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Abstract—" Packet filtersarerulesfor classifying packets based on their
header fields. Packet classification isessential torouter ssupporting services
such asQuality of Service (QoS), Virtual Private Networks(VPNs), and fire-
walls. A filter conflict occurs when two or morefilters overlap, creating an
ambiguity in packet classification. Current techniques for resolving filter
conflicts are based on prioritizing conflicting filters, and choosing the higher
priority filter. We show that such ordering does not alwayswork. Instead,
we propose a new schemefor conflict resolution, which isbased on the idea
of adding resolvefilters. Our main results are algorithmsfor detecting and
resolving conflictsin afilter database. We havetried our algorithm on 3 ex-
isting firewall databases, and have found conflicts, which arepotential secu-
rity holes, in each of them.
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I. INTRODUCTION

The Internet is undergoing fundamental changes both in the
demand for bandwidth and in the demand for new services be-
yond thetraditiona best effort service, caused by the expanding
set of users and the growth of multimedia content. This has fu-
eled the demand for routers able to handle large traffic volumes
mesasuring in millions of packets per second.

At the same time, router technology is advancing from sim-
pledestination based forwarding to incorporatea number of new
capabilities which affect the forwarding process. Successful de-
ployment of these technologies and services is crucia for the
successful evolution of the Internet towards a full service net-
work.

CIDR, IntServ and DiffServ QoS, Firewalls and VPNs are
all examples of technologies which have extended the internet
forwarding tablelookups, from fixed length lookupsto sophisti-
cated 5 tuple lookups with wildcarding. What is common in all
these examples is that the routersin the networks al have state
installed in them. The state is an association between a set of
packets and the action to be performed on that set. The set of
packets is described by the contents of some of the fieldsin the
packets — this is sometimes referred to as a packet filter. The
packet filters can include fields from the network layer (IP) as
well as higher layer (TCP or UDP) fields. For example, an ap-
plicationlevel flow can be described by a5-tupl efilter consisting
of the | P source and destination address, the upper level protocol
(TCP or UDP) and the upper level protocol source and destina-
tion ports.

In order for the Internet to transform itself from today’s
chaotic logjam to the full service network of tomorrow, itisim-
portant to provide afast and scalable solution to the problem of
packet classification and filter matching. While this problemis

I For space considerations al proofs, algorithmic complexity analysis, and
some experimental results have been omitted. See [1] for the full length draft
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under active study these days, arelated problem has not received
much attention: PACKET FILTERS CAN LEAD TO AMBIGUITIES
IN PACKET CLASSIFICATION. Thisispossiblebecause apacket
might match multiplefilters, each with a different associated ac-
tion. This important problem has not been studied so far. We
refer to this problem as the problem of filter conflict and resolu-
tion. This can be split up into two distinct subproblems. First,
how does one detect such conflicts? Second, given aset of con-
flicting filters, how does one resolve these conflicts? This pa-
per presents a genera solution to both problems, and a fast so-
[ution optimized for commonly occurring filters. It isimportant
to consider filter conflict resolution in any scheme involvingfil-
ters, sincefilters, if not handled correctly, can cause packetsto be
subject to thewrong actions. For example, incorrectly matching
packets to filtersin firewalls can cause security problems.

CONTRIBUTIONS AND RESULTS.

+ We formally characterize the conditions which lead to con-
flictsamongst filters.

+ We prove that existing conflict resolution schemes based on
filter ordering do not work in all cases.

« We show that our scheme, based on adding new filters, works
inal cases.

o Our agorithm is genera enough to be applicable for filters
with any number of fields.

+ When applied to three operational firewall databases, our d-
gorithm uncovered potentia security holes, wherefilter conflicts
lead to unintended actions.

o In the special case of 2-tuple filters which correspond to
Source-Destination prefix filters, we develop a highly efficient
trie-based al gorithmwhich can be used for both filter conflict de-
tection and packet classification, thereby eliminating any redun-
dancy between the control path and the data path.

+ We present simulation results showing filter conflict detec-
tion times in the order of afew microseconds on a 30000 filter
database on a 200 M hz Pentium workstation.

+ We show how to extend the trie-based a gorithm to 5-tupl efil -
ters, which include protocol and port fields. Thisextendstheap-
plicability of thisalgorithmto virtually all current uses of filters,
ranging from firewalls to VPNs to QoS signaling.

OUTLINE AND ROADMAP OF PAPER

Section |1 defines filters abstractly and reviews current solu-
tionsto thefilter conflict problem. We show that the current solu-
tions have potentially undesirable outcomes, caused by implicit
and inflexible mapping of packets to filters. This section also



presents akey insight to our solution, namely, aconflict between
two filters can be resolved by adding a new filter which covers
the region of conflict. We aso show why solutionsto conflict
resolution based on ordering filters do not work in the genera
case.

Section |11 providesthe algorithm for the general solution of
conflict detection in filters with arbitrary number of fields. The
remaining sections deal with fast versions of the genera ago-
rithm. Section IV provides the motivation for developing such
optimized algorithms. Section V provides a solutionfor 2-tuple
filters, for example, filtersconsisting of | P source and destination
address masks. Thisisimportant since 2-tuplefilters consisting
of (1P source, | P destination) addresses are the most widely used
filtersfor unicast and multicast traffic management.

Section VI describes how the 2-tuple agorithm can be ex-
tended to the 5-tuple case in which the protocol and port fields
are either wildcarded or fully specified. This extends the appli-
cability of our algorithmto virtually al know uses of packet fil-
ters.

Section V11 describes security holes uncovered by our gen-
eral agorithm and provides experimenta results to verify that
the performance of our fast agorithm actually is consistent with
the desired goal in terms of time, and stays constant irrespective
of the number of filtersin the database. Section VIII presents
conclusionsand plans for future work.

