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Abstract—We present an algorithmic framework for solving the packet used. At large corporate campuses, access speeds may range
classification problem that allows various access time vs. memory tradeoffs. from medium speed of Tand OG, to top speeds of O2 and

It reduces the multi-dimensional packet classification problem to solving a . . .
few instances of the one-dimensional IP lookup problem. It gives the best above. Atinter ISP boundaries, thecess speeds will be O

known lookup performance with moderately large memory space. Further- OCA8, and above. Residential customers have access speeds of
more, it efficiently supports a reasonable number of additions and deletions T1 (DSL) or less. Solutions should achieve the required target

to the rulesets without degrading the lookup performance. We perform ; T aun
a thorough experimental study of the tradeoffs for the two-dimensional access speed, while minimizing the tof memory used.

packet classification problem on rulesets derived from datasets collected ¢ Number of rules to be supporte&acket classification appli-

from AT&T WorldNet, an Internet Service Provider. cations differ in the number of rules that are specified. Today
typical firewalls may specify a few hundred rules, while an ac-
|. INTRODUCTION cess/backbone router may have a few hundreds of thousands of

) . rules; these numbers are expected to scale up with enhanced ser-
While the current Internet offers best-effort service, futurgces and router throughput and maach niilions of rules.
IP networks will provide enhanced services 1o its users. SUghy,mper of fields usedacket classification applications differ

services may include differentiated services underwritten the number of fieldslfmensionof the IP header that is used

service level agreements (SLAS), fine grain quality of Serviqg, oaqgification. Current routers use one field (destination IP

(Qo0S), Virtual Private Network (VPN) service, distributed ﬁre'Eddress), but it is expected that emerging routers will use two-

walls, IP security gateways, traffic based billing, etc. All sucfnensional rules. Firewalls and other access list applications
enhancements neqghcket classificationthat is, determining may use a few more fields [9]

which flow a packet belongs to based on one or more fleldso"?\lature of rules:Current routers use rules with a prefix mask

the pg'cke't hgader. Packet hgadgr fields that may be usedofr(ljgjestlnatlon IP addresses. However, more general masks such
classification include the destination and source IP addresses, .. o

S as arbitrary ranges are expected to become permissible. Packet
the protocol type, and the source and destination port number

o . . lassification solutions n mm -
Rules for classification are specified by specifying valid rangC ssification solutions need to accommodate such general spec

for any of the header fields. Determining the most fitting ruliﬁzatlon'

for each packet is the packet classification problem. o.Updating the set of ruIesThe number of changes to the rules
Examples of packet classification: In today’s IP networks either due to a route or policy change is moderate to small com-

packet classification for routing is based purely on the destir{%}recj tothe number of packets that an application, e.g., arouter,

tion IP address, and the rules are expressed as IP addresst?)ere?(-jsilhciig:;szmt'2;26,[ s?;?:eefﬂlrlnearﬁ)s”%?éklpilgzit d;l:[ses;ﬁca-
fixes. Packet classification rules for access lists and firewai% Py P9 y q y 1o St :
. o . without sacrificing theaccess performance. Rebuilding major
use two IP prefixes — source and destination IP address prefixes — . L
pﬁgts of the data structure for every update is prohibitive.

and sometimes conditions on the port numbers and protocols. It A Ehere i idelv held vi h
networks that use improved traffic engineering and support djf- orst case vs. Average casenere 1S a widely heic view that
access time performance of packet classification, one must

ferentiated services may use one set of packet classification r S her th
to determine which router to forward a packet (using MPLS tu pcus on worst case, rather than average case [11].

nels) and another set of rules to determine which queue o Usg,,ny of these requirements have been articulated in the ex-
(for differentiated service) and yet another set of rules to dgg,qjve collection of papers that have addressed the packet clas-
cided whether to forward a p'acket (for VPNs and IP securifye+ion problem [1], [9], [8], [11], [12], [14], [15] and the
gateways). - Such rules are likely to be based on at least [agrences therein. Several solutions have been proposed; they
sourge an destination IP addresses but may also include ppLleffective in meeting some of the criteria, but not all of them.
AUMDETS. L . Some of them do not allow range specification in the rules [8],
Requirements for packet classification:They can vary widely sihers do not preserve the access time performance with guar-
depending on the application and where packet classificationifeed small update times [9], [11], [L5], and yet others are not
performed in the network. designed for large rulesets [12], [14]. It is desirable to have a

» Resource limitationsPacket classification solutions can tradegjte of solutions with a range of tradeoffs that can be tuned to
off time to perform the classification per packet vs. memogyaticular applications.

" o N Our contributions: We present a novel algorithmic framework
Any communication that uses IP-Sec encryption will not expose port nurp- Vi h k | ificati bl itreli insiah
bers. Therefore relying on the availability of port numbers inkbame IP net- 10F SOIVIng the packet classification problem. Itrelies oninsights
works may be problematic. from computational geometry, and has the following interesting



features. (1) It allows various access time vs. memory space | Reference| Space used # of memory accessels

tradeoffs, and can be engineered for different applications. In [5] O(n) O(log, U)
particular, it gives the currently best known access times for the [17] O(nlogn) O(log, log, U)
packet classification problem with moderate amount of mem- [12] RL(2n,U) RL;(2n,U)

ory use. (2) It reduces the packet classification problem (with
arbitrary ranges and-dimensionsd > 1) to a small number
of invocations of a specific one-dimensional packet classifica-
tion problem, namely, the® Lookupproblem in which all rules
are prefix ranges. Many optimized software [5], [12], [17] and
hardware solutions (e.g., [10]) are known for the IP Looku for all dimensionsk, the field valuef, of packetp lies in
problem. Using our framework, these are now applicable to tHee rangef;. The problem is to determine the least cost rule
general packet classification problem. (3) It allows efficient ughat applies to the packétFor example, in layer-four switch-
dates to the ruleset without recomputing the full data structuieg, the dimensions could consist of the source address, desti-
Moderate amount of updates (additions as well as deletionshation address, source port, and destination port. A rule such as
rules) do not effect the access times significantly; this is the fif$85.207.x, 12.x, 1024—65535, 20—23] may be used to allow IP
such solution for the packet classification problem. addresses within AT&T Labs-Research to contact IP addresses

