
Developing
Applications
Using the IX-API
SDK

• • • • •

• •
May 2000, Software Release SDK 3.0
Document Revision 2.3
Part Number 6750002

This document as well as the software described in it is furnished under license and may be used or
copied only in accordance with the terms of the license. The information in this manual is furnished
for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors
or inaccuracies that may appear in this document or any software that may be provided in association
with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express permission of Intel
Corporation.

Intel Corporation might have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give any license to these patents.

Copyright © 2000 Intel Corporation. All rights reserved.

Intel and the Intel logo are registered trademarks and Internet Exchange, NetBoost, NCL, and the
NetBoost logo are trademarks of Intel Corporation in the United States and other countries.

ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.
InstallShield is a registered trademark and service mark of InstallShield Software Corporation in the
United States and/or other countries.
UNIX is a registered trademark of The Open Group in the US and other countries.
Windows NT is a registered trademark of Microsoft Corporation.

*Other third-party brands and names are the property of their respective owners.

This product includes software developed by parties other than Intel. See the back page of this
document for a list of copyrights and license agreements.
Intel Corporation
1350 Villa Street
Mountain View, CA 94041-1126
Tel: 650.567.9800
Fax: 650.567.9810
www.intel.com

Intel Confidential

Revision 2.3, May 2000

 • • •

• • • • •
Contents

About This Guide . xi
Audience xi
In This Guide xii
Other Sources of Information xiii
Typographic Conventions xiv

Syntax Example xiv
Contacting Intel xv

Web and Internet Sites xv
Customer Support Technicians xv

Chapter 1 Introducing the IX-API SDK . 1
Policy-Enforcement Networking 1

Policies 1
Policy-Enforcement Applications 2
Packet Classification 2
Policy Management 3
Performance Issues 3

The Policy Accelerator Solution 4
Product Components 4

Policy Accelerator Boards 4
Software Developer’s Kit (IX-API SDK) 5

Your Host System 6
The Application Programming Interface 6

API Components 7
Structure of an Application 7

The Host Module 8
The Accelerator Module 8

Enforcing Policy by Classifying and Acting on Packets 8
Action/ Classification Engines (ACEs) 8
Managing ACEs 9
Messages Between the Host and the Policy Accelerator 10
Intel Confidential Contents iii

Revision 2.3, May 2000

• • • • •

•
Developing Applications 11

Chapter 2 Tutorial: Creating a Simple Application. 13
Overview of the Tutorial 13

Using the Tutorial 14
Different Platforms 14
Complete Source Code 14

Creating Source File Outlines 15
C++ Classes for Tutorial 15
Files Required 15
Your Development Environment 16
Creating the Source Files 16
Using the SDK Header Files 18

Turning On Debugging 19
Host Module Debugging 19
Accelerator Module Debugging 19

Preparing for Error Handling 19
Defining Error Codes 19

Creating the Primary Application Object (NBAppl) 21
About the Main Function 22
Creating the NBAppl Object 22

Creating ACE Objects in the Host Module 23
About ACE Objects 23
Creating an ACE Group 24
Creating an ACE Manager 25
Cascading Instantiations 26

Loading and Initializing the Policy Accelerator 28
Loading the Accelerator Module 28
Implementing an ACE 28
Creating the Initialization Function for the Accelerator Module 29

Creating an ACE Method 30
Sending Messages from the Policy Accelerator to the Host 31

Creating a Message 32
Using a Network-Byte-Ordered Integer 33
Sending a Message with an Upcall 35
Receiving a Message with an Upcall Handler 36

Defining Packet Flow 38
Physical Packet Flow 38
Logical Packet Flow 39
Binding the Interfaces 40

Classifying and Acting on Packets 40
About Rules 40
iv Contents Intel Confidential

Revision 2.3, May 2000

• • • •

About Action Functions 41
Adding a Rule and an Action 41

Compiling, Linking, and Running the Application 42
Verifying Your Development Environment 42

Prerequisites 42
Verifying the Operation of the SDK under Windows NT 42
Verifying the Operation of the SDK under UNIX 43

Compilation Model 44
Compiling the Host Module 45
Compiling the Action Code 45

Running the Application 45
Viewing Accelerator Module Output 46

Viewing Output in Windows NT 46
Viewing Output in UNIX 46

If You Have Problems 47

Chapter 3 Elements of an Application 49
The Object Framework 49

ACE Framework Objects 51
Message-Sending Framework Objects 51
String Search Framework Objects 52
Data Set Framework Objects 53
Auxiliary Objects 54

The Resolver and Multiple Applications 54
Starting and Stopping Applications 55
Naming Objects for the Resolver 55
Full Name Paths 56
System ACE Names 57
For More Information 58

Return Values and Error Codes 58

Chapter 4 Compiling Applications . 61
Overview of the Compilation and Linking Process 61
Code Development on a Windows NT System 62
Compiling the Host Module 63

Compiling With Static Libraries for Windows NT 63
Compiling NCL Files 63

Checking f or NCL Errors 64
Generating Headers for Action Files 64

Compiling Action Code 65
Using Makefiles for a UNIX System 66
Intel Confidential Contents v

Revision 2.3, May 2000

• • • • •

•
Running an Application 73
Debugging an Application 74

Chapter 5 Controlling Packet Flow . 75
Defining Packet Flow 75

Physical Packet Flow 75
Logical Packet Flow 77

Binding Targets as Packet Destinations 78
Requirement for Packet Flow 78
System-Defined Targets and ACEs 79
Binding Example 80

Unbound Targets 80
Defining Targets 81
Directing Packets to a Target 82
Using Targets to Serialize Packet Processing 83

Chapter 6 Classifying Packets Using NCL 85
How ACEs Handle Packets 85
What’s in the NCL Rules File 86

Classification Elements 86
Sets and Searches 86

Defining Rules 87

Defining Protocols 88
How Rules Are Evaluated 90
What Rules Do 90

Chapter 7 Acting on Packets in Your Action Code 93
Action Code Overview 93
What Is in an Action Code File 94
Initializing the Action Part of an ACE 94

Defining ASL Subclasses and Objects 94
Initializing the ACE 95

What Is in the Action Part of the File 95
Defining Action Functions 96

Action Function Return Values 96
Predefined Action Functions 97
For More Information 97

Defining Callbacks 97
Defining Other Methods 99
vi Contents Intel Confidential

Revision 2.3, May 2000

• • • •

What Action Functions Do 99

Chapter 8 Communication Within an Application 103
Overview 103
Communication Between the Host and the Policy Accelerator 104

Calls and Call Handlers 104
Making Upcalls 105
Making Downcalls 105
For More Information 106

Communication among ACEs 106
Making Crosscalls 107
For More Information 108

Creating Messages and Message Blocks 108
Allocating Space for Message Data in ASL 109
Constructing Messages in ASL 110
Constructing Messages on the Host 111
Byte Order in Message Data 112
For More Information 112

Defining Message Handling Callbacks 113
Releasing Message Memory 113
For More Information 114

Moving Packets between the Policy Accelerator and the Host 114

Chapter 9 Using Sets of Data to Classify Packets 117
Overview of Sets and Searches 117
When to Use Sets 118
Defining Sets and Searches 118

The NCL Side 119
Example 119
For More Information 120

The ASL Side 120
For More Information 120

Initializing and Populating Sets 121
Extending the Set Element Class 121
Creating a Set Object 121
Populating a Set 122

Populating a Set on Initialization 122
Populating a Set through Actions 122

How to Use Sets and Searches 123
Using Searches in Rules 123
Setting and Comparing Key Values 124
Intel Confidential Contents vii

Revision 2.3, May 2000

• • • • •

•
Using Actions to Modify Sets 124
Setting Element Expiration 124
Deleting Sets 125

Chapter 10 Finding Strings in Packets 127
Overview of String Searches 127
Setting Up a String Search 128
Initiating and Continuing Searches 129
Changing Search Parameters 130
Acting on Search Results 131

Per-Match Callbacks 131
Per-Buffer Callbacks and Match Reports 132

Disposing of Packet Buffers After a String Search 132

Chapter 11 Debugging and Troubleshooting 135
Debugging Host Module Code 135

Using Tracing in Your Host Application 135
Debugging Short-Running Applications 136

Using the IX-API SDK Debugger 136
Makefile Debugging Flag 137
Debugging Tools 137
Producing a Debugger Executable 137
Stepping through Action Functions 138

Debugging Action Code 138
Connect the Debug Daughter Card 139
Prepare the LoopApp Application 139
Start your Debugging Session 140
Step through Code 140
Shut down the Debugger 141

