
1

Tradeoffs for Packet Classification
Anja Feldmann S. Muthukrishnan

AT&T Labs–Research
Florham Park, NJ

fanja,muthug@research.att.com

Abstract—We present an algorithmic framework for solving the packet
classification problem that allows various access time vs. memory tradeoffs.
It reduces the multi-dimensional packet classification problem to solving a
few instances of the one-dimensional IP lookup problem. It gives the best
known lookup performance with moderately large memory space. Further-
more, it efficiently supports a reasonable number of additions and deletions
to the rulesets without degrading the lookup performance. We perform
a thorough experimental study of the tradeoffs for the two-dimensional
packet classification problem on rulesets derived from datasets collected
from AT&T WorldNet, an Internet Service Provider.

I. I NTRODUCTION

While the current Internet offers best-effort service, future
IP networks will provide enhanced services to its users. Such
services may include differentiated services underwritten by
service level agreements (SLA’s), fine grain quality of service
(QoS), Virtual Private Network (VPN) service, distributed fire-
walls, IP security gateways, traffic based billing, etc. All such
enhancements needpacket classification, that is, determining
which flow a packet belongs to based on one or more fields in
the packet header. Packet header fields that may be used for
classification include the destination and source IP addresses,
the protocol type, and the source and destination port numbers.
Rules for classification are specified by specifying valid ranges
for any of the header fields. Determining the most fitting rule
for each packet is the packet classification problem.
Examples of packet classification: In today’s IP networks,
packet classification for routing is based purely on the destina-
tion IP address, and the rules are expressed as IP address pre-
fixes. Packet classification rules for access lists and firewalls
use two IP prefixes – source and destination IP address prefixes –
and sometimes conditions on the port numbers and protocols. IP
networks that use improved traffic engineering and support dif-
ferentiated services may use one set of packet classification rules
to determine which router to forward a packet (using MPLS tun-
nels) and another set of rules to determine which queue to use
(for differentiated service) and yet another set of rules to de-
cided whether to forward a packet (for VPNs and IP security
gateways). Such rules are likely to be based on at least the
source and destination IP addresses but may also include port
numbers1.
Requirements for packet classification:They can vary widely
depending on the application and where packet classification is
performed in the network.
�Resource limitations:Packet classification solutions can trade-
off time to perform the classification per packet vs. memory

1Any communication that uses IP-Sec encryption will not expose port num-
bers. Therefore relying on the availability of port numbers in backbone IP net-
works may be problematic.

used. At large corporate campuses, access speeds may range
from medium speed of T3 and OC3, to top speeds of OC12 and
above. At inter ISP boundaries, theaccess speeds will be OC12,
OC48, and above. Residential customers have access speeds of
T1 (DSL) or less. Solutions should achieve the required target
access speed, while minimizing the amount of memory used.
� Number of rules to be supported:Packet classification appli-
cations differ in the number of rules that are specified. Today
typical firewalls may specify a few hundred rules, while an ac-
cess/backbone router may have a few hundreds of thousands of
rules; these numbers are expected to scale up with enhanced ser-
vices and router throughput and may reach millions of rules.
� Number of fields used:Packet classification applications differ
on the number of fields (dimensions) of the IP header that is used
for classification. Current routers use one field (destination IP
address), but it is expected that emerging routers will use two-
dimensional rules. Firewalls and other access list applications
may use a few more fields [9].
� Nature of rules:Current routers use rules with a prefix mask
on destination IP addresses. However, more general masks such
as arbitrary ranges are expected to become permissible. Packet
classification solutions need to accommodate such general spec-
ification.
� Updating the set of rules:The number of changes to the rules
either due to a route or policy change is moderate to small com-
pared to the number of packets that an application, e.g., a router,
needs to classify in the same time period. Packet classifica-
tion solutions must adapt gracefully and quickly to suchupdates
without sacrificing theaccess performance. Rebuilding major
parts of the data structure for every update is prohibitive.
� Worst case vs. Average case:There is a widely held view that
for access time performance of packet classification, one must
focus on worst case, rather than average case [11].

Many of these requirements have been articulated in the ex-
tensive collection of papers that have addressed the packet clas-
sification problem [1], [9], [8], [11], [12], [14], [15] and the
references therein. Several solutions have been proposed; they
are effective in meeting some of the criteria, but not all of them.
Some of them do not allow range specification in the rules [8],
others do not preserve the access time performance with guar-
anteed small update times [9], [11], [15], and yet others are not
designed for large rulesets [12], [14]. It is desirable to have a
suite of solutions with a range of tradeoffs that can be tuned to
particular applications.
Our contributions: We present a novel algorithmic framework
for solving the packet classification problem. It relies on insights
from computational geometry, and has the following interesting

2

features. (1) It allows various access time vs. memory space
tradeoffs, and can be engineered for different applications. In
particular, it gives the currently best known access times for the
packet classification problem with moderate amount of mem-
ory use. (2) It reduces the packet classification problem (with
arbitrary ranges andd-dimensions,d � 1) to a small number
of invocations of a specific one-dimensional packet classifica-
tion problem, namely, theIP Lookupproblem in which all rules
are prefix ranges. Many optimized software [5], [12], [17] and
hardware solutions (e.g., [10]) are known for the IP Lookup
problem. Using our framework, these are now applicable to the
general packet classification problem. (3) It allows efficient up-
dates to the ruleset without recomputing the full data structure.
Moderate amount of updates (additions as well as deletions of
rules) do not effect the access times significantly; this is the first
such solution for the packet classification problem.

We test our two-dimensional algorithm on rulesets (source/-
destination ranges) derived from flow traces collected at multi-
ple backbone routers of an ISP, AT&T WorldNet. The results
show that our algorithm can perform packet classification for
rulesets of size beyond106 with at most18 memory accesses
(assuming that each memory access retrieves a full32 bit cache-
line [15]) in the worst case. The space to store the data structure
is at most a factor of5 bigger than the space needed to store
the rules themselves. No previous experimental result consid-
ered real datasets of this magnitude. The number of memory
accesses can be further reduced by using bigger cachelines or
larger memory.

At the technical core, our algorithmic framework relies on
data structural solutions [7] in which the access time is aggres-
sively minimized (to roughlyO(log logU) whereU is the range
of IP addresses). We modify their algorithm to eliminate many
of the steps with inherently large constants. Consequently we
have obtained a simple solution which we further extend to al-
low dynamic updates. The theoretical solution could use moder-
ately large memory space (e.g.,O(n1+�) for 1 > � > 0 wheren
is the number of rules). However, our experiments show that the
memory usage of our algorithm is quite reasonable on realistic
datasets.
Organization: We define the packet classification problem in
Section II and next present our algorithmic framework for static
(Sections III – V), as well as dynamic cases (Section VI). We
discuss engineering tradeoffs in Section VII. In Section VIII,
we focus on the two-dimensional problem and present extensive
experimental results. We review related work in Section IX.
Concluding remarks and future work are in Section X.