1. CONFLICTSIN FILTERS

A filter F'isa k-tuple (F[1], F[2], ..., F[k]), where each
field F'[7] is a prefix bit string.? Each prefix string z.* deter-
minesarangeof addresses, namely, [0 - - -0, z1 - - - 1]; thenum-
ber of bits appended to « is the difference between the maxi-
mum bit length of 2’sfield and the number of bitsspecified in .
For instance, the prefix 10 in a4-bit field determines the range
[1000,1011] = [8, 11]. We say that an address X matchesapre-
fix .x if X liesintherange [20---0,21---1]. We say that a
packet P matchesafilter /', if each field of P matchesthecorre-
sponding prefix of . For instance, an |P packet with source and
destination addresses (128.112.234.2,128.122.34.51) matches
the 2-tuple filter (128.112.x,128.122.%), but not the filter
(128.112.%, 128.132.%).

Each filter F' is associated with an action, denoted A(F).
A packet P matching afilter /' should be processed based on
A(F). Typicd filters range from 1-tupleto 5-tuple. 1-tuplefil-
ters consist of IP destination addresses or prefixes. These are
used in routing tables. 2-tuple filters are used in 1P multicast-
ing to identify (source, group) pairsand also in VPNs. Herethe
tuples represent 1P source and destination addresses or prefixes.
3-tupleand 5 -tuplefilters are used in more refined classification
schemes where the protocol and the port fields are also used in
acting on a packet. Firewall filters can be range from 1-tupleto
5-tuple and beyond.

The problem with filters is that a packet might match multi-
plefilterswith conflicting values for the action. To illustratethe
problem of conflictsin filters, let us consider the case of simple

2QOccasionally afilter field is specified as a range, such as the port field, but
we can easily convert an arbitrary range into a small number prefix rangesusing
well-known techniques.

2-tuplefilters, consisting of source and destination | Pv4 address
prefixes. The two fields can either be fully specified or wild-
carded, or can be partially wildcarded in standard prefix format.
Let 128.112.% denote the prefix corresponding to network = and
let 128.122.x denotethe prefix of network y. Consider twofilters
Fy = (128.112.%, %), with A(Fy) ={100 Mbps bandwidth},
and I, = (¥,128.122.), with A(F,) ={1 Mbps bandwidth}.
Thefirst filter assigns al packets from source network « a band-
width of 100 Mbpswhilethe second filter assignsall packetsdes-
tined to network y a BW of 1 Mbps. What happensif the router
startsreceiving a 10 Mbpsflow from source net - destined to net
y? We have a conflict since the packets of the flow match both
4 and F,. Which filter should take precedence?

Some possible solutionsare:

a) The first matching filter in the filter database takes prece-
dence. For example, if F is stored before /5 in the database,
then the flow goes through at 100 Mbps. On the other hand, if
I is stored before £y, than most of the packets of the flow are
dropped, since the flow is restricted to a BW of only 1 Mbps.
This approach is commonly used to resolve conflicts in fire-
walls, where incoming packets are matched against filters spec-
ified in access control lists and the action is determined by the
first matching filter.

b) Assignprioritiesto differentfilters, and usethematchingfil-
ter withthe highest priority. Thisschemeturnsout to beidentical
to scheme @) if we sort thefiltersin the order of priority.

c) Assignprioritiestofieldssothat in case of multiplematches
the filter with the most specific matching field with the highest
priority is selected. For example, if the source addressis given
higher priority on matches than the destination address, then for
packets goingfrom network « to network y thefilter £ isabetter
match than F5.

All of these implicit conflict resolution schemes, while sim-
ple to implement, suffer from some serious drawbacks. For ex-
ample, in case a), as we have aready discussed, depending on
whether Fy or F; is listed, packets of the flow will either go
through or be dropped. Thus, this scheme imposes an arbitrari-
ness on the conflict resolution. Case b), as mentioned, suffers
from the same problem.

In scheme c), with thefilters described above, thereisno way
to assign a1 Mbps BW for packets going from net = to net y.
Thus, this scheme substitutes arbitrariness with inflexibility in
filter matching.

If we substituteafirewall for the QoS aware router described
earlier and substitute Accept/Reject for the actions associated
with /4 and F, we see that filter conflicts can aso lead to secu-
rity problems. Asaptly stated inabook onfirewalls—' Thepoint
hereisthat getting filtering rulesright istricky’ [2]. In fact, we
have actually uncovered similar problemsin firewall databases.
Weformally show in Section 11-A why such implicit conflict res-
olution schemes do not work in the general case.

Our agorithms are based on the following two key observa
tions:

o Iffilter fieldsareprefix fields, then each field of afilter iseither
astrict subset of, or equal to, or astrict superset of, or completely
digoint, from the corresponding field in any other filter. In other
words, itisnot possibleto have partial overlaps of fields. Partia
overlaps can only occur when the fields are arbitrary ranges, not



prefixes.

+ By the addition of a new filter (which we call the resolve fil-
ter) which coverstheregion of overlap, we can eliminate conflict
between two overlapping filters. This assumes a Best Matching
Filter (BMF) packet classification, analogousto the Best Match-
ing Prefix (BMP) in 1-dimensional lookups. In BMF classifica-
tion, apacket matchesthefilter which best matchesitin al fields.
Adding resolvefilters guarantees a BMF match.

A. Implicit Conflict Resolution Through Filter Reordering

To see why implicit schemes for conflict resolution based on
filter ordering do not work in the general case, consider the ex-
ample of a company with two geographically dispersed secure
divisions. The company policy isto | et the secure divisionsopen
TCP connections with the rest of the company, but prohibit the
rest of the company from initiating a TCP connection with ei-
ther division. Assume the | P address prefix of the company isZ,
and that of the two divisionsare Z.securel and Z.secure2. Then
an interna firewall inside the company network can contain the
following rules:

A From Z.securel.* to Z.*, *dlow TCP SYN request’
B From Z.secure2.* to Z2.*, ‘allow TCP SY N request’
C From Z.* to Z.securel.*, ‘reject TCP SY N request’
D From Z.* to Z.secure2.*, ‘reject TCP SYN request’
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Fig. 1. Conflicting Filters. Scenario whereit is not possible to resolve conflicts
by reordering filters