We test our two-dimensional algorithm on rulesets (sourc¥ithin WorldNet either via ftp, ssh, or telnet. Hosts from AT&T
destination ranges) derived from flow traces collected dtimu Labs-Research are restricted to use any of the non-private ports.
ple backbone routers of an ISP, AT&T WorldNet. The resulfdepending on how costs are assigned to rules one can model
show that our algorithm can perform packet classification féifferent flavors of the®Cproblem (see [9]).
rulesets of size beyonth® with at most18 memory accesses The rules have a natural geometric interpretation dimen-
(assuming that each memory access retrieves 8t cache- sions. Each rule; can be thought of as a “hyperrectangle’din
line [15]) in the worst case. The space to store the data structdiensions (called rectangles henceforth), obtained by the cross
is at most a factor 0§ bigger than the space needed to stofgroduct of the intervalﬁj along each of the dimensiopisThus
the rules themselves. No previous experimental result congide set of rulesk now corresponds to a set of rectangles ofi-
ered real datasets of this magnitude. The number of memangnsions. Each packetorresponds to a point ihdimensions,
accesses can be further reduced by using bigger cachelinegrst thePCproblem is identical to theectangle enclosure prob-
larger memory. lem that is, given a set of rectangl®s determine the least cost

At the technical core, our algorithmic framework relies ofectangle that encloses any query pgint
data structural solutions [7] in which the access time is aggres4n solving thePCproblem, the parameters of interest are stor-
sively minimized (to roughly) (loglog U') whereU is therange age space and the number of memory accesses performed per
of IP addresses). We modify their algorithm to eliminate marguery (which is the dominating lookup cost).
of the steps with inherently large constants. Consequently we
have obtained a simple solution which we further extend to al- I1l. ONE-DIMENSIONAL CLASSIFICATION
low dynamic updates. The theoretical solution could use moder-tpe one-dimensiond@C problem is: given a set of rules —
ately large memory space (e.g/(n'*) for L > ¢ > 0 wheren  hossibly overlapping intervals frofi - - - U] — each with a cost,
is the number of rules). Hovx{ever,' ourexperlments show that' swer lookup queries for pointe [1 - - - U] by identifying the
memory usage of our algorithm is quite reasonable on realis§ig,alest cost rule that contaigs

datasets. _ o ‘Special case oneThe IP Lookup(IPL ) problem is a subprob-
Organization: We define the packet classification problem ifam of the generaPC problem in which each range is a prefix
Section Il and next present our algorithmic framework for statig 5n |P address (IP addresses arélin. - U], with U = 232
(Sections Ill - V), as well as dynamic cases (Section VI). Wg |py4). Each query is an IP address. The task is to deter-
discuss engineering tradeoffs in Section VII. In Section Viiine the least cost rule that is a prefixfThelPL problem is

we focus on the two-dimensional problem and present extensiNg classicaPC problem based on the destination IP addresses.
experimgntal results. We review relateq work 'in Section Dhe worst case number of memory accesses needed to solve
Concluding remarks and future work are in Section X. this problem is denoted byPL,(n, /) and the space used by
IPL,(n,U). The best known performance bounds for tRe
problem are in Table 1. KL will be defined shortly.)

Informally, the packet classification problem identifies th8pecial case twoThe Range LocatioifRL) problem is another
flow a packet belongs to, based on one or more fields in thebproblem of the generBIC problem in which the ranges are
packet header. Formally, tledimensional packet classificationnon-overlapping and completely cover the universe U. The
problem(denoted a®Cproblem) is as follows. We are given acollection of intervals ofRL can be specified as series of left
setR = {ry,...,r,} of rules overd fields (dimensions). Each end points of the intervals in the sorted order. Each qyesy
rule consist of a set of ranges = [F{, ..., Fi], WhereFj isa an integer, and the goal is to determine the interval that contains
range (interval) of values the fiejdmay take; each rule also has

acost The set of rules may be preprocessed. Queries are préEOT debugging purposes, it may be useful to enumerate all rules that apply
to a given packet and not merely return the one with the smallest cost. All our

sented Qn I'ne_' Each query is a packet [f}’ -, fa], where solutions can be extended to determine such a output, and we do not consider
each f; is a singleton value. A rule; appliesto a packetp this version of the problem any further.

TABLE |
PERFORMANCE BOUNDS FOR THHPL PROBLEM

Il. PROBLEM SPECIFICATION
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Fig. 1. Example: elementary intervals. — —
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q. The worst case number of memory accesses needed to solgg S S 949
this problem i®L; (n, ) and the space used for this solutionis © < — -
RL(n, U). Fig. 2. Example: reduction d®Lto IPL .
For us, theRL problem arises because our overall approach
for solving thePCproblem relies on reducing them to a few in- |_Reference| Space used] # of memory accesses
stances of th&L problem. For one-dimensions, this reduction [12] 2n log 1 n+1
is immediate. Given a set of intervals for tRE€ problem, con- for k-word cacheline
sider the set of all the endpoints of intervals (dndnd/ are [18] O(n) O(loglogU)
included by default). The region between any two saoh- This paper| IPL,(2n,U) IPL;(2n,U)
secutivepoints in sorted order is called @hementary interval TABLE Il

Figure 1 illustrates an example. No two elementary intervals
overlap. We can process each rule in B@problem and retain

the smallest cost rule that intersects each elementary interval.
This reduces th@Cproblem o rules to theRL problem with