II. PROBLEM SPECIFICATION

Informally, the packet classification problem identifies the
flow a packet belongs to, based on one or more fields in the
packet header. Formally, thed-dimensional packet classification
problem(denoted asPCproblem) is as follows. We are given a
setR = fr1; : : : ; rng of rules overd fields (dimensions). Each
rule consist of a set of rangesri = [F i

1; : : : ; F
i
d], whereF i

j is a
range (interval) of values the fieldj may take; each rule also has
a cost. The set of rules may be preprocessed. Queries are pre-
sented on line. Each query is a packetp = [f1; : : : ; fd], where
eachfi is a singleton value. A ruleri appliesto a packetp

Reference Space used # of memory accesses

[5] O(n) O(log2 U)
[17] O(n logn) O(log2 log2 U)
[12] RLs(2n; U) RLt(2n; U)

TABLE I

PERFORMANCE BOUNDS FOR THEIPL PROBLEM

if for all dimensionsk, the field valuefk of packetp lies in
the rangeF i

k. The problem is to determine the least cost rule
that applies to the packet.2 For example, in layer-four switch-
ing, the dimensions could consist of the source address, desti-
nation address, source port, and destination port. A rule such as
[135:207:�;12:�; 1024�65535; 20�23]may be used to allow IP
addresses within AT&T Labs-Research to contact IP addresses
within WorldNet either via ftp, ssh, or telnet. Hosts from AT&T
Labs-Research are restricted to use any of the non-private ports.
Depending on how costs are assigned to rules one can model
different flavors of thePCproblem (see [9]).

The rules have a natural geometric interpretation ind dimen-
sions. Each ruleri can be thought of as a “hyperrectangle” ind
dimensions (called rectangles henceforth), obtained by the cross
product of the intervalsF i

j along each of the dimensionsj. Thus
the set of rulesR now corresponds to a set of rectangles ind di-
mensions. Each packetp corresponds to a point ind dimensions,
and thePCproblem is identical to therectangle enclosure prob-
lem, that is, given a set of rectanglesR, determine the least cost
rectangle that encloses any query pointp.

In solving thePCproblem, the parameters of interest are stor-
age space and the number of memory accesses performed per
query (which is the dominating lookup cost).

III. O NE-DIMENSIONAL CLASSIFICATION

The one-dimensionalPCproblem is: given a set ofn rules –
possibly overlapping intervals from[1 � � �U] – each with a cost,
answer lookup queries for pointq 2 [1 � � �U] by identifying the
smallest cost rule that containsq.
Special case one:The IP Lookup(IPL) problem is a subprob-
lem of the generalPCproblem in which each range is a prefix
of an IP address (IP addresses are in[1 � � �U], with U = 232

for IPv4). Each queryq is an IP address. The task is to deter-
mine the least cost rule that is a prefix ofq. TheIPL problem is
the classicalPCproblem based on the destination IP addresses.
The worst case number of memory accesses needed to solve
this problem is denoted byIPLt(n; U) and the space used by
IPLs(n; U). The best known performance bounds for theIPL
problem are in Table I. (RL will be defined shortly.)
Special case two:TheRange Location(RL) problem is another
subproblem of the generalPCproblem in which the ranges are
non-overlapping and completely cover the universe1 � � �U . The
collection of intervals ofRL can be specified as series of left
end points of the intervals in the sorted order. Each queryq is
an integer, and the goal is to determine the interval that contains

2For debugging purposes, it may be useful to enumerate all rules that apply
to a given packet and not merely return the one with the smallest cost. All our
solutions can be extended to determine such a output, and we do not consider
this version of the problem any further.

3

Intervals

Intervals
Elementary

Fig. 1. Example: elementary intervals.

q. The worst case number of memory accesses needed to solve
this problem isRLt(n; U) and the space used for this solution is
RLs(n; U).

For us, theRL problem arises because our overall approach
for solving thePCproblem relies on reducing them to a few in-
stances of theRL problem. For one-dimensions, this reduction
is immediate. Given a set of intervals for thePCproblem, con-
sider the set of all the endpoints of intervals (and1 andU are
included by default). The region between any two suchcon-
secutivepoints in sorted order is called anelementary interval.
Figure 1 illustrates an example. No two elementary intervals
overlap. We can process each rule in thePCproblem and retain
the smallest cost rule that intersects each elementary interval.
This reduces thePCproblem onn rules to theRL problem with
� 2n elementary intervals [12]. The universe size for both prob-
lems isU . Therefore it is sufficient to solve theRL problem to
solve thePCand theIPL problem (Table I).
Solving RL problem: The best known theoretical result for
solving theRL problem takesO(log logU) memory accesses
using spaceO(n) with a large preprocessing time [18]; the con-
stants involved are of moderate size. A different approach [12] is
to do a multiway (k-way) search ifk logU bit operations can be
performed with a single memory lookup, in which case at most
logk+1 n+1 memory accesses are needed. This is a very simple
and memory efficient solution ifn is not too large. Yet another
approach that we explore here is to reduce theRL problem to
theIPL problem.

Theorem III.1: Consider any instanceI of the RL problem
with N points in the range1 � � �U . We can derive an instance
I0 of IPL with at most2N prefixes, each a string of length at
mosta = dlogUe. Each queryi for the RL problem can be
transformed into an IP address of length at mosta for the IPL
problem on setI 0.
Proof: The reduction goes as follows. SaySj is the bit repre-
sentation of an integerj in I. Integerj and binary stringSj are
treated interchangeably. We build a trie of theSj ’s. Let �(u)
denote the string labeling the path from the root to an internal
nodeu. For each internalnodeu in the trie, we compute the
smallest integer inI that is� �(u)jj0a�j�(u)j (denotedu�) and
the largest integer inI that is� �(u)jj1(a�j�(u)j) + 1 (denoted
u�). Hereajjb denotes string concatenation, andal represents
the string obtained froma by repeating itl times. We generate
setI 0 from I by generating two prefixes�(u)jj0 and�(u)jj1 for
each internalnodeu. Since the number of internal nodes is at
mostN , the number of prefixes inI 0 is at most2N .

Figure 2 shows the trie (thick lines) for an example

10
00

11
10

11
11

(1000.1000) (1110,1111)

00
10

00
00

Fig. 2. Example: reduction ofRL to IPL .

Reference Space used # of memory accesses

[12] 2n logk+1 n+ 1
for k-word cacheline

[18] O(n) O(log logU)
This paper IPLs(2n; U) IPLt(2n; U)

TABLE II

PERFORMANCE BOUNDS FOR THERL PROBLEM

RL problem: f0000; 0010; 1000; 1110;1111g. The result-
ing instance of theIPL problem consists of the prefixes
f000x:001x; 0xxx;1xxx;10xx; 11xx;1110; 1111g(dashed lines).
For the prefixes0xxx and1xxx the figure shows the two inte-
gers associated with each prefix.