The rules are processed based on first matching filter, and are
shown graphically in Figure 1. Ascan beeasily seen, thereisno
explicit rule for the case when nodes in one of the secure divi-
sionsattempt to initiate TCP connectionswith nodesin the other
secure division. Thiscorrespondsto theregionsof overlap of the
four filters. In fact, with the current ordering of rules, this case
is always alowed. If, however, the company policy is to pro-
hibit TCP connections between the two secure divisions, while
allowing TCP connectionswithin the same divisions. it ispossi-
ble to show that no permutation of the above four rules can sat-
isfy such apolicy [1]. Onthe other hand, it isaways possibleto
giveexplicit resolvefiltersto satisfy such apolicy. (Observethat
when using our resolve filters, the filter matching is done using
the BMF rule)) The resolvefiltersfor our example are:

FE From Z.securel.* to Z.secure2.*, ‘deny TCP SYN request’
F' From Z.secure2.* to Z.securel.*, ‘deny TCP SYN request’

G From Z.securel.* to Z.securel.*, ‘accept TCP SYN request’
H FromZ.secure2.* to Z.secure2.*, *accept TCP SY N request’

In the implicit resolution scheme where no resolve filters are
added, in order to to obtain the same result as rule £, rule D
should have higher priority thanrule A. Toobtain F', we seethat
¢ should have higher priority than B. To obtain G, A should
have higher priority than C'. From thesethreerules, we conclude
that 1> should have higher priority than B. However, to obtain
H, B should have higher priority than D, which is a contradic-
tion.
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Fig. 2. Transforming conflicting filters into a graph. Cycles indicate conflicts
which cannot be resolved by reordering filters

Solving thefilter conflict problem by reordering filters can be
formulated asa cycle dimination probleminadirected graph D.
Specifically, we model each filter by a node of a directed graph.
We put a directed edge from node /' to node G if filters /' and
G overlap and F' has a higher priority than &G. For example, the
set of filters A, B, C, D described above istransformed into the
graph shown in Figure 2. Unambiguous classification by filter
orderingispossibleif and only if thisdirected graph D isacyclic.
Clearly, if D contains a cycle, then no reordering of filters can
avoid ambiguous classification. But if D isacyclic, then we can
perform a topologica sort [3] of the nodes to reorder the filters.
The followingtheorem states our result concerning when a set of
filters can be made conflict-free with simpl e filter reordering.

Theorem 1: If grgph D containsadirected cycle, then the set
of filters cannot be made conflict free without the addition of a
new resolvefilter.

We note that a particular cycle can be eliminated by intro-
ducing a single resolve filter. For instance, consider the cycle
A —-C — B —- D — A of Figure2. Suppose we add
aresolve filter & for the conflicting pair (A, D), and assign £
higher priority than both A and D. Thus, in the graph D, the
edge D — Alisreplaced by twoedges A — Eand D — F,
andthecycle A - C — B — D — Aisdiminated. It follows
that the smallest number of resolvefilters needed to eliminateall
conflictsisequal to the smallest number of edgeswhoseremoval
from D makes the graph acyclic. Unfortunately, thisproblemis
equivalent to a combinatorial optimization, known as the small-
est feedback arc problem, which is NP-Complete problem [4].
Thus, no polynomial-timealgorithms exists for determining the
smallest number of resol vefilter whoseadditionplusre-ordering
will make thefilter database conflict-free.

Our approach in this paper, therefore, isto add resolve filters
for each pair of conflictingfilters. Packet classification now cor-
responds not to thefirst matching filter, but to the best matching
filter. Itispossibleto combine our algorithmwith some heuristic
that tries to break as many cycles as possible with each resolve
filter. We have not pursued that strategy yet.



1. THE GENERAL ALGORITHM

Werecall that each filter F isak-tuple(F[1], F[2],..., F[k]),
where each field F[i] is a prefix bit string. We say that two
prefixes z.x and y.x are digoint if there is no address common
to them. Two filters are said to be digoint if no packet header
matches them both.

We start withthe most basi ¢ question: how to determineif two
k-tuple filters have a conflict. The following theorem answers
this question by giving a necessary and sufficient condition for
detecting the absence of aconflict. When theconditionfails, we
have afilter conflict.

Theorem 2: Two filters F' and GG are conflict-free if and only
if one of the following holds:

1. Thereissomefieldindexi such that theprefixes F[i] and G[7]
aredigoint, wherel < i < k,
2. Fordlfiddindicesi, F[i] isaprefix of G[i] and astrict prefix
for a least onei; or for dl indicesi, G[i] isaprefix of F'[i] and
astrict prefix for at least ones.

Figure 3 presents the pseudo-code for detecting whether two
k-tuplefilters have a conflict.

Algorithm 2FilterConflict (F, &)
(* Determinesif /" and GG conflict. *)
fori=1tokdo
if F'[¢] and G[i] are digoint
return “No Conflict”;
Set Flag = 1;
fori=1tokdo
if F[7]isnot aprefix of G[i]
Flag=0;
if (Flag =1) return “No Conflict”;
Set Flag = 1;
. fori=1tokdo
10. if G[7] isnot aprefix of F[i]
11. Flag=0;
12. if (Flag=1) return “No Conflict”;
13. esereturn “Conflict”;
end Algorithm
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Fig. 3. Algorithm to determine if two filters have a conflict.

A. Detecting and Resolving Conflicts

If twofilters F, G have a conflict, our solutionisto introduce
anew filter i, which is the filter corresponding to the overlap
region /' N G. We will call H the resolvefilter for F, G. What
aretheprefix fieldsfor thisresolvefilter? It isnot difficult to see
that each field of H isthelonger of the two prefixesin the corre-
spondingfieldsof 7' and GG. For instance, if F = (101%, 1%) and
G = (10%,111%),then H = (101%,111x). Figure 4 givesthe
pseudo-code for computing the resolve filter for two conflicting
filters.

Figure 5 givesthe pseudo-code for detecting and/or resolving
conflicts when a new filter is added. The set C'(F') in that code
stores al the filters in the database B that have a conflict with
the newly added filter 7. If oneis only interested in detecting

Algorithm ResolveFilter (F, (&)
(* Computesthe filter resolving the conflict
of F,G.*)

1. fori=1tokdo

2. Let 2; bethelonger of thetwo

prefixes F[7] and G[i];
3. return (zq, %9, ..., o5);
end Algorithm

Fig. 4. Computing thefilter to resolve conflict of two filters.

whether a conflict exists, we can quit as soon as Line 4 is exe-
cuted for thefirst time. If oneis only interested in enumerating
thefiltersin conflict with I, we don’t execute steps5-6, and sim-
ply list out the set C'(F).