Runtime Troubleshooting Hints 141
Problems with Paired Object Naming 141
Problems with Sets 142
Problems with Action Function Return Values 142
Problems with Action Function Arguments 142
Reading Output from the Accelerator Module 142
Starting and Stopping Applications 143

Chapter 12 Delivering Applications . 145
Overview 145
Installing the Run-Time Files From Your Own Media 145
viii Contents Intel Confidential

Revision 2.3, May 2000

• • • •

Installation Results 146
IX-API SDK Run-Time Tree 147
Environment Variables 147
Directory bin 147
Directory drivers 148
Directory hpex 149
Directory include 150
Directory lib 151

Appendix A Demonstration Applications 153
Building the Sample Applications 154
BasicApp 155
Simple 156
FilterApp 157
ODXFilter 158
EventAppl 159
TwoAceApp 160
FilterNic 162
Tap 163
IPPairs 165
Killer 166
LoopApp 167
Firewall 169
Crosscall 172
StringSearch 173

Appendix B Packet-Counting Application 175
Host Module Header (CountApp.h) 175
Host Module (CountApp.cpp) 176
PE Module (CountActions.cpp) 179
Rules (CountRules.ncl) 181

Index. 183
Intel Confidential Contents ix

Revision 2.3, May 2000

• • • • •

•
x Contents Intel Confidential

Revision 2.3, May 2000

• • • •

• • • • •
About This Guide

This guide introduces you to the Intel® IX-API SDK. This software developer’s
kit (SDK) enables you to develop and deliver wire-speed applications that

n Define policies about network packet traffic

n Enforce these policies

n Manage the networks and policies

To develop these policy-enforcement applications, you need the following:

n The IX-API SDK, a full set of tools for developing applications and run-time
libraries for delivering applications

n The Intel Policy Accelerator 100™, a high-speed packet-processing board

This guide helps you get started creating and testing policy-enforcement
network applications for Policy Accelerators using the IX-API SDK.

Audience

This guide is intended for software developers who will design, develop, and
deliver network applications that must process packets at wire speed. It
assumes that you are familiar with the following:

n C++ programming

n A development environment compatible with supported compilers
l For the Windows NT platform, Microsoft Visual Studio®
l For UNIX platforms, a compatible development environment of your

choice

n Realtime network applications
Intel Confidential About This Guide xi

Revision 2.3, May 2000

• • • • •

In This Guide

•
In This Guide

This guide includes the following chapters and appendixes:

n Chapter 1, “Introducing the IX-API SDK,” which describes the basic
concepts of policy enforcement and the elements of the IX-API SDK

n Chapter 2, “Tutorial: Creating a Simple Application,” which takes you
through the steps to create a simple working application and introduces
additional key concepts for developing applications using the IX-API SDK

n Chapter 3, “Elements of an Application,” which gives an overview of the
class and object framework, introduces the IX system software that coordi-
nates objects on the host and in Policy Accelerator memory, and describes
the error handling system

n Chapter 4, “Compiling Applications,” which explains how to compile and
link all of the files for an application

n Chapter 5, “Controlling Packet Flow,” which explains how packets flow
into and out of a Policy Accelerator within an application and introduces
targets as destinations for packets

n Chapter 6, “Classifying Packets Using NCL,” which introduces the
Network Classification Language and explains how to use it to evaluate
packets

n Chapter 7, “Acting on Packets in Your Action Code,” which describes
some of the actions that you can take on packets to enforce your networking
policies and explains how to implement them

n Chapter 8, “Communication Within an Application,” which shows how to
pass messages between the host and a Policy Accelerator and among appli-
cations on the Policy Accelerator using upcalls, downcalls, and crosscalls

n Chapter 9, “Using Sets of Data to Classify Packets,” which describes how
to create data sets to associate data with packets, and how to perform and
act on the results of searches in the sets

n Chapter 10, “Finding Strings in Packets,” which describes how to search
for strings in the data portion of packet buffers, and act on the search results

n Chapter 11, “Debugging and Troubleshooting,” which discusses debug-
ging techniques for different parts of your application code

n Chapter 12, “Delivering Applications,” which explains how to build an
installer for the IX-API SDK runtimes when delivering an application to
your end users

n Appendix A, “Demonstration Applications,” which describes the sample
applications that come with the IX-API SDK
xii About This Guide Intel Confidential

Revision 2.3, May 2000

• • • •

 Other Sources of Information
n Appendix B, “Packet-Counting Application,” which provides the
complete source code for the application that you created in Chapter 2

Other Sources of Information

This guide is part of the Intel IX-API SDK documentation set, which also
includes:

n IX-API SDK Reference, which describes the Intel IX-API SDK (software
developer’s kit), including both the standard host API (application
programming interface) for supported operating systems and the API for
the Policy Accelerator, which consists of the Action Services Library (ASL)
and the Network Classification Language (NCL™)

n IX-API SDK Release Notes, which lists information about the latest software
release

n Installing the IX-API SDK, which describes how to install both the run-time
and the development versions of the IX-API SDK

n Installing a Policy Accelerator 100 Board, which describes how to install a
Policy Accelerator PCI board into a PC

n Customizing a NIC Driver Using the ODX Protocol, which describes how to
use the optimal data exchange (ODX) protocol for PCI to customize your
standard NIC driver for communication with the Policy Accelerator
through a direct PCI bus interface

In addition, the Intel Web site provides valuable information on products,
support, and the company. See “Contacting Intel” on page xv.
Intel Confidential About This Guide xiii

Revision 2.3, May 2000

• • • • •

Typographic Conventions

•
Typographic Conventions

This document uses the following typographic conventions to help you locate
and identify information:

Syntax
Example

The following figure shows a sample syntax notation.

Italic text Used for new terms, emphasis, and book titles; also identifies argu-
ments in syntax descriptions.

Bold text Identifies keywords and punctuation in syntax descriptions.

Courier font Identifies file names, folder names, and text that either appears on
the screen or that you are required to type.

NOTE: Provides extra information, tips, and hints regarding the topic.

CAUTION: Identifies important information about actions that could result in
damage to or loss of data or could cause the application to behave
in unexpected ways.

 WARNING!
Identifies critical information about actions that could result in
equipment failure or bodily injury.

DWORD load (char * filename1, char * filename2)

Keywords and
required punctuation

Arguments
xiv About This Guide Intel Confidential

Revision 2.3, May 2000

• • • •

 Contacting Intel
Contacting Intel

You can reach Intel’s automated support services 24 hours a day, every day at
no charge. The services contain the most up-to-date information about Intel
products. You can access installation instructions, troubleshooting information,
and general product information.

Web and
Internet Sites

You can use the internet to download software updates, troubleshooting tips,
installation notes, and more.

n General online support services are on the World Wide Web at:

http://support.intel.com

n Online support services for the Policy Accelerator 100 are on the World
Wide Web at:

http://support.intel.com/support/network/adapter/pa/pa100/

For specific types of information and services, go to the following Web and
internet sites:

n Corporate: http://www.intel.com

n Network Products: http://www.intel.com/network

n Intel IX Information: http://developer.intel.com/design/ixa/

n IX-API SDK: http://developer.intel.com/design/ixa/software/
index.htm

n Policy Accelerator: http://developer.intel.com/design/ixa/pa100/
index.htm

n ASIC: http://128.11.21.45/scripts/mardev/product/ixe100.asp

n FTP Host: download.intel.com

n FTP Directory: /support/network/adapter

Customer
Support
Technicians

n United States and Canada: 1-916-377-7000 (7:00 - 17:00 M-F Pacific Time)

n Worldwide Access: Intel has technical support centers worldwide. Many of
the centers are staffed by technicians who speak the local languages. For a
list of all Intel support centers, their telephone numbers, and the times they
are open, go to:

http://support.intel.com/support/9089.htm
Intel Confidential About This Guide xv

Revision 2.3, May 2000

• • • • •

Contacting Intel

•
xvi About This Guide Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 1

• • • • •
Introducing the IX-API SDK

This chapter introduces you to policy-enforcement applications and to the tools
that Intel provides to develop and deliver them. It also describes the basic archi-
tecture of the applications that you will develop and provides background for
Chapter 2, “Tutorial: Creating a Simple Application.”

This chapter contains the following topics:

n Policy-Enforcement Networking

n The Policy Accelerator Solution

n The Application Programming Interface

n Enforcing Policy by Classifying and Acting on Packets

Policy-Enforcement Networking

Networks have become a core component of businesses; their operation is crit-
ical to the businesses’ daily operation. Applications have become increasingly
complex in order to manage, secure, and optimize these networks.