Consider the queryi in theRL problem. Lets(i) be thea bit
string representation ofi. Solve theIPL problem withs(i) onI 0

and say the solution is�(v) for some internal nodev. If i � v�,
than the solution to theRL problem is the interval ending atv�;
otherwise,i � v� in which case the solution is the interval
starting atv�. The proof is presented in the full version [6].

The result is important to us since
� it gives a reduction from one-dimensionalPC with arbitrary
range rules toPCwith only prefix rules (IPL) while increasing
the number of rules by at most a factor of two. In contrast, the
best previous reduction [15] uses a factor ofO(logU).
� one can leverage off the best known solutions (hardware or
software) for theIPL problem to solve theRL problem and the
one-dimensionalPCproblem.

Table II summarize the performance bounds known for theRL
problem; which of the results performs best in practice depends
on the instance (relative values ofn, U etc.). Combining this
with results for theIPL problem, we can conclude that there
are practical solutions for the one dimensionalPCproblem with
O(log logU) memory accesses for each query; this isO(logw)
sincew = logU bit IP addresses are needed to specify numbers
in the range1 � � �U .

IV. TWO-DIMENSIONAL CLASSIFICATION

We view the two-dimensionalPC problem in its geometric
terms. LetR be a set ofn rectangles on a two-dimensional grid
[1 � � �U; 1 � � �U] each with some cost. We want to preprocessR

4

such that we can efficiently answer the following query: Given
a two-dimensional grid pointq, find the smallest cost rectangle
in R, if any, that containsq. The basic data structure of our
algorithm is a FIS tree.

FIS trees: Given a collection of segments our base data struc-
ture is a segment tree [4], but made “fat” to occupy a given num-
ber of levels̀ as in [7]. In addition, we invert it so directed paths
go from leaves to the root which helps the search as described
later. We call the data structure theFIS tree(Fat, Inverted, Seg-
ment tree) and describe it below.

Let S be a set ofm segments. The endpoints of the segments
partition the universe into a number of elementary intervals as
in Section III. Sayt = m1=`, ` > 1, andt; ` andm are integers.
The FIS tree is a balanced, invertedt-ary treeT with ` levels.
Each node� has a pointer to its parentparent(�) and at most
t incoming arcs. The leaves of the FIS tree correspond to the
elementary intervals in order. An internal node� corresponds to
the larger interval that is the union of the elementary intervals
stored at its leaves. We denote this interval byI(�). A segment
s 2 S is stored at the node� if I(�) � s but I(parent(�)) 6� s.
The set of segments stored with a node is called itscanonical
set.

Property IV.1: [7] A FIS-treeT onm segments has the fol-
lowing properties. (1) The depth islogm= log t = `. (2) Each
segment is stored in at most2t� 1 nodes per level. (3) The col-
lection of segments containing any pointp is the union of̀ sets,
namely the canonical subsets of the nodes on the search path
of p in T ; these sets are disjoint.

Preprocessing: Consider the rectangles of a two-dimensional
PC problem and their projections along thex andy axes; we
use these projected segments synonymously with the rectangles
themselves. We build a FIS tree on thex-projections of the rect-
angles that we call thex-FIS tree. We call the canonical sets
associated with the nodes of thex-FIS tree as thex-canonical
sets. We also store the left most endpoints of the elementary
intervals and a pointer to the leaf representing that elementary
interval with each endpoint; we call this thex-set. We consider
the y-projections of the rectangles of thex-canonical set of�
and their elementary intervals. We store the left endpoints of
each such interval together with the smallest cost rectangle that
intersects each, in a set we call they-setof �.

An example consisting of ten two-dimensional rules is shown
in Figure 3. Each rule is represented as a rectangle (the rule
number is shown in the upper left corner of the rectangle). The
projections of the rectangles onto thex-axis (dotted lines) re-
sults in the set of elementary intervals shown in the figure. In
this example we constructed anx-FIS tree with` = 3 levels.
Each leaf node of the tree corresponds to a single elementary in-
terval, while the root of the tree corresponds to the full interval
covered by all rectangles. Let us consider which rules will be
inserted into thex-canonical sets of the second node from the
left (labeled with(3; 4)); say, this node is denotedu. Since rect-
angles4 and3 are fully contained in the interval covered by the
parent ofu, they are inserted into thex-canonical set ofu. Since
rectangle1 contains the interval associated with the parent ofu,
1 is not in thex-canonical set ofu. Let us consider the second
node on the second level of the FIS tree; say, that is denotedv.

{2,8,1}

Intervals
Elementary

3-ary

{9,10}

9

tree

x-FIS
{3,4}

1

8

107

2

3

4

5

6

Fig. 3. Example: construction of a FIS tree.

Rectangles1; 2 and8 all contain the interval that corresponds to
v but they do not contain the full interval (corresponding to its
parent); hence, they are all in thex-canonical set ofv. Rectan-
gles5; 7; 6; 8 contain subsets of the interval associated withv,
and are therefore inserted into thex-canonical sets of a lower
level. As described in the text,y-FIS trees are constructed on
each of thesex-canonical sets.

Query Processing:For a given query pointp we have to search
several FIS trees. Traditionally each such search isdone by
walking down the tree from the root, at eachnode usingp to
determine which child to pursue. Ift is a small constant (such
as for binary trees wheret = 2), this takes onlyO(1) time per
node. However, for arbitrarily larget, we can no longer decide
in O(1) time in which child of a given node� we have to con-
tinue the search. For this we need to perform a search among
the intervals of thet children of�. This problem is precisely the
RL problem on the left endpoints of the intervals represented
by each child. Thus the problem of searching a` leveled FIS
tree can be done using̀instances ofRL [7]. However, we take
advantage of the inverted structure of the FIS tree to speed this
search significantly; in fact, we reduce it to asingleinstance of
the RL problem as explained below. Say the two-dimensional
query point isq = (qx; qy).
1. We solve theRL problem on thex-set with queryqx. This
returns the pointer to the leafLx in thex-FIS tree representing
the elementary interval containingqx.
2. We consider all parents ofLx by following successive parent
pointers. The total memory accesses is at mostRLt(2n; U) since
the parent pointer location of a node can be computed arithmeti-
cally3.
3. We search they-sets associated with each parent ofLx by
solving theRL problem withqy for each one. This determines
the set of elementary interval that containq from all y-sets. The
smallest cost rectangle associated with these elementary inter-
vals is returned as the solution. This may be thought of as solv-
ing the one-dimensional problem on they-sets of the parents of
Lx, using FIS trees of only one level.