Finaly, if wewant to maintain aconflict-free database, we add
the necessary resolve filters whenever a new filter creates con-
flicts. Supposethat theexistingdatabase B = {F'y, I, ..., Fx'}
is conflict-free. Once the set C'(F'), containing the filters of B
that conflict with F', isdetermined, we compute the resol ve filter
corresponding to each F; in C'(F'), and add that resolvefilter to
the database B. A key point to note that isthat adding aresolve
filter doesnot require arecursivecall to thealgorithm AddNew-
Filter. Thisisbecause adding aresolvefilter does not create any
new conflicts. If the resolve filter were to conflict with any ex-
isting filter, itisonly because the new filter which introduced the
resolvefilter in thefirst place has a conflict with the existing fil-
ter. Thus, theworst case runningtime of thealgorithmfor adding
afilterisO(N + C'), where N isthesize of the current database
and C' isthe number of conflicts.

Algorithm AddNewFilter (F, B)
(* Insert anew filter into B. *)
1. InitidizeC(F) = {F},
2. fori=1to|B|do
3 if £ and F; haveaconflict then
4. Add F; to C'(F);
5. for exchfilter F € C(F) do
6 Add ResolveFilter(F, F') to B;
end Algorithm

Fig. 5. Modifying B upon the addition of a new filter.

IV. FAST FILTER CONFLICT DETECTION

The problem of conflict detection is a problem of the control
path, where filters are added. Given a new filter, it is possible
to linearly scan the existing set of filters to detect a conflict as
described earlier. Isafaster agorithm necessary in the control
path? Consider for example, a router processing 100,000 filter
updates/s. Note for comparison purposes that large scale tele-
phoneswitchesare designed to handlethousands of callsper sec-
ond. The router has to process the filter update within 10 mi-
croseconds, and that includes the entire control path processing,
from receiving the message to admission control, from updating
the classifier and the scheduler to propagating any control mes-



sages onwards. Clearly, any conflict detection a gorithm cannot
consume more than a small fraction of the total available time,
and therefore has to operate within a few microseconds. The
problem becomes more acute when we consider that the filter
database can be large — the current Internet backbone routing
prefixes themsel ves number more than 40000. Another point to
note about filtersisthat most filtersin the Internet are either 2-
tuplefilters consisting of IP source and destination address pre-
fixes, or 5-tuplefilters which a so include the protocol type and
upper level port fields. This providesthe motivation to develop
conflict detection al gorithmswhich are optimized for these cases
and whose running timeis better than linear. We believe our ap-
proach to conflict detection and resolution in filtersis fast and
scalable enough to be used in the most demanding scenarios of
today and beyond. We will cover the performance of our fast a-
gorithmin greater detail in later sectionsand contrast it with ap-
proaches based on alinear search of the database.

V. AN IMPROVED ALGORITHM FOR 2-TUPLE FILTERS

The key insight for the new algorithmis the following obser-
vation, which follows readily from the general result in Theo-
rem 2.

Lemma 3: Filters F' and G have a conflict if and only if
1. G[1] isaprefix of F[1] and F'[2] is aprefix of G[2], or
2. F[l1]isaprefix of G[1] and G[2] isaprefix of F[2].

A. Trie Based Conflict Detection Algorithm

We will use the example database B shownin Figure6 to il-
lustrate our scheme. We develop a 2-dimensional recursive trie
data structure to solve thefilter conflict problem. We begin with
some basic definitionsand facts about tries.

Filter | Source | Destination
Fi 10 100«

Fy 10 011

F3 10 001«

EE 1% 00

Fy 1x 11x

Fs 1% 10

F5 0« 101%

E% * 1x

Fig. 6. Anexample 2-tuplefilter database.

Recall that atrieis abinary branching tree, with each branch
labeled O or 1. Thebit string associated with anode v isthe con-
catenation of all the bitsfrom theroot to the node «. A trienode
v isan ancestor of another node « if v lies on the path from the
root to . Stated another way, the bit string associated with v is
aprefix of thebit string at associated withu. If v isaancestor of
u, then u is called a descendant of v. (In Figure 7, for instance,
the node ¢ is an ancestor of node d and a descendant of node b.)

Our agorithm will need two complementary data structures,
one for each of the two cases of Lemma 3. In particular, one
data structure can efficiently isolatethefilterswhose sourcefield
isa prefix of F'ssource field, and then organize these filters to
quickly determine if any of them has the destination field with

F[2] as aprefix. The second data structure reverses the roles of
source and destination fields.

Recursive Trie 1

We start by building a trie on al the source address prefixes
in the database B. We call thisthe source trie S(B). Let u be
anodein thistrie, and let s(«) denote the bit string associated
withu. Weassociateasecond trie D(u) (destinationtrie) withu,
which stores the destination prefixes of the filters whose source
prefix is exactly s(u). More precisely, let us define the set

X(u) = {F e B|F[l] = s(u)}.

That is, X (u) isthe set of filterswith sourcefield equal to s(u).
We build a secondary trie D(w) on the destination addresses of
the set X (), which ispointed to by the node «. Figure 7 shows
the complete construction. Nodesof destinationtriesare labeled
with the filters associated with that destination address.

/} T N
N
1 0 1
F8 )/ 0 o/ \1
14
F4 F6 F5
1
(Destination trie
0 for node c.)
1
F7 F3 F2 F1

(Destination trie for
node d.)

Fig. 7. Recursive Trie 1 for the example database of Figure 6. The sourcetrie
S(B) isshown with thick solid lines; various destination tries are shown in
thin lines; dashed lines indicate pointers between a node and its associated
destination trie.

Recursive Trie 2

The second data structure builds a trie on the destination pre-
fixesin the database B; call thisthe destination trie D(B). For
each node « in D(B), let d(u) be the string associated with w.
Define the set

Y(u) = {FeB|F[2=du)}.

