
Dynamic Algorithms with Worst-case

Performance for Packet Classi�cation

Pankaj Gupta1 and Nick McKeown1

Computer Systems Laboratory, Stanford University

Stanford, CA 94305-9030

fpankaj, nickmg@stanford.edu

Abstract. Packet classi�cation involves | given a set of rules | �nd-

ing the highest priority rule matching an incoming packet. When design-

ing packet classi�cation algorithms, three metrics need to be considered:

query time, update time and storage requirements. The algorithms pro-

posed to-date have been heuristics that exploit structure inherent in

the classi�cation rules, and/or trade o� one or more metrics for others.

In this paper, we describe two new simple dynamic classi�cation algo-

rithms, Heap-on-Trie or HoT and Binarysearchtree-on-Trie or BoT for

general classi�ers. The performance of these algorithms is considered in

the worst-case, i.e., without assumptions about structure in the classi�ca-

tion rules. They are also designed to perform well (though not necessarily

the \best") in each of the metrics simultaneously.

1 Introduction

Internet routers perform packet classi�cation to identify the
ow to which ar-

riving packets belong, and hence the action or service that the packet should

receive. More formally, packet classi�cation can be de�ned as:

Packet Classi�cation: Given a classi�er with N rules, fRkgNk=1, where rule Rk

consists of three entities: (1) A d-tuple of ranges ([lk1 : rk1]; [l
k
2 : rk2]; :::; [l

k
d : rkd]),

(2) A number indicating the priority of the rule in the classi�er, referred to as

pri(Ri), and (3) An action, referred to as action(Ri): for an incoming packet

P with the relevant �elds considered as a d-tuple of points (P1; P2; :::; Pd), the

d-dimensional packet classi�cation problem is to �nd a speci�c value of j,

say j�, such that pri(Rj�) > pri(Rj) 8j 6= j� and l
j
i � Pi � r

j
i ;8i : 1 � i � d in

order to identify action(Rj�) to be applied to the packet P .

Packet classi�cation functions have started to appear in routers to provi-

sion services [1] such as access control in �rewalls, load balancing across web

servers, policy-based routing, virtual private networks, network address transla-

tion, quality of service di�erentiation, and traÆc accounting and billing.

We evaluate a packet classi�cation algorithm for a classi�er with N rules on

the basis of the following metrics: (1) Query time { the amount of time taken to

classify each arriving packet, also called the lookup or search time; (2) Storage

requirement { memory required by the data structure used by the algorithm to

hold the classi�cation rules; (3) Update time { the amount of time needed to

incrementally update the data structure on insertion or deletion of classi�cation

rules. An algorithm that supports incremental updates is said to be dynamic. In

contrast, the whole data structure has to be recomputed in a static algorithm,

whenever a rule is added or deleted.

Fast update time is important in many applications { for example, rules need

to be inserted or deleted online as
ows become active or inactive in a router

providing
ow-based quality of service. If there is a large discrepancy between

the update and query times of an algorithm, incoming packets may need to be

bu�ered before lookup, if an update operation is in progress. Therefore, in order

to avoid bu�ering, delay variation and head-of-line blocking problems, we seek

algorithms with update time comparable to the query time.

In this paper, we present two novel dynamic algorithms and their worst-case

query time, update time and storage complexities for general classi�ers. These

algorithms are primarily of interest in that they simultaneously have attractive

worst-case complexities for each metric for any set of classi�cation rules.

2 Related Work

The simplest algorithm is a linear search which sequentially compares the packet

with each rule in turn, starting with the highest priority rule. The query time

and storage complexities are both O(N). Updates can be made incrementally

by a simple binary search in the sorted list of rules in O(logN) time. Thus,

linear search is an example of an algorithm that performs well in two metrics

(storage and update time), but poorly in the query time metric. This makes the

algorithm impractical for all but the smallest set of rules.

Frequently, there is a trade-o� between the query and update times. Algo-

rithms typically achieve fast query times by pre-computation to carefully orga-

nize the data structure. This, in turn, usually renders updates ineÆcient. Ex-

amples of solutions that ignore update times in order to have fast query times

in reasonable amount of space include a ternary CAM based solution and the

bitmap intersection approach of Lakshman and Stiliadis [2]. Update time com-

plexity is O(N) in each case.