3An additional̀ memory accesses may be needed when cascading many FIS
trees.

5

Algorithm Space Used # of mem accesses

Grid of tries [15] O(nw) O(logw + w)
Rectangular Search [14] O(n

p
w) O(w)

Range Matching [11] O(n) O(logn + w)
FIS trees̀ = 3 O(n4=3) 4 RLt(n; U) + 3

� 4 logw
cachelinek, ` = 3 O(n4=3) 4 logk+1 n

FIS tree,̀ O(n1+1=`) (`+ 1) RLt(n; U)
� (`+ 1) logw

TABLE III

TWO-DIMENSIONAL PCPROBLEM(w = logU)

Theorem IV.2: Say thex-FIS tree has` levels. Our data
structure for the two-dimensionalPCproblem usesO(`n1+1=`)
space and takes at most(` + 1) RLt(2n; U) memory accesses
per query.

Remark: Say` = 2. Our data structure usesO(n3=2) space,
worst case, and at most3 RLt(2n; U) memory accesses. If` =
3, space used isO(n4=3) and number of memory accesses is at
most4 RLt(2n; U). (2 RLt(n; U) is essentially a lower bound
for the two-dimensionalPCproblem since theRL problem has
to be solved for each dimension at least once.)

Comparison: A comparison of our results with the previous
ones is shown in Table III. All bounds are worst case bounds.
While our solutions have the smallest number of memory ac-
cesses (order oflogw rather than order ofw), the worst case
memory is moderately large.

V. M ULTI -DIMENSIONAL CLASSIFICATION

In the multi-dimensionalPC problem, we are given a setR
of d-dimensional rectangles each with a cost. The query is ad-
dimensional pointq and the goal is to determine the rectangle
of smallest cost that containsq. Our solution extends the two-
dimensional approach. We first construct a FIS tree on the first
dimension and then recursively construct our data structure on
the remainingd� 1 dimensions for each of the canonical sets in
this FIS tree. The FIS tree for the last dimension will be of level
one just as in the two-dimensional case. It follows,

Theorem V.1: If each FIS tree has` levels, our data structure
for the multi-dimensionalPCproblem takesO(n(`n1=` logn)d�1)
space and at most`d�1 RLt(2n; U) memory accesses per query.
The known theoretical solutions would solve theRL problem
`d times in the worst case for each query. As in the two-
dimensional case the inverted FIS tree lets us save` RL invo-
cations for each FIS tree search. Our framework gives the best
known results in terms of memory accesses for general rulesets.
In the worst case the memory usage may be large. In practice,
rulesets have a lot of structure [9], [14]. In particular many di-
mensions cluster naturally. Instead of using the full data struc-
ture with` levels for each dimension we can take advantage of
the clustering and reduce the levels for those dimensions. In the
dimensions that do not have a natural clustering, our framework
provides an efficient way to structure the canonical sets and to
explore the tradeoffs. Combined with other engineering insights
this should lead to moderate memory usage and result in a small
number of memory accesses.

VI. DYNAMIC PCPROBLEM

In this section, we consider updates to the rulesets. If the only
allowed updates areinserts, we refer to it as theincrementalPC
problem. Ifdeletesare allowed as well, we refer to that as thedy-
namicPCproblem. In this section we extend our data structures
to allow for insertions and deletions, using a simple approach.
We also explore how many updates can beaccommodated with-
out significantly degrading lookup performance. In general, it
is more important to minimize lookup times rather than update
times since IP routing protocols do not guarantee instantaneous
convergence. Even within a single router they may not be instan-
taneous on all interfaces due to the distribution of information to
the different linecards. Routing tableupdates do not have to be
atomic but they should be incremental rather than requiring re-
computation of the full data structure and they should preserve
a consistent view for each rule and not introduce route flaps.

Dynamic RL problem: As in the static case, our approach
involves reducing the problem to theRL problem. However,
we now use thedynamicRL problem (DRL) defined as fol-
lows. Given a set of non-overlapping intervals that cover the
domain1 � � �U , the problem is to support operations:split an
interval into two adjacent intervals,mergetwo contiguous inter-
vals into one, andlookupa query point and return the interval
that contains it. We solve theDRLproblem using aB-tree with
multi-key search on the left end points of the intervals in time
O(logk+1 n) wheren is the number of rules andk-word cache-
lines are used. This is the most practical solution that we are
aware of; using van Emde Boas trees [16] this problem can be
solved withO(log logU) memory accesses but the constants are
large. We estimate that our solution to theDRLproblem will use
at most twice the number of memory accesses as the solution to
the staticRL problem. (This penalty can be avoided by using a
cacheline twice as wide.)

Incremental classification: We first consider the one-
dimensionalPC problem. In the static case, we could simply
reduce this to theRL problem. The simple reduction ofPC to
RL is no longer sufficient in the incremental case since update
times may beO(n), which is prohibitive. The worst case update
time arises if one inserts an interval which intersects most exist-
ing elementary intervals. Our solution is to use a variant of the
FIS tree (incremental FIS tree) to reduce the update time.

Recall the definition of a FIS tree with indegreet and` lev-
els onn segments. We define a FIS tree variant, called thein-
cremental FIS tree, in which the internal nodes that the leaves
connect to may have degree betweent andct for some suitable,
small constantc; all other internal nodes have in-degreet as in
a standard FIS tree.

Say there is a collection ofn rules at the beginning we start
by building a FIS tree on the elementary intervals with one mod-
ification. We only store the least cost rule in each canonical set.
The canonical sets themselves are not stored; we refer to the
cost stored with a node� as itscanonical costC� . Recall that
the endpoints of the elementary intervals determined by the seg-
ments is called thex-setwhich is also maintained.

Suppose we insert a rule. This may generate new elemen-
tary intervals by splitting at most two existing elementary in-
tervals. Splitting an elementary interval involves updating the

6

B-tree search structure on thex-set and the FIS tree. In the FIS
tree we replace the corresponding leaf with two leaves of the
same parent. Now it is straightforward to insert a rule into all
appropriate canonical sets. Answering a lookup query with a
point q is as before except that we solve theDRLproblem on
thex-set and return the minimum canonical cost of this leaf and
that of any of its parents. As long as each insertion of a rule into
the lowest level canonical set is atomic the lookups can proceed
in parallel with the updating of the data structure. This implies
that the time period during which the data structure needs to be
locked is very small.

Theorem VI.1: AnyO(n1=`) rules can be inserted such that
an insert takesO(`n1=`) memory accesses in the worst case; a
lookup query takes at mostDRLt(n; U) + ` memory accesses.
The space used isO(n).
As an example, with̀ = 3, O(n1=3) rules may be inserted;
update time isO(n1=3) and the number of memory accesses is
at most3 more than that needed to solve theDRLproblem.