< 2n elementary intervals [12]. The universe size for both profL problem: {0000,0010,1000, 1110,1111}.  The result-
lems isU/. Therefore it is sufficient to solve tHRL problem to INg instance of thelPL problem consists of the prefixes
solve thePCand thelPL problem (Table I). {0001‘.0011‘,'01‘1‘1‘, lzxe, 10xe, 1lze, 1110, 1111} (dashed'lines).
Solving RL problem: The best known theoretical result for O the prefixe®zzx andlzzw the figure shows the two inte-
solving theRL problem takes)(log log /) memory accesses 9€'S associated with each prefix. , _
using spac@(n) with a large preprocessing time [18]; the con- Consider the queryin theRL problem. Lets(i) be thea bit
stants involved are of moderate size. A different approach [12f4ing representation of Solve thePL problem withs(i) on/’

to do a multiway g-way) search if log U bit operations can be @nd sy the solution ig(v) for some internal node. If i < v,
performed with a single memory lookup, in which case at mg$tan the solution to thBL problem is the interval ending a§ ;
logs 41 n+ 1 memory accesses are needed. This is a very simpl@€rwise,i > v< in which case the solution is the interval
and memory efficient solution if is not too large. Yet another Starting a<. The proofis presented in the full version [cH
approach that we explore here is to reduceRheproblem to e resultis important to us since

thelPL problem. « it gives a reduction from one-dimensiorRaC with arbitrary

Theorem I11.1: Consider any instandeof the RL problem ange rules t@Cwith only prefix rules [PL ) while increasing
with N points in the rangd - --I7. We can derive an instancethe number of rules by at most a factor of two. In contrast, the

I’ of IPL with at mos2N prefixes, each a string of length atPest previous reduction [15] uses a factoriitog U).
mosta = [logU]. Each query: for the RL problem can be ¢ ©ne can leverage off the best known solutions (hardware or

transformed into an IP address of length at mesor thelPL ~ Software) for thdPL problem to solve th&L problem and the
problem on sef’. one-dimensiondPCproblem.

Proof: The reduction goes as follows. S&y is the bit repre-  1able |l summarize the performance bounds known foRbe
sentation of an integein /. Integer;j and binary string; are problem; which of the'results performs best in practice depends
treated interchangeably. We build a trie of tigs. Let o(u) ©ON the instance (relative values of U etc.). Combining this

denote the string labeling the path from the root to an internith results for thelPL problem, we can conclude that there
nodeu. For each internahode in the trie, we compute the &€ practical solutions for the one dimensioR@problem with

smallest integer it that is> o (w)||04~17 (%! (denotedus ) and Q(log log U) memory accesses for each query; thi@(ﬂ;og w)

the largest integer it that is< U(u)||1(a—|a(u)|) 1 1 (denoted Sincew = log U bit IP addresses are needed to specify numbers

u<). Herea||b denotes string concatenation, aridrepresents " therangd ---U.

the string obtained from by repeating if times. We generate

set!’ from I by generating two prefixes(u)||0 ande (u)||1 for

each internahodeu. Since the number of internal nodes is at We view the two-dimensiondC problem in its geometric

most N, the number of prefixes iff is at mosR V. terms. LetR be a set of: rectangles on a two-dimensional grid
Figure 2 shows the trie (thick lines) for an examplél ---U, 1---U] each with some cost. We want to preprocRss

PERFORMANCE BOUNDS FOR THERL PROBLEM

IV. TWO-DIMENSIONAL CLASSIFICATION



such that we can efficiently answer the following query: Given 1 9

a two-dimensional grid point, find the smallest cost rectangle

in R, if any, that containg. The basic data structure of our i w
algorithmis a FIS tree.

FIS trees: Given a collection of segments our base data struc- n

ture is a segment tree [4], but made “fat” to occupy a given num- 1

ber of level¢ as in [7]. In addition, we invert it so directed paths 5
|

go from leaves to the root which helps the search as described
later. We call the data structure tRéS tree(Fat, Inverted, Seg-
ment tre¢ and describe it below.

LetS be a set ofn segments. The endpoints of the segments
partition the universe into a number of elementary intervals §3'S
in Section lll. Sayt = m!/¢, ¢ > 1, andt, £ andm are integers. tree
The FIS tree is a balanced, invertedry tree7 with 7 levels.

Each node’ has a pointer to its pareptrent(r) and at most

t incoming arcs. The leaves of the FIS tree correspond to the
elementary intervals in order. An internal nadeorresponds to Fig. 3. Example: construction of a FIS tree.

the larger interval that is the union of the elementary intervals

stored at its leaves. We denote this intervalby). A segment Rectangles, 2 ands all contain the interval that corresponds to
s € S is stored at the nodeif /(v) C s butI(parent(v)) ¢ s. v butthey do not contain the full interval (corresponding to its
The set of segments stored with a node is calledatsonical parent); hence, they are all in thecanonical set of. Rectan-
set glesb, 7, 6, 8 contain subsets of the interval associated with

Property IV.1: [7] A FIS-tree7 onm segments has the fol-and are therefore inserted into thecanonical sets of a lower
lowing properties. (1) The depthisgm/logt = ¢. (2) Each level. As described in the texy;FIS trees are constructed on
segment is stored in at maxt— 1 nodes per level. (3) The col-each of these-canonical sets.

lection of segments containing any pajiris the union of sets, Query Processing:For a given query point we have to search
namely the canonical subsets of the nodes on the search pathoral FIS trees. Traditionally each such searctioise by
ofpin 77 these sets are disjoint. walking down the tree from the root, at eaohde using to

Preprocessing: Consider the rectangles of a two-dimension&€termine which child to pursue. #fis a small constant (such
PC problem and their projections along theand y axes; we @S for binary trees where= 2), this takes onlyO(1) time per
use these projected segments synonymously with the rectan§fgde: However, for arbitrarily large we can no longer decide
themselves. We build a FIS tree on therojections of the rect- In O(1) time in which child of a given node we have to con-
angles that we call the-FIS tree We call the canonical setstinué the search. For this we need to perform a search among
associated with the nodes of theFIS tree as the-canonical the intervals of the children ofv. This problem is precisely the
sets We also store the left most endpoints of the elementaR- problem on the left endpoints of the int.ervals represented
intervals and a pointer to the leaf representing that element&# €ach child. Thus the problem of searching laveled FIS
interval with each edpoint; we call this the-set We consider {rée can be done usirignstances oRL [7]. However, we take
the y-projections of the rectangles of thecanonical set of advantage qf the mvarted structure of the FIS tree to speed this
and their elementary intervals. We store the left endpoints $farch significantly; in fact, we reduce it tsagleinstance of
each such interval together with the smallest cost rectangle tH¥ RL problem as explained below. Say the two-dimensional
intersects each, in a set we call thsetof v. query pointisy = (gz, 4y)- _ _