Application developers and equipment manufacturers must develop and
enhance these applications to meet the rapidly changing needs of their users
while ensuring that networks operate with optimal performance.

Policies A policy is a decision made by a company, organization, or individual about
how, where, and when various network operations are performed.

For example, a simple policy for packets traveling over a network is to send
them on the shortest route through the network. This basic policy can be
handled by basic solutions such as routing-table look-ups.
Intel Confidential Chapter 1: Introducing the IX-API SDK 1

Revision 2.3, May 2000

• • • • •

Policy-Enforcement Networking

•
To implement more complex policies—such as dynamically altering routing
patterns based on an automated evaluation of the traffic over the network—
you must be able to create a specification for handling packets that describes
how to enforce the policies you establish.

An application that includes such a specification is known as a policy-enforce-
ment application.

Policy-
Enforcement
Applications

The following are common examples of policy-enforcement applications:

n Firewalls

n Intrusion detection systems

n RMON statistical monitioring applications

n Load-balancing systems

n Quality of service (QoS) applications

A policy-enforcement application must be able to

n Manage multiple policies and devices from anywhere in the network, for
example, by changing policy configurations

n Enforce policies by taking action on data

At the highest level, as shown in the following figure, policy-enforcement
networking consists of the following:

n Interfaces to and from one or more networks

n Applications that process packets traveling on the networks

Packet
Classification

An application’s policy-enforcement part classifies the packets—that is, it
compares the packet contents against some set of selection criteria. It then takes
some action determined by the result of the classification and disposes of the
packets, as shown in the following figure. For example, it might:

n View packets and simply decide whether to pass them to another interface
or to drop them

n Collect information about the packets and report on the flow of data

n Manipulate the packets in some way

Packet flow

Input interface

Application

Output interface
2 Chapter 1: Introducing the IX-API SDK Intel Confidential

Revision 2.3, May 2000

• • • •

 Policy-Enforcement Networking

Policy
Management

Policy-enforcement networking also requires that policies and network devices
can be managed, either directly such as by embedded applications, or indirectly
by network administrators using graphical user interfaces.

Performance
Issues

Network speeds increase dramatically on a regular basis. Applications that
affect the flow of traffic, such as policy-enforcement applications, need to
operate at maximum wire speed to keep up with the technology.

Software-only solutions provide the flexibility required to quickly create and
enhance applications. However, they typically run on general-purpose hard-
ware, which cannot maintain wire-speed performance under the load typically
placed on networks.

Fixed-function hardware can enforce a specific policy efficiently, but when
asked to enforce multiple policies of a wide variety, its performance often
degrades rapidly.

Ideally, policy-enforcement applications would be implemented using the flex-
ibility of software development environments and run in an environment
designed specifically to enforce policies.

Packet flow

Input interface Application policy enforcement Output interface

?

?

match: act on
not

match
not

Drop
Intel Confidential Chapter 1: Introducing the IX-API SDK 3

Revision 2.3, May 2000

• • • • •

The Policy Accelerator Solution

•
The Policy Accelerator Solution

The IX-API SDK and Policy Accelerator 100 board allow you to quickly and
easily develop and deliver policy-enforcement applications that operate at wire
speed.

Product
Components

This solution combines hardware and software that are designed specifically to
create and run high-speed policy-enforcement applications:

n Policy Accelerator Boards

n Software Developer’s Kit (IX-API SDK)

Policy Accelerator Boards

The Policy Accelerator is a wire-speed board designed specifically for enforcing
policies. It does this by classifying packets, performing actions upon them, and
disposing of them according to applications that you create.

You can equip a host system with one or more Policy Accelerators; each Policy
Accelerator can support multiple applications. Policy Accelerators are available
with the following interface formats:

n PCI card

n PMC card

For more information about Policy Accelerators, see the document Installing a
Policy Accelerator 100 Board.

Host

Policy Accelerator(s)

Packet flow
4 Chapter 1: Introducing the IX-API SDK Intel Confidential

Revision 2.3, May 2000

• • • •

 The Policy Accelerator Solution
Software Developer’s Kit (IX-API SDK)

The IX-API SDK is designed specifically to develop policy-enforcement appli-
cations. It contains the tools, libraries, drivers, and other run-time elements that
you use to develop, debug, and deliver applications that work with the Policy
Accelerator. It also contains an efficient language for describing and classifying
packets. With the IX-API SDK, you can develop and deliver:

n The policy-enforcement part of your application, which runs on the Policy
Accelerator

n The management portion of your application, which runs on the host

The IX-API SDK includes:

n Application programming interface (API)
Functions, classes, and language support for the part of your application
that runs on the host and for the part that runs on the Policy Accelerator, as
described in “The Application Programming Interface” on page 6.

n System software
Simple system software for the Policy Accelerator. This software can manip-
ulate network packets with minimal overhead, which makes the Policy
Accelerator ideal for running an application that does fast and simple
manipulation of packet data.

n Run-time libraries
Libraries that allow you to develop an efficient policy-enforcement applica-
tion and deliver a completed application. On the host, the run-time libraries
include Policy Accelerator device drivers and resource management tools.
On the Policy Accelerator, the run-time libraries include support for C++
code and other services to support wire-speed policy enforcement.

n Software development tools
Compilers, assemblers, linkers, loaders, and debuggers for code that runs
on the Policy Accelerator.

n Predefined building blocks
Examples of code for the host and for the Policy Accelerator, predefined
protocol descriptions, and other elements to make application development
rapid.
Intel Confidential Chapter 1: Introducing the IX-API SDK 5

Revision 2.3, May 2000

• • • • •

The Application Programming Interface

•
Your Host
System

The host is the system on which the management portion of your policy-based
application runs and in which one or more Policy Accelerators are installed.

The host provides basic nonnetworking services to your application, such as
setting up the Policy Accelerator and communicating information about packet
handling to the Policy Accelerator.

You can manage the application from anywhere on the network, not only from
the host.

The Application Programming Interface

When you write a policy-enforcement application, the Policy Accelerator appli-
cation programming interface (API) gives you the classes, objects, and
languages needed to define and enforce policies, to manage packets, to commu-
nicate between the host and the Policy Accelerator, and to perform other
related tasks.

Host

Choose your
IDE

Policy Accelerator(s)

IX SDK

Run-time support Developer tools

Application
programming
interface (API)

Resource

drivers
management;

Libraries,

network software
system software,

Compilers,
linkers,

debuggers
Accelerator

API (ASL & NCL)

Host
API

Software elements provided by Intel®

Key
6 Chapter 1: Introducing the IX-API SDK Intel Confidential

Revision 2.3, May 2000

• • • •

 The Application Programming Interface
API
Components

The Policy Accelerator API includes the following:

n Host API
C++ classes for the host portion of your application. These classes provide
the ability to load software onto, initialize, and manage the Policy Acceler-
ator.

n Action Services Library (ASL) for the Policy Accelerator
C++ classes and functions for the Policy Accelerator portion of your appli-
cation. This library provides efficient implementation for common packet-
manipulation tasks.

n Network Classification Language (NCL™) for the Policy Accelerator
A special-purpose language in which you define rules for implementing
your company’s policies. Using this language, you classify packets and
direct the actions to be taken.

Structure of an
Application

When you create a policy-based application for the Policy Accelerator, you use
the API in the following modules:

n The host module, which runs on the host:
l Uses the host API to initialize and communicate with the Policy Accel-

erator
l Uses standard host services for other operations

n The accelerator module, which runs on the Policy Accelerator:
l Uses NCL to classify packets
l Uses the ASL to act on and dispose of packets

The following figure shows the structure of such an application:

Application

Host
module

Accelerator
module

Policy Accelerator

Host

API

ASL

NCL

Host routines

Packet flow
Intel Confidential Chapter 1: Introducing the IX-API SDK 7

Revision 2.3, May 2000

• • • • •

Enforcing Policy by Classifying and Acting on Packets

•
The Host Module

This module manages the policies and network devices involved in policy-
enforcement networking.

The host module is a C++ program that runs in the programming environment
of your host’s operating system. When you write this program, you can use all
the conventional APIs in the host operating system to do traditional network
processing.

In addition, the host module has access to all Policy Accelerators available on
the system, so it can also do packet-level processing in conjunction with the
accelerator module, using the host API.

The Accelerator Module

The accelerator module is responsible for enforcing your company’s policies by
classifying packets and by acting on them based on the classification.