We can extend this result tod dimensions by using incremen-
tal FIS trees instead of using standard FIS trees as described in
Section V and by using an incremental FIS tree for the final di-
mension. For more details see the full version [6].

Dynamic classification:The data structures need to be more so-
phisticated in order to support deletions. It no longer suffices to
maintain only the canonical cost for a node. If the corresponding
rule is deleted, we need to quickly determine the rule with the
smallest cost that overlaps the interval represented by that node.
We explicitly maintain the entire canonical set ateachnode.

We define a FIS tree variant called thedynamic FIS treeto
be a FIS tree with the following modifications. (1) The leaves
connect to internal nodes that have indegree betweent=c1 and
c2t for suitable constantsc1; c2 � 1. (2) Each node has pointers
to abasecanonical set and adeltacanonical set;each canonical
set is stored in a heap data structure. The delta canonical sets
will be kept small, in particular, linear in the number of updates.
The cost of the minimum cost rule from both two canonical sets
of a node is its canonical cost, which we store at that node.

Say there is a collection ofn one-dimensional rules at the
beginning. We build a dynamic FIS tree on these segments by
building a standard FIS tree and having the standard canonical
set of a node be its base canonical set; the delta canonical sets
of the nodes are empty. On inserting a rule we proceed to split
elementary intervals as before. If a new intervalv is created
from intervalu we initializev’s base canonical set as the same
as that ofu and implement this as a pointer copy. We explic-
itly copy the delta canonical set ofu into that ofv. Again it is
now straightforward to insert a rule into all appropriate canoni-
cal sets.

Deleting a rule works as follows. The rule is removed from
the canonical sets of all nodes where it is stored, and the canon-
ical costs are updated. We do not collapse the tree to remove
any elementary intervals. Lookup on a query proceeds as before
except that we find the minimum cost rule from both basic and
delta canonical sets ofeach relevantnode. That gives,

Theorem VI.2: AnyO(n1=`) one-dimensional rules can be
inserted or deleted such that each update takesO(`n1=` logn)
memory accesses in the worst case; a lookup query takes at most
DRLt(n; U)+` memory accesses. The space used isO(n1+1=`).

We can extend this to provide a dynamicd-dimensional classifi-
cation just as before.

Larger number of updates: We have two suggestions to al-
low larger numbers of updates without sacrificing lookup per-
formance significantly. The first is to relax the degree of the FIS
tree atc levels. This involves splitting internal nodes of the FIS
tree which can be done in a similar manner as the splitting of
leaf nodes. The cost of lookup performance remains essential
unchanged while the use of memory may increase by a factor of
O(nc=`). The second suggestion is to maintain the current data
structure so that delta canonical sets are small. This involves
copying FIS trees by collapsing basic and delta sets appropri-
ately which may be done in the background since the number
of lookup queries far outweighs the number of updates. If this
copying is done carefully we can perform large number of up-
dates while supporting lookups efficiently.

VII. VARIOUS TRADEOFFS IN CLASSIFICATION

We have presented algorithmic solutions for thePCproblem
with provable performance guarantees. There are a number of
ways to tailor them towards a particular application. We first
summarize some of the issues with regards to the static version.
Number of levels in the FIS trees.The parameter̀ for a FIS
tree in any of the dimensions must be chosen judiciously. The
larger` is, the smaller the memory use and the larger the num-
ber of memory accesses will be. Appropriate choice of` will
depend on the nested overlap structure of the intervals. If the
overlap is large, a somewhat larger value of` is needed to de-
crease memory requirements.
Choosing appropriate solutions for the subproblems.ThePC
problem ford dimensions uses solutions to smaller dimensional
PCproblems on the canonical sets. Which solution to apply for
the subproblems depends on the characteristics of the dataset.
For example, if the canonical sets are moderate in size, the fol-
lowing mapping approachmay prove efficient.

Themapping approachuses our solution after a reduction of
the universe size. First we project all the endpoints of thex-
projections of the rectangles to get at most2n elementary inter-
vals; call this thex-set. We label the endpoints of these inter-
vals using odd numbers, so the endpoints are now in the range
1 � � �4n. We do likewise for they-projections of all the rectan-
gles and get they-set. Now we can solve thePCproblem with
these labels on the rectangles which means that the solution to
RL problems now involves only integers in1 � � �4n, and not in
1 � � �U as before. To perform a lookup query, we first solve the
RLproblem on thex-set with the given source IP address and as-
sign it the odd number that falls in the interval it belongs; we do
likewise for the destination IP address with they-set. Following
that, the query becomes a point in[1 � � �4n; 1 � � �4n] which can
be solved using our methods and leads to the following theorem.

Theorem VII.1: Say thex-FIS tree has̀ levels. The space
used by our data structure isO(`n1+1=`). The number of mem-
ory accesses for each query is at most2 RLt(n; U)+` RLt(n; n).

If n is much smaller thanU , then` RLt(n; n) may be smaller
than(` � 1) RLt(n; U), and the mapping approach may outper-
form our basic approach.
The order in which the dimensions must be considered.

7

When there is more than one dimension involved, the order in
which we consider them for building FIS trees may make a dif-
ference. For example, source and destination addresses may
need to be considered prior to port numbers since there are likely
to be only few port numbers for a particular source/destination
combination, and hence the FIS trees for some dimensions may
become trivial.

For the dynamic version, there are additional considerations.
For example, the choice of the branching factor in the FIS tree
at various levels governs the number of updates that can be per-
formed without major maintenance of the tree. Also, in our
approach, we can multiplex the updating of the tree with per-
forming the lookups, although this requires careful implemen-
tation. Finally, one can batch updates and perform them more
efficiently than doing each individualupdate separately. Which
combination of these techniques to use in practice depends on
the application, the nature of datasets, etc.

VIII. E XPERIMENTAL STUDY

We focus only on the static version of the two-dimensionalPC
problem and present a thorough study of the tradeoffs for large
rulesets. This special case offers significant insights into how
to apply our algorithmic framework and the engineering issues
involved.

A. Datasets

Hardware restrictions and protocol availability limit the num-
ber of filters currently in use in IP backbone networks. Hence,
finding good rulesets to test packet classification algorithms is
difficult.
Real Datasets:Router vendors such as Cisco have augmented
their traditional measurement capabilities to include usage based
data which is needed to support traffic management and usage
based billing. Cisco Netflow [13] measures statistics about flows
at each enabled interface. A flow is a unidirectional sequence of
packets between a given source and destination point that are
close in time. Flow endpoints are identified by IP addresses, ap-
plication port numbers, IP protocol type, type of service fields,
and input/output interface identifier. The set of statistics that is
collected on a per flow basis includes, but is not limited to, start
time, end time, number of packets, number of bytes, bit mask
used for IP lookup of the destination IP address, and bit mask
used for IP lookup of the source IP address.

