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Abstract 
Routers classify packets to determine which flow they belong to, 
and to decide what service they should receive. Classification may, 
in general, be based on an arbitrary number of fields in the packet 
header. Performing classification quickly on an arbitrary number of 
fields is known to be difficult, and has poor worst-case perfor- 
mance. In this paper, we consider a number of classifiers taken from 
real networks. We find that the classifiers contain considerable 
structure and redundancy that can be exploited by the classification 
algorithm. In particular, we find that a simple multi-stage classifica- 
tion algorithm, called RFC (recursive flow classification), can clas- 
sify 30 million packets per second in pipelined hardware, or one 
million packets per second in software. 

1 Introduction 
There are a number of network services that require packet 

classification, such as routing, access-control in firewalls, policy- 
based routing, provision of differentiated qualities of service, and 
traffic billing. In each case, it is necessary to determine which flow 
an arriving packet belongs to so as to determine - for example - 
whether to forward or fitter it, where to forward it to. what class of 
service it should receive, or how much should be charged for trans- 
porting it. The categorization function is performed by aflow clas- 
sifier (also called a packet classifier) which maintains a set of rules, 
where each flow obeys at least one rule. The rules classify which 
llow a packet belongs to based on the contents of the packet 
header(s). For example, a flow could be defined by particular values 
of source and destination IP addresses, and by particular transport 
port numbers. Or a flow could be simply defined by a destination 
prefix and a range of port values. As we shall see, a number of dif- 
ferent types of rules are used in practice. This paper describes a 
method for fast packet classification based on an almost arbitrary 
set of rules. We focus here only on the problem of identifying the 
class to which a packet belongs. The actions taken for each class 
(e.g. packet scheduling in an output queue, routing decisions, bill- 
ing [2][3][4][8][11][12][13]) while interesting in its own right, is 
not the topic of this paper. 

The most well-known form of packet classifcation is used to 
route IP datagrams. In this case, all of the packets destined to the set 
of addresses described by a common prefix may be considered to be 
part of the same flow. Upon arrival to a router, the header of each 
packet is examined to determine the Network-layer destination 
address, which identifies the Row to which the packet belongs. 
Until recently, longest-prefix matching for routing lookups could 
not be done at high speeds. Now that several fast routing lookup 
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Figure 1: Example network of an ISP (ISPt) connected to two 
enterprise networks (El and E2) and to two other ISP networks 

across a NAP. 

algorithms have been developed (e.g. [1][5][7][9][ 161). attention 
has turned to the more general problem of packet classification. 

To help illustrate the variety of packet classifiers, we start with 
some examples of how packet classification can be used by an 
Internet Service Provider (ISP) to provide different services. Figure 
I shows ISP, connected to three different sites: two enterprise net- 
works Et and E2 and a Network Access Point (NAP) which is in 
turn connected to ISP, and ISP,. ISP, provides a number of differ- 
ent services to its customers, as shown in Table 1. 

Table 1: 

I Service Example 

Packet Filtering Deny all traffic from ISPJ (on interface X) 
destined to E,. 

Policy Routing Send all voice-over-IP traffic arriving from 
Et (on interface I’) and destined to E2 via a 
separate ATM network. 

Accounting & 
Billing 

Traffic Rate 
Limiting 

Treat all video traffic to E, (via interface I’) 
as highest priority and perform accounting 
for the traffic sent this way. 

Ensure that ISP2 does not inject more than 
1OMbps of email traffic and 5OMbps of total 
traffic on interface X. 

Traffic Shaping Ensure that no more than 5OMbps of web 
traffic is injected into ISP2 on interface X. 

Table 2 shows the categories or classes that the router at inter- 
face X must classify an incoming packet into. Note that the classes 
specified may or may not be mutually exclusive (i.e. they may be 
overlapping or non-overlapping). for example the first and second 
class in Table 2 overlap. When this happens, we will follow the 
convention in which rules closer to the top of the list take priority. 
with the default rule appearing last. 
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Table 2: 

~~ 
Source Link-layer Address, Source 

From ISP3 and going to Source Link-layer Address, 

J32 
Destination Network-Layer Address 

All other packets - 

2 The Problem of Packet Classification 
Packet classification is performed using a packet classifier. 

also called a policy database, flow classifier, or simply a classifier. 
A classifier is a collection of rules or policies. Each rule specifies a 
class+ that a packet may belong to based on some criterion on F 
fields of the packet header. and associates with each class an identi- 
fier, classZD. This identifier uniquely specifies the action associated 
with the rule. Each rule has F components. The iflZ component of 
rule R, referred to as R[i]. is a regular expression on the i’h field of 
the packet header (in practice, the regular expression is limited by 
syntax to a simple address/mask or operator/number(s) specifica- 
tion). A packet P is said to nrntck a particular rule R, if Vi, the i’” 
field of the header of P satisfies the regular expression R[i]. It is 
convenient to think of a rule R as the set of a21 packet headers which 
could ntarch R. When viewed in this way, two distinct rules are said 
to be either partially overlapping or non-overlapping, or that one is 
a subset of the other, with corresponding set-related definitions. We 
will assume throughout this paper that when two rules are not 
mutually exclusive, the order in which they appear in the classifier 
will determine their relative priority. For example. in a packet clas- 
sifier that performs longest-prefix address lookups, each destination 
prefix is a rule, the corresponding next hop is its action, the pointer 
to the next-hop is the associated cZusslD, and the classifier is the 
whole forwarding table. If we assume that the forwarding table has 
longer prefixes appearing before shorter ones, the lookup is an 
example of the packet classification problem. 

2.1 Example of a Classifier 
All examples used in this paper are classifiers from real ISP 

and enterprise networks. For privacy reasons, we have sanitized the 
IP addresses and other sensitive information so that the relative 
structure in the classifiers is still preserved.$ First, we’ll take a look 
at the data and its characteristics. Then we’ll use the data to evalu- 
ate the packet classification algorithm described later. 