The accelerator module consists of two types of code:

n Rules that describe your policies about processing packets
You write the rules using the Network Classification Language (NCL™).
These rules first classify packets according to your own set of criteria, and
then specify what action to take with given classes of packets.

n An accompanying set of compiled actions, which implement the packet-
processing policies defined by the rules
You write the actions in C or C++ using the ASL.

Enforcing Policy by Classifying and Acting on Packets

Because the accelerator module contains two types of code—NCL and C++—
you need a structure that connects one set of rules with one related set of
actions. This structure is an Action/Classification Engine (ACE).

The API provides methods with which you construct an ACE.

Action/
Classification
Engines
(ACEs)

An ACE represents the primary part of the accelerator module as shown in the
following figure:
8 Chapter 1: Introducing the IX-API SDK Intel Confidential

Revision 2.3, May 2000

• • • •

 Enforcing Policy by Classifying and Acting on Packets
NOTE: An ACE is the primary object for processing packets through a policy-
enforcement application.

Essentially, an ACE does three things with a packet:

n Classifies it

n Acts on it

n Determines its disposition

It classifies a packet using rules that you write in NCL. It performs specific
actions and dispositions using the action code that you write in C++ using the
ASL.

Managing
ACEs

To reference an ACE on the Policy Accelerator, your host module must have an
ACE manager to do the following:

n Create and manage the ACE

n Load the accelerator module into the Policy Accelerator

n Communicate with the Policy Accelerator

Each ACE has exactly one ACE manager, and each ACE manager manages
exactly one ACE. The combination of an ACE and an ACE manager is known
as an ACE block, as shown in the following figure:

Accelerator
module

ACE Packet Related
classification actions

ASLNCL

Packet
flow
Intel Confidential Chapter 1: Introducing the IX-API SDK 9

Revision 2.3, May 2000

• • • • •

Enforcing Policy by Classifying and Acting on Packets

•
Messages
Between the
Host and the
Policy
Accelerator

The ACE and its manager can communicate by passing messages to each other.
You use upcalls and downcalls to share information in a manner similar to asyn-
chronous remote procedure calls, as shown in the following figure:

ACE

Accelerator module

Host
module

ACE block

Packet
flow

ACE
Manager

Host
module

Accelerator

module ACE

ACE
manager

Downcall

Upcall

ActionsClassification
10 Chapter 1: Introducing the IX-API SDK Intel Confidential

Revision 2.3, May 2000

• • • •

 Developing Applications
Developing Applications

The following chapter, “Tutorial: Creating a Simple Application‚” takes you
through the steps to creating and running a simple application. In short, you
will:

n Create the host module, which consists of
l Class definitions and other header declarations for the main code
l The C++ code to run the host process and to manage the Policy Acceler-

ator

n Create the accelerator module, which consists of
l Network Classification Language (NCL) declarations that classify

packets and specify the actions to perform
l Action code that is invoked by the NCL
l Class definitions and other header declarations for the action code
Intel Confidential Chapter 1: Introducing the IX-API SDK 11

Revision 2.3, May 2000

• • • • •

Developing Applications

•
12 Chapter 1: Introducing the IX-API SDK Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 2

• • • • •
Tutorial: Creating a Simple Application

In this chapter, you create a small sample application that demonstrates the
important basic aspects of building a policy-enforcement application using the
IX-API SDK. This tutorial helps you to quickly create an application, to learn
what pieces are required, and how to compile and run the application.

This chapter also introduces the basic set of C++ classes from the host API and
from the ASL, which you will use in all of your applications.

Overview of the Tutorial

This tutorial takes you through the steps to create a sample application that
uses a Policy Accelerator to count packets flowing through a network. The
finished application displays text about the packet count.

This chapter contains the following topics:

Topic Content

Creating Source File Outlines n Introduces the basic API C++ classes and header
files

n Creates outlines for all the files that the sample
application needs

Turning On Debugging n Shows how to turn on verbose mode

Preparing for Error Handling n Defines error codes

n Shows simple error handling strategies

Creating the Primary Applica-
tion Object (NBAppl)

n Introduces the primary application object

Creating ACE Objects in the
Host Module

n Introduces ACE groups and ACE managers
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 13

Revision 2.3, May 2000

• • • • •

Overview of the Tutorial

•
Using the
Tutorial

You can use the sample code in the tutorial by copying and pasting the code
shown here into your own files.

NOTE: If you are working on a machine that does not have the IX-API SDK
installed, you can still follow the tutorial by copying and pasting the
code as directed into a text file. This demonstrates how an application
is structured.

If you are viewing this document using Acrobat® Reader, choose the
Select Text command from the Tools menu to select and copy text.

Different
Platforms

This sample source code contains conditional inclusions for slightly different
coding requirements for Windows NT applications and for UNIX applications.

Loading and Initializing the
Policy Accelerator

n Creates an ACE in the Policy Accelerator module

n Loads NCL code and compiled C++ code onto the
Policy Accelerator

Creating an ACE Method n Shows how to implement application functionality in
methods

Sending Messages from the
Policy Accelerator to the Host

n Shows how the host and accelerator modules com-
municate

n Shows a simple example of byte-order manage-
ment

Defining Packet Flow n Explains how packets flow through a Policy Accel-
erator

n Binds interfaces and ACEs to control packet flow

Classifying and Acting on
Packets

n Explains NCL classification rules

n Describes action functions

Compiling, Linking, and Run-
ning the Application

n Verifies your development environment

n Shows how to compile your application

n Shows how to run the application and view output

Topic Content
14 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Creating Source File Outlines
Complete
Source Code

You can view the complete code that you will create in this tutorial in the
following places:

n Appendix B, “Packet-Counting Application.”

n Online in SDKinstallpath/demos/CountApp

Creating Source File Outlines

In this section, you create an outline of the application in the form of comments.
In later sections, you will replace the comments with actual code to create the
source files which you will later compile and execute.

C++ Classes
for Tutorial

This tutorial introduces the minimum set of API C++ classes that you need
when you develop an application for the Policy Accelerator. The following
tables show the classes used for objects in this sample application.

On the host side:

On the Policy Accelerator side:

Files Required In general, an application needs the following files:

n For each application:
l .cpp file for host module source code
l .h header file for host module class declarations

NBAppl Represents the Intel portion of the host application code

AceGroup Contains one or more ACE managers and their related ACE objects

AceManager Communicates with ACEs on the Policy Accelerator

UpcallHandler Receives messages from upcall objects on the Policy Accelerator

Ace Moves packets through a Policy Accelerator

Upcall Delivers messages to the host

Message Contains message blocks to be sent in an upcall

MessageBlock Describes and contains data to be sent in an upcall
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 15

Revision 2.3, May 2000

• • • • •

Creating Source File Outlines

•
n For each ACE in the application:
l .cpp file for accelerator module action code
l .ncl file for accelerator module classification rules in NCL

The tutorial sample application uses only one ACE, defined in one set of files.
You will create files named:

n CountApp.h (host header file)

n CountApp.cpp (host module file)

n CountActions.cpp (actions file)

n CountRules.ncl (classification rules, or NCL, file)

Your
Development
Environment

You can use any convenient tool, such as a C++ editor, to create and edit your
C++ source files. Use a simple text editor to create the NCL file.

Creating the
Source Files

In this tutorial, you first create all of the files you will need and fill them with
placeholders in the form of comments. In the rest of the tutorial, you gradually
replace the placeholders with actual code.

NOTE: You do not need to understand the purpose of the placeholder
comments yet. The following sections in this tutorial provide explana-
tions as you build your application.

Create all of your source files on your host, as follows:

1. Create the host header file, CountApp.h, and insert the following place-
holders:

// #include system interface header files
// user-#defined error codes
// AceManager subclass declaration
// showPacketCount method
// pointer to UpcallHandler object
// AceGroup subclass declaration
// pointer to AceManager subclass object
// NBAppl subclass declaration, including:
// pointer to AceGroup subclass object

2. Create the host module file, CountApp.cpp, and insert the following place-
holders and code:

#ifdef Win32
#include <iostream.h>
#include <direct.h>
16 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Creating Source File Outlines
#else
#include <unistd.h>
#include <stdlib.h>

#endif

#include CountApp.h

// NBAppl subclass definition, including:
// AceGroup subclass instantiation
// Network interface bindings
// AceGroup subclass definition, including:
// AceManager subclass instantiation
// AceManager subclass definition, including:
// UpcallHandler instantiation
// load accelerator module into Policy Accelerator
// showPacketCount method definition
void main (int argc, char** argv) {

// get current directory
// NBAppl subclass instantiation
while(1)

#ifdef Win32
_sleep(999999);

#else
sched_yield();

#endif
}

3. Create the actions file, CountActions.cpp, and insert the following place-
holders:

// #include system interface header files
// Ace subclass declaration, including:
// showPacketCount method
// packet counter declaration
// Upcall subclass declaration
// Ace subclass definition, including:
// Upcall subclass instantiation
// initialize packet counter
// showPacketCount method definition, including:
// increment counter
// take snapshot of value with proper byte order
// create message
// invoke upcall
// action function entry point (sends packet count)
// main-equivalent (init_actions), including:
// instantiate and return Ace subclass
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 17

Revision 2.3, May 2000

• • • • •

Creating Source File Outlines

•
4. Create the NCL file, CountRules.ncl, and insert the following placeholder:

// rule to invoke action for all packets

Using the SDK
Header Files

The IX-API SDK includes header files that declare the classes, methods, func-
tions, and types you need when developing your application.