An example consisting of ten two-dimensional rules is shown e solve theRL problem on ther-set with queryg,.. This
in Figure 3. Each rule is represented as a rectangle (the s the pointer to the ledf, in thez-FIS tree representing
number is shown in the upper left corner of the rectangle). THE elementary interval containing. _
projections of the rectangles onto theaxis (dotted lines) re- 2. We consider all parents éf;, by following successive parent

sults in the set of elementary intervals shown in the figure. RPinters. The total memory accesses is at bgen, U) since
this example we constructed aaFIS tree with? = 3 levels. the parent pointer location of a node can be computed arithmeti-

Each leaf node of the tree corresponds to a single elementarﬁﬁuw' . ) ¢
terval, while the root of the tree corresponds to the full intervat V& séarch the-sets associated with each parentgf by

covered by all rectangles. Let us consider which rules will ;2!Ving theRL problem withg, for each one. This determines
inserted into the:-canonical sets of the second node from tH&€ Set of elementary interval that contgifrom all y-sets. The

left (labeled with(3, 4)); say, this node is denoted Since rect- smallest cost rectangle associated with these elementary inter-
anglest and3 are fully contained in the interval covered by thé(als is returnad as t.he solution. This may be thought of as solv-
parent ofu, they are inserted into thecanonical set of.. Since 'Nd the one-dimensional problem on tisets of the parents of
rectanglel contains the interval associated with the parent,of Z«» USing FIS trees of only one level.

L is not in thez-canonical set of.. Let us consider the second 3 An additional¢ memory accesses may be needed when cascading many FIS
node on the second level of the FIS tree; say, that is denotedrees.

: Elementary

! I I

! | |

I

L ; M Intervals
1 1 1




| Algorithm | Space Used| # of mem accesseb VI. DYNAMIC PCPROBLEM

Grid of tries [15] O(nw) O(logw + w) . . .

Rectangular Search [14] O (n+/w) O(w) In this section, we consider updates to the rulesets. If the only

Range Matching [11] O(n) O(logn +w) allowed updates arnaserts we refer to it as thencrementalPC

FIStrees =3 O(n'/?) | 4RL(n,U) +3 problem. Ifdeletesare allowed as well, we refer to that as thye
cachelins, ¢ = 3 O(nt/2) ﬁfgigﬁ namicPCproblem. In this section we extend our data structures
FIS tree O(n'+1/) | (44 1) RLi(n,U) to allow for insertions and deletions, using a simple approach.

~ ({+1)logw We also explore how many updates carabeommodated with-

TABLE Ill out significantly degrading lookup performance. In general, it

is more important to minimize lookup times rather than update
times since IP routing protocols do not guarantee instantaneous
convergence. Even within a single router they may not be instan-
taneous on all interfaces due to the distribution of information to
Theorem IV.2: Say the-FIS tree hast levels. Our data the different linecards. Routing tablgdates do not have to be

structure for the two-dimensionBICproblem use®)(¢n'*1/%)  atomic but they should be incremental rather than requiring re-
space and takes at mogt + 1) RL;(2n, U) memory accessescomputation of the full data structure and they should preserve
per query. a consistent view for each rule and not odtuce route flaps.

TWO-DIMENSIONAL PCPROBLEM (w = logU)

Remark: Say¢ = 2. Our data structure use®(n>/?) space, Dynamic RL problem: As in the static case, our approach
worst case, and at mo3RL;(2n, U) memory accesses. {f= involves reducing the problem to tHRL problem. However,
3, space used i©(n*/?) and number of memory accesses is &¢ now use thedynamicRL problem DRL) defined as fol-
most4 RL;(2n,U). (2 RL(n,U) is essentially a lower boundlows. Given a set of non-overlapping intervals that cover the
for the two-dimensiondPC problem since th&L problem has domaint ---U, the problem is to support operatiorsplit an
to be solved for each dimension at least once.) interval into two adjacent intervalgjergetwo contiguous inter-
vals into one, andookupa query point and return the interval
Comparison: A comparison of our results with the previoushat contains it. We solve tHeRLproblem using &3-tree with
ones is shown in Table Ill. All bounds are worst case boundgulti-key search on the left end points of the intervals in time
While our solutions have the smallest number of memory aG{log, ., n) wheren is the number of rules anbword cache-
cesses (order dbgw rather than order ofv), the worst case |ines are used. This is the most practical solution that we are

memory is moderately large. aware of; using van Emde Boas trees [16] this problem can be
solved withO(log log /') memory accesses but the constants are
V. MULTI-DIMENSIONAL CLASSIFICATION large. We estimate that our solution to thRLproblem will use

In the multi-dimensionaPC problem, we are given a s& at most twice the number of memory accesses as the solution to

of d-dimensional rectangles each with a cost. The querydis ath€ StaticRL problem. (This penalty can be avoided by using a

dimensional poin and the goal is to determine the rectangl&2cheline twice as wide.)

of smallest cost that contaigs Our solution extends the two-|ncremental classification: We first consider the one-

dimensional approach. We first construct a FIS tree on the figinensionalPC problem. In the static case, we could simply

dimension and then recursively construct our data structure @guce this to th&L problem. The simple reduction &fCto

the remaining! — 1 dimensions for each of theanical sets in RL is no longer sufficient in the incremental case since update

this FIS tree. The FIS tree for the last dimension will be of levg@imes may be(n), which is prohibitive. The worst case update

one just as in the two-dimensional case. It follows, time arises if one inserts an interval which intersects most exist-
Theorem V.1: If each FIS tree hétevels, our data structure ing elementary intervals. Our solution is to use a variant of the

for the multi-dimension@Cproblem take® (n(¢n'/*logn)*~!) FIS tree {ncremental FIS tregto reduce the update time.

space and at mogt'—! RL,(2n, ) memory accesses per query. Recall the defiition of a FIS tree with indegreeand? lev-

The known theoretical solutions would solve tRé problem els onn segments. We define a FIS tree variant, calledinhe

¢4 times in the worst case for each query. As in the twaremental FIS tregin which the internal nodes that the leaves

dimensional case the inverted FIS tree lets us gaRé& invo- connect to may have degree betweemdct for some suitable,

cations for each FIS tree search. Our framework gives the bestall constant; all other internal nodes have in-degreas in

known results in terms of memory accesses for general rulesatstandard FIS tree.

