accessed hash tables for
length 8,16, and 24) fit mostly into second level cache, so the first
two steps (which is the average number needed) are very likely to be
found in the cache. Later steps, seldom needed, will be remarkably
slower.

Rope Search Although the average number of search levels and
thus the number of marker entries needed decreases, the memory
needed per node increases.

Rope Search starting with Array Lookup This array fully fits
into the cache, leaving ample space for the hash tables. The array
lookup is much quicker, and there will be less total lookups needed
than for the Rope scheme.

Radix l&s The Radix Trie functions were extracted from opti-
mized NetBSD kernel code and put into user space for measure-
ment.

6.3 Projections for IP Version 6

IPv6 address assignment principles have not been finally decided
upon. However, three methods are currentIy being discussed in
the IPng working group of the Internet Engineering Task Force
(IETF). All of them use hierarchical schemes to provide as much
routing aggregation as possible: provider-based addressing [R+97],
geographical addressing, and “GSF’ (Global, Site, End-system)
[O’D97].

All these schemes help to reduce routing information. In the op-
timal case of a strictly hierarchical environment, it can go down to
a handful of entries, But with massive growth of the Internet to-
gether with the increasing forces for connectivity to multiple ISPs
(“multihoming”) and meshing between the ISPs, we expect therout-
ing tables to grow. Another new feature of IPv6, Anycast addresses
[HD96, DH96], may (depending on how popular they will become)
add a very large number of host routes and other routes with very
long prefixes.

34

So most sites will still have to cope with a large number of rout-
ing entries at different prefix lengths. There is likely to be more dis-
tinct prelix lengths, so the improvements achieved by binary search
will be similar or better than those achieved on IPv4.

For the array access improvement shown in Section 4.3, the im-
provement may not be as dramatic as for IPv4. Although it will im-
prove performance for IPv6, it is less attractive, because addresses
will be longer. Good starting points may require rather large pre-
lixes (i.e. 24 bits or longer). With 224 necessary entries, it is no
longer feasible to have a whole array stored in memory, requiring
us to select a less optimal starting point to still gain improvement
from the array access. Depending on the actual data, this may still
be a win. All other optimizations are expected to yield similar im-
provements.

7 Conclusions and Future Work

We have designed a new algorithm for best matching search. The
best matching prefix problem has been around for twenty years
in theoretical computer science; to the best of our knowledge, the
best theoretical algorithms are based on tries. While inefficient al-
gorithms based on hashing [Sk1931 were known, we have discov-
ered an extremely efficient algorithm that scales with the logarithm
of the address siu: and so is very close to the theoretical limit of
O(log log N).

Our algorithm contains both intellectual and practical contri-
butions, On the intellectual side, after the basic notion of binary
searching on hash tables, we found that we had to add markers and
use precomputation, to ensure logarithmic time in the worst-case.
Algorithms that only use binary search of hash tables are unlikely
to provide logarithmic time in the worst case. Among ouroptimiza-
tions, we single out mutating binary trees as an aesthetically pleas-
ing idea that leverages off the extra structure inherent in our partic-
ular form of binary search.

On the practical side, we have a fast, scalable solution for IP
lookups that can be implemented in either software or hardware.
Our software projections for IPv4 are SO ns and we expect 1%
200 ns for IPv6. Our averagecasespeed projections are based on the
sttuctureofexistingroutingdatabases that we examined. We expect
most of the characteristics of this address structure to strengthen in
the future, especially with the transition to IPv6. Even if our pre-
diclions, based on the little evidence available today, should prove
to be wrong, the overall performance can easily be restricted to that
of the basic algorithm which already performs well.

With algorithms such as ours, we believe that there is no more
reason for router throughputs to be limited by the speed of their
lookup engine, We also do not believe that hardware lookup engines
are required because our algorithm can be implemented in software
and still perform well. For similar reasons, we do not believe that
there is a compelling need for protocol changes to avoid lookups as
proposed in Tag and IP Switching. Even if these protocol changes
were accepted, fast lookup algorithms such as ours are likely to be
needed at several places in the network.

Future work on our algorithm includes theoretical work on a
choice of balancing function, hopefully yielding an improvement
over our ad-hoc heuristic functions. Other avenues of research in-
clude thechoiceofa heuristic function based on actual network traf-
iic, and work on faster insertion algorithms. We are also trying to
optimize the building and modification processes. Our algorithm
belongs to a class of algorithms that speed up search at the expense
of insertion; we are looking for other applications and generaliza-
tions of our algorithm.