Other solutions such as Grid-of-Tries proposed by Srinivasan et al [3], and

the fractional cascading solution by Lakshman and Stiliadis [2] are static, and so

are not relevant here as we are only considering dynamic algorithms. Heuristic

solutions which attempt to take advantage of the structure of real-life classi�ers

are proposed in [3][4][5][6]. While these solutions seem to work well with real-life

classi�ers today, they have prohibitive O(n2) or higher storage requirements in

the worst-case. A notable exception is the tuple space search scheme proposed

by Srinivasan, Suri and Varghese [7]. This scheme has O(N) worst-case storage

requirement, but queries and updates can require O(N) hashed memory accesses

in the worst case.

Two dynamic algorithms with sub-linear worst-case bounds have been re-

cently proposed. The �rst algorithm, proposed by Buddhikot, Suri, and Wald-

vogel [8] uses a novel pre�x-partitioning technique which helps implement fast

incremental updates. This scheme achieves O(�W) search time, O(N) space

and O(
�

p
N) update time where � is a tunable integer parameter greater than

1. However the scheme does not readily extend to more than two dimensions or

to general rules that have non-pre�x �eld speci�cations. The second algorithm,

proposed by Feldmann and Muthukrishnan [9], is based on a novel data struc-

ture, which they call an FIS tree. An FIS tree is similar to an inverted multi-ary

segment tree and is essentially a static data structure. The authors also extend

it to handle incremental updates. However, they state results for only a small

number of updates (O(n1=l) in one dimension). Their scheme in one-dimension

has storage complexity of O(n1+1=l), update time complexity of O(ln1=l logn)

and lookup complexity of O(log2 n) + l memory accesses where l is a constant

suitably chosen to trade-o� lookup time versus storage requirement. The authors

also make suggestions on how to handle larger number of updates, but have to

\sacri�ce" either space or lookup or update time to achieve that.

Table 1. Worst-case bounds obtained in this paper for dynamic d-dimensional packet

classi�cation.

Algorithm Query Space Update

Heap-on-Trie (HoT) O(logdN) O(N logdN) O(logd+1N)

Binarysearchtree-on-Trie (BoT) O(logd+1N) O(N logdN) O(logdN)

In this paper, we focus on algorithms rather than implementation details,

even though we favor readily-implemented data structures and algorithms. For a

discussion of the implementation-related goals of a practical algorithm, please see

references [2] and [4]. We propose two dynamic algorithms for one-dimensional

classi�cation with arbitrary classi�ers and extend them to higher dimensions.

We obtain the worst case bounds for both algorithms as shown in Table 1. To

the best of our knowledge, these are the �rst published simultaneous worst-case

bounds for search time, update time and space consumption for general multi-

dimensional classi�ers, where none of the worst-case metrics is \sacri�ced" in

favor of the other two.

3 Heap-on-Trie (HoT)

3.1 One-dimensional classi�ers

If the �eld speci�cations in a one-dimensional classi�er are restricted to pre�xes,

a trie is a good dynamic data structure supporting inserts, deletes and searches

in O(W) time, whereW is the width of the �eld in bits, and therefore the depth

of the trie (see [10] for an example of algorithms with a trie-like data structure).

The space complexity of the trie is O(NW).

If the �eld speci�cations in the rules of a classi�er are not restricted to be

pre�xes but allowed to be arbitrary contiguous ranges, one method of storing

a rule is to split a range into several maximal pre�xes and to then use a trie.

For example, a range [0; 10] (with W = 4) can be split up into three maximal

pre�xes: (1) 0*** denoting the range [0; 7] ; (2) 100* denoting the range [8; 9]

and (3) 1010 denoting the single element range [10; 10]. Note that any range in

[0; 2W � 1] can be split into a maximum of (2 �W � 2) such pre�xes. We call

the set of constituent pre�xes of a range, G, as C(G). We say that a range G is

allocated to a particular trie node z if C(G) has a pre�x represented by the trie

node z.

