
IX-API SDK
Reference

• • • • •

• •
May 2000 Software Release SDK 3.0
Document Revision 2.3
Part Number 6750003

This document as well as the software described in it is furnished under license and may be used or
copied only in accordance with the terms of the license. The information in this manual is furnished
for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors
or inaccuracies that may appear in this document or any software that may be provided in association
with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express permission of Intel
Corporation.

Intel Corporation might have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give any license to these patents.

Copyright © 2000 Intel Corporation. All rights reserved.

Intel and the Intel logo are registered trademarks and Internet Exchange, NetBoost, NCL, and the
NetBoost logo are trademarks of Intel Corporation in the United States and other countries.

ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.
InstallShield is a registered trademark and service mark of InstallShield Software Corporation in the
United States and/or other countries.
UNIX is a registered trademark of The Open Group in the US and other countries.
Windows NT is a registered trademark of Microsoft Corporation.

*Other third-party brands and names are the property of their respective owners.

This product includes software developed by parties other than Intel. See the back page of this
document for a list of copyrights and license agreements.
Intel Corporation
1350 Villa Street
Mountain View, CA 94041-1126
Tel: 650.567.9800
Fax: 650.567.9810
www.intel.com

Intel Confidential

Revision 2.3, May 2000

 • • •

• • • • •
Contents

About This Reference . xix
Audience xix
In This Reference xix
Other Sources of Information xx
Typographical Conventions xxi

Syntax Example xxii
Contacting Intel xxii

Web and Internet Sites xxii
Customer Support Technicians xxiii

Chapter 1 Overview . 1
About the Host System 2
About the Policy Accelerator 2

About the Application Programming Interface (API) of the SDK 2
Parts of an IX-API SDK Application 3

Packet Processing Units 4
Messages Between the Host and Policy Accelerator 5
Asynchronous Calls and Callback Functions 6

Creating an IX-API SDK Application 6
Creating the Host Module 6
Creating the Accelerator Module 7

For More Information 7

Chapter 2 System Types and Methods . 9
Overview 9

Include Files 9
Data Types 10
Byte Order Issues 10

Byte Order Classes 11
Byte Order and Intermodule Communication 12
Intel Confidential Contents iii

Revision 2.3, May 2000

• • • • •

•
Upcalls, Downcalls, and Byte Order 13
Operators and Byte Order 14

The Data Type API 15

nuint16 Class. .16
nuint16 Constructor 17
htons Method 18
ntohs Method 18
raw_ Member 19
swaps Method 19

nuint32 Class. .20
nuint32 Constructor 21
htonl Method 22
ntohl Method 22
raw_ Member 23
swapl Method 23

Chapter 3 Host API . 25
Overview 25

Include Files 25
Host API Class Organization 26
Object Pairing on the Host and Policy Accelerator 27

Dictionary Names 27
Application and ACE Management Classes 28
Message Support Classes 29
Base Class 30
Error Handling in the Host API 30
Host API Reference 31

Include Files 31
API Classes 31

AceGroup Class . .33
AceGroup Constructor 35

AceManager Class . .37
AceManager Constructor 40
getCompilerErrorMessages Method 43
getDropTarget Method 44
getPassTarget Method 44
getTag Method 45
load Method 45
releaseCompilerErrorMessages Method 47
releaseMessage Method 47
iv Contents Intel Confidential

Revision 2.3, May 2000

• • • •

CrosscallHandlerManager Class 48
CrosscallHandlerManager Constructor 50

CrosscallManager Class .52
CrosscallManager Constructor 54

Downcall Class . .56
Downcall Constructor 59
call Method 61

Message Class. .62
Message Constructor 63
getBuffer1 Method 64
getBuffer2 Method 64
getLen1 Method 64
getLen2 Method 65

MessageBlock Class. .66
MessageBlock Constructor 67

NBAppl Class .68
NBAppl Constructor 70
bind Method 72
getTag Method 74
getStackDriverName Method 76
link Method 77
unbind Method 79
unlink Method 80

NBError Class. .81
getErrorcode Method 82

NBObject Class . .83
getId Method 83
getType Method 83

TargetManager Class . .85
TargetManager Constructor 86

UpcallHandler Class . .88
UpcallHandler Constructor 91
getUpcallFunction Method 93

Chapter 4 Action Services Library . 95
Overview 95

TCP/IP Support 96
Environmental Restrictions 96
Include Files 96
Intel Confidential Contents v

Revision 2.3, May 2000

• • • • •

•
Initialization 97
Action Functions 97
Packet Moving Classes 97
String Search Classes 98

String Search Management 98
Initiating and Continuing Searches 98
Search Operating Modes 99
String Search Classes 99
For More Information 99

Message Support Classes 99
For More Information 100

Time Support Classes 100
Statistical Support Class 101
Set Management Classes 101

Declaring Sets 101
Searches on Sets 101
Set Elements 102
Search Key Format 102
Set, Search, and Element Classes 103
For More Information 103

Memory Management Classes and Functions 103
Controlling Memory Usage 104
Monitoring Memory Usage 104

Interface Management Classes 105
Base Classes 105

Memory Allocation 105
Name Space 106

The Action Services Library (ASL) API 107
Include Files 107
Classes and Functions 107

Ace Class . 110
Ace Constructor 113
drop Method 113
pass Method 114

Action Functions . 115
action_drop Function 116
action_pass Function 116
Custom Action Functions 117

Backlog Class. . 119
est Method 120
vi Contents Intel Confidential

Revision 2.3, May 2000

• • • •

names Method 120
now Method 121
size Method 122

Buffer Class . 123
append Method 126
busy Method 126
decref Method 127
headerBase Method 128
headerType Method 128
incref Method 129
interfaceNum Method 129
interfaceType Method 131
new Operator 131
next Method 132
packetPadHeadSize Method 133
packetPadTailSize Method 133
packetSize Method 133
prepend Method 134
rxTime Method 134
takable Method 135
takable_clr Method 135
takable_max Method 136
takable_min Method 136
takable_set Method 137
trim_head Method 137
trim_tail Method 138
txTime Method 138

Crosscall Class . 139
Crosscall Constructor 142
call Method 143

CrosscallHandler Class . 144
CrosscallHandler Constructor 147
direct Method 148

DowncallHandler Class . 150
DowncallHandler Constructor 153
direct Method 154

Dualobj Class. . 155
Dualobj Constructor 156
ace Method 156

Dynamic Class. . 157
delete Operator 158
new Operator 158
Intel Confidential Contents vii

Revision 2.3, May 2000

• • • • •

•
Element Class. . 159

Elt_setname Class . 160
Elt_setname Constructor 162
Elt_setname Destructor 162
cancel Method 163
delete Operator 163
expire Method 164
new Operator 165

Event Class . 166
Event Constructor 168
Event Destructor 169
cancel Method 169
curr Method 169
direct Method 170
schedule Method 170

Initialization Function . 172
init_actions Function 172

Linked Class . 174
Linked Constructor 175
Linked Destructor 175
link Method 175
next Method 176
orphan Method 176
prev Method 176
unlink Method 177

Memory Management Functions. 178
getmemstatvalues Function 178
mstats Function 179

Message Class. . 180
Message Constructor 182
Message Access Methods 183
Message Completion Methods 183

MessageBlock Class. . 184
MessageBlock Constructor 186

Name Class . 191
Name Constructor 192
find Method 192
here Method 193

Named Class . 194
Named Constructor 195
viii Contents Intel Confidential

Revision 2.3, May 2000

• • • •

Named Destructor 195
find Method 196
name Method 196

NBInterfaceProp Class . 197
NBInterfaceProp Constructor 200
GetProperty Method 200
GetPropertyList Method 201
NBFIF_GET_SET_PROP_ITEM Structure 201
NBFIF_PROP_CAP_ITEM Structure 202
NBFIF_PROP_CAPS Structure 202
NBFIF_PROP_ITEM Structure 203
SetProperty Method 204

NBLinkwatch Class . 205
NBLinkwatch Constructor 206
checkLinks Method 207

NBRmon Class . 208
NBRmon Constructor 211
NBRmon Destructor 212
Init Method 212
GetRmonCounters Method 213
GetRXTXStats Method 214
GetQueryRate Method 215
SetQueryRate Method 215

NBStringMatchReport Class 216
NBStringMatchReport Constructor 217
end Method 218
len Method 218
matches Method 219
reports Method 219
sid Method 219
start Method 220
tag Method 221

NBSearchContext Class . 222
NBSearchContext Constructor 225
ActiveStrings Method 225
SchedDelete Method 226
SchedReset Method 226
SetOpt Method 227
SetPerBufferCallback Method 228
SetPerMatchCallback Method 230
SetPerResetCallback Method 232

NBStringSearchEngine Class 233
Intel Confidential Contents ix

Revision 2.3, May 2000

• • • • •

•
NBStringSearchEngine Constructor 235
AddString Method 236
ChangeOpMode Method 239
OpMode Method 240
RemoveString Method 241
SchedDelete Method 242
SearchBuffer Method 243

Reporting Matches 244
Single- or Multiple-Buffer Searches 244

Pool Class . 245
Pool Constructor 245
Pool Destructor 246
free Method 247
take Method 247

Rate Class . 248
Rate Constructor 249
add Method 250
count Method 250
clear Method 250

Search Class . 251
hit Method 253
insert Method 253
miss Method 254
ran Method 254
toElement Method 254

Set Class . 255

Set_setname Class . 256
Set_setname Constructor 259
first Method 260
locate Method 260
next Method 261

Tagged Class . 262
free Method 263
take Method 264

Target Class . 265
Target Constructor 267
take Method 267

Time Class . 268
Time Constructor 269
curr Method 270
Access Methods 270
x Contents Intel Confidential

Revision 2.3, May 2000

• • • •

Builder Methods 271
Assignment Operators 272
Conversion Operator 272

Upcall Class . 273
Upcall Constructor 276
call Method 276

Chapter 5 ASL Extensions for TCP/IP 279
Classes and Constants in the ASL TCP/IP Extensions 279

General Checksum Support 279
IP Support 280
UDP Support 280
TCP Support 280
Network Address Translation (NAT) 281

Using the TCP/IP Classes 283
Using Header Classes 283
Using Header Classes and NAT 284
Using IP Datagram Classes 287

IP Constant Definitions 293
IP Fragmentation 293
IP Service Type 293
IP Precedence 294
IP Option Definitions 294
IP Options Field Offsets 295

TCP Constant Definitions 295
TCP Control Bits 296
TCP Options 296
TCP Session State 296
TCP Return Codes 298

ASL TCP/IP Extension API 300

Internet Class . 302
apasum Method 303
apsasum Method 303
apsum Method 304
apssum Method 304
asum Method 305
cksum Method 305
incrcksum Method 306
psum Method 306

IP4Addr Class. . 308
IP4Addr Constructor 308
bcast Method 309
Intel Confidential Contents xi

Revision 2.3, May 2000

• • • • •

•
mcast Method 309

IP4Datagram Class . 310
IP4Datagram Constructor 311
IP4Datagram Destructor 311
checkcksum Method 312
complete Method 312
fragment Method 313
fragmented Method 313
head Method 314
insert Method 314
len Method 315
nfrags Method 315

IP4DNat Class. . 316
IP4DNat Constructor 316
rewrite Method 317

IP4Fragment Class . 318
IP4Fragment Constructor 319
IP4Fragment Destructor 320
hdr Method 320
buf Method 320
complete Method 320
datalen Method 321
first Method 321
fragment Method 321
next Method 322
optcopy Method 322
payload Method 323
prev Method 323

IP4Header Class . 324
cksum Method 325
datalen Method 325
dst Method 325
hl Method 326
hlen Method 326
id Method 326
len Method 327
offset Method 327
optbase Method 327
payload Method 328
proto Method 328
psum Method 328
src Method 329
tos Method 329
xii Contents Intel Confidential

Revision 2.3, May 2000

• • • •

ttl Method 329
ver Method 330
vhl Method 330

IP4Mask Class. . 331
IP4Mask Constructor 331
bits Method 332
leftcontig Method 332

IP4NAT Base Class . 333
rewrite Method 334

IP4SDNat Class . 335
IP4SDNat Constructor 335
rewrite Method 336

IP4SNat Class. . 337
IP4SNat Constructor 337
rewrite Method 338

ReassemblyQueue Class . 339
ReassemblyQueue Constructor 340
add Method 340
clear Method 341
empty Method 341
read Method 341

TCPDNat Class. . 343
TCPDNat Constructor 343
rewrite Method 344

TCPEndpoint Class . 346
TCPEndpoint Constructor 347
TCPEndpoint Destructor 347
init Method 347
process Method 348
reset Method 348
state Method 349

TCPHeader Class . 350
ack Method 351
cksum Method 351
dport Method 351
flags Method 351
hlen Method 352
off Method 352
optbase Method 352
payload Method 353
seq Method 353
Intel Confidential Contents xiii

Revision 2.3, May 2000

• • • • •

•
sport Method 353
urp Method 354
win Method 354
window Method 354

TCPNat Base Class . 355
TCPNat Constructor 356
rewrite Method 356
ports Method 357
seqs Method 357

TCPSDNat Class . 359
TCPSDNat Constructor 360
rewrite Method 361

TCPSegInfo Class . 362
data Method 362
endseq Method 363
flags Method 363
len Method 363
next Method 363
prev Method 364
segment Method 364
startseq Method 364

TCPSeq Class . 365
TCPSeq Constructor 366
image Method 366
val Method 367
TCPSeq Operators 367

TCPSession Class . 368
TCPSession Constructor 368
TCPSession Destructor 369
process Method 369
client Method 370
server Method 370

TCPSNat Class. . 371
TCPSNat Constructor 371
rewrite Method 373

UDPDNat Class. . 374
UDPDNat Constructor 374
rewrite Method 375

UDPHeader Class . 376
cksum Method 376
dport Method 377
xiv Contents Intel Confidential

Revision 2.3, May 2000

• • • •

len Method 377
payload Method 377
sport Method 377

UDPNat Base Class . 378
UDPNat Constructor 379
rewrite Method 379
ports Method 380

UDPSDNat Class . 381
UDPSDNat Constructor 381
rewrite Method 382

UDPSNat Class. . 384
UDPSNat Constructor 384
rewrite Method 385

Chapter 6 Network Classification Language 387
Overview 387

See Also 388
NCL Rules File Structure and Elements 388

Include Files 389
Examples 389

Symbolic Constants 389
Value Formats 390

Comments 390
Names 391
Keywords 392
Operators 392

Arithmetic Operators 393
Logical and Relational Operators 393
Bit-wise Operators 394
Precedence 394

Protocol Definitions 395
Example Protocol Definition 395
Using the Built-in TCP/IP Protocol Definition 396

Intrinsic Functions 397
Defining Protocol Fields 398

Examples 399
Identifying Nested Protocols 399

Example 400
Extending Protocol Definitions 401

Adding Fields 401
Adding Predicates 401

Predicate Definitions 402
Intel Confidential Contents xv

Revision 2.3, May 2000

• • • • •

•
Example 403
Sets and Named Searches 403

Defining a Set 403
Choosing the Size Hint 404

Defining Named Searches 404
Executing Searches 405
Examples 406

Rules and Actions 406
Defining Rules 407
Passing Action Arguments 408
Example 409
Conditional Rule Execution 410

Example 410
Synchronizing NCL with Action Code 411

Generating Sets and Searches 411
Generating Field Accessors 412

Chapter 7 Command-Line Tools . 413
Tool Locations 413
cecomp Command 414
celink Command 417
getaceid Command 418
nbgcc Command 419
nbgdb Command 421

Stepping through Action Functions 422
Shutting down the Debugger 422

nbld Command 423
odxloop Command 424
pa100diag Command 425
readport Command 426
resolver Command 427

Starting and Stopping the Resolver 428
Stopping and Restarting Applications 428

Appendix A IX-API SDK Host API Error Codes 429
Alphabetical Listing 429

Appendix B IX-API SDK File Types . 439
File Types and Extensions 439

Appendix C Policy Accelerator Name Space 441
Overview 441
xvi Contents Intel Confidential

Revision 2.3, May 2000

• • • •

Object Name Syntax 442
System Names for Policy Accelerator Interfaces 444

System ACE Names 444
Policy Accelerator Names 445
Policy Accelerator Interface Names 445

Example 446

Glossary. 447

Index. 457
Intel Confidential Contents xvii

Revision 2.3, May 2000

• • • • •

•
xviii Contents Intel Confidential

Revision 2.3, May 2000

• • • •

• • • • •
About This Reference

This reference manual provides network application developers with detailed
information about the Intel® IX-API SDK software developer’s kit (SDK). It
describes the components of the SDK, its classes and methods, and their syntax
and use. Its companion document, Developing Applications Using the IX-API
SDK, describes how to plan and create applications using the SDK.

Audience

This reference is for network application developers who are creating applica-
tions for use with the Intel IX-API SDK. It assumes that you are familiar with
the following:

n C++ programming

n A development environment compatible with supported compilers
l For the Windows NT platform, Microsoft Visual Studio®
l For UNIX platforms, a compatible development environment of your

choice

n Realtime network applications

In This Reference

This reference includes the following chapters and appendices:

n Chapter 1, “Overview,” provides a general introduction to IX-API SDK
applications and the Intel system.

n Chapter 2, “System Types and Methods,” provides information on the
system-wide numeric data types and support classes that you use in both
the host and accelerator modules.
Intel Confidential About This Reference xix

Revision 2.3, May 2000

• • • • •

Other Sources of Information

•
n Chapter 3, “Host API,” provides a complete reference to the IX-API SDK
host API. It describes the classes you use to create and configure
Action/Classification Engines (ACEs), bind targets, and pass messages to
and from the Policy Accelerator. You use the host API to write the host
module for an application.

n Chapter 4, “Action Services Library,” provides a complete reference to the
ASL. It describes the C++ library classes and functions supplied with the IX-
API SDK that you use to write the action part of an ACE in the accelerator
module.

n Chapter 5, “ASL Extensions for TCP/IP,” provides a complete reference to
the ASL TCP/IP extensions, a set of class definitions you can use to perform
tasks common to TCP/IP-based network-oriented applications.

n Chapter 6, “Network Classification Language,” provides a complete refer-
ence for NCL, the language in which you write the classification part of an
ACE in the accelerator module.

n Chapter 7, “Command-Line Tools,” provides a complete reference for
executable command-line tools you use to compile, link, and debug the
parts of an IX-API SDK application.

n Appendix A, “IX-API SDK Host API Error Codes,” provides a table of all
IX-API SDK error codes in alphabetical order along with a description for
each.

n Appendix B, “IX-API SDK File Types,” provides a table of the source and
object code file types used by the IX-API SDK, as identified by their filename
extensions.

n Appendix C, “Policy Accelerator Name Space,” provides a complete refer-
ence for the naming and reference conventions that the Resolver uses to
manage relations between objects and entities on the host and on the Policy
Accelerator.

n “Glossary” provides definitions of Intel and C ++ programming terms.

Other Sources of Information

This guide is part of the Intel IX-API SDK documentation set, which also
includes:

n Developing Applications Using the IX-API SDK, which provides programmers
with conceptual descriptions and instructions on writing network policy-
enforcement applications using the IX-API SDK

n IX-API SDK Release Notes, which lists information about the latest software
release
xx About This Reference Intel Confidential

Revision 2.3, May 2000

• • • •

 Typographical Conventions
n Installing the IX-API SDK, which describes how to install both the run-time
and the development versions of the IX-API SDK

n Installing a Policy Accelerator 100 Board, which describes how to install a
Policy Accelerator PCI board into a PC

n Customizing a NIC Driver Using the ODX Protocol, which describes how to
use the optimal data exchange (ODX) protocol for PCI to customize your
standard NIC driver for communication with the Policy Accelerator
through a direct PCI bus interface

In addition, the Intel Web site provides valuable information on products,
support, and the company. See “Contacting Intel” on page xxii.

Typographical Conventions

This document uses the following typographic conventions to help you locate
and identify information:

Italic text Used for new terms, emphasis, and book titles; also identifies argu-
ments in syntax descriptions.

Bold text Identifies keywords and punctuation in syntax descriptions.

Courier font Identifies file names, folder names, and text that either appears on
the screen or that you are required to type.

NOTE: Provides extra information, tips, and hints regarding the topic.

CAUTION: Identifies important information about actions that could result in
damage to or loss of data or could cause the application to behave
in unexpected ways.

 WARNING!
Identifies critical information about actions that could result in
equipment failure or bodily injury.
Intel Confidential About This Reference xxi

Revision 2.3, May 2000

• • • • •

Contacting Intel

•
Syntax
Example

The following figure shows a sample syntax notation.

Contacting Intel

You can reach Intel’s automated support services 24 hours a day, every day at
no charge. The services contain the most up-to-date information about Intel
products. You can access installation instructions, troubleshooting information,
and general product information.

Web and
Internet Sites

You can use the internet to download software updates, troubleshooting tips,
installation notes, and more.

n General online support services are on the World Wide Web at:

http://support.intel.com

n Online support services for the Policy Accelerator 100 are on the World
Wide Web at:

http://support.intel.com/support/network/adapter/pa/pa100/

For specific types of information and services, go to the following Web and
internet sites:

n Corporate: http://www.intel.com

n Network Products: http://www.intel.com/network

n Intel IX Information: http://developer.intel.com/design/ixa/

n IX-API SDK: http://developer.intel.com/design/ixa/software/
index.htm

n Policy Accelerator: http://developer.intel.com/design/ixa/pa100/
index.htm

n ASIC: http://128.11.21.45/scripts/mardev/product/ixe100.asp

n FTP Host: download.intel.com

DWORD load (char * filename1, char * filename2)

Keywords and
required punctuation

Arguments
xxii About This Reference Intel Confidential

Revision 2.3, May 2000

• • • •

 Contacting Intel
n FTP Directory: /support/network/adapter

Customer
Support
Technicians

n United States and Canada: 1-916-377-7000 (7:00 - 17:00 M-F Pacific Time)

n Worldwide Access: Intel has technical support centers worldwide. Many of
the centers are staffed by technicians who speak the local languages. For a
list of all Intel support centers, their telephone numbers, and the times they
are open, go to:

http://support.intel.com/support/9089.htm
Intel Confidential About This Reference xxiii

Revision 2.3, May 2000

• • • • •

Contacting Intel

•
xxiv About This Reference Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 1

• • • • •
Overview

The Intel® IX-API SDK consists of both hardware and software components.
The main components are:

n Policy Accelerator boards

n IX Software Developer’s Kit (SDK)

As an application developer, you use the SDK to customize network applica-
tions to work on the Policy Accelerator. The Policy Accelerator enables network
applications to process packets at wire speed. IX-API SDK application code is
distributed between the host computer and the resident Policy Accelerator. You
develop separate but related modules using the SDK.

Host

Choose your
IDE

Policy Accelerator(s)

IX-API SDK

Run-time support Developer tools

Application
programming
interface (API)

Resource

drivers
management;

Libraries,

network software
system software,

Compilers,
linkers,

debuggers
Accelerator

API (ASL & NCL)

Host
API

Elements provided by Intel®

Key
Intel Confidential Chapter 1: Overview 1

Revision 2.3, May 2000

• • • • •

About the Application Programming Interface (API) of the SDK

•
About the Host
System

The host is a computer system in which you have installed the Policy
Accelerator board. The host system runs and controls a policy-enforcement
application through a resource manager that runs as a background process.
This resource manager, called the Resolver, starts automatically when you start
the host computer, and is always running in the run-time environment. It need
not be running in the development environment.

The host provides basic services to your application. It handles exceptions and
communicates set-up and modification information about packet handling to
the Policy Accelerator. Each host can be equipped with one or more Policy
Accelerators.

About the
Policy
Accelerator

A Policy Accelerator uses rules, which you define to implement policies, to
classify packets and to determine the corresponding actions. Packets flow
through the Policy Accelerator, which automatically applies the rules and
performs the actions.

About the Application Programming Interface (API) of the SDK

The Intel IX API includes the following, which this document describes:

n Global types and methods
Data types and converters to ensure compiler-independent data integrity
across network connections. Use these in both the host and Policy
Accelerator portions of your application. See Chapter 2, “System Types and
Methods.”

Host

Policy Accelerator(s)

Packet flow
2 Chapter 1: Overview Intel Confidential

Revision 2.3, May 2000

• • • •

 Parts of an IX-API SDK Application
n Host API
A set of C++ classes for the host portion of your application. These classes
provide the ability to load software onto, initialize, and manage the Policy
Accelerator. See Chapter 3, “Host API.”

n Action Services Library (ASL) for the Policy Accelerator
A set of C++ classes and functions for the Policy Accelerator portion of your
application. This library provides efficient implementation for common
packet-manipulation tasks. See Chapter 4, “Action Services Library.”

n ASL Extensions for TCP/IP for the Policy Accelerator
A set of class definitions that help with tasks common to TCP/IP-based
applications, such as accessing parts of packets, IP fragment reassembly and
TCP stream reconstruction. See Chapter 5, “ASL Extensions for TCP/IP.”

n Network Classification Language (NCL™) for the Policy Accelerator
A special-purpose language in which you define rules for implementing
your company’s policies. Your NCL rules classify packets and direct the
actions to be taken. See Chapter 6, “Network Classification Language.”

n Programming tools
A set of utilities for compiling, linking, and debugging the different parts of
an IX-API SDK application. See Chapter 7, “Command-Line Tools.”

Parts of an IX-API SDK Application

When you create an application for the Policy Accelerator, you use the API in
the following modules:

n The host module, a C++ application that runs on the host and does the
following:
l Uses the IX-API SDK host application programming interface (API) to

initialize and communicate with the Policy Accelerator
l Uses standard host services for other operations
You compile this portion of the application with Microsoft Visual C++ (on
NT) or a standard ANSI C++ compiler (on UNIX).

n The accelerator module, which contains two parts that run on the Policy
Accelerator:
l Classification code uses the Network Classification Language (NCL) to

classify packets. This portion of the application is compiled at run time
in the Policy Accelerator.
Intel Confidential Chapter 1: Overview 3

Revision 2.3, May 2000

• • • • •

Parts of an IX-API SDK Application

•
l Action code uses C++ with the Action Services Library (ASL) and its
extensions to act on packets. You compile this portion of the application
with a special version of the gcc compiler, nbgcc.

The following figure shows the structure of an IX-API SDK application:

Packet
Processing
Units

The basic packet-processing unit of an IX-API SDK application is an
Action/Classification Engine, or ACE. An application can have more than one
ACE. Each ACE is managed by the single host module, but is associated with
its own accelerator module files. When the host module initializes an ACE, it
downloads the associated action and classification code files to the Policy
Accelerator.

Each ACE is associated with an AceManager object on the host side, and an Ace
object on the Policy Accelerator side (defined in the action file). The combina-
tion of an ACE and an ACE manager is known as an ACE block. For more infor-
mation about managed objects, see “Object Pairing on the Host and Policy
Accelerator” on page 27.

Application

Host
module

Accelerator
module

Policy Accelerator

Host

API

ASL

NCL

Host routines

Packet flow

Accelerator
module

ACE Packet Related
Classification Actions

ASLNCL

Packet
flow
4 Chapter 1: Overview Intel Confidential

Revision 2.3, May 2000

• • • •

 Parts of an IX-API SDK Application
Packets flow into and out of an ACE according to the way you bind its targets.
All ACEs (including the system-defined ACEs that represent the Policy
Accelerator interfaces) contain two system-defined targets named pass and
drop. When you bind an ACEs pass target to an interface ACE, the applica-
tion’s action functions can pass packets to that interface. You can define addi-
tional targets as well. A target, like an ACE, has a TargetManager object in the
host module and a Target object in the accelerator module.

For more information about binding and targets, see Chapter 5, “Controlling
Packet Flow,” in Developing Applications Using the IX-API SDK.

Messages
Between the
Host and
Policy
Accelerator

The ACE and its manager can communicate by passing messages to each other.
You use upcalls and downcalls to share information in a manner similar to asyn-
chronous remote procedure calls, as shown in the following figure:

ACE

Accelerator module

Host
module

ACE block

Packet
flow

ACE
Manager

Host
module

Accelerator
module ACE

ACE
manager

Downcall

Upcall

ActionsClassification
Intel Confidential Chapter 1: Overview 5

Revision 2.3, May 2000

• • • • •

Creating an IX-API SDK Application

•
Upcalls and downcalls are also represented by objects on both the host and
Policy Accelerator sides of the application. For example, to send a message in
an upcall you use an Upcall object in the accelerator module. To receive and
process the message, you use a corresponding UpcallHandler object on the
host.

You define ACE and ACE manager subclasses to contain references to these
objects, as well as the methods that will create, send, and process messages as
needed by your application.

Because messages travel between the Policy Accelerator and the host computer,
which might use different techniques for representing multibyte information,
you must package a message to preserve the byte order, and unpack it on the
other side. For more information, see “Byte Order Issues” on page 10.

For more information about message passing, see Chapter 8, “Communication
Within an Application,” in Developing Applications Using the IX-API SDK.

Asynchronous
Calls and
Callback
Functions

Message passing operations, and certain other operations such as searching for
strings in packets, are executed partly on the host and partly on the Policy
Accelerator. These operations are asynchronous—that is, processing continues
in the foreground while a separate process or thread executes the operation in
the background. You can specify callback functions when you initiate these oper-
ations. The callback function that you specify is executed when the operation is
complete.

Creating an IX-API SDK Application

The following sections show the basic steps for building an IX-API SDK appli-
cation, starting with the order in which you create objects on the host side. For
a more complete, step-by-step example, see Chapter 2, “Tutorial: Creating a
Simple Application,” in Developing Applications Using the IX-API SDK.

Creating the
Host Module

In the host module file namedYourAppName.cpp:

1. Define a subclass of NBAppl (the main class for your IX-API SDK applica-
tion). When constructing this subclass, you can have it initialize other
objects such as ACE managers.

2. Define at least one subclass of an AceManager (the object on the host that
communicates with the ACE on the Policy Accelerator). This subclass
should contain state variables and methods needed to process ACE infor-
mation on the host side; for example, to receive messages that the acceler-
ator module side of the ACE sends to the host.
6 Chapter 1: Overview Intel Confidential

Revision 2.3, May 2000

• • • •

 For More Information
3. Define a subclass of an AceGroup for each group of ACE managers. You can
group ACE managers by function or by their corresponding Policy
Accelerator board.

4. Use the load method of the AceManager class to download the ACE’s accel-
erator module files into the Policy Accelerator.

5. Use the bind method of the NBAppl class to define the packet flow through
the application’s ACEs.

Creating the
Accelerator
Module

The accelerator module consists of two files:

1. In YourAppName.ncl rules file:

a. Define the packet classification rules.
These rules describe what to look for in packets and specify what actions
to perform on packets in the Policy Accelerator.

2. In YourAppName.cpp actions file:

a. Define a subclass of the Ace class that contains the state variables and
methods needed to process packets in your application. The Ace
constructor’s arguments identify the host-side AceManager object with
which it corresponds.

b. Write the intialization function for the ACE, which creates the Policy
Accelerator side of the ACE in response to the download of that ACE’s
code files.

c. Write action code to implement the actions specified by the rules. The
action functions are the entry points to the ACE’s methods or any other
utility functions you provide.

For More Information

This overview provides only a simple introduction to the IX-API SDK. For more
detailed information, see Developing Applications Using the IX-API SDK.
Intel Confidential Chapter 1: Overview 7

Revision 2.3, May 2000

• • • • •

For More Information

•
8 Chapter 1: Overview Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 2

• • • • •
System Types and Methods

This chapter describes the data types, classes, and methods that both the host
and accelerator modules use.

This chapter contains the following sections:

n Overview

n Data Types

n Byte Order Issues

n Byte Order Classes

n Byte Order and Intermodule Communication

n The Data Type API

Overview

The IX-API SDK defines numeric data types and classes that you use in both the
host and accelerator modules. Using the SDK data types ensures that numeric
variables are of the precise type needed despite possible differences in how
compilers handle standard data types.

The byte-order classes and conversion methods provide a mechanism for
dealing with possible differences in how multibyte values are handled among
the various processors that touch the data.

Include Files To use these classes and data types, include the following header file in all of
your code files, in both the host module and accelerator module:

#include <NBtypes.h>
Intel Confidential Chapter 2: System Types and Methods 9

Revision 2.3, May 2000

• • • • •

Data Types

•
Data Types

The C programming language does not guarantee any particular width for its
basic data types. However, network programming requires that you use quan-
tities of specific known lengths. The coding sequences required to guarantee
the precise width of variables might differ among compilers, and different
compilers might use signed or unsigned variants of basic numeric types.

The SDK provides unsigned and fixed-width numeric data types to ensure
compiler-independent data integrity.

n The following type definitions are for specifically unsigned variants of the
standard basic C types:

typedef ... u_char;
typedef ... u_short;
typedef ... u_int;
typedef ... u_long;

n The following type definitions are for fixed-width integers:

typedef ... int8;
typedef ... int16;
typedef ... int32;
typedef ... int64;
typedef ... uint8;
typedef ... uint16;
typedef ... uint32;
typedef ... uint64;

n The NT-specific type DWORD is defined by the Policy Accelerator system as
uint32.

n The NT-specific type PCHAR is defined by the Policy Accelerator system as
the standard C type char *.

Byte Order Issues

There are two ways to handle storage of data items larger than one byte: with
the least significant byte first, or with the most significant byte first. Compilers
identify these styles as little-endian and big-endian. Most network data is orga-
nized most-significant byte first (big-endian), so this style is called network byte
order. The Policy Accelerator generally uses network byte order.

Different platforms use different byte orders. Big-endian processors, in which
words are stored with the most significant byte at the lowest address, include
IBM 370, SPARC, MIPS and ARM. Little-endian processors include x86 and
10 Chapter 2: System Types and Methods Intel Confidential

Revision 2.3, May 2000

• • • •

 Byte Order Issues
Pentium. In the context of IX-API SDK application programming, the byte
order used by the host, or source of data, is called host byte order, regardless of
whether it is the same as or different from network byte order.

When data is passed over a network, a difference in how the processors handle
the byte order can lead to false interpretation of the data. For example, suppose
a typical IP address of 10.0.2.1 is stored in the network packet as four bytes:
0x0A, 0x00, 0x02 and 0x01. When observed by a RISC processor as a four-byte
integer, the hex value is 0x0A000201. However, when observed by a Pentium
processor, the value is 0x0102000A—not what was intended.

Similarly, if a packet size of 1024 is stored in a network stream, it appears as the
bytes 0x04, 0x00. An Intel CPU would observe this (incorrectly) as 0x0004.

Byte Order
Classes

You are responsible for ensuring that the data you pass between the host and
accelerator modules, as well as data that you receive from, process, and return
to the network, is in a known byte order.

0A 00 02 01 0x0A000201 most significant byte first

0A 00 02 01 0x02010A00 least significant byte first

00 04 00 00 0x00000004 least significant byte first
Intel Confidential Chapter 2: System Types and Methods 11

Revision 2.3, May 2000

• • • • •

Byte Order Issues

•
To ensure that data is transmitted accurately regardless of byte order, the SDK
includes two classes that explicitly store 16-bit and 32-bit network-ordered
data.

You can use these classes as if they were additional data types.

The byte-order classes represent data that is stored in network byte order, or
that is in a CPU register after having been loaded from such a storage location
without applying conditional byte swapping primitives.

The byte-order classes contain methods that convert values between host-
ordered representation and network-ordered representation. The classes have
four data transformation methods, with names that are familiar to networking
programmers:

uint32 ntohl (nuint32 n); // net to host (32 bit)
uint16 ntohs (nuint16 n); // net to host (16 bit)
nuint32 htonl (uint32 h); // host to net (32 bit)
nuint16 htons (uint16 h); // host to net (16 bit)

The classes also have the following methods for explicitly switching the byte
order of 16-bit or 32-bit values:

uint32 swapl (uint32 n);
uint16 swaps (uint16 n);

All six of these methods are real functions that have macro equivalents you can
use when the result must be a compile-time constant:

#define NTOHL (x)...
#define NTOHS (x)...
#define HTONL (x)...
#define NTOHS (x)...
#define SWAPL (x)...
#define SWAPS (x)...

Byte Order and
Intermodule
Communica-
tion

In a IX-API SDK application, the Policy Accelerator uses network byte order,
while the host might or might not do so. The host and accelerator modules
might disagree on the byte order issue, both with each other and with the
network.

Class Description

nuint16 Class Accesses 16-bit data that is stored in network byte order.

nuint32 Class Accesses 32-bit data that is stored in network byte order.
12 Chapter 2: System Types and Methods Intel Confidential

Revision 2.3, May 2000

• • • •

 Byte Order Issues
NOTE: In the context of byte order, host means the sender of the data, and
network means the transport mechanism. The host module of your IX-
API SDK application might or might not be the sender of the data.

In communication between the host module and the accelerator module
(upcalls and downcalls), as well as when interpreting network protocol fields,
you must take into account of the possibility of different byte orders.

Upcalls, Downcalls, and Byte Order

To pass data between the host and accelerator modules you encapsulate it in a
message and send the message in a downcall or upcall. To maintain the integ-
rity of the data despite possible differences in byte order, use the byte-order
operators to marshal the arguments that carry the data when you create the
message.

To marshal arguments, you serialize and convert them to ensure that they are
in a standard byte order before passing them to the message constructors.

In the following example a method creates a message and sends it in an upcall,
first marshalling the arguments using the conversion function htonl:

void NBBasicAce::peekPacketUpcall (Buffer *buf) {
buf = buf; /* prevent "buf not used" compiler warning */
packetCounter++;
if ((packetCounter % 100) == 0) {

msg = htonl (packetCounter);
MessageBlock b ((char *)&msg, sizeof (msg));
Message m (b);
peekPacketUpcallHandle.call (&m);

}
}

The following upcall handler callback converts the arguments back to host
order, using the conversion function ntohl:

void NBBasicAce::peekPacketUpcall (Message* m) {
NB_ASSERT (m->getLen1 () == sizeof (nuint32));
printf ("NoOfPackets: %05d\n",

ntohl (* (nuint32 *) m->getBuffer1 ()));
releaseMessage (m);

}

For more information on passing and receiving messages, see Chapter 8,
“Communication Within an Application,” in Developing Applications Using the
IX-API SDK.
Intel Confidential Chapter 2: System Types and Methods 13

Revision 2.3, May 2000

• • • • •

Byte Order Issues

•
Operators and
Byte Order

In most cases, numeric and logical operators infer significance about bytes
within words of their operands. You must convert the two network-ordered
operands of such an operator to host order before applying the operation, and
convert the result from host order back to network order.

In some cases, you can apply operators between two nuint16 expressions or
two nuint32 expressions without converting to host order. This is true for oper-
ations where byte order is not important, such as determining equality or
inequality.

The following table lists operations that you can apply without converting the
operands to host order, or the result back to network order.

Operator
type

Byte-order
independent
operations

Syntax

Unary inversion nuint16 operator ~ () const;
nuint32 operator ~ () const;

not bool operator ! () const;

Comparison equality bool operator == (nuint16 y) const;
bool operator == (nuint32 y) const;

inequality bool operator != (nuint16 y) const;
bool operator != (nuint32 y) const;

Binary AND nuint16 operator & (nuint16 y) const;
nuint32 operator & (nuint32 y) const;

OR nuint16 operator ^ (nuint16 y) const;
nuint32 operator ^ (nuint32 y) const;

XOR nuint16 operator | (nuint16 y) const;
nuint32 operator | (nuint32 y) const;

Assignment AND nuint16 & operator &= (nuint16 y);
nuint32 & operator &= (nuint32 y);

OR nuint16 & operator ^= (nuint16 y);
nuint32 & operator ^= (nuint32 y);

XOR nuint16 & operator |= (nuint16 y);
nuint32 & operator |= (nuint32 y);
14 Chapter 2: System Types and Methods Intel Confidential

Revision 2.3, May 2000

• • • •

 The Data Type API
The Data Type API

This section provides a detailed description of the data type classes. Within
each class, the constructor and destructor for that class are listed first, followed
by the remaining methods in alphabetical order.

The Data Type API contains the following classes:

Class Description

nuint16 Class
(page 16)

Access 16-bit data that is stored in network byte order.

nuint32 Class
(page 20)

Access 32-bit data that is stored in network byte order.
Intel Confidential Chapter 2: System Types and Methods 15

Revision 2.3, May 2000

• • • • •

nuint16 Class

•
nuint16 Class

Use the nuint16 class to access 16-bit data that is stored in network byte order.
To provide type-checked access to the network data, cast pointers to 16-bit
network data into pointers to nuint16 objects.

The nuint16 class contains the following methods:

The nunint16 class is not derived from any other class.

Examples All of the following examples result in the value with bytes 08 00.

const nuint16 ether_type_ip (0x0800); /* implicit conversion */

const nuint16 my_type (ether_type_ip); /* copy constructor */

nuint16 ether_type;
ether_type = htons (0x0800); /* explicit conversion */
printf ("ether type is %04X\n", ntohs (ether_type));

void
use_type (uint16 type) /* type really in network order */
{
nuint16 my_type (type, true); /* init without swapping */
printf ("my type is %04X\n", ntohl(type));
}

Method Description

nuint16 Constructor Initializes and constructs nuint16 objects.

htons Method Converts a value from a host-ordered representation to a net-
work-ordered representation, returning an object of the
nuint16 class.

ntohs Method Converts a value from a network-ordered representation (in an
nuint16 object) into a host-ordered representation, returning
a value of type uint16.

raw_ Member An unsigned 16-bit integer that contains the data being held by
the nuint16, stored in network byte order.

swaps Method Switches the byte order of a uint16 value.
16 Chapter 2: System Types and Methods Intel Confidential

Revision 2.3, May 2000

• • • •

 nuint16 Class
nuint16 Constructor

Initializes and constructs nuint16 objects.

nuint16();

nuint16 (const nuint16 &dup);

nuint16 (uint16 val);

nuint16 (uint16 image,
bool dummy);

Returns A reference to the newly created object.

Description The class has constructors that allow you to create objects with or without
initial values.

Argument Description

dup Reference to existing object to duplicate.

val 16-bit value to store after swapping (if appropriate) to network order.

image 16-bit image in network order to store without swapping.

dummy Distinguishes between the val and image versions of the constructor.
Pass either 0 or 1. The presence of this argument is significant; its
value is not.

To do this: Use this form:

Construct an uninitialized nuint16 object No arguments

Copy another nuint16 object dup argument

Specify a standard 16-bit value as the initial value, swapping
the byte order if necessary.

val argument

Initialize with a standard 16-bit value that you know to be in net-
work byte order

image and dummy
arguments
Intel Confidential Chapter 2: System Types and Methods 17

Revision 2.3, May 2000

• • • • •

nuint16 Class

•
htons Method

Converts a value from a host-ordered representation to a network-ordered
representation, returning an object of the nuint16 class.

nuint16 htons(uint16 val);

Returns An object of the nuint16 class.

NOTE: In the context of byte order, host means the sender of the data, and
network means the transport mechanism. The host module of your IX-
API SDK application might or might not be the sender of the data.

ntohs Method

Converts a value from a network-ordered representation (in an nuint16 object)
into a host-ordered representation, returning a value of type uint16.

uint16 ntohs (nuint16 val);

Returns A value of type uint16.

NOTE: In the context of byte order, host means the sender of the data, and
network means the transport mechanism. The host module of your IX-
API SDK application might or might not be the sender of the data.

Argument Description

val A value to be converted.

Argument Description

val A value to be converted.
18 Chapter 2: System Types and Methods Intel Confidential

Revision 2.3, May 2000

• • • •

 nuint16 Class
raw_ Member

Contains the data held by the nuint16 object.

uint16 raw_;

Description This data field is an unsigned 16-bit integer that contains the data being held by
the nuint16, stored in network byte order.

swaps Method

Switches the bytes of a value of type uint16, returning a value of type uint16
with the opposite byte order.

uint16 swaps (uint16 val);

Returns A value of type uint16.

Argument Description

val A value to be swapped.
Intel Confidential Chapter 2: System Types and Methods 19

Revision 2.3, May 2000

• • • • •

nuint32 Class

•
nuint32 Class

Use the nuint32 class to access 32-bit data that is stored in network byte order.
To provide type-checked access to the network data, cast pointers to 32-bit
network data into pointers to nuint32 objects.

The nuint32 class contains the following methods:

The nuint32 class is not derived from any other class.

Examples All of the following examples result in the value with bytes 0A 00 02 41.

const nuint32 my_ip_addr (0x0A000241); /* implicit conversion */
const nuint32 an_addr (my_ip_addr); /* copy constructor */
nuint32 some_addr;
some_addr = htonl (0x0A000241); /* explicit conversion */

void use_addr (uint32 addr) /* addr really in network order */
{

union {
nuint32 addr;
unsigned char oct[4];
} u;
u.addr = nuint32 (addr, true); /* init without swapping */
printf ("ip addr is 0x%08X (%d.%d.%d.%d)\n",
ntohl (u.addr),
u.oct[0], u.oct[1], u.oct[2], u.oct[3]);

}

Method Description

nuint32 Constructor Initializes and constructs nuint32 objects.

htonl Method Converts a value from a host-ordered representation to a net-
work-ordered representation, returning an object of the
nuint32 class.

ntohl Method Converts a value from a network-ordered representation (in an
nuint32 object) into a host-ordered representation, returning
a value of type uint32.

raw_ Member An unsigned 32-bit integer that contains the data being held by
the nuint32, stored in network byte order.

swapl Method Switches the byte order of a uint32 value.
20 Chapter 2: System Types and Methods Intel Confidential

Revision 2.3, May 2000

• • • •

 nuint32 Class
nuint32 Constructor

Initializes and constructs nuint32 objects.

nuint32 ();

nuint32 (const nuint32 &dup);

nuint32 (uint16 ext);

nuint32 (uint32 val);

nuint32 (uint32 image,
bool dummy);

Returns A reference to the newly created object.

Description The class has constructors that allow you to create objects with or without
initial values.

Argument Description

dup Reference to existing object to duplicate.

ext 16-bit network data to convert to 32-bit network data.

val 32-bit value to store after swapping (if appropriate) to network order.

image 32-bit image in network order to store, without swapping.

dummy Distinguishes between the val and image versions of the construc-
tor. Pass either 0 or 1. The presence of this argument is significant;
its value is not.

To do this: Use this form:

Construct an uninitialized nuint32 object No arguments

Copy another nuint32 object dup argument

Specify a standard 32-bit value as the initial value, swapping
the byte order if necessary.

val argument

Initialize with a standard 32-bit value that you know to be in net-
work byte order

image and dummy
arguments
Intel Confidential Chapter 2: System Types and Methods 21

Revision 2.3, May 2000

• • • • •

nuint32 Class

•
Example nuint16 fred (1024);
/* fred is 1024, stored as 0x04 0x00 */

nuint32 dave (fred);
/* dave is also 1024, stored as 0x00 0x00 0x04 0x00 */

htonl Method

Converts a value from a host-ordered representation to a network-ordered
representation, returning an object of the nuint32 class.

nuint32 htonl (uint32 val);

Returns An object of the nuint32 class.

NOTE: In the context of byte order, host means the sender of the data, and
network means the transport mechanism. The host module of your IX-
API SDK application might or might not be the sender of the data.

ntohl Method

Converts a value from a network-ordered representation (in an nuint32 object)
into a host-ordered representation, returning a value of type uint32.

uint32 ntohl (nuint32 val);

Returns A value of type uint32.

Argument Description

val A value to be converted.

Argument Description

val A value to be converted.
22 Chapter 2: System Types and Methods Intel Confidential

Revision 2.3, May 2000

• • • •

 nuint32 Class
NOTE: In the context of byte order, host means the sender of the data, and
network means the transport mechanism. The host module of your IX-
API SDK application might or might not be the sender of the data.

raw_ Member

Contains the data held by the nuint32 object.

uint32 raw_;

Description This data field is an unsigned 32-bit integer that contains the data being held by
the nuint32, stored in network byte order.

swapl Method

Switches the bytes of a value of type uint32, returning a value of type uint32
with the opposite byte order.

uint32 swapl (uint32 val);

Returns A value of type uint32.

Argument Description

val A value to be swapped.
Intel Confidential Chapter 2: System Types and Methods 23

Revision 2.3, May 2000

• • • • •

nuint32 Class

•
24 Chapter 2: System Types and Methods Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 3

• • • • •
Host API

Overview

The host part of the application programming interface (API) is a set of C++
classes you use to create and configure Action/Classification Engines (ACEs),
bind targets, and pass messages between the Policy Accelerator board and the
host. Use this API to develop your host module, which is the part of your appli-
cation that runs on the host.

The first part of this chapter introduces the classes by functional area and
explains their relationship to classes in the Action Services Library (ASL):

n Host API Class Organization (page 26)

n Object Pairing on the Host and Policy Accelerator (page 27)

n Application and ACE Management Classes (page 28)

n Message Support Classes (page 29)

n Base Class (page 30)

n Error Handling in the Host API (page 30)

The second part of this chapter describes the classes and their methods in detail,
in alphabetical order:

n Host API Reference (page 31)

Include Files To use the host API classes, include the following header file in your code:

#include "nbapi\nbappl.h"
Intel Confidential Chapter 3: Host API 25

Revision 2.3, May 2000

• • • • •

Host API Class Organization

•
Host API Class Organization

The host API classes fall into the following functional categories:

The following figure shows the inheritance tree for the host API classes.

Category Classes

Application and ACE Management
Classes

n NBAppl Class

n AceGroup Class

n AceManager Class

n TargetManager Class

Message Support Classes n CrosscallManager Class

n CrosscallHandlerManager Class

n Downcall Class

n Message Class

n MessageBlock Class

n UpcallHandler Class

Base Class n NBObject Class

NBAppl

NBObject

AceGroup

AceManager

CrosscallManager

Downcall

TargetManager

UpcallHandler

Message MessageBlock

Subclasses

Base classes

CrosscallHandlerManager
26 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 Object Pairing on the Host and Policy Accelerator
Object Pairing on the Host and Policy Accelerator

Many logical entities in an IX application must use data resident in both the
host and the Policy Accelerator. These are represented by dual objects. Each dual
object resident in the Policy Accelerator is paired with a corresponding object
in the host.

The following manager classes on the host are paired with managed object
classes on the Policy Accelerator. For these pairs, the host object initializes and
manages the structure, keeping track of links and control information:

In addition, the following message passing classes are paired. In these cases,
one side of the pair passes the message, and the other receives the message and
directs it to a handler function:

For more information on the Policy Accelerator classes, see Chapter 4, “Action
Services Library.”

Dictionary
Names

The Resolver (a process that always runs in the background) keeps an object
name dictionary to track the host and Policy Accelerator portions of IX applica-
tions. To associate paired objects with each other, assign them the same dictio-
nary name. You specify the dictionary name in the name or argName argument
when constructing the object. This name can be any string of valid characters.
Valid characters are:

A-Z a-z _ [] | - () +

Host Class Policy Accelerator Class

AceManager Class Ace Class

CrosscallManager Class Crosscall Class

CrosscallHandlerManager Class CrosscallHandler Class

TargetManager Class Target Class

Host Class Policy Accelerator Class

Downcall Class DowncallHandler Class

UpcallHandler Class Upcall Class
Intel Confidential Chapter 3: Host API 27

Revision 2.3, May 2000

• • • • •

Application and ACE Management Classes

•
The shared dictionary name of a pair of objects must be unique within the
containing entity:

n The name of an ACE group must be unique within the application.

n The shared name of an ACE and ACE manager object must be unique
within the ACE group.

n The shared names of upcall, downcall, crosscall, and target objects, and of
their handler and manager objects, must be unique within the ACE.

You use the dictionary names of application and ACE objects when binding
targets (see “bind Method” on page 72) and when linking crosscalls with their
handlers (see “link Method” on page 77). Your application does not otherwise
refer to an object using the dictionary name. It generally uses the object handle
that you assign to the object on creation.

For more information on naming, see Appendix C, “Policy Accelerator Name
Space.”

Application and ACE Management Classes

An Action/Classification Engine (ACE), contains a set of packet classification
criteria and associated actions, upcall and downcall entry points, and targets.
Applications use ACEs to process packets. ACEs are local to an application and
are not shared among applications.

The following classes represent an application and ACEs on the host side:

Class Description

NBAppl Class The main object of a policy enforcement application.
Provides services to manage ACE setup. Every applica-
tion must contain exactly one application object.

AceGroup Class Containers that hold one or more ACE managers on the
host. Every application must contain at least one ACE
group object.

AceManager Class Manages and controls an ACE. Every application must
contain at least one ACE manager object.

TargetManager Class Manages targets in the Policy Accelerator.
28 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 Message Support Classes
Message Support Classes

Frequently, an application needs to pass configuration changes from the host to
a Policy Accelerator or pass summary information back. The host API provides
access to the asynchronous messaging system, in the form of Downcall and
UpcallHandler objects, and the means to coordinate crosscalls between ACEs,
in the form of crosscall manager objects. It also provides the Message and
MessageBlock classes for constructing messages for downcalls from the host to
the Policy Accelerator.

Because the messaging system is asynchronous, you supply a callback function
in each message handler object, which is executed when the message is
received.

The following host classes support message passing between the host and
Policy Accelerators, or between ACEs:

Class Description

CrosscallManager Class Manages crosscall objects, which ACEs on the
Policy Accelerator use to send calls to each
other.

CrosscallHandlerManager Class Manages crosscall handlers, which ACEs on
the Policy Accelerator use to receive calls from
each other.

Downcall Class Sends messages from the host module to the
accelerator module.

Message Class Encapsulates data to send from the host mod-
ule to the Policy Accelerator module using
downcalls.

MessageBlock Class Encapsulates data buffers for messages.

UpcallHandler Class Receives messages sent in upcalls from the
accelerator module to the host module.
Intel Confidential Chapter 3: Host API 29

Revision 2.3, May 2000

• • • • •

Base Class

•
Base Class

All of the classes except Message and MessageBlock are derived from a base
class, which provides basic functionality. You do not normally use this class
directly or create your own subclasses of it.

Error Handling in the Host API

When host API functions are successful, they either return a reference to a
newly created object (in the case of constructors), or return the constant value
NBSuccess. On failure:

n Constructors throw an exception of type NBError.

n Other functions return NULL or an error code of type NBError.

The predefined error codes, defined in NBError.h, are listed and described in
Appendix A, “IX-API SDK Host API Error Codes.”

Class Description

NBObject Class Most of the classes in the host API are derived from this base class,
and inherit basic methods.
30 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 Host API Reference
Host API Reference

This section lists and describes all of the host API classes in alphabetical order.
Within each class, the constructor for that class is listed first, followed by the
remaining methods in alphabetical order.

Include Files To use these classes, include the following header file in your code:

#include "nbapi\nbappl.h"

API Classes The host API contains the following classes:

Class Description

AceGroup Class (page 33) Holds one or more ACE managers on the host.
Every application must contain at least one ACE
group object.

AceManager Class (page 37) Manages and controls an ACE. Every application
must contain at least one ACE manager object.

CrosscallHandlerManager
Class (page 48)

Manages crosscall handlers that ACEs on the Policy
Accelerator use to receive calls from one another.

CrosscallManager Class
(page 52)

Manages crosscall objects that ACEs on the Policy
Accelerator use to send calls to one another.

Downcall Class (page 56) Sends messages to the accelerator module from the
host module.

Message Class (page 62) Encapsulates data to pass from the host module to
the Policy Accelerator module using downcalls.

MessageBlock Class
(page 66)

Encapsulates data in buffers to be used in mes-
sages.

NBAppl Class (page 68) Provides services to manage the setup of ACEs.
Every application must contain exactly one applica-
tion object. This is the main object of a policy
enforcement application.

NBError Class (page 81) Provides access to error codes from object con-
structors in the host module.

NBObject Class (page 83) Provides basic methods. Most of the classes in the
host API are derived from this base class and inherit
basic methods.
Intel Confidential Chapter 3: Host API 31

Revision 2.3, May 2000

• • • • •

Host API Reference

•
TargetManager Class
(page 85)

Manages targets in the Policy Accelerator.

UpcallHandler Class
(page 88)

Receives messages sent in upcalls from the accel-
erator module to the host module.

Class Description
32 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 AceGroup Class
AceGroup Class

Use the AceGroup class to associate ACEs with one another. ACE groups are
containers that hold one or more ACE managers. Each ACE manager must be
associated with an ACE group. Every application must have at least one ACE
group object. You normally create a subclass of this base class for your applica-
tion.

AceManager objects on the host are paired with Ace objects on the Policy
Accelerator. The pair is known as an ACE block. The following figure shows
how an ACE group can define a collection of ACE blocks by grouping the ACE
managers.

You can use ACE groups to associate ACE managers (and thereby ACE blocks)
according to functionality. That is, you can spread the implementation of a
particular function over several ACEs, and use an ACE group to make them a
functional entity. You can also group ACEs for resource management; for
example, to keep track of which ACEs reside on which Policy Accelerators.

Host

AceGroup

Ace

AceManagerAceManager

Ace

ACE
block

Accelerator
module

module
Intel Confidential Chapter 3: Host API 33

Revision 2.3, May 2000

• • • • •

AceGroup Class

•
The AceGroup class contains the following method:

Class
Derivation

The AceGroup class is derived from the NBObject class, inheriting all its public
methods.

Example This example is from the basicApp demo application. The subclass
NBBasicAceGroup contains the handle for the ACE (AceManager) contained by
this group.

class NBBasicAceGroup: public AceGroup {
public:

NBBasicAceGroup(NBAppl* appl, NBFactory* nbFactory,
 char* name);

~NBBasicAceGroup();
NBBasicAce* basicAce;

};

The constructor instantiates the ACE manager contained by the group, and the
destructor deletes the ACE manager object. Anything created with the
constructor must be explicitly deleted with the destructor as shown here.

NBBasicAceGroup::NBBasicAceGroup(NBAppl* appl,
NBFactory* nbFactory,
char* name):

AceGroup(appl, NULL, name) {
// Create the only ACE needed for this group

try {
basicAce = new NBBasicAce(appl, this, "NBBasicAce");
}
catch (NBError E) {
throw NBError(NB_ERROR(NBERROR_TESTAPP_ERRACE));
}

}

NBBasicAceGroup::~NBBasicAceGroup()
{

delete basicAce;
}

See Also n AceManager Class

n “The Object Framework” on page 49 of Developing Applications Using the IX-
API SDK

Method Description

AceGroup Constructor Instantiates an ACE group.
34 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 AceGroup Class
AceGroup Constructor

Creates an AceGroup object.

AceGroup (NBAppl* argAppl,
NBFactory* argNBFactory,
char * argName) throws NBError;

AceGroup (NBAppl* argAppl,
NBFactory* argNBFactory,
char * argName
NBStringList* list = NULL) throws NBError;

Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with one of the following error codes,
which you can access using the NBError method GetErrorcode.

Argument Description

argAppl The object name of the application object for this application.

argFactory Not used. Pass the value NULL.

argName The dictionary name of this ACE group. Must be unique within the
application.

list Not used. Pass the value NULL.

Return Codes Description

NBERROR_NBOBJ_NULLNAME The name of the ACE group (argName) is NULL.

NBERROR_NBOBJ_NAMETOOLONG The name of the ACE group (argName) is too long. The maxi-
mum length of the object name is OBJNAME_MAXLEN, which is
defined in NBapi\nbparam.h.

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create the ACE group object.
Intel Confidential Chapter 3: Host API 35

Revision 2.3, May 2000

• • • • •

AceGroup Class

•
Description ACE groups are containers that hold one or more ACE managers. ACE
managers are objects on the host that communicate with ACEs on the Policy
Accelerator. When you create an ACE manager, you specify the ACE group
object to which it belongs.

NBERROR_NBOBJ_NULLAPPL The name of the application (argAppl) is NULL.

NBERROR_NBOBJ_CANNOTREGISTER Cannot register this object with the Resolver for one of the fol-
lowing reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the Policy
Accelerator.

n The name has already been registered.

Return Codes Description
36 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 AceManager Class
AceManager Class

Use this class to create ACE managers, which represent the host side of an ACE
block. Each ACE manager object has a corresponding ACE object on the Policy
Accelerator. The paired objects are associated by having the same dictionary
name. Every ACE manager must be part of an ACE group, and every applica-
tion must have at least one ACE block.

The load method of the ACE manager initializes the ACE on the Policy
Accelerator, identifying and loading the NCL rules and action code files for the
accelerator module.

The ACE manager can get and set the state of an ACE. The state of an ACE
includes:

n Its dictionary name

n The ACE group object to which it belongs

n Its bindings (pass and drop targets)

n Its links

You also use ACE managers to communicate with ACEs on the Policy
Accelerator using upcalls and downcalls.

Host

AceGroup

Ace

AceManagerAceManager

Ace

ACE
block

Accelerator
module

module
Intel Confidential Chapter 3: Host API 37

Revision 2.3, May 2000

• • • • •

AceManager Class

•
You create subclasses of this base class in which to define the methods that are
used by your application. Typically, these are upcall handler callbacks and
methods to send downcalls. For more information on upcall handlers and
downcalls see “UpcallHandler Class” on page 88 and “Downcall Class” on
page 56.

The AceManager class contains the following methods:

Class
Derivation

The AceManager class is derived from the NBObject class, inheriting all its
public methods.

Example Use the AceManager class as a base to derive a subclass that represents the ACE
or ACEs used by your application. This example is from the basicApp demo
application.

Define the subclass, which in this case contains a handle for an upcall handler
object and its callback method:

class NBBasicAce: public AceManager {
public:

NBBasicAce(NBAppl* appl, AceGroup* acegroup, char* name);
~NBBasicAce();

void peekPacketUpcall(Message* m);

Method Description

AceManager Constructor Instantiates the class.

getCompilerErrorMessages
Method

Retrieves error messages generated by the NCL
compiler when loading an ACE.

getDropTarget Method Identifies the drop target manager that is associ-
ated with the ACE manager.

getPassTarget Method Identifies the pass target manager that is associ-
ated with the ACE manager.

getTag Method Identifies the tag associated with the ACE.

load Method Loads the NCL rules file containing the rules and
the compiled action file containing the actions for
the ACE manager.

releaseCompilerErrorMes-
sages Method

Releases memory allocated by the getCompil-
erErrorMessages method.

releaseMessage Method Release memory allocated by the system for a
message sent in an upcall.
38 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 AceManager Class
UpcallHandler* peekPacketUpcallHandle;

ULONG getUpcallId(void) {
return (ULONG)peekPacketUpcallHandle->getId();

}
};

Define the constructor and methods for the subclass. This one creates the upcall
handler object:

NBBasicAce::NBBasicAce (NBAppl* appl, AceGroup* acegroup,
char* name):

AceManager(appl, acegroup, name)
{
// create upcall object

try {
peekPacketUpcallHandle = new UpcallHandler

(appl, acegroup, this,
 "peekPacketUpcall",
 (UpcallFp)peekPacketUpcall);

}
catch (NBError E) {

throw NBError(NB_ERROR(NBERROR_TESTAPP_ERRUPCALLACEONE));
}

// init accelerator side of ACE: load rules, actions
if (load ("basicAppRules", "basicAppActions")

!= NB_SUCCESS) {
throw NBError (NB_ERROR (NBERROR_TESTAPP_CANNOTLOADACEONE));
}

}

Define the destructor to clean up any structures you have created:

NBBasicAce::~NBBasicAce ()
{

delete peekPacketUpcallHandle;
}

Define the upcall handler callback as a method in the ACE manager subclass:

void NBBasicAce::peekPacketUpcall (Message* m)
{

NB_ASSERT (m->getLen1 () == sizeof (nuint32));
printf ("NoOfPackets: %05d\n",

ntohl (* (nuint32 *) m->getBuffer1 ()));
releaseMessage (m);

}

Intel Confidential Chapter 3: Host API 39

Revision 2.3, May 2000

• • • • •

AceManager Class

•
AceManager Constructor

Creates an AceManager object.

AceManager (NBAppl* argAppl,
AceGroup* argAceGroup,
char * argName,
DWORD argAceMode,
char * argPEName = NULL) throws NBError;

Argument Description

argAppl The object name of the application object for this application.

argAceGroup The object name of the ACE group containing the ACE manager.

argName The dictionary name of this ACE manager, which must be the same
as the dictionary name of the corresponding ACE object in the
accelerator module. Must be unique among ACE managers in this
ACE group.

argAceMode A set of one-bit flags that define the behavior of an ACE block with
respect to whether it can modify packets and which hardware
resources are used to execute it.

Use a logical OR of the mode constants to combine them.

Specify one of the following modification modes:

n ACE_WRITER (default)

n ACE_READER

Specify one of the following placement modes:

n ACE_PLMODE_ADVISORY (default)

n ACE_PLMODE_MANDATORY

Specify the following flag if the ACE will perform string searches:

n ACE_STRINGSEARCH

argPEName The name of the Policy Accelerator where the ACE is to be exe-
cuted.
40 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 AceManager Class
Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with one of the following error codes,
which you can access using the NBError method GetErrorcode.

Description Use the AceManager constructor to create an ACE manager object. ACE
managers initialize the ACE, get the ACE state, and manage communication
between ACEs. You typically create a subclass and customize the constructor to
create the communication objects and methods.

Return Codes Description

NBERROR_NBOBJ_NULLNAME The name of the ACE manager (argName) is NULL.

NBERROR_NBOBJ_NAMETOOLONG The name of the ACE manager (argName) is too long. The
maximum length of the object name is OBJNAME_MAXLEN,
which is defined in NBapi\nbparam.h.

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create the ACE manager object.

NBERROR_ACEMGR_NULLAPPL The name of the application (argAppl) that owns this ACE
manager is NULL.

NBERROR_ACEMGR_NULLACEGROUP The name of the ACE group (ArgAceGroup) is NULL.

NBERROR_ACEMGR_INVACEMODE Invalid ACE mode specified.

NBERROR_ACEMGR_CANNOTREGISTER Cannot register this ACE manager with the Resolver for one of
the following reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the Policy
Accelerator.

n The name has already been registered.

NBERROR_ACEMGR_CANNOTDEVREG Cannot register this ACE manager with the IX-API SDK kernel
device driver for any of the following reasons:

n The driver is not running.

n The name has already been registered.

n There is a communication problem with the Policy
Accelerator.

NBERROR_ACEMGR_CANNOTCREATEPASS Cannot create default pass target.

NBERROR_ACEMGR_CANNOTCREATEDROP Cannot create default drop target.
Intel Confidential Chapter 3: Host API 41

Revision 2.3, May 2000

• • • • •

AceManager Class

•
You specify the ACE’s modification and placement mode in the constructor.
These flags define the behavior of the ACE block with respect to whether it can
modify packets and which hardware resources are used to execute it.

You must specify one modification flag, one placement flag, and, optionally, a
string search flag. Use a logical OR to combine the flags.

n Specify one of the following modification modes:
l ACE_WRITER: The ACE can modify the packet that it is processing. There-

fore, the system cannot speculatively execute code belonging to ACEs
downstream in the data flow chain.

l ACE_READER: The ACE can never modify the packet that it is processing.
Therefore, the system can speculatively execute code belonging to other
ACEs downstream in the data flow chain.

n Specify one of the following placement modes:
l ACE_PLMODE_ADVISORY: If argPEName is a valid Policy Accelerator name,

the system places the ACE on the named Policy Accelerator, if it is not
already fully allocated. If the named Policy Accelerator is fully allocated,
the system chooses another hardware resource on which to place the
ACE. If argPEName is NULL, the system chooses where to execute the
ACE.

l ACE_PLMODE_MANDATORY: If argPEName is a valid Policy Accelerator
name, the system places the ACE on the named Policy Accelerator, if it
is not already fully allocated or not available for some other reason. If the
named Policy Accelerator is not available, the constructor throws an
error and the ACE is not constructed. If argPEName is NULL, the
constructor throws an error.

n Specify the ACE_STRINGSEARCH flag if the ACE will perform string searches
in packet buffers. For more information on string searches, see “String
Search Classes” in Chapter 4, “Action Services Library.”

