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Abstract—1 Packet filters are rules for classifying packets based on their
header fields. Packet classification is essential to routers supporting services
such as Quality of Service (QoS), Virtual Private Networks (VPNs), and fire-
walls. A filter conflict occurs when two or more filters overlap, creating an
ambiguity in packet classification. Current techniques for resolving filter
conflicts are based on prioritizing conflicting filters, and choosing the higher
priority filter. We show that such ordering does not always work. Instead,
we propose a new scheme for conflict resolution, which is based on the idea
of adding resolve filters. Our main results are algorithms for detecting and
resolving conflicts in a filter database. We have tried our algorithm on 3 ex-
isting firewall databases, and have found conflicts, which are potential secu-
rity holes, in each of them.
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I. INTRODUCTION

The Internet is undergoing fundamental changes both in the
demand for bandwidth and in the demand for new services be-
yond the traditional best effort service, caused by the expanding
set of users and the growth of multimedia content. This has fu-
eled the demand for routers able to handle large traffic volumes
measuring in millions of packets per second.

At the same time, router technology is advancing from sim-
ple destination based forwarding to incorporate a number of new
capabilities which affect the forwarding process. Successful de-
ployment of these technologies and services is crucial for the
successful evolution of the Internet towards a full service net-
work.

CIDR, IntServ and DiffServ QoS, Firewalls and VPNs are
all examples of technologies which have extended the internet
forwarding table lookups, from fixed length lookups to sophisti-
cated 5 tuple lookups with wildcarding. What is common in all
these examples is that the routers in the networks all have state
installed in them. The state is an association between a set of
packets and the action to be performed on that set. The set of
packets is described by the contents of some of the fields in the
packets — this is sometimes referred to as a packet filter. The
packet filters can include fields from the network layer (IP) as
well as higher layer (TCP or UDP) fields. For example, an ap-
plication level flow can be described by a 5-tuple filter consisting
of the IP source and destination address, the upper level protocol
(TCP or UDP) and the upper level protocol source and destina-
tion ports.

In order for the Internet to transform itself from today’s
chaotic logjam to the full service network of tomorrow, it is im-
portant to provide a fast and scalable solution to the problem of
packet classification and filter matching. While this problem is

1For space considerations all proofs, algorithmic complexity analysis, and
some experimental results have been omitted. See [1] for the full length draft

under active study these days, a related problem has not received
much attention: PACKET FILTERS CAN LEAD TO AMBIGUITIES

IN PACKET CLASSIFICATION. This is possible because a packet
might match multiple filters, each with a different associated ac-
tion. This important problem has not been studied so far. We
refer to this problem as the problem of filter conflict and resolu-
tion. This can be split up into two distinct subproblems. First,
how does one detect such conflicts? Second, given a set of con-
flicting filters, how does one resolve these conflicts? This pa-
per presents a general solution to both problems, and a fast so-
lution optimized for commonly occurring filters. It is important
to consider filter conflict resolution in any scheme involving fil-
ters, since filters, if not handled correctly, can cause packets to be
subject to the wrong actions. For example, incorrectly matching
packets to filters in firewalls can cause security problems.

CONTRIBUTIONS AND RESULTS.
� We formally characterize the conditions which lead to con-
flicts amongst filters.
� We prove that existing conflict resolution schemes based on
filter ordering do not work in all cases.
� We show that our scheme, based on adding new filters, works
in all cases.
� Our algorithm is general enough to be applicable for filters
with any number of fields.
� When applied to three operational firewall databases, our al-
gorithm uncovered potential security holes, where filter conflicts
lead to unintended actions.
� In the special case of 2-tuple filters which correspond to
Source-Destination prefix filters, we develop a highly efficient
trie-based algorithm which can be used for both filter conflict de-
tection and packet classification, thereby eliminating any redun-
dancy between the control path and the data path.
� We present simulation results showing filter conflict detec-
tion times in the order of a few microseconds on a 30000 filter
database on a 200 Mhz Pentium workstation.
� We show how to extend the trie-based algorithm to 5-tuple fil-
ters, which include protocol and port fields. This extends the ap-
plicability of this algorithm to virtually all current uses of filters,
ranging from firewalls to VPNs to QoS signaling.

OUTLINE AND ROADMAP OF PAPER

Section II defines filters abstractly and reviews current solu-
tions to the filter conflict problem. We show that the current solu-
tions have potentially undesirable outcomes, caused by implicit
and inflexible mapping of packets to filters. This section also
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presents a key insight to our solution, namely, a conflict between
two filters can be resolved by adding a new filter which covers
the region of conflict. We also show why solutions to conflict
resolution based on ordering filters do not work in the general
case.

Section III provides the algorithm for the general solution of
conflict detection in filters with arbitrary number of fields. The
remaining sections deal with fast versions of the general algo-
rithm. Section IV provides the motivation for developing such
optimized algorithms. Section V provides a solution for 2-tuple
filters, for example, filters consistingof IP source and destination
address masks. This is important since 2-tuple filters consisting
of (IP source, IP destination) addresses are the most widely used
filters for unicast and multicast traffic management.

Section VI describes how the 2-tuple algorithm can be ex-
tended to the 5-tuple case in which the protocol and port fields
are either wildcarded or fully specified. This extends the appli-
cability of our algorithm to virtually all know uses of packet fil-
ters.

Section VII describes security holes uncovered by our gen-
eral algorithm and provides experimental results to verify that
the performance of our fast algorithm actually is consistent with
the desired goal in terms of time, and stays constant irrespective
of the number of filters in the database. Section VIII presents
conclusions and plans for future work.

