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Abstract

Internet routers that operate as firewalls, or provide a variety
of service classes, perform different operations on different
flows. A flow is defined to be all the packets sharing common
header characteristics; for example a flow may be defined as
all the packets between two specific IP addresses. In order to
classify a packet, a router consults a table (or classifier) using
one or more fields from the packet header to search for the
corresponding flow. The classifier is a list of rules that iden-
tify each flow and the actions to be performed on each. With
the increasing demands on router performance, there is a
need for algorithms that can classify packets quickly with
minimal storage requirements and allow new flows to be fre-
quently added and deleted. In the worst case, packet classifi-
cation is hard requiring routers to use heuristics that exploit
structure present in the classifiers. This paper presents such a
heuristic, calledHiCuts, (hierarchical intelligent cuttings),
which exploits the structure found in classifiers. We describe
HiCuts and examine its performance against real classifiers in
use today. When compared with previously described algo-
rithms and used to classify packets based on four header
fields, the algorithm is found to classify packets quickly and
has relatively small storage requirements.

1  Introduction

Packet classification is employed by Internet routers to

implement a number of advanced Internet services, such as

routing, rate limiting, access-control in firewalls, virtual

bandwidth allocation, policy-based routing, service differ-

entiation, load balancing, traffic shaping, and traffic billing.

Each of these services require the router to classify incom-

ing packets into different flows and then perform appropri-

ate actions depending upon which flow the incoming

packet has been identified to fall into. These flows, or

classes, are specified by a classifier. A classifier is a set of

filters or rules. For instance, each rule in a firewall could

specify a set of source and destination addresses, and asso-

ciate a corresponding ‘deny’ or ‘permit’ action with it. Or

the rules could be based on several fields of the packet

including layer 2, 3, 4 and may be 5 addressing and proto-

col information.

The simplest, and most well-known form of packet

classification is used in routing IP datagrams, where each

rule specifies a destination prefix. The associated action is

the IP address of the next router where the packet needs to

be routed to. The classification process requires determin-

ing the longest prefix which matches the destination

address of the packet.

2  Generic Packet Classification

Generic packet classification requires the router to clas-

sify a packet based on multiple fields in its header. Each

rule of the classifier specifies aclass† that a packet may

belong to based on some criteria onF fields of the packet

header, and associates with each class an identifier,

classID. This identifier uniquely specifies the action associ-

ated with the rule. Each rule hasF components. The ith

component of ruleR, referred to asR[i], is a regular expres-

sion on theith field of the packet header.‡ A packetP is said

to match a particular ruleR, if , the ith field of the header

of P satisfies the regular expressionR[i].

The classes specified by the rules may be overlapping

i.e. one packet can match several rules. Without loss of

generality, we will assume throughout this paper that when

† For example, each rule in a flow classifier is a flow specification,
where each flow is in a separate class.

‡ In practice, the regular expression is limited by syntax to a simple
address/mask or operator/number(s) specification.
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two rules overlap, the order in which they appear in the

classifier will determine their relative priority. In other

words, a packet which matches multiple rules will belong

to the class identified by theclassID of the ruleR, if R is

thefirst among all the rules the packet matches in the clas-

sifier.

3  Related Work

The simplest classification algorithm is a linear search of

each rule of a classifier. Of course, for large classifiers this

approach requires a long query time, but is very efficient in

terms of storage requirements. The data structure is simple

and is readily updated as rules change.

A ternary CAM (content addressable memory) is a hard-

ware device performing the function of a fully associative

memory. A cell in a ternary CAM can store three values:

‘0’, ‘1’ or ‘X’. The ‘X’ value represents a don’t care and

operates as a per-cell mask enabling the ternary CAM to

match rules containing wildcards. In terms of its operation,

a ternary CAM seems almost ideally suited to packet clas-

sification: one can present a whole packet header to the

device and determine which entry (or entries) it matches.

However, the complexity of CAMs has traditionally only

permitted small, inflexible and relatively slow implementa-

tions that consume a lot of power. But although ternary

CAM technology is not quite ready today, improvements in

semiconductor technology might make dense, fast ternary

CAMs feasible in the future. In the meantime, there is still

a need for efficient algorithmic solutions operating on spe-

cialized data structures.