To specify the Policy Accelerator on which the ACE is to run, use a Policy
Accelerator name of the following form:

nbhwpen

The value of n indicates the order in which the Policy Accelerator was installed
in the system. The first Policy Accelerator installed is number 0, the next is 1,
and so on; for example, nbhwpe0 and nbhwpe1. For more information on Policy
Accelerator naming, see Appendix C, “Policy Accelerator Name Space.”

See Also “AceGroup Class” on page 33
42 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 AceManager Class
getCompilerErrorMessages Method

Retrieves error messages generated by the NCL compiler when loading an
ACE.

DWORD getCompilerErrorMessages (char *& errorBuffer);

Returns When successful, NB_SUCCESS. When not successful, returns one of the
following codes:

Description The retrieved error messages are stored at the location pointed to by the error-
Buffer argument. The library allocates memory for this buffer. When it is no
longer needed, you are responsible for freeing it using the releaseCompil-
erErrorMessages method.

See Also releaseCompilerErrorMessages Method

Argument Description

errorBuffer A pointer to the error buffer, modified by the method.

Return Codes Description

NBERROR_ACEMGR_CANNOTRECVERRMSGS Cannot retrieve NCL compiler error messages because
communication with the Resolver was interrupted during
this operation.

NBERROR_ACEMGR_INVALIDCMPLRERRMSG No error messages are currently available.
Intel Confidential Chapter 3: Host API 43

Revision 2.3, May 2000

• • • • •

AceManager Class

•
getDropTarget Method

Identifies the drop target manager associated with this ACE manager.

TargetManager * getDropTarget (void);

Returns A pointer to the drop target.

Description Use this method to identify the TargetManager object associated with the drop
target of the ACE. If you do not create and bind a drop target, one is created by
default when you initialize the ACE.

All packets sent to the drop target are dropped. By default, all packets that the
application does not explicitly dispose of are sent to the drop target.

You can develop your own targets, as described in “TargetManager Class” on
page 85. You must bind a target to an ACE using the bind method in the NBAppl
class. Packets passed to unbound targets are dropped.

See Also getPassTarget Method, TargetManager Class

getPassTarget Method

Identifies the pass target manager associated with this ACE manager.

TargetManager* getPassTarget (void);

Returns A pointer to the pass target.

Description Use this method to identify the TargetManager object associated with the pass
target of the ACE. If you do not create and bind a pass target, one is created by
default when you initialize the ACE.

All packets sent to the pass target are directed to the ACE bound to this target.

You can develop your own targets, as described in “TargetManager Class.”
You must bind a target to an ACE using the bind method in the NBAppl class.
Packets passed to unbound targets are dropped.

See Also getDropTarget Method, TargetManager Class
44 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 AceManager Class
getTag Method

Retrieves the tag associated with the ACE.

uint16 getTag (void);

Returns The tag associated with the ACE.

Description Tags are used to identify the packets that are coming in through interfaces. A
tag is a unique integer that identifies an ACE within the context of the Policy
Accelerator. The Policy Accelerator generates the tag and uses it to set the
ifnum field in the base protocol (base.ifnum).

See Also NBAppl::getTag Method, Buffer::interfaceNum Method in Chapter 4,
“Action Services Library.”

load Method

Loads the Policy Accelerator memory with the files containing the NCL rules
and actions for the ACE block of which this ACE manager is a part.

DWORD load (char * rulesFilename,
char * actionsFilename);

Returns One of the following codes:

Argument Description

rulesFilename The name of the file containing the rules to load. Must be a
valid filename with the extension .ncl (NCL classification
rules file).

actionsFilename The name of the compiled file containing the actions to load.
Must be a valid filename with the extension .nbo (IX-API
SDK object file).

Return Codes Description

NB_SUCCESS The method succeeded.

NBERROR_ACEMGR_NULLFILENAMES One of the filename pointers is NULL.
Intel Confidential Chapter 3: Host API 45

Revision 2.3, May 2000

• • • • •

AceManager Class

•
Description Use the load method to do one of two things:

n To provide the NCL classification rules and action code for this ACE block
when it is being initialized. Both filenames (rulesFilename and actions-
Filename) specified must be valid.

n To load new NCL classification rules on the fly. To do this, specify a valid
filename for the rules and NULL for the actions filename. When an applica-
tion loads a new NCL rules file, the system compiles the new file and loads
it into the hardware resource associated with this ACE block. All rules
contained in the file are automatically enabled in the order in which they are
defined.

When the application executes the ACE manager’s load method, the host
downloads the specified files to the Policy Accelerator, and the Policy
Accelerator immediately calls the initialization function in the specified action
code file. You define this function to construct the ACE object for the accelerator
module. See “Initialization Function” on page 172 in Chapter 4, “Action
Services Library.”

The actions file must be precompiled using the nbgcc cross compiler. See
“nbgcc Command” on page 419 in Chapter 7, “Command-Line Tools.”

Example load ("MyRules","MyActions");

NBERROR_ACEMGR_FNTOOLONG One of the filenames is too long, exceeding the maximum
MAX_FILENAME_LENGTH, which is defined in
NBapi\nbparam.h.

NBERROR_ACEMGR_OUTOFMEM Cannot allocate memory to load code.

NBERROR_ACEMGR_CWDERR Cannot access the current directory.

NBERROR_ACEMGR_CANNOTSENDFN Cannot communicate with the Resolver to request that this
code be loaded.

NBERROR_ACEMGR_CANNOTRECVFNACK Communication with the Resolver was broken while this oper-
ation was in progress.

Return Codes Description
46 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 AceManager Class
releaseCompilerErrorMessages Method

Releases memory allocated by getCompilerErrorMessages.

void releaseCompilerErrorMessages (void);

Returns Nothing.

See Also getCompilerErrorMessages Method

releaseMessage Method

Releases memory allocated for a message sent in an upcall.

static void releaseMessage (Message *pMessage);

Returns Nothing.

Description Use this method to release the memory allocated by the Policy Accelerator
system for a message sent in an upcall from the Policy Accelerator. This is a
static method that you can call from anywhere in the application using the
scope specifier for the AceManager class.

You normally use this method in the callback for an upcall handler, to release
the received message that was allocated by the system.

See Also Message Class, UpcallHandler Class

Argument Description

pMessage A pointer to the message to be released.
Intel Confidential Chapter 3: Host API 47

Revision 2.3, May 2000

• • • • •

CrosscallHandlerManager Class

•
CrosscallHandlerManager Class

Use this class to define and create crosscall handler managers. Crosscall
handler managers are host objects that mirror crosscall handler objects on the
Policy Accelerator. The accelerator module object and its manager object are
associated by having the same dictionary name. The manager object allows for
management (such as linking and unlinking) of crosscall handlers.

Crosscall handlers reside on one ACE and accept messages from a crosscall in
another ACE. For more information on crosscalls and crosscall handlers, see
Chapter 4, “Action Services Library.”

The CrosscallHandlerManager class contains the following method:

Class
Derivation

The CrosscallHandlerManager class is derived from the NBObject class,
inheriting all its public methods.

Example This example illustrates how to use crosscall handler managers. In this
example, AceOne sends a crosscall and AceTwo receives it. Therefore AceTwo
must contain a CrosscallHandler object in the accelerator module, and its
manager in the host module. Here, the constructor for the AceTwo ACE
manager creates the crosscall handler manager object.

Method Description

CrosscallHandlerManager Constructor Instantiates the class.

Policy Accelerator

ACE

crosscall handler

ACE
crosscall

Host

ACE manager

crosscall handler manager

ACE manager

crosscall manager

crosscall
48 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 CrosscallHandlerManager Class
NBAceTwoMgr::NBAceTwoMgr (NBAppl* appl, AceGroup* AceGroup,
char * name):

AceManager (appl, AceGroup, name)
{

try {
// create the Crosscall Handler Manager object

crosscallHandlerMgr = new CrosscallHandlerManager (
appl, AceGroup, this,
"crosscallTestHandler");

}
catch (NBError E) {

throw;
}

}

The ACE constructor in the accelerator module would create the corresponding
crosscall handler object, using the same dictionary name, crosscallTest-
Handler.

Before you can send a message, you must link the crosscall in AceOne and its
handler in AceTwo using the link method of the application object.

See Also n “Communication among ACEs” on page 106 of Developing Applications
Using the IX-API SDK

n CrosscallHandler Class in Chapter 4, “Action Services Library.”

n NBAppl::link Method
Intel Confidential Chapter 3: Host API 49

Revision 2.3, May 2000

• • • • •

CrosscallHandlerManager Class

•
CrosscallHandlerManager Constructor

Creates a CrosscallHandlerManager object.

CrosscallHandlerManager (NBAppl* argAppl,
AceGroup * argAceGroup,
AceManager * argAceMgr,
char * argName) throws NBError;

Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with one of the following error codes,
which you can access using the NBError method GetErrorcode.

Argument Description

argAppl The object name of the application that created the ACE group
specified in argAceGroup.

argAceGroup The object name of the ACE group that contains the ACE manager
specified in argAceMgr.

argAceMgr The object name of the ACE manager that contains this crosscall
handler manager.

argName The dictionary name of this crosscall handler manager. This must
be the same as the dictionary name of the associated Crosscall-
Handler object in the Policy Accelerator. Must be unique among
objects in this ACE manager.

Return Codes Description

NBERROR_NBOBJ_NULLNAME The name of the crosscall handler manager (argName)
is NULL.

NBERROR_NBOBJ_NAMETOOLONG The name of the crosscall handler manager (argName)
is too long. The maximum length of the object name is
OBJNAME_MAXLEN, which is defined in
NBapi\nbparam.h.

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create the crosscall handler
manager.

NBERROR_CROSSCALLHANDLER_NULLAPPL argAppl is NULL.

NBERROR_CROSSCALLHANDLER_NULLACEGROUP argAceGroup is NULL.

NBERROR_CROSSCALLHANDLER_NULLACEMGR argAceMgr is NULL.
50 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 CrosscallHandlerManager Class
Description A crosscall handler manager manages the crosscall handler object on the Policy
Accelerator, which enables one ACE to receive messages from another ACE.

See Also CrosscallManager Class, ASL Crosscall Class, ASL CrosscallHan-
dler Class
Intel Confidential Chapter 3: Host API 51

Revision 2.3, May 2000

• • • • •

CrosscallManager Class

•
CrosscallManager Class

Use this class to define and create crosscall managers. Crosscall managers are
host objects that mirror crosscall objects on the Policy Accelerator. The acceler-
ator module object and its manager object are associated by having the same
dictionary name. The manager object allows for management (such as linking
and unlinking) of crosscalls.

Crosscalls allow one ACE to send messages to another ACE. For more informa-
tion on crosscalls and crosscall handlers, see Chapter 4, “Action Services
Library.”

The CrosscallManager class contains the following method:

Class
Derivation

The CrosscallManager class is derived from the NBObject class, inheriting all
its public methods.

Method Description

CrosscallManager Constructor Instantiates the class.

Policy Accelerator

ACE

crosscall handler

ACE
crosscall

Host

ACE manager

crosscall handler manager

ACE manager

crosscall manager

crosscall
52 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 CrosscallManager Class
Example This example illustrates how to use crosscall managers. In this example, AceOne
sends a crosscall and AceTwo receives it. Therefore AceOne must contain a
Crosscall object in the accelerator module, and its manager in the host
module. Here, the constructor for the AceOne ACE manager creates the cross-
call manager object.

class NBAceOneMgr : public AceManager {
public:

NBAceOneMgr (NBAppl* appl, AceGroup* AceGroup, char * name);
~NBAceOneMgr ();
CrosscallManager* crosscallMgr;

};

NBAceOneMgr::NBAceOneMgr (NBAppl* appl, AceGroup* AceGroup,
char * name):

AceManager (appl, AceGroup, name)
{

try {
// Create CrosscallManager object

crosscallMgr = new CrosscallManager (appl, AceGroup, this,
"crosscallTest");

}
catch (NBError E) {

throw;
}

}

The ACE constructor in the accelerator module would create the corresponding
crosscall object, using the same dictionary name, crosscallTest. Before you
can send a message, you must link the crosscall in AceOne and its handler in
AceTwo using the link method of the application object.

See Also n “Communication among ACEs” on page 106 of Developing Applications
Using the IX-API SDK

n Crosscall Class in Chapter 4, “Action Services Library.”

n NBAppl::link Method
Intel Confidential Chapter 3: Host API 53

Revision 2.3, May 2000

• • • • •

CrosscallManager Class

•
CrosscallManager Constructor

Creates a CrosscallManager object.

CrosscallManager (NBAppl* argAppl,
AceGroup * argAceGroup,
AceManager * argAceMgr,
char * argName) throws NBError;

Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with one of the following error codes,
which you can access using the NBError method GetErrorcode.

Description A crosscall manager manages a crosscall object on a Policy Accelerator, which
enables one ACE to issue calls to another ACE.

Argument Description

argAppl The object name of the application that created the ACE group spec-
ified in argAceGroup.

argAceGroup The object name of the ACE group that contains the ACE manager
specified in argAceMgr.

argAceMgr The object name of the ACE manager that contains this crosscall
manager.

argName The dictionary name of this crosscall manager. This must be the same
as the name of the associated Crosscall object in the Policy
Accelerator. Must be unique among objects in this ACE manager.

Return Codes Description

NBERROR_NBOBJ_NULLNAME The name of the crosscall manager (argName) is NULL.

NBERROR_NBOBJ_NAMETOOLONG The name of the crosscall manager (argName) is too long. The
maximum length of the object name is OBJNAME_MAXLEN,
which is defined in NBapi\nbparam.h.

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create the crosscall manager.

NBERROR_NBOBJ_NULLAPPL The argAppl argument is NULL.

NBERROR_NBOBJ_NULLACEGROUP The argAceGroup argument is NULL.

NBERROR_UPCALL_NULLACEMGR The argAceMgr argument is NULL.
54 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 CrosscallManager Class
See Also CrosscallHandlerManager Class, ASL Crosscall Class, ASL Cross-
callHandler Class
Intel Confidential Chapter 3: Host API 55

Revision 2.3, May 2000

• • • • •

Downcall Class

•
Downcall Class

Use this class to create downcalls to send messages to the Policy Accelerator.

A downcall sends a message from the host application to the application
running on the Policy Accelerator. A downcall object resides on the host and
requires a corresponding downcall handler object on the Policy Accelerator.
The host module and accelerator module objects are associated by having the
same dictionary name. For more information on downcall handlers, see
Chapter 4, “Action Services Library.”

Typically, you create a subclass of AceManager that contains a method to create
a message and send it in a downcall, using the call method. The constructor
for the ACE manager would also create the Downcall object.

Use downcalls to send small amounts of data, such as state notifications and
counters. To make applications run faster, do most of your packet processing on
the Policy Accelerator. If you need to transfer large amounts of data between
the Policy Accelerator and the host, do so using the stack. See “Moving Packets
between the Policy Accelerator and the Host” on page 114 in Developing Appli-
cations Using the IX-API SDK.

ACE Group

ACE Manager

Downcall

Host module

Accelerator module

ACE

DowncallHandler

downcall
56 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 Downcall Class
The Downcall class contains the following methods:

Class
Derivation

The Downcall class is derived from the NBObject class, inheriting all its public
methods.

Example The following example of downcall usage is from the TwoAceApp demo appli-
cation. The definition of the ACE manager subclass declares a downcall object
and a method that creates and sends a message using the downcall:

class NBAceOneMgr : public AceManager {
public:

NBAceOneMgr (NBAppl* appl, AceGroup* aceGroup, char* name);
~NBAceOneMgr ();

// Downcall
void setReportPeriod (int reportPeriod);
Downcall* setReportPeriodDowncallHandle;

};

The constructor and destructor for the ACE manager subclass create and delete
the downcall object:

NBAceOneMgr::NBAceOneMgr (NBAppl* appl, AceGroup* acegroup,
char* name):

AceManager (appl, acegroup, name)
{
// create downcall object

try {
setReportPeriodDowncallHandle =

new Downcall (appl, acegroup, this,
"setReportPeriodDowncall");

}
catch (NBError E) {
throw;
}

// init accelerator side of ACE: load rules, actions
if (load ("aceOneRules", "aceOneActions") != NB_SUCCESS)
{

throw NBError (NB_ERROR (NBERROR_TWOACEAPP));
}

}

Method Description

Downcall Constructor Instantiates the class.

call Method Sends the specified message from the host to the ACE
on the Policy Accelerator.
Intel Confidential Chapter 3: Host API 57

Revision 2.3, May 2000

• • • • •

Downcall Class

•
NBAceOneMgr::~NBAceOneMgr ()
{

delete setReportPeriodDowncallHandle;
}

The method that creates and sends the downcall message is defined as follows:

void
NBAceOneMgr::setReportPeriod (int reportPeriod)
{

Message* m = new Message ((char*)&reportPeriod,
sizeof (int), NULL, 0);

setReportPeriodDowncallHandle->call (m);
delete m;

}

The ACE constructor in the accelerator module would create a downcall
handler object to receive the message, using the same dictionary name, setRe-
portPeriodDowncall.

See Also n “Communication Between the Host and the Policy Accelerator” on
page 104 of Developing Applications Using the IX-API SDK

n DowncallHandler Class in Chapter 4, “Action Services Library.”
58 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 Downcall Class
Downcall Constructor

Creates a Downcall object.

Downcall (NBAppl* argAppl,
AceGroup * argAceGroup,
AceManager * argAceMgr,
char * argName) throws NBError;

Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with one of the following error codes,
which you can access using the NBError method GetErrorcode.

Argument Description

argAppl The object name of the application that created the ACE group spec-
ified in argAceGroup.

argAceGroup The object name of the ACE group that contains the ACE manager
specified in argAceMgr.

argAceMgr The object name of the ACE manager to which a message is being
sent.

argName The dictionary name of this downcall. This must be the same as the
dictionary name of the corresponding downcall handler object in the
accelerator module. Must be unique among objects in this ACE man-
ager.

Return Codes Description

NBERROR_NBOBJ_NULLNAME The name of this downcall (argName) is NULL.

NBERROR_NBOBJ_NAMETOOLONG The name of this downcall (argName) is too long. The maxi-
mum length of the object name is OBJNAME_MAXLEN, which is
defined in NBapi\nbparam.h.

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create the downcall.

NBERROR_DOWNCALL_NULLAPPL The argAppl argument is NULL.

NBERROR_DOWNCALL_NULLACEGROUP The argAceGroup argument is NULL.
Intel Confidential Chapter 3: Host API 59

Revision 2.3, May 2000

• • • • •

Downcall Class

•
Description Downcalls enable the host module to asynchronously send messages to the
Policy Accelerator module.

You typically create the downcall object as part of constructing the ACE
manager object. The ACE manager object should also contain a method that
constructs the message and sends it using this object’s call method.

See Also Message Class, MessageBlock Class, ASL DowncallHandler Class

NBERROR_DOWNCALL_NULLACEMGR The argAceMgr argument is NULL.

NBERROR_DOWNCALL_CANNOTREGISTER Cannot register this downcall with the Resolver for one of the
following reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the Policy
Accelerator.

n The name has already been registered.

Return Codes Description
60 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 Downcall Class
call Method

Send a message from the host to the Policy Accelerator.

DWORD call (Message * m);

Returns When successful, NB_SUCCESS. When not successful, one of the following
codes:

Description Use this method to send the specified message from the host to the ACE on the
Policy Accelerator. You are responsible for deleting the Message object after
sending the call.

You typically call this method as part of a method in the ACE manager object,
which constructs the message, sends it, and then deletes it.

Example setReportPeriodDowncallHandle->call (m);
delete m;

See Also Message Class, MessageBlock Class, ASL DowncallHandler Class

Argument Description

m Contains the data being passed to the accelerator module.

Return Codes Description

NBERROR_DOWNCALL_CANNOTOBTAINPECONTEXT Cannot find downcall handler in the accelerator
module. Every downcall must have a correspond-
ing downcall handler. For more information on
downcall handlers, see Chapter 4, “Action Services
Library.”

NBERROR_DOWNCALL_CANNOTSENDDOWNCALL The kernel driver refused to send this downcall.
Intel Confidential Chapter 3: Host API 61

Revision 2.3, May 2000

• • • • •

Message Class

•
Message Class

Use the Message class in the host module to create messages to send in down-
calls. To create messages to send in upcalls or crosscalls, see the ASL’s Message
Class in Chapter 4, “Action Services Library.”

A Message object encapsulates the entire communication being transferred
during a downcall within two buffers. You can specify the data buffers directly
when you create the Message object, or you can encapsulate the data separately
in up to two MessageBlock objects. For more information on message blocks,
see “MessageBlock Class” on page 66.

Delete the Message object using the delete operator after the call has been
successfully sent.There is a delay between the time the call is sent and the time
it is completed.

This class is not derived from any other class. It contains the following
methods:

Example This example illustrates how to use the Message class with a downcall. It
constructs a message with data to be passed (in this case, the period to report
some statistics), and then sends the downcall. Finally, it frees the Message object
using the delete operator.

NBAceOneMgr::setReportPeriod (int reportPeriod) {
Message* m = new Message ((char *)&reportPeriod,

sizeof (int), NULL, 0);
setReportPeriodDowncallHandle->call (m);
delete m;

}

See Also “Creating Messages and Message Blocks” on page 108 of Developing Applica-
tions Using the IX-API SDK

Method Description

Message Constructor Instantiates the class.

getBuffer1 Method Gets the first buffer from which a message was made.

getBuffer2 Method Gets the second buffer from which a message was made.

getLen1 Method Gets the length of the first buffer.

getLen2 Method Gets the length of the second buffer.
62 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 Message Class
Message Constructor

Create a Message object from one or two message blocks or buffers.

Message (char * argBuffer1,
DWORD argLen1,
char * argBuffer2 = NULL,
DWORD argLen2 = 0) throws NBError;

Message (MessageBlock & bl,
MessageBlock & b2) throws NBError;

Message (MessageBlock & b1) throws NBError;

Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with the following error code, which you
can access using the NBError method GetErrorcode.

Description The three forms of the constructor allow you to specify the data buffers directly,
or specify MessageBlock objects that encapsulate the data.

n The first form directly specifies the buffers that contain the message data.
Because you specify the length, the buffers do not need to be NULL-termi-
nated. If you specify only one of the buffers, the second buffer is empty.

n The second and third forms specify MessageBlock objects that encapsulate
the message data. If you specify only one MessageBlock, the second buffer
is empty.

Argument Description

argBuffer1 A pointer to the first buffer.

argLen1 The number of bytes in the first buffer.

argBuffer2 A pointer to the second buffer. Optional.

argLen2 The number of bytes in the second buffer. Optional.

b1 A MessageBlock object for the first buffer of a message.

b2 A MessageBlock object for the second buffer of a message.

Return Codes Description

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create this message.
Intel Confidential Chapter 3: Host API 63

Revision 2.3, May 2000

• • • • •

Message Class

•
The maximum size for message data is 3968 bytes; that is, one page (4096 bytes)
minus some overhead (128 bytes) for metadata. When there are two blocks or
buffers, the maximum is for the total size of both.

See Also MessageBlock Class

getBuffer1 Method

Retrieves the address of the first buffer of a message.

char * getBuffer1 (void);

Returns A pointer to the first buffer of a message, or to the data encapsulated by the first
MessageBlock.

getBuffer2 Method

Retrieves the address of the second buffer of a message.

char * getBuffer2 (void);

Returns A pointer to the second buffer of a message, or to the data encapsulated by the
second MessageBlock.

getLen1 Method

Retrieves the size of the first buffer of a message.

DWORD getLen1 (void);

Returns The length in bytes of the first buffer of a message, or of the data encapsulated
by the first MessageBlock.
64 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 Message Class
getLen2 Method

Retrieves the size of the second buffer of a message.

DWORD getLen2 (void);

Returns The length in bytes of the second buffer of a message, or of the data encapsu-
lated by the second MessageBlock.
Intel Confidential Chapter 3: Host API 65

Revision 2.3, May 2000

• • • • •

MessageBlock Class

•
MessageBlock Class

Use this class to define and create message blocks. A message block is the
building block of Message objects and is simply a pointer to a block of memory
(buffer) and its length.

The maximum size for message data is 3968 bytes; that is, one page (4096 bytes)
minus some overhead (128 bytes) for metadata. When you use two blocks to
construct a message, the maximum is for the total size of both blocks.

You can create two kinds of message buffers:

n NULL-terminated buffers
Create NULL-terminated message buffers to hold any amount of data up to
the first NULL byte; for example, when passing text in a message. To create a
message from a NULL-terminated buffer, omit the buffer-length argument
when creating the MessageBlock object.

n Fixed-length buffers
To create a message from a fixed-length buffer, specify the number of bytes
for the buffer when creating the MessageBlock object. Use this form, for
example, to pass a list of NULL-terminated strings.

This class is not derived from any other class. It contains the following method:

See Also “Creating Messages and Message Blocks” on page 108 of Developing Applica-
tions Using the IX-API SDK

Method Description

MessageBlock Constructor Instantiates the class.
66 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 MessageBlock Class
MessageBlock Constructor

Creates a MessageBlock object.

MessageBlock (char * argBuffer);

MessageBlock (char * argBuffer,
DWORD argLen);

Returns A reference to the newly created object.

Description The first constructor creates a message block from a NULL-terminated buffer.
The second constructor creates a message block from a buffer of a fixed length
that is not terminated by NULL.

Example The following example creates a message block from a string terminated by
NULL:

char test [] = {"This is a test"};
MessageBlock (test); //NULL termination

The following example creates a message block from a buffer that can hold 30
bytes of data:

char test [3] [10] = {"This", "is", "test"}; //list of strings
MessageBlock (test, 30); //specify a length to copy all data

See Also Message Class

Argument Description

argBuffer A pointer to the buffer.

argLen The number of bytes in the buffer.
Intel Confidential Chapter 3: Host API 67

Revision 2.3, May 2000

• • • • •

NBAppl Class

•
NBAppl Class

Use the NBAppl class to create the main application object for the IX-API SDK
host application. Use the methods in this class to bind targets to and unbind
targets from ACEs, and to link and unlink crosscalls.

The NBAppl class represents the Policy Accelerator portion of an application.
For each IX-API SDK application that you create, you create a subclass of the
NBAppl class and an object of that subclass. Every application must contain
exactly one application object.

NBAppl subclasses contain ACE group objects. When you create a subclass,
define the constructor for your subclass to create the ACEGroup objects.

The NBAppl class contains the following methods:

Class
Derivation

The NBAppl class is derived from the NBObject class, inheriting all its public
methods.

Example The following example is from the BasicApp demo application. In this
example, the constructor for the application object creates the ACE group and
the ACE manager objects, and uses its own bind method to set the bindings:

BasicApp::BasicApp (void):
NBAppl ("BasicApp", NULL, NULL)

{
// Create ACE group

Method Description

NBAppl Constructor Instantiates the class.

bind Method Binds a target to an ACE or to an interface represented
by an ACE.

getTag Method Identifies the tag value associated with a binding.

getStackDriverName
Method

Retrieves the driver name for an interface.

link Method Connects a crosscall in one ACE to a crosscall handler in
another ACE.

unbind Method Unbinds a target from an ACE.

unlink Method Disconnects a crosscall from its crosscall handler.
68 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 NBAppl Class
try {
aceGroup = new AceGroup (this, NULL, "BasicAceGroup");

}
catch (NBError E) {
throw NBError (NB_ERROR(NBERROR_BASICAPP_CANNOTCREATEGROUP));
}

// Create ACE manager
try {

BasicAceManager =
new BasicAceManager (this, aceGroup, "BasicAce");

}
catch (NBError E) {
throw NBError (NB_ERROR(NBERROR_BASICAPP_CANNOTCREATEACE));
}

// Create bindings
NB_TRACE ("BINDING\n");

// incoming packets on the accelerator’s
// FROM interface go to the ACE

unsigned long rval =
bind("/nbhwpe0/FromInterface:nbhwpe0A/Interface/pass",

"/basicAppl/basicAceGroup/basicAce");
if (rval != NB_SUCCESS)
{

NB_ABORT(rval);
}
// the ACE passes packets back to the accelerator’s
// TO interface
rval = bind("/basicAppl/basicAceGroup/basicAce/pass",

"/nbhwpe0/ToInterface:nbhwpe0B/Interface");
if (rval != NB_SUCCESS) {

NB_ABORT(rval);
}
NB_TRACE ("BINDINGS ARE DONE\n");

}

See Also n Chapter 3, “Elements of an Application,” in Developing Applications Using
the IX-API SDK

n Chapter 5, “Controlling Packet Flow,” in Developing Applications Using the
IX-API SDK
Intel Confidential Chapter 3: Host API 69

Revision 2.3, May 2000

• • • • •

NBAppl Class

•
NBAppl Constructor

Creates an NBAppl object.

NBAppl (char * argName,
char * workingDirectory,
char * cmdLine) throws NBError;

NBAppl (char * argName,
char * cmdLine) throws NBError;

NBAppl (char * argName) throws NBError;

Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with one of the following error codes,
which you can access using the NBError method GetErrorcode.

Argument Description

argName The dictionary name of the new application object to create.

workingDirectory Not used. Pass NULL.

cmdLine Not used. Pass NULL.

Return Code Description

NBERROR_NBOBJ_NULLNAME The name of the application (argName) is NULL.

NBERROR_NBOBJ_NAMETOOLONG The name of the application (argName) is too long.
The maximum length of the object name is
OBJNAME_MAXLEN, which is defined in
NBapi\nbparam.h.

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create the application.

NBERROR_NBOBJ_CANNOTCREATEPIPE The system cannot create a named pipe to commu-
nicate with the Resolver.

NBERROR_NBAPPL_ERRNBPIPE The system cannot allocate memory to create an
object used to manage the named pipe used to
communicate with the Resolver.

NBERROR_NBAPPL_ERRNBPIPE The system cannot allocate memory to create an
object used to manage the pipe used by the
Resolver to communicate with the application.
70 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 NBAppl Class
Description Use the NBAppl constructor to create the main object representing an IX-API
SDK application. The NBAppl class provides services to manage the setup of
ACEs. Applications use ACEs to process packets.

NBERROR_NBAPPL_CANNOTACCESSDEV The application cannot connect with the Policy
Accelerator kernel driver.

NBERROR_NBAPPL_ERRORDEVREG The application cannot register with the Policy
Accelerator kernel driver.

NBERROR_NBAPPL_CANNOTCREATEUPCALLTHREAD The application cannot create a thread dedicated to
handle upcalls from the accelerator module.

NBERROR_NBAPPL_CANNOTCREATERSLVREQTHREAD The application cannot create a thread dedicated to
handle requests issued by the Resolver.

NBERROR_NBAPPL_CANNOTREGISTER Cannot register this application with the Resolver
for one of the following reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the Pol-
icy Accelerator.

n The name has already been registered.

Return Code Description
Intel Confidential Chapter 3: Host API 71

Revision 2.3, May 2000

• • • • •

NBAppl Class

•
bind Method

Binds a target to an ACE or to an interface represented by an ACE.

DWORD bind (char * from,
char * to);

Returns When successful, NB_SUCCESS. When not successful, one of the following
codes:

Description The bindings that you specify with this method determine how packets flow
into and out of this ACE.

Targets represent possible sources and destinations for packets. Packets deliv-
ered to unbound targets are dropped. Every ACE has two system-defined
targets named pass and drop. You do not normally bind the drop target. You
can bind the pass target to another ACE that you have defined, or to a system-
defined ACE.

To pass packets to and from the Policy Accelerator interfaces or host stack, use
the system ACE and target names, as described in “System Names for Policy
Accelerator Interfaces” on page 444.

Argument Description

from The input target to be bound to the ACE. Specify the path as
Appl\AceGroup\Ace\target , using the dictionary names of
the objects as described in Appendix C, “Policy Accelerator Name
Space.”

to The output ACE to be bound to the target. Specify the path as
Appl\AceGroup\Ace as described in the Appendix above.

Return Codes Description

NBERROR_NBAPPL_NULLNAMES The pointer that should contain the object name is NULL. (That
is, one of the arguments is a NULL pointer.)

NBERROR_NBAPPL_CANNOTSENDBINDREQ The application cannot send a message to the Resolver to
request a binding.

NBERROR_NBAPPL_CANNOTRECVBINDREQ The application lost communication with the Resolver during
execution of the bind request.

NBERROR_NBAPPL_ERRBINDREQ Either the target or the destination ACE does not exist.
72 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 NBAppl Class
If your site has customized the drivers for a standard network interface card
(NIC) for communication with the Policy Accelerator using the ODX protocol,
you can address the NIC connection directly as interface C. The syntax for using
interface C is the same as that for the built-in interfaces A and B. For more infor-
mation, see Customizing a NIC Driver Using the ODX Protocol.

Example This example is part of the constructor for the application object of the
BasicApp demo application. It creates bindings such that packets flow from the
Policy Accelerator’s A interface into the ACE, and out of the ACE to the Policy
Accelerator’s B interface.

// Create bindings
NB_TRACE ("BINDING\n");
// incoming packets on the Policy Accelerator’s
// FROM interface A go to the ACE
unsigned long rval =

bind("/nbhwpe0/FromInterface:nbhwpe0A/Interface/pass",
"/basicAppl/basicAceGroup/basicAce");

if (rval != NB_SUCCESS)
{

NB_ABORT(rval);
}
// the ACE passes packets back to the Policy Accelerator’s
// TO interface B
rval = bind("/basicAppl/basicAceGroup/basicAce/pass",

"/nbhwpe0/ToInterface:nbhwpe0B/Interface");
if (rval != NB_SUCCESS) {

NB_ABORT(rval);
}
NB_TRACE ("BINDINGS ARE DONE\n");

See Also n unbind Method

n Target Class in Chapter 4, “Action Services Library.”

n Chapter 5, “Controlling Packet Flow,” in Developing Applications Using the
IX-API SDK
Intel Confidential Chapter 3: Host API 73

Revision 2.3, May 2000

• • • • •

NBAppl Class

•
getTag Method

Identifies the tag value associated with a binding.

uint16 getTag (char * argAceName);

Returns The tag associated with the specified ACE block.

Description A tag is an integer that identifies an ACE binding within the context of the
Policy Accelerator. The value of tags for system ACEs (such as the FROM and
TO interfaces) varies from session to session.

The Policy Accelerator uses this tag to set the ifnum field in the base protocol
during classification. NCL code can access the value in base.ifnum to find the
tag associated with the ACE that represents the interface through which the
packet came.

See Also n getTag Method in AceManager Class

n Buffer::interfaceNum Method in Chapter 4, “Action Services Library.”

n Appendix C, “Policy Accelerator Name Space.”

Example When an ACE receives packets from different interfaces, it can use the tag to
determine which interface the packet came through. NCL code can check
base.ifnum and pass its value as an argument to an action, or action code can
check this field directly. The following example code could be used in such an
action function to retrieve the tags associated with ACEs for all interfaces and
stacks in two boards.

OUTPUT:

TAGS PE0: FROMA=3, TOA=4, STACKFROMA=6, STACKTOA=5
TAGS PE0: FROMB=7, TOB=8, STACKFROMB=10, STACKTOB=9
TAGS PE1: FROMA=131, TOA=132, STACKFROMA=134, STACKTOA=133
TAGS PE1: FROMB=135, TOB=136, STACKFROMB=138, STACKTOB=137

CODE:
try {

printf ("Getting tag for Interfaces & Stacks:\n");
uint16 i1 = getTag

Argument Description

argAceName The full path of the ACE associated with this tag, as described in
Appendix C, “Policy Accelerator Name Space.”
74 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 NBAppl Class
("\nbhwpe0\FromInterface:nbhwpe0A\Interface");
uint16 i2 = getTag

("\nbhwpe0\ToInterface:nbhwpe0A\Interface");
uint16 s1 = getTag ("\nbhwpe0\FromStack:nbhwpe0A\Stack");
uint16 s2 = getTag ("\nbhwpe0\ToStack:nbhwpe0A\Stack");
uint16 i3 = getTag

("\nbhwpe0\FromInterface:nbhwpe0B\Interface");
uint16 i4 = getTag

("\nbhwpe0\ToInterface:nbhwpe0B\Interface");
uint16 s3 = getTag ("\nbhwpe0\FromStack:nbhwpe0B\Stack");
uint16 s4 = getTag ("\nbhwpe0\ToStack:nbhwpe0B\Stack");
uint16 j1 = getTag

("\nbhwpe1\FromInterface:nbhwpe1A\Interface");
uint16 j2 = getTag

("\nbhwpe1\ToInterface:nbhwpe1A\Interface");
uint16 t1 = getTag ("\nbhwpe1\FromStack:nbhwpe1A\Stack");
uint16 t2 = getTag ("\nbhwpe1\ToStack:nbhwpe1A\Stack");
uint16 j3 = getTag

("\nbhwpe1\FromInterface:nbhwpe1B\Interface");
uint16 j4 = getTag

("\nbhwpe1\ToInterface:nbhwpe1B\Interface");
uint16 t3 = getTag ("\nbhwpe1\FromStack:nbhwpe1B\Stack");
uint16 t4 = getTag ("\nbhwpe1\ToStack:nbhwpe1B\Stack");
printf ("TAGS PE0: FROMA=%d, TOA=%d, STACKFROMA=%d,

STACKTOA=%d\n", i1, i2, s1, s2);
printf ("TAGS PE0: FROMB=%d, TOB=%d, STACKFROMB=%d,

STACKTOB=%d\n", i3, i4, s3, s4);
printf ("TAGS PE1: FROMA=%d, TOA=%d, STACKFROMA=%d,

STACKTOA=%d\n",j1, j2, t1, t2);
printf ("TAGS PE1: FROMB=%d, TOB=%d, STACKFROMB=%d,

STACKTOB=%d\n", j3, j4, t3, t4);
} catch (NBError E) {

...
}

Intel Confidential Chapter 3: Host API 75

Revision 2.3, May 2000

• • • • •

NBAppl Class

•
getStackDriverName Method

Retrieves the driver name for an interface.

DWORD getStackDriverName (char* argAceName,
char *argdriverName);

Returns When successful, NB_SUCCESS. When not successful, throws the NB_Error code
NBERROR_NBAPPL_ERRPECONTEXT.

Description Use the driver name returned in the argdriverName argument to obtain inter-
face configuration information, such as IP address or net mask, using your
operating system’s services.

Example /* Get the stack’s driver name in main function */
void main(void) {

try {
MyAppl *appl = new MyAppl ();
}
catch (NBError E){

NB_ABORT (1);
}
char temp [32];
try{

appl->getStackDriverName
("/nbhwpe0/ToInterface:nbhwpe0A/Interface",temp);

}
catch (NBError E){

NB_ABORT (1);
}
printf ("Name of driver for stack A on accelerator 0 is

%s\n",
temp);

while (1) Sleep(99999);
}

Argument Description

argAceName The full path to a system ACE for a stack interface, as described
in Appendix C, “Policy Accelerator Name Space.”

argdriverName [OUT] On return, points to the driver name for the specified inter-
face.
76 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 NBAppl Class
link Method

Connects a crosscall to a crosscall handler.

DWORD link (char * from,
char * to);

Returns When successful, NB_SUCCESS. When not successful, one of the following
codes:

Description You use crosscall and crosscall handler objects to send messages from one ACE
to another. Before you can send a message, you must use this method to asso-
ciate the Crosscall object in the sending ACE with the CrosscallHandler
object in the receiving ACE. The crosscall handler receives and acts on
messages sent using a crosscall.

Any number of Crosscall objects can be linked to the same CrosscallHan-
dler object.

Crosscall and crosscall handler classes are defined in the ASL. You create these
objects in the action code for each ACE’s accelerator module. Although each of
these objects is paired with a manager object in the host module (Crosscall-
Manager and CrosscallHandlerManager objects), it is the ASL objects, not the
manager objects, that you pass to this method.

Argument Description

from The ACE and crosscall object issuing crosscalls. Specify the path
as Appl\AceGroup\Ace\crosscall, as described in
Appendix C, “Policy Accelerator Name Space.”

to The ACE and crosscall handler object receiving crosscalls. Specify
the path as Appl\AceGroup\Ace\crosscallhandler.

Return Codes Description

NBERROR_NBAPPL_NULLNAMES The pointer that should contain the object name is NULL. (That
is, one of the arguments is a NULL pointer.)

NBERROR_NBAPPL_CANNOTSENDLINKREQ The application cannot communicate with the Resolver.

NBERROR_NBAPPL_CANNOTRECVLINKREQ The application lost communication with the Resolver during
execution of the link request.

NBERROR_NBAPPL_ERRLINKREQ Either the target or the destination ACE does not exist.
Intel Confidential Chapter 3: Host API 77

Revision 2.3, May 2000

• • • • •

NBAppl Class

•
See Also n unlink Method

n Crosscall Class and CrosscallHandler Class in Chapter 4, “Action
Services Library.”

n “Communication among ACEs” on page 106 of Developing Applications
Using the IX-API SDK
78 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 NBAppl Class
unbind Method

Unbinds a target from an ACE.

DWORD unbind (char * from);

Returns When successful, NB_SUCCESS. When not successful, one of the following
codes:

Description You must unbind a target from any currently bound ACE before you can bind
it to a different ACE.

Targets represent possible destinations for packets. Packets delivered to
unbound targets are dropped.

See Also n bind Method

n Target Class in Chapter 4, “Action Services Library.”

n Chapter 5, “Controlling Packet Flow,” in Developing Applications Using the
IX-API SDK

Argument Description

from The target to be unbound from the ACE. Specify the path as
Appl\AceGroup\Ace\target, as described in Appendix C,
“Policy Accelerator Name Space.”

Return Codes Description

NBERROR_NBAPPL_NULLNAMES The pointer that should contain the object name is NULL. (That
is, the argument is a NULL pointer.)

NBERROR_NBAPPL_CANNOTSENDBINDREQ The application cannot send a message to the Resolver to
request a binding.

NBERROR_NBAPPL_CANNOTRECVBINDREQ The application lost communication with the Resolver during
execution of the unbind request.

NBERROR_NBAPPL_ERRBINDREQ The target does not exist.
Intel Confidential Chapter 3: Host API 79

Revision 2.3, May 2000

• • • • •

NBAppl Class

•
unlink Method

Disconnects a crosscall from a crosscall handler.

DWORD unlink (char * from);

Returns When successful, NB_SUCCESS. When not successful, one of the following
codes:

Description Use this method to disconnect the specified crosscall from any crosscall handler
to which it was linked using the link method. Unlink a crosscall before linking
it to a new crosscall handler.

When a crosscall is not linked to any crosscall handler, you cannot use it to send
messages.

The Crosscall class is defined in the ASL. You create these objects in the action
code for each ACE’s accelerator module. Although each of these objects is
paired with a CrosscallManager object in the host module, it is the ASL object,
not the manager object, that you pass to this method.

See Also n link Method

n Crosscall Class and CrosscallHandler Class in Chapter 4, “Action
Services Library.”

n “Communication among ACEs” on page 106 of Developing Applications
Using the IX-API SDK

Argument Description

from The crosscall to be disconnected. Specify the path as
Appl\AceGroup\Ace\crosscall, as described in
Appendix C, “Policy Accelerator Name Space.”

Return Codes Description

NBERROR_NBAPPL_NULLNAMES The pointer that should contain the object name is NULL. (That
is, one of the arguments is a NULL pointer.)

NBERROR_NBAPPL_CANNOTSENDLINKREQ The application cannot communicate with the Resolver.

NBERROR_NBAPPL_CANNOTRECVLINKREQ The application lost communication with the Resolver during
execution of the unlink request.

NBERROR_NBAPPL_ERRLINKREQ The crosscall does not exist.
80 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 NBError Class
NBError Class

The NBError class represents errors that can be generated by methods in the
host API. Use the getErrorcode method to access the error code contained in
an NBError object.

Error objects of this type are returned by host API methods. Host API object
constructors return a reference to the new object, and throw an error object,
which you can access using a catch statement.

You can add your own uniquely numbered error codes to provide information
about failed operations. Give your own error codes numbers greater than the
constant NBERROR_USER_BASE. For an example of how to define your own error
codes, see “Preparing for Error Handling” on page 20 of Developing Applications
Using the IX-API SDK.

This class is not derived from any other class. It contains the following method:

See Also Chapter 11, “Debugging and Troubleshooting,” in Developing Applications
Using the IX-API SDK

Method Description

getErrorcode
Method

Retrieves the error code in the error object returned by a host
API method, or thrown by an object constructor.
Intel Confidential Chapter 3: Host API 81

Revision 2.3, May 2000

• • • • •

NBError Class

•
getErrorcode Method

Retrieves the error code in the error object returned by a host API method, or
thrown by an object constructor.

DWORD getErrorcode (void)

Returns The error code constant encapsulated by the error object. For a complete list and
description of error codes, see Appendix A, “IX-API SDK Host API Error
Codes.”

Example The following code fragment uses the getErrorcode method in a catch state-
ment after a call to an object constructor to print out a debugging message:

try { crosscallMgr = new CrosscallManager (appl, AceGroup, this,
"crosscallTest");

}
catch (NBError E) {

fprintf(stderr, "Demo app caught NBError 0x%X\n",
 E.getErrorcode ());

NB_ABORT (1);
}

82 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 NBObject Class
NBObject Class

All classes of the host API, with the exception of the Message and Message-
Block classes, are derived from NBObject. NBObject provides derived classes
with the basic ability to get certain object properties.

This class is not derived from any other class. You do not instantiate it or use it
directly. It contains the following methods:

getId Method

Returns the identifier of the object.

LONG getId (void);

Returns The identifier of the object.

Description An object’s identifier is a global reference to that object. Because an object ID is
independent of the process context, it is not context-sensitive.

getType Method

Retrieves the object’s class.

NBOBJTYPE getType (void);

Returns The object type, which can be one of the following:

n OBJECT_TYPE_NBAPPL

n OBJECT_TYPE_ACE

Method Description

getId Method Returns the identifier of the object.

getType Method Retrieves the object’s class.
Intel Confidential Chapter 3: Host API 83

Revision 2.3, May 2000

• • • • •

NBObject Class

•
n OBJECT_TYPE_TARGET

n OBJECT_TYPE_UPCALL

n OBJECT_TYPE_DOWNCALL

n OBJECT_TYPE_ACEGROUP

n OBJECT_TYPE_CCALLSEND

n OBJECT_TYPE_CCALLRECV

Description Use this method to determine the types of methods you can use on an object.
84 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 TargetManager Class
TargetManager Class

Use the TargetManager class to define and create target managers. Target
managers are objects on the host that manage targets, which reside in ACEs on
the Policy Accelerator. Each TargetManager object corresponds to exactly one
Target object with the same dictionary name in the accelerator module.

The TargetManager class contains the following method:

Class
Derivation

The TargetManager class is derived from the NBObject class, inheriting all its
public methods.

See Also n Chapter 5, “Controlling Packet Flow,” of Developing Applications Using the
IX-API SDK

n Target Class in Chapter 4, “Action Services Library.”

Method Description

TargetManager
Constructor

Instantiates the class.

ACE Group

ACE Manager

TargetManager

Host module

Accelerator module
ACE

Target
Intel Confidential Chapter 3: Host API 85

Revision 2.3, May 2000

• • • • •

TargetManager Class

•
TargetManager Constructor

Creates a TargetManager object.

TargetManager (NBAppl* argAppl,
AceGroup* argAceGroup,
AceManager * argAceMgr,
char * argName) throws NBError;

Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with one of the following error codes,
which you can access using the NBError method GetErrorcode.

Argument Description

argAppl The object name of the application that created the ACE group spec-
ified in argAceGroup.

argAceGroup The object name of the ACE group that contains the ACE manager
specified in argAceMgr.

argAceMgr The object name of the ACE manager that contains this target man-
ager.

argName The dictionary name of this target manager. This must be the same
as the dictionary name of the corresponding Target object in the
accelerator module. Must be unique among objects in this ACE
manager.

Return Codes Description

NBERROR_NBOBJ_NULLNAME The name of the target manager (argName) is NULL.

NBERROR_NBOBJ_NAMETOOLONG The name of the target manager (argName) is too long. The
maximum length of the object name is OBJNAME_MAXLEN,
which is defined in NBapi\nbparam.h.

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create target manager.

NBERROR_TARGETMGR_NULLAPPL The argAppl argument is NULL.

NBERROR_TARGETMGR_NULLACEGROUP The argAceGroup argument is NULL.
86 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 TargetManager Class
Description Target managers manage targets in ACEs on the Policy Accelerator.

NBERROR_TARGETMGR_NULLACEMGR The argAceMgr argument is NULL.

NBERROR_TARGETMGR_CANNOTREGISTER Cannot register this target manager with the Resolver for one
of the following reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the Policy
Accelerator.

n The name has already been registered.

Return Codes Description
Intel Confidential Chapter 3: Host API 87

Revision 2.3, May 2000

• • • • •

UpcallHandler Class

•
UpcallHandler Class

Use the UpcallHandler class to define and create upcall handlers. Upcall
handlers are objects on the host that receive messages from upcall objects on the
Policy Accelerator. For information on the Upcall Class, see Chapter 4,
“Action Services Library.”

Each UpcallHandler object corresponds to exactly one Upcall object with the
same dictionary name in the accelerator module.

To make applications run faster, do most packet processing on the Policy
Accelerator. Use upcalls and downcalls for statistical and administrative func-
tions. If you need to transfer large amounts of data between the Policy
Accelerator and the host, do so using the stack.

The UpcallHandler class contains the following methods:

Method Description

UpcallHandler Constructor Instantiates the class.

getUpcallFunction
Method

Retrieves the upcall callback method from the ACE
manager.

ACE Group

ACE Manager

UpcallHandler

Host module

Accelerator module

ACE

Upcall

upcall
88 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 UpcallHandler Class
Class
Derivation

The UpcallHandler class is derived from the NBObject class, inheriting all its
public methods.

Example The following example of upcall usage is from the TwoAceApp demo applica-
tion. The definition of the ACE manager subclass declares a callback method
and an upcall handler object:

class NBAceOneMgr : public AceManager {
public:

NBAceOneMgr(NBAppl* appl, AceGroup* aceGroup, char* name);
~NBAceOneMgr();

// Upcall
void reportPacketCount(Message* m);
UpcallHandler* reportPacketCountUpcallHandle;

};

The constructor and destructor for the ACE manager subclass create and delete
the upcall handler object:

NBAceOneMgr::NBAceOneMgr (NBAppl* appl,
AceGroup* acegroup,
char* name):

AceManager(appl, acegroup, name)
{

try {
// create upcall handler object

reportPacketCountUpcallHandle =
new UpcallHandler (appl, this,

"reportPacketCountUpcall",
(UpcallFp)reportPacketCount);

}
catch (NBError E) {

throw;
}

// init accelerator side of ACE: load rules, actions
if (load ("aceOneRules", "aceOneActions") != NB_SUCCESS)
{
throw NBError (NB_ERROR(NBERROR_TWOACEAPP));
}

}

NBAceOneMgr::~NBAceOneMgr()
{

delete reportPacketCountUpcallHandle;
}

The ACE constructor in the accelerator module must create a corresponding
upcall object using the same dictionary name, reportPacketCountUpcall.
Intel Confidential Chapter 3: Host API 89

Revision 2.3, May 2000

• • • • •

UpcallHandler Class

•
This method is an example of an upcall handler callback. The method decodes
the message and prints out the data. Finally, it frees the host memory that was
allocated for the message, using the releaseMessage method.

void NBAceOneMgr::reportPacketCount (Message* m)
{

printf ("NoOfPackets: %05d\n", * (int*) m->getBuffer1 ());
releaseMessage (m);

}

See Also n “Communication Between the Host and the Policy Accelerator” on
page 104 of Developing Applications Using the IX-API SDK

n Upcall Class in Chapter 4, “Action Services Library.”
90 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 UpcallHandler Class
UpcallHandler Constructor

Creates an UpcallHandler object.

UpcallHandler (NBAppl* argAppl,
AceGroup* argAceGroup,
AceManager * argAceMgr,
char * argName)
UpcallFp argUpcallFunction) throws NBError;

Returns When successful, a reference to the newly created object. When not successful,
throws an exception of type NBError with one of the following error codes,
which you can access using the NBError method GetErrorcode.

Argument Description

argAppl The object name of the application that created the ACE
group specified in argAceGroup.

argAceGroup The object name of the ACE group that contains the ACE
manager specified in argAceMgr.

argAceMgr The object name of the ACE manager that contains this
upcall.

argName The dictionary name of this upcall handler. This must be the
same as the dictionary name of the corresponding Upcall
object in the accelerator module. Must be unique among
objects in this ACE manager.

argUpcallFunction The routine to call when the Policy Accelerator invokes this
upcall. This must be a method defined in the ACE manager
object.

Return Codes Description

NBERROR_NBOBJ_NULLNAME The name of this upcall (argName) is NULL.

NBERROR_NBOBJ_NAMETOOLONG The name of the upcall (argName) is too long. The maximum
length of the object name is OBJNAME_MAXLEN, which is
defined in NBapi\nbparam.h.

NBERROR_NBOBJ_OUTOFMEMORY Cannot allocate memory to create the upcall.

NBERROR_NBOBJ_NULLAPPL The argAppl argument is NULL.

NBERROR_NBOBJ_NULLACEGROUP The argAceGroup argument is NULL.
Intel Confidential Chapter 3: Host API 91

Revision 2.3, May 2000

• • • • •

UpcallHandler Class

•
Description UpcallHandler objects on the host receive messages from Upcall objects on
the Policy Accelerator. Every Upcall object on the Policy Accelerator must have
a corresponding UpcallHandler object with the same name on the host.

You are responsible for freeing the local memory associated with the received
message when it is no longer required, using the releaseMessage method; see
AceManager Class.

Upcall Handler
Callbacks

You must define the upcall handling callback as a method in a subclass of the
AceManager class. It must conform to the following prototype:

class MyAceMgr : public Ace {
void my_handler (Message *m); ...}

The following example is from the basicApp demo application. The upcall
handler callback, peekPacketUpcall, is defined as a method in the applica-
tions AceManager subclass, NBBasicAce. The method decodes the message to
restore the byte order, prints the data, then frees the memory that was allocated
for it on the host.

void NBBasicAce::peekPacketUpcall (Message* m) {
NB_ASSERT (m->getLen1 () == sizeof (nuint32));
printf ("NoOfPackets: %05d\n",

 ntohl (* (nuint32 *) m->getBuffer1 ()));
releaseMessage (m);

}

Specify this callback when you create the upcall handler object:

peekPacketUpcallHandle =
new UpcallHandler (appl, acegroup, this,

"peekPacketUpcall",
(UpcallFp)peekPacketUpcall);

NBERROR_UPCALL_NULLACEMGR The argAceMgr argument is NULL.

NBERRROR_UPCALL_CANNOTREGISTER Cannot register this upcall handler with the Resolver for one of
the following reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the Policy
Accelerator.

n The name has already been registered.

Return Codes Description
92 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

 UpcallHandler Class
See Also n AceManager Class

n Upcall Class, Message Class, MessageBlock Class in Chapter 4, “Action
Services Library.”

n “Communication Between the Host and the Policy Accelerator” on
page 104 of Developing Applications Using the IX-API SDK

n “Byte Order and Intermodule Communication” on page 12 in Chapter 2,
“System Types and Methods.”

getUpcallFunction Method

Identify the current upcall handling callback method.

UpcallFp getUpcallFunction (void);

Returns The upcall callback method associated with this upcall handler.

Description Use this method if your application dynamically changes upcall service func-
tion callbacks. These callbacks must be defined in the ACE manager object.
Intel Confidential Chapter 3: Host API 93

Revision 2.3, May 2000

• • • • •

UpcallHandler Class

•
94 Chapter 3: Host API Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 4

• • • • •
Action Services Library

This chapter describes the Action Services Library (ASL). You use this set of C++
library functions in action code in the accelerator module portion of your appli-
cation. Action code uses ACEs to perform packet processing and to direct
packet flow.

This chapter contains two parts:

n An introduction to the classes and functions of the ASL API by functional
area:
l “Initialization” on page 97
l “Action Functions” on page 97
l “Packet Moving Classes” on page 97
l “String Search Classes” on page 98
l “Message Support Classes” on page 99
l “Time Support Classes” on page 100
l “Statistical Support Class” on page 101
l “Set Management Classes” on page 101
l “Memory Management Classes and Functions” on page 103
l “Interface Management Classes” on page 105
l “Base Classes” on page 105

n An alphabetical listing of the classes and functions with complete details:
l “The Action Services Library (ASL) API” on page 107

Overview

The Action Services Library (ASL) provides support for developing network
applications. The ASL:

n Provides a basic class framework for representing network data packets (the
Buffer class), and for sending them to different destinations on the network
(the Target class).
Intel Confidential Chapter 4: Action Services Library 95

Revision 2.3, May 2000

• • • • •

Overview

•
n Together with the Network Classification Language (NCL) and the host
API, supports the ACE structure; message sending using upcalls, down-
calls, and crosscalls; and the association of arbitrary data with packets using
sets and searches.

n Provides support for some basic system services, such as timers, statistical
counters, and memory management.

TCP/IP
Support

Extensions to the ASL provide support for action code to handle many TCP/IP
functions such as IP fragmentation and reassembly, network address transla-
tion (NAT), and TCP connection monitoring, including stream reconstruction.

n For information on the TCP/IP extensions, see Chapter 5, “ASL Extensions
for TCP/IP.”

Environmental
Restrictions

Action code is downloaded from the host into the Policy Accelerator, an envi-
ronment in which some customary services of a full programming environment
are not available. The following services are not available to the action code part
of an application:

n Floating-point math

n File system access

n Multithreading

The IX-API SDK provides all portions of the ANSI Standard C and C++
libraries that do not conflict with these environmental restrictions. See the
documents Installing the IX-API SDK and IX-API SDK Release Notes for specific
information on which tools and compilers are supported.

Include Files To use all ASL classes except the string search classes, include the following
header file in your code:

#include <NBaction/NBaction.h>

To use the string search classes, include the following header file in your code:

#include <NBaction/NBStringSearch.h>

For more information, see “String Search Classes” on page 98.
96 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Initialization
Initialization

You must provide a top-level initialization function in your action code that
creates an ACE object using the passed parameters. The Policy Accelerator calls
this function immediately after receiving the NCL and action code from the
host.

For more information on the syntax and usage, see “Initialization Function” on
page 172.

Action Functions

The ASL provides the following functions that you can call directly in the action
part of a rule in NCL:

You can also define your own action functions, using a prescribed syntax; see
“Action Functions” on page 115.

Packet Moving Classes

Most applications contains actions that specify packet disposition. Applications
can move packets by simply passing or dropping them, or can take more
complex actions, such as splitting incoming packets into one of several
outgoing packet streams.

Function Description

init_actions Function Initializes the Policy Accelerator portion of the net-
work application by constructing the specified ACE
object.

Function Description

action_pass Function Routes a packet to the ACE’s pass target.

action_drop Function Routes a packet to the ACE’s drop target.
Intel Confidential Chapter 4: Action Services Library 97

Revision 2.3, May 2000

• • • • •

String Search Classes

•
Use the following classes when moving packets:

String Search Classes

The ASL provides a high-performance string search facility that allows you to
search for strings within one or more packet buffers. You can search for occur-
rences of a constant string, or for all strings that match a regular expression. You
can search the buffer or buffers for matches to several search strings at once.
You use a tag or identifier to determine which of several search strings matches
a found string.

String Search
Management

When you plan to use the string search facility in an ACE:

n You must specify the ACE_STRINGSEARCH flag in the argAceMode argument
when you construct the AceManager object in the host module for that ACE.

n The ACE object in the accelerator module must contain a reference to the
string search context and engine objects.

For more information on ACE managers, see “Application and ACE Manage-
ment Classes” in Chapter 3, “Host API.”

Initiating and
Continuing
Searches

You initiate a search using the SearchBuffer method, passing the current
packet buffer with a new or reset context object. Typically, an action function
calls this method.

If the context object specifies that the search can span multiple buffers, and if a
search is already in progress for that context, the SearchBuffer passes a new
buffer to the ongoing search. You can maintain multiple searches simulta-
neously, as long as each search is associated with its own context object.

Class Description

Ace Class Represents an ACE in the Policy Accelerator. Passes and drops
packet buffers.

Buffer Class Represents packet information in buffers.

Target Class Represents packet destinations in ACEs on the Policy
Accelerator.
98 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Message Support Classes
You provide callback functions to act on the results of the search, to be invoked
each time a matching string is found (a per-match callback) or each time a
search is completed for a buffer (a per-buffer callback). The per-buffer callback
determines how to dispose of the buffer.

Search
Operating
Modes

String searches are performed asynchronously. You must disable the search
mechanism while you specify search strings or set other search parameters.
When the search engine cannot execute an action immediately, it notifies the
application of completion by invoking a callback function, which you provide.

String Search
Classes

Use the following classes to search for strings in packet buffers:

NOTE: To use the string search classes, include the following header file in
your code:

#include <NBaction/NBStringSearch.h>

For More
Information

See Chapter 10, “Finding Strings in Packets,” in Developing Applications Using
the IX-API SDK

Message Support Classes

Applications frequently need to pass configuration changes from the host to a
Policy Accelerator or pass summary information back. The ASL provides
access to the asynchronous messaging system, in the form of Upcall and Down-
callHandler objects. The ASL also provides the Message and MessageBlock
classes for constructing messages.

Because the messaging system is asynchronous, you supply a callback function
in each message handler object, which is executed when the message is
received.

Class Description

NBStringSearchEngine Class Specifies search strings and initiates searches.

NBSearchContext Class Configures string searches and maintains a multi-
ple-buffer search context.

NBStringMatchReport Class Allows access to the results of a string search in a
buffer.
Intel Confidential Chapter 4: Action Services Library 99

Revision 2.3, May 2000

• • • • •

Time Support Classes

•
Use network-ordered storage classes when passing multibyte integers in
messages; see “Byte Order and Intermodule Communication” in Chapter 2,
“System Types and Methods.”

Use the following classes to create and send messages between the host and
Policy Accelerator or between two ACEs in the same or different Policy Accel-
erators:

For More
Information

See Chapter 8, “Communication Within an Application,” in Developing Applica-
tions Using the IX-API SDK

Time Support Classes

The time support classes provide for the observation of time, scheduling of
events, and correlation of arbitrary counts with time to provide useful reports
for both packet rates and data rates.

Use the following classes to schedule and track events:

Class Description

Crosscall Class Sends messages from this ACE to another ACE in the
same or another Policy Accelerator.

CrosscallHandler
Class

Directs crosscall messages from another ACE to a ser-
vice function in this ACE.

DowncallHandler Class Directs downcall messages from the host to a service
function in the Policy Accelerator.

Message Class Encapsulates data as messages to send in upcalls and
crosscalls.

MessageBlock Class Encapsulates a storage area within the Policy
Accelerator memory for future call messages.

Upcall Class Sends messages from the Policy Accelerator to the host.

Class Description

Event Class Schedules and cancels events as necessary.

Rate Class Tracks event rates and bandwidths so you can watch
for rates that exceed desired values.

Time Class Handles time values.
100 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Statistical Support Class
Statistical Support Class

The Policy Accelerator maintains counters of a variety of network traffic events
on the MAC interfaces of the Policy Accelerator, using RMON block counters.
You can use the counters to construct RMON groups and MIBs. You access
these counters and control the query rate using the NBRmon class:

Set Management Classes

The ASL and Network Classification Language (NCL) together support data
tables called sets, which are associated with named searches. Sets and searches
are initially created according to definitions in NCL, as described in “Sets and
Named Searches” on page 403. You generate action code directly from these
definitions using the NCL compiler, as described in “Synchronizing NCL with
Action Code” on page 411. The compiler generates a header file with class defi-
nitions that correspond to the NCL definitions. For each set setname, the NCL
compiler creates a subclass of the Set class named Set_setname, and a
subclass of the Element class named Elt_setname.

Declaring Sets To use the sets and searches that you define in NCL, you must do the following
things in your action code:

l Include the generated header file containing the set, element, and search
class definitions.

l Extend those class definitions in further subclasses to add the function-
ality you want. It is best to do this in a file other than the generated
header file, as the header file can be overwritten if you regenerate it.

l Create an object of the customized set subclass as part of the ACE object.
Add a set declaration for each set to your subclass of the ACE class, with
the same name that you declared for that set in the NCL file. See
“Set_setname Class” on page 256 for an example.

Searches on
Sets

When you generate the set header file from the NCL file, the NCL compiler
creates an instance of the Search class for each defined search, to contain the
search result. Both the search and its ASL result object are named in the form
setname.searchname.

Class Description

NBRmon Class Collects statistics on network traffic events.
Intel Confidential Chapter 4: Action Services Library 101

Revision 2.3, May 2000

• • • • •

Set Management Classes

•
For each incoming packet, the Policy Accelerator tries every search defined in
the NCL file. If the requires clause succeeds, the Policy Accelerator executes
the search and stores the result in the Search object. The execution of a search
in NCL determines whether the incoming packet has a matching set element.

A rule can refer to the search name on either the predicate side or the action
side.

n On the predicate side, the search name acts as a Boolean expression that is
TRUE when the search was executed and succeeded, and is FALSE if the
search was not executed or failed.

n When a search name appears on the action side, the action function can
access the corresponding search object to find the search result:
l For a successful search, the search object provides a pointer to the

element that was located.
l On failure, the search object provides a pointer to a location at which an

element can be inserted in the set.

See “Sets and Named Searches” on page 403 for more information about
searching sets.

Set Elements For each named set, the NCL compiler constructs a subclass of the Element
class, named Elt_setname, whose new operator creates a member with the
proper keys. Keys are stored as network-byte-order 32-bit unsigned integers.
(See “Search Key Format” on page 102.)

To define the data associated with the element, you extend this class, over-
loading the constructor to initialize custom data fields. The elements stored in
each set are members of your subclass. You populate a set through actions that
create new elements or manipulate existing elements.

It is very important that the memory allocated for set elements be strictly
aligned and offset from cache boundaries. For this reason, you always use the
new operator to create set elements, rather than using the constructor directly.
Similarly, you use the delete operator to remove elements from the set, rather
than the destructor method, since delete cleans up internal references to the
element.

Search Key
Format

The search keys in a set element are compared to field values from network
packets, as specified by the search definition in NCL. Keys are stored as
network-byte-ordered 32-bit integers. When you use a shorter field as a key for
set elements, it is zero-extended to 32 bits before being converted from host to
network order.
102 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Memory Management Classes and Functions
Because the protocol field accessors generated from NCL code are defined to
return results in network byte order, you can set or compare key values directly
to protocol field values.

In the following example, four keys of different sizes are defined for elements
of the set myset:

uint8 proto = 16;
uint16 ident = 1234;
nuint16 code = 0xC0DE; // 0xC0, 0xDE
uint32 here = 0x0A000203; // 10.0.2.3

Elt_myset * elt = new Elt_myset (here, code, ident, proto);

Set, Search,
and Element
Classes

Use the following classes to create and manage sets and their elements:

For More
Information

See Chapter 9, “Using Sets of Data to Classify Packets,” in Developing Applica-
tions Using the IX-API SDK

Memory Management Classes and Functions

The ASL provides some facilities for controlling and monitoring memory usage
in the Policy Accelerator.

Class Description

Element Class The base class for set element objects.

Elt_setname Class The NCL compiler creates an Element subclass
Elt_setname for each named set to represent ele-
ments of that set. You create further subclasses and
use them to create and manipulate elements of the
named set.

Search Class Allows access to the results of a search. Points to a
found element, or to a location to insert a new ele-
ment.

Set Class The base class for set objects.

Set_setname Class The NCL compiler creates a Set subclass
Set_setname to represent each named set. Use to
search for elements in a set.
Intel Confidential Chapter 4: Action Services Library 103

Revision 2.3, May 2000

• • • • •

Memory Management Classes and Functions

•
Controlling
Memory Usage

The memory for the Policy Accelerator is divided into a stack (for system
usage), a heap (used for data sets), and packet buffer memory. You can, to some
extent, control how available memory is partitioned between the heap and
packet buffer memory.