An example of some rules from a classifier is shown in Table 
3. We collected 793 packet classifiers from 101 different TSP and 

t For example, each rule in a flow classifier is a flow specifica- 
tion, where each flow is in a separate class. 

enterprise networks and a total of 41,505 rules. Each network pro- 
vided up to ten separate classifiers for different services. tt 

Table 3: 

Network- Network- 
layer layer Transport- 

Transport- 

Destination Source layer 
layer 

(addr/mask) (addr/mask) Destination 
Protocol 

152.163.190. 152.163.80.1 * * 
69lO.O.O.O 1/0.0.0.0 

152.168.3.0/ 
0.0.0.255 

152.168.3.0/ 
0.0.0.255 

152.168.3.0/ 
0.0.0.255 

152.163.198. 
4/0.0.0.0 

152.163.198. 152.163.36.0 gt 1023 t cP 
4/0.0.0.0 10.0.0.255 

We found the classifiers to have the following characteristics: 
1) The classifiers do not contain a large number of rules. Only 

0.7% of the classifiers contain more than 1000 rules, with a 
mean of 50 rules. The distribution of number of rules in a clas- 
sifier is shown in Figure 2. The relatively small number of 
rules per classifier should not come as a surprise: in most net- 
works today, the rules are configured manually by network 
operators, and it is a non-trivial task to ensure correct behav- 
ior. 

2) The syntax allows a maximum of 8 fields to be specified: 
source/destination Network-layer address (32-bits). source/ 
destination Transport-layer port numbers (16-bits for TCP and 
UDP), Type-of-service (TOS) field (8-bits), Protocol field (8- 

$ We wanted to preserve the properties of set relationship, e.g. 
inclusion, among the rules, or their fields. The way a 32-bit IP 
address pO.pl.pZ.p3 has been sanitized is as follows: (a) A ran- 
dom 32-bit number cO.cl.c2.~3 is first chosen, (b) a random 
permutation of the 256 numbers 0...255 is then generated to get 
perm[0..255/ (c) Another random number S between 0 and 255 
is generated: these randomly generated numbers are common 
for all the rules in the classifier, (d) The IP address with bytes: 
perm[(pO A CO + 0 * s) % 2561, perm[(pl A cl + I * s) % 2561. 
perm[(p2 A c2 + 2 * s) % 2561 and perm[(p3 h c3 + 3 * s) % 
2.561 is then returned as the sanitized transformation of the orig- 
inal IP address. where * denotes the exclusive-or operation. 

tt In the collected data, the classifiers for different services are 
made up of one or more ACLs (access control lists). An ACL 
rule has only two types of actions, “deny” or “permit”. In this 
discussion, we will assume that each ACL is a separate classi- 
fier, a common case in practice. 
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3) 

4) 

3 

6) 

7) 

bits), and Transport-Layer protocol flags @-bits) with a total 
of 120 bits. 17% of all rules had 1 field specified, 23% had 3 

fields specified and 60% had 4 fields specified.’ 
The Transport-layer protocol field is restricted to a small set of 
values: in all the packet classifiers we examined, it contained 
only TCP, UDP, ICMP, IGMP, (E)IGRP, GRE and 1PINIP or 
the wildcard ‘*‘, i.e. the set of all transport protocols. 
The Transport-layer fields have a wide variety of specifica- 
tions. Many (10.2%) of them are range specifications (e.g. of 
the type gr 1023, i.e. greater than 1023, or rnrzge 20-24). In 
particular, the specification ‘gt 1023’ occurs in about 9% of 
the rules. This has an interesting consequence. It has been sug- 
gested in literature (for example in [ 171) that to ease imple- 
mentation, ranges could be represented by a series of prefixes. 
In that case, this common range would require six separate 
prefixes (1024-2047,2048-4095,4096-8191,8192-16383, 
16384-32767,32768-65535) resulting in a large increase in 
the size of the classifier. 
About 14% of all the classifiers had a rule with a non-contigu- 
ous mask (10.2% of all rules had non-contiguous masks). For 
example, a rule which has a Network-layer address/mask spec- 
ification of 137.98.217.Ol8.22.160.80 has a non-contiguous 
mask (i.e. rwr a simple prefix) in its specification. This obser- 
vation came as a surprise. One suggested reason is that some 
network operators choose a specific numbering/addressing 
scheme for their routers. It tells us that a packet classification 
algorithm cannot always rely on Network-layer addresses 
being prefixes. 
It is common for many different rules in the same classifier to 
share a number of field specifications (compare, for example, 
the entries in Table 3). These arise because a network operator 
frequently wants to specify the same policy for a pair of com- 
municating groups of hosts or subnetworks (e.g. deny every 
host in group1 to access any host in group2). Hence. given a 
simple address/mask syntax specification, a separate rule is 
commonly written for each pair in the two (or more) groups. 
We will see later how we make use of this observation in our 
algorithm. 
We found that 8% of the rules in the classifiers were redun- 
dant. We say that a rule R is redundant if one of the following 
condition holds: 
(a) There exists a rule T appearing earlier than R in the classi- 
fier such that R is a subset of T. Thus, no packet will ever 

match RS and R is redundant. We call this hckward redun- 
dancy; 4.4% of the rules were backward redundant. 
(b) There exists a rule Tappearing after R in the classifier such 
that (i) R is a subset of r, (ii) R and T have the same actions 
and (iii) For each rule V appearing in between R and Tin the 
classifier. either V is disjoint from R, or V has the same action 
as R. We call this&ward redundancy; 3.6% of the rules were 
forward redundant. In this case, R can be eliminated to obtain 
a new smaller classifier. A packet matching R in the original 

t If a field is not specified, the wildcard specification is assumed. 
Note that this is affected by the syntax of the rule specification 
language. 

$ Recall that rules are prioritized in order of their appearance in 
the classifier. 

f 
d 

Figure 2: The distibution of the total number of rules per 
classifier. Note the logarithmic scale on both axes. 

classifier will match Tin the new classifier, but with the same 
action. 