One such algorithm for two dimensions, calledGrid of

Tries, is proposed by Srinivasan et al. [5]. In this scheme, a

trie data structure is extended to two fields. Srinivasan et al.

show that on a classifier with 20,000 rules in two dimen-

sions, the scheme requires about 9 memory accesses per

query in the worst case and about 2MB for storage. The

authors found that the scheme cannot be easily extended to

more than two fields, and so proposed a generalized

scheme called ‘Crossproducting’. They show that the

scheme works well with classifiers smaller than about 50

rules but requires caching for larger classifiers.

An alternative hardware-optimized scheme usingbit-level

parallelism is proposed by Lakshman and Stiliadis [4]. The

authors show fast query times and small storage require-

ments for small classifiers but the storage requirement is

found to scale quadratically and the memory bandwidth

linearly with the size of the classifier, making the scheme

impractical for large classifiers. Variations are proposed by

the authors that optimize under certain conditions (e.g.

decreasing the storage requirement at the expense of longer

query time; or optimizing for lookups in two fields). The

scheme does not appear to work well for large multi-

dimensional classifiers.

More recently, we proposed a packet classification algo-

rithm, calledRecursive Flow Classification for classifica-

tion on multiple fields[1]. We showed that it works well for

real-life classifiers, but the storage requirements are still

high (up to 3MB). Also, we have as yet been unable to pro-

vide a mechanism for doing incremental updates to the data

structure.

Another algorithm calledTuple-Space Search has been

recently proposed for packet classification on multiple

fields [2]. The scheme partitions the rules of a classifier into

different tuple categories based upon the number of speci-

fied bits in the rules (a bit is specified in a rule if it is not a

“don’t care” bit). The scheme then uses hashing among

rules within the same category. The main advantages of this

algorithm are its fast average query time and fast update

time when rules change. The main disadvantage is the use



of hashing which leads to lookups or updates of non-deter-

ministic duration.

It is possible to find worst-case bounds on the complexity

of queries and storage requirements by casting the packet

classification as a problem in computational geometry. In

particular, the “point location problem” (where one has to

find the enclosing region of a query point, given a set of

non-overlapping regions) can be reduced to the problem of

packet classification. Forn non-overlapping regions inF

dimensions (fields), two well known results trade-off query

time against storage requirements. Optimizing for query

time, it is possible to achieve  complexity for

query times, but with a complexity of  in storage;

while optimizing for storage leads to  storage require-

ments, but for queries [3]. Clearly, both

extremes are impractical: with just 1000 rules and 3 fields,

nF storage is about 1GB; and  time is about 100

memory accesses. Moreover the constants are big, and

hence the techniques are of little practical significance.

Also, the algorithms and data structures (not described

here) can not be generalized in a straightforward manner to

the case of overlapping regions.

We can draw two conclusions from the algorithms above:

(1) The theoretical bounds tell us that it is not possible to

arrive at a practical worst-case solution. Fortunately, we

don’t have to. Real-life classifiers have some inherent

structure which it appears to be possible to exploit using

simple heuristics. (2) No single algorithm will perform well

for all cases, e.g. a simple and memory-efficient linear

search, or the hardware solution in [4], might be sufficient

when the number of filters is small. Hence a hybrid scheme

might be able to combine the advantages of several differ-

ent approaches.

In this paper we focus on practical implementation of clas-

O nlog( )

O nF( )

O n( )

O nlogF 1–( )

nlogF 1–

sification on real-life classifiers. We present an approach

which attempts to partition the search space in each dimen-

sion, guided by simple heuristics to exploit the structure of

the classifier. This structure is discovered by preprocessing

the classifier. Parameters of the algorithm can be tuned to

trade-off query time against storage requirements. Our

results suggest that a classifier with 20,000 rules in two

dimensions (where one dimension of the rules is generated

randomly while the other dimension is taken from publicly

available routing tables) consumes about 1.3MB of storage

with a worst case query time of 4 memory accesses (and an

average case of 2.3 memory accesses) plus a linear search

on a small number of rules (four). On 40 real-life four-

dimensional classifiers obtained from ISP and enterprise

networks with 100 to 1700 rules,HiCuts requires less than

1MB of storage with a worst case query time of 12 and

average case query time of 8 memory accesses, plus a lin-

ear search on eight rules. The preprocessing time can be

sometimes large, nearly a minute, but fortunately the time

to update a rule in the data structure is less than 0.1 sec-

onds.