The pool of memory allocated to packet buffers starts out at a value large
enough for the system to function, and grows when appropriate. You can limit
the total number of network packet buffers in the system by editing theconfig-
uration file SDKinstallpath/hpex/hpex.cfg to insert the following directive:

maxbuf number

This sets a soft limit to the number of network packet buffers for the Policy
Accelerator. Because the Policy Accelerator allocates a fixed minimum and
always increases it by a fixed amount, the actual number of packet buffers is not
round and the system may exceed this limit.

If the configuration variable is not set, the amount of memory being used for
packet buffers will grow on demand up to half of all memory, or until it meets
the system heap growing in the other direction.

Monitoring
Memory Usage

A set of methods in the Buffer class allow you to monitor the number of free
buffers available for packet flow. See “Buffer Class” on page 123. In addition,
you can use the following class to monitor buffer memory usage:

Use the following global functions to monitor heap size and activity at run time:

Class Description

Backlog Class Monitors packet backlogs in buffer memory.

Function Description

getmemstatvalues
Function

Retrieves the current total used and free memory on the
heap.

mstats Function Displays memory usage statistics for the heap.
104 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Interface Management Classes
Interface Management Classes

The ASL defines the following classes that help you monitor the MAC inter-
faces of a Policy Accelerator:

Base Classes

The ASL defines base classes from which the user-level classes are derived.
These base classes implement the architectural, structural, and referential
features needed by most classes.

Memory
Allocation

The customary memory allocation primitives are available from the standard
libraries (that is, C programmers can use malloc, calloc, realloc, and free:
C++ programmers can use the new and delete operators).

To accelerate memory allocations when many objects of a fixed size are being
rapidly allocated and freed, the ASL keeps a private list of objects to be recy-
cled. This list is implemented using the Pool and Tagged classes. The Dynamic
class is a base class that overloads the new and delete operators to make use of
this memory management scheme. Most of the ASL classes are descended from
the Dynamic class.

The following base classes are used in allocating memory for objects in the
Policy Accelerator:

Class Description

NBInterfaceProp Class Manages the specific properties of a MAC interface,
such as its MAC address, speed, and duplex capabil-
ity.

NBLinkwatch Class Monitors the network connection for a MAC interface.

Class Description

Dynamic Class Provides fast pool allocations for your objects.

Pool Class Used by the Tagged class to quickly allocate objects of fixed
sizes at specified offsets from specified power-of-two align-
ments.

Tagged Class Used by the Dynamic class to free tagged objects into the
appropriate memory pool.
Intel Confidential Chapter 4: Action Services Library 105

Revision 2.3, May 2000

• • • • •

Base Classes

•
Name Space Additional base classes implement the namespace that associates objects in the
accelerator module with their counterparts and managers in the host module.

n Some objects in the Policy Accelerator require managers or other related
objects on the host. The Dualobj base class implements the connection
between these paired objects. Objects that are paired in the host module and
accelerator module are associated with each other by having the same
dictionary name. For more information, see Appendix C, “Policy
Accelerator Name Space.”

n The Name and Named base classes implement an internal name space.

n Objects descended from the Linked base class can be ordered in a circular
linked list, in which you can access a next and previous object.

Many ASL classes are derived from the following base classes:

Class Description

Dualobj Class Determines which objects in the Policy Accelerator correspond
with which objects in the host.

Name Class Maintains an internal name database for objects.

Named Class Assigns internal names to objects.

Linked Class Links objects with each other to form a ring.
106 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 The Action Services Library (ASL) API
The Action Services Library (ASL) API

This section provides a detailed description of each ASL class and function.

n Classes are listed in alphabetical order. Within each class, the constructor
and destructor for that class are listed first, followed by the remaining
methods in alphabetical order.

n Global functions are grouped by usage, and are described in the sections
“Initialization Function‚” “Action Functions‚” and “Memory Management
Functions.”

Include Files To use these classes, include the following header file in your code:

#include <NBaction/NBaction.h>

Classes and
Functions

The ASL API contains the following classes and functions:

Class/Function group Description

Ace Class (page 110) Represents an ACE in the Policy Accelerator.
Passes and drops packet buffers.

Action Functions (page 115) action_drop Function: Routes a packet to the
ACE’s drop target.

action_pass Function: Routes a packet to the
ACE’s pass target.

Backlog Class (page 119) Monitors packet backlogs in buffer memory.

Buffer Class (page 123) Represents and manipulates packet information in
buffers.

Crosscall Class (page 139) Sends messages from this ACE to another ACE in
the same or another Policy Accelerator.

CrosscallHandler Class
(page 144)

Directs crosscall messages from another ACE to a
service function in this ACE.

DowncallHandler Class
(page 150)

Directs downcall messages from the host to a ser-
vice function in the Policy Accelerator.

Dualobj Class (page 155) Keeps track of which objects in the Policy
Accelerator correspond with which objects in the
host. A base class.
Intel Confidential Chapter 4: Action Services Library 107

Revision 2.3, May 2000

• • • • •

The Action Services Library (ASL) API

•
Dynamic Class (page 157) Provides fast memory pool allocations for objects. A
base class.

Element Class (page 159) Represents set elements. A base class.

Elt_setname Class
(page 160)

Represents set elements. The NCL compiler creates
an Element subclass Elt_setname for each
named set to represent elements of that set. You
create further subclasses and use them to create
and manipulate elements of the named set.

Event Class (page 166) Schedules and cancels events.

Initialization Function
(page 172)

init_actions Function: Initializes the Policy
Accelerator portion of the network application by
constructing the specified ACE object.

Linked Class (page 174) Links objects with each other to form a ring. A base
class.

Memory Management Functions
(page 178)

getmemstatvalues Function: Retrieves the cur-
rent total used and free memory on the heap.

mstats Function: Displays memory usage statistics
for the heap.

Message Class (page 180) Encapsulates data to send in upcalls and crosscalls.

MessageBlock Class
(page 184)

Encapsulates a storage area within the Policy
Accelerator memory for future call messages.

Name Class (page 191) Maintains an internal name database for objects. A
base class.

Named Class (page 194) Assigns internal database names to objects. A base
class.

NBInterfaceProp Class
(page 197)

Manages the specific properties of a MAC interface,
such as its MAC address, speed, and duplex capa-
bility.

NBLinkwatch Class
(page 205)

Monitors the network connection for a MAC inter-
face.

NBRmon Class (page 208) Collects statistics on network traffic events.

NBStringMatchReport Class
(page 216)

Accesses the results of a string search in a buffer.

Class/Function group Description
108 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 The Action Services Library (ASL) API
NBSearchContext Class
(page 222)

Configures string searches and maintains a multi-
ple-buffer search context.

NBStringSearchEngine
Class (page 233)

Specifies search strings and initiates searches.

Pool Class (page 245) Quickly allocates objects of fixed sizes at specified
offsets from specified power-of-two alignments. A
base class, used by the Tagged class.

Rate Class (page 248) Tracks event rates and bandwidths.

Search Class (page 251) Gets results of a search. Points to a found element,
or to a location to insert a new element.

Set Class (page 255) Represents sets. A base class.

Set_setname Class
(page 256)

Represents sets. The NCL compiler creates a Set
subclass Set_setname to represent each named
set. Use to search for elements in a set.

Tagged Class (page 262) Frees tagged objects into the appropriate memory
pool. A base class, used by the Dynamic class.

Target Class (page 265) Represents packet destinations in ACEs on the Pol-
icy Accelerator.

Time Class (page 268) Represents and handles time values.

Upcall Class (page 273) Sends messages from the Policy Accelerator to the
host.

Class/Function group Description
Intel Confidential Chapter 4: Action Services Library 109

Revision 2.3, May 2000

• • • • •

Ace Class

•
Ace Class

An Action/Classification Engine (ACE) is the primary object for processing
packets through an IX-API SDK application. It is a dual object, represented on
the host side by the AceManager class, and on the Policy Accelerator side by the
Ace class. Ace objects in the Policy Accelerator contain the state information for
each ACE.

To simplify common operations, the base Ace class provides basic pass and
drop methods that you can call from any action function. The ASL also defines
functions that you can call directly from the action part of an NCL rule,
action_pass function and action_drop function, that serve the same
purpose. Both the methods and the functions send packets through to the
ACE’s pass or drop targets.

You normally define subclasses of the Ace class to extend the functionality.

System ACEs The following ACEs are defined by the system, and are always available:

Host

ACE group

Ace

AceManagerAceManager

Ace

ACE
block

Accelerator
module

module

From packet interface 1 /nbhwpe0/FromInterface:nbhwpe0A/Interface/pass

To packet interface 1 /nbhwpe0/ToInterface:nbhwpe0A/Interface
110 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Ace Class
For more information on system ACEs, see Appendix C, “Policy Accelerator
Name Space.”

The Ace class contains the following methods:

Class
Derivation

The Ace class is derived from the Named class.

To host stack bound to interface 1 /nbhwpe0/ToStack:nbhwpe0A/Stack

From host stack bound to interface 1 /nbhwpe0/FromStack:nbhwpe0A/Stack/pass

From packet interface 2 /nbhwpe0/FromInterface:nbhwpe0B/Interface/pass

To packet interface 2 /nbhwpe0/ToInterface:nbhwpe0B/Interface

To host stack bound to interface 2 /nbhwpe0/ToStack:nbhwpe0A/Stack

From host stack bound to interface 2 /nbhwpe0/FromStack:nbhwpe0B/Stack/pass

Method Description

Ace Constructor Instantiates the class.

drop Method Marks the buffer to send to the ACE’s drop target.

pass Method Marks the buffer to send to the ACE’s pass target.

From this class The Ace class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked

Dynamic

Named

Ace
Intel Confidential Chapter 4: Action Services Library 111

Revision 2.3, May 2000

• • • • •

Ace Class

•
Example The following example is taken from the BasicApp demo application. The
action file defines an ACE subclass, NBBasicAce, which contains an upcall
object, and declares a method in that class that will create and send a message
in an upcall:

class NBBasicAce : public Ace {
public:

NBBasicAce (ModuleId id, char* name, Image* obj);
void peekPacketUpcall (Buffer *buf);
int packetCounter;
nuint32 msg;

protected:
Upcall peekPacketUpcallHandle;

};

The constructor for the ACE subclass creates the upcall object as well as the
ACE object:

NBBasicAce::NBBasicAce (ModuleId id, char* iname, Image* iobj):
Ace (id, iname, iobj),
peekPacketUpcallHandle (id, this, "peekPacketUpcall")

{
packetCounter = 0;

}

The intialization function calls the constructor to create the ACE object:

INITF init_actions(void* id, char* name, Image* obj)
{

return new NBBasicAce(id, name, obj);
}

See Also n AceManager Class in Chapter 3, “Host API.”

n “The Object Framework” on page 49 of Developing Applications Using the IX-
API SDK

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal
names.

From this class The Ace class inherits
112 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Ace Class
Ace Constructor

Creates an ACE object and registers it with the Policy Accelerator.

Ace (ModuleId id,
char * name,
Image * obj);

Returns A reference to the newly created object.

Description You customize this constructor for your subclasses, then use the new operator
in the body of the action code’s initialization function to create an Ace object for
newly downloaded NCL rules and action code. See “Initialization Function” on
page 172.

drop Method

Marks the buffer to send to the ACE's drop target.

int drop (Buffer * b);

Returns The constant RULE_TOOK (see “Custom Action Functions” on page 117).

Argument Description

id The module identification number, assigned by the Resolver.

name The dictionary name of the ACE. This must be the same as the dic-
tionary name of the associated ACE manager object in the host
module.

obj The object containing the NCL classification rules and action code
for this ACE.

Argument Description

b The pointer to the buffer containing the packet to send.
Intel Confidential Chapter 4: Action Services Library 113

Revision 2.3, May 2000

• • • • •

Ace Class

•
Description Sending the packet to the ACE’s drop target frees the Buffer object, unless the
buffer’s reference count is greater than 0, or unless the drop target has been
bound to an ACE.

By default, all packets that the application does not explicitly dispose of are sent
to the drop target.

See Also pass Method, action_drop Function, Buffer Class

pass Method

Marks the buffer to send to the ACE's pass target.

int pass (Buffer * b);

Returns The constant RULE_TOOK (see Custom Action Functions on page 117).

Description Sending the packet to the ACE’s pass target results in the packet being either
processed further by another ACE or transmitted to a network or host stack.

See Also drop Method, action_pass Function

Argument Description

b A pointer to the buffer containing the packet to send.
114 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Action Functions
Action Functions

The ASL provides two functions that you can call directly in the action portion
of a rule in NCL. You can also define your own action functions using the
prescribed syntax.

Example The following example is taken from the BasicApp demo application. The
action function action_all calls a method in the ACE subclass that creates a
message from the packet buffer and sends it to the host in an upcall:

ACTNF action_all (Buffer* buf, NBBasicAce* ace)
{

ace->peekPacketUpcall (buf);
return RULE_CONT;

}

See Also Chapter 7, “Acting on Packets in Your Action Code,” in Developing Applications
Using the IX-API SDK

Function Description

action_drop Function Routes a packet to the ACE’s drop target.

action_pass Function Routes a packet to the ACE’s pass target.

Custom Action Functions Define your own action functions to perform any action you
want.
Intel Confidential Chapter 4: Action Services Library 115

Revision 2.3, May 2000

• • • • •

Action Functions

•
action_drop Function

Routes a packet to the ACE’s drop target.

NCL Usage rule rule-name { bool-expr } { action_drop () }

Returns The constant RULE_TOOK (see “Custom Action Functions” on page 117).

Description The Policy Accelerator makes this action available to all ACEs for use when a
packet should be explicitly routed to the ACE's drop target. You can name this
action directly within the ACE's NCL source code in a rule association with a
Boolean predicate.

See Also drop Method in Ace Class

action_pass Function

Routes a packet to the ACE’s pass target.

NCL Usage rule rule-name { bool-expr } { action_pass () }

Returns The constant RULE_TOOK (see “Custom Action Functions” on page 117).

Description The Policy Accelerator makes this action available to all ACEs for use when a
packet should be explicitly routed to the ACE's pass target. You can name this
action directly within the ACE's NCL source code in a rule association with a
Boolean predicate.

See Also pass Method in Ace Class
116 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Action Functions
Custom Action Functions

You define additional action functions to be executed when a rule predicate is
satisfied. The format for an action function is the same as that of the provided
functions, action_drop and action_pass.

An action function that you define must conform to the following prototype:

(ACTNF) action_name (Buffer * buf,
Ace * ace,
args);

Returns An action function that you define must return one of the following constant
values:

Argument Description

buf A pointer to the packet buffer to be processed. (Supplied automati-
cally, not passed by the NCL rule.)

ace A pointer to the ACE that is passing the buffer. (Supplied automati-
cally, not passed by the NCL rule.)

args Define additional arguments as needed. The NCL rule must pass
values of the correct type for all additional arguments defined for the
action function it specifies.

An action function can have a maximum of 31 arguments, and the
call stack is limited to 87 arguments.

NOTE: Due to limitations in the gcc compiler, it is recom-
mended that you avoid the use of type bool
arguments in action functions. Use unsigned int
instead.

Return Code Description

RULE_DONE Return RULE_DONE to terminate processing of rules and actions
within the context of the current ACE, for example, when a buffer
has been sent to a target or stored for later processing. This value
does not indicate whether the action has modified the packet.

RULE_TOOK Return RULE_TOOK to terminate processing of this packet within
this ACE if the action has not modified the packet starting loca-
tion, size or contents, but has designated a target for the packet
to flow through.
Intel Confidential Chapter 4: Action Services Library 117

Revision 2.3, May 2000

• • • • •

Action Functions

•
CAUTION: If your action function does not return one of these codes, you get a
compiler warning. If you ignore this warning, your application is
corrupted when the action function returns, and the corruption may
not be detectable.

NCL Usage To call your action function from a rule in NCL, use the following syntax:

rule rule-name { bool-expr } { action_name (args...) }

The buf and ace arguments are supplied automatically; you do not pass them
in the rule. The rule must pass values of the correct types for any additional
arguments you have defined for the action function.

See Also n action_drop Function, action_pass Function

n “Rules and Actions” on page 406 in Chapter 6, “Network Classification
Language.”

n Chapter 7, “Acting on Packets in Your Action Code,” in Developing Applica-
tions Using the IX-API SDK

RULE_CONT Return RULE_CONT if the action has only observed the buffer,
and additional rules and actions within the context of the current
ACE remain to be processed.

RULE_DEFER Return RULE_DEFER if you want to modify a packet within a
buffer but the buffer notes that the packet is currently busy else-
where.

Return Code Description
118 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Backlog Class
Backlog Class

Use this class to monitor the various backlogs in packet flow for different ACEs.
Backlogs occur when packets have finished one part of a processing cycle and
are waiting for another part. For each ACE, there can be backlogs:

n between the classification of a packet and the execution of the required
action on that packet

n between the time when a packet is transmitted and when its buffer memory
is recovered

Use the size method to find out how many backlog counters are available, then
the names method to find out which backlogs are counted. You can get either
the estimated backlogs, using the est method, or the actual backlogs at the
moment of making the now method call. It takes somewhat longer for the
system to calculate the actual backlogs.

Because all of the retrieval methods are static, you do not need to instantiate this
class.

The Backlog class contains the following methods:

The Backlog class is not derived from any other class.

Method Description

est Method Retrieves estimates of backlog counts.

names Method Retrieves names of available backlog counts.

now Method Retrieves current backlog counts.

size Method Returns the number of available backlog counts.
Intel Confidential Chapter 4: Action Services Library 119

Revision 2.3, May 2000

• • • • •

Backlog Class

•
est Method

Retrieves estimates of backlog counts.

static int est (int * ra,
int size);

Returns The number of estimates written to the array.

Description This method makes estimates of the backlog counts, based on recent values. It
places the estimated counts, up to the specified number, in the specified array.
It returns the number of estimates actually written to the array.

The estimated values are the values most recently calculated in the normal
processing path at the time when the object checked with the hardware to get
index values. The first counter is an overall total.

This call is likely to be faster than the now method.

names Method

Retrieves names of available backlog counts.

static int names (char ** ra,
int size);

Returns The number of names written to the array.

Argument Description

ra [OUT] A pointer to an array of integers that, on return, contains the
backlog count estimates.

size The maximum number of pointers to write.

Argument Description

ra A pointer to an array of strings that, on return, contains the backlog
names.

size The maximum number of pointers to write.
120 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Backlog Class
Description This method places pointers to the names of the backlogs that can be counted,
up to the specified number, in the specified array. It returns the number of
pointers actually written to the array.

The name describes which ACE the backlog is in and which process it belongs
to (classification/action or disposition/recovery). The first counter is an overall
total.

now Method

Retrieves the current backlog counts.

static int now (int * ra,
int size);

Returns The number of pointers written to the array.

Description This method places the exact current backlog counts, up to the specified
number, in the specified array. It returns the number of counts actually written
to the array.

The exact values are calculated during the call. The first counter is an overall
total. This call is likely to take longer than the est method, but provides precise
information.

Argument Description

ra A pointer that an array of integers that, on return, contains to the cur-
rent backlog counts.

size The maximum number of counts to write.
Intel Confidential Chapter 4: Action Services Library 121

Revision 2.3, May 2000

• • • • •

Backlog Class

•
size Method

Retrieves the number of available backlog counts.

static int names ();

Returns The number of available backlog counters, including the total.

Description This method returns the number of backlog counters that can be obtained,
including the total counter, which is always first.
122 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Buffer Class
Buffer Class

Use this class to create and manipulate information in buffers. The network
packet buffer is the basic unit of network data in the IX API. All data received
from the network is received in buffers. All data transmitted on the network
must be properly formatted into buffers. You allocate the buffer and declare a
pointer to a new Buffer object using the new operator.

You can manually construct packets using this class. After creating a Buffer
object using the new operator, you allocate space for packet data within the
buffer using the prepend and append methods. When you first create the buffer
object, the data offset points to the area where the IP datagram would start.

n To add data for any protocol header encapsulating the IP datagram (such as
an ether header), use the prepend method.

n To add data for IP or any protocol encapsulated by IP, use the append
method.

The Buffer class is not derived from any other class. It contains the following
methods:

Method Description

append Method Adds space to the end of the packet, after the existing
data.

busy Method Indicates whether another action is using the buffer.

decref Method Decrements the reference counter for the buffer by
one; the counter keeps track of whether an action is
using the buffer.

headerBase Method Identifies the byte address of the first network header
in the packet.

headerType Method Gets a reference to the type of packet header.

incref Method Increments the reference counter for the buffer by one;
the counter keeps track of whether an action is using
the buffer.

interfaceNum Method Finds the source of the buffer.

interfaceType Method Finds the type of the source of the buffer.

new Operator Creates a new buffer.
Intel Confidential Chapter 4: Action Services Library 123

Revision 2.3, May 2000

• • • • •

Buffer Class

•
Example This example shows how to manually construct packet buffers on the Policy
Accelerator using data sent from the host in a downcall, as in the Loopback
sample application.

The example copies packet data (l1 bytes long, including both the MAC header
and the IP datagram) that the accelerator module has received from a host
downcall. The data is expected to be an IP datagram, so the function first allo-

next Method Gets a reference to a field in the network packet buffer
which applications can use to chain buffers together.

packetPadHeadSize
Method

Gets the number of bytes of buffer space available at
the beginning of the packet.

packetPadTailSize
Method

Gets the number of bytes of buffer space available at
the end of the packet.

packetSize Method Gets the number of bytes in the network packet.

prepend Method Adds space to the front of the packet, before the exist-
ing data.

rxTime Method Identifies a Time object that corresponds to the times-
tamp taken when the packet was received from the
network.

takable Method Finds the current number of free network packet buff-
ers.

takable_clr Method Resets free buffer peak detector to the current number
of free buffers.

takable_max Method Finds the maximum number of free buffers since the
peak value was reset.

takable_min Method Finds the minimum number of free buffers since the
peak value was reset.

takable_set Method Updates the minimum and maximum values for the
free buffer list.

trim_head Method Discards data from the front of the packet.

trim_tail Method Discards data from the end of the packet.

txTime Method Gets a reference to a Time object that corresponds to
the timestamp taken when the packet was transmitted
to the network.

Method Description
124 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Buffer Class
cates space for the MAC header by prepending 14 bytes (the length of the
header) to the buffer. It allocates space for the rest of the packet data (the IP
datagram) using append. The function uses memcpy to copy the packet data into
the appropriate location in the buffer.

void NBloopAce::packetDowncallHandler (Message *m)
{

// get length of packet in bytes
int l1 = m->len1 ();
// get packet data
char *m1 = m->msg1 ();

if (m1 && l1 > 14) { // valid message contents
Buffer *buf = new Buffer;
if (buf) { // got a buffer

 // allocate space in buffer for ethernet
 // MAC header(14 bytes) and IP datagram
 // The packet data is l1 bytes long,
 // including the header and the datagram

char *ps = buf->prepend (14);
char *pe = buf->append (l1 - 14);
if (ps && pe) { // prepend and append went OK

// copy packet data into Buffer
memcpy (ps, m1, l1);
pass (buf);
buf->decref ();

}
else { // prepend or append problem - dump buffer

printf ("[ERROR] Got downcall(1)\n");
buf->decref ();
buf = 0;

}
}
else

printf ("[ERROR] Got downcall(2)\n");
}
else

printf ("[ERROR] Got downcall(3) m1 = %p, l1 = %d\n",
 m1, l1);

// done with the message
m->done();

} //packetDowncallHandler
Intel Confidential Chapter 4: Action Services Library 125

Revision 2.3, May 2000

• • • • •

Buffer Class

•
append Method

Adds space to the end of the packet, after the existing data.

char * append (size_t bytes);

Returns Returns a pointer to the newly appended storage. If there is insufficient
padding space at the end of the packet, returns NULL and does not add any of
the data.

Description Prepares a packet to receive additional data after the existing data. For example,
if you want to add an IP datagram payload to a packet containing only an IP
header, you can append it to the packet. Bookkeeping values are updated to
extend the packet space appropriately.

See Also prepend Method

busy Method

Indicates whether a previous action is using the buffer.

int busy ();

Returns TRUE if the action should not change the contents of the buffer. FALSE if applied
to a newly allocated buffer.

Description Examines the reference counter, returning TRUE if the reference count indicates
that the currently executing action function should not change the contents of
the buffer. If busy is applied to a newly allocated buffer, it returns FALSE. After
incref has been applied to such a packet, busy returns TRUE.

Use this method in an action to determine whether a previous action has
(directly or indirectly) applied the incref method to the buffer. This is useful
when one action needs to maintain use of a packet temporarily (to send a copy

Argument Description

bytes Number of bytes to append to the packet.
126 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Buffer Class
to the host using an upcall, for example), and another needs to modify the
packet; the second action can check if the buffer is busy, and if it is, return
RULE_RERUN. (See “Custom Action Functions” on page 117)

See Also decref Method, incref Method

decref Method

Decrements the reference counter for the buffer by one.

void decref ();

Returns Nothing.

Description The reference counter keeps track of whether an action is using the buffer. The
decref call undoes the effect of a corresponding incref call. When all incref
calls have been undone, the next call to decref allows the buffer to move on to
its next processing stage. Deferred actions or transfers can be executed. If no
deferred actions are waiting, the memory containing the buffer is freed.
Because the buffer can be freed immediately, never use a buffer pointer after
decref has returned.

If decref is applied to a newly allocated buffer, the buffer is freed.

Example The following code fragment retains a packet buffer until another arrives. It
then operates on both buffers in an unspecified way and sends the older buffer
onward while retaining the newer buffer for later use.

The call to incref prevents the new packet buffer from being turned over to the
normal modification routines and freed. This routine stores a pointer to the
buffer into a private data object. The call to decref means that this code no
longer requires the data in the previously saved packet buffer.

Buffer *old = ace->saved;
if (old != NULL) {

/* act on "old" and "buf" */
old->decref (); /* recycle "old" */

}
buf->incref (); /* prevent recycling "buf" */
ace->saved = buf; /* save it for later */

See Also busy Method, incref Method
Intel Confidential Chapter 4: Action Services Library 127

Revision 2.3, May 2000

• • • • •

Buffer Class

•
headerBase Method

Identifies the byte address of the first network header in the packet.

char * headerBase ();

Returns Returns a byte address.

See Also headerType Method, packetSize Method

headerType Method

Gets a reference to the type of packet header at the header offset location.

uint32 & headerType ();

Returns A reference to an integer encoding the type of packet header.

Description Only one header type code, zero, is currently defined. A header type of zero
specifies that the packet is an Ethernet packet, with decorations similar to those
that the Policy Accelerator MACs (media access controllers) attached to the
packet buffer. The decorations (receive status, receive timestamp, transmit
status, and transmit timestamp) are placed in the buffer along with the packet.

When using the base.proto field to construct headerType, you must specify
0x0001 for Ethernet packets and 0x0021 for IP datagrams.

See Also headerBase Method
128 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Buffer Class
incref Method

Increments the reference counter for the buffer by one.

void incref ();

Returns Nothing.

Description The reference counter keeps track of whether an action is using the buffer. This
method increments the reference counter for the buffer to prevent it from being
deleted, transferred to another ACE, transmitted to a network, moved to a host
stack, or modified by any action code that checks whether the buffer is busy.

A call to incref prevents a packet buffer from being turned over to the normal
modification routines and freed until a corresponding decref call is made. Use
this facility with care to make sure the buffers are properly freed when you are
finished with them.

See Also busy Method, decref Method

interfaceNum Method

Finds the source of the buffer.

uint16& interfaceNum ();

Returns A reference to the interface or ACE from which the buffer was received.

Description This method returns the enumerated value, or ACE tag, of the source of the
buffer, which can vary from session to session. Use the NBAppl object’s getTag
method in the host module to find the value corresponding to a binding in your
application. For example:

uint16 i1 = getTag
("\nbhwpe0\FromInterface:nbhwpe0A\Interface");

The host module must transfer these values to the accelerator module in a
downcall. In this case, you can compare the value returned by the inter-
faceNum method to the i1 value transfered from the host module to find out if
the buffer was received from interface A on nbhwpe0, the first installed Policy
Accelerator.
Intel Confidential Chapter 4: Action Services Library 129

Revision 2.3, May 2000

• • • • •

Buffer Class

•
See Also n interfaceType Method

n NBAppl::getTag Method and AceManager::getTag Method in
Chapter 3, “Host API.”

n Appendix C, “Policy Accelerator Name Space.”
130 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Buffer Class
interfaceType Method

Finds the source type of the buffer.

uint16& interfaceType ();

Returns A reference to the interface or ACE from which the buffer was received.

Description This method returns the interface type of the source of the buffer. Interface type
numbers are maintained by the Internet Assigned Numbers Authority (IANA).
For the latest values, refer to the following Web site:

ftp://ftp.isi.edu/mib/ianaiftype.mib

See Also interfaceNum Method

new Operator

Creates a new buffer.

Buffer * b = new buffer ();

Buffer * b = new buffer (*b);

Returns A reference to the newly created buffer instance. If no buffers are available,
returns a NULL pointer.

Description Use the standard C++ new operator to dynamically allocate buffers from the
pool of appropriately aligned and addressable memory.

n If you pass no argument, the allocated packet buffer contains a zero-length
packet starting at a word-aligned location with a moderately-sized head
pad area.

n If you pass a buffer pointer, the new packet buffer is allocated and initialized
to contain a copy of the packet from that buffer.

When the buffer is no longer required, use the method Buffer::decref() to
delete it. Do not use the delete operator.
Intel Confidential Chapter 4: Action Services Library 131

Revision 2.3, May 2000

• • • • •

Buffer Class

•
NOTE: If you allocate a buffer with the new operator, fill it in and send it on
(using a Target::take call, for example, or the Ace::pass or
Ace::drop methods), you must call the decref() method, or the
packet you constructed will never go anywhere.

Example class CloneAce : public Ace {
public:

Target clone_target;
CloneAce (ModuleId id, char *name, int tag)
: Ace (id, name, tag)
, clone_target (this, "clones")

};

This action function copies the buffer and sends the duplicate to the clone
target. The decref tells the support code to start processing the newly created
clone. If all network packet buffers are in use, new returns NULL. Be sure to check
for this.

action_clone (Buffer *buf, CloneAce *ace)
{

Buffer *clone = new Buffer (*buf);
if (clone) { //make sure buffer was allocated

ace->clone_target.take (clone);
clone->decref ();

}
return ace->pass (buf);

}

See Also decref Method, incref Method

next Method

Locates a field in the network packet buffer that applications can use to chain
buffers together.

Buffer &* next ();

Returns A reference to a pointer to another buffer.

Description The Policy Accelerator does not modify this field as buffers are passed among
the ACEs in a Policy Accelerator. An application can store a pointer to another
buffer in this field in order to maintain a sequence of buffers.
132 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Buffer Class
packetPadHeadSize Method

Gets the number of bytes of buffer space available for expansion at the begin-
ning of the packet.

size_t packetPadHeadSize ();

Returns A number of bytes.

See Also headerBase Method, headerType Method, packetPadTailSize Method,
packetSize Method, prepend Method, trim_head Method, trim_tail
Method

packetPadTailSize Method

Gets the number of bytes of buffer space available for expansion at the end of
the packet.

size_t packetPadTailSize ();

Returns A number of bytes.

See Also append Method, packetPadHeadSize Method, packetSize Method,
trim_head Method, trim_tail Method

packetSize Method

Gets the number of bytes in the network packet.

uint32 & packetSize ();

Returns A number of bytes.

See Also headerBase Method, headerType Method, packetPadHeadSize Method,
packetPadTailSize Method, trim_head Method, trim_tail Method
Intel Confidential Chapter 4: Action Services Library 133

Revision 2.3, May 2000

• • • • •

Buffer Class

•
prepend Method

Adds space to the beginning of the packet, before the existing data.

char * prepend (size_t bytes);

Returns A pointer to the newly prepended storage. If there is insufficient padding space
at the head of the packet, returns NULL and does not add any of the data.

Description Prepares a packet to receive additional data before the existing data. For
example, use this method to add a new Ethernet header to an IP fragment.
Bookkeeping values are updated to extend the packet space appropriately.

See Also append Method, headerBase Method, headerType Method, headerType
Method, packetPadHeadSize Method, packetPadTailSize Method,
packetSize Method

rxTime Method

Identifies a Time object that corresponds to the timestamp taken when the
packet was received from the network.

Time & rxTime ();

Returns A reference to a Time object.

Description The contents of this field are undefined if the packet was not received from a
network interface.

See Also txTime Method

Argument Description

bytes Number of bytes to prepend to the packet.
134 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Buffer Class
takable Method

Finds the current number of free network packet buffers.

static int takable ()

Returns A number of free packet buffers.

Description Use this method to monitor the packet buffer memory usage. You can use this
with the Backlog methods to determine whether enough memory is allocated
for packet buffers on the Policy Accelerator.

See Also Backlog Class

takable_clr Method

Resets free buffer peak detector to the current number of free buffers.

static void takable_clr ()

Returns Nothing.

Description Use this method to monitor the packet buffer memory usage. Use this with the
takable_max and takable_min methods to determine whether enough
memory is allocated for packet buffers on the Policy Accelerator.

See Also takable Method, takable_max Method, takable_min Method
Intel Confidential Chapter 4: Action Services Library 135

Revision 2.3, May 2000

• • • • •

Buffer Class

•
takable_max Method

Finds the maximum number of free buffers since the peak value was reset.

static int takable_max ()

Returns A number of free buffers.

Description Use this method to monitor the packet buffer memory usage. You can use this
with the takable_clr method to determine whether enough memory is allo-
cated for packet buffers on the Policy Accelerator.

See Also takable Method, takable_clr Method, takable_min Method

takable_min Method

Finds the minimum number of free buffers since the peak value was reset.

static int takable_min ()

Returns A number of free buffers.

Description Use this method to monitor the packet buffer memory usage. You can use this
with the takable_clr method to determine whether enough memory is allo-
cated for packet buffers on the Policy Accelerator.

See Also takable Method, takable_clr Method, takable_max Method
136 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Buffer Class
takable_set Method

Updates the minimum and maximum values for the free buffer list.

static void takable_set ()

Returns Nothing.

Description If you manipulate the size of the free packet buffer list directly by adjusting the
list pointer, you must use this method to update the minimum and maximum
values before you can continue to monitor free buffers.

See Also takable Method, takable_clr Method, takable_max Method,
takable_max Method

trim_head Method

Discards data from the beginning of the packet.

char * trim_head (size_t bytes);

Returns The starting address of the trimmed packet, or NULL if no data is left.

Description If the packet is large enough to be trimmed by the specified amount, the book-
keeping values are updated to reflect the shorter packet starting in a new place,
and the method returns the address of the start of the remaining packet. If the
existing packet is not large enough, the packet is not trimmed, and the method
returns NULL.

See Also packetSize Method, trim_tail Method

Argument Description

bytes Number of bytes to delete.
Intel Confidential Chapter 4: Action Services Library 137

Revision 2.3, May 2000

• • • • •

Buffer Class

•
trim_tail Method

Discards data from the end of the packet.

char * trim_tail (size_t bytes);

Returns The starting address of the trimmed packet, or NULL if no data is left.

Description If the packet is large enough to be trimmed by the specified amount, the book-
keeping values are updated to reflect the shorter packet, and the method
returns the address of the start of the remaining packet. If the existing packet is
not large enough, the packet is not trimmed, and the method returns NULL.

See Also packetSize Method, trim_head Method

txTime Method

Gets a reference to a Time object corresponding to the timestamp taken when
the packet was most recently transmitted to the network.

Time & txTime ();

Returns A reference to a Time object.

Description If the packet has not been presented to a network interface for transmission, the
content of this time value is undefined. If a TX Timestamp is not generated, the
TX timestamp is zero.

See Also rxTime Method

Argument Description

bytes Number of bytes to delete.
138 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Crosscall Class
Crosscall Class

Use this class to send messages from one ACE to another in the same or another
Policy Accelerator.

The Crosscall class contains the information that the Policy Accelerator
requires to deliver crosscalls from one ACE in a Policy Accelerator to the proper
service function in another ACE in any Policy Accelerator.

Each Crosscall object is associated with exactly one CrosscallManager object
on the host. After creating a Crosscall object, you must create its associated
manager object on the host. The paired objects are associated by having the
same dictionary name. The manager objects keep track of the association
between a call and its handler; see “CrosscallManager Class” on page 52.

In response to the Crosscall object’s call method, the host executes the
service function specified in the associated CrosscallHandler object, passing
it the specified message. To associate a Crosscall object with a CrosscallHan-
dler object in another ACE, use the link method of the application’s NBappl
object. See “NBAppl Class” on page 68. Any number of Crosscall objects can
be linked to the same CrosscallHandler object.

Policy Accelerator

ACE

crosscall handler

ACE
crosscall

Host

ACE manager

crosscall handler manager

ACE manager

crosscall manager

crosscall
Intel Confidential Chapter 4: Action Services Library 139

Revision 2.3, May 2000

• • • • •

Crosscall Class

•
The Crosscall class contains the following methods:

Class
Derivation

The Crosscall class is derived from the Upcall class.

Method Description

Crosscall Constructor Instantiates the class.

call Method Sends a message from one ACE in the Policy Accelerator
to another ACE in the same or another Policy Accelerator.

From this class The Crosscall class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal
names.

Dualobj The ace method and the semantics that enable it to be
managed as an abstract object with state on both the host
and Policy Accelerator.

Upcall Nearly all of its abilities.

Crosscall

Linked

Dynamic

Named

Dualobj

Upcall
140 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Crosscall Class
Example In the following example, the ACE subclass, MyAce, is defined to contain both a
crosscall object and a crosscall handler object, as well as methods to send and
to receive a message using a crosscall:

class MyAce : public Ace {
public:

MyAce (ModuleId id, char* name, Image* obj);
~MyAce ();
void ToOtherAce (); // Crosscall sending method

protected:
// CrosscallHandler callback

void FromOtherAce (Message *p);
// Define counter and snapshot for message

int packetCounter;
uint32 countSnapshot;
Crosscall MyCrosscall; // Crosscall handle
CrosscallHandler MyXcallHandler; // CrosscallHandler handle

};

Before you can send or receive a message, you must create two ACEs of this
type, and link the crosscall object in one with the crosscall handler object in the
other by calling the link method of the ACE manager object in the host
module.

The constructor for the ACE object creates the crosscall and crosscall handler
objects:

MyAce::MyAce (ModuleId id, char* name, Image* obj)
: Ace (id, name, obj)
, packetCounter = 0 // Init counter

// create Crosscall & CrosscallHandler objects
, MyCrosscall (id, this, "MyCrosscall")
, MyXcallHandler (id, this, "MyCrosscallHandler",

(DcallMFp)&FromOtherAce)
{}

An ACE method creates a message (preserving the byte order of numeric data)
and sends it in the crosscall.

void MyAce::ToOtherAce (void) {
// create message with known byte order

countSnapshot = htonl(packetCounter); //take snapshot
MessageBlock mb ((char *) &countSnapshot,

sizeof (countSnapshot));
Message m (mb); //create message
MyCrosscall->call (&m);

}

Intel Confidential Chapter 4: Action Services Library 141

Revision 2.3, May 2000

• • • • •

Crosscall Class

•
See Also n CrosscallHandler Class, Message Class, MessageBlock Class

n CrosscallManager Class and NBAppl::link Method in Chapter 3,
“Host API.”

n “Communication among ACEs” on page 106 of Developing Applications
Using the IX-API SDK

Crosscall Constructor

Creates a Crosscall object for an ACE.

Crosscall (ModuleId id,
Ace * ace,
char * name);

Returns A reference to the newly created object.

Description The host module must create a corresponding CrosscallManager object using
the same dictionary name. You cannot use the crosscall to send a message until
the host calls the application object’s link method to associate this crosscall
with a crosscall handler.

Argument Description

id ACE identifier assigned by the Resolver.

ace Pointer to the ACE object in the Policy Accelerator to which this
crosscall belongs.

name The crosscall’s dictionary name. This must be the same as the dic-
tionary name of the associated CrosscallManager object on the
host.
142 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Crosscall Class
call Method

Sends a message from this ACE to another ACE in the same Policy Accelerator
or in a different Policy Accelerator attached to the same host.

int call (Message * m);

Returns 0 on success. If the crosscall is not yet initialized by the Resolver or if the cross-
call channels are clogged, returns a negative error code.

Description For information on creating the message argument, see “Message Class” on
page 180 and “MessageBlock Class” on page 184.

NOTE: Do not delete the message pointer after sending the call. Because the
call is queued for asynchronous handling, the message could be
deleted before the call is processed. By default, messages are
automatically deleted when the call is complete. See “MessageBlock
Class” on page 184 for information on alternative handling.

Argument Description

m Pointer to the message to be sent.
Intel Confidential Chapter 4: Action Services Library 143

Revision 2.3, May 2000

• • • • •

CrosscallHandler Class

•
CrosscallHandler Class

Use this class to direct messages from another ACE to a service function.

The CrosscallHandler class contains the information that the Policy
Accelerator requires to direct incoming crosscalls from another ACE in the
same or another Policy Accelerator to the proper service function in the owning
ACE.

Each CrosscallHandler object is associated with exactly one CrosscallHan-
dlerManager object on the host. After creating a CrosscallHandler object, you
must create its associated manager object on the host. The paired objects are
associated by having the same dictionary name. The manager objects keep
track of the association between a call and its handler; see “CrosscallHan-
dlerManager Class” on page 48.

In response to a Crosscall object’s call method, the host executes the service
function specified in the associated CrosscallHandler object, passing it the
specified message. To associate a Crosscall object with a CrosscallHandler
object in another ACE, use the link method of the application’s NBappl object.
See “NBAppl Class” on page 68. Any number of Crosscall objects can be
linked to the same CrosscallHandler object.

You are responsible for deallocating the local memory associated with the
received message when it is no longer used, using the delete operator.

Policy Accelerator

ACE

crosscall handler

ACE
crosscall

Host

ACE manager

crosscall handler manager

ACE manager

crosscall manager

crosscall
144 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 CrosscallHandler Class
The CrosscallHandler class contains the following methods:

Class
Derivation

The CrosscallHandler class is derived from the DowncallHandler class.

Method Description

CrosscallHandler Construc-
tor

Instantiates the class.

direct Method Specifies the service function to use for handling
crosscall messages.

From this class The CrosscallHandler class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal
names.

Dualobj The ace method and the semantics that enable it to be
managed as an abstract object with state on both the host
and Policy Accelerator.

DowncallHandler Nearly all of its abilities.

Linked

Dynamic

Named

Dualobj

DowncallHandler

CrosscallHandler
Intel Confidential Chapter 4: Action Services Library 145

Revision 2.3, May 2000

• • • • •

CrosscallHandler Class

•
Example In the following example, the ACE subclass, MyAce, is defined to contain both a
crosscall object and a crosscall handler object, as well as methods to send and
to receive a message using a crosscall:

class MyAce : public Ace {
public:

MyAce (ModuleId id, char* name, Image* obj);
~MyAce ();
void ToOtherAce (); // Crosscall sending method

protected:
void FromOtherAce (Message *p); // CrosscallHandler callback
int packetCounter; // Define counter and snap for msg
uint32 countSnapshot;
Crosscall MyCrosscall; // Crosscall handle
CrosscallHandler MyXcallHandler; // CrosscallHandler handle

};

Before you can send or receive a message, you must create two ACEs of this
type, and link the crosscall object in one with the crosscall handler object in the
other by calling the link method of the ACE manager object in the host
module.

The constructor for the ACE object creates the crosscall and crosscall handler
objects:

MyAce::MyAce (ModuleId id, char* name, Image* obj)
: Ace (id, name, obj)
, packetCounter = 0 // Init counter

// create Crosscall & CrosscallHandler objects
, MyCrosscall (id, this, "MyCrosscall")
, MyXcallHandler (id, this, "MyCrosscallHandler",

(DcallMFp)&FromOtherAce)
{}

The callback method that handles the crosscall is defined in the ACE class. It
accesses the message content, restores the byte order of numeric data, and acts
on the message.

void MyAce::FromOtherAce (Message *p)
{
// unpack message, restoring byte order

nuint32* p = (nuint32*) (m->msg1 ());
currcount = ntohl (*p);

// act on message
...
}

See Also n Crosscall Class, Message Class, MessageBlock Class
146 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 CrosscallHandler Class
n CrosscallHandlerManager Class and NBAppl::link Method in
Chapter 3, “Host API.”

n “Communication among ACEs” on page 106 of Developing Applications
Using the IX-API SDK

CrosscallHandler Constructor

Creates a CrosscallHandler object, and optionally binds it to a service func-
tion callback.

CrosscallHandler (ModuleId id,
Ace * ace,
char * name);

CrosscallHandler (ModuleId id,
Ace * ace,
char * name,
DcallMFp func);

Returns A reference to the newly created object.

Description You can specify the service function callback when you create the object, or later
using the direct method. The service function must unpack the message,
restoring the byte order for numeric data.

See Also n direct Method

n “Communication among ACEs” on page 106 of Developing Applications
Using the IX-API SDK

Argument Description

id ACE identifier assigned by the Resolver.

ace Pointer to the Ace object in the Policy Accelerator to which this
crosscall handler belongs.

name The crosscall handler’s dictionary name. This must be the same as
the dictionary name of the associated CrosscallHandlerMan-
ager object on the host.

func Service function to be executed on the received message. (Optional)
Intel Confidential Chapter 4: Action Services Library 147

Revision 2.3, May 2000

• • • • •

CrosscallHandler Class

•
n “Byte Order and Intermodule Communication” on page 12 in Chapter 2,
“System Types and Methods.”

direct Method

Specifies the service function to use to handle incoming messages.

void direct (DcallMFp func);

Returns Nothing.

Description The service function callback you specify must be a member function of a
subclass of the Ace class.

Crosscall
Callbacks

You must supply a callback that conforms to the following prototype:

class MyAce : public Ace {
void my_handler(Message *m);

...}

When the callback has finished processing the message, it is responsible for
releasing any message data block memory that was allocated locally. For a
crosscall, use the Message object’s done method to do this. Do not delete the
message pointer itself: the Policy Accelerator system software is responsible for
it.

Example The following example defines and sets a callback using the direct method:

class CustomAce : public Ace {
public:
void my_crosscall_handler(Message *m)
{
// do something with the content of "m"

m->done (); // when finished with message’s data block(s).
}

CrosscallHandler my_crosscall_handler;

Argument Description

func Service function to be executed by the crosscall.
148 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 CrosscallHandler Class
CustomAce(ModuleId id, char *name, int tag)
: Ace(id, name, tag)
, my_crosscall_handler(id, this, "my_crosscall")

{
my_crosscall_handler.direct (DCALLMFP(my_crosscall_handler));

}

Intel Confidential Chapter 4: Action Services Library 149

Revision 2.3, May 2000

• • • • •

DowncallHandler Class

•
DowncallHandler Class

Use this class to direct downcalls from the host to the Policy Accelerator.

The DowncallHandler class contains the information that the Policy
Accelerator requires to direct incoming downcalls from the host to the proper
service function in the Policy Accelerator.

Each DowncallHandler object is associated with one Downcall object with the
same dictionary name in the host module. In response to the Downcall object’s
call method, the Policy Accelerator executes the service function specified in
the associated DowncallHandler object, passing it the specified message.

When a message is passed to the Policy Accelerator by a downcall, memory for
the message is allocated on the Policy Accelerator. The Policy Accelerator is
reponsible for allocating and deallocating this memory. Do not attempt to free
or delete the message pointer in the action code, or to store it for later handling.

ACE group

ACE manager

DowncallHandler

Host module

Accelerator module

ACE

Downcall

downcall
150 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 DowncallHandler Class
The DowncallHandler class contains the following methods:

Class
Derivation

The DowncallHandler class is derived from the Dualobj class.

Example The following example is taken from the TwoAceApp demo application. The
ACE subclass NBAceOne contains a downcall handler object and a callback
method:

class NBAceOne : public Ace {
public:

Method Description

DowncallHandler Construc-
tor

Instantiates the class.

direct Method Specifies the service function to use for handling
downcall messages.

From this class The DowncallHandler class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal
names.

Dualobj The ace method and the semantics that enable it to be
managed as an abstract object with state on both the host
and Policy Accelerators.

Linked

Dynamic

Named

Dualobj

DowncallHandler
Intel Confidential Chapter 4: Action Services Library 151

Revision 2.3, May 2000

• • • • •

DowncallHandler Class

•
NBAceOne (ModuleId id, char* name, Image* obj);
// DowncallHandler

void setReportPeriod (Message* m);
DowncallHandler* setReportPeriodDowncallHandle;
int packetCount;
int reportPeriod;

};

The constructor and destructor for the ACE subclass create and delete the
downcall handler object:

NBAceOne::NBAceOne (ModuleId id, char* name, Image* obj):
Ace (id, name, obj)

{
setReportPeriodDowncallHandle =

new DowncallHandler (id, this,
"setReportPeriodDowncall",
DCALLMFP (setReportPeriod));

packetCount = 0;
reportPeriod = 1000;

}

NBAceOneMgr::~NBAceOneMgr ()
{

delete setReportPeriodDowncallHandle;
}

The downcall handler callback unpacks the message (restoring the byte order)
and uses the value to set a variable:

NBAceOne::setReportPeriod (Message* m)
{

nuint32* p = (nuint32*) (m->msg1 ());
reportPeriod = ntohl (*p);
m->done();

}

See Also n Downcall Class, Message Class, MessageBlock Class in Chapter 3,
“Host API.”

n “Communication Between the Host and the Policy Accelerator” on
page 104 of Developing Applications Using the IX-API SDK

n “Byte Order and Intermodule Communication” on page 12 in Chapter 2,
“System Types and Methods.”
152 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 DowncallHandler Class
DowncallHandler Constructor

Creates a DowncallHandler object and optionally binds it to a service function.

DowncallHandler (ModuleId id,
Ace * ace,
char * name);

DowncallHandler (ModuleId id,
Ace * ace,
char * name,
DcallMFp func);

Returns A reference to the newly created object.

Description You can specify the service function callback when you create the object, or later
using the direct method. The service function must unpack the message,
restoring the byte order for numeric data.

See Also n direct Method

n Downcall Class, Message Class, MessageBlock Class in Chapter 3,
“Host API.”

n “Communication Between the Host and the Policy Accelerator” on
page 104 of Developing Applications Using the IX-API SDK

n “Byte Order and Intermodule Communication” on page 12 in Chapter 2,
“System Types and Methods.”

Argument Description

id ACE identifier assigned by the Resolver.

ace Pointer to the ACE object in the Policy Accelerator to which this down-
call handler belongs.

name The downcall handler’s dictionary name. This must be the same as the
dictionary name of the associated Downcall object in the host module.

func Service function callback to be executed by the associated downcall.
(Optional)
Intel Confidential Chapter 4: Action Services Library 153

Revision 2.3, May 2000

• • • • •

DowncallHandler Class

•
direct Method

Specifies the service function for the downcall.

void direct (DcallMFp func);

Returns Nothing.

Description The service function callback you specify must be a member function of a class
derived from the Ace class.

Downcall
Callbacks

You must supply a callback that conforms to the following prototype:

class MyAce : public Ace {
void my_handler (Message *m);

...}

When the callback has finished processing the message, it is responsible for
releasing any message data block memory that was allocated locally. For a
downcall, use the Message object’s done method to do this. Do not delete the
message pointer itself, as the Policy Accelerator system software is responsible
for it.

Example The following example defines and sets a callback using the direct method:

class CustomAce : public Ace {
public:

void my_downcall_handler (Message *m)
{

// do something with the content of "m"
m->done (); // when finished with message’s data block(s)

}
private:

DowncallHandler my_downcall_handler;
}
CustomAce (ModuleId id, char *name, int tag)

: Ace (id, name, tag)
, my_downcall_handler (id, this, "my_downcall")
{
my_downcall_handler.direct (DCALLMFP(my_downcall_handler));
}

Argument Description

func Service function to be executed by the downcall.
154 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Dualobj Class
Dualobj Class

The system uses this class to determine which objects in the Policy Accelerator
correspond with which objects in the host.

All paired classes in the Policy Accelerator are derived from the Dualobj (dual
object) class. These are classes that use data resident in both the host and the
Policy Accelerator. A dual object resident in the Policy Accelerator is connected
to a corresponding object in the host that has the same dictionary name. The
Dualobj class contains the information necessary for the Policy Accelerator to
identify which particular object in the Policy Accelerator corresponds with
which particular object in the host.

The Dualobj class contains the following methods:

Class
Derivation

The Dualobj class is derived from the Named class:

Method Description

Dualobj Constructor Instantiates the class.

ace Method Finds the ACE that owns this dual object.

From this class The Dualobj class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal
names.

Linked

Dynamic

Named

Dualobj
Intel Confidential Chapter 4: Action Services Library 155

Revision 2.3, May 2000

• • • • •

Dualobj Class

•
See Also “Object Pairing on the Host and Policy Accelerator” on page 27 in Chapter 3,
“Host API.”

Dualobj Constructor

Creates a dual object resident in the Policy Accelerator which will be connected
to its corresponding object in the host.

Dualobj (ModuleId id,
Ace * ace,
char * name);

Returns A reference to the newly created object.

Description Instantiates the Policy Accelerator-resident Dualobj object, noting the informa-
tion about the object that enables a connection to be established with the corre-
sponding object resident in the host.

ace Method

Finds the ACE that owns this dual object.

Ace * ace () const;

Returns A pointer to the Ace object in the Policy Accelerator for the ACE that owns this
dual object.

Argument Description

id ACE Identifier assigned by the Resolver.

ace Pointer to the Ace object in the Policy Accelerator.

name The object’s dictionary name. This must be the same as the dictio-
nary name of the corresponding object in the host module.
156 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Dynamic Class
Dynamic Class

Use this class as a base class to provide fast pool allocations for your objects.
The Dynamic class has no storage requirements and no virtual functions.
Including Dynamic in your object class hierarchy does not change the size or
layout of your objects, only how they are allocated.

This class is responsible for overloading the new and delete operators, redi-
recting the memory allocation to use a number of Tagged pools managed by the
Policy Accelerator. All descendants of Dynamic share the same set of Tagged
pools. Each pool handles a specific range of object sizes, and objects of similar
sizes share the same Tagged pool.

You can base your object hierarchy directly on the Dynamic class or one of the
other classes in the Policy Accelerator that is derived from Dynamic, inheriting
the allocation mechanism used inside the library for its own objects.

The Dynamic class is not derived from any other class.

The Dynamic class contains the following operators:

Operator Description

delete Operator Releases and redirects released objects into the appropriate
Tagged pool.

new Operator Acquires memory from an appropriate Tagged pool, based on the
object’s size.
Intel Confidential Chapter 4: Action Services Library 157

Revision 2.3, May 2000

• • • • •

Dynamic Class

•
delete Operator

Releases and redirects released objects into the appropriate Tagged pool.

delete dp;

Returns Nothing.

Description The delete operator handles releasing all objects of all classes derived from the
Dynamic class, as long as they do not redefine the delete operator themselves.
The operator redirects the released object into the appropriate Tagged pool.

See Also Tagged Class

new Operator

Redirects allocation requests into the appropriate Tagged pool.

Dynamic * dp = new Dynamic;

Returns A reference to the newly created object.

Description The new operator handles allocation of all objects of all classes derived from the
Dynamic class, as long as they do not redefine the new operator themselves. The
operator redirects the allocation request into the appropriate Tagged pool.

See Also Tagged Class
158 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Element Class
Element Class

This class is the base class from which set element subclasses (Elt_setname) are
derived.

You do not use this class directly. Instead, you use the methods defined in this
class to create and manipulate elements that are descended from the
Elt_setname classes. For detailed descriptions of the methods, see
“Elt_setname Class” on page 160.

The Element class is not derived from any other class.

See Also n “Set Elements” on page 102

n Elt_setname Class, Set_setname Class

n Chapter 9, “Using Sets of Data to Classify Packets,” in Developing Applica-
tions Using the IX-API SDK
Intel Confidential Chapter 4: Action Services Library 159

Revision 2.3, May 2000

• • • • •

Elt_setname Class

•
Elt_setname Class

For each named set defined in Network Classification Language (NCL), the
NCL compiler produces an adjusted Element subclass called Elt_setname,
using the name of the set. You normally create at least one further subclass to
define the data portion of the element.

Elements contain an expiration time, after which the Policy Accelerator
executes a callback function that you supply. Basic methods allow you to set
and cancel the expiration time and specify the expiration callback.

NOTE: Use the Event class to schedule events that are not associated with
data. This is much more efficient than creating a set element for the
sole purpose of using its expire method.

The Elt_setname class contains the following methods:

Class
Derivation

The Elt_setname class is derived from the Element class, inheriting all public
methods.

Method Description

Elt_setname Constructor Instantiates the class. Used by the new operator.

Elt_setname Destructor Destroys an Elt_setname object. Used by the delete
operator.

cancel Method Cancels an element’s expiration time.

delete Operator Recycles the memory being used to store a set element,
and cleans up references to it.

expire Method Sets an element’s expiration time and callback function.

new Operator Allocates an appropriately aligned Elt_setname object
using the constructor method, adding space for the cor-
rect number of key values.

Elt_setname

Element
160 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Elt_setname Class
Example The following example is taken from the IPPairs demo application. The
header file that defines the element subclass, Elt_pair, is automatically gener-
ated from the NCL file. It can be modified to add application-specific details.
The skeleton definition for the subclass is as follows:

class Elt_pair : public Element {
public:

inline Elt_pair (nuint32 k1, nuint32 k2,
 nuint32 k3, nuint32 k4) {

key_[0] = k1;
key_[1] = k2;
key_[2] = k3;
key_[3] = k4;
}
nuint32 key_[4];

};

See Also n “Set Elements” on page 102

n Set_setname Class, Search Class

n Chapter 9, “Using Sets of Data to Classify Packets,” in Developing Applica-
tions Using the IX-API SDK

From this class The Elt_setname class inherits

Element All public methods
Intel Confidential Chapter 4: Action Services Library 161

Revision 2.3, May 2000

• • • • •

Elt_setname Class

•
Elt_setname Constructor

Creates an Elt_setname object.

Elt_setname (nuint32 k1,...nuint32 kn);

Returns A reference to the newly created object.

Description This constructor sets up the key information for the set element.

Note that this method does not have a variable number of arguments. You must
pass the number of arguments defined for the specific set by the nkeys argu-
ment in the NCL set statement that declared and defined it.

Key values are network-ordered words. The compiler converts from host to
network order when setting key values during initialization. See “Byte Order
Issues” in Chapter 2, “System Types and Methods.”

See Also Set_setname Class, Search Class, “Set Elements” on page 102

Elt_setname Destructor

Destroys the Elt_setname object.

~ Elt_setname ();

Description This method is called by the delete operator. If an expiration time for the
element has been set, the expiration event is cancelled and the associated expi-
ration object is deleted.

You do not call this method directly; instead, you use the delete operator
defined for your subclass. In your own subclasses, you must add functionality
in the destructor to clean up any additional references that you make to the
element.

See Also delete Operator, “Set Elements” on page 102

Argument Description

k1 The key values to match. You must pass the number of key values
specified by nkeys in the NCL set definition.
162 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Elt_setname Class
cancel Method

Cancels the expiration event for the element.

int cancel ();

Returns Zero when successful, a negative number when unsuccessful.

Description Cancels the expiration event for the element but does not delete the event
marker. If no expiration has been set, returns successfully with no effect.

See Also expire Method

delete Operator

Recycles the memory being used to store a set element.

delete (MyElement *) sr.toElement();

This method calls the destructor function to remove the element from the set
and free the memory associated with it, and also cleans up references to the
element.

In your own subclasses, you must add functionality in the destructor to clean
up any additional references that you make to the element.

Before deleting a set, you should delete all elements in that set.
Intel Confidential Chapter 4: Action Services Library 163

Revision 2.3, May 2000

• • • • •

Elt_setname Class

•
expire Method

Establishes or reschedules the expiration date of a set element, and optionally
specifies a callback function to execute on expiration.

int expire (Time dt,
ExpireMFp fp);

int expire (Time dt);

Returns Zero when successful, a negative number when unsuccessful.

Description This overloaded method establishes or reschedules the expiration of a set
element. The time argument (dt) expresses how far into the future the expira-
tion should occur. (See “Time Class” on page 268.)

NOTE: Use the Event class to schedule events that are not associated with
data. This is much more efficient than creating a set element for the
sole purpose of using its expire method.

The callback argument (fp), if present, specifies a callback method to be
executed at that time. If no callback is specified, the expiration triggers the
previously-active callback method. If no callback method is active, the expire
method returns an error.

Expiration
Callback Type

You must define expiration callback methods in the same Element subclass as
the expire method that uses them. An expiration callback method must
conform to the following prototype:

typedef void (Element::* ExpireMFp) (void);

You must explicitly cast an expiration callback method to (ExpireMFp*) when
you pass it to the expire method. You can use the EXPIREMFP() macro to do this.

Argument Description

dt The time for the element to expire, expressed as an amount of time
from when this method executes.

fp The callback function to execute at the expiration time.
164 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Elt_setname Class
new Operator

Allocates an appropriately aligned Elt_setname object.

class MyElement : public Element ...;
MyElement * myElt = new MyElement...;

Returns A reference to the newly created object, or NULL if sufficient free storage is not
available.

See Also Set Class, Search Class, “Set Elements” on page 102
Intel Confidential Chapter 4: Action Services Library 165

Revision 2.3, May 2000

• • • • •

Event Class

•
Event Class

Use this class to schedule, reschedule, and cancel events.

The Event class provides for execution of functions at arbitrary times in the
future, with efficient rescheduling of the event and the ability to cancel an event
without deleting the event marker itself.

NOTE: Use this class to schedule events that are not associated with data. It
is much more efficient than, for example, creating a set element for the
sole purpose of using its expire method.

The Event class contains the following methods:

Class
Derivation

The Event class is derived from the Linked class.

Method Description

Event Constructor Instantiates the class.

Event Destructor Destroys an Event object.

cancel Method Cancels the event but does not delete the Event object.

curr Method Gets the current execution time for the event, assuming an
event handler is currently executing.

direct Method Designates the function to execute at the scheduled time of
the event.

schedule Method Specifies how far into the future the event should trigger.

Linked

Dynamic

Event
166 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Event Class

Event Callback
Functions

You must define an event callback method as a member of the same Event
subclass that uses it.

All event callbacks must be cast to the type EventMFp* when sent as arguments
to methods of the Event class. For this cast to be successful, such methods must
be member methods in a class that is derived from the Event class. This type
has the following form:

typedef void (Event::* EventMFp) (void);

You can use the macro EVENTMFP to cast callbacks, as in the following example:

class MyOneHzTicker : public Event {
public:

void ticktock (void)
{

schedule (Time::secs(1));
// do something! now! for example,

printf ("pling!\n");
}
MyOneHzTicker () : Event (EVENTMFP (ticktock), Time::secs

(1))
{ }

};

It is possible to change the service function between events, as in the following
example:

class MyOneHzTicker : public Event {
public:

void tick (void)
{

direct (EVENTMFP (tock));
schedule (Time::msec (400));

// do something! now! for example,
printf ("tick\n");

}
void tock (void)

From this class The Event class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked Methods that enable objects to link to each other.
Intel Confidential Chapter 4: Action Services Library 167

Revision 2.3, May 2000

• • • • •

Event Class

•
{
direct (EVENTMFP (tick));
schedule (Time::msec (600));

// do something else! for example,
printf ("... tock\n");

}
MyOneHzTicker () : Event (EVENTMFP (tick), Time::secs (1))
{ }

};

Event Constructor

Creates an Event object.

Event ();

Event (EventMFp fp);

Event (EventMFp fp,
Time dt);

Returns A reference to the newly created object.

Description When constructing Event objects, you can specify two optional arguments:

n The callback function, which must be a member function of a class derived
from Event

n An initial scheduled time (how long in the future, expressed as a Time
object). To specify this, you must also specify the callback function.

When both arguments are specified, the event’s service function is set and the
event is scheduled. If the delay time argument is not specified, the event’s
service function is still set but the event is not scheduled. If you do not specify
the service function on creation, you must use the direct method to do so
before you can schedule the event.

Argument Description

fp Function pointer to the function to execute.

dt Time object containing the time for the event to execute.
168 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Event Class
Event Destructor

Deletes the Event object.

~ Event ();

Description When an event is deleted, it is implicitly unscheduled before the object is recy-
cled.

cancel Method

Cancels the event.

int cancel ();

Returns 0 if the event was previously scheduled, or -1 if the event was not on the
calendar.

Description This method removes the event from the event queue if it is currently sched-
uled, but does not delete the event object. If the event is not currently sched-
uled, returns negative.

See Also schedule Method

curr Method

Gets the current execution time for the event.

static Time curr ();

Returns A Time object.

Description This method returns a Time object corresponding to the real time at which the
currently executing event was scheduled to occur. This method assumes that an
event handler is currently executing. If an event handler is not active when the
method is called, the return value is undefined.
Intel Confidential Chapter 4: Action Services Library 169

Revision 2.3, May 2000

• • • • •

Event Class

•
direct Method

Designates the function to be executed at the scheduled time of the event.

int direct (EventMFp fp);

Returns Zero when successful, a negative number when unsuccessful.

Description The function to be executed must be a member function of the same private
subclass of Event. This subclass defines the functions that the event could
execute, and can retain any private state associated with the event.

You can specify the callback function when you create the object, and use this
method to change it, or you can leave it unspecified on creation and use this
method to specify it later.

schedule Method

Specifies how far into the future the event should be executed.

int schedule (Time dt);

Returns Zero when successful, a negative number when unsuccessful.

Description When the specified amount of time has elapsed, the event’s associated function
is executed.

When called from within an event function, the new time is relative to the
scheduled time of the executing event. This provides drift-free scheduling of
periodic events and reasonable handling of events scheduled to higher preci-
sion than the system clock.

Argument Description

fp A pointer to the function that is to be executed at the scheduled time.

Argument Description

dt The time after this call that the event is to be executed.
170 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Event Class
You can specify both the callback function and delay time when you create the
object, and use this method to change the delay time, or you can leave the delay
time unspecified on creation and use this method to specify the delay time later.

See Also direct Method, cancel Method
Intel Confidential Chapter 4: Action Services Library 171

Revision 2.3, May 2000

• • • • •

Initialization Function

•
Initialization Function

The ASL provides a top-level function that you use to initialize the Policy
Accelerator portion of the network application. When the application executes
the ACE manager’s load method, the host downloads the NCL rules and
actions files to the Policy Accelerator, and the Policy Accelerator immediately
calls this function in the downloaded actions file. You define this function to
construct the ACE object (an instance of the Ace class), and do any other initial-
ization that your application requires.

For an example, see “Loading and Initializing the Policy Accelerator” on
page 28 of Developing Applications Using the IX-API SDK.

init_actions Function

Initializes the Policy Accelerator portion of the network application and
constructs the specified ACE object.

Ace * init_actions (ModuleID id,
char * name,
Image* obj)

Returns A pointer to an ACE, or a NULL pointer when unsuccessful.

Function Description

init_actions Function Initializes the Policy Accelerator portion of the network
application and constructs the specified ACE object.

Argument Description

id The module identification number, assigned by the Resolver.

name The dictionary name of the ACE. This is the dictionary name of both
the accelerator module’s Ace object and the corresponding AceM-
anager object on the host.

obj The system object that contains the NCL classification rules and
action code for the new ACE.
172 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Initialization Function
Description Use this method to initialize the Policy Accelerator portion of the network
application. It is the primary entry point into the application’s action code (like
the C main() function).