The header files are grouped into directories based on where you use them, as
follows:

NOTE: The installation path for the IX-API SDK is represented here by SDKin-
stallpath; installing the IX-API SDK automatically sets the
environment variable NBPATH to the correct path.

Each directory contains several header files. Because the primary header file in
each directory includes the rest of the files in the same directory directly or indi-
rectly, you need to include only the primary header files, as follows:

To include the appropriate header files:

1. In the host header file, CountApp.h, replace:

// #include system interface header files

with the following:

#include "NBswap.h"
#include "NBapi/nbappl.h"

Purpose Located in directory Primary header file

System definitions for host module and
accelerator actions

SDKinstallpath/include/ NBswap.h

Host classes and methods SDKinstallpath/include/NBapi/ nbappl.h

Accelerator classes, functions, and types SDKinstallpath/include/NBaction
/

NBAction.h

NCL common protocol declarations SDKinstallpath/include/NBncl/ NBbase.h or
NBtcpip.h
18 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Turning On Debugging
2. In the actions file, CountActions.cpp, replace:

// #include system interface header files

with the following:

#include "NBaction/NBAction.h"

NOTE: This sample application does not require any of the predefined NCL
header files.

Turning On Debugging

Debugging methods are different for the host module and for the accelerator
module.

This section provides only an overview. For more information on debugging,
see Chapter 11, “Debugging and Troubleshooting.”

Host Module
Debugging

To debug the host module, use the standard host debugging tools.

The SDK provides an additional macro that you can use to can turn on tracing
information related to objects defined using the API. This tracing information
displays in the host application’s console window.

1. Turn on verbose mode in the SDK. To do this, add the highlighted line to
main:

void main (int argc, char** argv) {
nb_trace_verbose(1);

Accelerator
Module
Debugging

To debug the accelerator module, you can use two methods:

n Embed standard C-language printf statements in the code.

n Attach a debug card to the Policy Accelerator and follow the instructions for
compiling and debugging the accelerator module given in Chapter 11,
“Debugging and Troubleshooting.”

This tutorial does not show debugging for the accelerator module.
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 19

Revision 2.3, May 2000

• • • • •

Preparing for Error Handling

•
Preparing for Error Handling

The host API handles error checking differently in the following situations:

n For most class methods, returns a code of type NBError; the value
NB_SUCCESS indicates that the method succeeded

n For class constructors, throws an exception of type NBError if the
constructor fails; you can retrieve an error code that describes the reason for
the failure

Defining Error
Codes

You can use the detailed set of error codes already defined by NBError.h, or
you can add your own unique numbered error codes for providing information
about failed operations. This sample application adds its own error codes.

Your error codes must be greater than the constant NBERROR_USER_BASE, which
is defined in the host API header files that you included in “Creating Source
File Outlines” on page 15.

In the sample’s host module, there are five basic situations that require error
handling. The following table shows the situations and how this sample
handles them:

To define your own errors:

1. To the host header file, CountApp.h, add the definitions for your own appli-
cation’s base error code. To do this, replace:

// user-#defined error codes

with the following basic definitions:

#define NBERROR_COUNT_BASE (NBERROR_USER_BASE + 0x1000)
#define NBERROR_COUNT_ERRCODE (x) (NBERROR_COUNT_BASE + (x))

Situation Error handling strategy

NBAppl subclass instantiation Catch any NBError and exit.

AceGroup subclass instantiation Catch any NBError and throw an exception
using your own error codes.

AceManager subclass instantiation

UpcallHandler subclass instantiation

Loading the accelerator module into the
Policy Accelerator

Check error code for NB_SUCCESS and
throw an exception using your own error
codes.
20 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Preparing for Error Handling
2. After the basic definitions, add the following error definitions:

#define NBERROR_COUNT_CANNOTCREATEGROUP \
NBERROR_COUNT_ERRCODE(1)

#define NBERROR_COUNT_CANNOTCREATEACE \
NBERROR_COUNT_ERRCODE(2)

#define NBERROR_COUNT_CANNOTCREATEUPCALL \
NBERROR_COUNT_ERRCODE(3)

#define NBERROR_COUNT_CANNOTLOADCODE \
NBERROR_COUNT_ERRCODE(4)

3. In the host module file, CountApp.cpp, this sample catches possible NBError
exceptions thrown by subclass instantiations and throws its own custom
error codes.
You will do this later in this tutorial. The code looks similar to the following:

catch (NBError&) {
throw NBError(

NB_ERROR(NBERROR_COUNT_CANNOTCREATEACE));
}

Passing a reference to NBError, as shown, could be more efficient than
passing an NBError element, such as in catch (NBError E).

4. For the load method, which loads the accelerator module into the Policy
Accelerator, this sample checks the returned error code. If the error code is
not NB_SUCCESS, it throws its own custom error code.
You will do this later in this tutorial. The code looks similar to the following:

int errorcode;
if ((errorcode = load ("CountRules", // NCL (.ncl) file

 "CountActions")) // action (.nbo) code
!= NB_SUCCESS)

{
throw NBError (NB_ERROR(NBERROR_COUNT_CANNOTLOADCODE));

}

5. For the creation of the NBAppl subclass, this sample simply exits if NBError
occurs.
You will do this later in this tutorial. The code looks similar to the following:

catch (NBError&) {
fprintf(stderr, "CountAppl creation failed!\n");
exit(2);

}

Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 21

Revision 2.3, May 2000

• • • • •

Creating the Primary Application Object (NBAppl)

•
Creating the Primary Application Object (NBAppl)

Each application must create a subclass of the NBAppl class to serve as the
primary application object in the host module. This NBAppl object represents
the Intel portion of the application. A system process called the Resolver uses
this NBAppl object to track and to communicate with all IX-API SDK applica-
tions and objects. (For more information on the Resolver, see “The Resolver and
Multiple Applications” on page 54.)

About the Main
Function

The main function of the host module instantiates an NBAppl object and then
goes to sleep, as shown in “Creating the Source Files” on page 16. This is a
typical model for the main function. The NBAppl object runs in a different
thread from main so that it can more efficiently handle the operations that it
must do in conjunction with the Policy Accelerator.

Creating the
NBAppl Object

To create the NBAppl object:

1. Choose the following names:
l A dictionary name for your application; for this sample, use Count-

Packets. This name is used when creating objects within the application.
l The subclass name for your NBAppl subclass; for this sample,

use CountAppl.

2. To the host header file, CountApp.h, add the declaration for the NBAppl
subclass CountAppl. To do this, replace:

// NBAppl subclass declaration, including:
// pointer to AceGroup subclass object

with the following:

class CountAppl: public NBAppl {
public:

CountAppl (char* name, char* curdir, char* cmdLine);
~CountAppl();

// pointer to AceGroup subclass object
};

3. To the host module file, CountApp.cpp, add the class definition for
CountAppl. To do this, replace:

// NBAppl subclass definition, including:
// AceGroup subclass instantiation
// Network interface bindings
22 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Creating ACE Objects in the Host Module
with the following:

CountAppl::CountAppl (char* name,
char* cwd, char* cmd):

NBAppl (name, cwd, cmd)
{

// AceGroup subclass instantiation
// Network interface bindings

}
CountAppl::~CountAppl()
{

// delete AceGroup subclass object
}

4. Add the instantiation of CountAppl. To do this, replace the following in
main:

// // NBAppl subclass instantiation

with the following, using the dictionary name you chose for your applica-
tion (CountPackets):

CountAppl* appl;
try {

appl =
new CountAppl ("CountPackets", NULL, NULL);

}
catch (NBError&) {

fprintf(stderr, "CountAppl creation failed!\n");
exit(2);

}

Creating ACE Objects in the Host Module

This section introduces ACE groups and shows how to create ACEs and ACE
managers. ACEs, ACE managers, and ACE blocks were introduced in
“Enforcing Policy by Classifying and Acting on Packets” on page 8 in Chapter .