Some constituent pre�xes of di�erent ranges might be identical because

ranges can overlap. Hence multiple rules may be allocated to the same trie node.

In a static solution one simply pre-computes the highest priority of these rules

and store it in the corresponding trie node. However, this is unacceptable in a

dynamic solution where rules can be inserted and deleted because the identities

of individual rules need to be maintained. The Heap-on-Trie data structure uses

a heap at each trie node to maintain the rules allocated to that trie node. A heap

is a data structure for storing keys with the following property { the key value

at every non-leaf node is higher than the key values of its two children nodes.

A Heap-on-Trie (HoT) is therefore a two-level data structure where the set

of ranges associated with a particular node is arranged in a heap, ordered by the

priority of the ranges. The heap property ensures that the maximum priority

of all the rules associated with a trie node is stored in the root node of the

heap at that trie node and is hence available in O(1) time. Given this data

structure, a classi�cation query proceeds downwards starting from the root of

the trie, returning the maximum priority rule stored at the root node of each

of the heaps associated with the nodes traversed in the trie. The total query

time is O(W). A given range to be inserted or deleted is �rst split into O(W)

pre�xes. Each of these pre�xes is then inserted/deleted separately to/from the

corresponding heaps. The heaps are then readjusted to maintain heap order such

that the highest priority range is available in its root node. Since an insert or

delete takes O(logN) time in a heap, the total update time is O(W logN).1

The total storage requirement is O(NW) because there are O(W) constituent

pre�xes of a range and the total number of trie nodes that can be contributed by

these constituent pre�xes is also O(W). Hence each range consumes O(W) space

for a total complexity of O(NW). Note that this is the same space complexity

as a classi�er with pre�x-only �eld speci�cations.

Simpli�cations to the data structure are possible in restricted environments.

For example, when it is known that overlaps among ranges are small, we could

simply maintain a linked list at each node instead of a heap. Similarly, if an

application is such that only inserts need to be supported, once the data structure

1 For the delete operation, we need to have access to the pointers to the O(W) nodes

in di�erent heaps containing the constituent maximal pre�xes of a particular range.

This can be easily maintained in a separate table indexed by the rule identi�er at

an extra cost of O(NW) space.

has been built, insert time can be decreased to O(1) at each node by simply

checking the priority in front of the list. We insert the new rule in front of the

list if this is lower than the priority of the new rule, and after the �rst rule

otherwise. This takes a total of O(W) time for a rule insertion. Likewise, if only

deletes need to be supported, time for a delete operation could be brought down

to O(W) by using a sorted list instead of a heap and storing the pointers to

the constituent pre�xes of a range in di�erent lists corresponding to each range

present in the classi�er. To delete a range, one would access the corresponding

pre�xes by these pointers and delete them from their respective sorted lists in

O(1) time each, to obtain a total delete time of O(W). A summary of these

bounds is shown in Table 2.

Table 2. Bounds for the di�erent types of dynamic algorithms using the HoT data

structure.

Algorithm-HoT Query Space Insert-Time Delete-Time

Dynamic O(W) O(NW) O(W logN) O(W logN)

Semi-dynamic (only inserts) O(W) O(NW) O(W) {

Semi-dynamic (only deletes) O(W) O(NW) { O(W)

3.2 Multi-dimensional classi�ers

The dynamic data structure for d-dimensions can be obtained by building hierar-

chical multi-level tries, one level for each dimension except for the last, on which

a Heap-on-Trie is built. It is not diÆcult to see that the total space consumed

is then O(NW d) with query and update times being O(W d) and O(W d logN)

respectively. We do not use fractional cascading in these multi-level tries, as

it is essentially a static technique for searching among similar lists. Mehlhorn

and Naher have proposed a dynamic version of fractional cascading [11] where

updates to cascaded lists can be made such that query time complexity only

increases from O(logN) to O(logN log logN). However, the constants hidden in

the O(.) notation are so high that a simpler O(log2N) solution that does not

use fractional cascading is usually better for all practical values of N [12].