In spite of potential improvements, we believe our algorithm
is ready for practical use. To prove this, it will be incorporated

into the Crossbow project [Df97], a joint project between ETH and
Washington University. The goal of Crossbow is to build a extensi-
ble framework for IPv6 as well as a high-speed IPv6 cell-switched
router with QoS guarantees.

Acknowledgements

We would like to thank the whole Crossbow team for their valuable
input, feedback, and support, especially Hari Adiseshu, Dan De-
casper, Zubin Dittia, and Guru Parulkar. We also thank Cheenu (V.
Srinivasan) for providing us with the Radix Trie code and suggest-
ing fast hash functions for the Pentium. The work of George Vargh-
ese was supported in part by an ONR Young Investigator Award and
NSF grants NCR-940997 and NCR-962S218.

References

[CV95] Girish Chandranmenon and George Varghese. Trading
packet headers for packet processing. In Proceedings of
SIGCOMM 95, Boston, August 1995.

[CV96] Girish Chandranmenon and George Varghese. Trading
packet headers for packet processing. IEEE Transactions
on Networking, April 1996.

[D+97] Dan Decasper et al. Crossbow-a toolkit for integrated
services over cell switched IPv6. In Proceedings of the
IEEEATMPI workshop, Lisboa. Portugal, May 1997.

[DH96] Steven Deering and Robert Hinden. Internet proto-
col, version 6 (IPv6) specification (RFCl883). ftp://
ds.intemic.netlS83.txt. 1996.

[Dig951 Digital. GIGAswitcNFDDI networking switch. http://
www.networks.europe.digital.com/htmVproducts-guidef
hp-swchKhtml,l995.

[p93] Vince Fuller et al. Classless Inter-Domain Routing
(CIDR): an address assignment and aggregation strategy
(RFC1519). ftp://ds.intemic.netlSl9.txt, 1993.

[HD96] Robert Hinden and Steven Deering. IP version 6 ad-
dressing architecture (RFClSS4). ftp://ds.intemic.net/rfc/
rfclSS4.txt, 1996.

[Lab963 Craig Labovitz. Routing analysis. http~///rvwvf.meritedul
ipmalanalysis/routing.html, 1996.

[Mer96] Merit Network, Inc. la19196 routing table snap-
shot at Mae-East NAP. http://www.merit.edu/ipma/
routing-tablel, January 1996.

[MF93] A. McAuley and I? Francis. Fast routing table lookup US-

ing CAMS. In Proceedings of INFOCOM, pages 1382-
1391, March-April 1993.

[MTW95] Anthony J. McAuley, Paul F. Tsuchiya, and Daniel V.
Wilson. Fast multilevel hierarchical routing table using
content-addressable memory. U.S. Patent serial num-
ber 0344% Assignee Bell Communications research Inc
Livingston NJ, January 1995.

[NMH97] Peter Newman, Greg Minshall, and Larry Huston. IP
Switching and gigabit routers. IEEE Communications
Magazine. January 1997.

35

[O’D97] Mike O’Dell. GSE - an alternate addressing architec-
ture for IPv6. ftp://ds.intemic.net/intemet-drafts!draft-
ietf-ipngwg-gseaddr-00&t, 1997.

[Par961 Craig Partridge. Locality and route caches. In NSF
Workshop on Internet Statistics Measurement and Anal-
ysis, San Diego, CA, USA, February 1996.

[Per921 Radia Perlman. Interconnections, Bridges and Routers.
Addison-Wesley, 1992.

[R+96] Yakov Rekhter et al. Tag switching architecture
overview. ftp://ds.intemic.net/intemet-drafts/draft-rfced-
info-rekhter-OO.txt, 1996.

[R+97] Yakov Rekhter et al. An IPv6 provider-based uni-
cast address format (RFC2073). ftp://ds.intemic.net/rfc/
rfc2073,txt, 1997.

[Rob971 Erica Roberts. IP on speed. Data Communications Mag-
azine, pages 84-96, March 1997.

[Sk1931 Keith Sklower. A tree-based routing table for Berkeley
Unix. Technical report, University of California, Berke-
ley, 1993.

36