About ACE
Objects

An ACE block is the combination of an ACE in the accelerator module and its
ACE manager in the host module. In an application, every ACE block must be
contained in an ACE group. An ACE group is a way of connecting ACE blocks
that have some kind of relationship, such as sharing resources or performing
related functions.

NOTE: You can have more than one ACE block in an ACE group, although the
sample application has only one.
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 23

Revision 2.3, May 2000

• • • • •

Creating ACE Objects in the Host Module

•
The following figure shows the relationship among the various ACE objects:

The ACE group and the ACE manager are objects that reside on the host; the
ACE object resides on the Policy Accelerator.

Creating an
ACE Group

To create an ACE group:

1. To the host header file, CountApp.h, add the declaration for the AceGroup
subclass CountAceGroup. To do this, replace:

// AceGroup subclass declaration
// pointer to AceManager subclass object

with the following:

class CountAceGroup: public AceGroup {
public:
CountAceGroup (NBAppl* appl, NBFactory* nbf,

char* name, NBStringList* list);
~CountAceGroup();
// pointer to AceManager subclass object
};

2. To the host module file, CountApp.cpp, add the class definition for
CountAceGroup. To do this, replace:

// AceGroup subclass definition, including:
// AceManager subclass instantiation

with the following:

CountAceGroup::CountAceGroup (NBAppl* appl, NBFactory* nbf,
char* name, NBStringList* list) :

AceGroup (appl, nbf, name, list)
// AceManager subclass instantiation

ACE

Accelerator module

Host
module

ACE
manager

ACE

Packet flow

ACE group

block
24 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Creating ACE Objects in the Host Module
CountAceGroup::~CountAceGroup()
{
// delete AceManager subclass object
}

Creating an
ACE Manager

As introduced in “Enforcing Policy by Classifying and Acting on Packets” on
page 8, the ACE manager is responsible for creating and managing an ACE on
the Policy Accelerator, and loading the accelerator module into the Policy
Accelerator.

The ACE manager also provides a convenient way to group operations on the
host that support the ACE and to represent on the host the state of the ACE.

To create an ACE manager:

1. To the host header file, CountApp.h, add the declaration for the AceManager
subclass CountAceManager. To do this, replace:

// AceManager subclass declaration
// showPacketCount method
// pointer to UpcallHandler object

with the following:

class CountAceManager: public AceManager
{

public:
CountAceManager (NBAppl* appl, AceGroup*

acegroup, char* name);
~CountAceManager();

// showPacketCount method
// pointer to UpcallHandler object
};

Note that the constructor for the ACE manager shows that you must specify
which ACE group to associate the ACE manager with when you create the
manager.

2. To the host module file, CountApp.cpp, add the class definition for
CountAceManager. To do this, replace:

// AceManager subclass definition, including:
// UpcallHandler instantiation
// load accelerator module into Policy Accelerator
// showPacketCount method definition

with the following:

CountAceManager::CountAceManager (NBAppl* appl,
AceGroup* acegroup,
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 25

Revision 2.3, May 2000

• • • • •

Creating ACE Objects in the Host Module

•
char* name):
AceManager (appl, acegroup, name)
{

// UpcallHandler instantiation
// load accelerator module into Policy Accelerator

}
// showPacketCount method definition
CountAceManager::~CountAceManager()
{
// delete UpcallHandler object
}

Cascading
Instantiations

You must create an ACE group before you create an ACE manager, and you
must create an NBAppl before you create an ACE group. It is good practice to
cascade the instantiations so that creating the NBAppl then creates all of the ACE
groups used inside it, and creating an ACE group creates its ACE managers.

1. To the host header file, CountApp.h, add pointers for the nested classes that
will be instantiated. To do this:

a. In the CountAceGroup class declaration, replace:

// pointer to AceManager subclass object

with the following:

protected:
CountAceManager* countAceManager;

b. In the CountAppl class declaration, replace:

// pointer to AceGroup subclass object

with the following:

protected:
 CountAceGroup* countAceGroup;

2. To the host module file, CountApp.cpp, add the instantiations for the nested
classes to the class definitions, and delete the nested classes in the class
destructors. To do this:

a. In the CountAceGroup class definition, instantiate the AceManager
subclass and check for thrown exceptions. To do this, replace:

// AceManager subclass instantiation
26 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Creating ACE Objects in the Host Module
with the following:

{
try {

countAceManager =
new CountAceManager (appl, this, "CountAce");

}
catch (NBError&) {

throw NBError(
NB_ERROR(NBERROR_COUNT_CANNOTCREATEACE));

}
}

b. In the destructor, replace:

// delete AceManager subclass object

with the following:

delete countAceManager;

c. In the CountAppl class definition, instantiate the AceGroup subclass and
catch any exception that might be thrown. To do this, replace:

// AceGroup subclass instantiation

with the following:

try {
countAceGroup = new CountAceGroup (this, NULL,

"CountAceGroup", NULL);
}
catch (NBError&) {

throw NBError (NB_ERROR
(NBERROR_COUNT_CANNOTCREATEGROUP));

}

d. In the destructor, replace:

// delete AceGroup subclass object

with the following:

delete countAceGroup;
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 27

Revision 2.3, May 2000

• • • • •

Loading and Initializing the Policy Accelerator

•
Loading and Initializing the Policy Accelerator

The most important task of an ACE manager is to load the accelerator module
(the action code and the classification rules) into the Policy Accelerator, which
simultaneously initializes the Policy Accelerator and creates the ACE that is
associated with the ACE manager. The steps to do this are:

n Loading the Accelerator Module

n Implementing an ACE

n Creating the Initialization Function for the Accelerator Module

Loading the
Accelerator
Module

Your application loads the accelerator module into the Policy Accelerator. It
does this using the load method of your AceManager subclass. A convenient
time to do this is when the ACE manager is created, by calling load in the AceM-
anager subclass constructor.

The accelerator module consists of two files:

n Your application’s classification rules NCL file; in this sample, Coun-
tRules.ncl

n Your application’s action code, a compiled C++ object-code file with the
special suffix .nbo; in this sample, CountActions.nbo

To load the accelerator module into the Policy Accelerator:

1. In the host module file, CountApp.cpp, in the AceManager subclass
constructor, replace:

// load accelerator module into Policy Accelerator

with the following:

int errorcode;
if ((errorcode =

load ("CountRules", // NCL (.ncl) file
"CountActions")) // action (.nbo) code

!= NB_SUCCESS)
{

throw NBError (NB_ERROR(NBERROR_COUNT_CANNOTLOADCODE));
}

Implementing
an ACE

As described in “Enforcing Policy by Classifying and Acting on Packets” on
page 8, an ACE controls the flow of packets by connecting your NCL rules with
your compiled C++ action code. The NCL rules classify packets and call speci-
fied action functions, which then act on the packets and their contents.
28 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Loading and Initializing the Policy Accelerator
To create an ACE, you define and implement an Ace subclass in the accelerator
module as follows:

1. To the actions file, CountActions.cpp, add the definition for the Ace
subclass CountAce. To do this, replace:

// Ace subclass declaration, including:
// showPacketCount method
// packet counter declaration
// Upcall subclass declaration

with the following:

class CountAce: public Ace {
public:

CountAce (ModuleId id, char* name, image* obj);
// showPacketCount method
// packet counter declaration
// Upcall subclass declaration

};

2. Add the class implementation for CountAce. To do this, replace:

// Ace subclass definition, including:

with the following:

CountAce::CountAce (ModuleId id, char* name, Image* obj) :
Ace (id, name, obj), // note ending (incomplete) comma

Creating the
Initialization
Function for
the
Accelerator
Module

Just as a C or C++ program in a standard environment has a main entry point,
so does the C++ action code for each ACE in the accelerator module.

In a standard environment, the main function is named main. In the action
code, the function is named init_actions. The Policy Accelerator transfers
control to this function as soon as the accelerator module is loaded, which
occurs as described in “Loading and Initializing the Policy Accelerator” on
page 28.