4 Binarysearchtree-on-Trie (BoT)

The motivation in this section is to develop an algorithm that executes updates

faster than the HoT algorithm described above. As is often the case, faster

updates are obtained at the expense of increased query time.

4.1 One-dimensional classi�ers

We start with de�ning the terminology used in this section and then describe

the BoT data structure and algorithms.

De�nitions

{ For a node z in a trie T , we let parent(z), lchild(z) and rchild(z) denote its

parent, left and right children nodes. Also, we let root(T) denote the root

node of trie T .

{ For a node z of a W -bit trie, we de�ne pre�x(z) to be the pre�x that z

represents in the trie. The length of pre�x(z), denoted as length(pre�x(z)), is

de�ned to be the distance of the node z from the root of the trie, We de�ne

the root's children to be at a distance of 1 from it. We can write pre�x(z) by

the W -bit string z1z2 : : : zl � � : : : �, where l = length(prefix(z)), or simply

by an (l+1)-bit string z1z2 : : : zl� where the trailing (W � l) `*' wildcard-bits

are implicit.

{ pre�x(z) de�nes a contiguous range, called pre�xRange(z) of size 2W�length(prefix(z))

on the integer number line. The starting point of this range is denoted by

st(z) and equals z1z2 : : : zl0 : : : 0, while the ending point of this range is de-

noted by en(z) and equals z1z2 : : : zl1 : : : 1. Thus, pre�xRange(z) = [st(z),

en(z)].

{ We associate a distinguished point, Pt(z), with every trie node, z, and refer

to it as the d-point. The d-point is the midpoint of pre�xRange(z). Equiva-

lently, Pt(z) = b(st(z) + en(z))=2c = z1z2 : : : zl10 : : : 0.

{ G(z) denotes the set of ranges allocated to trie node z. The algorithm for

allocation of ranges to nodes is described below.

{ PGL(z) (respectively PGR(z)) is de�ned to be the set of the leftmost (right-

most) endpoints of the ranges in G(z). If e is any such endpoint in PGL or in

PGR, we let range(e) denote the range for which e is one of the endpoints.

Table 3. An example one dimensional 4-bit classi�er consisting of arbitrary ranges.

The priority of Ri is assumed to be i.

Rule Range Maximal Pre�xes

R5 [3,11] 0011, 01**, 10**

R4 [2,7] 001*, 01**

R3 [4,11] 01**, 10**

R2 [4,7] 01**

R1 [1,15] 0001, 001*, 01**, 10**, 110*, 1110

{R5,R3,R1}
8

4 12

2 6 10 14

z

v
{R4, R2}

Fig. 1. Showing the range allocations to the trie nodes for rules in Table 3. The number

inside a trie node v represents Pt(v) associated with it. In this particular example, all

ranges are allocated to the root node and its left child. The remaining nodes are actually

not present in the trie { they are only shown here to illustrate the calculation of the

distinguished points.

Table 4. Showing the allocated ranges to the trie nodes.

Trie Node,w Pt(w) G(w) PGL(w) PGR(w)

z 8 fR5; R3; R1g f1; 3; 4g f11; 11; 15g

v 4 fR4; R2g f2; 4g f7; 7g

The BoT Data Structure Similar to HoT, we use a trie as the underlying

data structure. The basic di�erence is that we now allocate a range to only

one trie node rather than to O(W) nodes. We allocate a range H to a trie

node z, if z satis�es the following two conditions: (1) H contains Pt(z); and

(2) If z is not the root node, H does not contain Pt(parent(z)). For example,

range R5[0011; 1011] in Table 3 is allocated to the root node of the trie as it

contains the point 1000 = Pt(root(T)); while range R4[0010; 0111] is allocated

to the left child of root(T) as it does not contain Pt(root(T)) but contains

Pt(lchild(root(T))) = 0100. We allocate every range in the one-dimensional

classi�er to exactly one trie node in this manner. The set of allocations for the

example classi�er in Table 3 is shown in Figure 1. This is also shown in tabular

form along with the sets PGL and PGR in Table 4.