II. CONFLICTS IN FILTERS

A filter F is a k-tuple (F [1], F [2], : : :, F [k]), where each
field F [i] is a prefix bit string.2 Each prefix string x:� deter-
mines a range of addresses, namely, [x0 � � �0; x1 � � �1]; the num-
ber of bits appended to x is the difference between the maxi-
mum bit length of x’s field and the number of bits specified in x.
For instance, the prefix 10� in a 4-bit field determines the range
[1000; 1011] = [8; 11]. We say that an address X matches a pre-
fix x:� if X lies in the range [x0 � � �0; x1 � � �1]. We say that a
packet P matches a filter F , if each field of P matches the corre-
sponding prefix ofF . For instance, an IP packet with source and
destination addresses (128:112:234:2; 128:122:34:51) matches
the 2-tuple filter (128:112:�; 128:122:�), but not the filter
(128:112:�; 128:132:�).

Each filter F is associated with an action, denoted A(F ).
A packet P matching a filter F should be processed based on
A(F ). Typical filters range from 1-tuple to 5-tuple. 1-tuple fil-
ters consist of IP destination addresses or prefixes. These are
used in routing tables. 2-tuple filters are used in IP multicast-
ing to identify (source, group) pairs and also in VPNs. Here the
tuples represent IP source and destination addresses or prefixes.
3-tuple and 5 -tuple filters are used in more refined classification
schemes where the protocol and the port fields are also used in
acting on a packet. Firewall filters can be range from 1-tuple to
5-tuple and beyond.

The problem with filters is that a packet might match multi-
ple filters with conflicting values for the action. To illustrate the
problem of conflicts in filters, let us consider the case of simple

2Occasionally a filter field is specified as a range, such as the port field, but
we can easily convert an arbitrary range into a small number prefix ranges using
well-known techniques.

2-tuple filters, consisting of source and destination IPv4 address
prefixes. The two fields can either be fully specified or wild-
carded, or can be partially wildcarded in standard prefix format.
Let 128:112:� denote the prefix corresponding to network x and
let 128:122:�denote the prefix of network y. Consider two filters
F1 = (128:112:�; �), with A(F1) =f100 Mbps bandwidthg,
and F2 = (�; 128:122:�), with A(F2) =f1 Mbps bandwidthg.
The first filter assigns all packets from source network x a band-
width of 100 Mbps while the second filter assigns all packets des-
tined to network y a BW of 1 Mbps. What happens if the router
starts receiving a 10 Mbps flow from source net x destined to net
y? We have a conflict since the packets of the flow match both
F1 and F2. Which filter should take precedence?

Some possible solutions are:
a) The first matching filter in the filter database takes prece-
dence. For example, if F1 is stored before F2 in the database,
then the flow goes through at 100 Mbps. On the other hand, if
F2 is stored before F1, than most of the packets of the flow are
dropped, since the flow is restricted to a BW of only 1 Mbps.
This approach is commonly used to resolve conflicts in fire-
walls, where incoming packets are matched against filters spec-
ified in access control lists and the action is determined by the
first matching filter.
b) Assign priorities to different filters, and use the matching fil-
ter with the highest priority. This scheme turns out to be identical
to scheme a) if we sort the filters in the order of priority.

c) Assign priorities to fields so that in case of multiplematches
the filter with the most specific matching field with the highest
priority is selected. For example, if the source address is given
higher priority on matches than the destination address, then for
packets going from networkx to network y the filterF1 is a better
match than F2.

All of these implicit conflict resolution schemes, while sim-
ple to implement, suffer from some serious drawbacks. For ex-
ample, in case a), as we have already discussed, depending on
whether F1 or F2 is listed, packets of the flow will either go
through or be dropped. Thus, this scheme imposes an arbitrari-
ness on the conflict resolution. Case b), as mentioned, suffers
from the same problem.

In scheme c), with the filters described above, there is no way
to assign a 1 Mbps BW for packets going from net x to net y.
Thus, this scheme substitutes arbitrariness with inflexibility in
filter matching.

If we substitute a firewall for the QoS aware router described
earlier and substitute Accept/Reject for the actions associated
with F1 and F2, we see that filter conflicts can also lead to secu-
rity problems. As aptly stated in a book on firewalls —‘The point
here is that getting filtering rules right is tricky’ [2]. In fact, we
have actually uncovered similar problems in firewall databases.
We formally show in Section II-A why such implicit conflict res-
olution schemes do not work in the general case.

Our algorithms are based on the following two key observa-
tions:
� If filter fields are prefix fields, then each field of a filter is either
a strict subset of, or equal to, or a strict superset of, or completely
disjoint, from the corresponding field in any other filter. In other
words, it is not possible to have partial overlaps of fields. Partial
overlaps can only occur when the fields are arbitrary ranges, not
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prefixes.
� By the addition of a new filter (which we call the resolve fil-
ter) which covers the region of overlap, we can eliminate conflict
between two overlapping filters. This assumes a Best Matching
Filter (BMF) packet classification, analogous to the Best Match-
ing Prefix (BMP) in 1-dimensional lookups. In BMF classifica-
tion, a packet matches the filter which best matches it in all fields.
Adding resolve filters guarantees a BMF match.

A. Implicit Conflict Resolution Through Filter Reordering

To see why implicit schemes for conflict resolution based on
filter ordering do not work in the general case, consider the ex-
ample of a company with two geographically dispersed secure
divisions. The company policy is to let the secure divisions open
TCP connections with the rest of the company, but prohibit the
rest of the company from initiating a TCP connection with ei-
ther division. Assume the IP address prefix of the company is Z,
and that of the two divisions are Z.secure1 and Z.secure2. Then
an internal firewall inside the company network can contain the
following rules:
A From Z.secure1.* to Z.*, ‘allow TCP SYN request’
B From Z.secure2.* to Z.*, ‘allow TCP SYN request’
C From Z.* to Z.secure1.*, ‘reject TCP SYN request’
D From Z.* to Z.secure2.*, ‘reject TCP SYN request’

Fig. 1. Conflicting Filters. Scenario where it is not possible to resolve conflicts
by reordering filters