3 Goals 

In this section, we highlight our objectives when designing a 
packet-classification scheme: 

1) 

2) 

3) 

4) 

5) 

6) 

The algorithm should be fast enough to operate at OC48c lin- 
erates (2.5Gb/s) and preferably at OC192c linerates (lOGb/s). 
For applications requiring a deterministic classification time, 
we need to classify 7.8 million packets/s and 31.2 million 
packets/s respectively (assuming a minimum length IP data- 
gram of 40 bytes). In some applications, an algorithm that 
performs well in the merage case may be acceptable using a 
queue prior to the classification engine. For these applications, 
we need to classify 0.88 million packets/s and 3.53 million 
packets/s respectively (assuming an average Internet packet 
size of 354-bytes [ 181). 
The algorithm should ideally allow matching on arbitrary 
fields, including Link-layer, Network-layer, Transport-layer 
and - in some exceptional cases -the Application-layer 

headers.++ It makes sense for the algorithm to optimize for the 
commonly used header fields, but it should not preclude the 
use of other header fields. 
The algorithm should support general classification rules, 
including prefixes, operators (like range, less than, greater 
than, equal to, etc.) and wildcards. Non-contiguous masks may 
be required. 
The algorithm should be suitable for implementation in both 
hardware and software. Thus it needs to be fairly simple to 
allow high speed implementations. For the highest speeds (e.g. 
for OC192c at this time), we expect that hardware implemen- 
tation will be necessary and therefore the scheme should be 
amenable to pipelined implementation. 
Even though memory prices have continued to fall, the mem- 
ory requirements of the algorithm should not be prohibitively 
expensive. Furthermore, when implemented in software, a 
memory-efficient algorithm can make use of caches. When 
implemented in hardware, the algorithm can benefit from 
faster on-chip memory. 
The algorithm should scale in terms of both memory and 

tt That is why packet-classifying routers have been called “layer- 
less switches”. 
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speed with the size of the classifier. An example from the des- 
tination routing lookup problem is the popular multiway trie 
[ 161 which can. in the worst case require enormous amounts of 
memory. but performs very well and with much smaller stor- 
age on real-life routing tables. We believe it to be important to 
evaluate algorithms with realistic data sets. 

7) In this paper. we will assume that classifiers change infre- 
quently (e.g. when a new classifier is manually added or at 
router boot time). When this assumption holds, an algorithm 
could employ reasonably static data structures. Thus, a pre- 
processing time of several seconds may be acceptable to cal- 
culate the data structures. Note that this assumption may not 
hold in some applications, such as when routing tables are 
changing frequently, or when fine-granularity flows are 
dynamically or automatically allocated. 

Later. we describe a simple heuristic algorithm called RF? 
(Recursive Flow Classification) that seems to work well with a 
selection of classifiers in use today. It appears practical to use the 
classification scheme for OC192c rates in hardware and up to 
OC48c rates in software. However, it runs into problems with space 
and preprocessing time for big classifiers (more than 6000 rules 
with 4 fields). We describe an optimization which decreases the 
storage requirements of the basic RFC scheme and enables it to 
handle a classifier with 15,000 rules with 4 fields in less than 4MB. 

4 Previous Work 

We start with the simplest classification algorithm: for each arriving 
packet, evaluate each rule sequentially until a rule is found that 
matches all the headers of the packet. While simple and efficient in 
its use of memory. this classifier clearly has poor scaling properties; 
time to perform a classification grows linearly with the number of 
rules. 

A hardware-only algorithm could employ a ternary CAM (content- 
addressable memory). Ternary CAMS store words with three-val- 
ued digits: ‘0’, ‘1’ or ‘X’ (wildcard). The rules are stored in the 
CAM array in the order of decreasing priority. Given a packet- 
header to classify, the CAM performs a comparison against all of its 
entries in parallel. and a priority encoder selects the first matching 
rule. While simple and flexible, CAMS are currently suitable only 
for small tables; they are too expensive, too small and consume too 
much power for large classifiers. Futhermore, some operators are 
not directly supported, and so the memory array may be used very 
inefficiently. For example, the rule ‘gt 1023’ requires six array 
entries to be used. But with continued improvements in semicon- 
ductor technology, large ternary CAMS may become viable in the 
future. 

A solution called ‘Grid of Tries was proposed in [17]. In this 
scheme. the trie data structure is extended to two fields. This is a 
good solution if the filters are restricted to only two fields, but is not 
easily extendible to more fields. In the same paper, a general solu- 
tion for multiple fields called ‘Crossproductitzg is described. It 
takes about 1SMB for 50 rules and for bigger classifiers, the 
authors propose a caching technique (on-demand crossproducting) 
with a non-deterministic classification time. 

t Not to be confused with “Request For Comments” 

Another recent proposal [15] describes a scheme optimized for 
implementation in hardware. Employing bit-level parallelism to 
match multiple fields concurrently, the scheme is reported to sup- 
port up to 512 rules, classifying one million packets per second 
with an FPGA device and five IM-bit SRAMs. As described. the 
scheme examines five header fields in parallel and uses bit-level 
parallelism to complete the operation. In the basic scheme. the 
memory storage is found to scale quadratically and the memory 
bandwidth linearly with the size of the classifier. A variation is 
described that decreases the space requirement at the expense of 
higher execution time. In the same paper, the authors describe an 
algorithm for the special case of two fields with one field including 
only intervals created by prefixes. This takes O(nrmzber-of-prefk- 
lengths + log”) time and O(n) space for a classifier with n rules. 

There arc several standard problems in the field of computational 
geometry that resemble packet classification. One example is the 
point location problem in multidimensional space. i.e. the problem 
of finding the enclosing region of a point, given a set of regions. 
However, the regions are assumed to be non-overlapping (as 
opposed to our case). Even for non-overlapping regions, the best 
bounds for n rules and F fields, for F > 3 , are O(logn) in time with 
O(Z) space; or O(lOgFel n) time and O(n) space [6]. Clearly this is 
impractical: with just 100 rules and 4 fields, ttF space is about 
1 OOMB ; and log”-’ n time is about 350 memory accesses. 

5 Proposed Algorithm RFC (Recursive Flow 
Classification) 

5.1 Structure of the Classifiers 

As the last example above illustrates, the task of classification is 
extremely complex in the worst case. However, we can expect there 
to be structure in the classifiers which, if exploited, can simplify the 
task of the classification algorithm. 

To illustrate the structure we found in our dataset. let’s start with an 
example in just two dimensions, as shown in Figure 3. We can rep- 
resent a classifier with two fields (e.g. source and destination pre- 
fixes) in 2-dimensional space, where each rule is represented by a 
rectangle. Figure 3a shows three such rectangles, where each rect- 
angle represents a rule with a range of values in each dimension. 
The classifier contains three explicitly defined rules, and the default 
(background) rule. Figure 3b shows how three rules can overlap to 
create five regions (each region is shaded differently), and Figure 
3c shows three rules creating seven regions. A classification algo- 
rithm must keep a record of each region and be able to determine 
the region to which each newly arriving packet belongs. Intuitively, 
the more regions the classifier contains, the more storage is 
required. and the longer it takes to classify a packet. 

Even though the number of rules is the same in each figure, the task 
of the classifcation algorithm becomes progressively harder as it 
needs to distinguish more regions. In general, it can be shown that 
the number of regions created by n-rules in F dimensions can be as 
much as O(ttF). 