Your initialization function must, at least, construct and return an ACE object
(an instance of a subclass of the Ace class) using the passed parameters, as in
the following example:

INITF init_actions (ModuleID id, char * name, Image* obj)
{

return new MyAce(id, name, obj);
}

The value passed for the name argument is the dictionary name that you
assigned to the AceManager object on the host. An ID number is assigned auto-
matically, as is the location of the ACE code.

In addition to creating the ACE object, you should create any objects that you
will need, and populate any sets or other data structures.
Intel Confidential Chapter 4: Action Services Library 173

Revision 2.3, May 2000

• • • • •

Linked Class

•
Linked Class

Use this class to link objects to each other in the form of a ring.

The Linked class is a common base for many classes in Policy Accelerator. This
class provides object collection services by implementing a double-linked ring.
Linked objects not currently placed in a collection of objects compose a single
element ring on their own; orphan objects can be linked into any ring.

The Linked class contains the following methods:

Class
Derivation

The Linked class is derived from the Dynamic class.

Method Description

Linked Constructor Instantiates the class.

Linked Destructor Destroys a Linked object.

link Method Connects the object to the specified ring.

next Method Locates the next object within the ring containing the cur-
rent object.

orphan Method Indicates whether the object is an orphan ring.

prev Method Locates the previous object within the ring containing the
current object.

unlink Method Modifies the ring to exclude the current object.

From this class The Linked class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked

Dynamic
174 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Linked Class
Linked Constructor

Creates a Linked object and initializes the linked list fields to make it into an
orphan ring.

Linked ();

Returns A reference to the newly created object.

Linked Destructor

Removes the Linked object from its current ring before the object is freed.

~Linked ();

link Method

Connects the object to the specified ring.

void link (Linked * before);

Returns Nothing.

Description Links the object into the specified ring, before the argument object. If the argu-
ment object is a dummy header for a storage ring that is traversed along “next”
pointers, this places the object at the end of the traversal order. To place the
object at the beginning, link the new object to the first object in the ring, not the
header object.

Argument Description

before Pointer to a Linked object in the ring. The new object is inserted
before this object.
Intel Confidential Chapter 4: Action Services Library 175

Revision 2.3, May 2000

• • • • •

Linked Class

•
next Method

Locates the next object within the ring containing the current object.

Linked * next ();

Returns A pointer to the located object.

Description Returns the current object if the object is an orphan. Following next() links on
any ring eventually visits all objects in the ring and then returns to the starting
object.

orphan Method

Indicates whether the object is an orphan ring.

bool orphan ();

Returns TRUE if the object represents an orphan ring, or if the object is a dummy header
and the storage ring is empty.

Description An orphan ring contains only the specified object (no dummy headers). The
orphan method indicates whether the object is an orphan ring or a dummy
header. If the storage ring is empty, the object is a dummy header.

prev Method

Locates the previous object within the ring containing the current object.

Linked * prev ();

Returns A pointer to the located object.

Description Returns the current object if the object is an orphan. Following prev() links on
any ring eventually visits all objects in the ring and then returns to the starting
object.
176 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Linked Class
unlink Method

Modifies the ring to exclude the current object.

void unlink ();

Returns Nothing.

Description If the object is on a ring, this method modifies the ring to exclude the current
object and modifies the object to become an orphan.
Intel Confidential Chapter 4: Action Services Library 177

Revision 2.3, May 2000

• • • • •

Memory Management Functions

•
Memory Management Functions

The ASL provides two functions that you can use to monitor memory usage in
the heap at run time.

The Policy Accelerator allocates memory on the heap for data sets that you
define. The Policy Accelerator’s memory is partitioned between the heap and
packet buffer memory. For information on managing packet buffer memory, see
the following:

n “Memory Management Classes and Functions” on page 103

n “Backlog Class” on page 119

n “Buffer Class” on page 123.

getmemstatvalues Function

Retrieves the used and free memory totals for the Policy Accelerator’s heap.

int getmemstatvalues (int *pusedmem,
int *pfreemem)

Returns One when successful, zero when unsuccessful.

Function Description

getmemstatvalues
Function

Retrieves the used and free memory totals for the Policy
Accelerator’s heap.

mstats Function Displays memory usage statistics for the Policy
Accelerator’s heap.

Argument Description

pusedmem Pointer to a variable in which to store the used memory total.

pfreemem Pointer to a variable in which to store the free memory total.
178 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Memory Management Functions
Description This function stores the current used and free memory totals in the specified
variables.

mstats Function

Displays memory usage statistics for the Policy Accelerator’s heap.

void mstats (char *display_name)

Returns Nothing.

Description This function prints a report on memory allocation statistics, using the specified
display name. The report indicates currently free and used blocks of memory.
For example, if you specify the display name “in Myfunc” the function would
print something like the following:

Memory allocation statistics... in Myfunc
free: 0 60 2465 1477 145 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
used: 0 836 7135 1819 143 23 8 8 12 8 0 0 3 4 2 4 0 0 0 0 4 0 0
Total in use: 35677536, total free: 217760

Argument Description

display_name An identifying string for the report.
Intel Confidential Chapter 4: Action Services Library 179

Revision 2.3, May 2000

• • • • •

Message Class

•
Message Class

Use the Message class to create messages to send in upcalls and crosscalls.
(Create message to be sent in downcalls on the host, using the host API’s
Message class.)

The Message class encapsulates the data to be transferred during an upcall or a
crosscall. You can construct Message objects with up to two blocks of storage
that you specify with a pair of MessageBlock objects. The maximum size for
message data is 3968 bytes; that is, one page (4096 bytes) less some overhead
(128 bytes) for metadata. When there are two blocks, the maximum is for the
total size of both blocks.

By default, the Message object is automatically deleted when the call has been
completed. (Note that there is a delay between the time the call is successfully
sent and when it is completed.) As an alternative to this default behavior, you
can specify a function to be executed when the call containing the message has
been sent. You specify this function when you construct the MessageBlock
from which the Message is constructed.

Although the Message object itself is handled by the system, the message block
data might have locally-allocated memory that you must free after the call is
received and you have finished processing the data. To free this memory,
regardless of how it has been allocated during the call process, use the Message
object’s done method in the call handler callback. If you have specified a
completion callback when constructing the MessageBlock, the done method
calls it when needed.

The Message class contains the following methods:

Class
Derivation

The Message class is derived from the Dynamic class.

Method Description

Message Constructor Instantiates the class.

Message Access Methods Find the base address and length of each block in
the message.

Message Completion Methods Trigger the completion callback for the first block,
the second block, or both blocks of the message.
180 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Message Class
Example The following example is taken from the BasicApp demo application. The
following method in the ACE subclass creates a message and sends it in an
upcall:

void NBBasicAce::peekPacketUpcall (Buffer *buf)
{

buf = buf; /* prevent "buf not used" compiler warning */
packetCounter++;
if ((packetCounter % 100) == 0) {

msg = htonl (packetCounter);
MessageBlock b ((char *)&msg, sizeof (msg));
Message m (b);
peekPacketUpcallHandle.call(&m);

}
}

See Also n MessageBlock Class, Crosscall Class, Upcall Class

n “Creating Messages and Message Blocks” on page 108 of Developing Appli-
cations Using the IX-API SDK

From this class The Message class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Message

Dynamic
Intel Confidential Chapter 4: Action Services Library 181

Revision 2.3, May 2000

• • • • •

Message Class

•
Message Constructor

Creates a Message object containing zero, one, or two blocks of data.

Message (MessageBlock &b1,
MessageBlock &b2);

Message (MessageBlock &b1);

Message ();

Returns A reference to the newly created object.

Description Messages contain zero, one, or two blocks of message data, which you create
using the MessageBlock constructor.

n When you pass no message blocks to the constructor, the message tells the
upcall or crosscall handler to execute its callback function, without passing
it any data.

n To pass information, you can use one or two message blocks depending on
your preferences. The API assigns no particular meaning to either block;
you can use them arbitrarily as your application needs them.
For example, you could specify two message blocks to combine two
different kinds of information in one message, such as to pass a summary of
information about a packet, followed by the packet itself.

You use each MessageBlock object in only one Message object. Storage for the
MessageBlocks used in message creation is freed by the system. You do not
need to explicitly free this storage.

See Also MessageBlock Class

Argument Description

b1 Specifies where to get data for the first block of the message.

b2 Specifies where to get data for the second block of the message.
182 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Message Class
Message Access Methods

These methods return the base addresses of each block in the message and
references to the lengths of the data blocks.

char * msg1 ();
int & len1 ();
char * msg2 ();
int & len2 ();

Returns The base address or a reference to the length of the specified block.

Description You can decrease the length of a block. Do not increase the length, as this can
corrupt your data. See “MessageBlock Constructor” on page 186 for an
example of how to specify the length of a block.

Message Completion Methods

These methods trigger the completion callback for the first block, the second
block, or both blocks of the message.

void clr1 ();
void clr2 ();
void done ();

Returns Nothing.

Description Although the Message object itself is handled by the system, the message block
data may have locally-allocated memory that needs to be freed after the call is
received and you have finished processing the data. To free this memory,
regardless of how it has been allocated during the call process, use the Message
object’s done method in the call handler callback. If you have specified a
completion callback when constructing the MessageBlock, the done method
calls it as necessary.

The done method calls the clr1 and clr2 methods as needed, for the first and
second message blocks. You do not normally call these methods directly.

See Also CrosscallHandler Class, DowncallHandler Class, MessageBlock Class
Intel Confidential Chapter 4: Action Services Library 183

Revision 2.3, May 2000

• • • • •

MessageBlock Class

•
MessageBlock Class

Use the MessageBlock class to create a storage area within the Policy
Accelerator memory for future upcall or crosscall messages.

A message block is a place for storing chunks of a message. You can use one or
two message blocks when building the final message object. You can discard
the message block any time after constructing the message object.

The maximum size for message data is 3968 bytes; that is, one page (4096 bytes)
less some overhead (128 bytes) for metadata. When you use two blocks to
construct a message, the maximum is for the total size of both blocks.

By default, a Message object is automatically deleted when the call has been
completed. (Note that there is a delay between the time the call is sent and when
it is completed.) As an alternative to the default behavior, you can specify a
function to be executed when the call containing the message has been
completed. You specify this function when constructing the MessageBlock.

The message block data may have locally-allocated memory (separate from the
Message object) that needs to be freed after the call is received and you have
finished processing the data. To free this memory, regardless of how it has been
allocated, use the Message object’s done method in the call handler callback.

The MessageBlock class contains the following method:

Class
Derivation

The MessageBlock class is derived from the Dynamic class.

Method Description

MessageBlock Constructor Instantiates the class

From this class The MessageBlock class inherits

Dynamic Methods that enable objects to be allocated efficiently and recy-
cled through Policy Accelerator-managed tagged memory pools.

MessageBlock

Dynamic
184 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 MessageBlock Class
Example The following example is taken from the BasicApp demo application. The
following method in the ACE subclass creates a message and sends it in an
upcall:

void NBBasicAce::peekPacketUpcall (Buffer *buf) {
packetCounter++;
if ((packetCounter % 100) == 0) {

msg = htonl (packetCounter);
MessageBlock b ((char *)&msg, sizeof (msg));
Message m (b);
peekPacketUpcallHandle.call(&m);

}
}

See Also n Message Class, Upcall Class, Crosscall Class

n “Creating Messages and Message Blocks” on page 108 of Developing Appli-
cations Using the IX-API SDK
Intel Confidential Chapter 4: Action Services Library 185

Revision 2.3, May 2000

• • • • •

MessageBlock Class

•
MessageBlock Constructor

Creates a MessageBlock object.

MessageBlock b (char * msg);

MessageBlock b (char * msg,
int len);

MessageBlock b (char * msg,
int len,
DoneFp done);

MessageBlock b (int len);

MessageBlock b (int len,
int off);

MessageBlock b (Buffer * buf);

Returns A reference to the newly created object.

Description The constructor always encapsulates an area within the Policy Accelerator
memory for a future upcall or crosscall message. Each form of the constructor
specifies the message memory in a different way.

n MessageBlock b (char * msg);

Use this constructor to build a message block that contains a C string (a
sequence of non-NULL characters followed by a NULL character). The string
is not copied, so msg must point to storage that will not be freed before the
call completes. This could be a static array, or an array that is contained in
an ACE object, or any other retained storage. The length of the block is
strlen(msg).

Argument Description

msg Pointer to data to be sent in the message.

len Size of data block to be sent.

done Function to be called after the message has been copied out of the
source area.

off Requested relative byte alignment for an allocated data area.

buf Buffer containing the packet to be sent as the data block.
186 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 MessageBlock Class
Consider the following example:

{
MessageBlock b1 ("reached checkpoint charlie");
Message m (b1);
my_upcall.send (&m);

}

n MessageBlock b(char * msg, int len);

Use this constructor to build a message block that represents a fixed range
of memory. In the following example, several counters are contained in a
structure, then the structure is sent to the host:

struct MyAce_Counters {
int count1;
int count2;
int count3;

};

class MyAce : public Ace {
public:

MyAce_Counters data;
Upcall report;

};

ACTNF example_action (Buffer *buf, MyAce *ace) {
ace->data.count2 ++;
return RULE_CONT;

}

send_report (MyAce *ace) {
MessageBlock b ((char *)&ace->data, sizeof ace->data);
Message m (b);
ace->report.send (&m);

}

n MessageBlock b (char * msg, int len, DoneFp done);

Use this constructor to notify action code when the message transfer has
completed. The Message object’s done method calls this function if neces-
sary.
For instance, in the example above, if it were important that none of the
counts change while the message is being sent, you could guarantee this
with a busy flag and a callback function as follows:

struct MyAce_Counters {
int count1;
int count2;
int count3;
Intel Confidential Chapter 4: Action Services Library 187

Revision 2.3, May 2000

• • • • •

MessageBlock Class

•
// keep "busy" the last word, so it can be trimmed off
// before sending the message up. */

int busy;
};

class MyAce : public Ace {
public:

MyAce_Counters data;
Upcall report;

};

ACTNF example_action (Buffer *buf, MyAce *ace) {
if (!ace->data.busy) {

ace->data.count2 ++;
}
return RULE_CONT;

}

void send_done (size_t &len, char *&base){
if (len && base) {

MyAce_Counters * cp = (MyAce_Counters *)base;
cp->done = 0;

}
len = 0;
base = 0;

}

void send_report(MyAce *ace) {
if (!ace->data.busy) {

MessageBlock b ((char *)&ace->data, sizeof ace->data,
DONEFP (send_done));

Message m (b);
ace->data.busy = 1; // mark counter block as "busy"

// no need to send the "busy" word
m.len1 () -= sizeof (ace->data.busy);
ace->report.send (&m);

}
}

n MessageBlock b (int len);

Use this constructor to dynamically allocate a message area of a specified
size, which will be automatically released to the free pool after the message
is sent.
After the Message object is constructed, that object’s message block acces-
sors, m.msg1() and m.msg2(), get the address where you build the data
block to be sent.
188 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 MessageBlock Class
You can reduce the length of a message (as in the following example), but
you cannot safely increase the length of a message.

{
MessageBlock b (512); // allocate 512-byte data area
Message m (b);

// real code would verify "m.msg1 () != NULL"
sprintf (m.msg1(), "%s, line %d: string is ’%s’\n",

__FILE__, __LINE__, str);
// reduce size of message block to avoid sending a lot of
// extra padding. Send up to and including the first
// ’\0’ char.

m.len1 () = strlen (m.msg1 ()) + 1;
my_upcall.call (&m);

// when we drop out of this block, storage for the Message
// and MessageBlock objects is returned (it was on
// the stack). The storage for the message remains
// allocated until it is automatically freed when the
// message has been sent to the host.
}

n MessageBlock b(int len, int off);

Use this constructor to dynamically allocate storage of a specified size (like
the previous constructor) but request that the message start at a small byte
offset from the normally word-aligned allocated storage area. One use for
this, shown in the following example, is to send a copy of an Ethernet packet
to the host without keeping the original buffer busy. Using the offset
increases the efficiency, since data copies are faster when the source and
destination have the same alignment.

ACTNF send_copy (Buffer *buf, MyAce *ace) {
char * pkt = buf->headerBase ();
int len = buf->packetSize ();
MessageBlock b (len, 3 & (unsigned)pkt);
Message m (b);

// real code verifies "m.msg1 () != NULL"
// Duplicate the packet data. Takes some time, but when
// the copy is done the original packet can continue on its
// rounds immediately.

bcopy (pkt, m.msg1 (), len);
ace->packetdata.call (&m);
return RULE_CONT;

}

n MessageBlock b(Buffer * buf);

Use this constructor to hold a network packet buffer temporarily while a
copy of the packet is sent through the messaging system. When the message
has been successfully sent, processing of the buffer resumes.
Intel Confidential Chapter 4: Action Services Library 189

Revision 2.3, May 2000

• • • • •

MessageBlock Class

•
When you construct a MessageBlock from a buffer, the method automati-
cally increments the reference count on the Buffer object, and decrements
the count when the Message Completion method is triggered in the
Message object. Use the busy method of the Buffer class in any subse-
quent actions that modify the buffer, so that the modifications can be
delayed until the original data has been sent, as in the following example:

ACTNF send_copy (Buffer *buf, MyAce *ace) {
MessageBlock b (buf);
Message m (b);
ace->packetdata.call (&m);

// Reference count of buffer has now been incremented,
// so other code can check to see if buffer is "busy".

return RULE_CONT;
}

ACTNF change_packet (Buffer *buf, MyAce *ace) {
// OK to send busy buffers to targets. (In real code, may
// be better to test for "last TTL" in NCL code instead)

if (ip->ip_ttl < 1)
return ace->drop (buf);

// If sending copy of buffer to the application, and
// send is not yet finished, hold off this rule.
// Start over at this rule after transfer is done

if (buf->busy ())
return RULE_DEFER;

// If got here, send (if any) done reading buffer,
// OK to change it.

make_some_changes(buf);
return RULE_DONE;

}

See Also Message Class, Crosscall Class, Upcall Class
190 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Name Class
Name Class

The Name class is used by the system to maintain an internal database of named
objects, which are arbitrary pointers in the memory address space. The class is
used internally.

The Name class contains the following methods:

Class
Derivation

The Name class is derived from the Named class.

Method Description

Name Constructor Instantiates the class

find Method Locates an object by name in an internal database

here Method Gets a reference to the Name object

From this class The Name class inherits

Dynamic Methods that enable objects to be allocated efficiently and recy-
cled through Policy Accelerator-managed tagged memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal
names.

Linked

Dynamic

Named

Name
Intel Confidential Chapter 4: Action Services Library 191

Revision 2.3, May 2000

• • • • •

Name Class

•
Name Constructor

Creates a Name object with a reference in the internal name database.

Name (Ptree * tree,
char * name,
void * here);

Returns A reference to the newly created object.

find Method

Locates an object by name in the internal name database.

static Name * find (Ptree * tree,
char * name);

Returns A pointer to a Name object, or a NULL pointer if no matching object is found.

Description Looks in the specified internal database for the specified name. If a match if
found, returns a pointer to the object containing the name. If no match is found,
returns a NULL pointer.

Argument Description

tree A pointer to the database in which the name should be placed.

name The database name.

here A pointer to the object to which the name should refer.

Argument Description

tree A pointer to the database in which to search.

name The database name of the object to locate.
192 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Name Class
here Method

Creates a reference to the Name object.

void * & here ();

Returns A reference to the object to which the Name is applied.

Description Use this method to change the object to which a Name refers.
Intel Confidential Chapter 4: Action Services Library 193

Revision 2.3, May 2000

• • • • •

Named Class

•
Named Class

The Named class is used by the system to maintain an internal database of
named objects, which are arbitrary pointers in the memory address space. The
class is used internally.

The Named class contains the following methods:

Class
Derivation

The Named class is derived from the Linked class.

Method Description

Named Constructor Instantiates the class.

Named Destructor Deletes a Named object.

find Method Finds a Named object in the internal database by name.

name Method Gets a pointer to the internal database name of this Named
object.

From this class The Named class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked Methods that enable objects to link to each other.

Linked

Dynamic

Named
194 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Named Class
Named Constructor

Creates a Named object with a reference in the internal name database.
Named (Ptree * tree,

char * name);

Returns A reference to the newly created object.

Named Destructor

Deletes a Named object.

~Named ()

Description Deleting a Named object removes the name from the internal name database.

Argument Description

tree A pointer to the dictionary into which the object should be placed.

name The dictionary name of the object.
Intel Confidential Chapter 4: Action Services Library 195

Revision 2.3, May 2000

• • • • •

Named Class

•
find Method

Locates an object in the internal name database by name.

static Named * find (Ptree * tree,
char * name);

Returns A pointer to a Named object, or a NULL pointer if no matching object is found.

Description Searches the specified database for the specified name. If a match if found,
returns a pointer to the object containing the specified name. If no match is
found, returns a NULL pointer.

name Method

Retrieves the database name of a Named object.

char * name ();

Returns The database name of the Named object.

Argument Description

tree A pointer to the database in which to search.

name The dictionary name of the object to locate.
196 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBInterfaceProp Class
NBInterfaceProp Class

The NBInterfaceProp class allows you to manage the properties of a Policy
Accelerator’s media access control (MAC) interface, such as its MAC address,
speed, and duplex capability. You create an object of this type to set or read the
properties of a specific interface. The properties are defined by data structures,
which are described in this section.

MAC Interface
Properties

The interface property feature is extensible. In the future, different properties
will be defined for different types of interfaces. The properties of a MAC inter-
face currently include the following:

The Speed and Duplex values reflect the current connection state of the inter-
face, which you can monitor using the NBLinkwatch class. When the link is
down, Speed = 0 and Duplex = LinkDown. Set the value of the Duplex property
to Auto to initiate automatic negotiation mode.

Interface Data
Structures

You define and access properties for interfaces using the following structures:

Property name Type Read values Write values

Speed Integer 0, 10, 100 megabits per
second (Mbps)

10, 100 (Mbps)

Duplex String list Half, Full, LinkDown Auto, Half, Full

MAC Address Ethernet address Ethernet address (none)

Structure Description

NBFIF_GET_SET_PROP_ITEM Structure Holds the value of a property.

NBFIF_PROP_ITEM Structure Describes a property.

NBFIF_PROP_CAP_ITEM Structure Associates a property description with an
index number when included in the
NBFIF_PROP_CAPS structure.

NBFIF_PROP_CAPS Structure Contains a list of property descriptions con-
tained in NBFIF_PROP_CAP_ITEMs.
Intel Confidential Chapter 4: Action Services Library 197

Revision 2.3, May 2000

• • • • •

NBInterfaceProp Class

•
Methods in this
Class

The NBInterfaceProp class is not derived from any other class. It contains the
following methods:

Example The following code demonstrates how to obtain the MAC address of a Policy
Accelerator’s MAC interface A using the NBInterfaceProp class:

typedef char EnetAddr[6]; // Ethernet Address - 6 bytes.
EnetAddr m_MacAddr; // MAC/Ethernet address of an interface.

NBFIF_PROP_CAPS

NBFIF_PROP_CAP_ITEM

Index # of NBFIF_Prop_Item

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

Value hint

Count of NBFIF_Prop_Cap_Items

NBFIF_PROP_CAP_ITEM

Index # of NBFIF_Prop_Item

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

Value hint

NBFIF_GET_SET_PROP_ITEM
Index #

Size of Buffer
Pointer to Buffer

Method Description

NBInterfaceProp Constructor Instantiates the class.

GetProperty Method Retrieves the current value of an interface prop-
erty.

GetPropertyList Method Retrieves a list of all properties that are main-
tained for an interface.

SetProperty Method Sets the value of an interface property.
198 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBInterfaceProp Class
// Want to get IP address of MAC interface A
NBInterfaceProp interface_ ("A");
NBFIF_GET_SET_PROP_ITEM item;

// Get MAC address.
item.propIndx = NBFIF_PROP_ETHER_ADDR;
item.bufSizeInBytes = sizeof (m_MacAddr);
item.pValueBuf = m_MacAddr;
interface_.GetProperty (&item);

printf("MAC Addr: %02X:%02X:%02X:%02X:%02X:%02X\n",
m_MacAddr[0], m_MacAddr[1], m_MacAddr[2],
m_MacAddr[3], m_MacAddr[4], m_MacAddr[5]);

See Also n “NBLinkwatch Class” on page 205

n “NBRmon Class” on page 208
Intel Confidential Chapter 4: Action Services Library 199

Revision 2.3, May 2000

• • • • •

NBInterfaceProp Class

•
NBInterfaceProp Constructor

Creates an NBInterfaceProp object.

NBInterfaceProp (char * interfacename);

Returns A reference to the newly created object.

Description An object of this type allows you to get and set the properties of the specified
interface.

GetProperty Method

Retrieves the current value of an interface property.

void GetProperty (NBFIF_GET_SET_PROP_ITEM *propItem);

Returns Nothing. Places the requested property value into propItem’s buffer.

The values that are retrieved for the Speed and Duplex properties depend on
the connection state of the interface, which you can monitor using the NBLink-
watch class:

n When the link is down, Speed is 0 and Duplex is LinkDown.

n When the link is active, properties have their current values. Speed can be
10 or 100 (Mbps), and Duplex can be Half or Full. In automatic negotiation
mode, these are the negotiated values.

Argument Description

interfacename Which Policy Accelerator MAC interface this object will manage.
The value can be A or B.

Argument Description

propItem A pointer to a property value structure in which you have:

n Specified the desired property’s index within an NBFIF_PROP_ITEM
list

n Allocated a buffer of the proper size and type for the property’s value.
200 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBInterfaceProp Class
Description This method retrieves the value of the property specified by the propIndex
field of propItem, and places it into the buffer that you allocate and pass in the
pValueBuf field of propItem.

When retrieving the MAC address you must allocate a 6-byte buffer and pass it
in the pValueBuf field of propItem.

See Also “NBLinkwatch Class” on page 205

GetPropertyList Method

Retrieves a list of all properties that are maintained for the interface.

PNBFIF_PROP_CAPS GetPropertyList ();

Returns A pointer to the NBFIF_PROP_CAPS structure containing the array of properties
supported by the interface.

NBFIF_GET_SET_PROP_ITEM Structure

The NBFIF_GET_SET_PROP_ITEM structure holds the value of a property. You
pass a structure of this type to the GetProperty and SetProperty methods to
get and set the value of a property. It contains the following fields:

Field name Type Description

propIndx uint32 The index number associated with the property.

bufSizeInBytes uint32 The size of the value buffer in bytes.

pValueBuf void* A pointer to a value buffer that holds the value for the property.
Intel Confidential Chapter 4: Action Services Library 201

Revision 2.3, May 2000

• • • • •

NBInterfaceProp Class

•
NBFIF_PROP_CAP_ITEM Structure

The NBFIF_PROP_CAP_ITEM structure associates a property with an index
number in the NBFIF_PROP_CAP structure. It contains the following fields:

NBFIF_PROP_CAPS Structure

The NBFIF_PROP_CAPS structure defines an array of properties that can apply
to an interface. It contains the following fields:

Field name Type Description

propIndx uint32 The index number of the property in the capItems
array of an NBFIF_PROP_CAP structure.

propItem NBFIF_PROP_ITEM The property structure associated with the index.

Field name Type Description

capCount uint32 The number of properties in the array.

capItems PNBFIF_PROP_CAP_ITEM An array of property structures.
202 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBInterfaceProp Class
NBFIF_PROP_ITEM Structure

The NBFIF_PROP_ITEM structure describes a property. It contains the following
fields:

Field name Type Description

propName char [NBFIF_MAX_NAME] A string containing the name of the property.

propType NBFIF_PROP_TYPE The type of data that this property contains. One of the
following enumerated values:
NBFIF_PROP_INTEGER
NBFIF_PROP_INTEGER_ARRAY
NBFIF_PROP_ETHER_ADDR
NBFIF_PROP_STR_LIST
NBFIF_PROP_MASK
NBFIF_PROP_BOOLEAN

range int32 The range of allowed values for the property. A value of
-1 means that the range of values is not limited, or that
a range is not applicable. Otherwise, the meaning
depends on the specified propType, as follows:

n integer: Maximum acceptable value, starting at 0

n ether_addr: Maximum number of Ethernet
addresses allowed

n str_list: Maximum number of strings in the list

restriction NBFIF_PROP_RESTRICTION Whether the property can be read or written. One of the
following constant values:
NBFIF_RESTR_READ_ONLY
NBFIF_RESTR_WRITE_ONLY
NBFIF_RESTR_READ_WRITE

possibleValue
Hint

char
[NBFIF_MAX_HINTCOUNT]
[NBFIF_MAX_HINTSIZE]

An array of strings indicating the possible values of the
property. When you display properties to an end user,
use this list to limit the values that can be entered.
Intel Confidential Chapter 4: Action Services Library 203

Revision 2.3, May 2000

• • • • •

NBInterfaceProp Class

•
SetProperty Method

Sets the value of an interface property.

void SetProperty (NBFIF_GET_SET_PROP_ITEM *propItem);

Returns Nothing.

Description Valid property values are:

Argument Description

propItem A pointer to a property value structure in which you have:

n Specified the desired property’s index within an
NBFIF_PROP_ITEM list

n Allocated a buffer containing the property’s new value.

Property propItem.pValueBuf valid content

Duplex 10 or 100 (Mbps)

MAC Address Cannot set this property

Speed n Full

n Half

n Auto; this initiates automatic negotiation mode; you can access
the negotiated Speed and Duplex property values using Get-
Property method whenever the link is active
204 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBLinkwatch Class
NBLinkwatch Class

The NBLinkwatch class allows you to monitor the network connection state of
the Policy Accelerator’s media access control (MAC) interfaces, which can be
active (up) or inactive (down). A method allows you to check the state explic-
itly, and the object also checks the state automatically ten times per second.

You define a callback function to perform whatever action you want to occur
when the connection state of an interface changes, or when you check the state.
You specify the callback on object creation. The callback is invoked at the
following times:

n When the connection state of either interface changes. Because the state is
checked only 10 times each second, if the link is down for less than 0.1
seconds, the callback is not invoked.

n When you call the checkLinks method. The callback is invoked once for
each interface, passing the current state.

The NBLinkwatch class is not derived from any other class. It contains the
following methods:

Method Description

NBLinkwatch Constructor Instantiates the class.

checkLinks Method Invokes the callback for the current link state.
Intel Confidential Chapter 4: Action Services Library 205

Revision 2.3, May 2000

• • • • •

NBLinkwatch Class

•
NBLinkwatch Constructor

Creates an NBLinkwatch object.

NBLinkwatch (NBLinkwatchCallback *callback
void *argCookie);

Returns A reference to the newly created object.

Description An object of this type allows you to monitor the link state, or network connec-
tion state, of the MAC interfaces. The callback you specify is invoked whenever
the state of one of the interfaces changes, or when you call the checkLinks
method.

Connection
State Callbacks

You must supply a callback that conforms to the following prototype:

void callback (char *interface, int state, void *argCookie)

The following example callback prints a message about the link state:

void mycallback (char *argname, int argstate, void *argCookie)
{

if (argstate)
printf ("Interface ’%c’ is now UP.\n", *argname);

else
printf ("Interface ’%c’ is now DOWN.\n", *argname);

}

Argument Description

callback The service function to be called when a link state changes or is
checked.

argCookie A pointer to arbitrary data to be passed to the callback.

Argument Description

interface The interface whose state is reported. Value is A or B.

state The current state of the interface. 0 means that the link is down,
and a non-zero value means that the link is active.

argCookie A pointer to arbitrary data specified in the constructor.
206 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBLinkwatch Class
checkLinks Method

Invokes the callback for each interface with the current link states.

void checkLinks ();

Returns Nothing.

Description This method invokes the callback method once for each interface, using the
current link state.
Intel Confidential Chapter 4: Action Services Library 207

Revision 2.3, May 2000

• • • • •

NBRmon Class

•
NBRmon Class

The NBRmon class provides access to remote monitoring (RMON) block counters
for each of the two media access control (MAC) interfaces on the Policy
Accelerator. You can use the counters to construct RMON groups and manage-
ment information bases (MIBs).

The Policy Accelerator constructs at least one object of the NBRmon class on
startup. This object periodically reads counter values from the RMON block on
the MAC interfaces. The initial query rate is once every 240 seconds.

RMON
Counters

Counter values are 64-bit values in network byte order, stored in a static table
for each of the interfaces, MAC_A and MAC_B. The following table describes the
counters that are available.

Counter ID Description

RxTotPkts Number of total packets received, including bad packets,
broadcast packets, and multicast packets.

RxTotOct Number of total octets of data received, including CRC and
bad packets.

RxBcastPkts Number of good broadcast packets received.

RxMcastPkts Number of good multicast packets received.

RxCRCAlignErr Number of packets received that were of the proper size
(64<=packet length<=1518), but had a CRC error or an align-
ment error (a non-integral number of octets).

RxAlignErr Number of received frames that did not have an integral num-
ber of octets (dribble).

RxCRCErr Number of received frames that had CRC errors.

RxUndSizePkts Number of packets received that were well formed but less
than 64 bytes long.

RxOversizePkts Number of packets received that were well formed but greater
than 1518 bytes long.

RxFragsPkts Number of packets received that were less than 64 bytes long
and had either a CRC error or an alignment error.
208 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBRmon Class
RxJabbers Number of packets received that were more than 1518 bytes
long and had either a CRC error or an alignment error.

RxPkts64 Number of packets received, including bad packets, that were
64 octets in length.

RxPkts64to127 Number of packets received, including bad packets, that were
between 64 and 127 octets in length, inclusive.

RxPkts128to255 Number of packets received, including bad packets, that were
between 128 and 255 octets in length, inclusive.

RxPkts256to511 Number of packets received, including bad packets, that were
between 256 and 511 octets in length, inclusive.

RxPkts512to1023 Number of packets received, including bad packets, that were
between 512 and 1023 octets in length, inclusive.

RxPkts1024to1518 Number of packets received, including bad packets, that were
between 1024 and 1518 octets in length, inclusive.

RxGoodOct Number of good octets received, including CRC but not
including preamble/SFD. A good packet has no 4B/5B code
violations, no dribble, good CRC, and proper length.

RxGoodPkts Number of good packets received. A good packet has no
4B/5B code violations, no dribble, good CRC, and proper
length.

RxDropPkts Number of receive vectors that contain a 4B/5B coding error.

DropEvts Number of Rx and Tx frames not counted in other counters
due to contention for the RMON lock.

TxTotPkts Total number of packets transmitted, including packets that
were aborted.

TxTotOct Total number of octets sent, including packets that were
aborted.

TxBcastPkts Number of broadcast packets transmitted, including packets
that were aborted.

TxMcastPkts Number of multicast packets transmitted, including packets
that were aborted.

TxSglColPkts Number of successfully transmitted packets that experienced
exactly one collision.

Counter ID Description
Intel Confidential Chapter 4: Action Services Library 209

Revision 2.3, May 2000

• • • • •

NBRmon Class

•
Methods in the
Class

The NBRmon class contains the following methods:

TxMultColPkts Number of successfully transmitted packets that experienced
more than one collision.

TxDeferred Number of packets for which the first transmission was
deferred because the medium was busy.

TxLateCol Number of times a collision was detected more than 512 bit
times into the transmission.

TxExcessCol Number of packets for which transmission failed due to
excessive collisions.

TxExcessDef Number of packets for which transmission failed due to
excessive deferral (>50,175 nibble clocks).

TxExcessLength Number of packets for which transmission was aborted due to
excessive length.

TxUnderun Number of packets for which transmission failed due to data
underrun.

TxTotCol Total number of collisions seen during transmission.

TxCrcErr Total number of CRC errors detected by the MAC core on
transmit packets.

Counter ID Description

Method Description

NBRmon Constructor Instantiates the class.

NBRmon Destructor Deletes an NBRmon object and decrements the static refer-
ence counter.

Init Method Initializes the RMON block counters.

GetRmonCounters
Method

Retrieves receive and/or transmit counters.

GetRXTXStats Method Retrieves receive and transmit counters for an interface.

GetQueryRate Method Identifies the query rate for reading RMON block counters.

SetQueryRate Method Sets the query rate in milliseconds for reading RMON block
counters.
210 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBRmon Class
Class
Derivation

The NBRmon class is derived from the Event class.

See Also n “NBInterfaceProp Class” on page 197

n “NBRmon Class” on page 208

NBRmon Constructor

Creates an NBRmon object.

NBRmon (uint32 uRate = MAX_RMON_RATE);

Returns A reference to the newly created object.

From this class The NBRmon class inherits

Dynamic Methods that enable objects to be allocated efficiently and recy-
cled through Policy Accelerator-managed tagged memory pools.

Linked Methods that enable objects to link to each other.

Event Methods that enable NBRmon objects to read RMON counters.

Linked

Dynamic

Event

NBRmon

Argument Description

uRate Optional. The rate at which to read RMON block counters, in milli-
seconds. This number cannot be more than 240000.

When you do not specify this argument, or specify a value that is out
of range, the default rate of 240 seconds (240,000 milliseconds) is
used.
Intel Confidential Chapter 4: Action Services Library 211

Revision 2.3, May 2000

• • • • •

NBRmon Class

•
Description An NBRmon object reads RMON block counters. You can specify on creation how
often the NBRmon object should query the RMON block for values. The
constructor schedules events for reading counters based on the uRate.

You can change the query rate after the object is created, using the
SetQueryRate method.

After calling the constructor, you must intialize the new object by calling its
Init method.

See Also Init Method, SetQueryRate Method

NBRmon Destructor

Deletes an NBRmon object and decrements the static reference counter.

~NBRmon ();

Description When the reference counter becomes zero, counter values in the static table are
reset to zero.

Init Method

Initializes the RMON block counters.

uint32 Init ();

Returns ERR_SUCCESS if successful, or an error number when unsuccessful.

Description You must call this function after calling the NBRmon constructor. The method
sets the query rate and reads the counters for the first time.
212 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBRmon Class
GetRmonCounters Method

Retrieves all receive and/or transmit counter values.

uint32 GetRmonCounters (IFACE Intf,
char* pBuffer,
uint32* pLength);

uint32 GetRmonCounters (IFACE Intf,
char* pBuffer,
uint32* pLength
uint32 RxTxFlag);

Returns ERR_SUCCESS if successful, or an error number when unsuccessful.

Description This method retrieves the values of the specified set of counters for the specified
interface, and returns them all in the specified buffer.

You must allocate memory for the buffer of at least the size of
RMON_RXTX_STATS.

See Also GetRXTXStats Method

Argument Description

Intf The interface for which to get the counters. One of the following con-
stants:

MAC_A
MAC_B

pBuffer The location of a buffer which, on return, contains the retrieved
counter values.

pLength A pointer to a location which, on return, contains the number of bytes
in the buffer.

RxTxFlag Specifies which of the counters to retrieve. Optional. One of the fol-
lowing constants:

GET_RX: Retrieve only receive counters.
GET_TX: Retrieve only transmit counters.
GET_RXTX: Retrieve both receive and transmit counters (default).
Intel Confidential Chapter 4: Action Services Library 213

Revision 2.3, May 2000

• • • • •

NBRmon Class

•
GetRXTXStats Method

Retrieves all retrieve and transmit counter values.

uint32 GetRXTXStats (IFACE Intf,
RMON_RX_STATS& rxStats,
RMON_TX_STATS& txStats);

Returns ERR_SUCCESS if successful, or an error number when unsuccessful.

Description This method retrieves the values of all counters for the specified interface, and
returns them in the specified buffers.

n You must allocate memory for the rxStats buffer of at least the size of
RMON_RX_STATS.

n You must allocate memory for the txStats buffer of at least the size of
RMON_TX_STATS.

See Also GetRmonCounters Method

Argument Description

Intf The interface for which to get the counters. One of the following con-
stants:

MAC_A
MAC_B

rxStats The location of a buffer which, on return, contains the retrieved
receive counter values.

txStats The location of a buffer which, on return, contains the retrieved
receive counter values.
214 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBRmon Class
GetQueryRate Method

Retrieves the current query rate for reading RMON block counters.

uint32 GetQueryRate ();

Returns Current query rate for the object, in milliseconds.

Description This method retrieves the current query rate. This is the number of milliseconds
between each automatic reading of counters on the RMON block.

See Also NBRmon Constructor, SetQueryRate Method

SetQueryRate Method

Sets the query rate in milliseconds for reading RMON block counters.

void SetQueryRate (uint32 uMillSec);

Returns Nothing.

Description This method sets the query rate. This is the number of milliseconds between
each automatic reading of counters on the RMON block.

See Also NBRmon Constructor, GetQueryRate Method

Argument Description

uMillSec A number of milliseconds. Cannot be more than 240,000.
Intel Confidential Chapter 4: Action Services Library 215

Revision 2.3, May 2000

• • • • •

NBStringMatchReport Class

•
NBStringMatchReport Class

The NBStringMatchReport class allows you to generate and access reports on
the matching strings found by a string search in a packet buffer. A match report
contains information about each matching string, including its length and loca-
tion in the buffer.

An object of this type contains all of the generated reports for a string search in
a specific buffer. You access individual reports by passing an index value to the
accessor methods, where the first match found has an index of 0. Use the
reports method to find the actual number of reports generated. The valid
range for the indices is 0 to reports()-1.

If you are using the per-buffer callback to handle search results, you pass an
object of this type to the NBStringSearchEngine::SearchBuffer call that
initiates the search. The search engine fills in the object with the search results
for a buffer, then passes the object to your callback when the search is complete
for that buffer.

NOTE: To use the string search classes, include the following header file in
your code:

#include <NBaction/NBStringSearch.h>

The NBStringMatchReport class is not derived from any other class. It contains
the following methods:

Method Description

NBStringMatchReport
Constructor

Instantiates the class.

end Method Finds the end of a matching string relative to the begin-
ning of the search.

len Method Finds the length of a matching string.

matches Method Finds the number of matches found by a string search.

reports Method Finds the number of match reports generated by a
string search.

sid Method Retrieves the string identifier of the search string that
was matched.
216 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringMatchReport Class
See Also n NBSearchContext Class, NBStringSearchEngine Class

n “String Search Classes” on page 98

n Chapter 10, “Finding Strings in Packets,” in Developing Applications Using
the IX-API SDK

NBStringMatchReport Constructor

Creates an NBStringMatchReport object.

NBStringMatchReport (int max_reports);

Returns A reference to the newly created object.

Description Constructs the object that contains match reports for the matching strings
found by a string search. The number of reports generated is limited to the spec-
ified maximum, but the actual number generated may be smaller than the
maximum.

To limit the cost of memory allocation and initialization during critical-path
buffer processing, you can create a pool of these objects during initialization
and avoid creating them during searches.

start Method Finds the beginning location of the buffer that was
searched.

tag Method Retrieves the string tag of the search string that was
matched.

Method Description

Argument Description

max_reports The maximum number of match reports to be generated.
Intel Confidential Chapter 4: Action Services Library 217

Revision 2.3, May 2000

• • • • •

NBStringMatchReport Class

•
end Method

Finds the end of a matching string relative to the beginning of the search.

int end (int idx);

Returns The offset value of the last byte of the matching string relative to the beginning
of the search, for the matching string specified by the index value.

Description Use the start method to find the starting location of the search. Use the len
method to find the length of the matching string. Subtract the length from the
end offset to find the starting location of the string relative to the starting loca-
tion of the search.

len Method

Finds the length of a matching string.

int len (int idx);

Returns The length in bytes of the matching string specified by the index value.

Description Subtract the length from the end offset to find the starting location of the
matching string relative to the starting location of the search.

Argument Description

idx The report index. The first match found is 0.

Argument Description

idx The report index. The first match found is 0.
218 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringMatchReport Class
matches Method

Finds the number of matches found by a string search.

int matches ();

Returns The total number of matches recognized in the current buffer, including any
match that started in the previous buffer.

Description If this number is greater than the max_reports value used to set the size of the
report object, more matches were found than were reported.

reports Method

Finds the number of match reports generated.

int reports ();

Returns The number of match reports actually generated while processing the current
buffer.

Description This number is less than or equal to the max_reports value used to set the size
of the report object. It can be less than the number of matching strings found by
the string search, as reported by the matches method.

sid Method

Retrieves the string identifier of the search string that was matched.

NBStringID sid (int idx)

Returns A string identifier.

Argument Description

idx The report index. The first match found is 0.
Intel Confidential Chapter 4: Action Services Library 219

Revision 2.3, May 2000

• • • • •

NBStringMatchReport Class

•
Description This method finds and returns the string identifier associated with the search
string that was matched for the matching string specified by the index value.
When you have multiple search strings, you can use either the string identifier
or a tag you assign when adding search strings to determine which of the search
strings was matched.

String identifiers are sequential integers assigned by the search engine in the
order in which search strings are added to the search engine collection.

See Also AddString Method in NBStringSearchEngine Class

start Method

Finds the beginning location of the buffer that was searched.

char * start ();

Returns A pointer to the beginning of the data portion of the current buffer.

Description This method returns the pointer to the beginning of the data portion of the
current buffer. This is the same value that was passed in the start parameter
of the NBStringSearchEngine::SearchBuffer call used to initiate the search.
It does not indicate where the current match starts. To find the beginning of the
current match, use the end method and the len method. Subtract the length
from the end offset to find the starting location of the matching string relative
to the starting location of the search.

See Also SearchBuffer Method in NBStringSearchEngine Class
220 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringMatchReport Class
tag Method

Retrieves the string tag of the search string matched.

void * tag (int idx)

Returns A pointer to the tag associated with the search string that matched the string
specified by the index value.

Description A string tag is arbitrary data that you associate with a search string when you
add it to the search engine’s collection. You can use either this tag or the auto-
matically generated string identifier to determine which of several possible
search strings was actually matched in a specific case.

See Also AddString Method in NBStringSearchEngine Class

Argument Description

idx The report index. The first match found is 0.
Intel Confidential Chapter 4: Action Services Library 221

Revision 2.3, May 2000

• • • • •

NBSearchContext Class

•
NBSearchContext Class

TheNBSearchContext class contains configuration information that controls
the operation of a string search, and maintains the state of a string search that
continues into multiple packet buffers.

You extend this class to specify what to do with the search results in your appli-
cation. You can define any or all of the callback functions as methods in your
subclass of NBSearchContext.

There are two ways of acting upon search results:

n Generate a match report for a buffer using an NBStringMatchReport object.
In this case, you provide a per-buffer callback that is executed when the search
engine has finished searching a buffer.

n Take an action for each matching string. In this case, you provide a per-match
callback that is executed each time a matching string is found.

The search always invokes the per-buffer callback when it has finished with the
current buffer. You specify whether to invoke the per-match callback as well by
setting a configuration option with the SetOpt method. Regardless of how you
choose to handle matches, the per-buffer callback should dispose of the buffer.

A different kind of callback, the per-reset callback, is invoked when a reset action
is completed, if the action could not be taken immediately.

You can specify that a search should continue into additional buffers as packets
arrive, or that it should be limited to a single buffer. A search that is limited to
one buffer is called a simple search. You specify whether to use a simple search
by setting a configuration option with the SetOpt method.

NOTE: To use the string search classes, include the following header file in
your code:

#include <NBaction/NBStringSearch.h>
222 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBSearchContext Class
The NBSearchContext class is not derived from any other class. It contains the
following methods:

Example The following ACE subclass definition contains references to the string search
context and engine objects:

class CGetPkt : public Ace {
public:

MyStrEngine str_engine;
MyStrSearchCtx *test_search_obj;

// a function to add a search string
void AddStringToEngine(char *string, int user_id);

};

In this example, a set search uses the string search, so a member function of a
set element creates the context object:

StreamElt::StreamElt (CGetPkt *ace, nuint32 k1, nuint32 k2,
nuint32 k3, nuint32 k4,
IP4Datagram *dgram)

: Elt_Stream(k1, k2, k3, k4)
{ ...

search_obj = new MyStrSearchCtx (ace, this);
...}

The following defines a string context subclass:

Method Description

NBSearchContext Constructor Instantiates the class.

ActiveStrings Method Determines whether there is a potential match
across buffer boundaries.

SchedDelete Method Schedules the deletion of the search context
object.

SchedReset Method Resets the multiple-buffer state information in the
search context object.

SetOpt Method Sets search configuration options.

SetPerBufferCallback Method Sets a callback to be invoked when the search of
a buffer is complete.

SetPerMatchCallback Method Sets a callback to be invoked when a matching
string is found.

SetPerResetCallback Method Sets a callback to be invoked on reset.
Intel Confidential Chapter 4: Action Services Library 223

Revision 2.3, May 2000

• • • • •

NBSearchContext Class

•
class MyStrSearchCtx:public NBSearchContext {
public:

CGetPkt *ace; // Pass this to search engine callback funcs.
StreamElt *elt; // Pass this to search engine callback funcs.

MyStrSearchCtx (CGetPkt *ace_, StreamElt *elt_ ,
int client);

~MyStrSearchCtx();
//declare callbacks

static void OnEveryBuffer (void *ace, void *elt,
Buffer *buf,
NBStringMatchReport *rp);

static int OnEveryMatch (void *ace, void *elt1,
Buffer *buf,NBStringID sid,
void *stringtag, int endoffset,
int matchlen, char *payload);

};

The contructor sets the options and callbacks:

MyStrSearchCtx::MyStrSearchCtx (CGetPkt *ace_, StreamElt *elt_)
{

ace=ace_; // This object needs to know the owning
elt=elt_; // ace and set element for use in its

// callback functions

// Specify a callback for each string match.
SetOpt(NBS_OPT_PERSTR,1);

// allow for simple search option:
// if(ace->no_cross_packets)
// SetOpt(NBS_OPT_SIMPLE,1);

// Per-match callback. Called for every packet with a match
SetPerMatchCallback (OnEveryMatch, ((void*)ace_),

 ((void*)elt_));

// Per-buffer callback. Called when search done for each packet
SetPerBufferCallback (OnEveryBuffer, ((void*)ace_),

((void*)elt_));
}

See Also n NBStringMatchReport Class, NBStringSearchEngine Class

n “String Search Classes” on page 98

n Chapter 10, “Finding Strings in Packets,” in Developing Applications Using
the IX-API SDK
224 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBSearchContext Class
NBSearchContext Constructor

Createsan NBSearchContext object.

NBSearchContext ()

Returns A reference to the newly created object.

Description Constructs the object that holds configuration information for searches, as well
as state information used internally during the search.

Because string searches are asynchronous, you cannot change the search state
contained in the context object while a search is in progress. You must delete
these objects using the SchedDelete method, rather than using a destructor or
delete operation.

ActiveStrings Method

Determines whether there is a potential match across buffer boundaries.

int ActiveStrings ();

Returns If there is an active string, 1; otherwise 0. If you are not using multiple buffers
(that is, if the simple-search option is TRUE), always returns 0.

Description This method indicates whether there is an active string when the search has
reached the end of the current buffer. An active string is one that potentially
matches one of the search strings, but the end of the buffer occurs before the
match can be proved or disproved.
Intel Confidential Chapter 4: Action Services Library 225

Revision 2.3, May 2000

• • • • •

NBSearchContext Class

•
SchedDelete Method

Schedules the deletion of the search context object.

void SchedDelete ()

Returns Nothing.

Description This method schedules the deletion of the search context object to occur when
it is safe to reclaim the storage associated with it. The object is not deleted until
all searches that use this context are completed.

No callback notification occurs for this method. Because string searches are
executed asynchronously, this is the only method you can use to delete the
search context object safely; do not delete a context object by any other means.

SchedReset Method

Resets the multiple-buffer state information in the search context object.

int SchedReset ();

Returns When successful, NB_SUCCESS. When not successful, NB_PENDING.

Description This method zeros out any multiple-buffer search state and resets the search
context object to its initial state. The object is not reset until all searches that use
this context are completed.

n If it is safe to do so, the method executes the reset operation immediately
and returns NB_SUCCESS. It does not invoke the reset callback.

n If the asynchronous search has not yet completed, the method returns a
value of NB_PENDING and schedules the reset operation for a later time when
it will be safe. When the reset operation actually occurs, the search engine
invokes the reset callback; see SetPerResetCallback.
226 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBSearchContext Class
SetOpt Method

Sets search configuration options.

int SetOpt (int optname,
int cfgval)

Returns When successful, NB_SUCCESS. When not successful, NB_FAILURE.

Description This method sets configuration options for string searches in which this search
context is used. The following options control whether you use the per-match
callback and whether a search can span multiple buffers:

Argument Description

optname The option to be changed. Possible values are:
NBS_OPT_PERSTR
NBS_OPT_SIMPLE

cfgval The new value for the option. 0 is FALSE, 1 is TRUE.

Option Description

NBS_OPT_PERSTR Enable or disable callback invocation for each matching string.

n When TRUE, the per-match callback (specified using Set-
PerMatchCallback) is invoked for each matching string.

n When FALSE, the per-match callback is not invoked. This is
the default.

The per-buffer callback (specified using SetPerBuffer-
Callback) is always invoked when the search is completed
for a single buffer, regardless of whether the per-match call-
back is enabled.

NBS_OPT_SIMPLE Whether searches for this context object can cross a buffer
boundary.

n When TRUE, searches cannot cross boundaries, and any
matching string must be contained within a single buffer.

n When FALSE, searches can cross boundaries, and a match-
ing string can be partially contained in successive buffers.
Intel Confidential Chapter 4: Action Services Library 227

Revision 2.3, May 2000

• • • • •

NBSearchContext Class

•
SetPerBufferCallback Method

Sets a callback to be invoked when the search of a buffer is complete.

void SetPerBufferCallback (NBStrPerBufferCallback callback,
void* context1,
void* context2)

Returns Nothing.

Description This method specifies the callback function to be invoked every time the
processing of a complete buffer has taken place. The last two arguments are
passed directly to the callback function, and can point to any data that you
define for that function.

Per Buffer
Callbacks

The callback function can take any action you want on the buffer. If you allocate
a match report object when you initiate the search (by calling the SearchBuffer
method of the NBStringSearchEngine object), the search engine fills in that
object with the matching string information for the buffer, and the callback
function can access the information through the object.

You must provide a callback that conforms to the following prototype:

(NBStrPerBufferCallback) callback (void* context1,
void* context2,
Buffer* buf,
NBStringMatchReport* rp)

Argument Description

callback The callback function.

context1 An arbitrary data pointer to pass to the callback function.

context2 An arbitrary data pointer to pass to the callback function.

Argument Description

context1 An arbitrary data pointer passed from the calling method.

context2 An arbitrary data pointer passed from the calling method.
228 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBSearchContext Class
buf A pointer to the packet buffer in which the search was executed.

rp A pointer to the match report object provided in the call that initiated
the search. If such an object has been allocated, the search engine
fills it with the search results before passing it to the callback. If not
using match report objects, this argument is NULL .

Argument Description
Intel Confidential Chapter 4: Action Services Library 229

Revision 2.3, May 2000

• • • • •

NBSearchContext Class

•
SetPerMatchCallback Method

Sets a callback to be invoked when a matching string is found.

void SetPerMatchCallback (NBStrPerMatchCallback callback,
void* context1,
void* context2)

Returns Nothing.

Description This method specifies the callback function to be invoked every time a
matching string is found by a string search. The last two arguments are passed
directly to the callback function and can point to any data that you define for
that function.

Per Match
Callbacks

The callback function can take any desired action on the matching string. The
search engine passes information about the matching string to the callback
function. This is the same information that the search engine returns about each
matching string in a match report object.

You must provide a callback that conforms to the following prototype:

(NBStrPerMatchCallback) callback (void* context1,
void* context2,
Buffer* buf,
NBStringID sid,
void* stringtag,
int endoffset,
int matchlen,
char *data)

Argument Description

callback The callback function.

context1 An arbitrary data pointer to pass to the callback function.

context2 An arbitrary data pointer to pass to the callback function.

Argument Description

context1 An arbitrary data pointer passed from the calling method.

context2 An arbitrary data pointer passed from the calling method.
230 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBSearchContext Class
This function must return one of the following values:

buf A pointer to the packet buffer in which the search was executed.

sid The string identifier of the matching string.

stringtag A pointer to the tag of the matching string

endoffset The offset in bytes of the end of the matching string relative to the
start of the buffer (as provided to the call that initiated the search).

matchlen The length in bytes of the matching string.

data A pointer to the beginning of the data in the packet buffer.

NBS_CONT Continue execution, invoking the callback for subsequent string
matches in the current buffer.

NBS_TERM Terminate execution. Do not invoke the callback for subsequent
string matches in the current buffer.

Argument Description
Intel Confidential Chapter 4: Action Services Library 231

Revision 2.3, May 2000

• • • • •

NBSearchContext Class

•
SetPerResetCallback Method

Sets a callback to be invoked on reset.

void SetPerResetCallback (NBStrPerResetCallback callback,
void* context1)

Returns Nothing.

Description This method specifies a callback function to be invoked every time you reset the
search context object using the SchedReset method. The callback is invoked
when the reset operation actually occurs, whether or not it occurs immediately.
The callback can perform any action you want, using any data that you pass.

Per Reset
Callbacks

You must provide a callback that conforms to the following prototype:

(NBStrPerResetCallback) callback (void* context1)

Argument Description

callback The callback function.

context1 An arbitrary data pointer to pass to the callback function.

Argument Description

context1 An arbitrary data pointer passed from the calling method.
232 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringSearchEngine Class
NBStringSearchEngine Class

The NBStringSearchEngine class provides a container for search strings, and
allows you to search for matching strings in one or more packet buffers. Typi-
cally, an action function would call the SearchBuffer method to send the
current buffer to a new or existing search.

A search engine object maintains a collection of search strings, or patterns to be
matched. You use the AddString and RemoveString methods to specify the
search strings. During a search, the engine looks for matches for all search
strings currently in the collection.

NOTE: To use the string search classes, include the following header file in
your code:

#include <NBaction/NBStringSearch.h>

Operating
Modes and
Callbacks

Because string searches are asynchronous, you cannot change the search state
(by adding or removing search strings, for example) while a search is in
progress. Similarly, you cannot start a search while you are changing the search
state. To control this, an NBStringSearchEngine object has a current operating
mode, which indicates whether you can initiate a search or change the collec-
tion of search strings. The operating modes are as follows:

If the search engine is in the state where an action is allowed, that action occurs
immediately. Similarly, if it is in the state where that action is not allowed, the
action fails immediately. However, if the engine is in the intermediate state, the

Operating Mode Description

Maintenance In this state you can make changes to the list of search strings. No
searches are currently in progress, and you cannot initiate a new
search or send a new packet buffer to a continuing search.

Pending This intermediate state occurs when a request for maintenance
mode has not yet completed. You cannot change the search string
list until the request is complete. Searches that are currently in
progress are completed, but you cannot initiate a new search or
send a new packet buffer to a continuing search.

Search In this state you can initiate a new string search or send a new
packet buffer to a continuing search. You cannot make changes to
the list of search strings.
Intel Confidential Chapter 4: Action Services Library 233

Revision 2.3, May 2000

• • • • •

NBStringSearchEngine Class

•
action is scheduled for completion in the future. When this occurs, the method
that initiated the action returns NB_PENDING. When the action is completed, the
engine signals the completion by invoking a callback function that you provide
for this purpose.

Initiating and
Continuing
Searches

You initiate a search using the SearchBuffer method, passing the current
buffer with a new or reset context object. If no search is already in progress for
the context object, the search engine starts a new search.

If the context specifies that the search can span multiple buffers (that is, if the
simple-search flag is FALSE), you can call SearchBuffer again, passing another
buffer with the same context object, to continue the search into the new buffer.

You can maintain multiple searches simultaneously, as long as each search is
associated with its own context object.

Search Engine
Methods

The NBStringSearchEngine class is not derived from any other class. It
contains the following methods:

Example The following ACE subclass definition contains references to the string search
context and engine objects:

class CGetPkt : public Ace {
public:

MyStrEngine str_engine;
MyStrSearchCtx *test_search_obj;

// a function to add a search string
void AddStringToEngine(char *string, int user_id);

};

Method Description

NBStringSearchEngine
Constructor

Instantiates the class.

AddString Method Adds a search string to the collection of strings to match
against.

ChangeOpMode Method Sets the operating mode.

OpMode Method Finds the current operating mode.

RemoveString Method Removes a search string from the collection of strings to
match against.

SchedDelete Method Schedules the deletion of the search engine object.

SearchBuffer Method Initiates a string search.
234 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringSearchEngine Class
The ACE constructor creates the engine object:

CGetPkt::CGetPkt (ModuleId id, char* name, Image* obj):
Ace (id, name, obj)
,str_engine(this)
{...}

The following defines a string engine subclass:

class MyStrEngine:public NBStringSearchEngine {
public:

int nRequestAdded;
int nActuallyAdded;
CGetPkt *pktAce;
NBStringID aStringID[200];
int stringIDCount;

// constructor
MyStrEngine (Ace *ace);

// A method to add search strings
int AddStringToEngine(char *string, int user_id);

};

See Also n NBStringMatchReport Class, NBSearchContext Class

n “String Search Classes” on page 98

n Chapter 10, “Finding Strings in Packets,” in Developing Applications Using
the IX-API SDK

NBStringSearchEngine Constructor

Creates an NBStringSearchEngine object.

NBStringSearchEngine ();

Returns A reference to the newly created object.

Description Constructs the object that contains search strings and initiates a string search.
The newly created object is in maintenance mode.
Intel Confidential Chapter 4: Action Services Library 235

Revision 2.3, May 2000

• • • • •

NBStringSearchEngine Class

•
AddString Method

Adds a search string to the collection of strings to match against.

int AddString (char* string,
void* stringtag,
NBStringID* sid,
NBStrCallback callback,
void * context)

Argument Description

string The string to match. Can contain constant strings and supported reg-
ular expressions, as follows:

Syntax Matches

A The given single character, in this case A

ABCD The given substring, in this case ABCD

[abc] Any character from the given list, in this case a or b or
c

[a-f] Any character in the given range, in this case a to f

[a-fm-pt-
z]

Any character in the list of ranges, in this case, a to f,
m to p, t to z

\Xyy The byte value yy, where y is a hexadecimal digit

\t A tab character

\n A newline character

\r A linefeed character

. (dot) Any single character

a* 0 or more of the previous character (except newline)

a+ 1 or more of the previous character (except newline)

[^a] Any character except those specified. For example:

[^ 1-9] matches all characters except digits

[^ \t] matches all characters except newline

stringtag A pointer to arbitrary data to be associated with the string
236 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringSearchEngine Class
Returns When successful, NB_SUCCESS. When the object is in search mode, NB_FAILURE.
When the operation cannot be completed immediately, NB_PENDING.

Description This method adds a new search string to the collection of strings to be matched.

There are two ways to identify this search string in the collection, so that when
a search returns a match, you can tell which of multiple search strings was actu-
ally matched. You can use an identifier or a tag:

n The search engine assigns a string identifier and returns it at the location
pointed to by sid. String identifiers are sequential integers that reflect the
order in which search strings are added to the search engine’s collection.

n The stringtag argument specifies arbitrary data to be associated with the
string. You can use this to create a unique, nonsequential, or global identi-
fier.

You can execute this action only when the engine is in maintenance mode.

n If the object is in search mode, the method returns NB_FAILURE. You must
first request a mode change using the ChangeOpMode method.

n If the action can be executed immediately, the method returns NB_SUCCESS.
It does not invoke the callback.

n If it is not yet safe to add the string, the method schedules the addition and
returns NB_PENDING. When the action is completed, the engine notifies the
application by invoking the callback function, passing it the tag associated
with the added string.

Add String
Callbacks

You must provide a callback that conforms to the following prototype:

(NBStrCallback) callback (int return_value,
void* context,
void* stringtag)

sid A pointer to a string identifier that you allocate. The method assigns
the identifier value.

callback The callback function that is invoked when the action is completed,
if it has been delayed.

context An arbitrary data pointer to pass to the callback function.

Argument Description
Intel Confidential Chapter 4: Action Services Library 237

Revision 2.3, May 2000

• • • • •

NBStringSearchEngine Class

•
Argument Description

return_value Indicates whether the action completed successfully, either
NB_SUCCESS or NB_FAILURE.

context An arbitrary data pointer passed from the calling method.

stringtag A pointer to arbitrary data associated with the string, passed
from the calling method.
238 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringSearchEngine Class
ChangeOpMode Method

Sets the operating mode.

int ChangeOpMode (int newmode,
NBStrCallback callback,
void * context)

Returns When successful, NB_SUCCESS. When the request fails, NB_FAILURE. When the
operation cannot be completed immediately, NB_PENDING.

Description This method issues a request to change the operating mode of the object.

n If the request fails due to an error, the method returns NB_FAILURE.

n If the action can be executed immediately, the method returns NB_SUCCESS
and does not invoke the callback.

n If it is not yet safe to change the mode, the method schedules the change and
returns NB_PENDING. When the action is completed, the engine notifies the
application by invoking the callback function.

Change Mode
Callbacks

You must provide a callback that conforms to the following prototype:

(NBStrCallback) callback (int return_value,
void* context,
int oldmode,
int newmode)

Argument Description

newmode The new operation mode. Can be one of the following:
NBS_MODE_MAINT
NBS_MODE_SEARCH

callback The callback function.

context An arbitrary data pointer to pass to the callback function.

Argument Description

return_value Indicates whether the action completed successfully, either
NB_SUCCESS or NB_FAILURE.

context An arbitrary data pointer passed from the calling method.
Intel Confidential Chapter 4: Action Services Library 239

Revision 2.3, May 2000

• • • • •

NBStringSearchEngine Class

•
OpMode Method

Finds the current operating mode.

int OpMode ();

Returns The current operating mode of the search engine object.

Description The operating mode of the engine object can be one of the following:

Use the ChangeOptMode method to request a change to the operating mode.

oldmode The previous mode state of the object, either NBS_MODE_MAINT
or NBS_MODE_SEARCH.

newmode The new mode state of the object, either NBS_MODE_MAINT or
NBS_MODE_SEARCH.

Argument Description

Operating Mode Description

NBS_MODE_MAINT You can make changes to the internal state of the object,
such as adding new search strings. No buffer searching
takes place.

NBS_MODE_PENDING An intermediate state that occurs when a request for
maintenance mode has not yet completed. No buffer
searching takes place.

NBS_MODE_SEARCH The object is ready to perform string searches.
240 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringSearchEngine Class
RemoveString Method

Removes a search string from the collection of strings to match against.

int RemoveString (NBStringID sid,
NBStrCallback callback,
void* context)

Returns When successful, NB_SUCCESS. When the object is in search mode, NB_FAILURE.
When the operation cannot be completed immediately, NB_PENDING.

Description This method removes the string with the specified identifier from the collection
of strings being searched for. You can execute this action only when the engine
is in maintenance mode.

n If the object is in search mode, the method returns NB_FAILURE. You must
first request a mode change using the ChangeOpMode method.

n If the action can be executed immediately, the method returns NB_SUCCESS
and does not invoke the callback.

n If it is not yet safe to remove the string, the method schedules the removal
and returns NB_PENDING. When the action is completed, the engine invokes
the callback function, passing it the tag associated with the removed string.

Remove String
Callbacks

You must provide a callback that conforms to the following prototype:

(NBStrCallback) callback (int return_value,
void* context,
void *stringtag)

Argument Description

sid The string identifier of the search string to be removed, as assigned
by the AddString method.

callback The callback function.

context An arbitrary data pointer to pass to the callback function.

Argument Description

return_value Indicates whether the action completed successfully, either
NB_SUCCESS or NB_FAILURE.
Intel Confidential Chapter 4: Action Services Library 241

Revision 2.3, May 2000

• • • • •

NBStringSearchEngine Class

•
SchedDelete Method

Schedules the deletion of the search engine object.

int SchedDelete (NBStrCallback callback,
void* context)

Returns When successful, NB_SUCCESS. When the object is in search mode, NB_FAILURE.
When the operation cannot be completed immediately, NB_PENDING.

Description This method schedules the deletion of the search engine object itself, to be
completed when it is safe to free the object’s memory.