This function must:

n Take three arguments—an ID, a name, and an object—which the SDK run-
time libraries automatically pass to the function, and which the function
must pass to the ACE constructor

n Instantiate an ACE

n Return the ACE
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 29

Revision 2.3, May 2000

• • • • •

Creating an ACE Method

•
To create this main function:

1. In the actions file, CountActions.cpp, replace:

// main-equivalent (init_actions), including:
// instantiate and return Ace subclass

with the following:

INITF init_actions (void* id, char* name, Image* obj)
{
// instantiate and return Ace subclass
}

2. Create and return the ACE object. To do this, replace:

// instantiate and return Ace subclass

with the following:

return new CountAce (id, name, obj);

Creating an ACE Method

The purpose of this simple example application is to count packets that flow
into the Policy Accelerator. A method in the ACE object in the accelerator
module keeps this count. Every time a packet flows into the Policy Accelerator,
a rule triggers an action function that calls this method. You will define the rule
and action function later.

This method, which is in the accelerator module, also periodically informs the
host module of the current packet count, using a message and upcall. You will
create the message and upcall in the next section.

To create a packet counter method:

1. In the actions file, CountActions.cpp, add a packet counter method and
counter to the declaration for the subclass CountAce. To do this, replace:

// showPacketCount method
// packet counter declaration

with the following:

void showPacketCount (void);
int packetCounter;
30 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Sending Messages from the Policy Accelerator to the Host
2. In the constructor for CountAce, initialize the counter. To do this, replace:

// initialize packet counter

with the following:

{
packetCounter = 0;

};

3. Define the packet counter method for CountAce to increment the counter,
and check whether it is time to send the count to the host.
To do this, replace:

// showPacketCount method definition, including:
// increment counter
// take snapshot of value with proper byte order
// create message
// invoke upcall

with the following:

void CountAce::showPacketCount (void)
{

packetCounter++;
if (!((packetCounter-1)%0x20))
// Don’t do upcall for every packet; could
// overwhelm the driver
{

// take snapshot of value with proper byte order
// create message
// invoke upcall

}
};

Sending Messages from the Policy Accelerator to the Host

The host module and the accelerator module communicate using asynchronous
messages. The sending module must have an object that it uses to send the
message; the receiving module must have an object that it uses to look for and
receive messages. When sending messages from the Policy Accelerator to the
host, these objects are subclasses of Upcall and UpcallHandler, respectively.

In this sample, the accelerator module sends to the host module a count of the
number of packets processed. The host module then displays a message about
the packet count.
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 31

Revision 2.3, May 2000

• • • • •

Sending Messages from the Policy Accelerator to the Host

•
To send a packet count, your application must:

n Create an Upcall object in the accelerator module

n Create an UpcallHandler object in the host module

n Take a snapshot of the packet count to use in the message

n Create a message using message blocks in the accelerator module

n Ensure that the byte order (endianness) of numbers sent between the
modules is correct

n Send the message using the upcall

n Receive the message in the host module using an upcall’s callback function,
interpret for byte order, and delete the message

Creating a
Message

The Message class creates a container for information that must travel between
the host and the Policy Accelerator. You must describe the information’s type
and size. The MessageBlock class provides a simple way to do this.

The message block points to a memory location that contains the data to be sent.
Because message passing is asynchronous, the location that you define for this
data must have the following properties:

n The buffer must still be there when the message is passed—that is, it cannot
be an automatic variable that goes out of scope and might be freed before
the call is completed.

n The buffer must still contain the same data when the message is passed—
for example, you cannot use the dynamic packetCounter variable, which
continues to be updated before the call is completed.

Host
module

Accelerator

module
ACE

ACE
manager

Upcall

Upcall
Handler

ActionsClassification

Message flow

Upcall
Function
32 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Sending Messages from the Policy Accelerator to the Host
For this small piece of data, you will define another variable in the ACE object,
copy a snapshot of the current packet count into it, and point the message to it.

To create a message:

1. In the ACE subclass definition in the actions file, CountActions.cpp, add an
ACE variable to hold the message data. The variable should hold a nuint32
value (the next subsection, “Using a Network-Byte-Ordered Integer‚”
explains why).
To do this, add the highlighted line to the definition of the ACE subclass:

void showPacketCount (void);
int packetCounter;
nuint32 countSnapshot;

2. In the packet counter method in the actions file, CountActions.cpp, declare
a message block to point to the new ACE variable. To do this, insert the
highlighted line into the packet counting method as shown:

MessageBlock b ((char *) &countSnapshot,
sizeof (countSnapshot));

// create message

3. Create a message to contain the message block. To do this, replace:

// create message

with the following:

Message msg (mb);

Using a
Network-Byte-
Ordered
Integer

Network programming requires that you use numbers of specific known
widths. The C and C++ languages, however, do not guarantee any particular
width for basic data types nor do they guarantee that the coding sequence to
establish widths will be the same for all compilers. The SDK defines numeric
types that you use to ensure a known width.

In addition, when passing data between the host and the Policy Accelerator,
you must ensure that the data is stored in the correct byte order. The byte order
of data, know to compilers as its endianness, can be most-significant-byte-first
(big endian compilers) or least-significant-byte first (little endian compilers). The
network uses most-significant-byte-first order, so the IX SDK calls this network
byte order.
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 33

Revision 2.3, May 2000

• • • • •

Sending Messages from the Policy Accelerator to the Host

•
The application host or the originator of network data might or might not use
a different byte order from the network. Therefore, to ensure accuracy, porta-
bility, and efficiency, the SDK includes several basic types, type classes, func-
tions, and methods that you use to ensure a known byte order when
transporting numbers over a network.

Before you send any numeric data in a message, you must convert the data
from host to network byte order. When you receive the message, you convert it
from network to host byte order. The conversion methods ensure that, whether
the byte orders are the same or different, the integrity of the data is protected.
This conversion process is called marshalling and unmarshalling the message
arguments.

This sample application uses the following:

n The class nuint32 to hold a network-compatible version of the packet
counter variable

n Methods to convert the data to and from network byte order:
l htonl (host-to-network-byte-order long integer, where host in this case

means the sender of the data, not necessarily the host system or host
module)

l ntohl (network-byte-order-to-host long integer)

To create message data of the proper type:

1. In the actions file, CountActions.cpp, in the packet counter method for
CountAce, take a snapshot of the current counter value and copy it to the
message variable. Convert the integer value to nuint32 using the htonl
method.
To do this, replace:
// take snapshot of value with proper byte order

with the following:

countSnapshot = htonl (packetCounter);

The packet counter method now looks like this:

void CountAce::showPacketCount (void)
{

packetCounter++; //increment counter
if (!((packetCounter-1)%0x20)) // Don’t do upcall for every

//packet; could overwhelm the driver
{

countSnapshot = htonl(packetCounter); //take snapshot
MessageBlock mb ((char *) &countSnapshot,

sizeof (countSnapshot));
34 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Sending Messages from the Policy Accelerator to the Host
Message msg (mb); //create message
// invoke upcall
}

}

Sending a
Message with
an Upcall

An application can use upcalls to share information or to signal from the accel-
erator module to the host module.

NOTE: You should not use upcalls to pass large quantities of packets between
the host and the Policy Accelerator. Use the stack to forward packets,
as described in “Moving Packets between the Policy Accelerator and
the Host” on page 114 in Chapter .

An upcall is represented by a class that contains a method, call, for sending a
message to the host. To create an upcall and send a message:

1. Choose a dictionary name for your upcall.
This name is used as its internal identifier; you must use the same name
spelled the same way, including capitalization, on the host to make the
connection work.
For this sample, use the name showPacketCount.

2. In the actions file, CountActions.cpp, add a declaration for a subclass of
Upcall to the declaration for the subclass CountAce.
You can give the Upcall subclass any name; it does not have any relation-
ship to the dictionary name. For readability, however, this sample names the
subclass showPacketCountUpcall.
To add the declaration, replace:

// Upcall subclass declaration

with the following:

protected:
Upcall showPacketCountUpcall;

3. Use member initialization to create the Upcall subclass in the CountAce
constructor.
Error handling is intentionally limited in the ASL, so member initialization
is an efficient way to instantiate classes where possible.
To create the Upcall subclass, replace:

// Upcall subclass instantiation
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 35

Revision 2.3, May 2000

• • • • •

Sending Messages from the Policy Accelerator to the Host

•
with the following, using the dictionary name you chose in Step 1:

showPacketCountUpcall (id, this, "showPacketCount")

4. Using the call method of the upcall handler, send the message that you
created earlier. To do this, replace:

// invoke upcall

with the following:

if (showPacketCountUpcall.call(&msg) != 0)
printf("Upcall failed.\n");

Receiving a
Message with
an Upcall
Handler

Because message passing is asynchronous, you must have a way of telling your
host module to expect that the accelerator module might attempt to communi-
cate. The UpcallHandler class provides this capability.