We analyzed the structure in our dataset to determine the number of 
overlapping regions, and we found it to be considerably smaller 
than the worst case. Specifically for the biggest classifier with 1734 
rules, we found the number of distinct overlapping regions in four 
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(a) 4 regions (b) 5 regions 

(c) 7 regions 

Figure 3: Some possible arrangements of three rectangles. 

dimensions to be 4316, compared to a worst possible case of 
approximately JO’“. Similarly we found the number of overlaps to 
be relatively small in each of the classifiers we looked at. As we 
will see, our algorithm will exploit this structure to simplify its task. 

5.2 Algorithm 

The problem of packet classification can be viewed as one of map- 
ping S bits in the packet header to T bits of cZusslD, (where 
T = 1ogN , and T << S ) in a manner dictated by the N classifier 
rules. A simple and fast (but unrealistic) way of doing this mappin 
might be to pre-compute the value of classID for each of the 2 5! 

different packet headers. This would yield the answer in one step 
(one memory access) but would require too much memory. The 
main aim of RFC is to perform the same mapping but over several 
stages, as shown in Figure 4. The mapping is performed recur- 
sively; at each stage the algorithm performs a rehcrion, mapping 
one set of values to a smaller set. 

The RFC algorithm has P phases, each phase consisting of a set of 
parallel memory lookups. Each lookup is a reduction in the sense 
that the value returned by the memory lookup is shorter (is 
expressed in fewer bits) than the index of the memory access. The 
algorithm. as illustrated in Figure 5, operates as follows: 

1) In the first phase, F fields of the packet header are split up into 
multiple chunks that are used to index into multiple memories 
in parallel. For example, the number of chunks equals 8 in Fig- 
ure 5: and Figure 6 shows an example of how the fields of a 
packet may be split across each memory. Each of the parallel 
lookups yields an output value that we will call eqlD. (The 
reason for the identifier eqZD will become clear shortly). The 
contents of each memory are chosen so that the result of the 
lookup is narrower than the index i.e. requires fewer bits. 

2) In subsequent phases, the index into each memory is formed 
by combining the results of the lookups from earlier phases. 
For example, the results from the lookups may be concate- 
nated; we will consider another way to combine them later. 

3) In the final phase, we are left with one result from the lookup. 
Because of the way the memory contents have been pre-com- 

9=- 2912 

Simple One-Step Classification 

Phase 0 Phase 1 Phase 2 Phase 3 

Recursive Classification 
Figure 4: Showing the basic idea of Recursive Flow Classifica- 
tion. The reduction is carried out in multiple phases, with a 
reduction in phase Z being carried out recursively on the image 

of the phase Z-Z. The example shows the mapping of 2s bits to 

2T bits in 3 phases. 

J 
classID 

N--l+ 

Phase 0 Phase 1 Phase 2 Phase 3 

Figure 5: The packet flow in RFC. 

Width(bits) 16 16 16 16 16 16 16 8 

Chunk# 0 1 2 3 4 5 67 

Figure 6: Example chopping of the packet header into chunks 
for the first RFC phase. L3 refers to Network-layer and L4 
refers to Transport-layer fields 

puted, this value corresponds to the classID of the packet. 

For the scheme to work. the contents of each memory are prepro- 
cessed. To illustrate how the memories are populated, we consider a 
simple example based on the classifier in Table 3. We’ll see how the 
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24-bits used to express the Transport-layer Destination and Trans- 
port-layer Protocol (chunk #6 and #4 respectively) are reduced to 
just three bits by Phases 0 and 1 of the RFC algorithm. We start 
with chunk #6 that contains the 16-bit Transport-layer Destination. 
The corresponding column in Table 3 partitions the possible values 
into four sets: (a) (www=80) (b) (20,21) (c) (>1023) (d) (all 
remaining numbers in the range O-65535); which can be encoded 

using two bits OOb through 11,. We call these two bit values the 

“equivalence class IDS” (e@s). So, in Phase 0 of the RFC algo- 
rithm, the memory corresponding to chunk #6 is indexed using the 

216 different values of chunk #6. In each location. we place the 
e9ZD for this Transport-layer Destination. For example, the value in 

the memory corresponding to “chunk #6 = 20” is OOh , correspond- 

ing to the set (20,21). In this way, a 16-bit to two-bit reduction is 
obtained for chunk #6 in Phase 0. Similarly, the eight-bit Transport- 
layer Protocol column in Table 3 consists of three sets: (a) (tcp) (b) 
[udp) (c) (all remaining numbers in the range O-255), which can 
be encoded using two-bit e9IDs. And so chunk #4 undergoes an 
eight-bit to two-bit reduction in Phase 0. 

In the second phase, we consider the combination of the Transport- 
layer Destination and Protocol fields. From Table 3 we can see that 
the five sets are: (a) {({SO], (udp))] (b) (((20-211, (udp})) (c) 
1((80), (tcpl)l (4 I(&$ lO23), (tcpl)l (e) (all remaining 
crossproducts}; which can be represented using three-bit e9ZDs. 
The index into the memory in Phase 1 is constructed from the two 
two-bit e9lDs from Phase 0 (in this case, by concatenating them). 
Hence, in Phase 1 we have reduced the number of bits from four to 
three. If we now consider the combination of both Phase 0 and 
Phase 1, we find that 24 bits have been reduced to just three bits. 

In what follows, we will use the term “Chunk Equivalence Set” 
(CES) to denote a set above, e.g. each of the three sets: (a) (tcp) (b) 
(udp) (c) (all remaining numbers in the range O-2551 is said to be a 
CES because if there are two packets with protocol values lying in 
the same set and have otherwise identical headers, the rules of the 
classifier do not distinguish between them. 

Each CES can be constructed in the following manner: 

First Phase (Phase 0): Consider a fixed chunk of size b bits, and 
those component(s) of the rules in the classifier corresponding to 
this chunk. Project the rules in the classifier on to the number line 

[0,2’ - I] . Each component projects to a set of (not necessarily 

contiguous) intervals on the number line. The end points of all the 
intervals projected by these components form a set of non-overlap- 
ping intervals. Two points in the same interval always belong to the 
same equivalence set. Also, two intervals are in the same equiva- 
lence set if exactly the same rules project onto them. As an example 
consider chunk #6 (Destination port) of the classifier in Table 3. 
The end-points of the intervals (KX.14) and the constructed equiva- 
lence sets (EO..E3) are shown in Figure 7. The RFC table for this 
chunk is filled with the corresponding e9lDs. Thus. in this example, 

table(20) = OOb , table(23) = 11 b etc. The pseudocode for com- 

puting the e9lDs in Phase 0 is shown in Figure 19 in the Appendix. 