You can execute this action only when the engine is in maintenance mode.

n If the object is in search mode, the method returns NB_FAILURE. You must
first request a mode change using the ChangeOpMode method.

n If the action can be executed immediately, the method returns NB_SUCCESS
and does not invoke the callback.

n If it is not yet safe to delete the string, the method schedules the deletion and
returns NB_PENDING. When the action is completed, the engine notifies the
application by invoking the callback function. By the time the callback is
invoked, the object has been deleted and references to it are invalid.

Schedule
Deletion
Callbacks

You must provide a callback that conforms to the following prototype:

(NBStrCallback) callback (int return_value,
void* context)

context An arbitrary data pointer passed from the calling method.

stringtag A pointer to arbitrary data associated with the removed string.

Argument Description

Argument Description

return_value Indicates whether the action completed successfully, either
NB_SUCCESS or NB_FAILURE.

context An arbitrary data pointer passed from the calling method.
242 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 NBStringSearchEngine Class
SearchBuffer Method

Initiates a new string search or passes a new buffer to a multiple-buffer search.

int SearchBuffer (Buffer buf,
char *start,
int len,
NBSearchContext *sc,
NBStringMatchReport *rp)

Returns When successful, NB_SUCCESS. When the object is not in search mode,
NB_FAILURE. When the search engine cannot accept the request, NB_BUSY.

Description Depending on the state kept in the specified context object, this method initiates
a new search or passes the buffer to an ongoing multiple-buffer search. The
search is executed in the specified (current) packet buffer, matching the search
strings currently in the engine object’s collection.

The search starts at the location pointed to by start, and continues for the
number of bytes specified by len. The start parameter typically points to the
beginning of the data portion of the buffer.

You can call this method only when the engine is in search mode.

n If the object is not in search mode, the method immediately returns
NB_FAILURE. You must first request a mode change using the ChangeOpMode
method.

n If the engine is currently unable to accept the request, the method returns
NB_BUSY. In this case, you must retry the search later.

n If the search is successfully started, the method returns NB_SUCCESS.

Argument Description

buf The packet buffer in which to search.

start A pointer to the location in the buffer at which to begin the search.

len The maximum number of bytes to inspect in the search.

sc A pointer to the search context object to be used to control the
search. If the context contains a current multiple-buffer search state,
that search continues into this buffer.

rp A pointer to a match report object in which to store match reports.
When NULL, no match reports are generated.
Intel Confidential Chapter 4: Action Services Library 243

Revision 2.3, May 2000

• • • • •

NBStringSearchEngine Class

•
Reporting Matches

The search engine reports matches according to the per-match search option set
in the specified search context object. If the per-match option is TRUE, the search
engine invokes the per-match callback as each match is found, passing informa-
tion about the matching string. In any case, the search engine always invokes
the per-buffer callback (if any) when the search has been completed for the
buffer.

If you create and pass a match report object, the search engine generates match
reports for the buffer, which the per-buffer callback can access through the
match report object. If you use the per-match callback, you might not need to
use match report objects.

You use the per-buffer callback to determine what to do with the buffer. If the
buffer is needed after the per-buffer callback returns, you must use
Buffer::incref() to mark the buffer in use. You need not do this if the call-
back disposes of the buffer by passing it, dropping it, or sending it to another
target.

Single- or Multiple-Buffer Searches

The simple-search option in the specified context object determines whether
there is a multiple-buffer search in progress.

n If the simple-search option is true, the engine initiates a new search in the
current buffer. The search terminates when it reaches the end of the buffer.

n If the simple-search option is false, the context object maintains the search
state across buffer boundaries. The current buffer is passed to the ongoing
search, which continues into the next buffer that is sent with the same
context object.
244 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Pool Class
Pool Class

The Pool class maintains a linked list of free objects and a large block from
which new objects can be created. Objects are provided from the pool without
any added overhead; the code that recycles the objects must determine to which
pool to return the object.

The Dynamic class uses the Tagged class, derived from the Pool class, to quickly
allocate objects of fixed sizes at specified offsets from specified power-of-two
alignments. Pool objects restock the raw memory resources from the Policy
Accelerator memory pool as required.

The Pool class is not derived from any other class. It contains the following
methods:

Pool Constructor

Creates a Pool object.

Pool (size_t bytes,
size_t align,
int offset,
int restock);

Method Description

Pool Constructor Instantiates the class

Pool Destructor Deletes a Pool object

free Method Releases the specified object into the pool

take Method Takes an object from the pool

Argument Description

bytes The size of the objects to be allocated from this pool.

align The modulus part of the alignment requirement of the objects.
Intel Confidential Chapter 4: Action Services Library 245

Revision 2.3, May 2000

• • • • •

Pool Class

•
Returns A reference to the newly created object.

Description Constructs the object that describes the contents of the memory pool and that
contains the configuration control information for how future allocations will
be handled.

The offset argument enables allocation of classes where a specific member
needs to be strongly aligned; for example, objects from the Buffer class contain
an element called “hard” that must start at the beginning of a 2048-byte-aligned
region.

The restock argument controls how much memory is allocated from the
surrounding environment when the pool is empty. Enough memory is allo-
cated to contain at least the requested number of objects of the specified size, at
the specified offset from the alignment modulus. Setting restock to zero
prevents any attempt to allocate memory from the surrounding environment.

Pool Destructor

Deletes a Pool object.

~ Pool ();

Description When a Pool object is deleted, all memory allocated from the surrounding envi-
ronment by the memory pool object is released. Externally stocked objects are
not affected.

Objects residing in memory allocated by the pool from the surrounding envi-
ronment must not be accessed after the pool has been deleted.

offset The offset part of the alignment requirement of the objects.

restock The minimum number of objects to add to the pool when it is empty.

Argument Description
246 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Pool Class
free Method

Releases the specified object into the pool.

void free (void * blk);

Returns Nothing.

Description Releases an object into the pool, so the memory containing it can be recycled.
NULL pointers can be passed to this method but are ignored. You can manually
stock a pool with appropriate objects by freeing objects (with the appropriate
alignment characteristics) that were not originally allocated from the pool.
Additionally, the DEBUG version of the library checks that released objects meet
the alignment criteria for the pool, triggering an assertion failure if the memory
is badly aligned.

take Method

Takes an object from the pool.

void * take ();

Returns A pointer to the appropriately allocated object, or NULL if the pool needs but
cannot allocate additional memory.

Description Obtains an object from the pool, guaranteeing that it starts at the byte offset
(specified in the Pool constructor) from the byte alignment (also specified in the
Pool constructor) boundary, attempting to recycle recently released objects
before acquiring additional resources from the surrounding environment.

If the restock argument was set to zero when the object was constructed, the
take method does not acquire resources from the surrounding environment.

Argument Description

blk Pointer to the block of memory to free within the memory pool.
Intel Confidential Chapter 4: Action Services Library 247

Revision 2.3, May 2000

• • • • •

Rate Class

•
Rate Class

Use this class to track event rates and bandwidths so you can watch for rates
that exceed desired values.

The Rate class provides a simple way to track event rates and bandwidths so
that you can watch for rates that exceed desired values.

The Rate class contains the following methods:

Class
Derivation

The Rate class is derived from the Event class.

Method Description

Rate Constructor Instantiates the class.

add Method Adds the specified number of packets to the rate.

count Method Calculates the best estimate of the current trailing rate of the
events over the last (longer) period.

clear Method Clears the count and associated internal historical state infor-
mation to prevent triggering alarm code on every packet
observed over the limit.

From this class The Rate class inherits

Dynamic Methods that enable objects to be allocated efficiently and recycled
through Policy Accelerator-managed tagged memory pools.

Linked

Dynamic

Event

Rate
248 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Rate Class
Rate Constructor

Creates a Rate object with a specific sampling period.

Rate (Time period);

Rate (Time period,
int divide);

Returns A reference to the newly created object.

Description The Rate constructor enables you to specify arbitrary sampling periods. You
can optionally specify how finely to divide the period. Though larger divisors
result in more precise rate measurement, they require more overhead because
the Rate object schedules events for each of the shorter periods while there are
events within the longer period.

Linked Methods that enable objects to link to each other.

Event Methods that enable a rate to be handled as a normal Policy
Accelerator event. However, if the scheduling of the associated
event is modified, the Rate class produces incorrect results.

From this class The Rate class inherits

Argument Description

period The sampling period.

divide How finely to divide the period. Default value is 8.
Intel Confidential Chapter 4: Action Services Library 249

Revision 2.3, May 2000

• • • • •

Rate Class

•
add Method

Adds the specified number of events to the count.

void add (int howMany);

Description Events can be packets, bytes, errors, or anything else for which the application
wants to monitor the rate.

count Method

Calculates the best estimate of the current trailing rate of the events over the last
(longer) period.

int count ();

Returns The trailing rate, in events-per-period.

clear Method

Clears the count and associated internal historical state information to prevent
triggering alarm code on every packet observed over the limit.

void clear ();

Returns Nothing.

Argument Description

howMany Specifies the number of counts to add. Default value is 1.
250 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Search Class
Search Class

The Search class is the data type returned by all set searching operations. An
object of this type is returned by the locate method of Set subclasses; see
Set_setname Class on page 256.

Use this class to discover the results of a search, and to manipulate the set for
which the search was performed.

The Search class contains the following methods:

Class
Derivation

The Search class is derived from the Dynamic class.

Method Description

Result access methods Return Boolean values indicating the result of the search.

n ran Method: Indicates whether the search ran, or did
not run because requirements for set membership were
not met.

n hit Method: Indicates whether the search ran and
found a matching record.

n miss Method: Indicates whether the search ran and did
not find a matching record.

insert Method Inserts the specified element into the place where the
search result failed to find the designated set of keys.

toElement Method Gets a pointer to the set element object that was found
during the search.

From this class The Search class inherits

Dynamic Methods that enable objects to be allocated efficiently and recycled
through Policy Accelerator-managed tagged memory pools.

Search

Dynamic
Intel Confidential Chapter 4: Action Services Library 251

Revision 2.3, May 2000

• • • • •

Search Class

•
Example The following example is taken from the IPPairs demo application. The single
action function is called by single NCL rule for all IP packets. It receives the
search object and a pointer to the IP portion of the current packet

ACTNF do_packet(Buffer *buf, DemoAce *ace,
Search sr, Proto_ip *ip)

{
 if (sr.hit())

{
//Most common case: another hit on a conversation.
pair * p = (pair *)sr.toElement(); //find matching element
p->hit(); //increment elmnt’s counter, reset expiration timer
return RULE_CONT;

 }
 if (sr.miss()) // No matching element for this packet

{
// add new set element with current src & dst addresses

// create new element
pair * p = new pair(ip->src(), ip->dst());
// add to set
sr.insert(p);
return RULE_CONT;

 }
 // If we got here, the search did not run.
 // This demo’s NCL rule does not call this fn
 // in this case, but this would be where to handle it
 return RULE_CONT;
}

See Also n “Set Management Classes” on page 101

n “Sets and Named Searches” and “Synchronizing NCL with Action Code” in
Chapter 6

n Chapter 9, “Using Sets of Data to Classify Packets,” in Developing Applica-
tions Using the IX-API SDK
252 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Search Class
hit Method

Indicates whether a matching record was found by the search.

bool hit ();

Returns TRUE if the Search object represents an NCL search that has been executed, and
the search found a matching record. FALSE if the search was not executed or a
matching record was not found.

Description For a search that was executed, either hit or miss returns TRUE, and the other
FALSE. For a search that was not executed, both return FALSE.

insert Method

Inserts an element into a set.

void insert (Element *);

Returns Nothing.

Description Inserts the specified element into the place in the set where the search failed to
find an element whose keys match the designated packet field values.

If the search keys match the keys used to build the new element, then subse-
quent searches for those keys will locate the object; otherwise, the behavior is
undefined.
Intel Confidential Chapter 4: Action Services Library 253

Revision 2.3, May 2000

• • • • •

Search Class

•
miss Method

Indicates whether the search failed to find a matching record.

bool miss ();

Returns TRUE if the Search object represents an NCL search that has been executed, and
the search did not find a matching record. FALSE if the search was not executed
or a matching record was found.

Description For a search that was executed, either hit or miss returns TRUE, and the other
FALSE. For a search that was not executed, both return FALSE.

ran Method

Indicates whether a search ran.

bool ran ();

Returns TRUE if the Search object represents an NCL search that has been executed.
FALSE if the prerequisites for running an NCL search were not met.

toElement Method

Retrieves a pointer to the set element object that was found during the search.

Element * toElement();

Returns A pointer to the matching element.

Description When the search succeeds in finding a set element whose keys match the packet
field values, this method returns a pointer to the matching element.

You must cast the returned object pointer into the Element subclass you have
created for the set.
254 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Set Class
Set Class

The Set class is a base class used to construct classes that represent searchable
sets. These are originally defined in Network Classification Language (NCL).
For each set setname, the NCL compiler creates a subclass of the Set class
named Set_setname. You must not create any further subclasses.

You do not create Set objects directly; instead, you use the constructor in the
generated set subclass.

Class
Derivation

The Set class is derived from the Dualobj class.

See Also Set_setname Class

From this class The Set class inherits

Dynamic Methods that enable objects to be allocated efficiently and recycled
through Policy Accelerator-managed tagged memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal names.

Dualobj The ace method and the semantics that enable it to be managed as
an abstract object with state on both the host and Policy Accelera-
tors.

Linked

Dynamic

Named

Dualobj

Set
Intel Confidential Chapter 4: Action Services Library 255

Revision 2.3, May 2000

• • • • •

Set_setname Class

•
Set_setname Class

For each set directive defined in Network Classification Language (NCL), the
compiler produces an adjusted Set subclass Set_setname, using the name of
the set. You must not create any further subclasses.

The NCL compiler uses the number of words of key information to customize
the argument list for the lookup function. It uses the set definition’s size_hint
to adjust a protected field within the class. It uses the number of key words
(nkeys) to construct a locate method with the appropriate number of argu-
ments.

ACEs that manipulate sets must include an object of the customized Set class
as a member of the ACE. Add a set declaration for each set to your subclass of
the ACE class, with the same name that you declared for that set in the NCL file.

The Set_setname class contains the following methods:

Class
Derivation

The Set_setname class is derived from the Set class.

Method Description

Set_setname Constructor Instantiates the class.

first Method Finds the first member element of the set.

locate Method Searches for a member of the set.

next Method Finds the member element that follows a given element
of the set.
256 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Set_setname Class

Example The following ACE subclass definition declares two set objects, and the
constructor creates the set objects:

class CONNAce : public Ace {
public:

CONNAce (ModuleId id, char* name, Image* obj);
~CONNAce ();
Set_nets nets;
Set_conns conns;

}

CONNAce::CONNAce (ModuleId id, char* name, Image* obj):
Ace (id, name, obj)
,nets (id, this, "nets")
,conns (id, this, "conns")

{}

From this class The Set_setname class inherits

Dynamic Methods that enable objects to be allocated efficiently and recycled
through Policy Accelerator-managed tagged memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal names.

Dualobj The ace method and semantics that enable it to be managed as an
abstract object with state on both the host and Policy Accelerators.

Set All public methods.

Linked

Dynamic

Named

Dualobj

Set

Set_setname
Intel Confidential Chapter 4: Action Services Library 257

Revision 2.3, May 2000

• • • • •

Set_setname Class

•
The destructor of the custom set subclass (or the destructor of the ACE, if the
set is defined as part of the ACE) should use the iterator functions to clean up
set elements, using code like the following:

MyElement * scan;
MyElement * next;
...
scan = first(); //Set_myset.first() if in ACE
while (scan != NULL) {

next = scan->next();
delete scan;
scan = next;

}

See Also n “Set Management Classes” on page 101

n “Sets and Named Searches” and “Synchronizing NCL with Action Code” in
Chapter 6

n Chapter 9, “Using Sets of Data to Classify Packets,” in Developing Applica-
tions Using the IX-API SDK
258 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Set_setname Class
Set_setname Constructor

Creates a Set_setname object.

Set_setname (ModuleId id,
Ace * ace,
char * name);

Returns A reference to the newly created object.

Description Locates and connects the object to the data structures used by the classification
code in response to set search directives.

You must create an object of this class in the accelerator module’s ACE object
for each set that you have defined, giving the object the same name that was
defined for the set in the NCL code.

Argument Description

id The module identification number, assigned by the Resolver. .

ace Pointer to the Ace object in the Policy Accelerator for the ACE that
owns this set.

name The name of the set. This is the same as the name specified in the
NCL set definition.
Intel Confidential Chapter 4: Action Services Library 259

Revision 2.3, May 2000

• • • • •

Set_setname Class

•
first Method

Finds the first member element of the set.

Element* first ()

Returns A pointer to a set element, or NULL.

Description This method finds and returns the first member element of the set. If there are
no elements, the method returns NULL. You can use this, together with the next
method, to iterate through members of the set and delete them before deleting
the set.

See Also “Deleting Sets” on page 125 of Developing Applications Using the IX-API SDK

locate Method

Searches the set for a record matching the specified keys.

Search locate (nuint32 k1, ... nuint32 kn);

Returns A Search object containing the results of the search.

Description This method examines the set and attempts to find the unique member of the
set whose key values match the specified key values.

Note that this method does not have a variable number of arguments. You must
pass the number of arguments defined for the specific set by the nkeys argu-
ment in the NCL set statement that declared and defined it.

Key values are network-ordered words. The compiler handles conversion
between host and network order. See “Byte Order and Intermodule Communi-
cation” in Chapter 2.

See Also Search Class, “Sets and Named Searches” in Chapter 6.

Argument Description

k1 The key values to match. You must pass the number of key values
specified by nkeys in the NCL set definition.
260 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Set_setname Class
next Method

Finds the member element following a given element of the set.

Element* next (Element *ep)

Returns A pointer to a set element, or NULL.

Description This method finds and returns the member element of the set immediately after
the specified element. If there are no elements, or if the specified element is the
last one, the method returns NULL. You can use this, together with the first
method, to iterate through members of the set and delete them before deleting
the set.

See Also “Deleting Sets” on page 125 of Developing Applications Using the IX-API SDK

Argument Description

ep A pointer to a member element of the set.
Intel Confidential Chapter 4: Action Services Library 261

Revision 2.3, May 2000

• • • • •

Tagged Class

•
Tagged Class

The Tagged class is derived from the Pool class. It adds a small amount of over-
head space as a prefix to the object, which contains a pointer back to the object’s
home pool. Code that frees objects taken from a Tagged class can do so without
deciding where to return the object.

The Dynamic class uses this class to free tagged objects into the appropriate
memory pool. You do not normally use the Tagged class directly.

If an object has strong alignment requirements, adding the Tagged overhead
can cause much space to be wasted between the objects. For example, if the
objects were 32 bytes long and were required to start on 32-byte boundaries, an
additional word would cause another 28 bytes of padding to be wasted
between adjacent objects.

The Tagged class adds a second (static) version of the take method, which is
passed the size of the object to be allocated. The Tagged class manages an
appropriate set of pools based on possible object sizes, grouping objects of
similar size together to limit the number of pools and allow sharing of real
memory between objects of slightly different sizes. Currently, this interface has
a hard upper limit (around 64KB) on the size of the objects that it is willing to
allocate, and returns a null pointer if asked to go above that limit.

The Tagged class contains the following methods:

Class
Derivation

The Tagged class is derived from the Pool class.

Method Description

free Method Releases the Tagged object into the appropriate pool so the memory
containing it can be recycled.

take Method Locates or creates a Tagged pool to manage objects of approxi-
mately the same size.

Tagged

Pool
262 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Tagged Class
free Method

Releases the object at the specified address into the Tagged pool from which it
was originally allocated, so that the storage can be reused.

static void free (void * blk);

Returns Nothing.

Description Unlike normal pools, it is not possible to manually stock a Tagged pool. Addi-
tionally, the debug version of the library checks that released objects meet the
alignment criteria for the pool, triggering an assertion failure if the memory is
badly aligned.

If you pass a null pointer, it is ignored.

See Also Pool Class, Tagged Class, take Method

From this class The Tagged class inherits

Pool All public methods.

Argument Description

blk Pointer to the block of memory to free within the memory pool.
Intel Confidential Chapter 4: Action Services Library 263

Revision 2.3, May 2000

• • • • •

Tagged Class

•
take Method

Allocates objects from an automatically selected Tagged pool.

static void * take (size_t size);

Returns A pointer to the appropriately allocated object, or NULL if the Tagged pool needs
but is unable to allocate additional memory.

Description In addition to the member method Tagged::take() inherited from Pool, the
Tagged class adds this static method that locates (or creates) a Tagged pool to
manage objects of approximately the same size, and then allocates an object
from it.

Setting the restock argument to zero on object creation prevents any attempt
to allocate memory from the surrounding environment. (See Pool Constructor
on page 245.)

See Also Dynamic Class, Pool Class

Argument Description

size The size of the memory block to take.
264 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Target Class
Target Class

Use the Target class to create target objects in ACEs within a Policy
Accelerator.

Targets represent paths to be taken through the set of ACEs by the various
packet buffers. The Resolver works with the application to inform the Target
objects of how the various ACEs, stacks and interfaces in the system are
connected.

The Target objects represent the next bit of hardware or software that looks at
a packet along a selected path. This might be another ACE within the same
application, an ACE within a completely different application, a network trans-
mission queue, or a built-in service for packet dropping or cryptography.

All ACEs start with two default Target objects, called the default pass and
drop targets. You can create additional targets, representing additional direc-
tions packets can take upon leaving the ACE, in your Ace subclasses.

In actions, you use the Target object’s take method to designate the target
through which the buffer will be directed when the ACE's processing is
complete.

Each Target object is associated with one TargetManager object with the same
dictionary name in the host module.

ACE group

ACE manager

TargetManager

Host module

Accelerator module
ACE

Target
Intel Confidential Chapter 4: Action Services Library 265

Revision 2.3, May 2000

• • • • •

Target Class

•
The Target class contains the following methods:

Class
Derivation

The Target class is derived from the Dualobj class.

See Also n Chapter 5, “Controlling Packet Flow,” of Developing Applications Using the
IX-API SDK

n TargetManager Class in Chapter 3, “Host API.”

Method Decription

Target Constructor Instantiates the class.

take Method Arranges for the specified buffer to be processed next by the
service on the other end of this target.

From this class The Target class inherits

Dynamic Methods that enable objects to be allocated efficiently and recy-
cled through Policy Accelerator-managed tagged memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal names.

Dualobj The ace method and the semantics that enable it to be managed
as an abstract object with state on both the host and Policy Accel-
erators.

Linked

Dynamic

Named

Dualobj

Target
266 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Target Class
Target Constructor

Creates a Target object.

Target (ModuleId id,
Ace * ace,
char * name);

Returns A reference to the newly created object.

take Method

Directs a packet to this target.

int take (Buffer * b);

Returns Returns an action-function return-value constant (see “Custom Action Func-
tions” on page 117).

Description This method arranges for the specified buffer to be processed next by the
service on the other end of this target.

Argument Description

id The module identification number, assigned by the Resolver.

ace Pointer to the Ace object in the Policy Accelerator for the ACE that
owns this target.

name The dictionary name of the target. This must be the same as the dic-
tionary name of the associated TargetManager object in the host
module.

Argument Description

b Pointer to the buffer.
Intel Confidential Chapter 4: Action Services Library 267

Revision 2.3, May 2000

• • • • •

Time Class

•
Time Class

The Time class provides a common format for carrying a time value. Absolute,
relative, and elapsed times are all handled identically. Various other classes use
Time objects to specify absolute times and time intervals.

You can construct Time objects for specified numbers of standard time units
(microseconds, milliseconds, seconds, minutes, hours, days and weeks). Use
the access methods to extract standard time periods from a Time object.

Conversion to and from sixty-four-bit unsigned integer values are automatic.
Scalar operators and assignment operators allow you to manipulate time
values using standard scalar numbers of standard time units.

The Time class contains the following methods and operators:

Class
Derivation

The Time class is derived from the Dynamic class.

Method Description

Time Constructor Instantiates the class.

curr Method Returns the current time.

Access Methods Various accessor methods render time values as scalar
multiples of standard time units, truncated toward zero.

Builder Methods Various static methods construct time values correspond-
ing to scalar multiples of standard time units.

Assignment Operators Operators for manipulating the time values.

Conversion Operator The int64 operator converts time values to normal scalar
types.

Time

Dynamic
268 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Time Class
Time Constructor

Creates a Time object.

Time ();

Time (int64 raw);

Returns A reference to the newly created object.

Description Use the constructor with no argument to construct an uninitialized Time object.
Use the constructor with an argument to construct a Time object that is initial-
ized to the specified number of ticks of the highest resolution clocks efficiently
accessible in the environment. (The C++ compiler uses the second constructor
to perform implicit transparent conversion from the usual scalar values and
Time objects.)

When you construct a time value, you can initialize it to a standard time-unit
value using one of the Time builder methods. For example:
Time timeout(Time::secs(5));

From this class The Time class inherits

Dynamic The semantics that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged memory
pools.

Argument Description

raw Specifies the initial value for the Time object.
Intel Confidential Chapter 4: Action Services Library 269

Revision 2.3, May 2000

• • • • •

Time Class

•
curr Method

Returns the current time.

static Time curr ();

Returns A Time object containing the current time.

Description Returns the value of the high precision environmental clock as sampled at the
top of the current real-time dispatch loop. Repeated calls to Time::curr()
return identical values until the real time loop has completed and is recycled.

Access Methods

Use the following accessor methods to render a time value as a scalar multiple
of standard time units, truncated toward zero.

int64 usec ();
int64 msec ();
int64 secs ();
int64 mins ();
int64 hour ();
int64 days ();
int64 week ();

Returns A number expressing the time in the specified unit.

Description These accessors, when called without arguments, return the value of the Time
variable in the appropriate units, rounded down. For example, a time value
corresponding to 5.9 seconds is reported as 5 by the Time::secs() method.
270 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Time Class
Builder Methods

Use the following static methods to construct time values corresponding to
scalar multiples of the standard time units.

static Time usec (int64 t);
static Time msec (int64 t);
static Time secs (int64 t);
static Time mins (int64 t);
static Time hour (int64 t);
static Time days (int64 t);
static Time week (int64 t);

Returns A Time object.

Description These builder methods return Time objects that express the specified length of
time. For example, Time::secs(5) returns a time value representing five
seconds.

Argument Description

t Multiplier for constructing the time value.
Intel Confidential Chapter 4: Action Services Library 271

Revision 2.3, May 2000

• • • • •

Time Class

•
Assignment Operators

The Time class defines the following set of assignment operations on Time
objects, with standard semantics corresponding to the same expression written
as a binary operator or assignment.

Time& operator += (Time t); //add time t to a time
Time& operator -= (Time t); //subtract time t from a time
Time& operator *= (int i); //multiply a time by i
Time& operator /= (int i); //divide a time by i
Time& operator %= (Time t); //modulus of time by time i
Time& operator <<= (int i); //shift time left by i
Time& operator >>= (int i); //shift time right by i
Time& operator |= (Time t); //OR time with time t
Time& operator ^= (Time t); //XOR time with time t
Time& operator &= (Time t); //AND time with time t

Returns A reference to the Time object on the left side of the operator (which contains
the manipulated value).

Conversion Operator

Use the int64 conversion operator and the appropriate Time constructor to
convert time values to scalar values. When they are converted, you can apply
all normal scalar operators to Time objects. The compiler implicitly and trans-
parently converts between Time objects and normal scalar types.

Argument Description

t The Time object with which to operate on the left-hand time.

i A number by which to manipulate the left-hand time value.
272 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Upcall Class
Upcall Class

Use this class to deliver messages from the Policy Accelerator to the host.

The Upcall class contains information that the Policy Accelerator requires to
deliver messages from the Policy Accelerator to the proper service function in
the proper application in the host.

Each Upcall object is associated with one UpcallHandler object with the same
dictionary name in the host module. In response to the Upcall object’s call
method, the host executes the service function specified in the associated
UpcallHandler object, passing it the specified message.

Upcalls and downcalls provide communication between Policy Accelerator
actions and host functions. You use upcalls and downcalls to share information
or to signal between the two modules. You can pass memory blocks, packet
contents, or other messages.

ACE group

ACE manager

UpcallHandler

Host module

Accelerator module

ACE

Upcall

upcall
Intel Confidential Chapter 4: Action Services Library 273

Revision 2.3, May 2000

• • • • •

Upcall Class

•
The Upcall class contains the following methods:

Class
Derivation

The Upcall class is derived from the Dualobj class.

Example The following example is taken from the BasicApp demo application. The
action file defines an ACE subclass, NBBasicAce, which contains an upcall
object, and declares a method in that class that will create and send a message
in an upcall:

class NBBasicAce : public Ace {
public:

Method Description

Upcall Constructor Instantiates the class.

call Method Sends a message from the Policy Accelerator to an applica-
tion in the host.

From this class The Upcall class inherits

Dynamic Methods that enable objects to be allocated efficiently and
recycled through Policy Accelerator-managed tagged
memory pools.

Linked Methods that enable objects to link to each other.

Named Methods that enable the system to find objects by internal
names.

Dualobj The ace method and the semantics that enable it to be
managed as an abstract object with state on both the host
and Policy Accelerators.

Linked

Dynamic

Named

Dualobj

Upcall
274 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Upcall Class
NBBasicAce (ModuleId id, char* name, Image* obj);
void peekPacketUpcall (Buffer *buf);
int packetCounter;
nuint32 msg;

protected:
Upcall peekPacketUpcallHandle;

};

The constructor for the ACE subclass creates the upcall object as well as the
ACE object:

NBBasicAce::NBBasicAce (ModuleId id, char* iname, Image* iobj):
Ace (id, iname, iobj),
peekPacketUpcallHandle (id, this, "peekPacketUpcall")

{
packetCounter = 0;

}

The definition for the method that sends the upcall is as follows:

void NBBasicAce::peekPacketUpcall (Buffer *buf) {
buf = buf; /* prevent "buf not used" compiler warning */
packetCounter++;
if ((packetCounter % 100) == 0) {

msg = htonl (packetCounter);
MessageBlock b ((char *)&msg, sizeof (msg));
Message m (b);
peekPacketUpcallHandle.call(&m);

 }
}

An action function calls the message-sending method:

ACTNF action_all (Buffer* buf, NBBasicAce* ace) {
ace->peekPacketUpcall (buf);
return RULE_CONT;

}

See Also n Message Class, MessageBlock Class

n UpcallHandler Class in Chapter 3, “Host API.”

n “Communication Between the Host and the Policy Accelerator” on
page 104 of Developing Applications Using the IX-API SDK
Intel Confidential Chapter 4: Action Services Library 275

Revision 2.3, May 2000

• • • • •

Upcall Class

•
Upcall Constructor

Creates an Upcall object.

Upcall (ModuleId id,
Ace * ace,
char * name);

Returns A reference to the newly created object.

Description You cannot use the object until the Policy Accelerator receives a message from
the Resolver containing addressing information for the Upcall with this name.

call Method

Sends a message from the Policy Accelerator to the host.

int call (Message * m);

Returns Zero when successful, a negative number when unsuccessful.

Description The method returns asynchronously before the call has completed. The method
returns –1 is the following cases:

n The upcall mechanism is not yet initialized by the Resolver

n Too many previous upcalls are waiting for processing

n The system cannot allocate host memory for the upcall

Argument Description

id ACE Identifier assigned by the Resolver.

ace Pointer to the Ace object in the Policy Accelerator.

name The upcall’s dictionary name. This must be the same as the dictionary
name of the associated UpcallHandler object in the host module.

Argument Description

m Pointer to the message to be sent.
276 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

 Upcall Class
If the method does succeed, it means only that the call has been initiated, not
that it has completed. Data for the message has not necessarily been copied
from the source area until the call has completed.

When the call has completed, the message is passed to the corresponding
UpcallHandler object’s service function.

NOTE: Do not delete the message pointer after sending the call. Because the
call is queued for asynchronous handling, the message could be
deleted before the call is processed. By default, messages are
automatically deleted when the call is complete. See “MessageBlock
Class” on page 184 for information on alternative handling.

For information on creating the message argument, see “Message Class” on
page 180 and “MessageBlock Class” on page 184.
Intel Confidential Chapter 4: Action Services Library 277

Revision 2.3, May 2000

• • • • •

Upcall Class

•
278 Chapter 4: Action Services Library Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 5

• • • • •
ASL Extensions for TCP/IP

The TCP/IP extensions to the Action Services Library (ASL) provide a set of
class definitions that help with tasks common to TCP/IP-based applications.
The methods span several protocol layers, and include operations such as IP
fragment reassembly and TCP stream reconstruction.

This chapter has the following sections:

n Classes and Constants in the ASL TCP/IP Extensions

n Using the TCP/IP Classes

n IP Constant Definitions

n TCP Constant Definitions

n ASL TCP/IP Extension API

Classes and Constants in the ASL TCP/IP Extensions

This section introduces the ASL extension classes by functional area. Classes
and methods are described in detail in the API section of this chapter, in alpha-
betical order.

General
Checksum
Support

The Internet checksum is used extensively within the TCP/IP protocols to
provide reasonably high assurance that data has been delivered correctly. In
particular, it is used by IP (for headers), TCP and UDP (for headers and data),
ICMP (for headers and data), and IGMP (for headers). The ASL extensions
provide one class for accessing checksums in a variety of protocols.

Class Description

Internet Class Computes checksums for various internet protocols.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 279

Revision 2.3, May 2000

• • • • •

Classes and Constants in the ASL TCP/IP Extensions

•
IP Support The ASL extensions provide a set of classes and constants that you use to
process IP-layer data. These classes support fragmentation and reassembly of
IP datagrams.

For address translation in IP, see “Network Address Translation (NAT)” on
page 281.

For information on constants, see “IP Constant Definitions” on page 293.

UDP Support The ASL extensions provide a class that you use to process UDP-layer data.

TCP Support The TCP protocol provides a connection-oriented stream service with state.

The NBtcp.h file contains TCP-specific definitions, including the TCP header,
plus a facility to monitor the content and progress of an active TCP flow as a
third party (that is, without having to be an endpoint). The classes and
constants that you use to process TCP-layer data also support TCP stream reas-
sembly and state following.

For address and port number translation of TCP, see “TCPNat Base Class” on
page 355.

Class Description

IP4Addr Class Manipulates 32-bit IP version 4 addresses.

IP4Header Class Manipulates IP version 4 headers.

IP4Mask Class Manipulates IP version 4 masks.

ReassemblyQueue Class Reassembles IP version 4 fragments.

IP4Fragment Class Manipulates IP version 4 fragments.

IP4Datagram Class Manipulates IP version 4 datagrams.

Class Description

UDPHeader Class Manipulates UDP headers.
280 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Classes and Constants in the ASL TCP/IP Extensions
For information on states, return values, and other constants, see “TCP
Constant Definitions” on page 295.

Network
Address
Translation
(NAT)

Network Address Translation (NAT) refers to the ability to modify various
fields of different protocols so that the effective source, destination, or source
and destination entities are replaced by an alternative.

In the ASL, the file NBnat.h contains the definitions to perform NAT for the IP,
UDP, and TCP protocols. The NAT implementation uses incremental checksum
computations, so performance should not degrade in proportion to packet size.

The ASL NAT classes can translate the following:

n source/destination IP addresses

n source/destination UDP port numbers

n source/destination TCP port and sequence numbers

n source/destination TCP port, sequence, and acknowledgement numbers.

The NAT methods modify the specified fields, and also rewrite any checksums
that become outdated. For IP, NAT rewrites the IP header checksum. For UDP
and TCP, NAT also rewrites the pseudoheader checksum, which covers the IP
header source and destination addresses plus protocol fields.

NOTE: The NAT classes do not translate network addresses that might be
embedded in a data portion of the packets (like those found in certain
higher-layer protocols such as FTP and DNS). You are responsible for
translating these addresses.

Class Description

TCPHeader Class Manipulates TCP headers.

TCPSegInfo Class Manipulates TCP segment information.

TCPSeq Class Manipulates TCP sequence numbers.

TCPEndpoint Class Manipulates TCP endpoints.

TCPSession Class Manipulates TCP sessions.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 281

Revision 2.3, May 2000

• • • • •

Classes and Constants in the ASL TCP/IP Extensions

•
NAT classes for the IP protocol include the following:

NAT classes for the UDP protocol include the following:

NAT classes for the TCP protocol include the following:

Class Description

IP4NAT Base Class This pure virtual class is a base from which the usable IP
NAT subclasses are derived.

IP4SNat Class Modifies the source IP addresses in an IP packet.

IP4DNat Class Modifies the destination IP addresses in an IP packet.

IP4SDNat Class Modifies both the source and destination IP addresses in
an IP packet.

Class Description

UDPNat Base Class This pure virtual class is a base from which the usable UDP
NAT subclasses are derived.

UDPSNat Class Modifies the source IP addresses and (optionally) ports in
a UDP packet.

UDPDNat Class Modifies the destination IP addresses and (optionally) ports
in a UDP packet.

UDPSDNat Class Modifies both the source and destination IP addresses and
(optionally) ports in a UDP packet.

Class Description

TCPNat Base Class This pure virtual class is a base from which the usable TCP
NAT subclasses are derived.

TCPSNat Class Modifies the source IP addresses and (optionally) ports
and/or sequence number in a TCP packet.

TCPDNat Class Modifies the destination IP addresses and (optionally) ports
and/or ACK number in a TCP packet.

TCPSDNat Class Modifies both the source and destination IP addresses and
(optionally) ports and/or sequence and ACK number in a
TCP packet.
282 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Using the TCP/IP Classes
Using the TCP/IP Classes

This section gives examples of how to use the TCP/IP extensions in your appli-
cations.

NOTE: The methods in the TCP/IP extensions generally use network byte
order. When you use a host with a different native byte order (for
example, a Pentium or PC-compatible machine) you must convert
values between host and network byte order as needed. See “Byte
Order and Intermodule Communication” in Chapter 2, “System Types
and Methods.”

Using Header
Classes

The following simple example shows how you can use the header classes to
access parts of a packet, or find embedded packets. Notice that the header
classes contain static methods which you can use directly. You do not need to
instantiate these classes.

Suppose your application has the following rule in the NCL file:

rule { tcp } { handleTCP (tcp) }

Your action file would contain an action function definition in the following
form:

ACTFN handleTCP (Buffer* buf, NBBasicAce* ace,
TCPHeader* pTcpHdr)

{
// access fields

uint16 sport = pTcpHdr->sport ();
unit16 dport = pTcpHdr->dport ();

// body of function ...
}

Similarly, you could use the IP header class to access the TCP protocol
contained in the IP protocol, as follows:

rule { ip } { handleIP (ip) }

ACTFN handleIP (Buffer* buf, NBBasicAce* ace,
 IP4Header* pIpHdr)

{
// access TCP portion of packet

TCPHeader* pTcpHdr = (TCPHeader) pIpHdr->payload ();
// body of function ...
}

Intel Confidential Chapter 5: ASL Extensions for TCP/IP 283

Revision 2.3, May 2000

• • • • •

Using the TCP/IP Classes

•
Using Header
Classes and
NAT

The following example shows how to use the protocol and NAT classes in an
action function to perform network address translation. Notice that the NAT
classes, like the header classes, contain static methods that you can use directly.
You do not need to instantiate these classes.

typedef struct pseudo_hdr // Pseudo header for TCP and
{ // UDP checksum computations:

uint32 srcAddr; // Source IP address.
uint32 dstAddr; // Dest IP address.
uint8 zero; // A zero byte.
uint8 protocol; //Protocol from IP header.
uint16 length; // UDP/TCP length.
uint16 srcPort; // UDP/TCP src port.
uint16 dstPort; // UDP/TCP dst port.

} pseudo_hdr;

//--
// NatNetworkFlow
// Purpose: 1. Perform NAT on a network flow.
// 2. Forward the NATed packet.
//--
ACTNF NatNetworkFlow(// NAT a Network Flow we control:

Buffer* pBuf, // In: Ptr to packet buffer.
FaAce* pAce, // In: Ptr to Forwarding Agent ACE.
IP4Header* pIp4Hdr, // In: Ptr to IP4 header; w/datagram.
Affinity* pAffinity // In: Ptr to an Affinity for the flow.

{
DbgTrace ("NatNetworkFlow");
Dbg (cout << "\tIP src: " << pIp4Hdr->src () << " IP dst: "

<<
pIp4Hdr->dst() << endl;);

Dbg (cout << "pBuf: " << *pBuf << endl;);
nuint16* pData;
nuint16 olddata_checksum;
nuint16 newdata_checksum;
IP4Addr newSrcAddr, newDstAddr;
nuint16 newSrcPort, newDstPort;
nuint16 oldSrcPort, oldDstPort;
bool adjustChecksum;
uint32 fwdToAddr;
TCPHeader* pTcpHdr = NULL;
UDPHeader* pUdpHdr = NULL;
IP4Addr oldSrcAddr = pIp4Hdr->src ();
IP4Addr oldDstAddr = pIp4Hdr->dst ();
uint16 segLength = 0;
uint8 protocol= pIp4Hdr->proto();
ACE_RESULT result;

//
// Perform Network Address Translation (NAT) ...
284 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Using the TCP/IP Classes
// Perform both source and dest NAT.
// If either src or dest NAT addrs or ports are zero,
// leave them as is.
//
// Conditionally perform IP src/dst NAT ...
//

newSrcAddr = pAffinity->m_pNatInfo->srcAddr;
newDstAddr = pAffinity->m_pNatInfo->dstAddr;

if (newSrcAddr != 0 || newDstAddr != 0)
{

// Adjust the IP src/dst addr and checksum.
nuint16* pData = (nuint16*)pIp4Hdr + 6;
olddata_checksum = Internet::cksum (pData, 8);
if (newSrcAddr != 0)

pIp4Hdr->src () = newSrcAddr;
if (newDstAddr != 0)

pIp4Hdr->dst () = newDstAddr;
newdata_checksum = Internet::cksum (pData, 8);
pIp4Hdr->cksum () = Internet::incrcksum (pIp4Hdr->cksum

(),

olddata_checksum,

newdata_checksum);
}

//
// Conditionally perform TCP or UDP src/dst port NAT ...
//

switch (protocol)
{

case TCP:
pTcpHdr = (TCPHeader*)pIp4Hdr->payload ();
segLength = (uint16) (pIp4Hdr->datalen () -

pIp4Hdr->hlen ());
oldSrcPort = pTcpHdr->sport ();
oldDstPort = pTcpHdr->dport ();
newSrcPort = pAffinity->m_pNatInfo->srcPort;
newDstPort = pAffinity->m_pNatInfo->dstPort;
adjustChecksum = true;
break;

case UDP:
pUdpHdr = (UDPHeader*)pIp4Hdr->payload ();
segLength = pUdpHdr->len ().raw_;
oldSrcPort = pUdpHdr->sport ();
oldDstPort = pUdpHdr->dport ();
newSrcPort = pAffinity->m_pNatInfo->srcPort;
newDstPort = pAffinity->m_pNatInfo->dstPort;
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 285

Revision 2.3, May 2000

• • • • •

Using the TCP/IP Classes

•
adjustChecksum = (pUdpHdr->cksum () != 0);
break;

default:
ASSERTFAIL ("NatNetworkFlow - Unsupported protocol"

);
case ICMP:
newSrcPort = 0;
newDstPort = 0;
adjustChecksum = false;
break;

}

if (newSrcPort != 0 || newDstPort != 0)
{ // Adjust the src/dst port and conditionally the checksum.

pData = (nuint16*)pIp4Hdr->payload ();
if (newSrcPort != 0)

*pData = newSrcPort;
if (newDstPort != 0)

* (pData+1) = newDstPort;
}

if (adjustChecksum)
{

pseudo_hdr old_pseudo_hdr;
pseudo_hdr new_pseudo_hdr;

// Ensure seg length is a multiple of 16 bits.
if (segLength & 0x0001) segLength++;

// Setup ’old’ pseudo header.
old_pseudo_hdr.srcAddr = oldSrcAddr.raw_;
old_pseudo_hdr.dstAddr = oldDstAddr.raw_;
old_pseudo_hdr.zero = 0;
old_pseudo_hdr.protocol = protocol;
old_pseudo_hdr.length = segLength;
old_pseudo_hdr.srcPort = oldSrcPort.raw_;
old_pseudo_hdr.dstPort = oldDstPort.raw_;

// Setup ’new’ pseudo header.
new_pseudo_hdr.srcAddr = (newSrcAddr.raw_) ?

newSrcAddr.raw_ : oldSrcAddr.raw_;
new_pseudo_hdr.dstAddr = (newDstAddr.raw_) ?

newDstAddr.raw_ : oldDstAddr.raw_;
new_pseudo_hdr.zero = 0;
new_pseudo_hdr.protocol = protocol;
new_pseudo_hdr.length = segLength;
new_pseudo_hdr.srcPort = (newSrcPort.raw_) ?

newSrcPort.raw_ : oldSrcPort.raw_;
286 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Using the TCP/IP Classes
new_pseudo_hdr.dstPort = (newDstPort.raw_) ?
newDstPort.raw_ : oldDstPort.raw_;

olddata_checksum = Internet::cksum ((nuint16*)
&old_pseudo_hdr,
sizeof (old_pseudo_hdr));

newdata_checksum = Internet::cksum ((nuint16*)
&new_pseudo_hdr,
sizeof (new_pseudo_hdr));

if (protocol == TCP)
pTcpHdr->cksum () = Internet::incrcksum (pTcpHdr-

>cksum(),

olddata_checksum,

newdata_checksum);
else
pUdpHdr->cksum () = Internet::incrcksum(pUdpHdr->cksum(),

olddata_checksum,

newdata_checksum);
}

//
// Forward the packet ...
//

ForwardPacket(pBuf, pAce);
//
// Set result to RULE_REWROTE - sent modified buffer to a
target.
//

result = RULE_REWROTE;
return result;

} /* NatNetworkFlow */

Using IP
Datagram
Classes

The following example illustrates how to use the IP datagram classes to
assemble IP fragments.

class FragQueue : public Elt_FragQueue
// Fragment hold/reassembly queue:
{
public:
FragQueue(// Constructor:
IP4Header* pIP4Hdr // In: Ptr to IP4 header, w/frag.
)
: Elt_FragQueue (pIP4Hdr->src (), pIP4Hdr->dst (),

pIP4Hdr->id ()), m_pDatagram (NULL)
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 287

Revision 2.3, May 2000

• • • • •

Using the TCP/IP Classes

•
{
m_pDatagram = new IP4Datagram();
if (!m_pDatagram)
{
ASSERTFAIL("FragQueue - Failure creating IP4Datagram");
}

// Expiration set to 10 sec, or 1 msec to clean-up due to
failure.

expire((m_pDatagram) ? Time::secs(10) : Time::usec(1),
(ExpireMFp)&Expired);

}
virtual ~FragQueue(void) // Destructor:
{
// Deleting a datagram deletes any fragments within,
// and releases fragment buffers for subsequent
// classification and processing.
//

if (m_pDatagram)
delete m_pDatagram;

}

void Expired(void) // Called when frag queue entry expires.
{ delete this; } // Delete self.

bool InsertFrag (IP4Fragment* pFrag)
// Insert frag into hold/reassembly datagram:
// In: Ptr to fragment.

{
ASSERT(m_pDatagram);
bool OK = (m_pDatagram && pFrag && pFrag->hdr ()) ?

 (m_pDatagram->insert (pFrag) == 0) : false;
if (!OK)
{
ASSERTFAIL ("InsertFrag-Failure inserting IP4Fragment");
if (pFrag)

delete pFrag;
}

// Expiration reset to 10 sec, or 1 msec to clean-up
// due to failure.

expire((OK) ? Time::secs (10) : Time::usec (1),
 (ExpireMFp)&Expired);

return OK;
}

// Coalesce/Join datagram frags into a single un-fragmented
packet
bool CoalesceFrags(void)
{

IP4Header* pIp4Hdr;
288 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Using the TCP/IP Classes
size_t dataLen;
bool allOK= true;
char* pAppend = NULL;
IP4Fragment* pFrag = m_pDatagram->head();
Buffer* Buf = pFrag->buf();
size_t totalLen= sizeof (IP4Header) + pFrag->datalen ();

// Append to the first fragment’s buffer
// (if sufficient buffer space available)
// the payload of subsequent datagram frags.
//

while ((pFrag = pFrag->next ()))
{

if (allOK)
{ // Append frag’s payload to 1st buffer.

dataLen = pFrag->datalen ();
totalLen += dataLen;
pAppend = pBuf->append (dataLen);
if (pAppend)

memcpy (pAppend, pFrag->payload (), dataLen);
else

allOK = false;
}

// Expire/delete current frag’s buffer.
pFrag->buf ()->decref ();

}

if (allOK)
{ // Reset IP header flags, packet len, and header

checksum.
pFrag = m_pDatagram->head();
pIp4Hdr = pFrag->hdr ();
pIp4Hdr->offset ()= 0;
pIp4Hdr->len () = htons ((short)totalLen);
pIp4Hdr->cksum () = 0;
pIp4Hdr->cksum () = Internet::cksum

((nuint16*)pIp4Hdr,
sizeof

(IP4Header));
}
else
{

ASSERTFAIL ("CoalesceFrags-Failure joining/appending
frags");

// Expire/delete first frag’s buffer.
pBuf->decref ();

}

Intel Confidential Chapter 5: ASL Extensions for TCP/IP 289

Revision 2.3, May 2000

• • • • •

Using the TCP/IP Classes

•
return allOK;
}

bool AllFragsReceived (void)
{

ASSERT(m_pDatagram);
return (m_pDatagram) ? m_pDatagram->complete() : true;

}
protected:
 IP4Datagram*m_pDatagram; // Ptr to IP datagram.
};
//---
// Fragmented
// Purpose: Return whether or not an IP packet is a fragment.
//--
static inline bool Fragmented (IP4Header* pIp4Hdr)
{ // Return whether or not an IP packet is fragmented

bool isFrag, moreFrags;
 uint16 ipFlagsAndOffset = ntohs (pIp4Hdr->offset ());

uint16 ipFragOffset = ipFlagsAndOffset & IP_OFFMASK;

if (ipFlagsAndOffset & IP_DF)
{

isFrag = moreFrags = false;
}
else
{

moreFrags = ipFlagsAndOffset & IP_MF;
isFrag = (moreFrags || ipFragOffset);

}
return isFrag;

} /* Fragmented */

//---
// HandleFrag
// Purpose:
// 1. Handle a fragmented IP packet;
// in a sequence of IP fragments.
// 2. Queue and defer processing of IP fragments.
// 3. If all of the fragments composing an IP datagram
// have beenreceived/queued, coalesce the fragments
// into a non-fragmented datagram.
// Then delete and/or release fragment buffers.
//--
ACTNF HandleFrag (// Handle a fragmented IP packet:

Buffer* pBuf, // In: Ptr to packet buffer.
FaAce* pAce, // In: Ptr to Forwarding Agent ACE.
IP4Header* pIp4Hdr // In: Ptr to IP4 header; w/fragment.

{

290 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Using the TCP/IP Classes
DbgTrace ("HandleFrag");
Dbg (cout << "\tIP4Header: " << pIp4Hdr << endl;);

FragQueue* entry;
ACE_RESULT result = RULE_CONT;

do
{// If the buffer is busy, defer processing it.

if (pBuf->busy()){
result = RULE_DEFER;
break;

}
// Ensure packet is a fragment.
if (!Fragmented(pIp4Hdr))
{

ASSERTFAIL("HandleFrag - Not an IP fragment");
break;

}
// Check frag queue for sibling frags.
Search fragQueue = pAce->m_FragQueue.locate(pIp4Hdr-

>src(),

pIp4Hdr->dst(),

pIp4Hdr->id());
if (fragQueue.hit ())
{

// Sibling frags exist. Get the frag queue
// entry (which houses sibling frags) into
// which the current frag is to be inserted.
entry = (FragQueue*)fragQueue.toElement();
if (entry == NULL)
{

ASSERTFAIL("HandleFrag - Failure locating frag
queue set entry");

break;
}

}
else
{

// No sibling frags in frag queue.
// Create a new frag queue set entry.
entry = new FragQueue(pIp4Hdr);
if (entry == NULL)
{

ASSERTFAIL("HandleFrag - Failure creating frag
queue set entry");

break;
}

Intel Confidential Chapter 5: ASL Extensions for TCP/IP 291

Revision 2.3, May 2000

• • • • •

Using the TCP/IP Classes

•
fragQueue.insert(entry);
}

// Create a frag and insert it into the frag queue.
IP4Fragment* pFragment = new IP4Fragment (pBuf, pIp4Hdr);
if (! (pFragment && pFragment->hdr ()))
{

ASSERTFAIL("HandleFrag - Failure creating
IP4Fragment");

if (pFragment)
delete pFragment;

break;
}

if (!entry->InsertFrag(pFragment))
{

ASSERTFAIL("HandleFrag - Failure inserting entry into
frag queue set");

break;
}

// If all frags received, then we’re done;
// reassemble and dispatch a non-fragmented packet.
// Otherwise set the result to retain the frag buffer.

// If all frags have been received ...
if (entry->AllFragsReceived ())
{
// Coalesce/join datagram frags
// into a single non-fraged packet.

entry->CoalesceFrags();
// Delete the frag queue entry; doing
// so deletes queued frags, and releases
// their buffers for subsequent processing.

delete entry;
}
result = RULE_DONE;

} while (false);
return result;

} /* HandleFrag */
292 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP Constant Definitions
IP Constant Definitions

In addition to the IP header itself, a number of definitions are provided for
manipulating fields of the IP header with specific semantic meanings. The IP
constants fall into the following categories:

n IP Fragmentation

n IP Service Type

n IP Precedence

n IP Option Definitions

n IP Options Field Offsets

IP
Fragmentation

The following constants define flags that control fragmentation of IP data-
grams:

IP Service Type The following constants define the IP type of service byte (not commonly used):

Define Value Description

IP_DF 0x4000 Do not fragment flag (RFC 791, p. 13)

IP_MF 0x2000 More fragments flag (RFC 791, p. 13)

IP_OFFMASK 0x1FFF Mask for determining the fragment offset from the
IP header offset field

IP_MAXPACKET 65535 Maximum IP datagram size

Define Value Reference

IPTOS_LOWDELAY 0x10 RFC 791, p. 12

IPTOS_THROUGHPUT 0x08 RFC 791, p. 12

IPTOS_RELIABILITY 0x04 RFC 791, p. 12

IPTOS_MINCOST 0x02 RFC 1349
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 293

Revision 2.3, May 2000

• • • • •

IP Constant Definitions

•
IP Precedence The following constants define IP precedence. All are from RFC 791, p. 12 (not
widely used):

IP Option
Definitions

The following constant definitions support IP options. All definitions are from
RFC 791, pp. 15-23.

Define Value

IPTOS_PREC_NETCONTROL 0xE0

IPTOS_PREC_INTERNETCONTROL 0xC0

IPTOS_PREC_CRITIC_ECP 0xA0

IPTOS_PREC_FLASHOVERRIDE 0x80

IPTOS_PREC_FLASH 0x60

IPTOS_PREC_IMMEDIATE 0x40

IPTOS_PREC_PRIORITY 0x20

IPTOS_PREC_ROUTINE 0x00

Define Value Description

IPOPT_COPIED(o) ((o)&0x80) A macro that returns TRUE if the option
‘o’ is to be copied upon fragmentation

IPOPT_CLASS(o) ((o)&0x60) A macro giving the option class for the
option ‘o’

IPOPT_NUMBER(o) ((o)&0x1F) A macro giving the option number for the
option ‘o’

IPOPT_CONTROL 0x00 Control class

IPOPT_RESERVED1 0x20 Reserved

IPOPT_DEBMEAS 0x40 Debugging and/or measurement class

IPOPT_RESERVED2 0x60 Reserved

IPOPT_EOL 0 End of option list

IPOPT_NOP 1 No operation

IPOPT_RR 7 Record packet route
294 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCP Constant Definitions
IP Options
Field Offsets

The following constants define the offsets to fields in options other than EOL
and NOP.

TCP Constant Definitions

A number of constant definitions are provided for use with TCP. These fall into
the following categories:

n TCP Control Bits

n TCP Options

n TCP Session State

n TCP Return Codes

IPOPT_TS 68 Time stamp

IPOPT_SECURITY 130 Provide s, c, h, tcc

IPOPT_LSRR 131 Loose source route

IPOPT_SATID 136 Satnet ID

IPOPT_SSRR 137 Strict source route

IPOPT_RA 148 Router alert

Define Value Description

Define Value Description

IPOPT_OPTVAL 0 Option ID

IPOPT_OLEN 1 Option length

IPOPT_OFFSET 2 Offset within option

IPOPT_MINOFF 4 Minimum value of offset
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 295

Revision 2.3, May 2000

• • • • •

TCP Constant Definitions

•
TCP Control
Bits

The following constants define the standard TCP control bits:

TCP Options The folllowing constants define TCP options:

TCP Session
State

TCP operates as an 11-state finite state machine. Most of the states are related
to connection establishment and tear-down. By following certain control bits in
the TCP headers of segments passed along a connection, it is possible to infer
the TCP state at each endpoint of a TCP connection and to monitor the data
exchanged between them. The TCP/IP ASL extensions provide a facility to

Define Value Description

TH_FIN 0x01 TCP FIN indication (closing connection)

TH_SYN 0x02 TCP SYN indication (synchronize connection, sequence
number init)

TH_RST 0x04 Connection reset

TH_PUSH 0x08 TCP “push” indication (often indicates segment emptied
send buffer)

TH_ACK 0x10 TCP ACK field value valid indicator

TH_URG 0x20 TCP Segment contains urgent data

Define Value Description

TCPOPT_EOL 0 End of option list

TCPOPT_NOP 1 No operation (used for padding)

TCPOPT_MAXSEG 2 Maximum segment size (MSS)

TCPOPT_SACK_PERMITTED 4 Selective Acknowledgements available

TCPOPT_SACK 5 Selective Acknowledgements in this segment

TCPOPT_TIMESTAMP 8 Time stamps

TCPOPT_CC 11 For T/TCP (see RFC 1644)

TCPOPT_CCNEW 12 For T/TCP

TCPOPT_CCECHO 13 For T/TCP
296 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCP Constant Definitions
follow TCP state transitions and also to inspect data exchanged across a TCP
connection. The facility is designed to handle TCP segments in fragmented IP
datagrams, if necessary.

NOTE: States less than TCPS_ESTABLISHED indicate connections not yet
established.

States greater than TCPS_CLOSE_WAIT are those where the user has
closed.

States greater than TCPS_CLOSE_WAIT and less than
TCPS_FIN_WAIT_2 indicate TCP is awaiting an ACK of FIN.

The following constants indicate states in the TCP finite state machine:

Define Value Description

TCPS_CLOSED 0 Closed

TCPS_LISTEN 1 Listening for connection

TCPS_SYN_SENT 2 Active open, have sent SYN

TCPS_SYN_RECEIVED 3 Have sent and received SYN

TCPS_ESTABLISHED 4 Established

TCPS_CLOSE_WAIT 5 Received FIN, waiting for closed

TCPS_FIN_WAIT_1 6 Have closed, sent FIN

TCPS_CLOSING 7 Closed exchanged FIN; awaiting
FIN ACK

TCPS_LAST_ACK 8 Had FIN and close; await FIN ACK

TCPS_FIN_WAIT_2 9 Have closed, FIN is ACKed

TCPS_TIME_WAIT 10 In 2*MSL quiet wait after close
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 297

Revision 2.3, May 2000

• • • • •

TCP Constant Definitions

•
The following predicates on states allow classification of state values:

TCP Return
Codes

The following definitions are for TCP stream reassembly and indicate to the
caller the disposition of TCP segments processed by the state following and
stream reassembly methods described below.

The following codes indicate high-level conditions (good, bad, and state
change):

The following codes indicate specific errors:

Define Description

TCPS_HAVERCVDSYN (s) TRUE if state s is one for which a SYN has been
received—that is,
s >= TCPS_SYN_RECEIVED

TCPS_HAVEESTABLISHED (s) TRUE if state s is one for which a connection has
been established— that is,
s >= TCPS_ESTABLISHED

TCPS_HAVERCVDFIN (s) TRUE if state s is one for which a FIN has been
received—that is,
s >= TCPS_TIME_WAIT

Define Value Description

TSEG_NORMAL 0x0 Normal

TSEG_BAD 0x1 Bad TCP segment (bad ACK field, for example)

TSEG_STATE_CHANGE 0x2 Segment changed TCP state machine

TSEG_QUEUED 0x4 Segment was queued, caller loses ownership

Define Value Description

TSEG_BADLEN 0x10 Bad length

TSEG_BADSUM 0x20 Segment contained bad TCP checksum

TSEG_BADACK 0x40 Bad ACK field (too low or high)

TSEG_NOSYN 0x80 Expected a SYN but did not receive one
298 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCP Constant Definitions
The following codes indicate conditions that might be interesting to applica-
tions but that are not necessarily errors:

Define Value Description

TSEG_FRAG 0x1000 TCP segment was fragmented (but ok)

TSEG_RESET 0x2000 Segment contained an RST indication

TSEG_SYNDATA 0x4000 SYN contained data

TSEG_CLOSE 0x8000 Segment caused state transition to CLOSED

TSEG_HDRLOC 0x10000 TCP header was not in first fragment

TSEG_OLAP_FRONT 0x100000 Segment’s front overlapped queued data

TSEG_OLAP_END 0x200000 Segment’s end overlapped queued data
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 299

Revision 2.3, May 2000

• • • • •

ASL TCP/IP Extension API

•
ASL TCP/IP Extension API

This section provides details of each TCP/IP extension class. Classes are listed
in alphabetical order. Within each class, the constructor and destructor are
listed first, followed by the remaining methods in alphabetical order.

The ASL TCP/IP extension API contains the following classes:

Class Description

Internet Class
(page 302)

Computes checksums for various Internet protocols.

IP4Addr Class
(page 308)

Manipulates 32-bit IP version 4 addresses.

IP4Datagram Class
(page 310)

Manipulates IP version 4 datagrams.

IP4DNat Class
(page 316)

Modifes the destination IP addresses in an IP packet.

IP4Fragment Class
(page 318)

Manipulates IP version 4 fragments.

IP4Header Class
(page 324)

Manipulates IP version 4 headers.

IP4Mask Class
(page 331)

Manipulates IP version 4 masks.

IP4NAT Base Class
(page 333)

Represents IP version 4 network address translation. A pure
virtual base class.

IP4SDNat Class
(page 335)

Modifies both the source and destination IP addresses in an
IP packet.

IP4SNat Class
(page 337)

Modifies the source IP addresses in an IP packet.

ReassemblyQueue
Class (page 339)

Reassembles IP version 4 fragments.

TCPDNat Class
(page 343)

Modifies the destination IP addresses and (optionally) ports
and/or ACK number in a TCP packet.

TCPEndpoint Class
(page 346)

Manipulates TCP endpoints.
300 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 ASL TCP/IP Extension API
TCPHeader Class
(page 350)

 Manipulates TCP headers.

TCPNat Base Class
(page 355)

Represents TCP network address translation. A pure virtual
base class.

TCPSDNat Class
(page 359)

Modifies both the source and destination IP addresses and
(optionally) ports and/or sequence and ACK number in a
TCP packet.

TCPSegInfo Class
(page 362)

Manipulates TCP segment information.

TCPSeq Class
(page 365)

Manipulates TCP sequence numbers.

TCPSession Class
(page 368)

Manipulates TCP sessions.

TCPSNat Class
(page 371)

Modifies the source IP addresses and (optionally) ports
and/or sequence number in a TCP packet.

UDPDNat Class
(page 374)

Modifies the destination IP addresses and (optionally) ports
in a UDP packet.

UDPHeader Class
(page 376)

Manipulates UDP headers.

UDPNat Base Class
(page 378)

Represents UDP network address translation. A pure virtual
base class.

UDPSDNat Class
(page 381)

Modifies both the source and destination IP addresses and
(optionally) ports in a UDP packet.

UDPSNat Class
(page 384)

Modifies the source IP addresses and (optionally) ports in a
UDP packet.

Class Description
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 301

Revision 2.3, May 2000

• • • • •

Internet Class

•
Internet Class

The Internet class contains static methods that compute checksums. The
Internet checksum is used extensively in the TCP/IP protocols to provide
assurance that data has been delivered correctly. In particular, it is used by IP
(for headers), TCP and UDP (for headers and data), ICMP (for headers and
data), and IGMP (for headers).

The Internet checksum is defined to be the one’s complement of the sum of a
region of data, where the sum is computed using 16-bit words and one’s
complement addition.

Several Internet RFCs describe methods to compute this checksum:

n RFC 1936 describes a hardware implementation.

n RFC 1624 and RFC 1141 describe incremental updates.

n RFC 1071 describes a number of mathematical properties of the checksum
and how to compute it quickly. It also includes a copy of IEN 45 (from 1978),
which describes motivations for the design of the checksum.

RFCs are available from http://www.rfc-editor.org.

The methods are declared as static within this class, so you can use them
without instantiating the class. Applications using these methods must include
the file NBip.h. The class contains the following methods:

Method Description

apasum Method Computes the Internet checksum of the IP source and des-
tination addresses and the TCP ACK field.

apsasum Method Computes the Internet checksum of the IP source and des-
tination addresses, ports, and the TCP ACK and sequence
numbers.

apsum Method Computes the Internet checksum of the IP source and des-
tination addresses and the two 16-bit words, which are the
port numbers for TCP and UDP, immediately following the
IP header.

apssum Method Computes the Internet checksum of the IP source and des-
tination addresses, ports, and TCP sequence number.

asum Method Computes the Internet checksum of the IP source and des-
tination addresses.
302 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Internet Class
apasum Method

Computes the Internet checksum of the IP source and destination addresses
and the TCP ACK field.

static nuint16 apasum (IP4Header* hdr);

Returns The computed checksum.

apsasum Method

Computes the Internet checksum of the IP source and destination addresses,
ports, and the TCP ACK and sequence numbers.

static nuint16 apsasum (IP4Header* hdr);

Returns The computed checksum.

cksum Method Computes the Internet checksum of a data block.

incrcksum Method Computes an Internet checksum incrementally.

psum Method Computes the two’s-complement sum of a region of data
taken as 16-bit words.

Method Description

Parameter Description

hdr Pointer to the header

Parameter Description

hdr Pointer to the header
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 303

Revision 2.3, May 2000

• • • • •

Internet Class

•
apsum Method

Computes the Internet checksum of the IP source and destination addresses
and the two 16-bit words, which are the port numbers for TCP and UDP, imme-
diately following the IP header.

static nuint16 apsum (IP4Header* hdr);

Returns The computed checksum.

apssum Method

Computes the Internet checksum of the IP source and destination addresses,
ports, and TCP sequence number.

static nuint16 apssum (IP4Header* hdr);

Returns The computed checksum.

Parameter Description

hdr Pointer to the header

Parameter Description

hdr Pointer to the header
304 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Internet Class
asum Method

Computes the Internet checksum of the IP source and destination addresses.

static nuint16 asum (IP4Header* hdr);

Returns The computed checksum.

cksum Method

Computes the Internet checksum of a data block.

static nuint16 cksum (nuint16* base,
int len);

Returns The computed checksum.

Description This method computes the Internet checksum of the specified data block, and
returns it in the same byte order as the underlying data, which is commonly
network byte order.

The method works properly for data aligned to any byte boundary, but can
perform significantly better for 32-bit aligned data.

Parameter Description

hdr Pointer to the header

Parameter Description

base The starting address of the data

len The number of bytes of data
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 305

Revision 2.3, May 2000

• • • • •

Internet Class

•
incrcksum Method

Computes an Internet checksum incrementally.

static nuint16 incrcksum (nuint16 ocksum,
nuint16 odsum,
nuint16 ndsum);

Returns The computed checksum.