4  Packet Classification using Hierarchical Intelli-
gent Cuttings (HiCuts)

The HiCut algorithm works by carefully preprocessing the

classifier to build a decision tree data structure. Each time a

packet arrives, the decision tree is traversed to find a leaf

node, which stores a small number of rules. A linear search

among these rules yields the desired matching. The shape

and depth of the decision tree as well as the local decisions

to be made at each node in the tree are chosen when the

search tree is built.

With each internal nodev of ak-dimensional classifier, we

associate:

• A box B(v), which is ak-tuple of ranges or intervals:



([l 1:r1], [l 2:r2],..., [l k:r k]) .

• A cut C(v). The cutC(v) is defined by a dimensiond,

andnp(C), the number of times that boxB(v) is cut (or

partitioned†) in dimensiond (i.e. cuts in the interval

[l d:rd] ). The cut thus dividesB(v) into smaller boxes

which are then associated with the children ofv.

• A set of rules,R(v). The root of the tree has all the rules

associated with it. Ifu is a child ofv, thenR(u) is

defined to be the subset ofR(v) that collides withB(u),

i.e. every rule inR(v) that spans, cuts or is contained in

B(u) is also a member ofR(u). We callR(u) theCollid-

ingRuleSet of u.

As an example, consider the case of twow-bit wide

dimensions. The root node represents a box of size

. The cuttings are made by axis-parallel hyper-

planes (which are just lines in two dimensions). The cutC

is described by the number of equal-sized intervals that a

particular dimension of the boxB is cut into. If we decide

to cut the root node along the first dimension intoD inter-

vals, the root node will haveD children, each with a box of

size  associated with it.

The process of cutting is performed at each level, and

recursively on the child nodes of that level, until the num-

ber of rules in the box associated with each node fall below

a threshold (which we will refer to asbinth). A node with

fewer than binth rules is not partitioned further and

becomes a leaf of the tree. To illustrate this process, an

example classifier is shown in Table 1. The same classifier

is illustrated geometrically in Figure 1. The decision tree

† Cut andPartition are used synonymously throughout this paper.
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made by recursively cutting is shown in Figure 2 (in the

example,binth = 2).

For any given classifier, there are possibly many ways to

construct a decision tree, and so we guide the preprocessing

using some heuristics based on structure present in the clas-

sifier. When performing cuts on nodev:

1) The preprocessing algorithm uses a heuristic to pick a

suitablenp(C) i.e. the number of interval cuts to make.

A large value fornp(C) will decrease the depth of the

tree (which will accelerate query time) at the expense

of increasing storage. To balance this trade-off, the

heuristic we follow is guided and tuned by a pre-deter-

mined space measure functionspmf(). LetNum-

Rules(u) = cardinality ofR(u). For a cutC, define a

space measure,

.  We

make as many cuttings as thespmf() function allows us

to at a certain node depending upon the number of rules

at that node. This is done by a simple binary search on

the number of cuttings till  gets “close”

enough tospmf(NumRules(v)). An algorithm for doing

this search is shown in the Appendix 8.1.

Table 1:

Rule Xrange Yrange

R1 0-31 0-255

R2 0-255 128-131

R3 64-71 128-255

R4 67-67 0-127

R5 64-71 0-15

R6 128-191 4-131

R7 192-192 0-255

sm C v( )( ) NumRuleschildi( )
i

∑ np C v( )( )+=

sm C v( )( )



Figure 1: An example classifier in two dimensions with 7 filters (w=8).