To facilitate the calculation of the e9lDs for subsequent RFC 
phases, we assign a class bitmap (CBM) for each CES indicating 

ZO?l 8/l lq23 
I I I I 

IO 11 12 13 14 

EO= {20,21) E2 = ( 1024-65535 } 

El = {80) E3 = (O-19,22-79,81-1023] 

Figure 7: An example of computing the four equivalence classes 
EO...E3 for chunk #6 (corresponding to the ldbit Transport- 
Layer destination port number) in the classifier of Table 3. 

which rules in the classifier contain this CES for the corresponding 
chunk. This bitmap has one bit for each rule in the classifier. For 
example, EO in Figure 7 will have the CBM 101000 indicating 
that the first and the third rules of the classifier in Tab e P 3 contain 
EO in chunk #6. Note that the class bitmap is not physically stored 
in the lookup table: it is just used to facilitate the calculation of the 
stored e9ZDs by the preprocessing algorithm. 

Subsequent Phases: A chunk in a subsequent phase is formed by a 
combination of two (or more) chunks obtained from memory look- 
ups in previous phases, with a corresponding CES. If, for example, 
the resulting chunk is of width b bits, we again create equivalence 
sets such that two b-bit numbers that are not distinguished by the 
rules of the classifier belong to the same CES. Thus, (20,udp) and 
(21,udp) will be in the same CES in the classifier of Table 3 in 
Phase 1. To determine the new equivalence sets for this phase, we 
compute all possible intersections of the equivalence sets from the 
previous phases being combined. Each distinct intersection is an 
equivalence set for the newly created chunk. The pseudocode for 
this preprocessing is shown in Figure 20 of the Appendix. 

5.3 A simple complete example of RFC 

Realizing that the preprocessing steps are involved, we present a 
complete example of a classifier, showing how the RFC preprocess- 
ing is performed to determine the contents of the memories, and 
how a packet can be looked up as part of the RFC operation. The 
example is shown in Figure 22 in the Appendix. It is based on a 4- 
field classifier of Table 6, also in the Appendix. 

6 Implementation Results 

In this section, we consider how the RFC algorithm can be imple- 
mented and how it performs. First, we consider the complexity of 
preprocessing and the resulting storage requirements. Then we con- 
sider the lookup performance to determine the rate at which packets 
can be classified. 

6.1 RFC Preprocessing 

With our classifiers, we choose to split the 32-bit Network-layer 
source and destination address fields into two 1Bbit chunks each. 
These are chunks #O. 1 and #2,3 respectively. As we found a maxi- 
mum of four fields in our classifiers, this means that Phase 0 of 
RFC has six chunks: chunk #4 corresponds to the protocol and pro- 
tocol-flags field and chunk #5 corresponds to the Transport-layer 
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Figure 10: The RFC storage requirements in Megabytes for 
two Phases using the classifiers available to us. This special 
case of RFC is identical to the Crossproducting method of 
1171. 

Figure 8: Two example reduction trees for P=3 RFC phases. 

Phase 0 Phase 1 Phase 2 Phase 3 

0 

tree-B 
1 

2 ClassID 

Chunk# 9 
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4 

Figure 9: Two example reduction trees for P=4 RFC phases. 

Destination field. 

The performance of RFC can be tuned with two parameters: (i) The 
number of phases, P, that we choose to use, and (ii) Given a value 
of P, the reduction tree used. For instance, two of the several possi- 
ble reduction trees for P=3 and P=4 are shown in Figure 8 and Fig- 
ure 9 respectively. (For P=2, there is only one reduction tree 
possible). When there is more than one reduction tree possible for a 
given value of P, we choose a tree based on two heuristics: (i) we 
combine those chunks together which have the most “correlation” 
e.g. we combine the two 16-bit chunks of Network-layer source 
address in the earliest phase possible, and (ii) we combine as many 
chunks as we can without causing unreasonable memory consump- 
tion. Following these heuristics, we find that the “best” reduction 
tree for P=3 is tree-B in Figure 8, and the “best” reduction tree for 
P=4 is tree-A in Figure 9. 

Figure 11: The RFC storage requirements in Kilobytes for 
three phases using the classifiers available to us. The reduction 
tree used is tree-i in Figure 8. 

Now, let us look at the performance of RFC using our set of classi- 
fiers. Our first goal is to keep the total amount of memory reason- 
ably small. The memory requirements for each of our classifiers is 
plotted in Figure 10, Figure 11 and Figure 12 for P=2, 3 and 4 
phases respectively. The graphs show how the memory usage 
increases with the number of rules in each classifier. For practical 
purposes, it is assumed that memory is only available in widths of 
8, 12 or 16 bits. Hence, an eqfD requiring 13 bits is assumed to 
occupy 16 bits in the RFC table. 

As we might expect, the graphs show that as we increase the num- 
ber of phases from three to four, we require a smaller total amount 
of memory. However, this comes at the expense of two additional 
memory accesses, illustrating the trade-off between memory con- 
sumption and lookup time in RFC. Our second goal is to keep the 
preprocessing time small. And so in Figure 13 we plot the prepro- 
cessing time required for both three and four phases of RFC.+ 

The graphs indicate that, for these classifiers, RFC is suitable if 

t The case P=2 is not plotted: it was found to take hours of pre- 
processing time because of the unwieldy size of the RFC tables. 
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Figure 12: The RFC storage requirements in Kilobytes for 
four phases using the classifiers available to us. The reduction 
tree used is tree-A in Figure 9. 

Figure 13: The preprocessing times for three and four phases in 
seconds, using the set of classifiers available to us. This data is 
taken by running the RFC preprocessing code on a 333MHz 
Pentium-II PC running the Linux operating system. 

(and only if) the rules change relatively slowly; for example, not 
more than once every few seconds. Thus, it may be suitable in envi- 
ronments where rules are changed infrequently. for example if they 
are added manually, or when a router reboots. 

For applications where the tables change more frequently, it may be 
possible to make incremental changes to the tables. This is a subject 
requiring further investigation. 

Finally, note that there are some similarities between the RFC algo- 
rithm and the bit-level parallel scheme in [ 151; each distinct bitmap 
in [15] corresponds to a CES in the RFC algorithm. Also, note that 
when there are just two phases, RFC corresponds to the crosspro- 
ducting method described in [17]. 