From the point of view of this paper, the most intriguing as-
pect is that this dataset includes not just the source and desti-
nation IP addresses but also the masks; therefore we know the
network IP addresses4 used in the lookup. In effect, if every
packet had been classified by a (source, destination) rule, one
possible ruleset would be given by the set of (source, destina-
tion) IP network pairs from the netflow data5. Our rulesets are
obtained based on this premise.

We extracted14 different rulesets from7 flow datasets that
were collected at7 different routers within AT&T’s WorldNet
4The IP network address is derived from the IP addressa:b:c:d and the maski

by setting theith most specific bits to 0, e.g.,a:b:c:d=24 corresponds to network
a:b:c:0=24 anda:b:c:d=8 corresponds to networka:0:0:0=8:
5If the packet was not netflow-switched but rather processor-switched, the

mask bits are set to0. Flows with masks bits0 are eliminated from further
analysis.

mask length for source

m
as

k
le

ng
th

 fo
r

de
st

in
at

io
n

0 10 20 30

0
10

20
30

Fig. 4. Distribution of prefix length.

backbone on21th of June,1998 over a24 hour period. The rule-
sets are derived from the netflow data by extracting the unique
sets of (source, destination) IP networks, both from the whole
ruleset and from a one hour subsample.

By design our rule sets do not contain any wild-card rules.
We acknowledge that this is unrealistic and address this in a
separate set of experiments where for a percentage of the rules
we replace either the source or the destination network with a
wildcard rule. In this way we decouple the evaluation of the
influence of wildcards from the generation of the rulesets.
Artificial ruleset: We also constructed an artificial ruleset. We
consider the forwarding tables from one of the routers. For each
rule in the forwarding table, we randomly pick a source and a
destination network from the networks that occur in the routing
table. This ruleset is labeledART.
Ruleset characteristics: Table IV summarizes some basic
statistics of the rulesets. The first columns in the24 hour and
the one hour subcategories show the number of rules during
the period. The second and third columns show the number of
unique sources and unique destinations observed within the24
hour trace. Since the routers have different numbers of interface
cards and are at different locations in the network, the number of
unique (source, destination) IP network pairs differs from rule-
set to ruleset. The table reveals that theART ruleset has more
(source, destination) network IP addresses than the ruleset de-
rived from the netflow data. We make two observations.
� The same IP networks are used in multiple rules —each
source IP network is used on average between 19 and 35 times
(36 to 45 times respectively) and the destination network is used
on average between 11 and 14 times (64 to 97 times respec-
tively) for the 1 hour (24 hour, respectively) rulesets.
� The distribution of bits used in the source and destination IP
networks is shown in Figure 4. More precisely, the plot is an im-
age map of the two dimensional histogram of the number of bits
from the source and the destination networks from the ruleset
R1. A darker shading (log scale) indicates that more rules have
the corresponding combination of bits in their network masks.
As expected, the most common combinations include at least
one class C network IP address. Somewhat surprisingly, net-
work masks of19 bits are rather popular. In the one hour rule-
sets, class B to class B routes are dominant.

8

B. Algorithms tested

Our framework offers different ways of constructing algo-
rithms for the two-dimensionalPCproblem based on (1) the dif-
ferent solutions for theRL (equivalently, one-dimensionalPC)
problem in one dimensions, and (2) the number of levels used
in the FIS tree. Since we are mainly interested in exploring
the memory vs. time tradeoffs from our two-dimensional frame-
work, we fix the solution for theRL problem to be via multi-
way search (this is also relevant in the dynamic case, but we
do not explore that here.) With a cacheline of32 bytes, we use
multi-way search trees with a branching factor of8. This enables
us to solve the one-dimensionalPCproblem for all our rulesets
with at most6 memory accesses — at most5 memory accesses
for finding the correct elementary interval in a set of less than
85 = 32768 elementary intervals, and one additional memory
access to identify the rule. We vary the number of levels in the
FIS tree.

C. Performance metrics

We are interested in two metrics: amount of memory used and
the worst case number of memory accesses needed for a packet
classification operation.
Measuring the memory accesses:The number of memory ac-
cesses is measured in terms of accesses to cachelines [15]. (A
cacheline is assumed to have32 bytes or8 integers.) There are
details in accounting for memory accesses. Say it takesa1 mem-
ory accesses in the worst case to solve theRL problem on the
x-axis. For each level̀ of the `-level FIS tree, we compute
the worst case number of memory accesses needed on they-
axis; let this bea2l

. Then the total number of memory access is
a1 +

P
i=1::` a2l

+ `. The last̀ memory accesses are needed
to find the minimum size rule among the` candidate rules iden-
tified by our algorithm.
Measuring the memory usage:We measure memory usage in
two ways: absolute usage of memory in Mbytes and amount of
memory used relative to the amount of memory used to store
the input rules. (We assume it takes three integers or12 bytes to
store a rule.) In particular, thememory factormf is the ratio
of the total amount of memory used to that needed to store the
rules. A memory factor of3 implies that the data structures for
packet classification use three times the memory that is needed
to store the rules.

D. Experimental observations

Basic performance bounds:The results for the8 rulesets are
summarized in Table IV. Even rulesets with more than106 num-
ber of rules can be searched with less than22 (17, resp.) memory
accesses using three (two, resp) levels of hierarchy; the memory
factor is at most4:1 (7, resp.). For rulesets of size10; 000 to
200; 000, the number of memory accesses is sometimes fewer,
and the memory requirements are below12 (14) Mbytes using
two (three) levels of hierarchy, respectively. Even though the
rulesets are drawn from different physical locations (e.g., east
coast, west coast, mid west) and are of widely varying sizes, the
performance characteristics of the algorithm does not differ sig-
nificantly. For the artificially derived ruleset, the performance is
even better since the construction is less likely to create nested

number of rules

pr
ob

ab
ili

ty
 d

en
si

ty

10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

all nodes
nodes at level > 1

Fig. 5. Probability distribution of number of y-elementary intervals foreach
node in the x-hierarchy (adjusted for log scale).