Y (u) isthe set of filterswith destination field equal to d(u). We
build a secondary trie S(«) on the source addresses of the set
Y (u), which ispointed to by the node u € D(B).

B. The Conflict Detection Algorithm

Supposewe want to add anew filter /' to an existing database
B and, if there are conflicts, modify the database by adding ap-
propriate resolve filters. We will search both Recursive Tries 1
and 2. When searching Recursive Trie 1, we first use the source
trie S(B) tolocatethe longest matching prefix of the sourcefield
F[1]. Let u bethe nodewith thislongest matching prefix, and let
vy, Vs, . . ., Uy e the nodes in the source trie whose bit strings
correspond to (proper) prefixes of F[1]. Observethat vy, . . .

avm



are dl ancestors of «, and possibly « = v;. We visit each of the
destinationtries D(v1), D(v2), . .., D(vy) inturn. In each des-
tinationtrie, say, D(v;), welocate thelongest matching prefix of
the destination field F'[2]. If the node > with the longest match-
ing prefix is a leaf then no filtersin D(v;) are in conflict with
F'. Otherwise (if z isnot a ledaf), all the filters associated with
descendants of z arein conflict with .

Thesearch inthesecond structure, Recursive Trie2, issimilar,
except therolesof sourceand destinationfieldsarereversed. The
completes agorithmis given in Section V-C.

Asan example, supposewewant toadd afilter ' = (10, 1x)
to the database of Figure 6. Then, the node d of the sourcetrie
givesusthelongest matching prefix for the sourcefield 10x. The
ancestors of d associated with prefixes of the source string 10
are b and ¢. We search the destination trie pointed to by ¢ to lo-
cate the longest matching prefix of the destination field 1x. The
node with this string is not aleaf, and so all the filters that de-
scend from it are in conflict with 7. There are two such filters,
F5 and Fg. Indeed, it is easy to see that F5 = (1x,11%) and
Fs = (1%, 10«) both have a conflict with F' = (10, 1x). Next,
we search the destination trie pointed to by 4, and find that the
node with destination prefix 1« isaleaf. A search of Recursive
Trie2 discoversno new filter conflicts, and so thereare only two
conflicts.

C. Pseudocode of conflict detection algorithmfor 2-tuplefilters.

Algorithm FastDetect (F, B)
1. InitidizeC(F) = {F},
(* Search Recursive Trie1 *)
2. Letu bethenodeinthesourcetrie S(B)
for which s(u) isthe longest matching prefix
of the source field F'[1];
3. Letwvy,vs,..., vy denotethenodesin S(B) whose bit
strings correspond to (proper) prefixes of F[1];
4. fori=1tomdo

5. Determine the node z in D(v; ) whose string isthe
longest matching prefix of the destination field F'[2];
6. Addto C'(F) al thefilters stored with a

descendant node of z;

(* Search Recursive Trie2 *)
7. Letu bethenodeindestinationtrie D(B) for which

d(u) isthelongest matching prefix of the

destination field F'[2];
8. Letwvy,vs,..., v, denotethenodesin D(B)

whose bit strings correspond to (proper) prefixes of F[2];
9. fori=1tomdo

10. Determine the node z in S(v;) whose string isthe
longest matching prefix of the sourcefield F[1];
1. Addto C'(F) al thefilters stored with a

descendant node of z;
12. If C'(F) only contains F', then add F to B, and
return “No Conflict”;
13. for eachfilter F/ € C(F) do
14. Add ResolveFilter(F, F) to B;
end Algorithm

D. Improving Conflict Detection Times

The straightforward trie based search outlined above has the
advantage of an updatetimeindependent of the number of filters
in the database. However thelookup times are of O (w?), where
w isthe width of each field. Thisis because when alookup in
the second levd triefails, we backtrack and restart at the root of
the next first level trie. It is possible to use precomputation and
switch pointers[5] to speed up search in alater trie based on a
search inan earlier trie. We do not present the detailshere, since
the addition of switch pointersand the necessary precomputation
isalready explained elsewhere [5]. The main point to noteisthat
it is possibleto reduce the conflict detection time from O (w?) to
O(w) (More precisdly O(log(w) + w/k) for ak-bit expanded
trie). The tradeoff isthat the precomputation involved raises the
filter updatetimeto O(N).

V1. EXTENDING FASTDETECT TO 5 TUPLES

We have seen how FastDetect can be used to speed up the
search for conflicting filters in a database consisting of 2-tuple
filters, with each tuple containing prefixes. Such 2-tuple filters
can be used to represent host to host or network to network or 1P
multicast flows. However, 2-tuplefilters are not capable of rep-
resenting application to application flows, or even host to host
flows with greater granularity. Aswe discuss later, it isdifficult
toextend FastDetect to prefixesin more dimensionswithout ex-
ceeding both computational and memory limits. However, there
are anumber of specia cases of 5-tuplefiltersin whichitispos-
sibleto use FastDetect. Thisisbecause the other fields of inter-
est in 1P packet classification, namely the protocol type and the
source and destination ports, are usually either fully wildcarded,
or fully specified.

A. BExtending FastDetect to 3 Tuples

Wefirst begin by extending FastDetect to support the protocol
fild. The key idea here is to partition the set of 3-tuple filters
into digoint sets of 2-tuplefilters. Clearly, if we have multiple
digoint sets of 2-tuple filters and we wish to see if a new filter
conflicts with any of the existing filters, it is sufficient to sepa-
rately check the new filter with each set of digoint filters using
FastDetect.

Consider 3-tuplefiltersconsisting of | Psource and destination
address prefixes and and the protocol type. We restrict the pro-
tocol field to be either TCP, UDR, or wildcarded. In case the pro-
tocol field iswildcarded, we replicate thefilter three times, once
with the protocol field set to TCP, once to UDP and once to the
specia value OTHER. This approach is similar to the one taken
in [5]. Thus, at the expense of a possible three fold increase
in memory, we can partition the set of filtersinto three digoint
sets. Clearly, there is no overlap or conflict between the three
sets. Given anew 3-tuplefilter, we can see which set of filters
to check for conflicts, based on the protocol type specified in the
filter. For example, if it isa TCP filter, it will not conflict with
either the set of UDP filters or the set of OTHER filters. Thus
we only need to check for conflicts with the set of TCP filters.
In this case, the time taken for conflict detection, as well as the
FastDetect a gorithm remains unchanged. The only overhead is
thethreefoldincreasein memory for filterswith wildcarded pro-



tocol field.