6.2 RFC Lookup Performance 

The RFC lookup operation can be performed both in hardware and 
in software.+ We will discuss the two cases separately, exploring the 

t Note that the RFC preprocessing is always performed in soft- 
ware. 

, 
Phase0 I 

Phase 1 
I aicated 

SDRAMl 

Phase 2 SDRAM2 

Figure 14: An exampie hardware design for RFC with three 
phases. The latches for holding data in the pipeline and the on- 
chip control logic are not shown.This design achieves OC192 
rates in the worst case for 40Byte packets, assuming that the 
phases are pipelined with 4 clock cycles (at 125MHz clock 
rate) per pipeline stage. 

lookup performance in each case. 

Hardware 

An example hardware implementation for the tree tree-B in Figure 
8 (three phases) is illustrated in Figure 14 for four fields (six chunks 
in Phase 0). This design is suitable for all the classifiers in our 
dataset, and uses two 4Mbit SRAMs and two 4-bank 64Mbit 
SDRAMs 1191 clocked at 125 MHz.$ The design is pipelined such 
that a new lookup play begin every four clock cycles. The pipelined 
RFC lookup proceeds as follows: 

1) Pipeline Stage 0: Phase 0 (Clock cycles O-3): In the first three 
clock cycles, three accesses are made to the two SRAM 
devices in parallel to yield the six eqIDs of Phase 0. In the 
fourth clock cycle, the eqIDs from Phase 0 are combined to 
compute the two indices for the next phase. 

2) Pipeline Stage 1: Phase l(Clock cycles 4-7): The SDRAM 
devices can be accessed every two clock cycles, but we 
assume that a given bank can be accessed again only after 
eight clock cycles. By keeping the two memories for Phase 1 
in different banks of the SDRAM, we can perform the Phase 1 
lookups in four clock cycles. The data is replicated in the other 
two banks (i.e. two banks of memory hold a fully redundant 
copy of the lookup tables for Phase 1). This allows Phase 1 
lookups to be performed on the next packet as soon as the cur- 
rent packet has completed. In this way, any given bank is 
accessed once every eight clock cycles. 

3) Pipeline Stage 2: Phase 2 (Clock cycles 8-11): Only one 
lookup is to be made. The operation is otherwise identical to 
Phase 1. 

Hence, we can see that approximately 30 million packets can be 

$ These devices are in production in industry at the time of writ- 
ing this paper. In fact, even bigger and faster devices are avail- 
able today - see [19] 
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classified per second (to be exact, 3 1.25 million packets per second 
with a 125MHz clock) with a hardware cost of approximately $50.+ 
This is fast enough to process minimum length packets at the 
OC 192~ rate. 

Software 

Figure 21 (Appendix) provides pseudocode to perform RFC look- 
ups. When written in ‘C’, approximately 30 lines of code are 
required to implement RFC. When compiled on a 333Mhz Pen- 
tium-II PC running Windows NT we found that the worst case path 

for the code took (140cZks + 9. fm) for three phases, and 

(146&s + 11 . fm) for four phases, where t,,l is the memory 

access timc.$ With tm = 60~1s , this corresponds to 0.98~~ and 

1.1~s for three and four phases respectively. This implies RFC can 
perform close to one million packets per second in the worst case 
for our classifiers. The average lookup time was found to be 
approximately 50% faster than the worst case: Table 4 shows the 
average time taken per lookup for 100,000 randomly generated 
packets for some classifiers. 

Table 4: 

Number of Rules in Average Time per 
Classifier lookup (ns) 

39 587 

113 582 

646 668 

827 611 

1112 733 

1734 621 

The pseudocode in Figure 21 calculates the indices into each mem- 
ory using multiplication/addition operations on eqIDs from previ- 
ous phases. Alternatively. the indices can be computed by simple 
concatenation. This has the effect of increasing the memory con- 
sumed because the tables are then not as tightly packed. Given the 
simpler processing, we might expect the classification .fime to 
decrease at the expense of increased memory usage. Indeed the 
memory consumed grows approximately two-fold on the classifi- 
ers. Surprisingly, we saw no significant reduction in classification 
times. We believe that this is because the processing time is domi- 
nated by memory access time as opposed to the CPU cycle time. 

t Under the assumption that SDRAMs are now available at $1.50 
per megabyte, and SRAMs are $12 for a 4Mbyte device. 

$ The performance of the lookup code was analyzed using 
VTune[20], an Intel performance analyzer for processors of the 
Pentium family. 

6.3 Larger Classifiers 

As we have seen, RFC performs well on the real-life classifiers 
available to us. But how will RFC perform with larger classifiers 
that might appear in the future’? Unfortunately, it is difficult to accu- 
rately predict the memory consumption of RFC as a function of the 
size of the classifier: the performance of RFC is determined by the 
structure present in the classifier. With pathological sets of rules, 
RFC could scale geometrically with the number of rules. Fortu- 
nately. such cases do not seem to appear in practice. 

To estimate how RFC might perform with future. larger classifiers, 
we synthesized large artificial classifiers. We used two different 
ways to create large classifiers (given the importance of the struc- 
ture, it did not seem meaningful to generate rules randomly): 

1) A large classifier can be created by concatenating the classifi- 
ers belonging to the same network, and treating the result as a 
single classifier. Effectively, this means merging together the 
individual classifiers for different services. Such an implemen- 
tation is actually desirable in scenarios where the designer 
may not want more than one set of RFC tables for the whole 
network. Jn such cases, the classID obtained would have to be 
combined with some other information (such as classifier ID) 
to obtain the correct intended action. By only concatenating 
classifiers from the same network, we were able to create clas- 
sifiers up to 3,896 rules. For each classifier created. WC per- 
formed RFC with both three and four phases. The results are 
shown in Figure 15. 

2) To create even larger classifiers, we concatenated all the clas- 
sifiers of a few (up to ten) different networks. The perfor- 
mance of RFC with four phases is plotted as the ‘Basic RFC’ 
curve in Figure 18. We found that RFC frequently runs into 
storage problems for classifiers with more than 6000 rules. 
Employing more phases does not help as we must combine at 
least two chunks in every phase, and end up with one chunk in 

the final phase.” An alternative way to process large classifi- 
ers would be to split them into two (or more) parts and con- 
struct separate RFC tables for each part. This would of course 
come at the expense of doubling the number of memory 

accesses.SS 

7 Variations 

Several variations and improvements of RFC are possible. First, it 
should be easy to see how RFC can be extended to process a larger 
number of fields in each packet header. 