Description This method computes a new checksum from the original checksum for a
region of data, a checksum for a block of data to be replaced, and a checksum
of the new data to replace the old data.

This method is especially useful when small regions of packets are modified
and checksums must be updated appropriately (for example, for decrementing
IP TTL fields or rewriting address fields for NAT).

psum Method

Computes the two’s-complement sum of a region of data taken as 16-bit words.

static uint32 psum (nuint16* base,
int len);

Returns The two’s-complement sum.

Parameter Description

ocksum The original checksum

odsum The checksum of the old data

ndsum The checksum of the new (replacement) data

Parameter Description

base The starting address of the data

len The number of bytes of data
306 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 Internet Class
Description This method computes the two’s-complement 32-bit sum of the specified data,
handled as an array of 16-bit words. You can generate the Internet checksum for
the specified data region by folding any carry bits above the low-order 16 bits
and taking the one’s complement of the resulting value.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 307

Revision 2.3, May 2000

• • • • •

IP4Addr Class

•
IP4Addr Class

The IP4Addr class represents 32-bit IP version 4 addresses. Because the class is
derived from nuint32, you can generally handle IP addresses as 32-bit integers
in network byte order.

The IP4Addr class is defined in NBip.h. The class contains the following
methods:

IP4Addr Constructor

Instantiates the IP4Addr class.

IP4Addr (nuint32 an);

IP4Addr (uint32 ah);

IP4Addr ();

Returns The newly created object.

Description This class has three constructors for creating IP (version 4) addresses with or
without an initial value. Pass the initial value as an unsigned 32-bit word in
either host or network byte order, or pass no parameter to create the object with
no initial value.

Method Description

IP4Addr Constructor Instantiates the class.

bcast Method Identifies a local network broadcast.

mcast Method Identifies an IP version 4 multicast address.

Parameter Description

an The address as an unsigned 32-bit word in network byte order

ah The address as an unsigned 32-bit word in host byte order
308 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Addr Class
Example The following example creates two IP4Addr objects, each of which refer to the
IP address 128.32.12.4. Note the use of the htonl ASL function to convert the
host 32-bit word into network byte order:

#include "NBip.h"
uint32 myhaddr = (128 << 24)|(32 << 16)|(12 << 8)|4;
nuint32 mynaddr = htonl((128 << 24)|(32 << 16)|(12 << 8)|4);
IP4Addr ip1(myhaddr);
IP4Addr ip2(mynaddr);

bcast Method

Identifies a local network broadcast.

bool bcast ();

Returns TRUE if all the address bits are 1-bits, otherwise FALSE.

Description This method returns a Boolean value indicating whether all of the bits in the IP
address are 1, indicating a local network broadcast.

mcast Method

Identifies an IP version 4 multicast address.

bool mcast ();

Returns TRUE if the address is an IP version 4 multicast address, otherwise FALSE.

Description This method returns a Boolean value indicating whether the IP address is an IP
version 4 multicast address; that is, a member of the class D address space.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 309

Revision 2.3, May 2000

• • • • •

IP4Datagram Class

•
IP4Datagram Class

The IP4Datagram class represents a collection of IP fragments, which might
represent a complete IP4 datagram. This class supports the fragmentation, reas-
sembly, and grouping of IP fragments. Objects of this class contain a doubly-
linked list of IP4Fragment objects, sorted by IP offset.

When IP fragments are inserted into a datagram to perform reassembly, the
coalescing of data between fragments is not performed automatically. The
IP4Datagram object can determine whether it contains a complete set of frag-
ments, but it does not automatically reconstruct a contiguous buffer of the orig-
inal datagram’s contents.

The IP4Datagram class is defined in NBip.h. The class contains the following
methods:

Method Description

IP4Datagram Constructor Instantiates the class.

IP4Datagram Destructor Frees the datagram object and its contained fragments.

checkcksum Method Determines or controls whether the IP header checksum
is checked during IP reassembly.

complete Method Determines whether all fragments composing the original
datagram are present.

fragment Method Breaks a datagram into fragments.

fragmented Method Determines whether the datagram is fragmented.

head Method Finds the first IP fragment in the datagram.

insert Method Inserts a fragment into the datagram.

len Method Finds the length of the datagram.

nfrags Method Determines the number of fragments currently present in
the datagram.
310 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Datagram Class
IP4Datagram Constructor

Instantiates the IP4Datagram class.

IP4Datagram ();

IP4Datagram (IP4Fragment* frag);

Returns A reference to the newly created object.

Description Use the constructor without parameters to create a fresh datagram; for
example, to start the process of reassembly.

Pass the frag parameter to place an existing list of fragments into the datagram
object immediately upon creation.

IP4Datagram Destructor

Frees the datagram object and its contained fragments.

~IP4Datagram ();

Description The destructor calls the destructors for each of the fragments composing the
datagram and frees the datagram object.

Parameter Description

frag Pointer to a doubly-linked list of fragments.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 311

Revision 2.3, May 2000

• • • • •

IP4Datagram Class

•
checkcksum Method

Determines or controls whether the IP header checksum is checked during IP
reassembly.

bool checkcksum ();

void checkcksum (bool on);

Returns When you pass no parameter, returns TRUE if checksum verification is enabled,
otherwise FALSE. When you pass the parameter, returns nothing.

Description When you pass the on parameter, IP header checksum verification is turned on
or off. When set to TRUE, IP header checksums are verified when a fragment is
inserted into a datagram. When set to FALSE, these checksums are ignored.

When you pass no parameter, this method determines the current state of veri-
fication.

complete Method

Determines whether all fragments composing the original datagram are
present.

bool complete ();

Returns TRUE when all fragments composing the original datagram are present, other-
wise FALSE.

Parameter Description

on TRUE if IP header checksums should be verified, FALSE if they
should not be verified.
312 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Datagram Class
fragment Method

Breaks a datagram into fragments.

IP4Datagram* fragment (int mtu);

Returns A pointer to an IP4Datagram object containing a doubly-linked list of
IP4Fragment objects.

Description This method breaks an IP datagram into a series of IP fragments, each of which
fits in the packet size specified by mtu.

The method allocates Buffer objects to contain the newly-formed IP fragments
and links them together. It returns the head of the doubly-linked list of frag-
ments. The original datagram is not affected.

The original datagram object (the one fragmented) is not freed by this method.
You are responsible for freeing the original fragment when it is no longer
needed.

See Also IP4Fragment Class, fragment Method

fragmented Method

Determines whether the datagram is fragmented.

bool fragmented ();

Returns TRUE if the datagram is fragmented (whether or not it is complete), otherwise
FALSE.

Parameter Description

mtu The maximum transmission unit (MTU) size limiting the maximum
fragment size
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 313

Revision 2.3, May 2000

• • • • •

IP4Datagram Class

•
head Method

Finds the first IP fragment in the datagram.

IP4Fragment* head ();

Returns The address of the first IP fragment in the datagram’s linked list of fragments.

insert Method

Inserts a fragment into the datagram.

int insert (IP4Fragment* frag);

Returns Zero on success. On failure, a 32-bit code where each bit indicates an outcome
of the insertion attempt (see Description).

Description This method attempts to reassemble the overall datagram by checking the IP
offset and ID fields.

The return code is a 32-bit word where each bit indicates a different error or
unusual condition. The first bit, IPD_INSERT_ERROR, is set whenever any of the
other conditions are encountered.

Parameter Description

frag Pointer to the fragment being inserted

Code Bit Error Condition

IPD_INSERT_ERROR One of the errors occured.

IPD_INSERT_OH Head overlapped. This flag is set if the front of the
new fragment is overlapped by data already
inserted into the datagram. In this case the new
data is truncated and the data already inserted is
used.
314 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Datagram Class
len Method

Finds the length of the datagram.

int len ();

Returns The length of the entire datagram in bytes, including all contained fragments.

Description If the datagram contains multiple fragments, only the size of the first fragment
header is included in the returned value. The value is only meaningful if the
datagram is complete.

nfrags Method

Determines the number of fragments currently present in the datagram.

int nfrags ();

Returns The number of fragments.

IPD_INSERT_OT Tail overlapped. This flag is set when data at the
end of the new fragment overlaps data that has
already been inserted into the fragment. In this case,
the new data is used and the data that was already in
the buffer is trimmed.

IPD_INSERT_CKFAIL IP header checksum failed (if enabled).

Code Bit Error Condition
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 315

Revision 2.3, May 2000

• • • • •

IP4DNat Class

•
IP4DNat Class

The IP4DNat class is derived from the IP4Nat class. It defines the class of
objects implementing destination rewriting for IP datagrams and fragments.

The IP4DNat class is defined in NBnat.h. The class contains the following
methods:

IP4DNat Constructor

Creates anIP4DNat object.

IP4DNat (IP4Addr* newdst);

Returns A reference to the newly created object.

Method Description

IP4DNat Constructor Instantiates the class.

rewrite Method Rewrites the destination addresses in an IP datagram or
fragment.

Parameter Description

newdst Pointer to the new destination address for IP NAT.
316 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4DNat Class
rewrite Method

Rewrites the destination addresses in an IP datagram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Description This method replaces the destination addresses in the specified datagram or
fragment with the address specified when the object was constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

n When the method is applied to a fragment, it affects only the specified frag-
ment.

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 317

Revision 2.3, May 2000

• • • • •

IP4Fragment Class

•
IP4Fragment Class

The IP protocol adapts its datagram size using an operation known as fragmen-
tation. Fragmentation divides an initial, possibly large, IP datagram into a
sequence of IP fragments. Each fragment is handled as an independent packet
until it is received and reassembled at the original datagram’s ultimate destina-
tion.

The IP4Fragment class represents a single IP packet containing an IP header,
which might not be complete. A datagram or fragment is complete if it repre-
sents or contains all the fragments necessary to represent an entire IP-layer
datagram. See also IP4Datagram Class, which represents a collection of frag-
ments.

Conventional IP routers never reassemble fragments but instead route them
independently, leaving the destination host to reassemble them. In some
circumstances, however, for applications running on the Policy Accelerator,
you might want to reassemble fragments (for example, to simulate the opera-
tion of the destination host). See ReassemblyQueue Class.

The IP4Fragment class is defined in NBip.h. The class contains the following
methods:

Method Description

IP4Fragment Constructor Instantiates the class.

IP4Fragment Destructor Frees the fragment.

hdr Method Retrieves the address of the IP header at the beginning
of the fragment.

buf Method Retrieves the Buffer object containing the IP fragment.

complete Method Determines whether the fragment represents a complete
IP datagram.

datalen Method Retrieves the number of bytes in the IP payload portion
of the IP fragment.

first Method Determines whether the fragment is the first fragment of
a datagram.

fragment Method Breaks a complete IP datagram fragment into further
fragments.
318 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Fragment Class
IP4Fragment Constructor

Creates an IP4Fragment object.

IP4Fragment (Buffer* bp, IP4Header* iph);

IP4Fragment (int maxiplen, IP4Header* iph);

Returns A reference to the newly created object.

Description When you process IP fragments in ACE action code, you pass the Buffer object
containing the IP fragment to the constructor for the fragment object. The
second argument is the location of the IP header within the buffer.

When you create IP fragments during IP datagram fragmentation, you pass a
size parameter instead of the Buffer object. This form of the constructor allo-
cates a new Buffer object and copies the IP header pointed to by iph into the
new buffer. (If the specified header contains IP options, this constructor copies
only those options that should be copied during fragmentation.)

See Also Buffer Class

next Method Finds the next fragment in the list.

optcopy Method Copies options from one header to another during IP
fragmentation.

payload Method Finds the payload in the IP fragment.

prev Method Finds the previous fragment in the list.

Method Description

Parameter Description

bp Pointer to the Buffer object containing the IP fragment.

maxiplen The maximum size of the fragment being created; used to size the
allocated Buffer object.

iph Pointer to the IP4 header in the fragment. Default is 0.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 319

Revision 2.3, May 2000

• • • • •

IP4Fragment Class

•
IP4Fragment Destructor

Frees the fragment.

~IP4Fragment ();

hdr Method

Retrieves the address of the IP header at the beginning of the fragment.

IP4Header* hdr ();

Returns A pointer to the IP header.

buf Method

Retrieves the Buffer object containing the IP fragment.

Buffer* buf ();

Returns A pointer to the Buffer object, or NULL if no buffer is associated with the frag-
ment.

complete Method

Determines whether the fragment represents a complete IP datagram.

bool complete ();

Returns TRUE when the fragment is complete, otherwise FALSE.

Description This method determines whether the fragment represents a complete IP data-
gram. The fragment is complete when the fragment offset field is zero and there
are no additional fragments.
320 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Fragment Class
datalen Method

Retrieves the number of bytes in the IP payload portion of the IP fragment.

int datalen ();

Returns The number of bytes in the IP payload.

first Method

Determines whether the fragment is the first fragment of a datagram.

bool first ();

Returns TRUE when the fragment is the first fragment of a datagram, otherwise FALSE.

fragment Method

Breaks a complete IP datagram fragment into further fragments.

IP4Datagram* fragment (int mtu);

Returns A pointer to an IP4Datagram object containing a doubly-linked list of
IP4Fragment objects.

Description This method breaks a complete IP fragment into a series of smaller IP frag-
ments, each of which fits in the packet size specified by mtu.

The method allocates Buffer objects to contain the newly-formed IP fragments
and links them together. It returns the head of the doubly-linked list of frag-
ments. The original fragment is not affected.

Parameter Description

mtu The maximum transmission unit (MTU) size limiting the maximum
fragment size
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 321

Revision 2.3, May 2000

• • • • •

IP4Fragment Class

•
The original fragment object (the one fragmented) is not freed by this method.
You are responsible for freeing the original fragment when it is no longer
needed.

next Method

Finds the next fragment of a doubly-linked list of fragments.

IP4Fragment*& next ();

Returns A reference to the internal linked-list pointer.

Description Use this method to link together fragments when they are reassembled (in data-
grams) or queued. Fragments are linked together in a doubly-linked list fashion
with NULL pointers indicating the endpoints in the list.

optcopy Method

Copies options from one header to another during IP fragmentation.

static int optcopy (IP4Header* src,
IP4Header* dst);

Returns The number of bytes of options present in the destination IP header.

Description Use this static method to copy options from one header to another during IP
fragmentation. The method copies only those options that are supposed to be
copied during fragmentation (that is, those options x where the macro
IPOPT_COPIED(x) is TRUE).

Parameter Description

src Pointer to the source IP header containing options

dst Pointer to the destination, into which the source header should be
copied
322 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Fragment Class
payload Method

Finds the payload in the IP fragment.

unsigned char * payload ();

Returns Returns the address of the payload.

Description This method finds and returns the address of the first byte of data in the IP frag-
ment following the header and options.

prev Method

Finds the previous fragment in the list.

IP4Fragment*& prev ();

Returns A reference to the internal linked-list pointer.

Description Use this method to link together fragments when they are reassembled (in data-
grams) or queued. Fragments are linked together in a doubly-linked list fashion
with NULL pointers indicating the endpoints in the list.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 323

Revision 2.3, May 2000

• • • • •

IP4Header Class

•
IP4Header Class

The IP4Header class represents the standard IP version 4 header, where sub-
byte-sized fields have been merged to reduce byte-order dependencies. In addi-
tion to the standard field accessors, this class includes methods that compute
other information about the header.

The methods are declared as static within this class, so you can use them
without instantiating the class. Use the IP4Header class to access IP headers
received in live network packets.

The class is defined in NBip.h, and contains the following methods:

Method Description

cksum Method Accesses the IP checksum.

datalen Method Computes the length of the payload portion of the IP packet.

dst Method Accesses the IP destination address.

hl Method Computes or modifies the length of the IP header.

hlen Method Computes the number of bytes in the IP header, including
options.

id Method Accesses the IP identifier.

len Method Accesses the datagram or fragment length.

offset Method Accesses the fragmentation flags and fragment offset.

optbase Method Computes the location of the first IP option in the IP header.

payload Method Computes the address of the first byte of payload data in the IP
packet.

proto Method Accesses the IP protocol value.

psum Method Computes the IP value for a pseudo-checksum.

src Method Accesses the IP source address.

tos Method Accesses the IP type-of-service value.

ttl Method Accesses the IP time-to-live value.
324 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Header Class
cksum Method

Accesses the IP checksum.

nuint16& cksum ();

Returns A reference to the IP checksum.

datalen Method

Computes the length of the payload portion of the IP packet.

uint16 datalen ();

Returns The number of bytes in the payload portion of the IP packet.

Description This method computes and returns the number of bytes in the payload portion
of the IP packet. It computes this value by subtracting the IP header length from
the IP length field. The value can be zero.

dst Method

Accesses the IP destination address.

IP4Addr& dst ();

Returns A reference to the IP destination address.

ver Method Retrieves or assigns the version number of the IP header.

vhl Method Accesses version and header lengths.

Method Description
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 325

Revision 2.3, May 2000

• • • • •

IP4Header Class

•
hl Method

Computes or modifies the length of the IP header.

int hl ();

void hl (int h);

Returns The number of 32-bit words in the IP header, or nothing.

Description When you pass no parameter, this method computes and returns the number
of 32-bit words in the IP header. If you pass the parameter, the method modifies
the header length field to the specified length.

hlen Method

Computes the number of bytes in the IP header, including options.

int hlen ();

Returns The number of bytes in the IP header, including options.

id Method

Accesses the IP identifier (used for fragmentation).

nuint16& id ();

Returns A reference to the IP identification field.

Parameter Description

h The header length (in 32-bit words) to assign to the IP header.
326 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Header Class
len Method

Accesses the IP datagram or fragment length.

nuint16& len ();

Returns A reference to the length of the IP datagram or fragment in bytes.

offset Method

Accesses the fragmentation flags and fragment offset.

nuint16& offset ();

Returns A reference to the word containing fragmentation flags and fragment offset.

optbase Method

Computes the location of the first IP option in the IP header.

unsigned char * optbase ();

Returns The address of the first option or the first byte of the payload.

Description This method computes and returns the location of the first IP option in the IP
header, if any are present. If no options are present, it returns the address of the
first byte of the payload.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 327

Revision 2.3, May 2000

• • • • •

IP4Header Class

•
payload Method

Computes the address of the first byte of payload data in the IP packet.

unsigned char * payload ();

Returns The address of the first byte of the payload.

Description This method computes and returns the location of the first byte of the payload,
beyond any options that may be present.

proto Method

Accesses the IP protocol value.

nuint8& proto ();

Returns A reference to the IP protocol byte.

psum Method

Computes the IP value for a pseudo-checksum.

uint32 psum ();

Returns The computed sum.

Description This method computes the 16-bit one’s complement sum of the source and
destination IP addresses plus the 8-bit protocol field (in the low-order byte).

This method is used internally by the ASL library, but can also be useful to some
applications. For example, you can use it to compute pseudo-header check-
sums for UDP and TCP.
328 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Header Class
src Method

Accesses the IP source address.

IP4Addr& src ();

Returns A reference to the IP source address.

tos Method

Accesses the IP type-of-service value.

nuint8& tos ();

Returns A reference to the IP type-of-service byte.

ttl Method

Accesses the IP time-to-live value.

nuint8& ttl ();

Returns A reference to the IP time-to-live byte.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 329

Revision 2.3, May 2000

• • • • •

IP4Header Class

•
ver Method

Retrieves or assigns the version number of the IP header.

int ver ();

void ver (int v);

Returns The version number, or nothing.

Description When you pass no parameter, this method retrieves and returns the version
field of the IP header (which should be 4). If you pass the parameter, the method
modifies the version field to the specified number.

vhl Method

Accesses the IP version and header lengths.

nuint8& vhl ();

Returns A reference to the byte containing the IP version and header length.

Parameter Description

v The version number.
330 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4Mask Class
IP4Mask Class

Masks are often applied to IP addresses to determine network or subnet
numbers, CIDR blocks, and so on. The IP4Mask class represents a 32-bit mask
that can be applied to an IPv4 address.

IP masks are assumed to be left-contiguous groups of 1s followed by 0s.

The IP4Mask class is defined in NBip.h. The class contains the following
methods:

IP4Mask Constructor

Creates an IP4Mask object.

IP4Mask (nuint32 mn);

IP4Mask (uint32 mh);

IP4Mask ();

Returns The newly created object.

Method Description

IP4Mask Constructor Instantiates the class.

bits Method Retrieves the length of the mask.

leftcontig Method Determines whether the 1-bits in the mask are left-contiguous.

Parameter Description

mh 32-bit mask in host byte order

mn 32-bit mask in network byte order
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 331

Revision 2.3, May 2000

• • • • •

IP4Mask Class

•
Description This class has three constructors for creating masks with or without an initial
value. Pass the initial value as an unsigned 32-bit word in either host or
network byte order, or pass no parameter to create the object with no initial
value.

bits Method

Retrieves the length of the mask.

int bits ();

Returns The number of left-contiguous 1-bits in the mask, or –1 if the 1-bits in the mask
are not left-contiguous.

Example The following example creates a subnet mask with 25 bits, and sets up a
message buffer containing a string that describes the form of the mask (using
the common “slash notation” for subnet masks).

#include NBip.h
uint32 mymask = 0xffffff80; // 255.255.255.128 or /25
IP4Mask ipm(mymask);
int nbits = ipm.bits();
if (nbits >= 0) {

sprintf(msgbuf, "Mask is of the form /%d", nbits);
}

else {
sprintf(msgbuf, "Mask is not left-contiguous!");
}

leftcontig Method

Determines whether the 1-bits in the mask are left-contiguous.

bool leftcontig ();

Returns TRUE if all the 1-bits in the mask are left-contiguous, otherwise FALSE.

Description This method returns a Boolean value indicating whether the 1-bits in the mask
are left-contiguous.
332 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4NAT Base Class
IP4NAT Base Class

The IP4Nat class provides a base class for other IP Version 4 NAT classes. Do
not create objects of type IP4Nat directly. Instead, use objects of type IP4SNat,
IP4DNat, and IP4SDNat.

n Use the IP4SNat Class to modify only the source IP address.

n Use the IP4DNat Class to modify only the destination IP address.

n Use the IP4SDNat Class to modify both the source and destination IP
addresses.

IP address translation maps an IP datagram or fragment with source and desti-
nation IP address (s1, d1) to the same datagram or fragment with a new address
pair (s2, d2).

This class is defined in NBnat.h. It contains the following method:

Method Description

rewrite
Method

A pure virtual method, which is defined in the subclasses.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 333

Revision 2.3, May 2000

• • • • •

IP4NAT Base Class

•
rewrite Method

Rewrites the addresses in the specified fragment or datagram.

virtual void rewrite (IP4Datagram* dp) = 0;

virtual void rewrite (IP4Fragment* fp) = 0;

Returns Nothing.

Description This pure virtual method is defined in the subclasses. It performs address
rewriting in a specific fashion implemented by the specific subclass (that is,
source, destination, or source/destination combination).

Parameter Description

dp Pointer to the datagram to rewrite. When the method is applied to a
datagram, each of the fragment headers composing the datagram is
rewritten.

fp Pointer to the single fragment to rewrite. When the method is applied
to a fragment, it affects only the specified fragment.
334 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4SDNat Class
IP4SDNat Class

The IP4SDNat class is derived from the IP4Nat class. It defines the class of
objects implementing source and destination rewriting for IP datagrams and
fragments.

The IP4SDNat class is defined in NBnat.h. The class contains the following
methods:

IP4SDNat Constructor

Creates an IP4SDNat object.

IP4SDNat (IP4Addr* newsrc,
IP4Addr* newdst);

Returns A reference to the newly created object.

Method Description

IP4SDNat Constructor Instantiates the class.

rewrite Method Rewrites the source and destination addresses in an IP
datagram or fragment.

Parameter Description

nesrc Pointer to the new source address for IP NAT.

newdst Pointer to the new destination address for IP NAT.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 335

Revision 2.3, May 2000

• • • • •

IP4SDNat Class

•
rewrite Method

Rewrites the source and destination addresses in an IP datagram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Description This method replaces the source and destination addresses in the specified
datagram or fragment with the addresses specified when the object was
constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

n When the method is applied to a fragment, it affects only the specified frag-
ment.

Example The following example illustrates the use of an IP4DNat object to replace a
destination address. In this example, ipa1 is an address to be placed in the IP
packet’s destination address field, buf points to the ASL buffer containing an
IP packet to rewrite, and iph points to the IP header of the packet contained in
the buffer.

IPDNat *ipd = new IPDNat(&ipa1); // create IP DNat object
IP4Fragment ipf(buf, iph); // create IP fragment object
ipd->rewrite(&ipf); // rewrite fragment’s header

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite.
336 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 IP4SNat Class
IP4SNat Class

The IP4SNat class is derived from the IP4Nat class. It defines the class of
objects implementing source rewriting for IP datagrams and fragments.

The IP4SNat class is defined in NBnat.h. The class contains the following
methods:

IP4SNat Constructor

Creates an IP4SNat object.

IP4SNat (IP4Addr* newsrc);

Returns A reference to the newly created object.

Method Description

IP4SNat Constructor Instantiates the class.

rewrite Method Rewrites the source addresses in an IP datagram or
fragment.

Parameter Description

newsrc Pointer to the new source address for IP NAT.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 337

Revision 2.3, May 2000

• • • • •

IP4SNat Class

•
rewrite Method

Rewrites the source addresses in an IP datagram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Description This method replaces the source addresses in the specified datagram or frag-
ment with the address specified when the object was constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

n When the method is applied to a fragment, it affects only the specified frag-
ment.

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite.
338 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 ReassemblyQueue Class
ReassemblyQueue Class

The ReassemblyQueue class is a container class used to reconstruct TCP
streams from TCP segments that have been “snooped” on a TCP connection.
This class contains a linked list of TCPSegInfo objects, each of which corre-
sponds to a single TCP segment (and a corresponding complete IP datagram).
The purpose of this class is not only to contain the segments but to reassemble
received segments as they arrive and present them in proper sequence number
order for applications to read. Applications are generally able to read data on
the connection in order, one segment at a time.

The ReassemblyQueue class is defined in NBtcp.h. It contains the following
methods:

Method Description

ReassemblyQueue
Constructor

Instantiates the class.

add Method Inserts a complete IP datagram containing a TCP segment into
the reassembly queue.

clear Method Removes all queued segments from the reassembly queue
and frees their storage.

empty Method Indicates whether the reassembly queue contains segments.

read Method Provides application access to the contiguous data currently
queued in the reassembly queue.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 339

Revision 2.3, May 2000

• • • • •

ReassemblyQueue Class

•
ReassemblyQueue Constructor

Creates a ReassemblyQueue object.

ReassemblyQueue (TCPSeq& rcvnxt)

Returns A reference to the newly created object.

Description This object provides for reassembly of TCP streams based on sequence numbers
contained in TCP segments.

The sequence number is updated as additional segments are inserted into the
object. If a segment is inserted which is not contiguous in sequence number
space, it is considered “out of order” and is queued in the object until the “hole”
(that is, data between it and the previous in-sequence data) is filled.

A ReassemblyQueue object is used internally by the TCP stream reconstruction
facility.

add Method

Inserts a complete IP datagram containing a TCP segment into the reassembly
queue.

uint32 add (IP4Datagram* dp);

Returns A 32-bit integer code indicating the disposition of TCP segments. See TCP
Return Codes on page 298.

Parameter Description

rcvnxt A reference to the next TCP sequence number to expect. This
sequence number is updated by the add method so that it always indi-
cates the next in-order TCP sequence number expected.

Parameter Description

dp A pointer to a complete IP datagram containing a TCP segment. The
datagram can be fragmented but must be complete.
340 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 ReassemblyQueue Class
clear Method

Removes all queued segments from the reassembly queue and frees their
storage.

void clear ()

Returns Nothing.

empty Method

Indicates whether the reassembly queue contains segments.

bool empty ()

Returns TRUE if the reassembly queue contains no segments, otherwise FALSE.

read Method

Provides application access to the contiguous data currently queued in the reas-
sembly queue.

int read (TCPSegInfo*& ts);

Returns The number of bytes contained in the next in-sequence TCP segment referenced
by the specified TCPSegInfo object.

Description This method returns an integer indicating the number of bytes of in-sequence
data, and sets the ts parameter to point to a TCPSegInfo object.

Parameter Description

ts A pointer to a TCPSegInfo object.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 341

Revision 2.3, May 2000

• • • • •

ReassemblyQueue Class

•
You declare the ts argument as a pointer to a TCPSegInfo object, but need not
allocate memory for it. The read method allocates the TCPSegInfo objects and
assigns the provided pointer to a single such object for each call. Objects
provided to the caller become the responsibility of the caller; no references to
them are retained by the ReassemblyQueue object.

The ReassemblyQueue object can process TCP segments contained in frag-
mented IP datagrams. Thus, the datagram referred to by the TCPSeg-
Info::segment() method might refer to a fragmented (but complete) IP
datagram. In this case, keep in mind that the TCP segment’s data area is not
contiguous in memory, but is split across multiple fragments inside the data-
gram object.
342 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPDNat Class
TCPDNat Class

The TCPDNat class is derived from the TCPNat class. It defines the class of
objects implementing destination address and (optionally) port number and
ACK number rewriting for complete and fragmented TCP segments.

NOTE: When performing NAT on a fragmented datagram, only the first
fragment has a TCP header. Use the appropriate TCPNat subclass for
the first fragment, then use the corresponding IP4Nat subclass for NAT
on subsequent fragments. See also “IP4NAT Base Class” on
page 333.

The TCP4DNat class is defined in NBnat.h. The class contains the following
methods:

TCPDNat Constructor

Creates a TCPDNat object.

TCPDNat (IP4Addr* newdaddr);

TCPDNat (IP4Addr* newdaddr,
nuint16 newdport);

TCPDNat (IP4Addr* newdaddr,
nuint16 newdport,
long ackoff);

Method Description

TCPDNat Constructor Instantiates the class.

rewrite Method Rewrites the destination addresses, port number (if
enabled), and ACK number (if enabled) in a TCP datagram
or fragment.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 343

Revision 2.3, May 2000

• • • • •

TCPDNat Class

•
Returns A reference to the newly created object.

Description Use the one-argument constructor to create TCP NAT objects that rewrite only
the destination addresses in the IP header (and update the IP header checksum
and TCP pseudo-header checksum appropriately).

Use the two-argument constructor to create NAT objects that also rewrite the
destination port numbers in the TCP header.

Use the three-argument constructor create NAT objects that, in addition to
rewriting the destination IP addresses and port numbers, also modify the ACK
numbers by the specified amounts.

rewrite Method

Rewrites the destination addresses, port number (if enabled), and ACK number
(if enabled) in a TCP datagram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Parameter Description

newdaddr Pointer to the new destination address to use.

newdport The new destination port number to use, if port rewriting is enabled.

ackoff A relative constant amount by which to modify the ACK number, if
sequence/ACK number rewriting is enabled. Can be positive or neg-
ative.

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite. The fragment must represent a
complete TCP/IP datagram.
344 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPDNat Class
Description This method replaces the destination addresses in the specified datagram or
fragment with the addresses specified when the object was constructed.

If port number rewriting is enabled, the method also replaces the destination
port numbers in the specified datagram or fragment with the numbers speci-
fied when the object was constructed.

If ACK number rewriting is enabled, the method also modifies the ACK
number by the amount specified when the object was constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

n To apply the method successfully to a fragment, the fragment must repre-
sent a complete TCP/IP datagram.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 345

Revision 2.3, May 2000

• • • • •

TCPEndpoint Class

•
TCPEndpoint Class

The TCPEndpoint class represents a single endpoint of a TCP connection. In
TCP, a connection is identified by a 4-tuple of two IP addresses and two port
numbers. Each endpoint is identified by a single IP address and port number.
A TCP connection (or session) has two endpoints, and the TCP object is there-
fore associated with two endpoint objects.

Each endpoint contains the TCP finite machine state as well as a Reassembly-
Queue object that contains queued data. The TCPSession class uses the TCPEnd-
point class internally.

The TCPEndpoint class is defined in NBtcp.h. It contains the following
methods:

Method Description

TCPEndpoint Constructor Instantiates the class.

TCPEndpoint Destructor Deletes all queued TCP segments and frees the
object’s memory.

init Method Initializes a TCP endpoint.

process Method Processes an incoming or outgoing TCP segment rela-
tive to the TCP endpoint object.

reset Method Resets the endpoint internal state to TCPS_CLOSED and
clears any queued data.

state Method Gets the current state in the TCP finite state machine
associated with the TCP endpoint.
346 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPEndpoint Class
TCPEndpoint Constructor

Creates a TCPEndpoint object.

TCPEndpoint ()

Returns A reference to the newly created object.

Description The TCPEndpoint class is created in an empty state and is unable to determine
which endpoint of a connection it represents. After instantiating this object and
before using it, call the initialization method (see “init Method” on page 347).

TCPEndpoint Destructor

Deletes all queued TCP segments and frees the object’s memory.

~TCPEndpoint ()

init Method

Initializes a TCP endpoint.

void init (IP4Addr* myaddr,
uint16 myport);

Returns Nothing.

Parameter Description

myaddr A pointer to the IP address identifying this TCP endpoint

myport The port number (in network byte order) identifying this TCP end-
point
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 347

Revision 2.3, May 2000

• • • • •

TCPEndpoint Class

•
Decscription This method initializes a TCP endpoint object by associating it with an IP
address and port number. After initialization, use the process method to do
subsequent processing of IP datagrams and fragments containing TCP
segments and ACKs.

process Method

Processes an incoming or outgoing TCP segment relative to the TCP endpoint
object.

uint32 process (IP4Datagram* pd);

Returns A 32-bit integer code indicating the disposition of TCP segments. See “TCP
Return Codes” on page 298.

Description This method operates on a complete datagram. Given that the TCPEndpoint
object is not actually the literal endpoint of the TCP connection itself, it must
infer state transitions at the literal endpoints based upon observed traffic. Thus,
it must monitor both directions of the TCP connection to properly follow the
state at each literal endpoint.

reset Method

Resets the endpoint internal state to TCPS_CLOSED and clears any queued data.

void reset ();

Returns Nothing.

Parameter Description

pd A pointer to a complete IP datagram containing a TCP segment
348 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPEndpoint Class
state Method

Gets the current state in the TCP finite state machine associated with the TCP
endpoint.

int state ()

Returns A constant indicating the internal state; see “TCP Session State” on page 296.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 349

Revision 2.3, May 2000

• • • • •

TCPHeader Class

•
TCPHeader Class

The TCPHeader class represents the standard TCP header. It contains member
methods that provide direct access to the header fields, and a method for
obtaining a pointer immediately beyond the TCP header (the payload).

The methods are declared as static within this class, so you can use them
without instantiating the class. Refer to the TCPHeader class to access TCP
headers received in live network packets.

The TCPHeader class is defined in NBtcp.h. It contains the following methods:

Method Description

ack Method Accesses the TCP acknowledgement number.

cksum Method Accesses the TCP pseudoheader checksum.

dport Method Accesses the TCP destination port number.

flags Method Accesses the TCP flag bits.

hlen Method Determines or controls the length of the TCP header.

off Method Accesses the length of the TCP header.

optbase Method Finds the first option in the TCP packet.

payload Method Finds the payload data in the TCP packet.

seq Method Accesses the TCP sequence number.

sport Method Accesses the TCP source port number.

urp Method Accesses the TCP urgent pointer field.

win Method Accesses the TCP window advertisement.

window Method Finds the RFC1323-style window in the TCP packet.
350 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPHeader Class
ack Method

Accesses the TCP acknowledgement number.

TCPSeq& ack ();

Returns A reference to the TCP acknowledgement number.

cksum Method

Accesses the TCP pseudoheader checksum.

nuint16& cksum ();

Returns A reference to the TCP pseudoheader checksum. TCP checksums are not
optional.

dport Method

Accesses the TCP destination port number.

nuint16& dport ();

Returns A reference to the TCP destination port number.

flags Method

Accesses the TCP flag bits.

nuint8& flags ();

Returns A reference to the byte containing the six flag bits and two reserved bits.

NOTE: Because the returned value contains the reserved bits, you must mask
these out to read the significant flag values.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 351

Revision 2.3, May 2000

• • • • •

TCPHeader Class

•
hlen Method

Determines or controls the length of the TCP header.

int hlen ();

void hlen (int bytes);

Returns When you pass no parameter, the number of option bytes in the TCP header.
When you pass a parameter, nothing.

Description If you pass no parameter, this method returns the number of option bytes in the
TCP header. When you pass the bytes parameter, the method sets the number
of option bytes in the TCP header to the specified value.

off Method

Accesses the length of the TCP header.

nuint8 off ();

Returns The number of 32-bit words in the TCP header, including TCP options.

optbase Method

Finds the first option in the TCP packet.

unsigned char * optbase ()

Returns A pointer to the first byte of data beyond the urgent pointer field of the TCP
header.

Parameter Description

bytes Specifies the number of bytes in the TCP header.
352 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPHeader Class
Description This method finds the address of the first option in the TCP header, if any
options are present. If no options are present, it returns the address of the first
payload byte (which can be urgent data if the URG bit is set in the flags field).

payload Method

Finds the payload data in the TCP packet.

unsigned char * payload ();

Returns A pointer to the first byte of payload data (beyond the TCP header) in the TCP
packet.

seq Method

Accesses the TCP sequence number.

TCPSeq& seq ();

Returns A reference to the TCP sequence number.

sport Method

Accesses the TCP source port number.

nuint16& sport ();

Returns A reference to the TCP source port number.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 353

Revision 2.3, May 2000

• • • • •

TCPHeader Class

•
urp Method

Accesses the TCP urgent pointer field.

nuint16& urp ();

Returns A reference to the TCP urgent pointer field.

win Method

Accesses the TCP window advertisement.

nuint16& win ();

Returns A reference to the TCP window advertisement field (unscaled).

window Method

Finds the RFC1323-style window in the TCP packet.

uint32 window (int wshift)

Returns The receiver’s advertised window in the segment, in bytes.

Description This method finds the window advertisement contained in the segment, taking
into account the use of TCP large windows (see RFC 1323). Use this method
with RFC1323-style window scaling.

Parameter Description

wshift The window shift value, or number of left-shift bit positions by which
to scale the window field.
354 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPNat Base Class
TCPNat Base Class

The TCPNat class is a base class for other TCP NAT classes. Do not create objects
of type TCPNat directly. Instead, use objects of type TCPSNat, TCPDNat, and
TCPSDNat.

n Use the TCPSNat Class to modify only the IP source address.

n Use the TCPDNat Class to modify only the IP destination address.

n Use the TCPSDNat Class to modify both the source and destination IP
addresses.

TCP NAT is similar to UDP NAT, in that you can specify in the constructor
whether port numbers as well as IP layer addresses should be rewritten. For
TCP, you can also specify whether sequence and acknowledgement numbers
should be rewritten. Sequence number and ACK number rewriting are tied
together. When you enable this feature, source-rewriting modifies the sequence
number field of the TCP segment, while destination-rewriting modifies the
ACK field.

NOTE: When performing NAT on a fragmented datagram, only the first
fragment has a TCP header. Use the appropriate TCPNat subclass for
the first fragment, then use the corresponding IP4Nat subclass for NAT
on subsequent fragments. See also “IP4NAT Base Class” on
page 333.

This class is defined in NBnat.h. It contains the following methods:

Method Description

TCPNat Constructor Instantiates the class.

rewrite Method Rewrites the specified fragment or datagram. This pure virtual
method is defined in the subclasses.

ports Method Controls or determines whether port rewriting is enabled.

seqs Method Controls or determines whether sequence/ACK rewriting is
enabled.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 355

Revision 2.3, May 2000

• • • • •

TCPNat Base Class

•
TCPNat Constructor

Creates a TCPNat object.

TCPNat (bool doports,
bool doseqs);

Returns A reference to the newly created object.

Description The constructor parameters indicate whether port number rewriting and
sequence/ACK number rewriting are enabled.

rewrite Method

Rewrites the addresses in the specified fragment or datagram.

virtual void rewrite (IP4Datagram* dp) = 0;

virtual void rewrite (IP4Fragment* fp) = 0;

Returns Nothing.

Parameter Description

doports When TRUE, port number rewriting is enabled. When FALSE, it is dis-
abled.

doseqs When TRUE, sequence/ACK number rewriting is enabled. When
FALSE, it is disabled.

Parameter Description

dp Pointer to the datagram to rewrite. When the method is applied to a
datagram, each of the fragment headers composing the datagram is
rewritten.

fp Pointer to the single fragment to rewrite. When the method is applied
to a fragment, it affects only the specified fragment.
356 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPNat Base Class
Description This pure virtual method is defined in the derived classes. It performs address
rewriting in a specific fashion implemented by the specific derived classes (that
is, source, destination, or source/destination combination).

ports Method

Controls or determines whether port rewriting is enabled.

bool ports ();

void ports (bool p);

Returns When you pass no parameter, TRUE if the NAT object is configured to rewrite
TCP port numbers, FALSE if it is not. When you pass the parameter, returns
nothing.

seqs Method

Controls or determines whether sequence/ACK rewriting is enabled.

bool seqs ();

void seqs (bool s);

Parameter Description

p When TRUE, enables port rewriting. When FALSE, disables port
rewriting. When absent, the method returns the current state.

Parameter Description

s When TRUE, enables sequence/ACK rewriting. When FALSE, dis-
ables sequence/ACK rewriting. When absent, the method returns
the current state.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 357

Revision 2.3, May 2000

• • • • •

TCPNat Base Class

•
Returns When you pass no parameter, TRUE if the NAT object is configured to rewrite
TCP sequence/ACK numbers, FALSE if it is not. When you pass the parameter,
returns nothing.
358 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPSDNat Class
TCPSDNat Class

The TCPSDNat class is derived from the TCPNat class. It defines the class of
objects implementing source and destination address and (optionally) port
number and sequence number/ACK number rewriting for complete and frag-
mented TCP segments.

NOTE: When performing NAT on a fragmented datagram, only the first
fragment has a TCP header. Use the appropriate TCPNat subclass for
the first fragment, then use the corresponding IP4Nat subclass for NAT
on subsequent fragments. See also “IP4NAT Base Class” on
page 333.

This class is defined in NBnat.h. It contains the following methods:

Method Description

TCPSDNat Constructor Instantiates the class.

rewrite Method Rewrites the source addresses, port number (if enabled),
and sequence/ACK numbers (if enabled) in a TCP data-
gram or fragment.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 359

Revision 2.3, May 2000

• • • • •

TCPSDNat Class

•
TCPSDNat Constructor

Creates a TCPSDNat object.

TCPSDNat (IP4Addr* newsaddr,
IP4Addr* newdaddr);

TCPSDNat (IP4Addr* newsaddr,
nuint16 newsport,
IP4Addr* newdaddr,
nuint16 newdport);

TCPSDNat (IP4Addr* newsaddr,
nuint16 newsport,
long seqoff,
IP4Addr* newdaddr,
nuint16 newdport,
long ackoff);

Returns A reference to the newly created object.

Description Use the two-argument constructor to create TCP NAT objects that rewrite only
the source and destination addresses in the IP header (and update the IP header
checksum and TCP pseudo-header checksum appropriately).

Use the four-argument constructor to create NAT objects that also rewrite the
source and destination port numbers in the TCP header.

Parameter Description

newsaddr Pointer to the new source address to use.

newsport The new source port number to use, if port rewriting is enabled.

seqoff A relative constant amount by which to modify the sequence num-
ber, if sequence number rewriting is enabled. Can be positive or neg-
ative.

newdaddr Pointer to the new destination address to use.

newdport The new destination port number to use, if port rewriting is enabled.

ackoff A relative constant amount by which to modify the ACK number, if
sequence/ACK number rewriting is enabled. Can be positive or neg-
ative.
360 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPSDNat Class
Use the six-argument constructor create NAT objects that, in addition to
rewriting the source and destination IP addresses and port numbers, also
modify the TCP sequence and ACK numbers by the specified amounts.

rewrite Method

Rewrites the source addresses, port number (if enabled), and sequence/ACK
numbers (if enabled) in a TCP datagram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Description This method replaces the source and destination addresses in the specified
datagram or fragment with the addresses specified when the object was
constructed.

If port number rewriting is enabled, the method also replaces the source and
destination port numbers in the specified datagram or fragment with the
numbers specified when the object was constructed.

If sequence number rewriting is enabled, the method also modifies the
sequence and ACK numbers by the amounts specified when the object was
constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

n To apply the method successfully to a fragment, the fragment must repre-
sent a complete TCP/IP datagram.

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite. The fragment must represent a
complete TCP/IP datagram.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 361

Revision 2.3, May 2000

• • • • •

TCPSegInfo Class

•
TCPSegInfo Class

The TCPSegInfo class is a container class for TCP segments that have been
queued during TCP stream reconstruction and can be read by applications
(using the read Method of the ReassemblyQueue Class).

When segments are queued, they are maintained in a doubly-linked list sorted
by sequence number. This doubly-linked list can contain “holes.” That is, it can
contain segments that are not adjacent in the space of sequence numbers
because some data is missing in between.

The TCPSegInfo class is defined in NBtcp.h. It contains the following methods:

data Method

Finds the first byte of data.

u_char *& data ();

Returns A reference to a pointer to the first byte of data.

Method Description

data Method Finds the first byte of data.

endseq Method Gets the sequence number of the last byte of data.

flags Method Retrieves flags.

len Method Gets the length of the segment.

next Method Finds the next segment in the list.

prev Method Finds the previous segment in the list.

segment Method Finds the datagram containing the TCP segment.

startseq Method Gets the starting sequence number.
362 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPSegInfo Class
endseq Method

Gets the sequence number of the last byte of data.

TCPSeq endseq ();

Returns The sequence number of the last byte of data.

flags Method

Retrieves flags.

uint32& flags ();

Returns A reference to flags associated with the segment.

len Method

Gets the length of the segment.

long& len ();

Returns A reference to the data length in the segment in bytes.

next Method

Finds the next segment in the list.

TCPSegInfo*& next ();

Returns A reference to a pointer to the next TCPSegInfo object of the forward linked list,
or NULL if this is the last segment.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 363

Revision 2.3, May 2000

• • • • •

TCPSegInfo Class

•
prev Method

Finds the previous segment in the list.

TCPSegInfo*& prev ();

Returns A reference to a pointer to the previous TCPSegInfo object of the forward
linked list, or NULL if this is the first segment.

segment Method

Finds the datagram containing the TCP segment.

IP4Datagram*& segment ();

Returns A reference to a pointer to the datagram containing the TCP segment.

startseq Method

Gets the starting sequence number.

TCPSeq& startseq ();

Returns A reference to the starting sequence number for the segment.
364 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPSeq Class
TCPSeq Class

The TCPSeq class represents a TCP sequence number data type, and associated
operators. TCP sequence numbers are 32-bit unsigned numbers that can wrap
beyond 2^32-1. Use these objects to handle sequence numbers like ordinary
scalar types (such as unsigned integers).

TCP uses sequence numbers to keep track of an active data transfer. Each unit
of data transfer is called a segment, and each segment contains a range of
sequence numbers. Sequence numbers are in byte units.

If a TCP connection is open and data transfer is progressing from computer A
to B, TCP segments will be flowing from A to B and acknowledgements will be
flowing from B toward A. The acknowledgements indicate to the sender the
amount of data the receiver has received.

TCP is a bi-directional protocol; that is, data can be flowing simultaneously
from A to B and from B to A. In such cases, each segment (in both directions)
contains data for one direction of the connection and acknowledgements for the
other direction of the connection. Both sequence numbers (sending direction)
and acknowledgement numbers (reverse direction) use TCP sequence numbers
as the data type in the TCP header.

The TCPSeq class is defined in NBtcp.h. It contains the following methods and
operators:

Method Description

TCPSeq Constructor Instantiates the class.

image Method Retrieves the sequence number in network byte order.

val Method Retrieves the sequence number in host byte order.

TCPSeq Operators Manipulate and compare sequence numbers.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 365

Revision 2.3, May 2000

• • • • •

TCPSeq Class

•
TCPSeq Constructor

Creates a TCPSeq object.

IP4Addr (nuint32 jn);

IP4Addr (uint32 jh);

IP4Addr ();

Returns The newly created object.

Description This class has three constructors for creating sequence numbers with or without
an initial value. Pass the initial value as an unsigned 32-bit word in either host
or network byte order, or pass no parameter to create the object with no initial
value.

image Method

Retrieves the sequence number in network byte order.

nuint32 image ();

Returns The sequence number in network byte order.

Parameter Description

jn The sequence number as an unsigned 32-bit word in network byte
order

jh The sequence number as an unsigned 32-bit word in host byte order
366 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPSeq Class
val Method

Retrieves the sequence number in host byte order.

uint32 val ();

Returns The sequence number in host byte order.

TCPSeq Operators

The TCPSeq class defines the following arithmetic and relational operators to
manipulate and compare sequence numbers:

Operator Description

TCPSeq TCPSeq + long Add a signed integer to a TCP sequence number,
returning another TCP sequence number. A binary
operator.

&TCPSeq += long Add a signed integer to a TCP sequence number,
returning another TCP sequence number. An
assignment operator.

long TCPSeq - TCPSeq Subtract one TCP sequence number from another,
returning difference as a signed integer.

TCPSeq TCPSeq - long Subtract a signed integer from a TCP sequence
number, returning difference as a TCP sequence
number. A binary operator.

&TCPSeq -= long Subtract a signed integer from a TCP sequence
number, returning difference as a TCP sequence
number. An assignment operator.

TCPSeq++, ++TCPSeq Increment a TCP sequence number.

TCPSeq--, --TCPSeq Decrement a TCP sequence number.

==, != Compare two TCP sequence numbers for equality or
inequality.

>, <, >=, <= Compare two TCP sequence numbers for order.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 367

Revision 2.3, May 2000

• • • • •

TCPSession Class

•
TCPSession Class

The TCPSession class represents a bi-directional TCP connection. It includes
two TCPEndpoint objects that each include a reassembly queue. When the
TCPSession object is able to process all data sent on the connection in either
direction, it has a reasonably complete picture of the progress and data
exchanged across the connection.

The TCPSession class is defined in NBtcp.h. It contains the following methods:

TCPSession Constructor

Creates a TCPSession object.

TCPSession (IP4Datagram* dp);

Returns A reference to the newly created object.

Method Description

TCPSession Constructor Instantiates the class.

TCPSession Destructor Deletes all TCP segments queued and frees the object’s
memory.

process Method Processes a TCP segment on the connection.

client Method Gets the client endpoint object embedded in the session
object.

server Method Gets the server endpoint object embedded in the session
object.

Parameter Description

pd A pointer to a complete IP datagram containing the first TCP seg-
ment on the connection
368 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPSession Class
Description You create a TCPSession object when a TCP segment arrives on a new connec-
tion. The session object determines, from the contents of the segment, which
endpoint is considered the client (the active opener—generally the sender of
the first SYN), and which is considered the server (the passive opener—gener-
ally the sender of the first SYN+ACK).

In the event of simultaneous active opens, a rare case when both endpoints
send SYN packets, the session object considers the sender of the first SYN to be
the client. (The terms client and server are only loosely defined here, and do not
affect the proper operation of the object.)

TCPSession Destructor

Deletes all TCP segments queued and frees the object’s memory.

~TCPSession ()

process Method

Processes a TCP segment on the connection.

uint32 process (IP4Datagram* pd);

uint32 process (IP4Datagram* pd,
uint32& clcode,
uint32& srvcode);

Returns A 32-bit integer code indicating the disposition of TCP segments. See TCP
Return Codes on page 298. The value returned is the bitwise OR of the client’s
and server’s return codes.

Parameter Description

pd A pointer to a complete IP datagram containing a TCP segment.

clcode On return, a reference to the client’s process method return code.

srvcode On return, a reference to the server’s process method return code.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 369

Revision 2.3, May 2000

• • • • •

TCPSession Class

•
Description This method processes a TCP segment on the connection by passing the data-
gram to each endpoint’s process method.

n When you call the method with only one parameter, it returns the bitwise
OR of the client’s and server’s process methods.

n When you call the method with all three parameters, it also fills in the indi-
vidual client and server return codes.

client Method

Gets the client endpoint object embedded in the session object.

TCPEndpoint& client ();

Returns A reference to the client TCPEndpoint object.

server Method

Gets the server endpoint object embedded in the session object.

TCPEndpoint& server ();

Returns A reference to the server TCPEndpoint object.
370 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPSNat Class
TCPSNat Class

The TCPSNat class is derived from the TCPNat class. It defines the class of
objects implementing source address and (optionally) port number and
sequence number rewriting for complete and fragmented TCP segments.

NOTE: When performing NAT on a fragmented datagram, only the first
fragment has a TCP header. Use the appropriate TCPNat subclass for
the first fragment, then use the corresponding IP4Nat subclass for NAT
on subsequent fragments. See also “IP4NAT Base Class” on
page 333.

The TCP4SNat class is defined in NBnat.h. The class contains the following
methods:

TCPSNat Constructor

Creates a TCPSNat object.

TCPSNat (IP4Addr* newsaddr);

TCPSNat (IP4Addr* newsaddr,
nuint16 newsport);

TCPSNat (IP4Addr* newsaddr,
nuint16 newsport,
long seqoff)

Method Description

TCPSNat Constructor Instantiates the class.

rewrite Method Rewrites the source addresses, port number (if enabled),
and sequence number (if enabled) in a TCP datagram or
fragment.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 371

Revision 2.3, May 2000

• • • • •

TCPSNat Class

•
Returns A reference to the newly created object.

Description Use the single-argument constructor to create TCP NAT objects that rewrite
only the addresses in the IP header (and update the IP header checksum and
TCP pseudo-header checksum appropriately).

Use the two-argument constructor to create NAT objects that also rewrite the
source port number in the TCP header.

Use the three-argument constructor to create NAT objects that, in addition to
rewriting the source IP address and source port number, also modify the TCP
sequence number by the specified amount.

Parameter Description

newsaddr Pointer to the new source address to use.

newsport The new source port number to use, if port rewriting is enabled.

seqoff A relative constant amount by which to modify the sequence/ACK
number, if sequence number rewriting is enabled. Can be positive or
negative.
372 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 TCPSNat Class
rewrite Method

Rewrites the source addresses, port number (if enabled), and sequence number
(if enabled) in a TCP datagram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Description This method replaces the source addresses in the specified datagram or frag-
ment with the address specified when the object was constructed.

If port number rewriting is enabled, the method also replaces the source port
number in the specified datagram or fragment with the number specified when
the object was constructed.

If sequence number rewriting is enabled, the method also modifies the
sequence number by the amount specified when the object was constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

n To apply the method successfully to a fragment, the fragment must repre-
sent a complete TCP/IP datagram.

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite. The fragment must represent a
complete TCP/IP datagram.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 373

Revision 2.3, May 2000

• • • • •

UDPDNat Class

•
UDPDNat Class

The UDPDNat class is derived from the UDPNat class. It defines the class of
objects implementing destination address and (optionally) port number
rewriting for complete and fragmented UDP datagrams.

NOTE: When performing NAT on a fragmented datagram, only the first
fragment has a UDP header. Use the appropriate UDPNat subclass for
the first fragment, then use the corresponding IP4Nat subclass for NAT
on subsequent fragments. See also “IP4NAT Base Class” on
page 333.

The UDPDNat class is defined in NBnat.h. The class contains the following
methods:

UDPDNat Constructor

Creates a UDPDNat object.

UDPDNat(IP4Addr* newdaddr);

UDPDNat (IP4Addr* newdaddr,
nuint16 newdport);

Returns A reference to the newly created object.

Method Description

UDPDNat Constructor Instantiates the class.

rewrite Method Rewrites the destination addresses and port number (if
enabled) in a UDP/IP datagram or fragment.

Parameter Description

newdaddr Pointer to the new destination address to use.

newdport The new destination port number to use, if port rewriting is enabled.
374 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 UDPDNat Class
Description Use the single-argument constructor to create UDP NAT objects that rewrite
only the destination addresses in the IP header (and update the IP header
checksum and UDP pseudo-header checksum appropriately).

Use the two-argument constructor to create NAT objects that also rewrite the
destination port number in the UDP header. For fragmented UDP datagrams,
the port numbers are generally present only in the first fragment.

rewrite Method

Rewrites the destination addresses and port number (if enabled) in a UDP/IP
datagram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Description This method replaces the destination addresses in the specified datagram or
fragment with the address specified when the object was constructed. If port
number rewriting is enabled, the method also replaces the destination port
number in the specified datagram or fragment with the number specified when
the object was constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

n To apply the method successfully to a fragment, the fragment must repre-
sent a complete UDP/IP datagram.

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite. The fragment must represent a
complete UDP/IP datagram.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 375

Revision 2.3, May 2000

• • • • •

UDPHeader Class

•
UDPHeader Class

The UDPHeader class represents the standard UDP header. The UDP protocol is
relatively simple, and is represented in ASL by a single class. For address and
port number translation of UDP, see UDPNat Base Class on page 378.

The methods are declared as static within this class, so you can use them
without instantiating the class. Refer to the UDPHeader class to access UDP
headers received in live network packets.

The class is defined in NBudp.h, and contains the following methods:

cksum Method

Accesses the UDP pseudoheader checksum.

nuint16& cksum ();

Returns A reference to the UDP pseudoheader checksum. UDP checksums are optional;
a value of all zero bits indicates no checksum was computed.

Method Description

cksum Method Accesses the UDP pseudoheader checksum.

dport Method Accesses the destination UDP port number.

len Method Accesses the length of the UDP header.

payload Method Finds the payload in the UDP packet.

sport Method Accesses the source UDP port number.
376 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 UDPHeader Class
dport Method

Accesses the destination UDP port number.

nuint16& dport ();

Returns A reference to the destination UDP port number.

len Method

Accesses the UDP header length.

nuint16& len ();

Returns A reference to the UDP length field.

payload Method

Finds the payload in the UDP packet.

unsigned char * payload ();

Returns The address of the first byte of payload data.

Description Finds and returns the address of the first byte of payload data beyond the UDP
header in the UDP packet.

sport Method

Accesses the souce UDP port number.

nuint16& sport ();

Returns A reference to the source UDP port number.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 377

Revision 2.3, May 2000

• • • • •

UDPNat Base Class

•
UDPNat Base Class

The UDPNat class is a base class for other UDP NAT subclasses. Do not create
objects of type UDPNat directly. Instead, use objects of type UDPSNat, UDPDNat,
and UDPSDNat.

n Use the UDPSNat Class to modify only the source IP address.

n Use the UDPDNat Class to modify only the destination IP address.

n Use the UDPSDNat Class to modify both the source and destination IP
addresses.

UDP NAT is similar to IP NAT, except that for UDP NAT you can specify in the
constructor that port numbers as well as IP layer addresses should be rewritten.

NOTE: When performing NAT on a fragmented datagram, only the first
fragment has a UDP header. Use the appropriate UDPNat subclass for
the first fragment, then use the corresponding IP4Nat subclass for NAT
on subsequent fragments. See also “IP4NAT Base Class” on
page 333.

This class is defined in NBnat.h. It contains the following methods:

Method Description

UDPNat Constructor Instantiates the class.

rewrite Method Rewrites the specified fragment or datagram. This pure virtual
method is defined in the subclasses.

ports Method Controls or determines whether port rewriting is enabled.
378 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 UDPNat Base Class
UDPNat Constructor

Creates a UDPNat object.

UDPNat (bool doports);

Returns A reference to the newly created object.

Description The constructor takes a parameter that indicates whether port number
rewriting is enabled.

rewrite Method

Rewrites the addresses in the specified fragment or datagram.

virtual void rewrite (IP4Datagram* dp) = 0;

virtual void rewrite (IP4Fragment* fp) = 0;

Returns Nothing.

Description This pure virtual method is defined in the derived classes. It performs address
rewriting in a specific fashion implemented by the specific derived classes (that
is, source, destination, or source/destination combination).

Parameter Description

doports When TRUE, port number rewriting is enabled. When FALSE, it is dis-
abled.

Parameter Description

dp Pointer to the datagram to rewrite. When the method is applied to a
datagram, each of the fragment headers composing the datagram is
rewritten.

fp Pointer to the single fragment to rewrite. When the method is applied
to a fragment, it affects only the specified fragment.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 379

Revision 2.3, May 2000

• • • • •

UDPNat Base Class

•
ports Method

Controls or determines whether port rewriting is enabled.

bool ports ();

void ports (bool p);

Returns When you pass no parameter, TRUE if the NAT object is configured to rewrite
UDP port numbers, FALSE if it is not. When you pass the parameter, returns
nothing.

Parameter Description

p When TRUE, enables port rewriting. When FALSE, disables port
rewriting. When absent, the method returns the current state.
380 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 UDPSDNat Class
UDPSDNat Class

The UDPSDNat class is derived from the UDPNat class. It defines the class of
objects implementing source and destination address and (optionally) port
number rewriting for complete and fragmented UDP datagrams.

NOTE: When performing NAT on a fragmented datagram, only the first
fragment has a UDP header. Use the appropriate UDPNat class for the
first fragment, then use the corresponding IP4Nat subclass for NAT on
subsequent fragments. See also “IP4NAT Base Class” on page 333.

The UDPSDNat class is defined in NBnat.h. The class contains the following
methods:

UDPSDNat Constructor

Creates a UDPSDNat object.

UDPSDNat (IP4Addr* newsaddr,
IP4Addr* newdaddr);

UDPSSNat (IP4Addr* newsaddr,
nuint16 newsport,
IP4Addr* newdaddr,
nuint16 newdport);

Method Description

UDPSDNat Constructor Instantiates the class.

rewrite Method Rewrites both the source and destination addresses and
port numbers (if enabled) in a UDP/IP datagram or frag-
ment.

Parameter Description

newsaddr Pointer to the new source address to use.

newsport The new source port number to use, if port rewriting is enabled.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 381

Revision 2.3, May 2000

• • • • •

UDPSDNat Class

•
Returns A reference to the newly created object.

Description Use the two-argument constructor to create UDP NAT objects that rewrite only
the source and destination addresses in the IP header (and update the IP header
checksum and UDP pseudo-header checksum appropriately).

Use the four-argument constructor to create NAT objects that also rewrite the
source and destination port numbers in the UDP header. For fragmented UDP
datagrams, the port numbers are generally present only in the first fragment.

rewrite Method

Rewrites both the source and destination addresses and port numbers (if
enabled) in a UDP/IP datagram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Description This method replaces the source and destination addresses in the specified
datagram or fragment with the addresses specified when the object was
constructed. If port number rewriting is enabled, the method also replaces the
source and destination port numbers in the specified datagram or fragment
with the numbers specified when the object was constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

newdaddr Pointer to the new destination address to use.

newdport The new destination port number to use, if port rewriting is enabled.

Parameter Description

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite. The fragment must represent a
complete UDP/IP datagram.
382 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 UDPSDNat Class
n To apply the method successfully to a fragment, the fragment must repre-
sent a complete UDP/IP datagram.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 383

Revision 2.3, May 2000

• • • • •

UDPSNat Class

•
UDPSNat Class

The UDPSNat class is derived from the UDPNat class. It defines the class of
objects implementing source address and (optionally) port number rewriting
for complete and fragmented UDP datagrams.

NOTE: When performing NAT on a fragmented datagram, only the first
fragment has a UDP header. Use the appropriate UDPNat subclass for
the first fragment, then use the corresponding IP4Nat subclass for NAT
on subsequent fragments. See also “IP4NAT Base Class” on
page 333.

The UDPSNat class is defined in NBnat.h. The class contains the following
methods:

UDPSNat Constructor

Creates a UDPSNat object.

UDPSNat (IP4Addr* newsaddr);

UDPSNat (IP4Addr* newsaddr,
nuint16 newsport);

Returns A reference to the newly created object.

Method Description

UDPSNat Constructor Instantiates the class.

rewrite Method Rewrites the source addresses and port number (if
enabled) in a UDP/IP datagram or fragment.

Parameter Description

newsaddr Pointer to the new source address to use.

newsport The new source port number to use, if port rewriting is enabled.
384 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

 UDPSNat Class
Description Use the single-argument constructor to create UDP NAT objects that rewrite
only the addresses in the IP header (and update the IP header checksum and
UDP pseudo-header checksum appropriately).

Use the two-argument constructor to create NAT objects that also rewrite the
source port number in the UDP header. For fragmented UDP datagrams, the
port numbers are generally present only in the first fragment.

rewrite Method

Rewrites the source addresses and port number (if enabled) in a UDP/IP data-
gram or fragment.

void rewrite (IP4Datagram* dp);

void rewrite (IP4Fragment* fp);

Returns Nothing.

Description This method replaces the source addresses in the specified datagram or frag-
ment with the address specified when the object was constructed. If port
number rewriting is enabled, the method also replaces the source port number
in the specified datagram or fragment with the number specified when the
object was constructed.

n When the method is applied to a datagram, each of the fragment headers
composing the datagram is rewritten.

n To apply the method successfully to a fragment, the fragment must repre-
sent a complete UDP/IP datagram.

Parameter Description

dp Pointer to the datagram to rewrite.

fp Pointer to the fragment to rewrite. The fragment must represent a
complete UDP/IP datagram.
Intel Confidential Chapter 5: ASL Extensions for TCP/IP 385

Revision 2.3, May 2000

• • • • •

UDPSNat Class

•
386 Chapter 5: ASL Extensions for TCP/IP Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 6

• • • • •
Network Classification Language

This chapter describes the syntax of Network Classification Language (NCL),
which you use to write the classification part of an ACE. It describes how to
create classification rules and sets, and how to use the NCL compiler to
generate header files that synchronize your action code with your NCL code.

The chapter contains the following sections:

n Overview

n NCL Rules File Structure and Elements

n Protocol Definitions

n Predicate Definitions

n Sets and Named Searches

n Rules and Actions

n Synchronizing NCL with Action Code

Overview

The accelerator module of an IX-API SDK application contains classification
rules that you specify in NCL, which call the action functions that you specify in
C and C++, using the Action Services Library (ASL).

You do not compile the NCL rules file for an ACE. Classification rules are
compiled on the fly by a fast incremental compiler provided with the IX-API
SDK. A dynamic linker/loader included with the IX-API SDK links the classi-
fication rules with the action implementations and loads the resulting combina-
tion into the Policy Accelerator.

NCL rules files have the extension .ncl. You specify the source code NCL file
in the makefile (myrulefile.ncl). You pass its name (myrulefile) to the load
method of the host’s AceManager object in the intialization function in the
Intel Confidential Chapter 6: Network Classification Language 387

Revision 2.3, May 2000

• • • • •

NCL Rules File Structure and Elements

•
action code file. The ACE manager loads the file into the ACE for the accelerator
module. For more information, see “Initialization Function” on page 172 in
Chapter 4, “Action Services Library.”

The classification rules that you define for an ACE can only call those action
functions that you have defined in the action code file that is part of the same
ACE. For more information on defining action functions, see “Action Func-
tions” on page 115 in Chapter 4, “Action Services Library.”

In addition to defining the classification rules, the NCL rules file defines sets
and searches for the ACE. These sets must also be represented by ASL objects
in the action code. You use the NCL compiler as a standalone command line
tool to generate a header file that defines ASL subclasses to represent these sets
and searches on the action side of the ACE. You can modify this header file,
then include it in your action code file before you compile the action code. For
more information, see “Synchronizing NCL with Action Code” on page 411.

See Also Chapter 8, “Communication Within an Application,” in Developing Applications
Using the IX-API SDK

NCL Rules File Structure and Elements

An NCL rules file, like a C or C++ file, begins with file inclusion statements and
constant definitions. It then has protocol definitions, followed by rules. Between
or within these two main sections, you can define predicates, sets, and searches.

Because the compiler does not allow forward references, you must define a
predicate or search before you can use it as part of a protocol definition, in
another predicate or search, or in a rule.