In the worst case the memory usage may be large. In practiceSay there is a collection of rules at the beginning we start

rulesets have a lot of structure [9], [14]. In particular many dby building a FIS tree on the elementary intervals with one mod-

mensions cluster naturally. Instead of using the full data strufieation. We only store the least cost rule in eacharzcal set.

ture with/ levels for each dimension we can take advantage e canonical sets themselves are not stored; we refer to the

the clustering and reduce the levels for those dimensions. In tost stored with a node as itscanonical cost,,. Recall that

dimensions that do not have a natural clustering, our framewdhe endpoints of the elementary intervals determined by the seg-

provides an efficient way to structure the canonical sets andntents is called the-setwhich is also maintained.

explore the tradeoffs. Combined with other engineering insightsSuppose we insert a rule. This may generate new elemen-

this should lead to moderate memory usage and result in a sriely intervals by splitting at most two existing elementary in-

number of memory accesses. tervals. Splitting an elementary interval involves updating the



B-tree search structure on theset and the FIS tree. In the FISWe can extend this to provide a dynaniidimensional classifi-
tree we replace the corresponding leaf with two leaves of thation just as before.

same parent. Now it is straightforward to insert a rule into all _ )
appropriate canonical sets. Answering a lookup query with-&rger number of updates: We have two suggestions to al-

point ¢ is as before except that we solve th&L problem on low larger numpers of upda.tes 'Without sacrificing lookup per-
thez-set and return the minimum canonical cost of this leaf af@'mance significantly. The firstis to relax the degree of the FIS
that of any of its parents. As long as each insertion of a rule if{§€ @l evels. This involves splitting internal nodes of the FIS
the lowest level canonical set is atomic the lookups canged 7€ Which can be done in a similar manner as the splitting of
in parallel with the updating of the data structure. This implid§af nodes. The cost of lookup performance remains essential

that the time period during which the data structure needs toLHéChinged while the use of memory may increase by a factor of
locked is very small. O(n°/*). The second suggestion is to maintain the current data

Theorem VI.1: Any)(n'/%) rules can be inserted such thatStructure so that delta canonjcal sets are small. This involve;
an insert take®)((n'/*) memory accesses in the worst case; §0PYind FIS trees by collapsing basic and delta sets appropri-
lookup query takes at moBRL, (n, U/) + ¢ memory accesses, ately which may be done in the background since the numb'er
The space used §(n). of qukup queries far outweighs the number of updates. If this
As an example, witd = 3, O(n'/3) rules may be inserted; OPYINg IS done car.efully we can pgrform large number of up-
update time i) (n'/3) and the number of memory accesses Rates while supporting lookups efficiently.
at most3 more than that needed to solve DRLproblem.

We can extend this result tbdimensions by using incremen-
tal FIS trees instead of using standard FIS trees as described iwe have presented algorithmic solutions for B@problem
Section V and by using an incremental FIS tree for the final dirith provable performance guarantees. There are a number of
mension. For more details see the full version [6]. ways to tailor them towards a particular application. We first

Dynamic classification: The data structures need to be more s§4mmarize some of the issues with regards to the static version.

phisticated in order to support deletions. It no longer suffices lyimber of levels in the FIS trees.The parametet for a FIS

maintain only the canonical cost for a node. If the correspondiH§e in any of the dimensions must be chosen judiciously. The

rule is deleted, we need to quickly determine the rule with th@rgerc is, the smaller the memory use and the larger the num-

smallest cost that overlaps the interval represented by that nd¥f. of memory accesses will be. Appropriate choice wiill

We explicitly maintain the entire canonical seeathnode. depend on the nested overlap structure of the intervals. If the
We define a FIS tree variant called ttignamic FIS treqo OVverlap is large, a somewhat larger value/a$ needed to de-

be a FIS tree with the following modifications. (1) The leaved/€as€ memory requirements.

connect to internal nodes that have indegree betwgenand Choosing appropriate solutions for the subproblemsThePC

e»t for suitable constants , ¢» > 1. (2) Each node has pointersProblem ford dimensions uses solutions to smaller dimensional

to abasecanonical set and@eltacanonical seteach caonical PCproblems on the canonical sets. Which solution to apply for

set is stored in a heap data structure. The delta canonical $agssubproblems depends on the characteristics of the dataset.

will be kept small, in particular, linear in the number of update§0r example, if the canonical sets are moderate in size, the fol-

The cost of the minimum cost rule from both two canonical sef@wing mapping approacimay prove efficient.

of a node is its canonical cost, which we store at thatnode. ~ Themapping approacluses our solution after a reduction of
Say there is a collection of one-dimensional rules at thethe universe size. First we project all the endpoints ofithe

beginning. We build a dynamic FIS tree on these segments Rjpjections of the rectangles to get at mastelementary inter-

building a standard FIS tree and having the standard canoniédls; call this thez-set. We label the endpoints of these inter-

set of a node be its base canonical set; the delta canonical ¥8t§ using odd numbers, so the endpoints are now in the range

of the nodes are empty. On inserting a rule wecpes to split 1---4n. We do likewise for they-projections of all the rectan-

elementary intervals as before. If a new intervab created gles and get thg-set. Now we can solve tHeC problem with

from intervalu we initialize v's base canonical set as the sam#éese labels on the rectangles which means that the solution to

as that ofu and implement this as a pointer copy. We explidRL problems now involves only integers in - - 4n, and not in

itly copy the delta canonical set efinto that ofv. Againitis 1---U as before. To perform a lookup query, we first solve the

now straightforward to insert a rule into all appropriate canorfitL problem on the:-set with the given source IP address and as-

cal sets. sign it the odd number that falls in the interval it belongs; we do
Deleting a rule works as follows. The rule is removed frortikewise for the destination IP address with teet. Following

the canonical sets of all nodes where it is stored, and the canB@t, the query becomes a pointin - -4n, 1 - -4n] which can

ical costs are updated. We do not collapse the tree to rem&@solved using our methods and leads to the following theorem.

any elementary intervals. Lookup on a queryqaeds as before Theorem VII.1: Say the-FIS tree hast levels. The space

except that we find the minimum cost rule from both basic antsed by our data structure @(¢n'+'/*). The number of mem-

delta canonical sets efach relevantode. That gives, ory accesses for each query is at mdBL; (n, U ) +{RL¢ (n, n).
Theorem VI.2: AnyO(n'/*) one-dimensional rules can be If nis much smaller thaf/, then? RL;(n, n) may be smaller

inserted or deleted such that each update taR¢&:'/“logn) than(¢ — 1) RL(n, U), and the mapping approach may outper-

memory accesses in the worst case; a lookup query takes at nfiagh our basic approach.