B. Proceeding to 5 Tuples

We restrict the source and destination ports to be either fully
wildcarded or fully specified. Now, we need to store multiple
filters a each leaf node, since in the 5-tuple case, multiple fil-
ters could have the same source and destination address prefix
and protocol type. These filters differ only in their source and
destination ports. We divide these filtersinto four sets and have
pointerspointing to each set fromthenodein thetriecorrespond-
ing to the source and destination prefixes of thefilter in the sets.
The first set consists of both source and destination ports wild-
carded. Clearly, therecan only asinglesuch entry for each node.
The second set consists of those filters for which the source port
iswell specified and the the destination port iswildcarded. The
third set consists of thosefilters whose source port iswildcarded
and the destination port iswell specified. The fourth set consists
of filterswith well specified source and destination ports. Were-
fer tothesefour setsasthe (x, *), (s, ), (¥, d) andthe (s, d) sets
respectively.

We run the same FastDetect agorithm with some modifica
tions on the two recursive tries to be searched. We present the
modification for the trie with source addresses at the top level
and destination addresses at the second level. The modification
isidentical for thesearch ontheother recursivetrie. Wemaintain
two additional variables, which report the nature of the prefix
meatch in each of thetwo levels. Thefirst variable, called ScPre-
fixLen is set to longer or equal depending on whether the source
address prefix of the new filter islonger or equa to than the cur-
rent entry inthetrieit isbeing compared to. Note that the nature
of thealgorithmisthat we do not proceed with the second level
search when the source prefix of the new filter isshorter than the
entriesin thefirst level trie. Therefore we do not now consider
the case when SrcPrefixLen set to shorter, though we get back
to this case later. At the second level trie, a each step, we set
DstPrefixLen to be either longer, or equal or shorter depending
on whether the destination prefix of the filter islonger, equal to
or shorter than the destination prefixes of thefilters stored at the
node on that step. Recall that at each node, the filters are stored
intheform of four sets: (x, ), (s, %), (*,d) and (s, d) based on
whether the port fields of the filters are well specified or wild-
carded. What we are interested in is the following: do the four
sets of filters stored at the node conflict with the new filter, given
the new filter and the current value of SrcPrefixLen and DstPre-
fixLen? Table| gives usthe answer for the case when thethein-
put filter has the destination port wildcarded. The table shows
the collection of conflicting filtersfor different combinations of
port fieldsin the newly input filter and existing filters. The first
column showsthe possibleval ues of the port fields of thenew fil-
ter and the values of the two variables a a particular step along
the second trie. The other columns show the possible conflicts
with filtersin each of the four sets of filters stored at that node.
We can construct similar tables for other cases of theinput filter,
for example, when the input filter has both ports wildcarded, or
both ports well specified [1]. For example, consider a new fil-
ter (IP Src, IPDgt, TCR s, *), in which the source port is well
specified and the destination ports is wildcarded. We begin by
traversing the tries containing TCP filters. Remember that there

are two such tries, one with the source address on thefirst level
and the other with the destination address on thefirst level. As-
sumewearetraversing thetriewiththe sourceaddress onthefirst
level. At agiven step on the second level, assume SrcPrefixLen
isset to longer and the DstPrefixLen isset to shorter. What that
means is that the source address prefix of thefilter islonger and
the destination address prefix shorter than any filter stored at that
node. In the 2-tuple case, thiswould automatically cause a con-
flict. However, inthe 5 tuple case, thiscan cause a conflict only
if the source and destination portsand the protocol fieldsoverlap
too. The protocol field is aready the same, because of the way
the filters are partitioned. Thus we need to check if the source
and destination ports overlap with the existing filter. As can be
easly seen, they overlap when either the stored filter has both
portswildcarded, or the source port wildcarded and the destina
tion port well specified, , or the source port the same asthe source
port of the new filter and the destination port well specified, We
get exactly thisinformation from Table |, namely, that in such
acase we conflict with the filter stored in the set (x, ), conflict
withthefilterinthe (, ) set with source port equal to s;, conflict
with all filtersin the («, d;) set and conflict with thefilter in the
et (s, d) whichhas source port s;. What Table| tellsusisthat at
each step along the second trie, we only haveto consider asubset
of the 4 set of filters stored at that particular step and within that
subset we only have to consider a subset of thefiltersin that set.

While Table | lists 6 different combinations of the two vari-
ables, wenotethat the case when SrcPrefixLen islonger and Dst-
PrefixLen is equal isidentical to the case when SrcPrefixLen is
equal and DstPrefixLen islonger. Asaresult we can club these
together into one case, reducing the total number of cases.

One case that we have not covered is the case when both
source prefixes of the new filter are shorter than the existing fil-
tersin the database. To cover this case, if during the search of
the source addresses on the first level trie, we see that SrcPre-
fixLen is going to be set to the value shorter we make a note of
the current nodein thetrieand proceed tothe other 2 leve trie. If
during the search of the destination addresses on thistrie, we see
that DstPrefixLen isgoing to be set to shorter, then we mark this
node too. we now have to do an exhaustive search down one of
the two marked nodes. If each node were to carry a count of de-
scendant filters, then one obviousoptimizationisto traverse that
node which has the least number of descendants. We use atable
similar to Table | to determine conflicts in this case. One opti-
mization inthiscaseisthat we do not need to search for conflicts
if the new filter has both portswildcarded.