NCL rules files can contain the following preprocessor elements:

n Include Files (page 389)

n Symbolic Constants (page 389)

n Comments (page 390)

NCL rules files also contain the following language-specific elements:

n Names for various structures (page 392), which you must construct
according to specific naming conventions
388 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 NCL Rules File Structure and Elements
n Keywords (page 392), which identify statement types and parts of state-
ments

n Operators (page 392), which you use to construct Boolean or constant
expressions

Include Files Use the #include keyword to include other NCL files within the compilation
unit so that you can reuse existing code. The syntax is as follows:

#include <filename>
#include "filename"

The #include directive must start on a new line but can include spaces imme-
diately preceding the pound sign (#). No spaces are allowed between # and
include.

n When the filename argument is enclosed in angle brackets, the prepro-
cessor searches for the file in the directory %NBPATH%\include\NBncl.

n When the filename argument is enclosed in double quotes, the prepro-
cessor searches for the file in the directory containing the NCL rules file. If
the file is not found, it searches for the file in the directory
%NBPATH%\include\NBncl.

Examples

#include "myproto.def" // protocol definitions
#include <stdrules.rul> // standard rules

Symbolic
Constants

Use the #define keyword to define symbolic constants in NCL. You use
symbolic constants to represent arbitrary numbers.

The syntax for the #define directive is:

#define symbolic-name constant-value

Argument Description

filename Name of the file to be included, enclosed in double-quotes.
This can be any legal file name supported by the host.
Intel Confidential Chapter 6: Network Classification Language 389

Revision 2.3, May 2000

• • • • •

NCL Rules File Structure and Elements

•
The #define directive must start on a new line but can include spaces immedi-
ately preceding the pound character (#). No spaces are allowed between # and
define. Use the line continuation character (\) to continue beyond one physical
line.

Value Formats

NCL supports the following standard and domain-specific formats for constant
values:

n Conventional decimal and hexadecimal formats
Standard hexadecimal constants are defined as in C, with a leading 0x
prefix. Numbers with no prefix are decimal.
For example: #define TELNET_PORT 23
For data smaller than four bytes in length, unsigned extension to four bytes
is performed automatically.

n Dotted-quad form for IP version 4 addresses
For example: #define IP_ADDR 10.2.6.13

n Colon-separated hexadecimal for Ethernet and IP version 6 addresses
For example: #define MAC_ADDR c6:1e:f0:34:7a:93

Comments NCL supports C style for comments that can have multiple lines, and C++ style
for single-line comments. Comments can occur anywhere in the program.

n C style comments use /* to indicate the start of a comment, and */ to indi-
cate the end. You cannot nest comments in this form.

n C++ style comments use // to indicate the start of the comment. These
comments stop at the end of the line. Because all characters are discarded
from the // to the end of the line, you can nest comments in this form.

The following are examples of legal comments:

/* C style comment on single line */
// C++ style comment; compiler ignores to end-of-line

Argument Description

symbolic-name Name of the constant. By convention, all uppercase (to distin-
guish from variables).

constant-value Value of the constant. Cannot include spaces unless they are
delimited by parentheses or quotation marks.
390 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 NCL Rules File Structure and Elements
/* C style comments across multiple lines
second line
third line */

// C++ style // still ignored to end-of-line
/* C style // C++ style embedded, ignored */

The following are examples of illegal comment syntax:

/ * space between comment delimiters in C style */
/ / space between slashes in C++ style
/* C-style /* nesting */ This part not in comment */
// /* Mixed styles - next line not in comment
*/

Names An NCL rules file can contain the following types of named entities:

n Constants

n Protocols

n Protocol fields

n Predicates

n Sets

n Searches

n Rules

Names are case sensitive, must begin with an alphabetic character, and can
include alphanumeric characters and underscores.

For example, legal names could include the following:

set_tcp_udp
IsIP
isIPv6
set_udp_ports

You cannot use NCL keywords as names (see Keywords following). Names
cannot contain operators, any special characters other than underscores, or
begin with numbers. The following are examples of illegal names:

6_byte_ip //ILLEGAL name: begins with number
set_tcp+udp //ILLEGAL name: contains operator
Intel Confidential Chapter 6: Network Classification Language 391

Revision 2.3, May 2000

• • • • •

NCL Rules File Structure and Elements

•
Keywords Keywords are a special set of words that have preassigned meanings in NCL.
Keywords identify statements and parts of statements. You cannot use NCL
keywords as names. The following table lists all NCL keywords with references
to the sections in which they are described.

Operators NCL supports arithmetic, logical, relational, and bit-wise binary operators for
use in constructing Boolean and constant expressions. You can use expressions
in protocol field definitions, predicates, and searches.

Keyword Description

#define Creates readable symbolic constants. See “Symbolic Constants” on
page 389.

#include Includes files in the compilation unit so that you can reuse exist-
ing code. See “Include Files” on page 389.

at Activates the starting offset of the protocol. Used in the demux state-
ment in a protocol definition. See “Identifying Nested Protocols” on
page 399.

default Specifies a default protocol. Used in the demux statement in a proto-
col definition. See “Identifying Nested Protocols” on page 399.

demux Indicates how demultiplexing should be performed to identify nested
protocols. See “Identifying Nested Protocols” on page 399.

intrinsic Declares instrinsics (compiled functions) in the TCP/IP protocol defi-
nitions. See “Using the Built-in TCP/IP Protocol Definition” on
page 396.

protocol Identifies a protocol definition and its name. See “Protocol Definitions”
on page 395.

requires Includes an optional Boolean expression in a named search. See
“Defining Named Searches” on page 404.

rule Defines a rule. See “Rules and Actions” on page 406.

search Defines a named search. See “Defining Named Searches” on
page 404.

set Defines a set. See “Defining a Set” on page 403.

size_hint Defines the expected number of members of a set. See “Defining a
Set” on page 403.

with Introduces a conditional clause in rule execution. See “Conditional
Rule Execution” on page 410.
392 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 NCL Rules File Structure and Elements
Arithmetic Operators

Arithmetic operators result in scalar quantities, which you typically use for
comparisons. Addition, subtraction, and logical shifts are not supported for
fields larger than four bytes.

The shift operators do logical shifts. Arithmetic shifts are not available. The
shift amount is a compile-time constant.

NOTE: NCL does not support multiplication, division, or modulo operators.

NCL supports the following arithmetic and grouping operators in field and
predicate definitions:

Logical and Relational Operators

Logical and relational operators result in Boolean values. NCL supports the
following logical and relational operators:

Operator Description

() Grouping operator

+ Addition

- Subtraction

<< Logical left shift

>> Logical right shift

Operator Description

&& Logical AND

|| Logical OR

! Logical NOT

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to
Intel Confidential Chapter 6: Network Classification Language 393

Revision 2.3, May 2000

• • • • •

NCL Rules File Structure and Elements

•
Bit-wise Operators

NCL supports the following bit-wise operators for masking and setting bits:

Precedence

The following table shows the precedence and associativity of all NCL opera-
tors, in decreasing order of precedence:

== Equal to

!= Not equal to

Operator Description

& Bit-wise AND

| Bit-wise OR

^ Bit-wise exclusive OR

~ Bit-wise one’s complement

Operator Associativity

() [] Left to right

! ~ Right to left

+- Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

Operator Description
394 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Protocol Definitions
Protocol Definitions

A protocol definition names and describes a protocol. It names and describes
the header fields that make up the protocol, and describes the relationship
among multiple protocols. You generally define protocols in the first main
section of an NCL rules file, immediately after the file inclusions and constant
definitions, and before the rules section.

The keyword protocol identifies a protocol definition and its name. The
syntax is as follows:

protocol protocol_name {
field_name { field_description }
intrinsic fn_name {}
predicate predicate_name { predicate_description }
demux {

boolean_exp { protocol_name at offset }
default { protocol_name at offset }
}

}

The protocol statement includes any number of declarations for named fields
(see “Defining Protocol Fields” on page 398) and a demultiplexing construct
that identifies nested protocols (see “Identifying Nested Protocols” on
page 399.) It can contain any number of predicate definitions, and can use
previously defined predicates (see “Predicate Definitions” on page 402.)

The built-in TCP/IP protocol definitions also contain intrinsics, or built-in func-
tions (see “Intrinsic Functions” on page 397).

You access the fields and predicates in a protocol by specifying the protocol
name and the field or predicate name separated by the dot operator. For
example:

ip.length
ip.bcast
ip.chksumvalid

Example
Protocol
Definition

The following example is the definition for the IP protocol. For more informa-
tion on this protocol, see “Using the Built-in TCP/IP Protocol Definition” on
page 396.

protocol ip {
vers { (ip[0:1] & 0xf0) >> 4 }
hlength { ip[0:1] & 0x0f }
hlength_b { hlength << 2 }
tos { ip[1:1] }
Intel Confidential Chapter 6: Network Classification Language 395

Revision 2.3, May 2000

• • • • •

Protocol Definitions

•
length { ip[2:2] }
id { ip[4:2] }
flags { (ip[6:1] & 0xe0) >> 5 }
fragoffset { ip[6:2] & 0x1fff }
ttl { ip[8:1] }
proto { ip[9:1] }
chksum { ip[10:2] }
src { ip[12:4] }
dst { ip[16:4] }
intrinsic chksumvalid {}
predicate bcast { dst == 255.255.255.255 }
predicate mcast { (dst & 0xf0000000) == 0xe0000000 }
predicate frag { fragoffset != 0 || (flags & 2) != 0 }
demux {

(proto == 6) { tcp at hlength_b }
(proto == 17) { udp at hlength_b }
(proto == 1) { icmp at hlength_b }
(proto == 2) { igmp at hlength_b }
default { unknownIP at hlength_b }

}
}

n The name ip identifies the protocol being defined.

n The protocol definition includes fields that correspond to portions of the IP
header comprising one or more bytes. For more information on field defini-
tions, see “Defining Protocol Fields” on page 398.
l The fields vers, hlength, flags, and fragoffset have special opera-

tions that extract certain bits from the IP header.
l The field hlength_b holds the length of the header in bytes computed

using the hlength field (which is in units of 32-bit words).

n The predicates bcast, mcast, and frag can be useful in defining other rules
or predicates. For more information on predicate definitions, see “Predicate
Definitions” on page 402.

n The demux statement indicates that this protocol can contain any of four
other protocols. For more information on nested protocols, see “Identifying
Nested Protocols” on page 399.

Using the
Built-in TCP/IP
Protocol
Definition

The IX-API SDK distribution includes NCL rules files that define the TCP/IP
protocol. You can include these files in your application, and also use them as
templates for defining other protocols. The sample files are located in the
following directory:

SDKinstallpath/include/NBncl
396 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Protocol Definitions
For more information on manipulating TCP/IP packets, see Chapter 5, “ASL
Extensions for TCP/IP,”

Intrinsic Functions

The TCP/IP protocol definitions make use of internally implemented,
compiled functions called intrinsics. Intrinsics provide convenient or highly
optimized functions that are not easily expressed using the standard language
constructs.

You can refer to the intrinsic functions in expressions. For example, the defini-
tion of the IP protocol uses the intrinsic function checksumvalid. If you have
included the IP protocol definition, you can use the expression ip.chksum-
valid when creating expressions for predicates, searches, or rules.

You cannot define new intrinsic functions, change their implementations, or
use the intrinsic keyword in your own protocol definitions.

In the protocol definitions for TCP/IP, intrinsics are specified by the keyword
intrinsic followed by the intrinsic name. The intrinsics generate 32-bit check-
sums, and validate checksums by returning a Boolean value. The following
table lists the intrinsics provided in NCL:

Intrinsic Name Functionality

ip.chksumvalid Checks the validity of the ip header checksum.
Returns TRUE if it is valid.

ip.genchksum Generates the ip header checksum and returns it as
a 32-bit value. The checksum is always 0 for a valid
packet. If the current packet is a fragment the check-
sum has no meaning.

tcp.chksumvalid Checks the validity of the tcp pseudo checksum.
Returns TRUE if the current packet is a fragment.

tcp.genchksum Generates the tcp pseudo checksum and returns it
as a 32-bit value. If the current packet is a fragment
and is not the first packet, returns the partial check-
sum over the ip payload.

udp.chksumvalid Checks the validity of the udp pseudo checksum.
Returns TRUE if the current packet is a fragment.

udp.genchksum Generates the udp pseudo checksum and returns it
as a 32-bit value. If the current packet is a fragment,
returns the partial checksum.
Intel Confidential Chapter 6: Network Classification Language 397

Revision 2.3, May 2000

• • • • •

Protocol Definitions

•
Defining
Protocol Fields

Protocol fields are elements of protocol definitions that specify the location and
size of portions of a packet header.

You declare and define fields within a protocol definition by specifying a field
name, followed by the offset relative to a protocol (usually the containing
protocol), and the field length in bytes.

Specify fields using the following syntax:

field_name { protocol_name [offset:size] }

The field definitions act as access methods to the areas within the protocol
header or payload. In a predicate or search, you retrieve a field value from the
current packet using the following syntax:

protocol.field_name

Because the offset is relative, you can specify a particular header field without
knowing the absolute offset of any particular protocol header. In the following
example, the location of the four-byte field dst is specified at byte offset 16 from
the beginning of the IP protocol header.

dst { ip[16:4] }

You can specify offsets and sizes using constant expressions. A constant expres-
sion is any legal expression using constants and operators that evaluates to a
constant. For example:

val { ip[22:(myconst + (4<<5) + (2 | 3) - (2||3))] }

Fields use byte-oriented units, and NCL stores all values in network byte order.
(See “Byte Order Issues” on page 10 in Chapter 2, “System Types and
Methods.”) You can define fields using a combination of byte ranges and shift,

Argument Description

field_name The name of a range field defined to reside at offset bytes
from the beginning of the protocol header belonging to
protocol_name.

protocol_name The name of the protocol header.

offset The number of bytes offset from the beginning of the specified
protocol header (protocol_name). Can be a constant
expression.

size Size of the field in bytes. Can be a constant expression.
398 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Protocol Definitions
mask or grouping operations. Use mask and shift operations to access non-
byte-sized header fields. In the following example, the field ver is a half-byte-
sized field at the beginning of the IP header.

ver { (ip[0:1] & 0xf0) >> 4 }

Examples

The following example declares the field dest_addr as a four-byte field located
at offset six bytes from the start of the protocol MyProto:

dest_addr { MyProto[6:4] }

The following example declares the field bit_flags as a bit field. Because it
crosses a byte boundary, two bytes are used with a mask and right-shift opera-
tion to get the field value.

bit_flags { (MyProto[10:2] & 0x0ff0) >> 8 }

Identifying
Nested
Protocols

Protocols can contain other protocols. You use the keyword demux in a protocol
definition to identify other protocols that can be nested within it. (The keyword
comes from demultiplexing, the process of extracting nested protocols from the
protocols that contain them.) The demux statement, if used, must be the last
statement in the protocol definition.

The syntax for the demux statement is as follows:

demux {
boolean_exp { protocol_name at offset }
...
default { protocol_name at offset }

}

Argument Description

boolean_exp A Boolean expression that must succeed for the associ-
ated protocol to become active.

protocol_name at
offset

The name of the nested protocol and its starting offset
from the beginning of the enclosing protocol.

default
{protocol_name at
offset}

A protocol to be activated if all other expressions fail.
This clause is optional.
Intel Confidential Chapter 6: Network Classification Language 399

Revision 2.3, May 2000

• • • • •

Protocol Definitions

•
The demux statement can include any number of expressions. Each is associated
with a protocol that can be contained in the protocol being defined. When the
Boolean expression succeeds, the associated nested protocol is selected.

When a packet arrives, the Policy Accelerator parses the protocol definitions to
classify the packet. When it reaches the demux statement, the parser evaluates
the expressions in the order in which they appear. The first expression that eval-
uates to TRUE identifies the nested protocol, and the parser continues into the
indicated protocol definition.

After a field value in the current packet causes an expression to succeed and its
nested protocol to be selected, the parser does not continue into the remaining
expressions in the demux statement. For this reason, the protocol most likely to
occur should be the first one in the sequence. If you include a default protocol
it must be the last expression in the demux statement, indicated by the keyword
default. The default expression always succeeds.

While a protocol is being parsed, the protocol’s name becomes a Boolean
expression that evaluates to TRUE. For example, if the IP protocol is currently
being parsed, the expression ip evaluates to TRUE. (An exception to this occurs
when you pass a protocol’s name to an action from a rule. In this case, the name
evaluates to a pointer to that protocol’s starting position in the packet. For more
information, see “Passing Action Arguments” on page 408.)

Example

The following is an example of a demux declaration.

demux {
(length == 10) { proto_a at offset_a }
(flags && predicate_x) { proto_b at offset_b }
default { proto_default at offset_default } }

n Protocol proto_a occurs at offset offset_a if the expression length equals
ten.

n Protocol proto_b occurs at offset offset_b if flags is TRUE, predicate_x
(a pre-defined Boolean expression) is TRUE, and length is not equal to 10.

n The default protocol, proto_default, is defined here so that packets not
matching the predefined criteria can be processed.

The following is the demux statement from the IP protocol definition:

demux {
(proto == 6) { tcp at hlength_b }
(proto == 17) { udp at hlength_b }
(proto == 1) { icmp at hlength_b }
(proto == 2) { igmp at hlength_b }
400 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Protocol Definitions
default { unknownIP at hlength_b }

n The statement indicates that this protocol can contain four types of nested
protocols (apart from the default) under different conditions.

n The demultiplexing key is the protocol type specified by the value of the
proto field of the containing protocol.

n Each type of nested protocol begins at offset hlength_b relative to the start
of the IP header. This is a field with calculated value, defined earlier in the
protocol.

Extending
Protocol
Definitions

You can extend previously-defined protocols by providing additional declara-
tions for new fields outside protocol definitions. You can also define new pred-
icates to be associated with a previously defined protocol. (See “Predicate
Definitions” on page 402.)

You can extend only those protocols that are previously defined in the same file
or in an included file. You can use this feature to create alternate definitions of
a protocol by putting the base definition in an include file, then extending it
differently in different files.

Adding Fields

Use the following syntax to add a field to a previously defined protocol:

protocol_name.field_name { definition }

The following example declares a new field called newfield for the protocol xx:

xx.newfield { xx[10:4] }

Adding Predicates

Use the following syntax to add a predicate to a previously defined protocol:

predicate protocol_name.pred_name { definition }

Argument Description

protocol_name The name of a previously defined protocol.

field_name The name of the new field.

definition The offset and size definition of the new field.
Intel Confidential Chapter 6: Network Classification Language 401

Revision 2.3, May 2000

• • • • •

Predicate Definitions

•
The following example declares a new predicate called newpred for the
protocol xx:

predicate xx.newpred { xx[8:2] != 10 }

Predicate Definitions

Predicates are named Boolean expressions that use protocol field accessors,
other Boolean expressions, and previously defined predicates as operands. You
name predicates so that you can reuse them in rules, other predicates, and so
on.

Use the following syntax to declare and define a predicate:
predicate predicate_name { boolean_expression }

You can define predicates inside or outside protocol definitions. You can also
associate a new predicate with a previously defined protocol; see “Extending
Protocol Definitions” on page 401.

Because the compiler does not allow forward references, you must define a
predicate before you can refer to it. You can refer to a previously defined named
predicate in a protocol definition, in another predicate, in a search, or in a rule.

If an inactive protocol or its field is used in the expression, that part of the
expression evaluates to 0, or FALSE. The name of an active protocol evaluates to
TRUE.

Argument Description

protocol_name The name of a previously defined protocol.

pred_name The name of the new predicate.

definition The Boolean expression that defines the predicate.

Argument Description

predicate_name The name of the new predicate.

boolean_expression The Boolean expression that defines the predicate.
402 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Sets and Named Searches
Example In the following example, the second predicate, isNewTelnet, makes use of the
first predicate, isTcpSyn:

predicate isTcpSyn { tcp && (tcp.flags & 0x02) != 0 }
predicate isNewTelnet { isTcpSyn && (tcp.dport == 23) }

Sets and Named Searches

NCL and the Action Services Library (ASL) together support data tables called
sets. Sets associate application-defined data with packets. You define named
searches associated with a specific set, which determine whether the current
packet has a matching element in the set, based on the values of specified fields.

Searchable sets define collections of packets which are associated with each
other by virtue of their contents. If you want to form collections on structural
criteria, such as “the set of all packets with IP header lengths greater than
twenty bytes,” use a classification predicate rather than a searchable set.

The set is implemented as a data table in the Policy Accelerator, and is created
on initialization. Each element in the set must contain the specified number of
key values, followed by any amount of arbitrary data. The named searches
defined for a given set identify the correspondence between the key values and
protocol fields.

You use NCL to declare the existence and suggest the size of a set, and to define
the searches that evaluate set membership. You modify the contents of sets
using actions. Actions can retrieve data from a set or place data in a set, based
on the results of searches. For more information, see “Set Management Classes”
on page 101 in Chapter 4, “Action Services Library,” and Chapter 9, “Using Sets
of Data to Classify Packets,” in Developing Applications Using the IX-API SDK.

Every set and search that you define in NCL must correspond to a set and
search defined in action code. To ensure this, you generate action code directly
from your NCL code; see “Synchronizing NCL with Action Code” on page 411.

Defining a Set Use the keyword set to declare and name a set, specify the number of key
values, and suggest the size. The syntax is as follows:

set set_name
< nkeys > {
size_hint { expected_population }

}
Intel Confidential Chapter 6: Network Classification Language 403

Revision 2.3, May 2000

• • • • •

Sets and Named Searches

•
Choosing the Size Hint

The size hint is based on the number of elements to be used in a set. When
choosing the size hint, balance the amount of memory consumed for the set
against the search performance. Too large a size consumes memory unneces-
sarily. For example, before adding any elements, a set with a size hint of 65536
consumes nearly 0.5 Mb of RAM. Too small a size could hurt search perfor-
mance.

The maximum allocation of memory for a set is 64KB. A size hint larger than
65536 results in the maximum allocation of 64KB.

Defining
Named
Searches

A named search is associated with a specific set. You can define any number of
different searches for the same set. You can also define similar searches (using
the same key values) on different sets.

You define a named search using the keyword search. The syntax is as follows:

search set_name.search_name
(key1, key2, ... keyn) {
requires { boolean_expression }
}

Argument Description

set_name The name of the set.

nkeys The number of keys for any search on the set. Key values
are four bytes or less in length. If the field values corre-
sponding to the keys are longer, split them into multiple
keys. You can specify a maximum of seven keys.

expected_population The number of members you expect the set to have.
Must be a power of two: 1024,2048,4096,8192, 16384,
32768, or 65536.

This number does not place a strict limit on the popula-
tion of the set. However, as the set size grows beyond the
hint value, the search time might slowly increase.

This clause is optional.
404 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Sets and Named Searches
A search returns TRUE when an element is present in the associated set that
matches the specified key values for the current packet. When it succeeds, the
search also identifies the matching element.

You can use the requires keyword to include an optional Boolean expression
in the named search that controls whether the search is performed.

n If the requires clause succeeds, the search is performed, and returns a
result based on whether a match is found.

n If the requires clause fails, the search is not performed. The search returns
FALSE, regardless of whether there is a matching element in the set.

You can use a named search in subsequent predicates as a Boolean expression.
You can use searches on both the left and right sides of rules; they are inter-
preted differently on each side. For more information, see “Rules and Actions”
on page 406.

Executing
Searches

For each incoming packet, the Policy Accelerator tries every search defined in
the NCL rules file. If the requires clause succeeds, it executes the search and
stores the result in the corresponding ASL Search object.

A search can have one of the following results:

n The search did not run because the requirements were not met.

n The search ran and found a matching element.

n The search ran and did not find a matching element.

Argument Description

set_name The name of the set to search.

search_name The name of the new named search being defined.

keyn The names of the key fields, in the form
protocol_name.field_name.

The number of key fields must match the number of
keys (nkeys) defined for the set.

requires
{boolean_expression}

When the Boolean expression is TRUE, perform the
search. When it is FALSE, do not perform the search.

The requires clause is optional.
Intel Confidential Chapter 6: Network Classification Language 405

Revision 2.3, May 2000

• • • • •

Rules and Actions

•
Examples In the following example, the predicate tcp_sport_in is defined to be the
Boolean result of the named search tuports.tcp_sport, which determines
whether the tcp.sport field (source port) of a TCP segment is in the set
tuports.

predicate tcp_sport_in {tuports.tcp_sport}

In the following example, the predicate determines whether a TCP segment is
a member of the set tuports using both the source and destination port values.

predicate tcp_port_in {tuports.tcp_sport && tuports.tcp_dport}

In the following example, the predicate determines whether a UDP datagram
is a member of the set tuports by virtue of either the source or destination port
value.

predicate udp_sdports_in {tuports.udp_sport||tuports.udp_dport}

The following example defines a set of transport-layer protocol ports (TCP or
UDP), illustrating how to use one set for multiple searches. The set tuports
might contain a collection of port numbers of interest for either protocol
(TCP/IP or UDP/IP). The four named searches provide checks to determine
whether different TCP or UDP source or destination port numbers are present
in the set.

#define MAX_TCP_UDP_PORTS_SET_SZ 200
/* TUPORTS: a set of TCP or UDP ports */
set tuports<1> {

size_hint { MAX_TCP_UDP_PORTS_SET_SZ }
}
search tuports.tcp_sport (tcp.sport)
search tuports.tcp_dport (tcp.dport)
search tuports.udp_sport (udp.sport)
search tuports.udp_dport (udp.dport)

Rules and Actions

You must create rules to trigger the actions that direct and manipulate packet
data. A rule specifies an action to perform based on the protocol classification
and predicate or search results when the rule is applied to the current packet.
The rules in an NCL rules file can refer only to those action functions defined
in the action file that is part of the same ACE.
406 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Rules and Actions
You specify the actions to which the rules apply using C++ and the Action
Services Library (ASL) in an action source file, compiled to a .nbo file. For more
information on defining action functions, see “Action Functions” on page 115
in Chapter 4, “Action Services Library,” and Chapter 7, “Acting on Packets in
Your Action Code,” in Developing Applications Using the IX-API SDK.

The final section of your NCL rules file contains the rules for your application,
which can use the previously defined protocols, predicates, and searches. Rules
are evaluated in the order in which they are specified in the NCL rules file.

Defining Rules Use the rule keyword to declare and define a named rule. The syntax is as
follows:

rule rule_name { predicate } {
external_action_fn (arg1, arg2, ...)

}

A rule has a name and two parts, the left side, or predicate part, and the right
side, or action part. A rule succeeds if its predicate part evaluates to TRUE for
the current packet being processed. The action part of the rule indicates which
processing function, or action, to apply to the packet when the rule succeeds.
Only actions specified by successful rules are executed.

You can use a named search on either side of a rule. How it is used depends on
which side of the rule it is on:

n When used on the left side of a rule as part of the predicate, the search acts
as a Boolean expression. It succeeds when the requires clause is TRUE and
the search finds a matching record in the set.

Argument Description

rule_name The name of the rule.

predicate A Boolean expression consisting of any combination of
individual Boolean sub-expressions or predicate names.

external_action_fn The name of the action function to call when the predicate
is TRUE for the current packet. The named action must be
defined as an entry point in the .nbo file that is part of the
same ACE.

arg1 ... Arguments for the specified action function. These values
are passed to the action code in the .nbo file.

You must pass the number of arguments required by the
specified action, as specified in its definition.
Intel Confidential Chapter 6: Network Classification Language 407

Revision 2.3, May 2000

• • • • •

Rules and Actions

•
n When used on the right side of a rule as an action argument, the search
returns a search result object that contains a pointer. When the search has
succeeded, the returned search object contains a pointer to the matching
record in the set. When it has failed, the search object contains a pointer to a
location at which a new record can be inserted in the set. (For more informa-
tion, see “Set Management Classes” on page 101 and “Search Class” on
page 251 in Chapter 4, “Action Services Library.”)

Passing Action
Arguments

The arguments that you pass to an action are determined by the definition of
the specified action function. The first two arguments of any action function
(buf and ace) are supplied automatically; you do not pass them in the rule. If
any additional arguments are defined for the action function, you must pass
them.

You are responsible for passing the right number of arguments, and arguments
of the right type. You cannot pass expressions with operators as arguments. The
following table shows the kinds of arguments you can specify, and how they are
passed to the action function.

NOTE: Due to limitations in the gcc compiler, it is recommended that you avoid
the use of type bool arguments in action functions. Use unsigned int
instead.

Argument type Example How passed

Protocol field ip.src NCL passes the value of the specified
field in the current packet. If the value is
32 bits or shorter, it passes the value
directly. If the value is longer than 32 bits,
it passes a reference to the value.

Protocol name ip NCL passes a pointer to where the speci-
fied protocol starts in the current packet.

Predicate ip.bcast NCL evaluates the predicate and passes
the Boolean value (TRUE or FALSE).

Intrinsic tcp.chksumvalid NCL evaluates the intrinsic function and
passes the Boolean or 32-bit value.

Constant 23 NCL passes the constant value directly.

Search tuports.tcp_sport Identifies the corresponding Search
object in action code, which contains the
result of the search.
408 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Rules and Actions
Example The following example defines two sets and two named searches. The first set
contains source and destination IP addresses, plus TCP ports. The other set
contains IP addresses and UDP ports. The first search uses the IP source and
destination addresses and the TCP destination port number as keys. The
second search uses the IP source and destination addresses and UDP destina-
tion port as keys.

The predicate ipValid checks to make sure the packet is an IP packet with valid
checksum, has a header of acceptable size, and is IP version 4. The predicate
newtelnet determines if the current TCP segment is a SYN packet destined for
a telnet port. The predicate tftp determines if the UDP destination port corre-
sponds to the TFTP port number and the combination of IP source and destina-
tion addresses and destination UDP port number is in the set ip_udp_ports.

n The first rule, telnetNewCon, determines whether the current segment is a
new telnet connection and specifies that the associated external function
start_telnet is invoked when this rule is TRUE. The function takes the
search result as an argument.

n The second rule, tftppkt, checks whether the packet is a valid TFTP
connection. If so, the associated action is_tftp_pkt is invoked with
udp.dport as the argument.

n The third rule, addnewtelnet, checks if the current segment is a new telnet
connection. If so, the associated action function add_to_tcp_pkt_count is
invoked with no arguments.

set set_ip_tcp_ports <3> {
size_hint { 100 }

}
set set_ip_udp_ports <3> {

size_hint { 100 }
}

search set_ip_tcp_ports.tcp_dport (ip.src, ip.dst, tcp.dport)
{

requires {ip && tcp}
}
search set_ip_udp_ports.udp_dport (ip.src, ip.dst, udp.dport)
{

requires {ip && udp}
}

predicate ipValid {
ip && ip.chksumvalid && (ip.hlen > 5) && (ip.ver == 4)

}
predicate newtelnet {

(tcp.flags & 0x02) && (tcp.dport == 23)
}
Intel Confidential Chapter 6: Network Classification Language 409

Revision 2.3, May 2000

• • • • •

Rules and Actions

•
predicate tftp {
(udp.dport == 21) && set_ip_udp_ports.udp_ports

}

rule telnetNewCon {ipValid && newtelnet &&
set_ip_tcp_ports.tcp_dport }

{ start_telnet(set_ip_tcp_ports.tcp_dport) }
rule tftppkt {ipValid && tftp }

{ is_tftp_pkt (udp.dport) }
rule addnewtelnet { newtelnet }

{ add_to_tcp_pkt_count() }

Conditional
Rule Execution

A clause introduced by the keyword with provides conditional execution for
groups of rules and/or predicates. The syntax is as follows:

with boolean_exp {
predicate pred_name { boolean_exp }
rule rule_name { predicate } { action_ref }

}

The clause can include any number of predicate and/or rule definitions, and
can also include nested with clauses.

n If the initial boolean expression evaluates to FALSE, all of the enclosed pred-
icates and rules also evaluate to FALSE.

n If the initial boolean expression evaluates to TRUE, the enclosed definitions
are each evaluated as if they were defined at the top level.

Example

The following example uses a with clause to evaluate the validity of an IP data-
gram. If the IP datagram is valid, the predicate newtelnet is defined, and the
rule telnetNewCon is evaluated. If the IP datagram is not valid, NCL skips both
the predicate definition and rule.

predicate tcpValid { tcp && tcp.chksumalid }
with (tcpValid) {

predicate newtelnet {(tcp.flags & 0x02)
 && tcp.dport == TELNET }

rule telnetNewCon { newtelnet && ip_tcp_ports.tcp_dport }
{ start_telnet(ip_tcp_sport.tcp_dport) }

}

410 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

 Synchronizing NCL with Action Code
The following example uses a with clause to evaluate the validity of an IP data-
gram. If the IP datagram is valid, NCL evaluates a set of predicates and rules
which includes a nested with clause:

predicate tcpValid { tcp && tcp.chksumalid }
#define TELNET 23 /* port number for telnet */
with ipValid {

predicate tftp {(udp.dport == 21) && ip_udp_ports.udp_dport}
with tcpValid { /* Nested with */

 predicate newtelnet {(tcp.flags & 0x02)
 && tcp.dport == TELNET }

 rule telnetNewCon { newtelnet && ip_tcp_ports.tcp_dport }
{ start_telnet(ip_tcp_sport.tcp_dport) }

}
rule tftppkt { tftp && ip_udp_ports.udp_dport }

 { is_tftp_pkt (udp.dport) }
}

Synchronizing NCL with Action Code

Each NCL rules file that you write corresponds to one and only one action file
that is part of the same ACE. The action file that corresponds to an NCL rules
file must use certain information that is contained in the NCL file:

n Sets and Searches: The sets and searches that you define in the NCL rules
file must be defined in exactly the same way in C++ for the corresponding
action file. To ensure accuracy, you generate the C++ definitions directly
from the NCL definitions.

n Field Accessors: When the action code has its own access methods for
protocol fields, it is not necessary for a rule to pass every field value that an
action might need. The field information needed to create accessors is found
in the protocol definition in the NCL rules file.

You generate the information needed by the action file directly from the corre-
sponding NCL rules file, using the NCL compiler (cecomp.exe) as a standalone
tool with command-line options. The compiler generates C++ source code files
that you then include as header files in the source for the action code.

Generating
Sets and
Searches

Use the following command to generate the C++ code for sets and searches:

cecomp -Fsfilename sourcefile.ncl

The argument filename specifies the name of the file to which to write the
generated C++ code.
Intel Confidential Chapter 6: Network Classification Language 411

Revision 2.3, May 2000

• • • • •

Synchronizing NCL with Action Code

•
The compiler generates ASL base classes and objects for each of the sets and
named searches in the NCL rules file, and also defines a data structure for each
set.

Generating
Field
Accessors

Use the following command to generate the C++ code for field accessors:

cecomp -Fafilename sourcefile.ncl

The argument filename specifies the name of the file to which to write the
generated C++ code.

The compiler generates a class for each defined protocol, with accessor
methods for each field. These accessors are defined to return results in network
byte order. (See “Byte Order Issues” on page 10 in Chapter 2, “System Types
and Methods.”)

NOTE: If the NCL code dynamically modifies the protocol definitions, the
generated field accessors can become incorrect. In this case, you must
pass field values to action functions from rules.
412 Chapter 6: Network Classification Language Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 7

• • • • •
Command-Line Tools

The IX-API SDK includes command-line tools for compiling and debugging
application code, for various utilities, and for starting parts of the system. This
chapter describes the syntax and options of the following command-line tools
and utilities, listed in alphabetical order.

Tool Locations All utilities and system tools are located in the directorySDKinstallpath/bin,
with the following exceptions:

n The nbgcc compiler is located in the directory /usr/local/bin.

Command Description

cecomp Command Compiles NCL code.

celink Command Links compiled NCL code.

getaceid Command Creates a symbol table for the action code debugger.

nbgcc Command Compiles C++ action code.

nbgdb Command Starts the command-line debugger for action code.

nbld Command Links compiled action code.

odxloop Command Aids in verifying the operation of a customized NIC driver
that uses Optimal Data Exchange (ODX) Protocol for
PCI.

pa100diag Command Verifies the hardware installation of the Policy
Accelerator 100. (In the diagnostics directory.)

readport Command On UNIX only, reads and displays output sent to stdout
or sysout.

resolver Command Starts the Resolver, which is the resource manager for
the Policy Accelerator and related objects.
Intel Confidential Chapter 7: Command-Line Tools 413

Revision 2.3, May 2000

• • • • •

•
n Diagnostic tools are located in the directorySDKinstallpath/diagnos-
tics.

cecomp Command

Compiles NCL code.

cecomp -v -Faprotofilename -Fssetfilename
-Ftsetfilebasename sourcefile.ncl

Option Meaning

-v Optional. Turn on verbose mode. When on, prints compi-
lation information to stdout.

-Faprotofilename Optional. Generates the C++ code for field accessors.
The argument protofilename specifies the complete
name of the file to which to write the generated C++ code;
for example, myproto.h.

The compiler generates a class for each protocol defined
in the NCL file, with accessor methods for each field.
These accessors are defined to return results in network
byte order. See “Byte Order and Intermodule Communi-
cation” in Chapter 2, “System Types and Methods.”

NOTE: If the NCL code dynamically modifies the
protocol definitions, the generated field
accessors can become incorrect. In this
case, you must pass field values to action
functions from rules.

-Fssetfilename Optional. Generates the C++ code for sets and searches.
The argument setfilename specifies the complete
name of the file to which to write generated C++ code; for
example, myset.h.

The compiler generates a file named setfilename,
which defines ASL base classes and objects for each of
the sets and named searches in the NCL file, and also
defines a data structure for each set.
414 Chapter 7: Command-Line Tools Intel Confidential

Revision 2.3, May 2000

• • • •

Description NCL code is normally compiled and linked at run time by the Policy
Accelerator system. You use this command independently for the following
reasons:

n Generate the C++ code for sets and searches, to be included as a header in
your action code.

n Generate the C++ code for protocol field accessors, to be included as a
header in your action code.

n Test your NCL code for compilation errors and object size. In this case, use
celink to link the resulting file.

Because you do not normally compile NCL code for use in an application, the
options that control compilation are not documented here. For information on
using cecomp to compile NCL for an SDK-E application on an embedded
system, see IX-API SDK Host API Reference Supplement for Embedded Systems.

The Resolver does not need to be running to use this command.

-Ftsetfilebasename Optional. Generates the C++ code for sets and searches.
The argument setfilebasename specifies the base
name of the files to which to write generated C++ code;
for example, myset.

The compiler generates two header files. The first file,
namedsetfilebasename.h, contains the same infor-
mation as the single file generated by the -Fs option. In
addition, it creates a second file named
setfilebasename_def.h, which initializes the static
data members of the sets.

Use this option rather than -Fs if your accelerator mod-
ule has more than one action file using the same sets.
Before linking, ensure that there is only one reference in
the include tree to the setfilebasename_def.h file. If
there is more than one reference, or if you use the -Fs
option, the linker generates errors when the static data
members are multiply defined.

NOTE: Do not modify the set header files created by the NCL compiler; any
changes you make will be overwritten the next time you generate.
Extend the set element definitions in an action source file that includes
these headers.

sourcefile.ncl Required. The name of the source NCL file to compile,
which must have the extension .ncl.

Option Meaning
Intel Confidential Chapter 7: Command-Line Tools 415

Revision 2.3, May 2000

• • • • •

•
See Also n “celink Command” on page 417

n Chapter 4, “Compiling Applications,” in Developing Applications Using the
IX-API SDK

n “Synchronizing NCL with Action Code” on page 411
416 Chapter 7: Command-Line Tools Intel Confidential

Revision 2.3, May 2000

• • • •

celink Command

Links compiled NCL code.

celink -ce ceId -nomrt -o outfile -v objectfile [objectfiles]

Description NCL code is normally compiled and linked at run time by the Policy
Accelerator system. You can use this command independently to test your NCL
code for compilation errors and object size. In this case, use celink to link the
file produced by cecomp with the startup and runtime code that resides in the
Classification Engine within the Policy Accelerator.

The command links NCL object files in the order in which they are specified
Because the compiler generates calls to set search functions, the linker scans the
object file for compiler-generated symbols to determine the objects to link in.

For information on using cecomp and celink to compile NCL for an SDK-E
application on an embedded system, see IX-API SDK Host API Reference Supple-
ment for Embedded Systems.

The Resolver does not need to be running to use this command.

See Also n “cecomp Command” on page 414

n Chapter 4, “Compiling Applications,” in Developing Applications Using the
IX-API SDK

Option Meaning

-ce ceId Unsupported. For Intel internal use only.

-nomrt Unsupported. For Intel internal use only.

-o outfile Optional. The filename for the generated executable. Default is
a.out.

-v Optional. Turn on verbose mode. When on, prints instruction count
to stdout.

objectfile Required. The name of the compiled NCL file or files to link, as writ-
ten by the cecomp command.
Intel Confidential Chapter 7: Command-Line Tools 417

Revision 2.3, May 2000

• • • • •

•
getaceid Command

Creates a symbol table for the action code debugger.

getaceid ACEpathname actionfilename

Description The command prints the ACE’s ID (an integer) to stdout, and also creates a
compiled and linked executable file actionfilename.exe in the current direc-
tory. You run the debugger (nbgdb) on this file.

The debugger runs on your host system, while an ACE normally runs on the
Policy Accelerator. You do not have direct access to the Policy Accelerator from
a command shell. To debug a particular ACE, you need a standalone executable
for that ACE that you can run on the host from a command shell.

This utility produces the standalone executable in the current directory. You can
run the debugger on this file to step through the action functions as if it were
really running in the Policy Accelerator.

The Resolver must be running to use this command.

NOTE: To use this command, you must have the debug card installed on your
Policy Accelerator. In addition, you must have the entire SDK installed
on the computer on which you are running the debugger.

Example getaceid /NBloopAppl/NBloopAceGroup/NBloopAce loopact

See Also n Chapter 11, “Debugging and Troubleshooting,” in Developing Applications
Using the IX-API SDK

n “nbgdb Command” on page 421

Argument Meaning

ACEpathname The complete path to the ACE you want to debug, as it would
appear in the bind function of your application code
(appname.cpp) and as described in Appendix C, “Policy
Accelerator Name Space.”

actionfilename The file name of the compiled action code for the ACE (with-
out its extension).

The action code must have been compiled with the nbgcc
debug option (-g) and with no compiler optimizations (-O).
418 Chapter 7: Command-Line Tools Intel Confidential

Revision 2.3, May 2000

• • • •

nbgcc Command

Compiles C++ action code.

nbgcc -c -g -Ooptlevel -D_byteorder -ISDKinstallpath/include\
 actionsSource.cpp

Description To compile action code files, the IX-API SDK provides a compiler (nbgcc) that
is a modified version of the GNU C++ compiler (gcc). The nbgcc compiler is
located in the directory /usr/local/bin.

The command produces a file named actionsSource.o.

n If you have a single source file, rename the .o file with a .nbo extension and
pass it to the ACE manager’s load method.

n If you have more than one source file for action code for a single ACE,
compile each file and pass the resulting objects to the IX-API SDK extension
of the GNU linker, nbld.

Option Meaning

-c Generate object code without linking. Always specify
this option.

To link multiple action files for a single ACE, compile
them using this option, then pass them to the linker
(nbld) to produce the single object for the ACE.

-g Compile with debugging symbol table. Required
when you intend to use nbgdb with the resulting
object code.

-Ooptlevel The optimization level to use on the code. A value of
0 means no optimization, which is best for debugging.
A value of 2 means maximum optimization, which is
best for highest performance.

-D_BIGENDIAN Specifies that data values on the Policy Accelerator
are stored most-siginificant-byte first.

Always specify this option; it ensures that network
byte order is correctly used.

-
ISDKinstallpath/include

Specifies where to look for header files.

actionsSource.cpp The source file to be compiled.
Intel Confidential Chapter 7: Command-Line Tools 419

Revision 2.3, May 2000

• • • • •

•
The Resolver does not need to be running to use this command.

See Also n Using and Porting GNU CC in the /usr/local/docs directory for more
information on options available during compilation, and on the basic
usage of the IX-API SDK versions of these tools

n Chapter 4, “Compiling Applications,” in Developing Applications Using the
IX-API SDK.

n “nbld Command” on page 423
420 Chapter 7: Command-Line Tools Intel Confidential

Revision 2.3, May 2000

• • • •

nbgdb Command

Starts the command-line debugger for action code.

nbgdb actionfilename

Description The IX-API SDK provides a command-line debugging tool that you can use to
debug your action code. The debugger, nbgdb, is a version of the GNU
debugger (gdb) that has been customized for use with the Policy Accelerator.
Use it to debug action code written in C++, C, or StrongARM 110 assembly that
runs on the Policy Accelerator.

NOTE: To use nbgdb, you must have a debug card attached to your Policy
Accelerator. In addition, you must have the entire IX-API SDK installed
on the computer on which you are running the debugger.

To use the IX-API SDK debugger, you must compile the action code with the
nbgcc debug option (-g) and with no compiler optimizations (-O). You must
make the application with the nmake mode=Debug option. For additional
debugging information, you can start the Resolver in verbose mode using the
-v switch.

NOTE: With compiler optimizations of any level turned on, the debugging infor-
mation generated by the compiler might be inaccurate.

The debugger runs on your host system, while an ACE normally runs on the
Policy Accelerator. You do not have direct access to the Policy Accelerator from
a command shell. To run the debugger on a particular ACE, you need a standa-
lone executable for that ACE that you can run on the host from a command
shell.

To produce a standalone executable for an ACE, use the utility getaceid. See
“getaceid Command” on page 418.

After starting the debugger, you must connect to the target ACE, using the ID
returned by getaceid:

(nbgdb) target remote com1:ACEid

Argument Meaning

actionfilename The file name of the executable file produced by getaceid for
the action code of the ACE.
Intel Confidential Chapter 7: Command-Line Tools 421

Revision 2.3, May 2000

• • • • •

•
For information on the debugger commands, see the GDB User’s Guide in the
/usr/local/docs directory. The following standard gdb commands are not
supported in nbgdb:

n run, load, and related commands

n Commands related to watchpoints and tracepoints

n Thread- and task-related commands

If you encounter any unexpected problems while using nbgdb to debug your
application, restart the Resolver, your application, and nbgdb.

Stepping through Action Functions

Because you run the debugger on the host, rather than on the Policy Accelerator
itself, debugging information is available only for the action functions them-
selves. The vast majority of processing time in an application is normally spent
in the Policy Accelerator system code, not in these asynchronous action func-
tions.

When single-stepping through action code, you must take care not to single-
step past the end of any action function, out of the scope of the action. Instead,
always use the continue command of nbgdb at the end of an action function.

NOTE: Debugging of the action code initialization function, init_actions, is
not supported. Do not introduce a breakpoint or other pause into this
function.

Shutting down the Debugger

When you have finished stepping through action functions, you must use the
delete command to remove all breakpoints before quitting from the debugger.

See Also n “getaceid Command” on page 418

n Chapter 11, “Debugging and Troubleshooting,” in Developing Applications
Using the IX-API SDK for information on debugging techniques

n “resolver Command” on page 427
422 Chapter 7: Command-Line Tools Intel Confidential

Revision 2.3, May 2000

• • • •

nbld Command

Links compiled action code.

nbld -r -EB -o outputname actionsSource1.o actionsSource2.o ...

Description Pass the output file (which must have the.nbo extension) to the ACE manager’s
load method to load it into the Policy Accelerator. If you have more than one
ACE, ensure that the .nbo file names are unique for each ACE.

NOTE: Use this command only when you have more than one action code file
for a single ACE. Otherwise, simply rename the .o file produced by
nbgcc.

The Resolver does not need to be running to use this command.

See Also n GNU ld documentation, available in the /usr/local/docs directory, for
more information on options available during linking

n “nbgcc Command” on page 419

n Chapter 4, “Compiling Applications,” in Developing Applications Using the
IX-API SDK

Argument Meaning

-r Required. Generate relocatable output that can, in turn, be
used as input for the IX-API SDK’s action code linker/loader.

-EB Required. Link big-endian objects.

-o outputname Optional. The name of the output file to generate. You must
rename the output file to have the .nbo extension.

By default, the command produces a file named a.out.

actionsSource<n>.o Two or more object files to be linked, as produced by nbgcc
using the -c option.
Intel Confidential Chapter 7: Command-Line Tools 423

Revision 2.3, May 2000

• • • • •

•
odxloop Command

Aids in verifying the operation of a NIC driver that has been customized to use
ODX for communication with a Policy Accelerator.

odxloop

Description After starting your customized NIC driver, execute this command in a
command shell. This utility configures the Policy Accelerator to reflect packets
back to the NIC. To verify that the NIC driver customization was accomplished
correctly and that the NIC and Policy Accelerator communicate properly, send
packets to the NIC and verify that they are returned in the same order and
condition.

This diagnostic tool is located in the SDKinstallpath/diagnostics directory.

You must have installed both the NIC and the Policy Accelerator device drivers
to perform these tests. After performing the tests, reboot the system to return
the Policy Accelerator configuration to its default state.

NOTE: This is a diagnostic utility intended to test your customized NIC driver,
and is not a usage demonstration. A sample application is included in
the installation at the following location:

SDKinstallpath/demo/ODXFilter

See Also Customizing a NIC Driver Using the ODX Protocol
424 Chapter 7: Command-Line Tools Intel Confidential

Revision 2.3, May 2000

• • • •

pa100diag Command

Verifies the hardware installation of the Policy Accelerator 100.

pa100diag -loopback -pa paname

Description In a command shell, execute this command to verify that the hardware instal-
lation was accomplished correctly and that the specified board operates prop-
erly. This diagnostic tool is located in the SDKinstallpath/diagnostics
directory.

You must have installed the Policy Accelerator device driver to perform the
tests.

NOTE: You cannot use this tool after starting the Resolver, even if you exit from
it. If you have ever started the Resolver, you must reboot, then run the
tool before starting the Resolver.

This script runs a number of hardware tests. If any test fails, the script termi-
nates. At the end of testing the script displays the final result in the command
shell. If all tests pass, it displays the message:

******** TEST RESULTS ********
******* serial_number PASSED DIAGNOSTICS TEST ******

If any test fails, it displays the message:

******** TEST RESULTS ********
******* serial_number FAILED DIAGNOSTICS TEST ******

Each time you run the diagnostic tool, it writes a log file of the test results to the
current working directory. The text log file, named serial_number.log,
contains messages about the results of each individual test. In the event of
failure, return the board and the log file to the manufacturer.

Argument Meaning

-loopback Optional. When specified, run the hardware loopback tests
of the board’s MAC interfaces. To run the loopback tests,
you must connect the A and B interfaces to one another
using a CAT4-compliant ethernet crossover cable.

-pa paname Optional. When multiple Policy Accelerators are installed,
specifies which Policy Accelerator to test. For example, -pa
nbhwpe1. The default is nbhwpe0.
Intel Confidential Chapter 7: Command-Line Tools 425

Revision 2.3, May 2000

• • • • •

•
See Also n Chapter 2, “Troubleshooting the Policy Accelerator,” of Installing a Policy
Accelerator 100 Board

n Contact Intel Technical Support for information on testing non-standard
boards or special-purpose testing. See “Contacting Intel” on page xxii.

readport Command

On UNIX only, reads and displays output sent from the Policy Accelerator to
stdout or sysout.

readport port

Description In a UNIX command shell, execute this command to display output in that shell
from the specified port.

n When an accelerator module sends output to stdout from commands such
as fprintf, read the results on port 11.

n Read system output from the Policy Accelerator, such as error and warning
messages, on port 12.

NOTE: On a Windows NT system, use the utility WinReadPort to display output
from both ports in a window. Invoke this utility from the IX-API SDK
system menu.

See Also Chapter 11, “Debugging and Troubleshooting,” in Developing Applications
Using the IX-API SDK

Argument Meaning

port The port from which to read: 11 or 12.
11 = stdout
12 = sysout
426 Chapter 7: Command-Line Tools Intel Confidential

Revision 2.3, May 2000

• • • •

resolver Command

Starts the Resolver, which is the resource manager for the Policy Accelerator
and related objects.

resolver -v -k -l -x -c

Description The Resolver has the following responsibilities:

n Maintains a database of available system resources and allocates them to
applications

n Initializes the Policy Accelerator

n Maintains a database of objects created by all IX-API SDK applications and
their associations with objects in the Policy Accelerator

n Manages the creation of objects on the Policy Accelerator

n Dynamically invokes the NCL compiler to compile classification code

Option Meaning

-v Turn on verbose mode for debugging. This prints
information on Resolver actions to stdout and
stderr.

-k Do not load and start the Policy Accelerator system
software. If you specify this option, you must load
and start the Policy Accelerator system software
manually.

-l Use compiler DLLs to compile NCL at run time. This
is the default; it is not necessary to specify it.

-x Unsupported. For Intel internal use only.

-c Turn on verbose mode for NCL runtime compilation.
This prints information on NCL compilation to std-
out and stderr.
Intel Confidential Chapter 7: Command-Line Tools 427

Revision 2.3, May 2000

• • • • •

•
Starting and Stopping the Resolver

To run an application, the Resolver must be running.When you install the IX-
API SDK or a runtime IX application, you normally configure the host
computer to start the Resolver process automatically at startup. If you need to
start and stop the Resolver, you have the following options:

n Start the Resolver manually in a command shell using the resolver
command, and stop it using an operating system command, such as
Control-C, in that shell.

n Start and stop the Resolver process programmatically, using functions
defined in the operating system services layer (OSSL) library. An example
of this is provided in the Killer demo. See Appendix A, “Demonstration
Applications,” in Developing Applications Using the IX-API SDK.

n On a Windows NT system, start and stop the Resolver interactively, using
the icon in the lower right corner of the desktop.
l Right-click on the icon and choose Start Resolver from the pop-up menu.

When the Resolver starts, the icon becomes colored and moving your
mouse cursor over the icon displays “Resolver is running.” This starts
the Resolver with no options.

l To stop the Resolver, choose Stop Resolver from the pop-up menu. The
icon grays out, and moving your mouse cursor over the icon displays
“Resolver is NOT running.”

When the Resolver is running, you run an IX application by executing its host
module executable file, as produced by gcc. The host module loads the files
needed for the accelerator module.

Stopping and Restarting Applications

The Resolver allows you to run multiple IX applications simultaneously. To do
so, it maintains a set of application resources. However, when you stop an
application, the Resolver does not always free enough resources to restart it (or
start other applications) reliably.

If you intend to stop any application, then restart that application or start other
IX applications, it is recommended that you stop all running applications, then
stop and restart the Resolver before starting or restarting any IX application.

See Also n Chapter 3, “Elements of an Application,” in Developing Applications Using
the IX-API SDK
428 Chapter 7: Command-Line Tools Intel Confidential

Revision 2.3, May 2000

• • • •

Appendix A

• • • • •
IX-API SDK Host API Error Codes

Alphabetical Listing

The file nberror.h contains all IX-API SDK host API error code constants.
However, only a few of these codes are visible to applications. The following
table presents the visible codes in alphabetical order along with a description of
each.

Error codes are encapsulated by the NBError class. An NBError object is
returned by host API methods, and thrown by host API object constructors. You
use the getErrorcode method to access the error code in the object. For more
information, see “NBError Class” on page 81.

 Return Codes Description

NBERROR_ACEGROUP_CANNOTREGISTER Cannot register this ACE group with the
Resolver for one of these reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_ACEGROUP_CANNOTUNREGISTER Resolver cannot unregister this ACE group.

NBERROR_ACEGROUP_NULLAPPL The argAppl argument is NULL.

NBERROR_ACEMGR_CANNOTCREATEDROP Cannot create a default drop target.

NBERROR_ACEMGR_CANNOTCREATEPASS Cannot create a default pass target.
Intel Confidential Appendix A: IX-API SDK Host API Error Codes 429

Revision 2.3, May 2000

• • • • •

Alphabetical Listing

•
NBERROR_ACEMGR_CANNOTDEVREG Cannot register this ACE manager with the Pol-
icy Accelerator kernel driver for one of these
reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_ACEMGR_CANNOTDEVUNREG Resolver cannot unregister this ACE from the
Policy Accelerator kernel driver.

NBERROR_ACEMGR_CANNOTRECVERRMSGS Cannot retrieve NCL compiler error messages
because communication with the Resolver was
interrupted during this operation.

NBERROR_ACEMGR_CANNOTRECVFNACK Cannot receive the message from the Resolver
acknowledging that the ACE was loaded.

NBERROR_ACEMGR_CANNOTREGISTER Cannot register this ACE manager with the
Resolver for one of these reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_ACEMGR_CANNOTRELOADACTIONS Cannot reload actions file (.nbo). The actions
file must have a valid Win32 filename.

NBERROR_ACEMGR_CANNOTSENDFN Cannot send a message to the Resolver to load
this ACE manager.

NBERROR_ACEMGR_CANNOTUNREGISTER Resolver cannot unregister this ACE manager.

NBERROR_ACEMGR_FNTOOLONG Filename is too long. The maximum length of
the filename is MAX_FILENAME_LENGTH,
which is defined in NBapi\nbparam.h.

NBERROR_ACEMGR_INVACEMODE Invalid ACE mode specified for argAceMode.
Valid ACE modes are ACE_READER and
ACE_WRITER. Check your spelling.

 Return Codes Description
430 Appendix A: IX-API SDK Host API Error Codes Intel Confidential

Revision 2.3, May 2000

• • • •

 Alphabetical Listing
NBERROR_ACEMGR_INVALIDCMPLRERRMSG Cannot retrieve valid NCL compiler error mes-
sages. No error messages are currently avail-
able.

NBERROR_ACEMGR_INVFN Invalid filename.

NBERROR_ACEMGR_NULLACEGROUP The argAceGroup argument is NULL.

NBERROR_ACEMGR_NULLAPPL The argAppl argument is NULL.

NBERROR_ACEMGR_NULLFILENAMES One of the filename pointers is NULL. You must
specify filenames when loading an ACE.

NBERROR_ACEMGR_NULLRULES One or both rule name pointers is NULL.

NBERROR_ACEMGR_OUTOFMEM Cannot allocate memory to load code.

NBERROR_ACEMGR_OUTOFMEMORY Cannot allocate memory to load code.

NBERROR_BOOT_CFGREADFAILED Cannot read the area of the Policy Accelerator
containing the configuration.

NBERROR_BOOT_FILENOTFOUND One of the boot image files was not in the
SDKinstallpath\hpex directory.

NBERROR_BOOT_PEINITFAILED Unable to successfully initialize the Policy
Accelerator.

NBERROR_BOOT_UNABLETOCREATEASYNCSTRUCT Could not create needed resource for booting;
most likely out of memory.

NBERROR_BOOT_UNABLETOCREATEBOOTPE Out of memory instantiating the CBootPE class.
CBootPE loads all the appropriate software on
the Policy Accelerator and starts the execution
of the ARM processor.

NBERROR_BOOT_UNABLETOOPENDRIVER Driver is either not loaded or not communicating
correctly.

NBERROR_BOOT_UNABLETOSETDRIVERSECURITY Current user does not have access to commu-
nicate with the driver.

NBERROR_BOOT_UNABLETOWRITEPEBYTES Boot process was unable to write data into the
memory of the Policy Accelerator.

NBERROR_BOOT_UNABLETOWRITEPEREG Boot process was unable to write data into the
registers of the Policy Accelerator.

 Return Codes Description
Intel Confidential Appendix A: IX-API SDK Host API Error Codes 431

Revision 2.3, May 2000

• • • • •

Alphabetical Listing

•
NBERROR_CROSSCALL_CANNOTREGISTER Cannot register this crosscall manager with the
Resolver for one of these reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_CROSSCALL_CANNOTUNREGISTER Resolver cannot unregister this crosscall man-
ager.

NBERROR_CROSSCALL_NULLACEMGR The argAceMgr argument is NULL.

NBERROR_CROSSCALL_NULLACEGROUP The argAceGroup argument is NULL.

NBERROR_CROSSCALL_NULLAPPL The argAppl argument is NULL.

NBERROR_CROSSCALLHANDLER_CANNOTREGISTER Cannot register this crosscall handler with the
Resolver for one of these reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_CROSSCALLHANDLER_CANNOTUNREGISTER Resolver cannot unregister this crosscall han-
dler.

NBERROR_CROSSCALLHANDLER_NULLACEGROUP The argAceGroup argument is NULL.

NBERROR_CROSSCALLHANDLER_NULLACEMGR The argAceMgr argument is NULL.

NBERROR_CROSSCALLHANDLER_NULLAPPL The argAppl argument is NULL.

NBERROR_DOWNCALL_CANNOTOBTAINPECONTEXT Cannot find downcall handler in the Policy
Accelerator. Every downcall must have a corre-
sponding downcall handler. Cannot issue down-
call.

 Return Codes Description
432 Appendix A: IX-API SDK Host API Error Codes Intel Confidential

Revision 2.3, May 2000

• • • •

 Alphabetical Listing
NBERROR_DOWNCALL_CANNOTREGISTER Cannot register this downcall with the Resolver
for one of these reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_DOWNCALL_CANNOTSENDDOWNCALL Kernel driver refused to send this downcall.

NBERROR_DOWNCALL_CANNOTUNREGISTER Cannot unregister this downcall handler.

NBERROR_DOWNCALL_NULLACEGROUP The argAceGroup argument is NULL.

NBERROR_DOWNCALL_NULLACEMGR The argAceMgr argument is NULL.

NBERROR_DOWNCALL_NULLAPPL The argAppl argument is NULL.

NBERROR_NBAPPL_CANNOTACCESSDEV Application cannot connect with the Policy
Accelerator device or driver. The device or
driver is not properly initialized or installed or is
not installed.

NBERROR_NBAPPL_CANNOTCREATEPIPE Application cannot create a communication
channel through which to talk to the Resolver.

NBERROR_NBAPPL_CANNOTCREATERSLVREQTHREAD Application cannot create a thread dedicated to
handle requests issued by the Resolver.

NBERROR_NBAPPL_CANNOTCREATEUPCALLTHREAD Application cannot create a thread dedicated to
handle upcalls from the Policy Accelerator.

NBERROR_NBAPPL_CANNOTRECVBINDREQ Application cannot receive message from the
Resolver acknowledging the bind request
because it lost communication with the
Resolver while executing this request.

NBERROR_NBAPPL_CANNOTRECVLINKREQ Application cannot receive message from the
Resolver acknowledging the link request
because it lost communication with the
Resolver while executing this request.

NBERROR_NBAPPL_CANNOTRECVOBJREGACK Cannot receive message from the Resolver
acknowledging registration of this object.

 Return Codes Description
Intel Confidential Appendix A: IX-API SDK Host API Error Codes 433

Revision 2.3, May 2000

• • • • •

Alphabetical Listing

•
NBERROR_NBAPPL_CANNOTRECVOBJUNREGACK Cannot receive message from the Resolver
acknowledging unregistration of this object.

NBERROR_NBAPPL_CANNOTRECVPECONTEXT Cannot receive message from the Resolver to
obtain the context data for a specific object in
the Policy Accelerator.

NBERROR_NBAPPL_CANNOTRECVREGACK Cannot receive message from the Resolver
acknowledging registration of this application.

NBERROR_NBAPPL_CANNOTRECVUNBINDREQ Cannot receive message from the Resolver
acknowledging an unbind request.

NBERROR_NBAPPL_CANNOTRECVUNLINKREQ Cannot receive message from the Resolver
acknowledging an unlink request.

NBERROR_NBAPPL_CANNOTRECVUNREGACK Cannot receive message from the Resolver to
acknowledge unregistration of this application.

NBERROR_NBAPPL_CANNOTREGISTER Cannot register this application with the
Resolver for one of these reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_NBAPPL_CANNOTSENDBINDREQ Application cannot send a message to the
Resolver to request a binding.

NBERROR_NBAPPL_CANNOTSENDLINKREQ Application cannot send a message to the
Resolver to link the crosscall. The application
cannot communicate with the Resolver.

NBERROR_NBAPPL_CANNOTSENDOBJREG Cannot send message to the Resolver to regis-
ter this object.

NBERROR_NBAPPL_CANNOTSENDOBJUNREG Cannot send message to the Resolver to unreg-
ister this object.

NBERROR_NBAPPL_CANNOTSENDPECONTEXTREQ Cannot send message to the Resolver to get
the context data (PEContext) for a specific
object in the Policy Accelerator.

NBERROR_NBAPPL_CANNOTSENDREG Cannot send message to the Resolver acknowl-
edging registration of the new application.

 Return Codes Description
434 Appendix A: IX-API SDK Host API Error Codes Intel Confidential

Revision 2.3, May 2000

• • • •

 Alphabetical Listing
NBERROR_NBAPPL_CANNOTSENDUNBINDREQ Cannot send message to the Resolver to
unbind the ACE.

NBERROR_NBAPPL_CANNOTSENDUNLINKREQ Cannot send message to the Resolver to unlink
the crosscall.

NBERROR_NBAPPL_CANNOTSENDUNREG Cannot send message to the Resolver to unreg-
ister the application.

NBERROR_NBAPPL_CANNOTSERIALIZECBACKARGS Resolver cannot process NBFactory callback
arguments.

NBERROR_NBAPPL_CANNOTUNREGISTER Resolver cannot unregister this application.

NBERROR_NBAPPL_DOUBLEERRUNREG Not enough available memory to unregister this
object.

NBERROR_NBAPPL_ERRBINDREQ Resolver cannot execute the bind operation.
Either the target or the destination ACE does
not exist.

NBERROR_NBAPPL_ERRLINKREQ Resolver cannot execute the link operation.
Either the target or the destination ACE does
not exist. If using the unlink command, this
error means that the crosscall does not exist.

NBERROR_NBAPPL_ERRNBPIPE Cannot allocate memory to create an object
used to manage the named pipe used to com-
municate with the Resolver.

NBERROR_NBAPPL_ERRORDEVREG Application cannot register with the Policy
Accelerator device driver.

NBERROR_NBAPPL_ERRPECONTEXT Resolver cannot get Policy Accelerator context
data for the object.

NBERROR_NBAPPL_ERRUNBINDREQ Resolver cannot execute the unbind operation.

NBERROR_NBAPPL_ERRUNLINKREQ Resolver cannot execute the unlink operation.

NBERROR_NBAPPL_ETERMRSLVREQTHREAD Cannot terminate thread accepting Resolver
messages.

NBERROR_NBAPPL_ETERMUPCALLTHREAD Resolver cannot terminate the thread currently
being used to handle upcalls for this application.

NBERROR_NBAPPL_INVHANDLE Invalid Policy Accelerator context data sent
from the Resolver.

 Return Codes Description
Intel Confidential Appendix A: IX-API SDK Host API Error Codes 435

Revision 2.3, May 2000

• • • • •

Alphabetical Listing

•
NBERROR_NBAPPL_INVTYPE Application cannot operate on this type of
object.

NBERROR_NBAPPL_NAMETOOLONG Filename is too long. The maximum length of
the filename is MAX_FILENAME_LENGTH,
which is defined in NBapi\nbparam.h.

NBERROR_NBAPPL_NULLCMDLINE Command line specified in constructor is NULL.

NBERROR_NBAPPL_NULLNAMES Pointer that should contain the object name is
NULL.

NBERROR_NBAPPL_OBJREGERROR Resolver cannot register this object.

NBERROR_NBAPPL_OBJUNREGERROR Resolver cannot unregister this object.

NBERROR_NBAPPL_OUTOFMEM Out of memory.

NBERROR_NBAPPL_PATHTOOLONG Object path name is too long. The maximum
length of the object path name is
OBJPATH_MAXLEN, which is defined in
NBapi\nbparam.h.

NBERROR_NBAPPL_REGERROR Resolver could not register the new application.
Either the application name already exists or the
Resolver lacks resources to register it.

NBERROR_NBAPPL_UNREGERROR Resolver cannot unregister this application.

NBERROR_NBAPPL_UPCALLHANDLERERROR Upcall handler thread is exiting due to operation
error.

NBERROR_NBOBJ_INVOBJTYPE System is trying to create an invalid object.

NBERROR_NBOBJ_NAMETOOLONG Object name is too long. The maximum length
of the object name is OBJNAME_MAXLEN, which
is defined in NBapi\nbparam.h.