The rules are processed based on first matching filter, and are
shown graphically in Figure 1. As can be easily seen, there is no
explicit rule for the case when nodes in one of the secure divi-
sions attempt to initiate TCP connections with nodes in the other
secure division. This corresponds to the regions of overlap of the
four filters. In fact, with the current ordering of rules, this case
is always allowed. If, however, the company policy is to pro-
hibit TCP connections between the two secure divisions, while
allowing TCP connections within the same divisions. it is possi-
ble to show that no permutation of the above four rules can sat-
isfy such a policy [1]. On the other hand, it is always possible to
give explicit resolve filters to satisfy such a policy. (Observe that
when using our resolve filters, the filter matching is done using
the BMF rule.) The resolve filters for our example are:
E From Z.secure1.* to Z.secure2.*, ‘deny TCP SYN request’
F From Z.secure2.* to Z.secure1.*, ‘deny TCP SYN request’

G From Z.secure1.* to Z.secure1.*, ‘accept TCP SYN request’
H From Z.secure2.* to Z.secure2.*, ‘accept TCP SYN request’

In the implicit resolution scheme where no resolve filters are
added, in order to to obtain the same result as rule E, rule D
should have higher priority than ruleA. To obtainF , we see that
C should have higher priority than B. To obtain G, A should
have higher priority thanC. From these three rules, we conclude
that D should have higher priority than B. However, to obtain
H, B should have higher priority than D, which is a contradic-
tion.

Fig. 2. Transforming conflicting filters into a graph. Cycles indicate conflicts
which cannot be resolved by reordering filters

Solving the filter conflict problem by reordering filters can be
formulated as a cycle elimination problem in a directed graphD.
Specifically, we model each filter by a node of a directed graph.
We put a directed edge from node F to node G if filters F and
G overlap and F has a higher priority than G. For example, the
set of filters A, B, C, D described above is transformed into the
graph shown in Figure 2. Unambiguous classification by filter
ordering is possible if and only if this directed graphD is acyclic.
Clearly, if D contains a cycle, then no reordering of filters can
avoid ambiguous classification. But if D is acyclic, then we can
perform a topological sort [3] of the nodes to reorder the filters.
The following theorem states our result concerning when a set of
filters can be made conflict-free with simple filter reordering.

Theorem 1: If graph D contains a directed cycle, then the set
of filters cannot be made conflict free without the addition of a
new resolve filter.

We note that a particular cycle can be eliminated by intro-
ducing a single resolve filter. For instance, consider the cycle
A ! C ! B ! D ! A of Figure 2. Suppose we add
a resolve filter E for the conflicting pair (A;D), and assign E
higher priority than both A and D. Thus, in the graph D, the
edge D ! A is replaced by two edges A ! E and D ! E,
and the cycle A! C ! B ! D ! A is eliminated. It follows
that the smallest number of resolve filters needed to eliminate all
conflicts is equal to the smallest number of edges whose removal
from D makes the graph acyclic. Unfortunately, this problem is
equivalent to a combinatorial optimization, known as the small-
est feedback arc problem, which is NP-Complete problem [4].
Thus, no polynomial-time algorithms exists for determining the
smallest number of resolve filter whose additionplus re-ordering
will make the filter database conflict-free.

Our approach in this paper, therefore, is to add resolve filters
for each pair of conflicting filters. Packet classification now cor-
responds not to the first matching filter, but to the best matching
filter. It is possible to combine our algorithm with some heuristic
that tries to break as many cycles as possible with each resolve
filter. We have not pursued that strategy yet.
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III. THE GENERAL ALGORITHM

We recall that each filter F is a k-tuple (F [1],F [2], : : :, F [k]),
where each field F [i] is a prefix bit string. We say that two
prefixes x:� and y:� are disjoint if there is no address common
to them. Two filters are said to be disjoint if no packet header
matches them both.

We start with the most basic question: how to determine if two
k-tuple filters have a conflict. The following theorem answers
this question by giving a necessary and sufficient condition for
detecting the absence of a conflict. When the condition fails, we
have a filter conflict.

Theorem 2: Two filters F and G are conflict-free if and only
if one of the following holds:
1. There is some field index i such that the prefixesF [i] andG[i]
are disjoint, where 1 � i � k,
2. For all field indices i, F [i] is a prefix ofG[i] and a strict prefix
for at least one i; or for all indices i, G[i] is a prefix of F [i] and
a strict prefix for at least one i.

Figure 3 presents the pseudo-code for detecting whether two
k-tuple filters have a conflict.

Algorithm 2FilterConflict (F;G)
(* Determines if F and G conflict. *)

1. for i = 1 to k do
2. if F [i] and G[i] are disjoint

return “No Conflict”;
3. Set Flag = 1;
4. for i = 1 to k do
5. if F [i] is not a prefix of G[i]
6. Flag = 0;
7. if (Flag = 1) return “No Conflict”;
8. Set Flag = 1;
9. for i = 1 to k do
10. if G[i] is not a prefix of F [i]
11. Flag = 0;
12. if (Flag = 1) return “No Conflict”;
13. else return “Conflict”;
end Algorithm

Fig. 3. Algorithm to determine if two filters have a conflict.

A. Detecting and Resolving Conflicts

If two filters F;G have a conflict, our solution is to introduce
a new filter H, which is the filter corresponding to the overlap
region F \G. We will call H the resolve filter for F;G. What
are the prefix fields for this resolve filter? It is not difficult to see
that each field of H is the longer of the two prefixes in the corre-
sponding fields of F and G. For instance, if F = (101�; 1�) and
G = (10�; 111�), then H = (101�; 111�). Figure 4 gives the
pseudo-code for computing the resolve filter for two conflicting
filters.