Each of the sets PGL(z) and PGR(z) is stored in a balanced binary search

tree (BBST) | PGL(z) in BBSTleft(z) and PGR(z) in BBSTright(z). We can

choose one of various implementations of a BBST data structure, such as red-

black trees [13] and 2-3 trees [14] for BBSTleft(z) and BBSTright(z). We have

three �elds in a node, x, of the BBST:

1. val(x) which stores the value of one of the endpoints of the relevant range.

Nodes in BBSTleft contain the left endpoint and those in BBSTright contain

the right endpoint of the range associated with the node.

2. pri(x) which stores pri(range(val(x))).

3. augp(x) which augments the BBST to enable fast search operations. augp(x)

stores the priority of the highest priority rule among the rules in the subtree

rooted at x. Thus, it can be recursively de�ned as follows:

augp(x) =

8<
:
0 if x is nil

pri(x) if x is a leaf

max(augp(lchild(x)); augp(rchild(x)); pri(x)) otherwise

If a BBST implementation, for example a 2-3 tree, is such that it stores

data only in its leaf nodes, pri(x) is considered to be 0 and is ignored in the

calculation of augp(x) for all internal nodes x. The augmented BBSTs for our

running example are shown in Figure 2, with the augp �eld shown in bold and

bigger font than the val and pri �elds.

8

4

PGR(v) = {7,7}
BBSTright(v):

augp

PGL(v) = {2,4}
BBSTleft(v):

2 44

7 44

7 22

G(v) = {R4, R2}

PGR(z) = {11,11,15}
BBSTright(v):

PGL(z) = {1,3,4}
BBSTleft(z):

G(z) = {R5,R3,R1}

11 33

11 5

1115

5

v

z

A BBST node

1 11

3 55

3344 42

val pri

Fig. 2. Showing the BBSTs associated with each trie node.

Query Algorithm Consider BBSTleft(v), which stores the set of left endpoints,

PGL(v), for the trie node v. Since G(v) contains only those ranges that intersect

Pt(v) and PGL(v) has the left endpoints of these ranges, all points in PGL(v)

lie to the left of Pt(v) on the number line. Given a point Q representing an

incoming packet, we de�ne the following functions on the BBSTs at a trie node

v:

1. gethpLeft(B,Q) | If the point Q is such that Q < Pt(v), the function geth-

pLeft(B,Q) returns the priority of the highest priority range in G(v) that con-

tains the pointQ. Equivalently, gethpLeft() calculatesmaxjfpri(range(ej))jej 2
PGL(v); ej � Qg. Note that ej � Q if and only if range(ej) contains Q. This

function is performed by an algorithm that traverses the BBST B from its

root to a leaf node. The algorithm looks at the current node being traversed

in B, say v. Either Q < val(v) { in which case, the traversal descends to the

left-child of v, or Q � val(v) { in which case, the highest priority value found

so far in the traversal is compared with max(augp(v); pri(v)) and updated

if found smaller than this value. The traversal descends to the right child of

v in this case. On reaching a null node, the maximum priority found by the

traversal algorithm is the desired result.

2. gethpRight(B,Q) | If Q � Pt(v), the function gethpRight(B,Q) returns

maxjfpri(range(fj))jfj 2 PGR(v); fj � Qg. The algorithm is similar to

that for gethpLeft(B;Q).

3. gethpTrieNode(v,Q) { This function obtains the priority of the highest pri-

ority range in G(v) that contains the point Q. It �rst compares Q with Pt(v)

and returns gethpLeft(BBSTleft(v), Q) ifQ < Pt(v) or gethpRight(BBSTright(v),

Q) otherwise.

The above functions are illustrated in Figure 3. Functions gethpLeft and

gethpRight spend O(1) time at each node on the traversal path in the corre-

sponding BBST. Since the depth of each BBST is O(log jG(v)j), gethpTrieNode
takes O(log jG(v)j) or O(logN) time for a classi�er with N rules.