VIl. EXPERIMENTAL RESULTS
A. Firewall Conflict Detection

We used our general algorithm on 3 sets of firewall databases
from existing commercial organizations. In all three cases we
were ableto uncover filter conflictswhich could allow malicious
users unintended access to internal company sites. Whilewe are
unableto providethe exact detailsof the problem dueto the con-
fidentia nature of thefirewall databases, we discuss the problem
in general terms. In firewalls, the rules are processed sequen-
tialy, with the first matching rule being applied to the packet.
In case of al three firewall databases, unrestricted access was



TABLE |
CONFLICT DETECTION WHEN INPUT FILTER HAS DESTINATION PORT WILDCARDED

New Filter Ports, SicPre- | (, %) (s, %) (%,d) (s,d)

fixLen, DstPrefixLen

(si, *), longer, longer No Conflict | No Conflict | Conflict Conflict with
(Si’ d)

(si, *), longer, equal No Conflict No Conflict Conflict Conflict with
(Si’ d)

(si, *), longer, shorter Conflict Conflict with | Conflict Conflict with

(Si’ *) (Si’ d)

(si,*), equal, longer No Conflict | No Conflict | Conflict Conflict with
(Si’ d)

(si, *), equal, equal No Conflict | No Conflict | Conflict No Conflict

(si, *), equal, shorter Conflict No Conflict | Conflict No Conflict

granted to external packets sourced from a given port z. This
wasfollowed later down thedatabase by other rulesrejecting ex-
ternal packets destined to a set of portsY'. As can be seen, there
existsa conflict now for external packets sourced fromport « and
destined to any of the set of portsinY . Inthe current configura-
tion of thefirewall database, such packets can get through, which
is not theintended action.

B. Implementation Details

Due to patenting issues we did not implement the switch
pointer based algorithm described above. We implemented the
FastDetect algorithmusingalbittrie. Theaim of theimplemen-
tation was to verify experimentally the complexity of the algo-
rithm and the running time for different sizes of filter databases
and to obtain insight into the nature of conflicts for filters of
varying degrees of wildcarding. Theimplementation consists of
two procedures. an insert() procedure to insert a filter into the
database of filters, and a detect() procedureto detect if anew fil-
ter conflictswiththe database (the actual FastDetect algorithm).
The detect() procedure worksin one of two modes. In the quick
mode, it reportswhether the new filter conflictswith the existing
set of filters in the database or not. In the detailed mode, it not
only reports whether there is a conflict or not, but also enumer-
atesthelist of conflicting filters.

In the absence of any publicly available filter database, we
congtructed an artificial database by generating IP source and
destination addresses and masks using a uniform random num-
ber generator. The length of the source and destination masks
were uniformly varied from 5 bitsto 9 bitsto simul ate arange of
address masks. Theimplementationwas auser level program on
theNetBSD 1.3 operating system running on a200 M hz Pentium
Pro workstation. We now discuss the individual results.

C. Conflict Detection

Figure 8 plotsthe time taken for the FastDetect algorithmin
the quick mode to detect the presence of a conflict when a new
filter isadded to an existing set of filters. The number of filtersin
the database was varied from 10 to 30000. For agivensizeof the
database, thefigure showsthe average timetaken for conflict de-
tection for anew filter. The average time was computed by run-

ning the algorithm 1000 times, each time with arandomly gen-
erated filter, and then averaging the total time. Two curves are
shown for the conflict detection times—one for the cached case
and the other for the non-cached case. Inthe cached case, thea -
gorithmwasrun repeatedly 1000 timeswith thesamefilter, while
inthe non-cached case theal gorithmwasrun only oncewitheach
filter. As expected, the cached times are much better than the
non-cached times. Also, as can be seen, the conflict detection
time rises much more slowly than the size of the database. As
the size of the database increases from 10 to 10000, the conflict
detection time rises from around 2 microseconds to 6 microsec-
onds and levels off there. Essentialy, once the database size ex-
ceeds a certain limit, the algorithm takes a constant amount of
time to detect conflicts, matching the theoretical bound O(w?),
which isindependent of the database size. We noted intheintro-
duction that with atarget signaling rate of 1000 filter updates/s,
thetime to detect conflicts should be be asmall fraction of 1000
microseconds, which ismet by our implementation.

Figure 8 also plots the conflict detection time using a linear
search of the database. Our efficient algorithm FastDetect out-
performsthe linear search even for database size as small as 20-
30. For databases of 3000 filters, the linear search isfull two or-
ders of magnitudesower than FastDetect. We also observe that
there is little difference between the cached and the uncached
cases for the linear search, since the linear search through the
database is not able to make effective use of the data cache.

D. Number of Conflicts per Filter

Next, we now look at the number of conflicts created by
adding a new filter to an existing set of filters. Figure 9 shows
the histogram of conflicts created by the addition of atypica fil-
ter to a database with 1000 filters, and a database with 10,000
filters. Weran FastDetect in detailed mode 1000 times, adding
a new filter each time, and plotted the number of conflicts for
each of those 1000 runs. Asexpected, for the 10K filter database,
adding a new filter causes an order of magnitude more conflicts
than adding afilter to the 1K filter database.

Weal so experimented withthedistributionof filtersmasks. In
the histogram of Figure 9, each filter field is at least 4 bitslong,
and we let masks vary uniformly between 5 and 9 bits. Asseen
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in the figure, the number of conflictsisreatively smal, always
less than 16. If we require longer masks, such as between 8 and
15 bits, thenumber of conflicts decrease even further. Infact, the
number of observed conflicts al most dropped to zero. Ingeneral,
the better specified afilter (thelonger the mask), thelesslikely it
isto cause aconflict. Conversaly, thelessspecified afilter (fewer
mask bits), the more likely it isto generate conflicts.

E. Conflict Enumeration
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Fig. 10. Conflict enumerationusing Fast Detect.

How much time does FastDetect take to enumerate the list of
conflictingfilters, as opposed to simply detecting the presence of
aconflict? Of course, this depends on the number of conflicts.

Figure 10 shows the time taken for the FastDetect algorithm
in the detailed mode to detect conflicts and to list the set of con-
flicting filters. Thisiswith afilter database with address masks
between 5 bits and 9 bits. In comparison with Figure 8, we see
that for small databases, the time taken for quick mode and de-
tailed mode are roughly the same, but as the size of the database
increases, the time taken for enumerating the conflicting filters

dwarfs the time taken for simple conflict detection. This again
matches thetheoretical observationthat the conflict enumeration
timeislinear in the number of filtersin the database. However,
itisimportant to notethat thetime constant is heavily dependent
onthefilter distribution. In case the database containslotsof less
specified filters with fewer mask bits, there are likely to be alot
more conflicts, and correspondingly, thetimetaken to enumerate
the conflictswill increase.