Figure 5 gives the pseudo-code for detecting and/or resolving
conflicts when a new filter is added. The set C(F ) in that code
stores all the filters in the database B that have a conflict with
the newly added filter F . If one is only interested in detecting

Algorithm ResolveFilter (F;G)
(* Computes the filter resolving the conflict
of F;G. *)

1. for i = 1 to k do
2. Let xi be the longer of the two

prefixes F [i] and G[i];
3. return (x1; x2; : : : ; xk);
end Algorithm

Fig. 4. Computing the filter to resolve conflict of two filters.

whether a conflict exists, we can quit as soon as Line 4 is exe-
cuted for the first time. If one is only interested in enumerating
the filters in conflict withF , we don’t execute steps 5–6, and sim-
ply list out the set C(F ).

Finally, if we want to maintain a conflict-free database, we add
the necessary resolve filters whenever a new filter creates con-
flicts. Suppose that the existing databaseB = fF1; F2; : : : ; FNg
is conflict-free. Once the set C(F ), containing the filters of B
that conflict with F , is determined, we compute the resolve filter
corresponding to each Fi in C(F ), and add that resolve filter to
the database B. A key point to note that is that adding a resolve
filter does not require a recursive call to the algorithm AddNew-
Filter. This is because adding a resolve filter does not create any
new conflicts. If the resolve filter were to conflict with any ex-
isting filter, it is only because the new filter which introduced the
resolve filter in the first place has a conflict with the existing fil-
ter. Thus, the worst case running time of the algorithm for adding
a filter isO(N +C), whereN is the size of the current database
and C is the number of conflicts.

Algorithm AddNewFilter (F;B)
(* Insert a new filter into B. *)

1. InitializeC(F ) = fFg;
2. for i = 1 to jBj do
3. if F and Fi have a conflict then
4. Add Fi to C(F );
5. for each filter F 0 2 C(F ) do
6. Add ResolveFilter(F; F 0) to B;
end Algorithm

Fig. 5. ModifyingB upon the addition of a new filter.

IV. FAST FILTER CONFLICT DETECTION

The problem of conflict detection is a problem of the control
path, where filters are added. Given a new filter, it is possible
to linearly scan the existing set of filters to detect a conflict as
described earlier. Is a faster algorithm necessary in the control
path? Consider for example, a router processing 100,000 filter
updates/s. Note for comparison purposes that large scale tele-
phone switches are designed to handle thousands of calls per sec-
ond. The router has to process the filter update within 10 mi-
croseconds, and that includes the entire control path processing,
from receiving the message to admission control, from updating
the classifier and the scheduler to propagating any control mes-
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sages onwards. Clearly, any conflict detection algorithm cannot
consume more than a small fraction of the total available time,
and therefore has to operate within a few microseconds. The
problem becomes more acute when we consider that the filter
database can be large — the current Internet backbone routing
prefixes themselves number more than 40000. Another point to
note about filters is that most filters in the Internet are either 2-
tuple filters consisting of IP source and destination address pre-
fixes, or 5-tuple filters which also include the protocol type and
upper level port fields. This provides the motivation to develop
conflict detection algorithms which are optimized for these cases
and whose running time is better than linear. We believe our ap-
proach to conflict detection and resolution in filters is fast and
scalable enough to be used in the most demanding scenarios of
today and beyond. We will cover the performance of our fast al-
gorithm in greater detail in later sections and contrast it with ap-
proaches based on a linear search of the database.

V. AN IMPROVED ALGORITHM FOR 2-TUPLE FILTERS

The key insight for the new algorithm is the following obser-
vation, which follows readily from the general result in Theo-
rem 2.

Lemma 3: Filters F and G have a conflict if and only if
1. G[1] is a prefix of F [1] and F [2] is a prefix of G[2], or
2. F [1] is a prefix of G[1] and G[2] is a prefix of F [2].

A. Trie Based Conflict Detection Algorithm

We will use the example database B shown in Figure 6 to il-
lustrate our scheme. We develop a 2-dimensional recursive trie
data structure to solve the filter conflict problem. We begin with
some basic definitions and facts about tries.

Filter Source Destination
F1 10� 100�
F2 10� 011�
F3 10� 001�
F4 1� 00�
F5 1� 11�
F6 1� 10�
F7 0� 101�
F8 � 1�

Fig. 6. An example 2-tuple filter database.

Recall that a trie is a binary branching tree, with each branch
labeled 0 or 1. The bit string associated with a node u is the con-
catenation of all the bits from the root to the node u. A trie node
v is an ancestor of another node u if v lies on the path from the
root to u. Stated another way, the bit string associated with v is
a prefix of the bit string at associated withu. If v is a ancestor of
u, then u is called a descendant of v. (In Figure 7, for instance,
the node c is an ancestor of node d and a descendant of node b.)

Our algorithm will need two complementary data structures,
one for each of the two cases of Lemma 3. In particular, one
data structure can efficiently isolate the filters whose source field
is a prefix of F ’s source field, and then organize these filters to
quickly determine if any of them has the destination field with

F [2] as a prefix. The second data structure reverses the roles of
source and destination fields.

Recursive Trie 1

We start by building a trie on all the source address prefixes
in the database B. We call this the source trie S(B). Let u be
a node in this trie, and let s(u) denote the bit string associated
withu. We associate a second trieD(u) (destination trie) withu,
which stores the destination prefixes of the filters whose source
prefix is exactly s(u). More precisely, let us define the set

X(u) = fF 2 B j F [1] = s(u)g:

That is, X(u) is the set of filters with source field equal to s(u).
We build a secondary trie D(u) on the destination addresses of
the set X(u), which is pointed to by the node u. Figure 7 shows
the complete construction. Nodes of destination tries are labeled
with the filters associated with that destination address.
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Fig. 7. Recursive Trie 1 for the example database of Figure 6. The source trie
S(B) is shown with thick solid lines; various destination tries are shown in
thin lines; dashed lines indicate pointers between a node and its associated
destination trie.

Recursive Trie 2

The second data structure builds a trie on the destination pre-
fixes in the database B; call this the destination trie D(B). For
each node u in D(B), let d(u) be the string associated with u.
Define the set

Y (u) = fF 2 B j F [2] = d(u)g:

Y (u) is the set of filters with destination field equal to d(u). We
build a secondary trie S(u) on the source addresses of the set
Y (u), which is pointed to by the node u 2 D(B).