NBERROR_NBOBJ_NOTSUPPORTED Method is not supported for this type of object.

NBERROR_NBOBJ_NULLNAME Pointer used to specify the object name is
NULL.

NBERROR_NBOBJ_OUTOFMEMORY System cannot allocate memory to create this
object.

 Return Codes Description
436 Appendix A: IX-API SDK Host API Error Codes Intel Confidential

Revision 2.3, May 2000

• • • •

 Alphabetical Listing
NBERROR_NBOBJ_TITLETOOLONG Title specified for the object is too long. The
maximum length for a title is
OBJTITLE_MAXLEN, which is defined in
NBapi\nbparam.h.

NBERROR_TARGETMGR_CANNOTREGISTER Cannot register this target manager with the
Resolver for one of these reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_TARGETMGR_CANNOTUNREGISTER Resolver cannot unregister this target manager.

NBERROR_TARGETMGR_NULLACEGROUP The argAceGroup argument is NULL.

NBERROR_TARGETMGR_NULLACEMGR The argAceMgr argument is NULL.

NBERROR_TARGETMGR_NULLAPPL The argAppl argument is NULL.

NBERROR_UPCALL_CANNOTREGISTER Cannot register this upcall handler with the
Resolver for one of these reasons:

n The Resolver is not running.

n The Policy Accelerator driver is not running.

n There is a problem communicating with the
Policy Accelerator.

n The name has already been registered.

NBERROR_UPCALL_CANNOTUNREGISTER Resolver cannot unregister this upcall handler.

NBERROR_UPCALL_NULLACEGROUP The argAceGroup argument is NULL.

NBERROR_UPCALL_NULLACEMGR The argAceMgr argument is NULL.

NBERROR_UPCALL_NULLAPPL The argAppl argument is NULL.

NBERROR_UPCTHREAD_CANNOTCREATEEVENT Cannot create synchronization object used by
upcall handler thread.

NBERROR_UPCTHREAD_ERRDEVUPCALL Error while waiting for the driver to return upcall.

NBERROR_UPCTHREAD_ERRIDTOACE Error converting ACE ID into ACE reference to
direct upcall.

 Return Codes Description
Intel Confidential Appendix A: IX-API SDK Host API Error Codes 437

Revision 2.3, May 2000

• • • • •

Alphabetical Listing

•
NBERROR_UPCTHREAD_ERRIDTOUPCALL Error converting upcall ID into upcall reference
to issue upcall.

NBERROR_UPCTHREAD_OUTOFMEMORY Out of memory.

 Return Codes Description
438 Appendix A: IX-API SDK Host API Error Codes Intel Confidential

Revision 2.3, May 2000

• • • •

Appendix B

• • • • •
IX-API SDK File Types

File Types and Extensions

This appendix lists the source and object code file types used by the IX-API
SDK, as identified by their filename extensions.

For more information on the compilers and linkers that use and produce these
files, see Chapter 7, “Command-Line Tools.”

 File Extension Description

.a A static library file for UNIX. In the IX-API SDK installation directory,
an IX-API SDK system file.

.cpp A C++ source code file. The source file for the host module or action
code part of the accelerator module of a network policy application.

n On Windows NT, you must use Microsoft Visual C++ to produce
and compile C++ source files.

n On UNIX, you can use any editing tool (such as emacs or vi) and
save C++ source files with other extensions (such as .C, .c++, or
.cxx) that are accepted by your ANSI C++ compiler.

.dll A shared library file for Windows NT. In the IX-API SDK installation
directory, a IX-API SDK system file.

.exe An executable file for Windows NT. In the IX-API SDK installation
directory, a IX-API SDK utility application or tool.

.h A C++ header file to be included in a C++ host module or action code
file, or an NCL header file to be included in a classification code file.
Generally contains definitions to be used by multiple files.
Intel Confidential Appendix B: IX-API SDK File Types 439

Revision 2.3, May 2000

• • • • •

File Types and Extensions

•
.nbo A compiled action code file, written using C++ and the IX-API SDK
action services library (ASL), and compiled with the ASL compiler
(nbgcc).

Together with a .ncl file, makes up the accelerator module for an
ACE.

.ncl A classification code source file, written in the IX-API SDK classifica-
tion language (NCL). Compiled at run time in the Policy Accelerator.

Together with a .nbo file, makes up the accelerator module for an
ACE.

.o A compiled C++ file. The compiled host module file for a network pol-
icy application.

.so A shared library file for UNIX. In the IX-API SDK installation directory,
an IX-API SDK system file.

 File Extension Description
440 Appendix B: IX-API SDK File Types Intel Confidential

Revision 2.3, May 2000

• • • •

Appendix C

• • • • •
Policy Accelerator Name Space

This appendix explains how the Resolver manages relations between objects
and entities on the host and on the Policy Accelerator using naming and refer-
ence conventions. It includes the following topics:

n Overview

n Object Name Syntax

n System Names for Policy Accelerator Interfaces

n Example

Overview

An IX application contains logical entities that comprise objects on both the
host and the Policy Accelerator. ACEs, targets, and crosscalls, for example, each
have a manager object on the host, and a managed object on the Policy
Accelerator. The Resolver manages the relationships between these paired
objects using the dictionary names—that is, the value of the name argument
that you give the objects on creation. The dictionary name is the same for both
objects in a pair.

Dictionary names are unique only in the context of the containing entity—a
target, for example, within an ACE, an ACE within an ACE group, and an ACE
group within an application. You must use a full name to uniquely identify an
object. The full name consists of the object’s individual dictionary name along
with a path that identifies the objects that contain it. Full object names are
derived from the hierarchy of named objects as shown in the following figure:
Intel Confidential Appendix C: Policy Accelerator Name Space 441

Revision 2.3, May 2000

• • • • •

Object Name Syntax

•
Names must be unique at each level within the object above it. For example,
you cannot have an upcall and a target using the same name within the same
ACE block.

In most cases you can use an individual object’s name, because the application
or ACE context is clear. You must specify an object’s full name to provide an
explicit context in the following cases:

n To bind targets (using the application object’s bind method)

n To link crosscalls and their handlers (using the application object’s link
method)

n To retrieve an ACE identifier for use with the nbgdb debugger (using the
getaceid command)

Object Name Syntax

The full name of an object has the following possible formats:

/appname/acegroupname/acename
/appname/acegroupname/acename/objectname

Object classes Example object names

root

NBAppl appl1 appl2...appln

AceGroup

Ace/AceManager

Target, Upcall, Downcall, Crosscall

acegroup1 acegroup2...acegroupn

ace1 ace2... acen

target1 target2 upcall1
442 Appendix C: Policy Accelerator Name Space Intel Confidential

Revision 2.3, May 2000

• • • •

 Object Name Syntax
The names come from the following definitions:

appname The application’s dictionary name, which you specified when creat-
ing your subclass of NBAppl. For example, the name Firewall in
the following code:
NBMyAppl::NBMyAppl (void):

NBAppl ("Firewall", "myapp.exe")

This name must be unique in a host system. For example, attempt-
ing to run a second application with the dictionary name Firewall
would fail.

Use the Policy Accelerator’s name forappname to refer to the Policy
Accelerator’s interfaces, as described in “System Names for Policy
Accelerator Interfaces” on page 444.

acegroupname The dictionary name you specified when creating your subclass of
AceGroup; for example, the name MyGroupName in the following
code:
myGroup = new NBMyGroup (appl, this,
"MyGroupName")

This name must be unique within an instance of NBAppl.

The IX-API SDK provides system-defined ACE group names that
refer to the Policy Accelerator’s interfaces, as described in “System
Names for Policy Accelerator Interfaces” on page 444.

acename The dictionary name for your ACE block (consisting of an ACE man-
ager and an ACE). Use the name you specified when creating your
subclass of AceManager or of Ace. It is the same for both the ACE
and the ACE manager, and it is the means by which they are asso-
ciated; for example, the name MyAceName in the following code:
myMgr = new NBMyMgr (appl, this, "MyAceName");

This name must be unique within an ACE group.

The IX-API SDK provides system-defined ACE names that refer to
the Policy Accelerator’s interfaces, as described in “System Names
for Policy Accelerator Interfaces” on page 444.

objectname The dictionary name you specified when creating your subclass of
an object within the ACE block; for example, the Target subclass
with the name MyTgtName in the following code:
target1 = new NBMyTgt (id, ace, "MyTgtName");

This name must be unique within an ACE block.

Every ACE, by default, also comes with two predefined target
names: pass and drop.
Intel Confidential Appendix C: Policy Accelerator Name Space 443

Revision 2.3, May 2000

• • • • •

System Names for Policy Accelerator Interfaces

•
For the examples shown in this table, the following are among the list of valid
names:

/Firewall/MyGroupName/MyAceName
/Firewall/MyGroupName/MyAceName/MyTgtName
/Firewall/MyGroupName/MyAceName/pass

System Names for Policy Accelerator Interfaces

For packets to flow through the Policy Accelerator, you must bind ACEs to
targets. To allow you to bind the hardware interfaces on each Policy
Accelerator, the IX-API SDK provides system-defined ACEs representing the
interfaces. These ACEs contain system-defined targets for use in binding. This
section describes the names of these objects.

System ACE
Names

The system-defined ACEs are named using the following formats:

/PAname/sysacegroupname/sysacename
/PAname/sysacegroupname/sysacename/objectname

PAname The Policy Accelerator name as described in “Policy Accelerator
Names” on page 445.

sysacegroupname
/sysacename

These specify whether to use the interface as a network inter-
face or as a stack interface. They take one of these formats:
Fromtype:PEnameInterface/type
Totype:PEnameInterface/type

From
To

Specifies how the interface is used.

type Interface (for the network) or Stack (for the
host stack).

PAname Same as the preceding PAname..

Interface A or B, as described in “Policy Accelerator Inter-
face Names” on page 445.

objectname Only the default pass target is a valid object name.

Every ACE, by default, comes with two predefined target
names: pass and drop.
444 Appendix C: Policy Accelerator Name Space Intel Confidential

Revision 2.3, May 2000

• • • •

 System Names for Policy Accelerator Interfaces
For example:

n From packet interface on the first installed Policy Accelerator:

/nbhwpe0/FromInterface:nbhwpe0A/Interface/pass

n To packet interface on the second installed Policy Accelerator:

/nbhwpe1/ToInterface:nbhwpe1B/Interface

n From host stack on the first installed Policy Accelerator:

/nbhwpe0/FromStack:nbhwpe0B/Stack/pass

n To host stack on the third installed Policy Accelerator:

/nbhwpe2/ToStack:nbhwpe2A/Stack

Policy
Accelerator
Names

You can install more than one Policy Accelerator in a single host.

Each installed Policy Accelerator has a default name that is used in constructing
the default system names. The Policy Accelerator names have the following
format:

nbhwpenumber

where number indicates which Policy Accelerator. The first Policy Accelerator
installed in a system is number 0, the next is 1, and so on; for example, nbhwpe0
and nbhwpe1.

You can use these names in the AceManager class constructor to specify on
which Policy Accelerator you want the ACE to be executed.

Policy
Accelerator
Interface
Names

The two interfaces on a Policy Accelerator are named A and B, as shown in the
following diagram for the PCI-format Policy Accelerator:

A interface B interface
Intel Confidential Appendix C: Policy Accelerator Name Space 445

Revision 2.3, May 2000

• • • • •

Example

•
Each interface can be used as a packet interface or as a connection to the host
protocol stack, or both. For more information on ways to connect the interfaces
for different purposes, see “Physical Packet Flow” on page 38 of Developing
Applications Using the IX-API SDK.

If your site has customized the drivers for a standard network interface card
(NIC) for communication with the Policy Accelerator using the ODX protocol,
you can address the NIC connection directly as interface C. The syntax for using
interface C is the same as that for the built-in interfaces A and B. For more infor-
mation, see Customizing a NIC Driver Using the ODX Protocol.

Example

For example, in the following diagram, the ACE named ACE1 is designed to
take input from network interface A, then send packets through its own pass
target to network interface B:

The code to bind this packet flow is:

DWORD rval;
rval = bind

("/nbhwpe0/FromInterface:nbhwpe0A/Interface/pass",
"/MyAppl/MyAceGroup/ACE1");

if (rval != NB_SUCCESS) {
NB_ABORT(rval);

}
rval = bind ("/MyAppl/MyAceGroup/ACE1/pass",

"/nbhwpe0/ToInterface:nbhwpe0B/Interface");
if (rval != NB_SUCCESS) {

NB_ABORT(rval);
}

Packet flow

A interface

Application
B interface

ACE1
pass
446 Appendix C: Policy Accelerator Name Space Intel Confidential

Revision 2.3, May 2000

• • • •

• • • • •
Glossary

A

accelerator
module

The portion of an application that runs on the Policy Accelerator. Consists of two
parts: C++ code that uses the Action Services Library (ASL), and Network Classi-
fication Language (NCL) code.

ACE Action/Classification Engine. An ACE contains a set of packet classification
rules and associated actions, upcall and downcall entry points, and targets. Appli-
cations use ACEs to process packet buffers.

ACE block A collective term of an ACE manager object in the host module and its corre-
sponding ACE object in the accelerator module.

ACE group A container object in the host module that groups one or more ACE blocks.

ACE manager A manager object in the host module that manages and controls an ACE in the
accelerator module.

action code A part of the accelerator module written using the Action Services Library (ASL).
This part of the module defines and creates the objects that reside on the Policy
Accelerator, as well as defining the actions for an ACE. The run-time environ-
ment for action code includes a C and C++ run-time environment with
restricted standard libraries appropriate to the Policy Accelerator.

Action Services
Library (ASL)

A set of C++ library functions and methods supplied with the IX-API SDK. It
consists of classes, methods, functions, and macros that you can use when
writing C++ code to implement actions that take place after packets have been
classified by rules.

action A function entry point in the accelerator module implemented according to the
calling conventions of the C++ programming language. An action function
performs an operation on a packet buffer that is sent to it as the result of the clas-
sification performed by a rule.
Intel Confidential Glossary 447

Revision 2.3, May 2000

• • • • •

•
B

big endian A compiler term specifying that, for multibyte values, the most significant byte
is sent first. See also little endian.

bind A method of the NBAppl class that associates a target with an ACE. The bindings
of the ACEs determine how a packet buffer flows through the Policy Accelerator.

buffer See packet buffer.

byte order The way a system stores numeric data, with the most or least significant byte
first. See also endianness, network byte order, marshalling.

C

callback An application-defined function that handles the results of an asynchronous
operation, such as passing a message between the host and Policy Accelerator. You
specify a callback function when initiating the operation, and the function is
called when the operation is completed.

classification The process by which rules you write using Network Classification Language
(NCL) evaluate the content of packets.

crosscall An object in the accelerator module that enables an ACE to send a message to
another ACE. The other ACE must contain a crosscall handler to receive or
handle this call.

crosscall
handler

An object in the accelerator module that receives and handles a crosscall message
sent from another ACE.

crosscall
handler
manager

A manager object in the host module that manages and controls a crosscall handler
object.

crosscall
manager

A manager object in the host module that manages and controls a crosscall object.

cryptographic
card

A daughter card for the Policy Accelerator that allows you to perform crypto-
graphic operations, such as encryption and authentication, in your network
application.

cryptographic
extensions

Additional classes for the Action Services Library (ASL) that allow you to
perform cryptographic operations using the cryptographic card.
448 Glossary Intel Confidential

Revision 2.3, May 2000

• • • •

D

datagram An IP packet. Datagrams contain useful information (the payload) combined
with network control information and an IP header. Network routers use the IP
header to direct the packet to the proper network node.

data set See set.

dictionary name The value you pass as the name argument when creating an object pair.

downcall An object in the host module that enables it to send a message to an ACE in the
accelerator module.

downcall
handler

An object in the accelerator module that receives and handles a message sent from
the host.

E

element A member of an application-defined data set. You define the data to be included
in elements as part of the action code. You create and delete elements in an action.

endianness A compiler term for the byte order of multibyte values. See big endian and little
endian.

F

fragment An IP4 datagram that represents a portion of a higher layer’s packet that was too
large to be sent in its entirety over the output network. See also reassembly.

G

global function A function defined in the Action Services Library (ASL) that you call indepen-
dently of the C++ objects in the accelerator module. Global functions include an
initialization function, memory management functions, and predefined action
functions.

H

header file A system file that contains definitions for an application. The host API and
Action Services Library (ASL) both have header files that you must include to use
the defined classes.

host The computer containing the Policy Accelerator. The host module part of a policy-
enforcement application runs on the host in C++.
Intel Confidential Glossary 449

Revision 2.3, May 2000

• • • • •

•
host API A set of C++ classes that you use to write the host module, in which you create
and configure ACE managers, bind targets, and pass messages to and from the
Policy Accelerator.

host byte order The byte order of multibyte values used by the sender of data, as opposed to
the byte order used by the network. See also network byte order and marshalling.

host module The part of an application that runs on the host. The host module uses the host
API to manage the accelerator module part of the application, which runs on the
Policy Accelerator.

I

include file See header file.

Intel® Internet

Exchange™
architecture

A new approach to designing networking and telecommunications equipment
based on reprogrammable silicon and open interfaces. Manufacturers of
networking and communications equipment can use components from the IX
architecture-based product portfolio for designing new, more intelligent
network systems.

interface A physical connection to the Policy Accelerator through which packets flow.
Each interface is associated with a system ACE, which can be bound to a target.

intrinsics Built-in functions in Network Classification Language (NCL) that deal with check-
sums in TCP/IP packets. These are routines that you cannot create with NCL.
The intrinsics are included as part of the IX API (for example, chksum,
gencksum).

IP4 Internet protocol, version 4. A standard network protocol, part of TCP/IP.

IX Intel® Internet Exchange™ architecture. A set of hardware and software building
blocks for networking infrastructure applications.

IX API The application programming interface to IX. Includes the host API, Action
Services Library (ASL), and Network Classification Language (NCL).

IX-API SDK The software developer’s kit for IX. Includes the IX API, system software,
runtime libraries, and software development tools such as compilers and
debuggers.
450 Glossary Intel Confidential

Revision 2.3, May 2000

• • • •

J

K

key A field to use when searching for an element in a data set. You define the number
of keys when you define the set in Network Classification Language (NCL), then
specify which protocol field to use for each key when you define a search for the
set.

L

link A method of the NBAppl class that associates a crosscall with the crosscall handler
that will handle the message.

little endian A compiler term specifying that, for multibyte values, the least significant byte
is sent first. See also big endian.

load A method of the ACE manager object that loads the rule and action for the asso-
ciated ACE into the Policy Accelerator.

M

MAC Media access control. The interface on the Policy Accelerator are MAC interfaces.
Each has a MAC address (in this case, an Ethernet address).

In cryptography, message authentication code. A one-way hash that is
computed from a message and some secret data, which allows you to detect
whether the message has been altered.

marshalling The process of converting the numeric arguments of a message to a known byte
order before transporting them over the network. See also unmarshalling.

message An encapsulation of data that you can send from the host module to the acceler-
ator module or vice versa, or pass between ACEs.

module A portion of application code destined to execute in a particular hardware loca-
tion. An IX application requires two modules: the host module and the accelerator
module.
Intel Confidential Glossary 451

Revision 2.3, May 2000

• • • • •

•
N

NBAppl class The main host API class that represents the IX API portion of an application.
This class provides management services (such as bind and link) to set up the
relationships of ACE classes.

network address
translation (NAT)

The ability to modify various fields of different protocols so that the effective
source, destination, or source and destination entities are replaced by an alter-
native.

network byte
order

The byte order of multibyte values used by the network, as opposed to the byte
order used by the host (in this context, the sender of data). See also host byte
order and marshalling.

Network Classi-
fication
Language (NCL)

A declarative language consisting of Boolean operators, packet header field
descriptors, constants, set-membership queries, and other operations, which
you use to create rules for classifying packets.

NIC Network interface card. A hardware device that connects a computer with the
network. Packets flow through a NIC to and from the host and the network. The
Policy Accelerator can be used as a simple NIC, although that is not its primary
purpose. A computer that contains a Policy Accelerator can also contain a
conventional NIC.

O

object pair Associated objects in the accelerator module and host module of an IX application.
You associate an object with its manager or handler by giving both objects the
same dictionary name.

P

packet buffer A data buffer that the Policy Accelerator uses to store packet information for
processing by rules and actions. After an ACE completes processing, it can drop
the packet buffer or pass it to a target.

payload The part of a packet that carries data, as opposed to those parts that carry infor-
mation about the packet.

policy A set of rules that determine the disposition of network packets.

Policy
Accelerator

An Intel board that you install into a computer that runs policy-enforcement appli-
cations using the IX API.
452 Glossary Intel Confidential

Revision 2.3, May 2000

• • • •

policy-enforce-
ment application

An application that uses the Policy Accelerator and IX API to describe and imple-
ment policy regarding the manipulation or disposition of packets in network
traffic flow.

predicate A Boolean function on protocol fields in NCL. You use predicates in rules to
determine whether a packet contains certain information or structure.

protocol The definition of the structure of a network packet. There are standard proto-
cols, such as TCP/IP and UDP, for which the IX API contains built-in descrip-
tions. You can also describe the structure of your preferred protocols in Network
Classification Language (NCL).

Q

R

reassembly The process of collecting related IP fragments into a single datagram.

Resolver A process started at boot time that is responsible for managing the status of all
applications that use the Intel Policy Accelerator.

The Resolver includes the NCL compiler and Policy Accelerator linker/loader.
The process responds to requests from applications to set up ACEs, bind
targets, and perform other maintenance operations on the Intel Policy
Accelerator.

rule A specification of what to do with a network packet. You write rules in Network
Classification Language (NCL) A rule associates a predicate with an action to clas-
sify packets and dispose of them according to the classification.

S

search An application-defined method of finding element of data set. You define
searches with the set definition in Network Classification Language (NCL), and
use the results of searches in an action function.

set A data structure specified for an application, with specific named searches that
you can execute in the accelerator module. You use sets to store and retrieve appli-
cation-specific data. You declare and name sets in Network Classification
Language (NCL), and populate them in action functions.

string search A facility in the Action Services Library (ASL) that allows you to find specific
strings or strings matching a specific pattern in the payload of one or more packet
buffers.
Intel Confidential Glossary 453

Revision 2.3, May 2000

• • • • •

•
system ACE A system-defined ACE with a reserved name. System ACEs represent the
network interfaces. You bind a system ACE to an application-defined ACE’s
target to send or receive packets from the corresponding network interface.

T

target A part of an ACE representing the source or destination of a packet buffer. You
bind targets to other application-defined ACEs or system ACE representing
network interfaces.

TCP Transmission control protocol. A standard network protocol in which transmis-
sion status can be confirmed. Part of TCP/IP.

TCP/IP A standard network protocol, using TCP over IP4.

TCP/IP exten-
sions

Additional classes for the Action Services Library (ASL) that allow you to access
TCP/IP and UDP packets and perform common operations such as network
address translation (NAT) on them.

U

UDP User datagram protocol. A standard network protocol in which transmission
status cannot be confirmed. A peer of TCP, used over IP4.

This protocol provides a procedure for application programs to send messages
to other programs with a minimum of protocol mechanism. It is transaction
oriented; delivery and duplicate protection are not guaranteed. Applications
requiring ordered, reliable delivery of data streams should use TCP.

unmarshalling The process of converting the numeric arguments of a message from network byte
order to host byte order after transporting them over the network. See also
marshalling.

upcall An object in the accelerator module that enables it to send a message to the host
module.

upcall handler An object in the host module that receives and handles a message sent from the
accelerator module.
454 Glossary Intel Confidential

Revision 2.3, May 2000

• • • •

V

W

X

Y

Z

Intel Confidential Glossary 455

Revision 2.3, May 2000

• • • • •

•
456 Glossary Intel Confidential

Revision 2.3, May 2000

• • • •

• • • • •
Index

A
.a files 439
accelerator module 3

associated objects in host module 27
communicating with host 99
creating message in 180
data types 9
files 439
initializing 45

ACE 4
full name 441
see also ACEs
system-defined, names of 444

ACE blocks 4, 33
Ace class 110

constructor 113
ACE managers 4

associating with ASL ACEs 27, 45
communicating with ACEs 5
grouping 33
see also AceManager class

ace method 156
AceGroup class 33

constructor 35
AceManager class 37

constructor 40
see also ACE managers

ACEs 4
accelerator module classes 97, 110
assigning Policy Accelerator for 40
associating ACE and ACE manager objects 27,

45
blocks 33
communicating with ACE managers 5

connecting 265
creating object in init function 7, 46, 172
finding for object 156
groups 33
initializing 45, 97, 172
initializing string searches in 98
management classes 28
management objects 33, 37
packet modification by 40

ack method 351
action code 2

loading 45
see also ASL

action functions 97, 115
allowed return values 117
associating with rules 118
calling from rules 406
debugging 422
defining 117
passing arguments to 408

Action Services Library, see ASL
Action/Classification Engines, see ACEs
action_drop function 116
action_pass function 116
ActiveStrings method 225
add method (Rate) 250
add method (ReassemblyQueue) 340
address translation, see network address translation
addresses, IP4 308
AddString method 236
apasum method 303
API 2

classes in ASL 107
classes in ASL extension 300
Intel Confidential 457

Revision 2.3, May 2000

• • • • •

 Index

•
classes in host API 31
functions in ASL 107
see also host API, ASL, NCL

append method 126
application management classes 28

ACE managers 37
groups 33
main class 68
targets 85

application programming interface, see host API,
ASL, NCL

applications 3
creating 3
for networks with multibyte values 10
main class 68
modules in 3

apsasum method 303
apssum method 304
apsum method 304
architecture of applications 3
ASL 2

classes and functions in 107
extension classes for TCP/IP 279
files 439
global functions 107
header files to include 96, 107
overview 95
part of SDK API 2

ASL objects 105
finding owning ACE 156

assembling TCP fragments 287, 339
associating objects with their managers 27
asum method 305
asynchronous processing, see communication, string

searches

B
Backlog class 119
base classes 83, 105
bcast method 309
big endian byte order 10
bind method (NBAppl) 72
bits method 332
Boolean expressions 392

and named predicates 402
buf method 320
Buffer class 123

new operator 131

buffer memory, limiting 104
buffers 97, 123

dropping 113, 116
passing 114, 116
searching for strings in 98
see also packets

busy method 126
byte order 10

and message passing 13
and operators 14
and search keys 102
changing 12
classes 10, 15
in messages 13
little endian and big endian 10
marshalling arguments 13
Policy Accelerator 12

C
C interface 73, 446

testing 424
C language, data type definitions for 10
call method (Crosscall) 143
call method (Downcall) 61
call method (Upcall) 276
callbacks 6

connection state 206
crosscall 148
downcall 154
event 167
expiration 164
see also communication, string searches
string search 222, 228, 230, 232, 233, 237, 239,

241, 242
upcall 92

cancel method (Elt_setname) 163
cancel method (Event) 169
cecomp command, syntax 414
cecomp.exe, see NCL compiler
celink command, syntax 417
ChangeOpMode method 239
checkcksum method (IP4Datagram) 312
checkLinks method 207
checksums 302

validating and generating in NCL 397
cksum method (Internet) 305
cksum method (IP4Header) 325
cksum method (TCPHeader) 351
458 Index Intel Confidential

Revision 2.3, May 2000

• • • •

 Index
cksum method (UDPHeader) 376
classes 26, 95

ACE (Accelerator side) 97
ACE management 28
ASL 95, 107
base (host side) 30
base accelerator side) 105
byte order 11, 15
data sets and searches 101
error handling 30
host API 26, 31
interface management 105
memory management 103
message passing (accelerator side) 99
message passing (host side) 29
network address translation 281
packet manipulation 97
statistical 101
TCP/IP 279, 300
time and event scheduling 100

classification rules, see rules
classification with sets 101
clear method (Rate) 250
clear method (ReassemblyQueue) 341
client method 370
code 439

accelerator module, action 95
file types 439
host module 25

codeaccelerator module, classification 387
commands 413
comments in NCL 390
communication 5

between host and Policy Accelerator 29, 99
byte order during 12
message classes in API 29
message classes in ASL 99
see also message passing
with a NIC 73, 446

compiled files 439
compiler syntax 413

action code 419
ASL file linker 423
NCL compiler 414

complete method (IP4Datagram) 312
complete method (IP4Fragment) 320
configuration files, memory management directive

104
configuration information 76

connections 197
monitoring 205
properties of 197

contacting Intel xxii
conventions, typographical xxi
converting byte order, see byte order
count method 250
.cpp files 439
Crosscall class 139

constructor 142
CrosscallHandler class 144

constructor 147
CrosscallHandlerManager class 48

constructor 50
CrosscallManager class 52

constructor 54
crosscalls 29, 99

associating sender and receiver 77
dissociating sender and receiver 80
managing 48, 52
receiving 144
responding to 148
sending 139

curr method (Event) 169
curr method (Time) 270
customer support xxii

D
data method 362
data sets 101

ASL classes 103
see also sets

data storage consistency 10
data types 10

and search keys 102
including in code 9

datagrams, IP4 310
example 287

datalen method (IP4Fragment) 321
datalen method (IP4Header) 325
debugging tools 413

syntax 421
decref method 127
demultiplexing 399
demux statement 399
destinations for packets 265
diagnostic tests 424, 425
dictionary names of objects 27
Intel Confidential Index 459

Revision 2.3, May 2000

• • • • •

 Index

•
direct method (CrosscallHandler) 148
direct method (Downcall) 154
direct method (Event) 170
displaying output from PolicyAccelerator 426
distributed objects 27
.dll files 439
DOS commands 413
Downcall class 56

constructor 59
DowncallHandler class 150

constructor 153
downcalls 29, 99

and byte order 13
and handlers 27
receiving 150
responding to 154
sending 56

dport method (TCPHeader) 351
dport method (UDPHeader) 377
drop method 113
drop target 5
dst method 325
dual objects 27
Dualobj class 155

constructor 156
duplex interface property 197
durations 268
Dynamic class 157

delete operator 158
new operator 158

E
elapsed times 268
Element class 159
Elt_setname class 160

constructor 162
delete operator 163
destructor 162
new operator 165

empty method 341
end method 218
endianness, see byte order
endpoints, TCP 346
endseq method 363
error codes 429
error handling 30, 81
error messages, compiler

freeing local memory 47

retrieving 43
est method 120
Event class 166

constructor 168
destructor 169

events, scheduling 100
.exe files 439
expire method 164
extensions, file name 439

F
file system access from applications 96
file types 439
find method (Name) 192
find method (Named) 196
first method (IP4Fragment) 321
first method (Set) 260
flags method (TCPHeader) 351
flags method (TCPSegInfo) 363
floating-point math in applications 96
fragment method (IP4Datagram) 313
fragment method (IP4Fragment) 321
fragmented method 313
fragments 318

assembling 287, 339
free method (Pool) 247
free method (Tagged) 263
freeing local message memory 47
full object names 441
functions

callback, see callbacks
defining action functions 117
in ASL 107
initialization for ACEs 172
intrinsic in NCL 397
memory monitoring 104, 178
predefined action functions 115

G
generating header files from NCL 411
getaceid command, syntax 418
getBuffer1 method 64
getBuffer2 method 64
getCompilerErrorMessages method 43
getDropTarget method 44
getErrorcode method 82
getId method 83
getLen1 method 64
460 Index Intel Confidential

Revision 2.3, May 2000

• • • •

 Index
getLen2 method 65
getmemstatvalues function 178
getPassTarget method 44
GetProperty method 200
GetPropertyList method 201
GetQueryRate method 215
GetRmonCounters method 213
GetRXTXStats method 214
getStackDriverName method (NBAppl) 76
getTag method (AceManager) 45
getTag method (NBAppl) 74
getType method 83
getUpcallFunction method 93
global functions in ASL 107
glossary 447

H
.h files 439
handlers, see communication
hardware resources, specifying 40
hardware tests 424, 425
hdr method 320
head method 314
header files 9

for ASL classes 96, 107
for host API classes 25
including in NCL 389
using to synchronize NCL with ASL 411

headerBase method 128
headers, packet 283

IP4 324
TCP 350
UDP 376

headerType method 128
here method 193
hierarchy of named objects 441
hit method 253
hl method 326
hlen method (IP4Header) 326
hlen method (TCPHeader) 352
host 1

resource manager 2
host API 25

classes 31
header files for inclusion 25
part of SDK API 2

host module 3
associated objects in accelerator module 27

communicating with accelerator module 29
creating messages in 62
data types 9
files 439
managing ACEs 28

htohs macro 12
htonl macro 12
htonl method 22

example 13
using 12

htons method 18
using 12

I
id method 326
image method 366
include files 9

for ASL classes 96, 107
for host API classes 25
in NCL 389

incrcksum method 306
incref method 129
init method (NBRmon) 212
init method (TCPEndpoint) 347
init_actions function 172
initializing ACEs 97, 172
insert method (IP4Datagram) 314
insert method (Search) 253
integer types 10

byte order sometimes not important 14
converting byte order 11
network byte order 16

Intel, contacting xxii
interaces

built into Policy Accelerator 445
interface configuration 76
interface properties 105, 197

duplex 197
MAC address 197
speed 197

interfaceNum method 129
interfaces

C interface for NIC connection 73, 446
system ACEs for 444

interfaceType method 131
Internet class 302
intervals, specifying 268
intrinsic functions in NCL 397
Intel Confidential Index 461

Revision 2.3, May 2000

• • • • •

 Index

•
IP addresses, finding for Policy Accelerator 76
IP4 324

constant definitions 293
datagrams 310
datagrams, example 287
fragments 318
fragments, assembling 339
headers 324
masks 331
network address translation 333

IP4Addr class 308
constructor 308

IP4Datagram class 310
constructor 311
destructor 311

IP4DNat class 316
constructor 316

IP4Fragment class 318
constructor 319
destructor 320

IP4Header class 324
IP4Mask class 331

constructor 331
IP4Nat class 333
IP4SDNat class 335

constructor 335
IP4SNat class 337

constructor 337

K
key point, explanation of xxi
keys for sets and searches 102

specifying number 403
keywords in NCL 392

L
leftcontig method 332
len method (IP4Datagram) 315
len method (IP4Header) 327
len method (NBStringMatchReport) 218
len method (TCPSegInfo) 363
len method (UDPHeader) 377
library files 439
link method (Linked) 175
link method (NBAppl) 77
Linked class 174

constructor 175
destructor 175

linking 423
compiled ASL files 423
crosscall senders and receivers 77
objects in a ring 174

little endian byte order 10
load method 45
locate method 260

M
MAC address interface property 197
MAC interfaces 205

RMON information 208
macros, byte swapping 12
main application class 68
managers and managed objects 27
marshalling arguments to control byte order 13
masks, IP4 331
matches method 219
maxbuf configuration directive 104
mcast method 309
members of data sets 160

creating 165, 253
expiration 163, 164
removing 254

memory management 47, 103, 104
allocating packet buffer memory 104
allocation in ASL 105
for messages (ASL) 180
for messages (host API) 62
freeing local error message memory 47
global functions 178
monitoring packet buffer memory 119, 135
usage statistics 104

Message class (ASL) 180
access methods 183
acknowledgement methods 183
constructor 182
example 13

Message class (host API) 62
constructor 63

message passing 29
classes in API 29
classes in ASL 99
crosscalls 48, 52, 139, 144
downcalls 56, 150
upcalls 88, 273

MessageBlock class (ASL) 184
constructor 186
462 Index Intel Confidential

Revision 2.3, May 2000

• • • •

 Index
MessageBlock class (host API) 66
constructor 67

messages 29
and byte order 13
classes in API 29
classes in ASL 99
constructing in ASL 180, 184
constructing in host API 62, 66
freeing local host memory 47
maximum size (ASL) 180
maximum size (host API) 66
packing and unpacking to control byte order 13

MIB creation 208
miss method 254
modifying packets with ACEs, allowing 40
modules in an application, see host module,

accelerator module
monitoring 208

connection state 205
memory usage 104
network connection 105
packet flow 119, 248

mstats function 179
multibyte values in network applications, see byte

order
multiple operations on packet buffers 126, 127, 129
multiple Policy Accelerators 40
multiplexed protocols 399
multithreading in applications 96

N
Name class 191

constructor 192
name method 196
Named class 194

constructor 195
destructor 195

names 441
full names of objects 441
uniqueness 442

names and paired objects 27
names method 120
namespace for managed objects 27, 106
NAT, see network address translation
NBAppl class 68

constructor 70
NBError class 81
NBFIF_GET_SET_PROP_ITEM structure 201

NBFIF_PROP_CAP structure 202
NBFIF_PROP_CAP_ITEM structure 202
NBFIF_PROP_ITEM structure 203
nbgcc command, syntax 419
nbgdb command, syntax 421
NBInterfaceProp class 197

constructor 200, 206
nbld command, syntax 423
NBLinkwatch class 205
.nbo files 440
NBObject class 83
NBRmon class 208

constructor 211
destructor 212

NBSearchContext class 222
constructor 225

NBStringMatchReport class 216
constructor 217

NBStringSearchEngine class 233
constructor 235

NCL 2, 387
comments in 390
defining protocols in 395
defining sets in 403
file structure 388
files 439
including header files 389
intrinsic functions 397
keyword overview 392
loading code 45
named predicates 402
operators 392
part of SDK API 2
rules 406
runtime compilation of 387
symbolic constants in 389

NCL compiler 414
retrieving error messages 43
using to generate action header files 411

.ncl files 440
nested protocols 399
network address translation 281

example 284
IP4 316, 333, 335, 337
TCP 343, 355, 359, 371
UDP 374, 378, 381, 384

network applications 3
and multibyte values 10
and numbers 10
Intel Confidential Index 463

Revision 2.3, May 2000

• • • • •

 Index

•
network byte order 10
on host and Policy Accelerator 12

Network Classification Language, see NCL
network connection, monitoring 105
next method (Buffer) 132
next method (IP4Fragment) 322
next method (Linked) 176
next method (Set) 261
next method (TCPSegInfo) 363
nfrags method 315
NIC driver

testing 424
note, explanation of xxi
now method 121
ntohl macro 12
ntohl method 22

example 13
using 12

ntohs macro 12
ntohs method 18

using 12
nuint16 class 16

constructor 17
converting byte order 11

nuint32 class 20
constructor 21
converting byte order 11

numbers in network applications, see data types

O
.o files 440
objects 27

ACE, creating in init function 7, 46, 172
associating with manager objects 27
calls and call handlers 27
creating in accelerator module 7
creating in host module 6
full names of 441
hierarchy of named objects 441
object name syntax 442–444
packet buffer 123
uniqueness of names 442

ODX protocol 73, 446
odxloop command, syntax 424
off method 352
offset method 327
operating statistics 100

memory usage 104

RMON 101
operators 392

and byte order 14
in NCL 392

OpMode method 240
optbase method (IP4Header) 327
optbase method (TCPHeader) 352
optcopy method 322
orphan method 176
output from Policy Accelerator, displaying 426

P
pa100diag command, syntax 425
packet buffer memory 104

limiting 104
packetPadHeadSize method 133
packetPadTailSize method 133
packets 123

allowing modification by ACE 40
classifying with rules 406
classifying with sets 101
constructing 123
constructing manually 124
destinations for 265
dropping 113, 116
finding immediate source 129
finding time received 134
finding time transmitted 138
headers, accessing 283
IP4 280, 324
modifying with ACEs 40
operating on contents 123
passing 114, 116
searching for strings in 98
TCP 280, 350
TCP/IP, handling 283
traffic statistics 208, 248
UDP 280, 376
working with 97

packetSize method 133
paired objects 27
pass method 114
pass target 5
payload method (IP4Fragment) 323
payload method (IP4Header) 328
payload method (TCPHeader) 353
payload method (UDPHeader) 377
pointers for network data 16
464 Index Intel Confidential

Revision 2.3, May 2000

• • • •

 Index
Policy Accelerator
testing 425

Policy Accelerator API, see ASL, NCL
Policy Accelerators 1

and packet classification 2
assigning to ACEs 40
byte order in 12
communicating with host 5
displaying output from 426
downloading code into 45
interface names 445
names for addressing multiple 445
see also accelerator module

Pool class 245
constructor 245
destructor 246

ports method (TCPNat) 357
ports method (UDPNat) 380
predicates 407

in rules 407
naming 402

prepend method 134
prev method (IP4Fragment) 323
prev method (Linked) 176
prev method (TCPSegInfo) 364
process method (TCPEndpoint) 348
process method (TCPSession) 369
proto method 328
protocol fields 398

accessing in action code 411
accessing in NCL 398
defining 398

protocols 279, 395
adding fields to 401
adding predicates to 401
defining in NCL 395
extending definitions 401
extracting nested 399
IP4 280, 324
TCP 280, 368
UDP 280, 376

psum method (Internet) 306
psum method (IP4Header) 328

R
ran method 254
Rate class 248

constructor 249

raw_ member (nuint16) 19
raw_ member (nuint32) 23
read method 341
readport command, syntax 426
ReassemblyQueue class 339

constructor 340
reference counting for packet buffers 126, 127, 129
reference, explanation of xxi
register data, byte order 12
regular expressions for string searches 236
releaseCompilerErrorMessages method 47
releaseMessage method 47
RemoveString method 241
reports method 219
reset method 348
Resolver 2

starting 427
resolver command, syntax 427
resource manager 2

starting 427
rewrite method (IP4DNat) 317
rewrite method (IP4NAT) 334
rewrite method (IP4SDNat) 336
rewrite method (IP4SNat) 338
rewrite method (TCPDNat) 344
rewrite method (TCPNat) 356
rewrite method (TCPSDNat) 361
rewrite method (TCPSNat) 373
rewrite method (UDPDNat) 375
rewrite method (UDPNat) 379
rewrite method (UDPSDNat) 382
rewrite method (UDPSNat) 385
RMON information 101, 208
rules 406

associating with action functions 118
defining 407
defining results of 117
loading 45
passing arguments to actions from 408

rxTime method 134

S
SchedDelete method (NBStingSearchEngine) 242
SchedDelete method (NBStringSearchContext) 226
SchedReset method 226
schedule method 170
scheduling events 100, 268
Search class 251
Intel Confidential Index 465

Revision 2.3, May 2000

• • • • •

 Index

•
SearchBuffer method 243
searches for strings in packets, see string searches
searches in sets 251, 403

defining 404
execution of 405
in action code 101
key values 102
results of (ASL) 101, 253, 254
results of (NCL) 405
see also members of data sets

segment method 364
segments, TCP 362
seq method (TCPHeader) 353
seqs method (TCPNat) 357
sequences, TCP 365
server method 370
sessions, TCP 368
Set class 255
Set_setname class 256

constructor 259
SetOpt method 227
SetPerBufferCallback method 228
SetPerMatchCallback method 230
SetPerResetCallback method 232
SetProperty method 204
SetQueryRate method 215
sets 101, 256, 403

defining 403
defining members 162
elements 102, 159, 160
generating action header files for 411
naming 256, 403
populating 165, 253
removing elements 254
searching 101, 251, 260
see also searches in sets

sid method 219
size method 122
.so files 440
source files 439
sources of packets 129
speed interface property 197
sport method (TCPHeader) 353
sport method (UDPHeader) 377
src method 329
stack ACEs 444
start method 220
startseq method 364
state method 349

statistics 101
flow rates 100, 248
memory usage 104
RMON 101, 208

string searches 98
acting on results of 222, 228, 230
in multiple packets 98, 222, 232
initializing 98
regular expressions in 236
reinitializing 232
reporting on results of 216
specifying string to search for 233, 236, 241
starting 243

support for Intel xxii
swapl macro 12
swapl method 23

using 12
swaps macro 12
swaps method 19

using 12
symbols xxi
system ACEs 444
system management classes 30
system tools 413

T
tag method 221
Tagged class 262
takable method 135
takable_cir method 135
takable_max method 136
takable_min method 136
takable_set method 137
take method (Pool) 247
take method (Tagged) 264
take method (Target) 267
Target class 265

constructor 267
TargetManager class 85

constructor 86
targets 265

binding 72
identifying 44
retrieving tag value 74
system-defined 5
unbinding 79

TCP 350
constant definitions 295
466 Index Intel Confidential

Revision 2.3, May 2000

• • • •

 Index
control bits 296
datagrams 310
datagrams, example 287
fragments 318
fragments, assembling 339
headers 350
network address translation 355
options 296
return codes 298
session state 296
sessions 368

TCP/IP protocol 279
built-in NCL definitions 396
handling packets 283

TCPDNat class 343
constructor 343

TCPEndpoint class 346
constructor 347
destructor 347

TCPHeader class 350
TCPNat class 355

constructor 356
TCPSDNat class 359

constructor 360
TCPSegInfo class 362
TCPSeq class 365

constructor 366
operators 367

TCPSession class 368
constructor 368
destructor 369

TCPSNat class 371
constructor 371

terminology 447
testing a customized NIC driver 424
testing Policy Accelerator 425
Time class 268

access methods 270
assignment operators 272
builder methods 271
constructor 269
conversion operator 272

toElement method 254
tools 413
tos method 329
traffic flow statistics 208, 248
trim_head method 137
trim_tail method 138
ttl method 329

txTime method 138
types, see data types
typographical conventions xxi

U
u_char 10
u_int 10
u_long 10
u_short 10
UDP 376

headers 376
network address translation 378

udp method 354
UDPDNat class 374

constructor 374
UDPHeader class 376
UDPNat class 378

constructor 379
UDPSDNat class

constructor 381
description 381

UDPSNat class 384
constructor 384

unbind method (NBAppl) 79
UNIX commands 413

displaying output from Policy Accelerator 426
unlink method (Linked) 177
unlink method (NBAppl) 80
Upcall class 273

constructor 276
UpcallHandler class 88

constructor 91
upcalls 29, 99

and byte order 13
and handlers 27
example 13
receiving 88
sending 273

V
val method 367
variables, ensuring width compatibility 10
ver method 330
vhl method 330

WXYZ
warning, explanation of xxi
Intel Confidential Index 467

Revision 2.3, May 2000

• • • • •

 Index

•
win method 354
window method 354

Windows NTcommands 413
displaying output from Policy Accelerator 426
468 Index Intel Confidential

Revision 2.3, May 2000

• • • •

IX SDK Software Developer’s Kit License Agreement
IMPORTANT: You (the “licensee”) are consenting to be bound by this agreement if you do any of the following:
n Click on the “accept” button
n Install or use the software
n Otherwise exercise any rights provided below to use the accompanying Intel™ IX API Software Developer’s Kit (the “Intel SDK”)
Or, if applicable, you are bound by a currently effective written agreement regarding the use of the Intel SDK and signed by an authorized agent of you and by an
officer of Intel.

If you do not agree to the terms of this agreement or such signed agreement, as applicable, then do not use or copy the Intel SDK, and
contact the place from which you obtained it, if any of these terms are considered an offer, acceptance is expressly limited to these terms.
This Agreement sets forth the terms and conditions of your use of the accompanying Intel SDK, together with documentation provided to you by Intel. Any third
party software that is provided with the Intel SDK with such third party’s license agreement (in either electronic or printed form), and your use of such third party
software, shall be governed by such third party’s license agreement in addition to this Agreement. As used in this Agreement, Intel shall mean Intel Corporation, its
affiliates, or its subsidiaries.
Users of the Intel SDK pursuant to this Agreement must either be individuals using the license on their own behalf or be employees or contractors of a corporation
or other entity which has accepted the terms of this Agreement and on behalf of which the Intel SDK is being used, in which case the term “Licensee” in this
Agreement refers to you and such entity.

1. Grant of License.
a. Subject to the terms of this Agreement, Intel grants to Licensee a worldwide, nonexclusive, nontransferable, nonassignable, nonsublicensable license (the “License”)
under Intel’s copyrights to (i) copy the Intel SDK and associated documentation for internal use to integrate Applications for use with Intel Products, and (ii) to make
and distribute as many copies of the integrated applications containing the Intel SDK as necessary. “Intel Products” means approved Intel Hardware listed in the
datasheet provided with this Intel SDK. “Applications” means Licensee’s current and future expected applications that will use the Intel SDK.
b. Accompanying the Intel SDK is specific source code (“Intel Source”) such as ARM Compiler, ARM Debugger, Include Files, and reference applications that Licensee
may incorporate into Applications during the integration process using the Intel SDK. Subject to the terms of this Agreement, Intel grants to Licensee a worldwide,
nonexclusive copyright license to reproduce, distribute, and sublicense to third parties the Intel Source in Licensee’s Applications for use with Intel Products. Licensee
recognizes that when it uses the Intel SDK to create or compile Applications, a portion of the Intel SDK, the Intel Source, will be compiled and linked into or with the
Applications.

2. Ownership of the Intel SDK. As between the parties, Intel retains title to and ownership of, and all proprietary rights with respect to, the Intel SDK, the Intel
Source, and all copies and portions thereof, whether or not incorporated into or with other Software. The License does not constitute a sale of the Intel SDK, the
Intel Source, or any portion or copy of it.

3. Restrictions; Licensee Obligations.
a. Any redistribution or duplication of any software, code, and or application derived from the Intel SDK shall require that the Intel InstallShield installation program
be used for installation or Licensee agrees to incorporate the Intel file license.txt in its entirety into Licensee’s install program. The Intel-provided file license.txt
includes all relevant copyright notices, trademark notices, and any other notices. Except as specified in the applicable user documentation provided by Intel, Licensee
shall not (and shall not allow any third party to) (i) decompile, disassemble, or otherwise reverse engineer or attempt to reconstruct or discover any source code or
underlying ideas or algorithms of the Intel SDK by any means whatsoever, (ii) remove any product identification, copyright or other notices, (iii) retarget any Intel
SDK to interoperate with products other than Intel Products, or (iv) provide, lease, lend, use for timesharing or service burea u purposes, or otherwise use or allow
others to use the Intel SDK to or for the benefit of third parties.
Confidential information disclosed under this license agreement, including the existence and content of this Agreement, shall be considered “Confidential
Information.” Use and disclosure of such Confidential Information shall be governed by the terms of the Corporate Single Use Nondisclosure Agreement or other
Nondisclosure Agreement, signed between the parties and incorporated into this Agreement by reference.

4. Termination of License for Cause. This agreement will remain in effect unless Intel terminates it due to a breach of its terms. Upon termination, Licensee will
cease all use of the Intel SDK and promptly destroy or return to Intel all printed materials and copies of the Intel SDK and all portions thereof (whether or not
modified or incorporated with or into other software) and so certify to Intel. Except for the License and except as otherwise expressly provided herein, the terms of
this Agreement shall survive termination. Termination is not an exclusive remedy, and all other remedies will be available whether or not the License or the
Agreement is terminated.

5. Limited Warranty and Disclaimer. The Intel SDK is provided “as is” without warranty of any kind including, without limitation, any
warranty of merchantability or fitness for a particular purpose or noninfringement. Further, Intel does not warrant, guarantee, or make
any representations regarding the use, or the results of the use, of the Intel SDK or written materials in terms of correctness, accuracy,
reliability, or otherwise. Licensee understands that Intel is not responsible for and will have no liability for hardware, software, or other items or any services
provided by any person or entity other than Intel.

6. Export Restrictions. Licensee agrees to fully comply with all applicable United States and EEC or other countries regulations and laws in effect now and
hereinafter, including compliance with the U.S. Foreign Corrupt Practices Act and all export laws, restrictions, national security controls and regulations on the
distribution or dissemination of Applications or Intel Products, technology, and information related to and/or exchanged under this Agreement. Licensee agrees
not to export or reexport, or allow the export or reexport of the Intel SDK or any Intel Product, Intel Proprietary Information, or any direct product thereof in
violation of any such restrictions, laws or regulations, or without all required licenses and proper authorizations, to Cuba, Libya, North Korea, Iran, Iraq, or
Rwanda or to any Group D:1 or E:2 country (or national of such country) specified in the then current Supplement No. 1 to Part 740 of the U.S. Export
Administration Regulations (or any successor supplement or regulations).

7. Government Contracts. The Intel SDK is provided with RESTRICTED RIGHTS. If Licensee is the Government or a Government contractor, use, duplication or
disclosure by the Government is subject to the restrictions as set forth in subparagraph (c)(1)(ii) or the Rights in Technical Data and Computer Software Clause as
DFARS 252.227-7013 and FAR 52.227-19, as applicable. Manufacturer is Intel Corporation, 1350 Villa Street, Mountain View, California 94041-1126.

8. Limitation of Remedies and Damages. To the maximum extent allowed by law, Intel shall not be responsible or liable with respect to any
subject matter of this agreement under any contract, negligence, strict liability, or other theory: (a) for loss or inaccuracy of data or cost
of procurement of substitute goods, services or technology; (b) for any special, indirect, incidental, or consequential damages including,
but not limited to, loss of profits; or (c) for any matter beyond its reasonable control.
Intel Confidential 469

Revision 2.3, May 2000

• • • • •

• • • • •

• •
Distribution of the Intel SDK is also subject to the following limitations: Licensees (i) are solely responsible to your customers for any update or support
obligation or other liability that may arise from the distribution, (ii) do not make any statement that your product is “certified,” or that its performance
is guaranteed, by Intel, (iii) do not use Intel’s name or trademarks to market your product without written permission, (iv) shall prohibit disassembly
and reverse engineering, and (v) shall indemnify, hold harmless, and defend Intel and its suppliers from and against any claims or lawsuits, including
attorney’s fees, that arise or result from your distribution of any product.

9. Transfer; Successors. Licensee shall not assign this agreement or any part of it except with Intel’s prior written consent.

10. General. This Agreement shall be governed by and construed under the laws of the State of Delaware and the United States without regard to
conflicts of laws provisions thereof and without regard to the United Nations Convention on Contracts for the International Sale of Goods. In any
action or proceeding to enforce rights under this Agreement, the prevailing party shall be entitled to recover costs and attorneys’ fees. If any
provision of this Agreement is held by a court of competent jurisdiction to be illegal, invalid or unenforceable, that provision shall be limited or
eliminated to the minimum extent necessary so that this Agreement shall otherwise remain in full force and effect and enforceable. No rights or
licenses with respect to the Intel SDK or Intel Products are granted, other than those rights expressly and unambiguously granted in this Agreement.
This Agreement constitutes the entire agreement between the parties relating to the subject matter hereof.
Copyrights and Trademark Notification
Intel: Copyright ©1998–2000 Intel Corporation. All Rights reserved. Trademark. Intel is a trademark of Intel Corporation.
*Other products and company names mentioned herein may be the trademarks of their respective owners.
UCB: Contains Software from The Regents of the University of California. Copyright ©1982, 1986, 1993, 1997-2000 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistribution of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment: This product includes software
developed by the University of California, Berkeley, Network Research Group at Lawrence Berkeley National Laboratory and its contributors.

4. Neither the name of the University nor the Laboratory nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

This software is provided by the Regents and contributors ‘‘as is’’ and any express or implied warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose, are disclaimed. In no event shall the
Regents or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in
any way out of the use of this software, even if advised of the possibility of such damage.
LCC: LCC Source Code from Addison Wesley Longman (“Licensor”) from Christopher W. Fraser and David R. Hanson (“Authors”). LCC Source Code
Copyright © 1995–2000 by David R. Hanson and AT&T. Reproduced by permission.

No warranty is made by Intel, the Licensor or the Authors of the LCC source code software, either express or implied, regarding
the absence of defects in the LCC software, or its merchantability or fitness for a particular purpose. Intel, Licensor, and the
Authors shall have no liability for damages of any nature arising out of any use, distribution, or modification of the LCC
software, even if Intel, Licensor, or the Authors have been advised of the possibility of such damages.
GNU: Software coded using ARM Debugger and Compiler. Copyright ©1998–2000 Intel Corporation. All Rights reserved.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave., Cambridge, MA 02139, USA.
Intel Corporation
1350 Villa Street
Mountain View, CA 94041-1126
Tel: 650.567.9800
Fax: 650.567.9810
www.netboost.com

Revision 2.3, May 2000

• • •

	Contents
	About This Reference
	Audience
	In This Reference
	Other Sources of Information
	Typographical Conventions
	Syntax Example

	Contacting Intel
	Web and Internet Sites
	Customer Support Technicians

	Overview
	About the Host System
	About the Policy Accelerator
	About the Application Programming Interface (API) of the SDK
	Parts of an IX-API SDK Application
	Packet Processing Units
	Messages Between the Host and Policy Accelerator
	Asynchronous Calls and Callback Functions

	Creating an IX-API SDK Application
	Creating the Host Module
	Creating the Accelerator Module

	For More Information

	System Types and Methods
	Overview
	Include Files

	Data Types
	Byte Order Issues
	Byte Order Classes
	Byte Order and Intermodule Communication
	Upcalls, Downcalls, and Byte Order

	Operators and Byte Order

	The Data Type API
	nuint16 Class
	nuint16 Constructor
	htons Method
	ntohs Method
	raw_ Member
	swaps Method

	nuint32 Class
	nuint32 Constructor
	htonl Method
	ntohl Method
	raw_ Member
	swapl Method

	Host API
	Overview
	Include Files

	Host API Class Organization
	Object Pairing on the Host and Policy Accelerator
	Dictionary Names

	Application and ACE Management Classes
	Message Support Classes
	Base Class
	Error Handling in the Host API
	Host API Reference
	Include Files
	API Classes

	AceGroup Class
	AceGroup Constructor

	AceManager Class
	AceManager Constructor
	getCompilerErrorMessages Method
	getDropTarget Method
	getPassTarget Method
	getTag Method
	load Method
	releaseCompilerErrorMessages Method
	releaseMessage Method

	CrosscallHandlerManager Class
	CrosscallHandlerManager Constructor

	CrosscallManager Class
	CrosscallManager Constructor

	Downcall Class
	Downcall Constructor
	call Method

	Message Class
	Message Constructor
	getBuffer1 Method
	getBuffer2 Method
	getLen1 Method
	getLen2 Method

	MessageBlock Class
	MessageBlock Constructor

	NBAppl Class
	NBAppl Constructor
	bind Method
	getTag Method
	getStackDriverName Method
	link Method
	unbind Method
	unlink Method

	NBError Class
	getErrorcode Method

	NBObject Class
	getId Method
	getType Method

	TargetManager Class
	TargetManager Constructor

	UpcallHandler Class
	UpcallHandler Constructor
	getUpcallFunction Method

	Action Services Library
	Overview
	TCP/IP Support
	Environmental Restrictions
	Include Files

	Initialization
	Action Functions
	Packet Moving Classes
	String Search Classes
	String Search Management
	Initiating and Continuing Searches
	Search Operating Modes
	String Search Classes
	For More Information

	Message Support Classes
	For More Information

	Time Support Classes
	Statistical Support Class
	Set Management Classes
	Declaring Sets
	Searches on Sets
	Set Elements
	Search Key Format
	Set, Search, and Element Classes
	For More Information

	Memory Management Classes and Functions
	Controlling Memory Usage
	Monitoring Memory Usage

	Interface Management Classes
	Base Classes
	Memory Allocation
	Name Space

	The Action Services Library (ASL) API
	Include Files
	Classes and Functions

	Ace Class
	Ace Constructor
	drop Method
	pass Method

	Action Functions
	action_drop Function
	action_pass Function
	Custom Action Functions

	Backlog Class
	est Method
	names Method
	now Method
	size Method

	Buffer Class
	append Method
	busy Method
	decref Method
	headerBase Method
	headerType Method
	incref Method
	interfaceNum Method
	interfaceType Method
	new Operator
	next Method
	packetPadHeadSize Method
	packetPadTailSize Method
	packetSize Method
	prepend Method
	rxTime Method
	takable Method
	takable_clr Method
	takable_max Method
	takable_min Method
	takable_set Method
	trim_head Method
	trim_tail Method
	txTime Method

	Crosscall Class
	Crosscall Constructor
	call Method

	CrosscallHandler Class
	CrosscallHandler Constructor
	direct Method

	DowncallHandler Class
	DowncallHandler Constructor
	direct Method

	Dualobj Class
	Dualobj Constructor
	ace Method

	Dynamic Class
	delete Operator
	new Operator

	Element Class
	Elt_setname Class
	Elt_setname Constructor
	Elt_setname Destructor
	cancel Method
	delete Operator
	expire Method
	new Operator

	Event Class
	Event Constructor
	Event Destructor
	cancel Method
	curr Method
	direct Method
	schedule Method

	Initialization Function
	init_actions Function

	Linked Class
	Linked Constructor
	Linked Destructor
	link Method
	next Method
	orphan Method
	prev Method
	unlink Method

	Memory Management Functions
	getmemstatvalues Function
	mstats Function

	Message Class
	Message Constructor
	Message Access Methods
	Message Completion Methods

	MessageBlock Class
	MessageBlock Constructor

	Name Class
	Name Constructor
	find Method
	here Method

	Named Class
	Named Constructor
	Named Destructor
	find Method
	name Method

	NBInterfaceProp Class
	NBInterfaceProp Constructor
	GetProperty Method
	GetPropertyList Method
	NBFIF_GET_SET_PROP_ITEM Structure
	NBFIF_PROP_CAP_ITEM Structure
	NBFIF_PROP_CAPS Structure
	NBFIF_PROP_ITEM Structure
	SetProperty Method

	NBLinkwatch Class
	NBLinkwatch Constructor
	checkLinks Method

	NBRmon Class
	NBRmon Constructor
	NBRmon Destructor
	Init Method
	GetRmonCounters Method
	GetRXTXStats Method
	GetQueryRate Method
	SetQueryRate Method

	NBStringMatchReport Class
	NBStringMatchReport Constructor
	end Method
	len Method
	matches Method
	reports Method
	sid Method
	start Method
	tag Method

	NBSearchContext Class
	NBSearchContext Constructor
	ActiveStrings Method
	SchedDelete Method
	SchedReset Method
	SetOpt Method
	SetPerBufferCallback Method
	SetPerMatchCallback Method
	SetPerResetCallback Method

	NBStringSearchEngine Class
	NBStringSearchEngine Constructor
	AddString Method
	ChangeOpMode Method
	OpMode Method
	RemoveString Method
	SchedDelete Method
	SearchBuffer Method
	Reporting Matches
	Single- or Multiple-Buffer Searches

	Pool Class
	Pool Constructor
	Pool Destructor
	free Method
	take Method

	Rate Class
	Rate Constructor
	add Method
	count Method
	clear Method

	Search Class
	hit Method
	insert Method
	miss Method
	ran Method
	toElement Method

	Set Class
	Set_setname Class
	Set_setname Constructor
	first Method
	locate Method
	next Method

	Tagged Class
	free Method
	take Method

	Target Class
	Target Constructor
	take Method

	Time Class
	Time Constructor
	curr Method
	Access Methods
	Builder Methods
	Assignment Operators
	Conversion Operator

	Upcall Class
	Upcall Constructor
	call Method

	ASL Extensions for TCP/IP
	Classes and Constants in the ASL TCP/IP Extensions
	General Checksum Support
	IP Support
	UDP Support
	TCP Support
	Network Address Translation (NAT)

	Using the TCP/IP Classes
	Using Header Classes
	Using Header Classes and NAT
	Using IP Datagram Classes

	IP Constant Definitions
	IP Fragmentation
	IP Service Type
	IP Precedence
	IP Option Definitions
	IP Options Field Offsets

	TCP Constant Definitions
	TCP Control Bits
	TCP Options
	TCP Session State
	TCP Return Codes

	ASL TCP/IP Extension API
	Internet Class
	apasum Method
	apsasum Method
	apsum Method
	apssum Method
	asum Method
	cksum Method
	incrcksum Method
	psum Method

	IP4Addr Class
	IP4Addr Constructor
	bcast Method
	mcast Method

	IP4Datagram Class
	IP4Datagram Constructor
	IP4Datagram Destructor
	checkcksum Method
	complete Method
	fragment Method
	fragmented Method
	head Method
	insert Method
	len Method
	nfrags Method

	IP4DNat Class
	IP4DNat Constructor
	rewrite Method

	IP4Fragment Class
	IP4Fragment Constructor
	IP4Fragment Destructor
	hdr Method
	buf Method
	complete Method
	datalen Method
	first Method
	fragment Method
	next Method
	optcopy Method
	payload Method
	prev Method

	IP4Header Class
	cksum Method
	datalen Method
	dst Method
	hl Method
	hlen Method
	id Method
	len Method
	offset Method
	optbase Method
	payload Method
	proto Method
	psum Method
	src Method
	tos Method
	ttl Method
	ver Method
	vhl Method

	IP4Mask Class
	IP4Mask Constructor
	bits Method
	leftcontig Method

	IP4NAT Base Class
	rewrite Method

	IP4SDNat Class
	IP4SDNat Constructor
	rewrite Method

	IP4SNat Class
	IP4SNat Constructor
	rewrite Method

	ReassemblyQueue Class
	ReassemblyQueue Constructor
	add Method
	clear Method
	empty Method
	read Method

	TCPDNat Class
	TCPDNat Constructor
	rewrite Method

	TCPEndpoint Class
	TCPEndpoint Constructor
	TCPEndpoint Destructor
	init Method
	process Method
	reset Method
	state Method

	TCPHeader Class
	ack Method
	cksum Method
	dport Method
	flags Method
	hlen Method
	off Method
	optbase Method
	payload Method
	seq Method
	sport Method
	urp Method
	win Method
	window Method

	TCPNat Base Class
	TCPNat Constructor
	rewrite Method
	ports Method
	seqs Method

	TCPSDNat Class
	TCPSDNat Constructor
	rewrite Method

	TCPSegInfo Class
	data Method
	endseq Method
	flags Method
	len Method
	next Method
	prev Method
	segment Method
	startseq Method

	TCPSeq Class
	TCPSeq Constructor
	image Method
	val Method
	TCPSeq Operators

	TCPSession Class
	TCPSession Constructor
	TCPSession Destructor
	process Method
	client Method
	server Method

	TCPSNat Class
	TCPSNat Constructor
	rewrite Method

	UDPDNat Class
	UDPDNat Constructor
	rewrite Method

	UDPHeader Class
	cksum Method
	dport Method
	len Method
	payload Method
	sport Method

	UDPNat Base Class
	UDPNat Constructor
	rewrite Method
	ports Method

	UDPSDNat Class
	UDPSDNat Constructor
	rewrite Method

	UDPSNat Class
	UDPSNat Constructor
	rewrite Method

	Network Classification Language
	Overview
	See Also

	NCL Rules File Structure and Elements
	Include Files
	Examples

	Symbolic Constants
	Value Formats

	Comments
	Names
	Keywords
	Operators
	Arithmetic Operators
	Logical and Relational Operators
	Bit-wise Operators
	Precedence

	Protocol Definitions
	Example Protocol Definition
	Using the Built-in TCP/IP Protocol Definition
	Intrinsic Functions

	Defining Protocol Fields
	Examples

	Identifying Nested Protocols
	Example

	Extending Protocol Definitions
	Adding Fields
	Adding Predicates

	Predicate Definitions
	Example

	Sets and Named Searches
	Defining a Set
	Choosing the Size Hint

	Defining Named Searches
	Executing Searches
	Examples

	Rules and Actions
	Defining Rules
	Passing Action Arguments
	Example
	Conditional Rule Execution
	Example

	Synchronizing NCL with Action Code
	Generating Sets and Searches
	Generating Field Accessors

	Command-Line Tools
	Tool Locations
	cecomp Command
	celink Command
	getaceid Command
	nbgcc Command
	nbgdb Command
	Stepping through Action Functions
	Shutting down the Debugger

	nbld Command
	odxloop Command
	pa100diag Command
	readport Command
	resolver Command
	Starting and Stopping the Resolver
	Stopping and Restarting Applications

	IX-API SDK Host API Error Codes
	Alphabetical Listing

	IX-API SDK File Types
	File Types and Extensions

	Policy Accelerator Name Space
	Overview
	Object Name Syntax
	System Names for Policy Accelerator Interfaces
	System ACE Names
	Policy Accelerator Names
	Policy Accelerator Interface Names

	Example

	Glossary
	Index