DRL, (n, U/) 4+ ¢ memory accesses. The space usé¥(is'*'/*). The order in which the dimensions must be considered.

VIl. VARIOUS TRADEOFFS IN CLASSIFICATION



When there is more than one dimension involved, the order in
which we consider them for building FIS trees may make a difco |
. . (s2]
ference. For example, source and destination addresses mgy
need to be considered prior to port numbers since there are like
to be only few port numbers for a particular source/destinatio@
combination, and hence the FIS trees for some dimensions may~ | |
become trivial. RS =
For the dynamic version, there are additional considerationsg
For example, the choice of the branching factor in the FIS tre@’g ]
at various levels governs the number of updates that can be piﬁ-
formed without major maintenance of the tree. Also, in ourg
approach, we can multiplex the updating of the tree with perg
forming the lookups, although this requires careful implemen- e , :
tation. Finally, one can batch updates and perform them more 0 10 20 30
efficiently than doing each individuapdate separately. Which mask length for source
combination of these techniques to use in practice depends on Fig. 4. Distribution of prefix length.
the application, the nature of datasets, etc.

backbone or21th of June,1998 over a24 hour period. The rule-
sets are derived from the netflow data by extracting the unique

We focus only on the static version of the two-dimensi¢@l sets of (source, destination) IP networks, both from the whole
problem and present a thorough study of the tradeoffs for langgeset and from a one hour subsample.
rulesets. This special case offers significant insights into howBy design our rule sets do not contain any wild-card rules.
to apply our algorithmic framework and the engineering issud¢e acknowledge that this is unrealistic and address this in a
involved. separate set of experiments where for a percentage of the rules
we replace either the source or the destination network with a
wildcard rule. In this way we decouple the evaluation of the

Hardware restrictions and protocol availability limit the numinfluence of wildcards from the generation of the rulesets.
ber of filters currently in use in IP backbone networks. HencArtificial ruleset: We also constructed an artificial ruleset. We
finding good rulesets to test packet classification algorithmsasnsider the forwarding tables from one of the routers. For each
difficult. rule in the forwarding table, we randomly pick a source and a
Real Datasets:Router vendors such as Cisco have augmentddstination network from the networks that occur in the routing
their traditional measurement capabilities to include usage basahle. This ruleset is labelexkT.
data which is needed to support traffic management and us&ygeset characteristics: Table IV summarizes some basic
based billing. Cisco Netflow [13] measures statistics about flowsatistics of the rulesets. The first columns in fdehour and
at each enabled interface. A flow is a unidirectional sequencetloé one hour subcategories show the number of rules during
packets between a given source and destination point that #ie period. The second and third columns show the number of
close in time. Flow endpoints are identified by IP addresses, apique sources and unique destinations observed withigdthe
plication port numbers, IP protocol type, type of service fieldapur tace. Since the routers have different numbers of interface
and input/output interface identifier. The set of statistics thatéards and are at different locations in the network, the number of
collected on a per flow basis includes, but is not limited to, starhique (source, destination) IP network pairs differs from rule-
time, end time, number of packets, number of bytes, bit masét to ruleset. The table reveals that #trer ruleset has more
used for IP lookup of the destination IP address, and bit ma@ource, destination) network IP addresses than the ruleset de-
used for IP lookup of the source IP address. rived from the netflow data. We make two observations.

From the point of view of this paper, the most intriguing ass The same IP networks are used in multiple ruleseach
pect is that this dataset includes not just the source and desburce IP network is used on average between 19 and 35 times
nation IP addresses but also the masks; therefore we know @&to 45 times respectively) and the destination network is used
network IP addresséaised in the lookup. In effect, if every on average between 11 and 14 times (64 to 97 times respec-
packet had been classified by a (source, destination) rule, @rely) for the 1 hour (24 hour, respectively) rulesets.
possible ruleset would be given by the set of (source, destigathe distribution of bits used in the source and destination IP
tion) IP network pairs from the netflow d&taOur rulesets are petworks is shown in Figure 4. More precisely, the plotis an im-
obtained based on this premise. age map of the two dimensional histogram of the number of bits

We extractedl4 different rulesets fron7 flow datasets that from the source and the destination networks from the ruleset
were collected at different routers within AT&T's WorldNet g,. A darker shading (log scale) indicates that more rules have

1The IP network address is derived from the IP addelss.d and the mask 1€ corresponding combination of bits in their network masks.
by setting theth most specific bits to 0, e.g:,b.c.d/24 correspondsto network As expected, the most common combinations include at least
o pa e o et st s, focsaorovched, € 855  nebwork P adess. Sometia surprisingly -
mask bitspare set t6. Flows with masks bit® are eIirr?inated from further work masks ofl9 bits are rather popular. In the one hour rule-
analysis. sets, class B to class B routes are dominant.