Second, we can possibly speed up RFC by taking advantage of 
available fast lookup algorithms that find longest matching prefixes 
in one field. Note that in our examples, we use three memory 
accesses each for the source and destination Network-layer address 

tt With six chunks in Phase 0, we could have increased the num- 
ber of phases to a maximum of six. However we found no 
appreciable improvement by doing so. 

$$ Actually, for Phase 0, we need not lookup memory twice for the 
same chunk if we use wide memories. This would help us 
access the contents of both the RFC tables in one memory 
access. 
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Figure 15: The memory consumed by RFC For three and 
four phases on classifiers created by merging all the classifi- 
ers of one network. 

lookups during the first two phases of RFC. This is necessary 
because of the considerable number of non-contiguous address/ 
mask specifications. In the event that only prefixes are present in 
the specification, one can use a more sophisticated and faster tech- 
nique for looking up in one dimension e.g. one of the methods 
described in [1][5][7][9] or [16]. 

Third, we can employ a technique described below to reduce the 
memory requirements when processing large classifiers. 

7.1 Adjacency Groups 
Since the size of the RFC tables depends on the number of 

chunk equivalence classes, we focus our efforts on trying to reduce 
this number. This we do by merging two or more rules of the origi- 
nal classifier as explained below. We find that each additional phase 
of RFC further increases the amount of compaction possible on the 
original classifier. 

First we define some notation. We call two distinct rules R and 
S. with R appearing first. in the classifier to be adjacent in ditnen- 
sion ‘i’ if all of the following three conditions hold: (1) They have 
the same action, (2) All but the i’” field have the exact same specifi- 
cation in the two rules, and (3) All rules appearing in between R 
and S in the classifier have either the same action or are disjoint 
from R. Two rules are said to be simply adjacent if they are adja- 
cent in some dimension. Thus the second and third rules in the clas- 
sifier of Table 3 are adjacent+ in the dimension corresponding to the 
Transport-layer Destination field. Similarly the fifth rule is adjacent 
to the sixth but not to the fourth. Once we have determined that two 
rules R and S are ad.jacent, we merge them to form a new rule T 
with the same action as R (or S). It has the same specifications as 
that of R (or S) for all the fields except that of the i”l which is simply 
the logical-OR of the ifh field specifications of R and S. The third 

t Adjacency can be also be looked at this way: treat each rule 
with F fields as a boolean expression of F (multi-valued) vari- 
ables. Initially each rule is a conjunction i.e. a logical-AND of 
these variables. Two rules are defined to be adjacent of they are 
adjacent vertices in the F-dimensional hypercube created by the 
symbolic representation of the F fields. 

Figure 16: The memory consumed with three phases with the 
adjGrp optimization enabled on the large classifiers created by 
concatenating all the classifiers of one network 

condition above ensures that the relative priority of the rules in 
between R and Swill not be affected by this merging. 

An adjacency grump (adjGrp) is defined recursively as: (1) 
Every rule in the original classifier is an adjacency group, and (2) 
Every merged rule which is created by merging two or more adja- 
cency groups is an adjacency group. 

We compact the classifier as follows. Initially, every rule is in 
its own adjGrp. Next, we combine adjacent rules to create a new 
smaller classifier. One simple way of doing this is to iterate over all 
fields in turn, checking for adjacency in each dimension. After 
these iterations are completed, the resulting classifier will have no 
more adjacent rules. We do similar merging of adjacent rules after 
each RFC phase. As each RFC phase collapses some dimensions, 
groups which were not adjacent in earlier phases may become so in 
later stages. In this way, the number of adjGrps and hence the size 
of the classifier keeps on decreasing with every phase. An example 
of this operation is shown in Figure 17. 

Note that there is absolutely no change in the actual lookup 
operation: the equivalence IDS are now simply pointers to bitmaps 
which keep track of adjacency groups rather than the original rules. 
To demonstrate the benefits of this optimization for both three and 
four phases, we plot in Figure 16 the memory consumed with three 
phases on the 101 large classifiers created by concatenating all the 
classifiers belonging to one network; and in Figure 18, the memory 
consumed with four phases on the even larger classifiers created by 
concatenating all the classifiers of different networks together. The 
figures show that this optimization helps reduce storage require- 
ments. With this optimization, RFC can now handle a 15,000 rule 
classifier with just 3.85MB. The reason for the reduction in storage 
is that several rules in the same classifier commonly share a number 
of specifications for many fields. 

However, the space savings come at a cost. For although the classi- 
fier will correctly identify the action for each arriving packet. it can- 
not tell which rule in the original classifier it matched. Because the 
rules have been merged to form adjGrps, the distinction between 
each rule has been lost. This may be undesirable in applications that 
maintain matching statistics for each rule. 
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Table 5: 

Scheme 

Sequential Evaluation 

Pros 

Good storage requirements. Works for arbitrary num- 
ber of fields. 

Slow lookup rates. 

Cons 

Grid of Tries[ 171 

Crossproducting[ 171 

Bit-level Parallelism[ 151 

Recursive Flow Classifi- 
cation 

Good storage requirements and fast lookup rates for Not easily extendible to more than two fields. Not suit- 
two fields. Suitable for big classifiers. able for non-contiguous masks. 

Fast accesses. Suitable for multiple fields. Can be Large memory requirements. Suitable without caching 
adapted to non-contiguous masks. for small classifiers up to 50 rules. 

Suitable for multiple fields. Can be adapted to non- Large memory bandwidth required. Comparatively 
contiguous masks. slow lookup rate. Hardware only. 

Suitable for multiple fields. Works for non-contiguous Large preprocessing time and memory requirements 
masks. Reasonable memory requirements for real-life for large classifiers (i.e. having more than 6000 rules 
classifiers. Fast lookup rate. without adjacency group optimization). 

R(al,bl,cl,dl) 

S(al,bl,d,dl) 

T(a2,bl,c2,dl) 

U(a2,bl,cl,dl) 

V(al,bl,c4,d2) 

W(al,bLc3.d2) 

X(a2,bl.c3,d2) 

Y(a2,bl,c4,d2) 

Merge along 

Dimension 3 
RS(al.bl,cl+c2,dl) 

TU(a2,bl,cl+c2,dl) 
VW(al.bl,c3+c4,d2) 

XY(a2,bl,c3+c4,d2) 

Merge along 

Dimension 1 
/ 

RSTU(al+a2,bl,cl+c2,dl) 

VWXY(al+a2,bl,c3+c4,d2) 
. 