B. The Conflict Detection Algorithm

Suppose we want to add a new filter F to an existing database
B and, if there are conflicts, modify the database by adding ap-
propriate resolve filters. We will search both Recursive Tries 1
and 2. When searching Recursive Trie 1, we first use the source
trieS(B) to locate the longest matching prefix of the source field
F [1]. Let u be the node with this longest matching prefix, and let
v1; v2; : : : ; vm be the nodes in the source trie whose bit strings
correspond to (proper) prefixes ofF [1]. Observe that v1; : : : ; vm
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are all ancestors of u, and possibly u = v1. We visit each of the
destination triesD(v1); D(v2); : : : ; D(vm) in turn. In each des-
tination trie, say, D(vi), we locate the longest matching prefix of
the destination field F [2]. If the node z with the longest match-
ing prefix is a leaf then no filters in D(vi) are in conflict with
F . Otherwise (if z is not a leaf), all the filters associated with
descendants of z are in conflict with F .

The search in the second structure, Recursive Trie 2, is similar,
except the roles of source and destinationfields are reversed. The
completes algorithm is given in Section V-C.

As an example, suppose we want to add a filterF = (10�; 1�)
to the database of Figure 6. Then, the node d of the source trie
gives us the longest matching prefix for the source field 10�. The
ancestors of d associated with prefixes of the source string 10�
are b and c. We search the destination trie pointed to by c to lo-
cate the longest matching prefix of the destination field 1�. The
node with this string is not a leaf, and so all the filters that de-
scend from it are in conflict with F . There are two such filters,
F5 and F6. Indeed, it is easy to see that F5 = (1�; 11�) and
F6 = (1�; 10�) both have a conflict with F = (10�; 1�). Next,
we search the destination trie pointed to by b, and find that the
node with destination prefix 1� is a leaf. A search of Recursive
Trie 2 discovers no new filter conflicts, and so there are only two
conflicts.

C. Pseudocode of conflict detection algorithm for 2-tuple filters.

Algorithm FastDetect (F;B)
1. InitializeC(F ) = fFg;

(* Search Recursive Trie 1 *)
2. Let u be the node in the source trie S(B)

for which s(u) is the longest matching prefix
of the source field F [1];

3. Let v1; v2; : : : ; vm denote the nodes in S(B) whose bit
strings correspond to (proper) prefixes of F [1];

4. for i = 1 to m do
5. Determine the node z in D(vi) whose string is the

longest matching prefix of the destination field F [2];
6. Add to C(F ) all the filters stored with a

descendant node of z;
(* Search Recursive Trie 2 *)

7. Let u be the node in destination trie D(B) for which
d(u) is the longest matching prefix of the
destination field F [2];

8. Let v1; v2; : : : ; vm denote the nodes in D(B)
whose bit strings correspond to (proper) prefixes of F [2];

9. for i = 1 to m do
10. Determine the node z in S(vi) whose string is the

longest matching prefix of the source field F [1];
11. Add to C(F ) all the filters stored with a

descendant node of z;
12. If C(F ) only contains F , then add F to B, and

return “No Conflict”;
13. for each filter F 0 2 C(F ) do
14. Add ResolveFilter(F; F 0) to B;
end Algorithm

D. Improving Conflict Detection Times

The straightforward trie based search outlined above has the
advantage of an update time independent of the number of filters
in the database. However the lookup times are of O(w2), where
w is the width of each field. This is because when a lookup in
the second level trie fails, we backtrack and restart at the root of
the next first level trie. It is possible to use precomputation and
switch pointers [5] to speed up search in a later trie based on a
search in an earlier trie. We do not present the details here, since
the addition of switch pointers and the necessary precomputation
is already explained elsewhere [5]. The main point to note is that
it is possible to reduce the conflict detection time fromO(w2) to
O(w) (More precisely O(log(w) + w=k) for a k-bit expanded
trie). The tradeoff is that the precomputation involved raises the
filter update time to O(N ).

VI. EXTENDING FASTDETECT TO 5 TUPLES

We have seen how FastDetect can be used to speed up the
search for conflicting filters in a database consisting of 2-tuple
filters, with each tuple containing prefixes. Such 2-tuple filters
can be used to represent host to host or network to network or IP
multicast flows. However, 2-tuple filters are not capable of rep-
resenting application to application flows, or even host to host
flows with greater granularity. As we discuss later, it is difficult
to extend FastDetect to prefixes in more dimensions without ex-
ceeding both computational and memory limits. However, there
are a number of special cases of 5-tuple filters in which it is pos-
sible to use FastDetect. This is because the other fields of inter-
est in IP packet classification, namely the protocol type and the
source and destination ports, are usually either fully wildcarded,
or fully specified.

A. Extending FastDetect to 3 Tuples

We first begin by extending FastDetect to support the protocol
field. The key idea here is to partition the set of 3-tuple filters
into disjoint sets of 2-tuple filters. Clearly, if we have multiple
disjoint sets of 2-tuple filters and we wish to see if a new filter
conflicts with any of the existing filters, it is sufficient to sepa-
rately check the new filter with each set of disjoint filters using
FastDetect.

Consider 3-tuple filters consisting of IP source and destination
address prefixes and and the protocol type. We restrict the pro-
tocol field to be either TCP, UDP, or wildcarded. In case the pro-
tocol field is wildcarded, we replicate the filter three times, once
with the protocol field set to TCP, once to UDP and once to the
special value OTHER. This approach is similar to the one taken
in [5]. Thus, at the expense of a possible three fold increase
in memory, we can partition the set of filters into three disjoint
sets. Clearly, there is no overlap or conflict between the three
sets. Given a new 3-tuple filter, we can see which set of filters
to check for conflicts, based on the protocol type specified in the
filter. For example, if it is a TCP filter, it will not conflict with
either the set of UDP filters or the set of OTHER filters. Thus
we only need to check for conflicts with the set of TCP filters.
In this case, the time taken for conflict detection, as well as the
FastDetect algorithm remains unchanged. The only overhead is
the three fold increase in memory for filters with wildcarded pro-
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tocol field.