2) The preprocessing algorithm uses a heuristic to pick

which dimension to cut along at each internal node. For

example, it can be seen from Figure 1 that cutting

along the Y-axis would be less beneficial than cutting

along the X-axis. There are various metrics that can be

used to pick the dimension, including for example:(a)

Minimizing in an attempt to

decrease the worst-case depth of the tree;(b) Treating

  as a probability distribu-

tion with np(C) elements, and maximizing the entropy

of the distribution. Intuitively, this attempts to pick a

dimension that leads to the most uniform distribution

of rules across nodes;(c) Minimize sm(C) over all

dimensions;(d) Cut the dimension that has the largest

number of distinct components of rules in that dimen-

sion. In our example,R3 andR5 share the same rule

component (range) in the X dimension.

R1
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R6

R7

X

Y

0 255
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maxj NumRules childj( )( )

NumRules childj( ) sm C( )⁄

Figure 2: A possible tree with binth=2 for the example classifier in Fig-
ure 1. Each ellipse denotes an internal node v with a triplet(B(v),
dim(C(v)), np(C(v))). Each square is a leaf node which contains the
actual rules.

3) The preprocessing algorithm uses a heuristic to maxi-

mize the reuse of child nodes. We have observed that in

real classifiers many child nodes have identicalCollid-

ingRuleSets. Hence, we can use a single child node for

each distinctCollidingRuleSet and have identical child

nodes point to it.

Figure 3: An example of using a heuristic to maximize the reuse of child
nodes. The shaded regions correspond to children with distinctCollidin-
gRuleSets.

4) The preprocessing algorithm uses a heuristic to elimi-

nate redundancies in the tree. After some rules are cut,

they might become redundant, i.e. the cut portion

might become covered by a higher priority rule. In our

example, ifR6 were higher priority thanR2, thenR2

would be made redundant byR6 in the third child of

the root node. Detection and elimination of these

(256*256,X,4)
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R4
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redundant rules can decrease the storage requirements,

but is time consuming. In our experiments, we have

only invoked this heuristic when the number of rules at

a node has fallen below a threshold.

5  Implementation Results

To test how well theHiCut algorithm works with real and

synthesized classifiers, we built a simple simulator. In the

results that follow, we examine, for each classifier, the

number of memory references (as a measure of query time)

and the storage requirements. For each classifier, a search

tree is built using the heuristics described above. The pre-

processing algorithm is tuned by two parameters: (1)binth,

and (2) spfac — used in the functionspmf() defined as

spmf(N) = spfac * N.

5.1 Two Dimensions

Two dimensional classifiers were created by picking values

(prefixes) in both dimensions at random from publicly

available routing tables [6]. Wildcards was also added at

random to each dimension. To illustrate the results: for

binth=4, a classifier with 20,000 rules was found to con-

sume about 1.3MB of memory with a tree depth of 4 in the

worst case and 2.3 on the average. The complete set of

results are omitted here as they were found to be very simi-

lar to the results for higher-dimension classifiers described

below.

5.2 Higher Dimensions

For more than two dimensions, about 40 classifiers contain-

ing between 100 and 1733 rules were taken from real ISP

and enterprise networks†. These classifiers were used as

access control lists in firewalls and had fields in four

dimensions: source IP address, destination IP address, layer

† Grateful acknowledgments to Darren Kerr of Cisco Systems for pro-
viding access to these classifiers. These are the same classifiers used
in the study described in [1].

four protocol and layer four destination port. Further details

about the characteristics of these classifiers is described in

[1].

Figure 4 shows the total storage requirements for the classi-

fiers (for the tree data structure and the classifier itself)

when and . As can be seen, the

maximum value of space consumed for any classifier is

about 1Megabyte with the second highest less than

500Kilobytes. These small storage requirements mean that

the data structure would readily fit in the L2 cache of most

CPUs today.

Figure 4: Storage requirements for four dimensional classifiers for
binth=8 and spfac=4.

Figure 5 shows the maximum and average tree depth (to

calculate the average, we assume that each leaf is accessed

in proportion to the number of rules in itsCollidingRu-

leSet) for the classifiers with abinth of 8 andspfac of 4.

The worst case tree depth was found to be 12, with an aver-

age value close to eight. i.e. in the worst case a total of 12

memory accesses are required, followed by a linear search

on eight rules to complete the classification. This makes a

total of 20 memory accesses in the worst case.