VIIl. EXPERIMENTAL STUDY

A. Datasets



B. Algorithms tested

all nodes
nodes at level > 1

Our framework offers different ways of constructing algo- o |
rithms for the two-dimension&Cproblem based on (1) the dif- "
ferent solutions for th&L (equivalently, one-dimension&C)
problem in one dimensions, and (2) the number of levels used
in the FIS tree. Since we are mainly interested in exploring
the memory vs. time tradeoffs from our two-dimensional frame-
work, we fix the solution for theRL problem to be via multi-
way search (this is also relevant in the dynamic case, but we
do not explore that here.) With a cacheline3g@fbytes, we use
multi-way search trees with a branching factog oThis enables S ‘ ‘ : :
us to solve the one-dimensioraC problem for all our rulesets 10 100 1000 10000
with at most6 memory accesses — at md@stnemory accesses umber of ules
for finding the correct elementary interval in a set of less thé&ig. 5. Probability distribution of number of y-elementary intervalsdach
85 = 32768 elementary intervals, and one additional memory "°dein the x-hierarchy (adjusted for log scale).
access to identify the rule. We vary the number of levels in the

A
+

ity
0.8

probability densif
0.6

0.4

0.2

FIS tree. rules. With just one level of the hierarchy, we observed that the
memory factor is less thahb for all rulesets, and at mostfor
C. Performance metrics 11 out of 16 rulesets.

Effect of elementary intervals: The memory used by our algo-

h We are interested in tw? metrics: amount of megl]od% used m is dependent on the number of elementary intervals, more
the worst case number of memory accesses needed for a pagggLifically, on the number of elementary intervals orvtiasis

cla55|f|gat|on operation. associated with the canonical sets of the nodes in the FIS tree.
Measuring the memory accessesThe number of memory ac- gjgre 5 shows the distribution of number of elementary inter-

cesses is measured in terms of accesses to cachelines [15]y A tor eacmode in the FIS tree for rulesét,. Note that the

cacheline is assumed to hav2bytes or§ integers.) There are ean number of elementary intervals per node in the FIS tree is
details in accounting for memory accesses. Say ittakesem- )y 999 (90 percentile is onlyt07) and that the mean number
ory accesses in the worst case to solveRheproblem on the ¢ ajementary intervals for the internal nodes of the FIS tree is
z-axis. For each levet of the (-level FIS tree, we compute o en |ower ap10. Indeed many internal nodes of the FIS tree
the worst case number of memory accesses needed ot thRaye no elementary interval and therefore no rules associated
axis; let this bex,, . Then the total number of memory access it them. This implies that the memory requirements are sig-
a1 +3 -y ¢as + L The last memory accesses are needeflificantly lower than our theoretical upper bounds from Section
to find the minimum size rule among theandidate rules iden- |y, Ao consequently, the data structures associated with each
tified by. our algorithm. _of the FIS nodes can be searched much more efficiently than our
Measuring the memory usage:We measure memory usage inypper bounds from Section IV indicate. This explains the gap
two ways: absolute usage of memory in Mbytes and amountfiyyeen the theoretical number of memory access vs. the actual
memory used relative to the amount of memory used to stQ{gmper of memory accesses for the ruleset. It also indicates that
the inputrules. (We assume it takes three integei2 @ytes 1o he ayerage number of lookups is better than the worst case.

store a rule.) In particular, th@emory factorn, is the ratio ffect of wildcards in the ruleset: The memory used by our

of the total amount of memory .used to that needed to store Sorithm depends on the extent to which the hierarchy of the
rules. A memory 'factor of |mpI|§>s that the data structu.res forg, tree matches the inherent structure of the ruleset. Rules that
packet classification use three times the memory that is neegﬁ n a large number of elementary intervals such as rules with
to store the rules. wildcards §’s match the entire domain of a field) may be asso-
ciated with many nodes in the FIS tree, and result in memory
wastage. This is indeed the case for a single level of hierarchy
Basic performance bounds:The results for th& rulesets are but as the number of hierarchy levels is increased, the negative
summarized in Table IV. Even rulesets with more th@hnum- influence of wildcard rules diminishes. Since none of our rule-
ber of rules can be searched with less tha(i 7, resp.) memory sets includes wildcard rules, we illustrate this point by starting
accesses using three (two, resp) levels of hierarchy; the memaith a ruleset s being our example) and randomly replacing a
factor is at mosti.1 (7, resp.). For rulesets of siZ@), 000 to percentage of the sources and destinations with wildcards. The
200, 000, the number of memory accesses is sometimes fewersults are shown in Table V. While the memory requirements
and the memory requirements are belt®(14) Mbytes using increase significantly with jugtlevels of hierarchy, the increase
two (three) levels of hierarchy, respectively. Even though tliealmost negligible for & level hierarchy. The number of mem-
rulesets are drawn from different physical locations (e.g., e@sl accesses increases frdmto 19. However, this increase
coast, west coast, mid west) and are of widely varying sizes, ikean artifact of our prototype implementation: we have fixed
performance characteristics of the algorithm does not differ sidpe number of children at eadiode to be slightly larger than
nificantly. For the artificially derived ruleset, the performance is required, for ease. If values were properly rounded and the
even better since the construction is less likely to create nesbedindary conditions were applied carefully, as it would be in

D. Experimental observations



Rule- 24 hour trace 1 hour trace

set # unique 2 levels 3 levels 2 levels 3levels
rules| src| dst MB | my | tm || letem | MB | my | tm rules|| MB | ms | tm || letemn | MB | my | tm
10% | 10® | 10® 108 102 108

Ry 109| 13| 26 655| 40| 16 436 555| 32| 21 150| 94| 42| 16 0.67| 85| 3.7| 17
Ry 0.46 6| 12 28.0| 41| 15 184|243 35| 18 67 42| 42| 14 031 39| 38| 15
Rs 115| 18| 25 85.3| 52| 16 494(63.0| 36| 18 149 103 | 4.7| 14 064 81| 35| 16
Ry 0.54 8| 13 30.1| 36| 16 186| 252| 29| 20 78 48| 41| 13 030 39| 31| 16
Rs 131 13| 29 88.8| 46| 17 570(723| 36| 22 212 13.7| 44| 16 092 116| 36| 21
Rg 0.20 3 5 93| 29| 15 0.62| 87| 26| 18 34 15| 28| 13 011 15| 27| 14
Ry 118| 16| 26| 101.2| 6.2 | 16 586|717 41| 18 135 12.8| 6.9| 16 0.72| 87| 43| 17
ART 100| 32| 32 439 27| 14 2.83| 411 24| 15 100| 39| 42| 11 0.30| 3.7| 40| 13

TABLE IV
PERFORMANCE FOR RULESETY,;..,, IS the number of elementary intervalel B is total memory used, in MBytes.