rules. With just one level of the hierarchy, we observed that the
memory factor is less than8:5 for all rulesets, and at most5 for
11 out of16 rulesets.
Effect of elementary intervals: The memory used by our algo-
rithm is dependent on the number of elementary intervals, more
specifically, on the number of elementary intervals on they-axis
associated with the canonical sets of the nodes in the FIS tree.
Figure 5 shows the distribution of number of elementary inter-
vals for eachnode in the FIS tree for rulesetR1. Note that the
mean number of elementary intervals per node in the FIS tree is
only 292 (90 percentile is only407) and that the mean number
of elementary intervals for the internal nodes of the FIS tree is
even lower at210. Indeed many internal nodes of the FIS tree
have no elementary interval and therefore no rules associated
with them. This implies that the memory requirements are sig-
nificantly lower than our theoretical upper bounds from Section
IV. Also consequently, the data structures associated with each
of the FIS nodes can be searched much more efficiently than our
upper bounds from Section IV indicate. This explains the gap
between the theoretical number of memory access vs. the actual
number of memory accesses for the ruleset. It also indicates that
the average number of lookups is better than the worst case.
Effect of wildcards in the ruleset: The memory used by our
algorithm depends on the extent to which the hierarchy of the
FIS tree matches the inherent structure of the ruleset. Rules that
span a large number of elementary intervals such as rules with
wildcards (�’s match the entire domain of a field) may be asso-
ciated with many nodes in the FIS tree, and result in memory
wastage. This is indeed the case for a single level of hierarchy
but as the number of hierarchy levels is increased, the negative
influence of wildcard rules diminishes. Since none of our rule-
sets includes wildcard rules, we illustrate this point by starting
with a ruleset (R6 being our example) and randomly replacing a
percentage of the sources and destinations with wildcards. The
results are shown in Table V. While the memory requirements
increase significantly with just2 levels of hierarchy, the increase
is almost negligible for a3 level hierarchy. The number of mem-
ory accesses increases from14 to 19. However, this increase
is an artifact of our prototype implementation: we have fixed
the number of children at eachnode to be slightly larger than
is required, for ease. If values were properly rounded and the
boundary conditions were applied carefully, as it would be in

9

Rule- 24 hour trace 1 hour trace
set # unique 2 levels 3 levels 2 levels 3 levels

rules src dst MB mf tm Ielem MB mf tm rules MB mf tm Ielem MB mf tm
106 103 103 106 103 106

R1 1.09 13 26 65.5 4.0 16 4.36 55.5 3.2 21 150 9.4 4.2 16 0.67 8.5 3.7 17
R2 0.46 6 12 28.0 4.1 15 1.84 24.3 3.5 18 67 4.2 4.2 14 0.31 3.9 3.8 15
R3 1.15 18 25 85.3 5.2 16 4.94 63.0 3.6 18 149 10.3 4.7 14 0.64 8.1 3.5 16
R4 0.54 8 13 30.1 3.6 16 1.86 25.2 2.9 20 78 4.8 4.1 13 0.30 3.9 3.1 16
R5 1.31 13 29 88.8 4.6 17 5.70 72.3 3.6 22 212 13.7 4.4 16 0.92 11.6 3.6 21
R6 0.20 3 5 9.3 2.9 15 0.62 8.7 2.6 18 34 1.5 2.8 13 0.11 1.5 2.7 14
R7 1.18 16 26 101.2 6.2 16 5.86 71.7 4.1 18 135 12.8 6.9 16 0.72 8.7 4.3 17
ART 1.00 32 32 43.9 2.7 14 2.83 41.1 2.4 15 100 3.9 4.2 11 0.30 3.7 4.0 13

TABLE IV

PERFORMANCE FOR RULESETSIelem is the number of elementary intervals.MB is total memory used, in MBytes.

% wild- 2 levels of hierarchy 3 levels of hierarchy
cards Ielem MB mf tm Ielem MB mf tm

20 292K 3.1 6.8 14 150K 1.8 3.6 19
10 234K 2.7 5.6 14 147K 1.8 3.6 19
5 165K 2.1 4.1 14 119K 1.6 3.0 19
0 114K 1.5 2.8 13 107K 1.5 2.7 14

TABLE V

PERFORMANCE WITH WILDCARD RULES. Ruleset isR6 by randomly

replacing src and dst with% of wildcards.

rules in 2 levels of hierarchy 3 levels of hierarchy
ruleset MB mf tm MB mf tm

1093K 65.5 4.0 16 55.5 3.23 21
273K 17.6 4.4 15 15.5 3.73 20
68K 4.1 3.9 14 3.9 3.74 15
17K 1.1 4.3 12 1.0 3.86 14
4K 0.3 4.3 9 0.3 4.02 13
1K 0.1 4.5 8 0.1 4.75 10

TABLE VI

PERFORMANCE WITH INCREASING RULESET SIZE.

a production quality solution, the additional memoryaccesses
can be eliminated. With three levels of hierarchy, the memory
needed to support the33; 604 rules is still less than2 Mbytes.
Scaling the number of rules:An important aspect is to under-
stand how the performance scales as we increase the number of
rules in the ruleset. See Table VI for the performance for rule-
sets of size between roughly103 rules to106 rules. We derived
each ruleset by starting with a ruleset (R1 at the beginning) and
retaining roughly one quarter of it by selectingeach rule with
probability1=4. From Table VI we can see that the memory
factor stays between3:9 and4:5 for two levels of hierarchy, and
between4:8 and3:2 for 3 levels of hierarchy. If the ruleset is too
small, the overhead of an extra level of hierarchy can increase
the memory requirements as seen with rulesets of less than 4K
rules. With reasonable ruleset sizes, the memory factor does not
seem to depend on the number of rules, and it seems to stay more
or less constant. As expected, the number of memory accesses
increases as the data sets grow because the number of distinct
sources and destinations increases.
Effect of the number of levels:Our solution offers a memory
vs. access time tradeoff depending on the number of levels in
the FIS tree. Table VII shows the tradeoffs for two rulesets, flow

levels RulesetR1 ART

Ielem MB mf tm MB mf tm

1 6.17M 72.1 4.5 11 45.7 2.8 10
2 5.43M 65.5 4.0 16 43.9 2.7 14
4 3.68M 49.0 2.7 23 39.3 2.3 19
6 3.26M 45.2 2.4 28 38.2 2.2 24

10 2.83M 41.0 2.1 41 37.0 2.1 37
18 2.73M 39.9 2.0 66 37.0 2.1 55

TABLE VII

PERFORMANCE AS THE NUMBER OF LEVELS IS INCREASED.

rulesetR1 and synthetic rulesetART. On the total memory size,
the impact of increasing the levels of the FIS tree beyond four
or five is minimal.
Summary: Our exploration of the various tradeoffs lets us con-
clude that for small rulesets (up to a few K rules), one level FIS
tree suffices. The space used is a few 100KBytes and the number
of memory accesses is less than10. For moderate sized rulesets
(up to a few10K rules), two level FIS trees suffice; space used
is a few MBytes and the number of memory accesses is about
15. For very large data sets (order of106 rules), two or three
level FIS trees suffice; space used is up to100 MBytes and the
number of memory accesses below18. Taking a very simplistic
approach that disregards pipeline stalls and the complications
of randomaccess, one could expect that memory access speed
of 8ns (SRAM) would translate into lookup times that are in
the ballpark of OC48. A memory speed of28ns, e.g., DRAMs,
would translate to roughly OC12 and110ns would translate to
OC3.