B. Proceeding to 5 Tuples

We restrict the source and destination ports to be either fully
wildcarded or fully specified. Now, we need to store multiple
filters at each leaf node, since in the 5-tuple case, multiple fil-
ters could have the same source and destination address prefix
and protocol type. These filters differ only in their source and
destination ports. We divide these filters into four sets and have
pointers pointing to each set from the node in the trie correspond-
ing to the source and destination prefixes of the filter in the sets.
The first set consists of both source and destination ports wild-
carded. Clearly, there can only a single such entry for each node.
The second set consists of those filters for which the source port
is well specified and the the destination port is wildcarded. The
third set consists of those filters whose source port is wildcarded
and the destination port is well specified. The fourth set consists
of filters with well specified source and destination ports. We re-
fer to these four sets as the (�; �), (s; �), (�; d) and the (s; d) sets
respectively.

We run the same FastDetect algorithm with some modifica-
tions on the two recursive tries to be searched. We present the
modification for the trie with source addresses at the top level
and destination addresses at the second level. The modification
is identical for the search on the other recursive trie. We maintain
two additional variables, which report the nature of the prefix
match in each of the two levels. The first variable, called SrcPre-
fixLen is set to longer or equal depending on whether the source
address prefix of the new filter is longer or equal to than the cur-
rent entry in the trie it is being compared to. Note that the nature
of the algorithm is that we do not proceed with the second level
search when the source prefix of the new filter is shorter than the
entries in the first level trie. Therefore we do not now consider
the case when SrcPrefixLen set to shorter, though we get back
to this case later. At the second level trie, at each step, we set
DstPrefixLen to be either longer, or equal or shorter depending
on whether the destination prefix of the filter is longer, equal to
or shorter than the destination prefixes of the filters stored at the
node on that step. Recall that at each node, the filters are stored
in the form of four sets: (�; �), (s; �), (�; d) and (s; d) based on
whether the port fields of the filters are well specified or wild-
carded. What we are interested in is the following: do the four
sets of filters stored at the node conflict with the new filter, given
the new filter and the current value of SrcPrefixLen and DstPre-
fixLen? Table I gives us the answer for the case when the the in-
put filter has the destination port wildcarded. The table shows
the collection of conflicting filters for different combinations of
port fields in the newly input filter and existing filters. The first
column shows the possible values of the port fields of the new fil-
ter and the values of the two variables at a particular step along
the second trie. The other columns show the possible conflicts
with filters in each of the four sets of filters stored at that node.
We can construct similar tables for other cases of the input filter,
for example, when the input filter has both ports wildcarded, or
both ports well specified [1]. For example, consider a new fil-
ter (IP Src, IP Dst, TCP, si, *), in which the source port is well
specified and the destination ports is wildcarded. We begin by
traversing the tries containing TCP filters. Remember that there

are two such tries, one with the source address on the first level
and the other with the destination address on the first level. As-
sume we are traversing the trie with the source address on the first
level. At a given step on the second level, assume SrcPrefixLen
is set to longer and the DstPrefixLen is set to shorter. What that
means is that the source address prefix of the filter is longer and
the destination address prefix shorter than any filter stored at that
node. In the 2-tuple case, this would automatically cause a con-
flict. However, in the 5 tuple case, this can cause a conflict only
if the source and destination ports and the protocol fields overlap
too. The protocol field is already the same, because of the way
the filters are partitioned. Thus we need to check if the source
and destination ports overlap with the existing filter. As can be
easily seen, they overlap when either the stored filter has both
ports wildcarded, or the source port wildcarded and the destina-
tion port well specified, , or the source port the same as the source
port of the new filter and the destination port well specified, We
get exactly this information from Table I, namely, that in such
a case we conflict with the filter stored in the set (�; �), conflict
with the filter in the (; �) set with source port equal to si, conflict
with all filters in the (�; di) set and conflict with the filter in the
set (s; d) which has source port si. What Table I tells us is that at
each step along the second trie, we only have to consider a subset
of the 4 set of filters stored at that particular step and within that
subset we only have to consider a subset of the filters in that set.

While Table I lists 6 different combinations of the two vari-
ables, we note that the case when SrcPrefixLen is longer and Dst-
PrefixLen is equal is identical to the case when SrcPrefixLen is
equal and DstPrefixLen is longer. As a result we can club these
together into one case, reducing the total number of cases.

One case that we have not covered is the case when both
source prefixes of the new filter are shorter than the existing fil-
ters in the database. To cover this case, if during the search of
the source addresses on the first level trie, we see that SrcPre-
fixLen is going to be set to the value shorter we make a note of
the current node in the trie and proceed to the other 2 level trie. If
during the search of the destination addresses on this trie, we see
that DstPrefixLen is going to be set to shorter, then we mark this
node too. we now have to do an exhaustive search down one of
the two marked nodes. If each node were to carry a count of de-
scendant filters, then one obvious optimization is to traverse that
node which has the least number of descendants. We use a table
similar to Table I to determine conflicts in this case. One opti-
mization in this case is that we do not need to search for conflicts
if the new filter has both ports wildcarded.