VIIlI. CONCLUSIONS

Filters are powerful toolsfor reducing state in networks sup-
porting QoS. However, multiple overlapping filters can cause
conflicts in mapping packetsto filters. This paper describes the
problem and presentsinnovative sol utionsbased on ageometric
transformation of the problem.

A general solutionispresented for the k-tupl efilter, and an op-
timized version isdescribed for the more common 2-tuplefilters
consisting of source and destination addresses. We also show
how to use the 2-tuple agorithm for the 5-tuple case in which
the other three tupleshave arestricted set of values. The 2-tuple
algorithmisable to detect conflictsin atime independent of the
number of filtersin thefilter database, and isableto resolvethem
in atime linear with the number of conflicting filters. We have
experimentally validated these results using a 1-bit trie imple-
mentation, which yielded conflict detection and resolution time
inthe order of microseconds on a200 Mhz Pentium workstation.
We forsee three principal uses of this algorithm. Oneisto ana-
lyze existing filter databases in firewalls and QoS aware routers
to detect conflicts. We have aready detected conflicts in fire-
wall databases from one organization and are currently looking
at databases from adifferent organization. Another useisinDiff-
Serv networks at network entry points where the border routers
will mark specific packetswith flow |abel sbased on state setupin



thefilter database. The third isin next generation signaling pro-
tocolswhich will carry filters and related packet handling infor-
mation[6], [7]. Asthesignalinginformation propagatesthrough
the network, network routerscan use the algorithmto report con-
flictsback to the originatorsof the signaingrequests. It could be
argued that sinceresolving conflictsby adding new resolvefilters
would require policy input and possibly human input, thereisno
need for afast conflict detection and resol ution algorithm. How-
ever, asthese examplesillustrate, the conflict detectionisdone at
one site (arouter processing the signaling message) and the con-
flict resolution is done el sewhere (the source of the message). It
isimportant for routersto be able to process signaling messages
asfast aspossiblein order to |eave enough processing power for
other tasks like packet forwarding, scheduling, routing updates
and other signaling requests. Besides these three applications,
the general notion of conflict detection and resol ution can be ap-
pliedinavariety of scenariosranging from digitanalysisintele-
phone networksto policy consistency checking in organizational
policies.

Related Work

The problem of conflict detection amongst I P filters has been
described in [8]. They describe a similar approach to resolving
conflictsby explicitly adding new filters. However, they they do
not describe any algorithm for detecting filter conflicts.

Conflict detection among filtersisrelated to the abstract prob-
lem of multidimensional range searching, which is studied in
computational geometry. The filter database corresponds to a
set of N k-dimensiond rectangular boxes, and the object is
to determine the subset of boxes that intersect a query box.
Edelsbrunner [9] has proposed a data structure that can solve
this problem in worst-case time O((log N)**~1 + R), where
R is the number of rectangular boxes intersecting the query
box. The data structure requires O(N (log N)*~!) space and
O(N (log N)*~1) congtruction time.

Unfortunately, the filter conflict problem is somewhat differ-
ent from the multi-dimensional rectangleintersection problem—
while afilter contained inside another filter (afilter that ismore
specific than the other in al fields) is not a conflict, the corre-
sponding rectangles are considered intersecting in the geometric
framework. Thus, the number of rectangle intersections R can
be much bigger than the number of filter conflicts C'. Secondly,
evenfor modest valuesof V and &, theworst-case timeand space
bound guaranteed by this data structure are hopel essly bad. For
instance, when N = 10,000 and k£ = 4, the algorithm guaran-
tees aworst-case search cost of 137 = 62748517, meaning that
it isno better than alinear search through thefilters.

Recently, thecompaction problemfor filter databases hasbeen
studiedin [10]. Inparticular, given afilter database D, they con-
struct a new database with fewest number of filters which has
the same classification behavior as D. Interesting, the algorithm
works only for conflict-free 2-tuplefilters.

Conflict-free filters have another unexpected side effect. A
lower boundin [11] showsthat for arbitrary 2-tuplefilters,
2w — 1 memory accesses are needed in theworst case to classify
a packet with w bits per field. However, recently, [12] shows
an O((log w)?) agorithm for packet classification in 2-tuplefil-
tersif thefiltersare conflict free. Thus, in addition to specifying
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unambiguous classification policy, conflict free filtersalso yield
improved classification algorithms.

I mplementation Optimizationsand Packet Classification

Fast multibit hashed trielookupsdesigned for | P prefix match-
ing [13] can reduce the conflict detection times to nanoseconds.
The advantage of the current scheme is that the insert() proce-
dure is straightforward, while the fast schemes have slower in-
sert() procedures, besides increased memory cost.

As described, the algorithm and trie data structures are used
only for filter conflict detection in the control path. It is how-
ever, possible to reuse the tries for packet classification in the
data path as well. The main issue here is the speed. Using the
trie for packet classification yields lookup times comparable to
the time taken for conflict detection, in the order of a few mi-
croseconds with our current 1 bit implementation. As explained
above, it ispossibleto reducethisby afactor of £ whileincreas-
ing memory utilization 2% times by using k-bit tries. 4 bit tries,
for example, can reduce average lookup times to around 1 mi-
crosecond. While thisis not state of the art, this offers a good
blend of memory utilization and fast insert times, which makes
it suitablefor edge routerswhich do not have avery high packet
throughput, but which need to handleal ot of signaling messages.

Handling Ranges

Both the genera algorithm and the optimized version for the
2-tuple case work on filters with prefix strings. However, filters
are sometimes specified asranges. For example, afirewall might
block an arbitrary range of ports. It is dways possibleto trans-
form a subrange of [0, 2¥] into at most 2k prefixes [5]. Thus, a
filter with arbitrary ranges can aways be transformed into a set
of filters with prefix strings. We therefore do not view thisas a
limitation of our a gorithm.
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