% wild- 2 levels of hierarchy 3 levels of hierarchy # levels RulesetR; ART
cards Teiem | MB | my | tm Teiem | MB | my | tm Teiem | MB | my | tm MB | my | tm
20 292K | 3.1| 6.8| 14| 150K | 1.8| 3.6| 19 1| 617M| 721 | 45| 11 || 45.7| 28| 10
10 234K | 2.7| 56| 14| 147K| 1.8| 3.6| 19 2 || 543M | 655 | 40| 16 || 439 | 2.7 | 14
5 165K | 2.1| 41| 14| 119K | 1.6| 3.0| 19 4| 3.68M | 490 | 2.7 | 23| 393 | 23| 19
0 114K | 15| 2.8| 13| 107K| 15| 2.7| 14 6 || 326M | 452 | 24| 28| 38.2| 22| 24
10 || 283M | 410 | 2.1 | 41| 370 | 21| 37
TABLE V 18 || 2.73M | 39.9| 2.0| 66 || 37.0| 21| 55

PERFORMANCE WITH WILDCARD RULES Ruleset isRg by randomly

. . . TABLE VII
replacing src and dst witft of wildcards.

PERFORMANCE AS THE NUMBER OF LEVELS IS INCREASED

#rulesin || 2 levels of hierarchy|| 3 levels of hierarchy

ruleset|| MB | m | tm || MB | ms | tm rulesetR; and synthetic rules&trRT. On the total memory size,
1093K [ 655 | 4.0 16 || 555 ] 3.23 | 21 the impact of increasing the levels of the FIS tree beyond four
273K || 176 | 4.4 15 || 155 3.73| 20 or five is minimal.

68K 41| 39 14 39| 3.74 15

17k | 11| a3 12| 1ol 386! 12 Summary: Our exploration of the various tradeoffs lets us con-

4K 03| 43 9 03| 402! 13 clude that for small rulesets (up to a few K rules), one level FIS
1K || 01| 45 8| o01|475| 10 tree suffices. The space used is a few 100KBytes and the number
TABLE VI of memory accesses is less tHan For moderate sized rulesets
PERFORMANCE WITH INCREASING RULESET SIZE (up to a fewl0K rules), two level FIS trees suffice; space used

is a few MBytes and the number of memory accessebasia

15. For very large data sets (order b¥° rules), two or three

level FIS trees suffice; space used is up@6 MBytes and the
a production quality solution, the additional memagcesses number of memory accesses belbsv Taking a very simplistic
can be eliminated. With three levels of hierarchy, the memogpproach that disregards pipeline stalls and the complications
needed to support th#s, 604 rules is still less tha@ Mbytes.  of randomaccess, one could expect that memory access speed
Scaling the number of rules: An important aspect is to under-of 8ns (SRAM) would translate into lookup times that are in
stand how the performance scales as we increase the numbeheballpark of 0@8. A memory speed dfsns, e.g., DRAMS,
rules in the ruleset. See Table VI for the performance for rulgmould translate to roughly O2 and110ns would translate to
sets of size between roughly? rules to10° rules. We derived OC3.
each ruleset by starting with a rulesét; (at the beginning) and  As a side issue, the performance of our solution is signif-
retaining roughly one quarter of it by selectiegch rule with icantly better for the artificially constructed rulesetT, than
probability 1/4. From Table VI we can see that the memoryor real data sets. This should not come as a surprise since the
factor stays betweeh9 and4.5 for two levels of hierarchy, and ART ruleset cannot capture the correlations in actual rulesets we
betweent.8 and3.2 for 3 levels of hierarchy. If the ruleset is tooobtained from various routers (as described earlier) illustrating
small, the overhead of an extra level of hierarchy can increassme pitfalls of constructing random or arbitrary rulesets.
the memory requirements as seen with rulesets of less than 4K
rules. With reasonable ruleset sizes, the memory factor does not IX. RELATED WORK

seem to depend on the number of rules, and it seems to stay morgne PCproblem has been well studied. Primarily the motiva-
or less constant. As expected, the number of memory accesgg$has been to explore if software based solutions can perform

increases as the data sets grow because the number of disfigtups at high linespe€dThere are many approaches known,
sources and destinations increases.
Effect of the number of levels: Our solution offers a memory 8Hardware based approaches have also been explored, e.g., using Content Ad-

. deoff d di h b £ | dressable Memories (CAMSs), e.g., [10], high speed caches[8] etc. Our approach
Vs. access time tradeoft depending on the number ot level§dQyi, in spirit to the software solutions, and hence we do not survey hardware

the FIS tree. Table VII shows the tradeoffs for two rulesets, flavised solutions to theC problem. However, our solutions themselves can be
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and we have already compared our results with the best knaoifvall packets are onlyt0 bytes in size. This will be quite satis-
ones in Section Ill. factory in practice.

The work closest to ours is in [11]; their basic approach can beOur entire framework is based on decreasing the query lookup
thought of using a one level FIS trees. As such, the memory tine aggressively; theoretically, this leads to the use of moder-
quirement will be high. However, the authors used sophisticat@igly large space. However, our extensive experimental study of
compression techniques to decrease the space. Here, eusdraces from various WorldNet routers shows that in practice, the
3 level FIS trees which makes a substantial difference as our 8gace usage is very reasonable, e.g., within a factdrabfthe
periments indicate. There are solutions that @$e log?~' n) space used to store the rulesets themselves.
space and (log*~"! n) memory accesses per query [3], [7]. Al- What remains to be explored is to apply the insights from our
though these are space efficient, the lookups are rather slow. ®¥@-dimensional study to engineer the framework for specific
solution is based on the result in [7] that @doglog n) mem- applications. In particular, the dynamic case and the multidi-
ory accesses, but uses moderately large space. We have alrgafysional case are of interest. A concern is the lack of large,
described how our data structure extends the work in [7].  realistic datasets for such cases.
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remarked earlier.
"This is a ball park figure that disregards pipeline stalls.