VII. EXPERIMENTAL RESULTS

A. Firewall Conflict Detection

We used our general algorithm on 3 sets of firewall databases
from existing commercial organizations. In all three cases we
were able to uncover filter conflicts which could allow malicious
users unintended access to internal company sites. While we are
unable to provide the exact details of the problem due to the con-
fidential nature of the firewall databases, we discuss the problem
in general terms. In firewalls, the rules are processed sequen-
tially, with the first matching rule being applied to the packet.
In case of all three firewall databases, unrestricted access was
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TABLE I

CONFLICT DETECTION WHEN INPUT FILTER HAS DESTINATION PORT WILDCARDED

New Filter Ports, SrcPre-
fixLen, DstPrefixLen

(�; �) (s; �) (�; d) (s; d)

(si; �), longer, longer No Conflict No Conflict Conflict Conflict with
(si; d)

(si; �), longer, equal No Conflict No Conflict Conflict Conflict with
(si; d)

(si; �), longer, shorter Conflict Conflict with
(si; �)

Conflict Conflict with
(si; d)

(si; �), equal, longer No Conflict No Conflict Conflict Conflict with
(si; d)

(si; �), equal, equal No Conflict No Conflict Conflict No Conflict
(si; �), equal, shorter Conflict No Conflict Conflict No Conflict

granted to external packets sourced from a given port x. This
was followed later down the database by other rules rejecting ex-
ternal packets destined to a set of ports Y . As can be seen, there
exists a conflict now for external packets sourced from portx and
destined to any of the set of ports in Y . In the current configura-
tion of the firewall database, such packets can get through, which
is not the intended action.

B. Implementation Details

Due to patenting issues we did not implement the switch
pointer based algorithm described above. We implemented the
FastDetect algorithm using a 1 bit trie. The aim of the implemen-
tation was to verify experimentally the complexity of the algo-
rithm and the running time for different sizes of filter databases
and to obtain insight into the nature of conflicts for filters of
varying degrees of wildcarding. The implementation consists of
two procedures: an insert() procedure to insert a filter into the
database of filters, and a detect() procedure to detect if a new fil-
ter conflicts with the database (the actual FastDetect algorithm).
The detect() procedure works in one of two modes. In the quick
mode, it reports whether the new filter conflicts with the existing
set of filters in the database or not. In the detailed mode, it not
only reports whether there is a conflict or not, but also enumer-
ates the list of conflicting filters.

In the absence of any publicly available filter database, we
constructed an artificial database by generating IP source and
destination addresses and masks using a uniform random num-
ber generator. The length of the source and destination masks
were uniformly varied from 5 bits to 9 bits to simulate a range of
address masks. The implementation was a user level program on
the NetBSD 1.3 operating system running on a 200 Mhz Pentium
Pro workstation. We now discuss the individual results.

C. Conflict Detection

Figure 8 plots the time taken for the FastDetect algorithm in
the quick mode to detect the presence of a conflict when a new
filter is added to an existing set of filters. The number of filters in
the database was varied from 10 to 30000. For a given size of the
database, the figure shows the average time taken for conflict de-
tection for a new filter. The average time was computed by run-

ning the algorithm 1000 times, each time with a randomly gen-
erated filter, and then averaging the total time. Two curves are
shown for the conflict detection times—one for the cached case
and the other for the non-cached case. In the cached case, the al-
gorithmwas run repeatedly 1000 times with the same filter, while
in the non-cached case the algorithm was run onlyonce witheach
filter. As expected, the cached times are much better than the
non-cached times. Also, as can be seen, the conflict detection
time rises much more slowly than the size of the database. As
the size of the database increases from 10 to 10000, the conflict
detection time rises from around 2 microseconds to 6 microsec-
onds and levels off there. Essentially, once the database size ex-
ceeds a certain limit, the algorithm takes a constant amount of
time to detect conflicts, matching the theoretical bound O(w2),
which is independent of the database size. We noted in the intro-
duction that with a target signaling rate of 1000 filter updates/s,
the time to detect conflicts should be be a small fraction of 1000
microseconds, which is met by our implementation.

Figure 8 also plots the conflict detection time using a linear
search of the database. Our efficient algorithm FastDetect out-
performs the linear search even for database size as small as 20-
30. For databases of 3000 filters, the linear search is full two or-
ders of magnitude slower than FastDetect. We also observe that
there is little difference between the cached and the uncached
cases for the linear search, since the linear search through the
database is not able to make effective use of the data cache.

D. Number of Conflicts per Filter

Next, we now look at the number of conflicts created by
adding a new filter to an existing set of filters. Figure 9 shows
the histogram of conflicts created by the addition of a typical fil-
ter to a database with 1000 filters, and a database with 10,000
filters. We ran FastDetect in detailed mode 1000 times, adding
a new filter each time, and plotted the number of conflicts for
each of those 1000 runs. As expected, for the 10K filter database,
adding a new filter causes an order of magnitude more conflicts
than adding a filter to the 1K filter database.

We also experimented with the distributionof filters masks. In
the histogram of Figure 9, each filter field is at least 4 bits long,
and we let masks vary uniformly between 5 and 9 bits. As seen
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Fig. 8. Conflict detection time. fast detect is orders of magnitude faster than a linear search once the database size rises beyond 1000 filters
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Fig. 9. Typical number of conflicts for each filter. Mask varies from 5 bits to 9 bits

in the figure, the number of conflicts is relatively small, always
less than 16. If we require longer masks, such as between 8 and
15 bits, the number of conflicts decrease even further. In fact, the
number of observed conflicts almost dropped to zero. In general,
the better specified a filter (the longer the mask), the less likely it
is to cause a conflict. Conversely, the less specified a filter (fewer
mask bits), the more likely it is to generate conflicts.

E. Conflict Enumeration
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Fig. 10. Conflict enumeration using Fast Detect.

How much time does FastDetect take to enumerate the list of
conflicting filters, as opposed to simply detecting the presence of
a conflict? Of course, this depends on the number of conflicts.

Figure 10 shows the time taken for the FastDetect algorithm
in the detailed mode to detect conflicts and to list the set of con-
flicting filters. This is with a filter database with address masks
between 5 bits and 9 bits. In comparison with Figure 8, we see
that for small databases, the time taken for quick mode and de-
tailed mode are roughly the same, but as the size of the database
increases, the time taken for enumerating the conflicting filters

dwarfs the time taken for simple conflict detection. This again
matches the theoretical observation that the conflict enumeration
time is linear in the number of filters in the database. However,
it is important to note that the time constant is heavily dependent
on the filter distribution. In case the database contains lots of less
specified filters with fewer mask bits, there are likely to be a lot
more conflicts, and correspondingly, the time taken to enumerate
the conflicts will increase.