Carry out an RFC Phase. 
Assume:chunks 1 and 2 are combined 
and also chunks 3 and 4 are combined 

I 

RSTUVWXY(ml,nI+n2) RSTU(ml,nl) 

’ Continue with RFC... 
VWXY(ml,n2) 

I ,_________________. 

v 

: (al+a2.b1) reduces to ml : 
: (cl+c2,dl) reduces to nl : 
1 (c3+c4,d2) reduces to n2 : 
.---____--_____---. 

Figure 17: Example of Adjacency Groups. Some rules of a 
classifier are shown. Each rule is denoted symbolically by 
RuleName(FieldName1, FieldName2,...). The ‘4 denotes a 
logical OR. All rules shown are assumed to have the same 
action. 

8 Comparison with other packet classification 
schemes 

Table 5 shows a qualitative comparison of some of the schemes for 
doing packet classification. 
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Figure 18: The memory consumed with four phases with the 
adjGrp optimization enabled on the large classifiers created by 
concatenating all the classifiers of a few different networks. 
Also shown is the memory consumed when the optimization is 
not enabled (i.e. the basic RFC) scheme. Notice the absence of 
some points in the Basic RFC curve. For those classifiers, the 
basic RFC takes too much memory/preprocessing time. 

9 Conclusions 

It is relatively simple to perform packet classification at high speed 
using large amounts of storage; or at low speed with small amounts 
of storage. When matching multiple fields (dimensions) simulta- 
neously, it is difficult to achieve both high classification rate and 
modest storage in the worst case. We have found that real classifiers 
(today) exhibit considerable amount of structure and redundancy. 
This makes possible simple classification schemes that exploit the 
structure inherent in the classifier. We have presented one such 
algorithm, called RFC which appears to perform well with the 
selection of real-life classifiers available to us. For applications in 
which the tables do not change frequently (for example, not more 
than once every few seconds) a custom hardware implementation 
can achieve OC192c rates with a memory cost of less than $50, and 
a software implementation can achieve OC48c rates. RFC was 
found to consume too much storage for classifiers with four fields 
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and more than 6,000 rules. But by further exploiting structure and 
redundancy in the classifiers, a modified version of RFC appears to 
be practical for up to 15,000 rules. 
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12 Appendix 
I* Begin Pseudocode *I 
I* Phase 0, Chunkj of width b bits*/ 
for each rule rl in the classifier 
begin 

project the ifh component of rl onto the number line (from 0 to Zb-l), 
marking the start and end points of each of its constituent intervals. 

endfor 
I* Now scan through the number line looking for distinct equivalence 
classes*/ 
bmp := 0; I* all bits of bmp are initialised to ‘0’ *I 
for n in 0..2’-1 

begin 
if (any rule starts or ends at n) 
begin 

update bmp; 
if (bmp not seen earlier) 
begin 

eq := new-Equivalence-Class(); 
eq-xbm := bmp: 

endif 
endif 
else cq := the equivalence class whose cbm is bmp; 

table-Oj[n] = eq->ID; /* fill ID in the rfc table*/ 
endfor 
/* end of pseudocode *! 

Figure 19: Pseudocode for RFC preprocessing for chunkj of 
Phase 0 
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Table 6: 

/* Begin Pseudocode */ 

I* Assume that the chunk #i is formed from combining m distinct chunks 
cl, c2, . . . . cm of phases ~1.~2, . . . . pm where pl, p2, . . . . pm <j */ 

indx := 0: I* indx runs through all the entries of the RFC table table-j-i *I 
1istEqs := nil; 
for each CES, cleq, of chunk cl 
for each CES, c2eq. of chunk c2 

. 
for each CES, cmeq of chunk cm 
begin 
intersectedBmp := cleq->cbm & c2eq->cbm & . . . & cmeq->cbm;/* bitwise 

ANDing */ 
neweq := searchList(listEqs, intersectedBmp); 
if (not found in IistEqs) 
begin 
/* create a new equivalence class *I 
neweq := new-Equivalence-Class(); 
neweq->cbm := bmp; 
add neweq to 1istEqs; 

cndif 
I* Fill up the relevant RFC table contents.*/ 
tablej-i[indx] := neweq->ID; 
indx++; 

endfor 
I* end of pseudocode *I 

Figure 20: Pseudocode for RFC preprocessing for chunk i of Phase j, 
.i>O) 

/* Begin Pseudocode *I 

for (each chunk, chkNum of phase 0) 
eqNums[O][chkNum] = contents of appropriate rfctable at memory address 

pktFieldslchkNum]: 
for (phaseNum = l..numPhases-1) 
for (each chunk, chkNum, in Phase phaseNum) 
begin 
I* chd stores the number and description about this chunk’s parents chk- 

Prants[O..numChkParents]*/ 
chd = parent descriptor of (phaseNum, chkNum); 
indx = eqNums[phaseNum of chkParents[O]][chkNum of chkParents[Ol]; 
for (i=l..chd->numChkParents-1) 

begin 

indx = indx * (total #equivIDs of chd->chkParents[i]) + 
eqNums[phaseNum of chd->chkParents[ill[chkNum of chd->chkPar- 
ents[i]]: 

/*** Alternatively: indx = (indx << (#bits of equivID of chd->chk- 
Parentsri])) A (eqNums[phaseNum of chkParents[i]J[chkNum of chkPar- 
ents[i]] ***I 

endfor 
eqNums[phaseNum][chkNum] = contents of appropriate rfctable at 

address indx. 
endfor 
return eqNums[O][numPhases-I]: I* this contains the desired classID 

*I 
I* end of pseudocode *I 

Figure 21: Pseudocode for the RFC Lookup operation with the 
fields of the packet in pktlields. 
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e Accesses made by the lookup of a packet with 
Src Network-layer Address = 0.83.1.32 
Dst Network-layer Address = 0.0.4.6 
Transport-layer Protocol = 17 (udp) 
Dst Transport-layer port number = 22 

655i5 B ChunkK5 
Figure 22: This figure shows the contents of RFC tables for the example classifier of Table 6. The sequence of accesses made by the 
example packet have also been shown using big gray arrows. The memory locations accessed in this sequence have been marked in 
bold. 
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