An important consideration is the preprocessing time
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required to build the decision tree. This is plotted in Figure

6, showing the highest preprocessing time to be 50.5 sec-

onds, with the next highest taking approximately 20 sec-

onds. All but four classifiers have a preprocessing time of

less than eight seconds.

Figure 5: Average and worst case tree depth for binth=8 and spfac=4.

The preprocessing time is clearly quite high, caused mainly

by the number and complexity of the heuristics. We expect

that this preprocessing time will be acceptable in most

applications as long as the time taken to incrementally

update the tree is kept small. In practise, the update time

depends on the rule to be inserted or deleted. We have

found that it takes 1 to 70 milliseconds to incrementally

update the data structure on an insertion or deletion of a

rule, averaged over all the rules of a classifier. The actual

values are plotted in Figure 7.
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Figure 6:  Time to preprocess the classifier to build the decision tree,
measured in seconds. The measurements were taken using thetime()
linux system call in user level ‘C’ code on a 333MHz Pentium-II PC
with 96MB of memory and 512KB of L2 cache.

Figure 7: The average update time (over 10000 inserts and deletes of
randomly chosen rules for a classifier). The measurements were taken
using thetime() linux system call in user level C code on a 333MHz Pen-
tium-II PC with 96MB of memory and 512KB of L2 cache.

5.3 Variation with binth and spfac

We show the effect of tuning the parameters,binth and

spfac on the data structure for the largest four dimensional

classifier available to us (1733 rules). In our experiments,

binth takes on the values 6, 8 and 16; andspfac takes on the

values 1.5, 4 and 8 for each value ofbinth. We make the

following observations from our experiments:
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1) TheHiCut tree depth is inversely proportional tobinth

and also tospfac (see Figure 8).

2) The data structure storage requirement is directly pro-

portional tospfac (as expected) but inversely propor-

tional tobinth (see Figure 9).

3) The preprocessing time is proportional to the storage

consumed by theHiCut data structure (see Figure 10).

Figure 8: Showing the variation of tree depth with binth and spfac for a
classifier with 1733 rules.

Figure 9: Showing the variation of memory consumption with the binth
and spfac parameters.
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Figure 10:  Showing the variation of preprocessing times with binth and
spfac.

6  Conclusions

The design of classification algorithms is hampered by

worst-case bounds on query time and storage requirements

that are so onerous as to make generic algorithms unusable.

So instead we must search for characteristics of real classi-

fiers that can be exploited in pursuit of algorithms that are

“fast enough” and use “not too much” storage. This task is

made harder by the almost complete absence of real-life

classifiers (the set available to us is quite small, confidential

and from a not particularly diverse range of networks).

Even if classifiers were widely available today, it is not

clear that they would represent the types of classifiers

found in future networks where these algorithms will be

used.

But like others before us, we have resorted to heuristics

that, while hopefully well-founded in a solid understanding

of today’s classifiers, make assumptions about the structure

of classifiers to reduce query time and storage require-

ments.

The scheme that we present here,HiCuts,performs well on

the classifiers available to us, requiring smaller storage and

comparable query time when compared with schemes
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described previously. The complexity of the heuristic

means that the decision tree can take tens of seconds to

build, but fortunately seems to permit nearly a large num-

ber of updates per second.
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8  Appendix

8.1 Algorithm to choose the number of cuts to be
made at a node v
/* We are doing a binary search on the number of cuts to be made at this node, v.
When the number of cuts are such that the corresponding memory consumption
estimate becomes more than what is allowed by the spaceMeasure function
spmf(), we end the search. It is possible to do smarter variations of this search
algorithm.*/

n = numRules(v);

nump = max(4, sqrt(n)); /* starting value of number of partitions to make at this
node */

for (done=0;done == 0;)

{

  /* assume that the current cut, C, has nump partitions */

  sm(C) = 0;

  for each rule r in R(v)

  {

     sm(C) += number of partitions colliding with rule r;

  }

  sm(C) += nump;

  if (sm(C) < spmf(n))

  {

     numP = numP * 2; /* increase the number of partitions */

  }

  else { done = 1;}

}

/* we have now found a value of numP (the number of children of this node)
which fits our storage requirements */