R1

R3
R2

e4R4

e1

e2
e3

f1

f2
f3

Q1 Pt Q2

f4

Fig. 3. The set of ranges in G(v) are shown in this �gure. All ranges intersect

Pt = Pt(v). To calculate gethp(v;Q1); we �rst �nd that Q1 < Pt, and therefore calcu-

late gethpLeft(BBSTleft(v), Q1). This function considers ranges R1 and R2 returning

the one with higher priority. Similarly for gethp(v;Q2), gethpRight(BBSTright(v), Q2)

considers ranges R1 and R3.

An incoming packet Q is classi�ed using the function gethpTrieNode(v) as

follows: we traverse the trie nodes according to the bits in Q in the usual manner.

For each node v in the trie traversal path, we call the function gethpTrieNode(v)

and calculate the maximum of all the returned values. This maximum value is

then the highest priority rule matching Q. The query algorithm makes at most

W gethpTrieNode() calls and is therefore of complexity O(W logN).

The storage complexity of the BoT data structure is O(NW) because a

BBST is a linear space data structure in the number of nodes. Hence total space

consumption equals O(NW) +
P

v2T O(jG(v)j) = O(NW) + O(N) = O(NW):

Comparing the HoT and BoT query algorithms, we see that their worst case

storage complexity is identical. In practice, however, we expect a classi�er to

require a smaller amount of storage in the BoT algorithm because a range is

allocated to only one trie node as opposed to O(W) trie nodes in the HoT

algorithm.

Update algorithm We now describe the incremental update algorithms on

a BoT data structure. We only describe the insertion algorithm { the deletion

algorithm is similar and has the same complexity as the insertion algorithm.

An incremental update needs to modify only the BBSTs of one trie node, the

one that contains the rule to be updated. Modifying a BBST requires adding a

new node to the BBST and appropriately updating the augp �elds of all nodes.

The addition of a new node has one non-trivial constraint { that the binary tree

should be kept balanced. For concreteness, we describe the update algorithm

under the assumption that a 2-3 tree is used for the implementation of BBSTs.

The ideas are similar for other BBST implementations such as red-black trees.

A 2-3 tree stores the data only in its leaf nodes. Therefore, we assign a value

of 0 to the pri �eld of each internal node and ignore this �eld in the calculation

of the augp �eld for internal nodes. Every internal node of a 2-3 tree has either

two or three children, and every path from the root node to a leaf node is of the

same length. Insertion of a node with a new value, n, in a 2-3 tree is done in

three phases:

{ (Phase 1) The algorithm descends the tree and adds the node n as a child

of some node, b, in the order determined by the relative ordering of n and

the values in the existing children nodes of b.

{ (Phase 2) The addition of a new child to node b may result in b having four

children. In order to restore the 2-3 property, we create a new node b0, make

it the parent of two of the children nodes of b, and add b0 as a child to the

parent node of b. We recurse if the parent node of b now violates the 2-3

property. The recursive algorithm proceeds upward from b till it reaches the

root of the tree.

{ (Phase 3) The path from leaf n to the root is traced to update the value of

the �eld augp.

The analysis of the insertion algorithm is simple. The depth of a 2-3 tree with

N leaves is no more than logN . Therefore phases 1 and 3 take O(logN) time.

Phase 2 also takes O(logN) time because the recursive algorithm always moves

up towards the root of the tree in one step, and O(1) work is performed at each

step. Combining, the total complexity of the insertion algorithm is O(logN). The

deletion algorithm is similar and therefore has the same complexity. In summary,

incremental updates take O(logN) time on a BoT data structure.

4.2 Multi-dimensional classi�ers

The BoT data structure can be extended to multiple dimensions in a manner

similar to the HoT data structure by using multi-level tries, one level for each

dimension except the last, on which a BoT is built. For example, in the BoT

for a two dimensional classi�er, the ranges of the rules in one dimension are

c2

c1 c2

b

a

c3

d

a

b b’

c1 c2 nc3

d

augp(b) := max{augp(c1), augp(c2)}

augp(b) := max{augp(c1), augp(c2), pri(n)}

augp(b’) := max{augp(c3), pri(n)}

augp(a) := max{augp(d), augp(b), augp(b’)}

c1 c2

b

n

b

c1

Fig. 4. Showing the di�erent cases of an update operation.

allocated to O(W) nodes of the �rst level trie and a one-dimensional BoT as

explained above will be built on the nodes of this �rst level trie using the ranges

of the rules in the second dimension. The total space consumed is then O(NW d)

with query and update time complexities being O(W d logN) andO(W d�1 logN)

respectively.