As a side issue, the performance of our solution is signif-
icantly better for the artificially constructed rulesetART, than
for real data sets. This should not come as a surprise since the
ART ruleset cannot capture the correlations in actual rulesets we
obtained from various routers (as described earlier) illustrating
some pitfalls of constructing random or arbitrary rulesets.

IX. RELATED WORK

ThePCproblem has been well studied. Primarily the motiva-
tion has been to explore if software based solutions can perform
lookups at high linespeed6. There are many approaches known,

6Hardware based approacheshave also been explored, e.g., using Content Ad-
dressable Memories (CAMs), e.g., [10], high speed caches [8] etc. Our approach
is akin in spirit to the software solutions, and hence we do not survey hardware
based solutions to thePC problem. However, our solutions themselves can be

10

and we have already compared our results with the best known
ones in Section III.

The work closest to ours is in [11]; their basic approach can be
thought of using a one level FIS trees. As such, the memory re-
quirement will be high. However, the authors used sophisticated
compression techniques to decrease the space. Here, we use2 or
3 level FIS trees which makes a substantial difference as our ex-
periments indicate. There are solutions that useO(n logd�1 n)
space andO(logd�1 n) memory accesses per query [3], [7]. Al-
though these are space efficient, the lookups are rather slow. Our
solution is based on the result in [7] that hasO(log logn) mem-
ory accesses, but uses moderately large space. We have already
described how our data structure extends the work in [7].

Recently, independent of our work, adynamic algorithm was
proposed for thePCproblem [2]. This algorithm takesO(�w)
memory accesses for query processing andO(�n1=�) time for
updates, for the two dimensional case; here� is a tuneable pa-
rameter. Our algorithms were built on the premise that query
times must not be sacrificed to accommodateupdates, and fur-
thermore, that updates are less frequent than queries. Hence,
our algorithms were designed to support query processing in
O(logw) memory accesses. Our solutions do use more space
than [2] in the worst case, but just as in the static case shown
here experimentally, we expect the structure in the datasets to
result in reasonable space usage.

In the dynamic case when rules are inserted, a query may have
a conflict, that is, there are two (or more) least cost rectangles
that contain it, but neither of these rectangles is contained in the
other. Our solution will be able to detect the presence of con-
flicts when a query is presented. (In contrast, authors in [1] show
how to detect all possible conflicts when a rule is inserted.) So-
lutions in [1] can be used to resolve these conflicts as we detect
them.

X. CONCLUSION

We have provided an algorithmic framework for solving the
PCproblem using simple, yet powerful ideas such as (1) using
a “fat” hierarchy of canonical sets to decrease the number of
sets to be searched per query [7], (2) locating the canonical sets
to be searched by proceeding up from the leaves using the in-
verted edges of the FIS tree (Section III), (3) locating the leaves
in FIS trees using the standardIPL problem, thereby leveraging
off best known hardware and software solutions for it (Theo-
rem III.1), (4) using FIS tree nodes with flexible degree to al-
low moderate number of updates without degrading the lookup
performance significantly (Section VI, and (5) reducing the uni-
verse size using theIPL problem before applying our solutions
thereby reducing the memory accesses for each consequentIPL
solution. In our framework, these ideas can be combined to give
space-time tradeoffs forPC. In particular, our experimental re-
sults based on rulesets derived from AT&T WorldNet traces in-
dicate that using less than80 Mbytes of8ns SRAM memory one
can perform static two-dimensionalPCat roughly OC48 rates7

(2:4Gbit/second) for rulesets with more than 1 million rules even

implemented in hardware using off-the-shelf solutions for theIPL problem as
remarked earlier.
7This is a ball park figure that disregards pipeline stalls.

if all packets are only40 bytes in size. This will be quite satis-
factory in practice.

Our entire framework is based on decreasing the query lookup
time aggressively; theoretically, this leads to the use of moder-
ately large space. However, our extensive experimental study of
traces from various WorldNet routers shows that in practice, the
space usage is very reasonable, e.g., within a factor of5 of the
space used to store the rulesets themselves.

What remains to be explored is to apply the insights from our
two-dimensional study to engineer the framework for specific
applications. In particular, the dynamic case and the multidi-
mensional case are of interest. A concern is the lack of large,
realistic datasets for such cases.

REFERENCES

[1] H. Adiseshu, S. Suri, and G. Parulkar. Packet filter management for layer
4 switching, 1999.

[2] M. Buddhikot, S. Suri, and M. Waldvogel. Space decomposition tech-
niques for fast layer-4 switching. InProceedings of the IFIP Sixth Inter-
national Workshop on Protocols for High Speed Networks, 1999.

[3] B. Chazelle. Filtering search: a new approach to query-answering.SIAM
Journal Computing, 15:703–724, 1986.

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Compu-
tational Goemtry: Theory and Applications. Springer-Verlag, Heidelberg,
1997.

[5] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding
tables for fast routing lookups.ACM Computer Communication Review,
27(4):3–15, 1997. ACM SIGCOMM’97, Sept. 1997.

[6] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification,
1999. AT&T Technical Report.

[7] P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatch-
ing: A geometric approach with applications to string matching. InIEEE
ACM Symp on Theory of Computing, 1999.

[8] P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at mem-
ory access speeds. InProc. IEEE INFOCOM, page 1241, San Francisco,
California, 1998.

[9] P. Gupta and N. McKeown. Packet classification on multiple fields.ACM
Computer Communication Review, 1999. to appear ACM SIGCOMM’99,
Sept. 1999.

[10] Quality Semiconductor Inc. Content addressible memory.
http://www.qualitysemi.com/news/qcam.html.

[11] T.V. Lakshman and D. Stiliadis. High-speed policy-based packet forward-
ing using efficient multi-dimensional range matching.ACM Computer
Communication Review, 28(4):203–214, 1998. ACM SIGCOMM’98,
Sept. 1998.

[12] B. Lampson, V. Srinivasan, and G. Varghese. IP lookups using multiway
and multicolumn search. InProc. IEEE INFOCOM, page 1248, San Fran-
cisco, California, 1998.

[13] Cisco Netflow, 1999. http://www.cisco.com/warp/public/cc/cisco/mkt/-
ios/netflow/tech/nappswp.html.

[14] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tu-
ple space search.ACM Computer Communication Review, 1999. ACM
SIGCOMM’99, Sept. 1999.

[15] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable
layer four switching.ACM Computer Communication Review, 28(4):191–
202, 1998. ACM SIGCOMM’98, Sept. 1998.

[16] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an efficient priority queue.Mathematical Systems Theory, 10:99–127,
1977.

[17] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed
IP routing lookups.ACM Computer Communication Review, 27(4):25–36,
1997. ACM SIGCOMM’97, Sept. 1997.

[18] D.E. Willard. Log-logarithmic worst-case range queries are possible in
space�(N). Information Processing Letters, 17(2):81–84, 1983.