VIII. CONCLUSIONS

Filters are powerful tools for reducing state in networks sup-
porting QoS. However, multiple overlapping filters can cause
conflicts in mapping packets to filters. This paper describes the
problem and presents innovative solutions based on a geometric
transformation of the problem.

A general solution is presented for thek-tuple filter, and an op-
timized version is described for the more common 2-tuple filters
consisting of source and destination addresses. We also show
how to use the 2-tuple algorithm for the 5-tuple case in which
the other three tuples have a restricted set of values. The 2-tuple
algorithm is able to detect conflicts in a time independent of the
number of filters in the filter database, and is able to resolve them
in a time linear with the number of conflicting filters. We have
experimentally validated these results using a 1-bit trie imple-
mentation, which yielded conflict detection and resolution time
in the order of microseconds on a 200 Mhz Pentium workstation.
We forsee three principal uses of this algorithm. One is to ana-
lyze existing filter databases in firewalls and QoS aware routers
to detect conflicts. We have already detected conflicts in fire-
wall databases from one organization and are currently looking
at databases from a different organization. Another use is in Diff-
Serv networks at network entry points where the border routers
will mark specific packets with flow labels based on state setup in
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the filter database. The third is in next generation signaling pro-
tocols which will carry filters and related packet handling infor-
mation [6], [7]. As the signaling information propagates through
the network, network routers can use the algorithm to report con-
flicts back to the originatorsof the signaling requests. It could be
argued that since resolving conflicts by adding new resolve filters
would require policy input and possibly human input, there is no
need for a fast conflict detection and resolution algorithm. How-
ever, as these examples illustrate, the conflict detection is done at
one site (a router processing the signaling message) and the con-
flict resolution is done elsewhere (the source of the message). It
is important for routers to be able to process signaling messages
as fast as possible in order to leave enough processing power for
other tasks like packet forwarding, scheduling, routing updates
and other signaling requests. Besides these three applications,
the general notion of conflict detection and resolution can be ap-
plied in a variety of scenarios ranging from digit analysis in tele-
phone networks to policy consistency checking in organizational
policies.

Related Work

The problem of conflict detection amongst IP filters has been
described in [8]. They describe a similar approach to resolving
conflicts by explicitly adding new filters. However, they they do
not describe any algorithm for detecting filter conflicts.

Conflict detection among filters is related to the abstract prob-
lem of multidimensional range searching, which is studied in
computational geometry. The filter database corresponds to a
set of N k-dimensional rectangular boxes, and the object is
to determine the subset of boxes that intersect a query box.
Edelsbrunner [9] has proposed a data structure that can solve
this problem in worst-case time O((logN )2k�1 + R), where
R is the number of rectangular boxes intersecting the query
box. The data structure requires O(N (logN )k�1) space and
O(N (logN )k�1) construction time.

Unfortunately, the filter conflict problem is somewhat differ-
ent from the multi-dimensional rectangle intersection problem—
while a filter contained inside another filter (a filter that is more
specific than the other in all fields) is not a conflict, the corre-
sponding rectangles are considered intersecting in the geometric
framework. Thus, the number of rectangle intersections R can
be much bigger than the number of filter conflicts C. Secondly,
even for modest values ofN and k, the worst-case time and space
bound guaranteed by this data structure are hopelessly bad. For
instance, when N = 10; 000 and k = 4, the algorithm guaran-
tees a worst-case search cost of 137 = 62748517, meaning that
it is no better than a linear search through the filters.

Recently, the compaction problem for filter databases has been
studied in [10]. In particular, given a filter databaseD, they con-
struct a new database with fewest number of filters which has
the same classification behavior as D. Interesting, the algorithm
works only for conflict-free 2-tuple filters.

Conflict-free filters have another unexpected side effect. A
lower bound in [11] shows that for arbitrary 2-tuple filters,
2w�1 memory accesses are needed in the worst case to classify
a packet with w bits per field. However, recently, [12] shows
an O((logw)2) algorithm for packet classification in 2-tuple fil-
ters if the filters are conflict free. Thus, in addition to specifying

unambiguous classification policy, conflict free filters also yield
improved classification algorithms.

Implementation Optimizations and Packet Classification

Fast multibit hashed trie lookups designed for IP prefix match-
ing [13] can reduce the conflict detection times to nanoseconds.
The advantage of the current scheme is that the insert() proce-
dure is straightforward, while the fast schemes have slower in-
sert() procedures, besides increased memory cost.

As described, the algorithm and trie data structures are used
only for filter conflict detection in the control path. It is how-
ever, possible to reuse the tries for packet classification in the
data path as well. The main issue here is the speed. Using the
trie for packet classification yields lookup times comparable to
the time taken for conflict detection, in the order of a few mi-
croseconds with our current 1 bit implementation. As explained
above, it is possible to reduce this by a factor of k while increas-
ing memory utilization 2k times by using k-bit tries. 4 bit tries,
for example, can reduce average lookup times to around 1 mi-
crosecond. While this is not state of the art, this offers a good
blend of memory utilization and fast insert times, which makes
it suitable for edge routers which do not have a very high packet
throughput,but which need to handle a lot of signalingmessages.

Handling Ranges

Both the general algorithm and the optimized version for the
2-tuple case work on filters with prefix strings. However, filters
are sometimes specified as ranges. For example, a firewall might
block an arbitrary range of ports. It is always possible to trans-
form a subrange of [0, 2k] into at most 2k prefixes [5]. Thus, a
filter with arbitrary ranges can always be transformed into a set
of filters with prefix strings. We therefore do not view this as a
limitation of our algorithm.
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