5 Conclusions and open problems

This paper presented two dynamic algorithms for multi-dimensional packet clas-

si�cation. The complexities of these algorithms are as shown in Table 1 whereW

(the number of bits used in each dimension) has been approximated by logN .

The choice of algorithm in a practical application will be determined by the

query and update time requirements.

There have been a number of proposed heuristics for packet classi�cation,

each with its pros and cons. In general, these algorithms exploit structure present

in existing classi�ers. Other non-heuristic algorithms trade o� update time for

reduced query time, or do not generalize to multiple dimensions. While these

algorithms perform well today on relatively small, well-understood classi�ers

and on classi�ers that change infrequently, they will perform less well in future

when classi�ers change rapidly (e.g., in a router providing service di�erentiation),

or when classi�ers evolve to have di�erent structure.

As a �rst step towards future requirements, the Hot and BoT algorithms do

not trade o� among the metrics of query time, update time and space require-

ments. While still lacking in some implementation details, both algorithms have

reasonable worst-case bounds in all three metrics for general multi-dimensional

classi�ers.

Finally, we pose two questions that are natural consequences of this paper:

1. What are non-trivial lower bounds to the query time in the d-dimensional

packet classi�cation problem, both static and dynamic version, in a given

amount of space?
2. Can we improve upon both the search and update times of Table 1 in the

same or better space complexity?

6 Acknowledgments

We wish to gratefully acknowledge Michael Lamoureux for useful discussions and

for giving access to his bibliography on multi-dimensional search. We also wish

to acknowledge Leo Guibas for useful discussions and Youngmi Joo for useful

comments on a draft of this paper.

References

1. Cisco Systems white paper, \Advanced qos services for the intelligent internet,"

http://www.cisco.com/warp/public/cc/cisco/mkt/ios/qos/tech/qos wp.htm.

2. T. V. Lakshman and D. Stiliadis, \High-speed policy-based packet forwarding

using eÆcient multi-dimensional range matching," in Proceedings of ACM SIG-

COMM, Sept. 1998, pp. 191{202.

3. V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, \Scalable level 4 switching

and fast �rewall processing," in Proceedings of ACM SIGCOMM, Sept. 1998, pp.

203{214.

4. P. Gupta and N. McKeown, \Packet classi�cation on multiple �elds," in Proceed-

ings of ACM SIGCOMM, Sept. 1999, pp. 147{160.

5. D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, \Router plugins: A software

architecture for next generation routers," in Proceedings of ACM SIGCOMM, Sept.

1998, pp. 229{240.

6. P. Gupta and N. McKeown, \Packet classi�cation using hierarchical intelligent

cuttings," Hot Interconnects VII, Aug. 1999.

7. V. Srinivasan, G. Varghese, and S. Suri, \Fast packet classi�cation using tuple

space search," in Proceedings of ACM SIGCOMM, Sept. 1999, pp. 135{146.

8. M. M. Buddhikot, S. Suri, and M. Waldvogel, \Space decomposition techniques

for fast layer-4 switching," Protocols for High Speed Networks, vol. 66, no. 6, pp.

277{283, Aug. 1999.

9. A. Feldmann and S. Muthukrishnan, \Tradeo�s for Packet Classi�cation," in

Proceedings of INFOCOM, Mar. 2000.

10. W. Doeringer, G. Karjoth, and M. Nassehi, \Routing on longest-matching pre-

�xes," IEEE/ACM Transactions on Networking, vol. 4, no. 1, pp. 86{97, Feb.

1996.

11. K. Mehlhorn and S. Naher, \Dynamic fractional cascading," Algorithmica, vol. 5,

pp. 215{241, 1990.

12. L. J. Guibas, \Private communication," .

13. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,

McGraw-Hill, 1990.

14. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.