This class:

n Identifies the name of the upcall coming from the accelerator module

n Specifies a local upcall function to execute when an upcall is received; this
upcall function receives the message and then does whatever actions you
choose

In this sample, the upcall function converts the network-byte-ordered packet
counter to the correct byte order and displays its value.

To create an upcall handler and its local function in an ACE manager:

1. To the host header file, CountApp.h, add a pointer for the UpcallHandler
object.
To do this, replace:

// pointer to UpcallHandler object

with the following:

UpcallHandler* showPacketCountUpcallHandler;

2. Add a function that takes a Message as an argument and converts the
number from network byte order.
This function should be a method of the AceManager subclass. To create this
method:

a. In the host header file, CountApp.h, replace:

// showPacketCount method
36 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Sending Messages from the Policy Accelerator to the Host
with the following:

void showPacketCount (Message* m);

b. In the host module file, CountApp.cpp, replace:

// showPacketCount method definition

with the following:

void CountAceManager::showPacketCount (Message* m)
{

NB_ASSERT (m->getLen1() == sizeof(nuint32));
printf ("Packet Counter: 0x%08x\n",

ntohl (*(nuint32 *)m->getBuffer1()));
releaseMessage (m); // Message passed here,

// dispose of it.
}

3. Add the instantiation for an UpcallHandler object to the AceManager
subclass constructor. To do this, replace:

// UpcallHandler instantiation

with the following:

try {
#ifdef WIN32

showPacketCountUpcallHandler =
new UpcallHandler (appl,

acegroup,
this,
"showPacketCount",
(UpcallFp) showPacketCount);

#else
showPacketCountUpcallHandler =

new UpcallHandler (appl,
acegroup,
this,
"showPacketCount",
(UpcallFp)&showPacketCount);

#endif
 }

catch (NBError&) {
throw NBError (NB_ERROR

(NBERROR_COUNT_CANNOTCREATEUPCALL));
}

Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 37

Revision 2.3, May 2000

• • • • •

Defining Packet Flow

•
This does all of the following required tasks:
l Associates the upcall handler with the ACE manager for the ACE asso-

ciated with the upcall in the accelerator module.
l Specifies the relationships that an ACE manager is part of an ACE

group, which is part of an NBAppl.
l Specifies the dictionary name that you used for the upcall in the acceler-

ator module, in this case, showPacketCount.
l Specifies the name of the function that handles the message, in this case,

also showPacketCount for consistency but the name does not need to
match the dictionary name.

l Checks for exceptions.

4. In the destructor, replace:

// delete UpcallHandler object

with the following:

delete showPacketCountUpcallHandler;

Defining Packet Flow

The flow of packets through a Policy Accelerator is determined partly by the
physical connections but primarily by actions that your application takes to
specify how to handle packets moving through the physical connections.

Physical
Packet Flow

Each Policy Accelerator has two physical interfaces, named A and B, as shown
in the following diagram:

By default, Policy Accelerators work in promiscuous mode; that is, when a
cable is connected, all packets flow through the cable to the Policy Accelerator.
It is your application that determines what happens to the packets after they
reach the Policy Accelerator, if anything.

A interface B interface
38 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Defining Packet Flow
This sample application counts packets and does nothing else. In this case, the
Policy Accelerator “sniffs” the packets flowing across the main network. That
is, the Policy Accelerator receives copies of all packets, counts them, and drops
them. For this purpose, your cabling might look as follows:

For more information on different ways to physically connect the Policy
Accelerator interfaces, see “Defining Packet Flow” on page 75.

Logical Packet
Flow

The flow of packets through Policy Accelerators is determined by logical
connections among interfaces and applications, called bindings. The API
provides the tools for you to bind interfaces and applications together. Packets
flow through a Policy Accelerator only after you have created bindings.

ACEs are the entities that receive and dispose of packets. In a simple applica-
tion such as the sample in this tutorial, packets arrive at the application ACE
from a network interface, represented by a default system ACE named
nbhwpe0A.

The system ACE has a FROM part and a TO part, for packets received from and
passed to the interface. This application only receives packets from the inter-
face; it does not send them back out. Therefore, it only binds the FROM part of
the system ACE to the application ACE.

NOTE: For more information on nbhwpe0 and other interface names, see
“Naming Objects for the Resolver” on page 55.

Main packet flow (such as a LAN)

Network interface card

Policy Accelerator

Cable with packets
flowing flowing to and
from NIC

Cable with packets flowing
to the Policy Accelerator’s A interface
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 39

Revision 2.3, May 2000

• • • • •

Classifying and Acting on Packets

•
Binding the
Interfaces

For this sample, bind the FROM part of the A interface to your CountAce
subclass to receive incoming packets. To do this:

1. In the host module file, CountApp.cpp, in the NBAppl subclass definition,
replace:

// Network interface bindings

with the following:

uint32 rval;
rval = bind

("/nbhwpe0/FromInterface:nbhwpe0A/Interface/pass",
"/CountPackets/CountAceGroup/CountAce");

if (rval != NB_SUCCESS) {
NB_ABORT(rval);

}

As soon as bindings take place, packets flow through the Policy Accelerator
under the control of your application as described in the following section.

Classifying and Acting on Packets

The NCL classification rules in your accelerator module determine what
happens to packets flowing through your bindings. Your application does not
need to explicitly look for or read packets.

About Rules A rule has a name and has two parts:

n A predicate

This is a Boolean expression that describes the conditions a packet must
meet to have the specified action performed on it.

n An action

This is the name of a function in your action code to be run when the pred-
icate is true.

The following figure shows a rule named allpackets, which runs a function
named action_all if an incoming packet is an Ethernet packet:

rule allpackets { ether } { action_all() }

NCL keyword
Name of this rule

Predicate Action
40 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Classifying and Acting on Packets
About Action
Functions

An action function must be of type ACTNF and must take at least two arguments,
which the SDK automatically passes from the rule that calls the action function:

n A buffer containing the current packet

n The ACE that contains the NCL

You can define and pass additional arguments; this sample does not do so.

The function must also return a predefined constant that specifies the disposi-
tion of the packet after its processing is complete. One such constant,
RULE_CONT, indicates that you have not modified the packet and you want
processing to continue sequentially, if there is any more processing, before
sending the packet along its bound path.

For further descriptions of RULE_CONT and other constants, see Chapter 7,
“Acting on Packets in Your Action Code.”

The following is an example of an outline of an action function:

ACTNF action_all (Buffer* buf, SimpleAce* ace)
{

// operations go here
return RULE_CONT;

}

Adding a Rule
and an Action

In this sample, your application will run the showPacketCount method in the
Ace subclass for all packets. To do this:

1. In the NCL rules file, CountRules.ncl, add a rule whose predicate is true for
all packets and that will call a function named action_all. To do this,
replace:

// rule to invoke action for all packets

with the following:

rule all_packets { 1 } { action_all() }

2. In the actions file, CountActions.cpp, add an action function that runs the
showPacketCount method of your Ace subclass. To do this, replace:

// action function entry point (sends packet count)

with the following:

ACTNF action_all (Buffer* buf, CountAce* ace)
{

ace->showPacketCount ();
return RULE_CONT;
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 41

Revision 2.3, May 2000

• • • • •

Compiling, Linking, and Running the Application

•
}

Compiling, Linking, and Running the Application

This section describes:

n Verifying Your Development Environment

n Compilation Model

n Running the Application

n Viewing Accelerator Module Output

Verifying Your
Development
Environment

The Resolver is the resource manager for the Policy Accelerator and related
objects. It must be running before you can run your applications.

The related document Installing the IX-API SDK contains detailed information
on installing and testing the SDK on your system. This section provides only a
summary of this information.

Prerequisites

Before you can compile and run applications, verify the following on your
system:

n The SDK is operational as described in the following section

n You are using compatible compilation tools:
l On a Windows NT system, use Microsoft® Developer Studio with MFC

support

l On a UNIX system, use any tools that are compatible with the supported
compilers

n A Web browser is available for viewing online documentation

Verifying the Operation of the SDK under Windows NT

To verify that the SDK is installed correctly:

1. Verify that the Resolver icon appears in the lower right-hand corner of
your screen.
This indicates that the driver software is installed and is operational.
If the icon does not appear, restart your system. If it still does not appear, you
might need to reinstall the SDK. Refer to the document Installing the IX-API
SDK.
42 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Compiling, Linking, and Running the Application
2. Verify whether the Resolver is running.
The Resolver must be running before you can run or debug an application.
The Resolver is not running if either of the following is true:
l The icon is disabled
l Placing your mouse cursor over the icon displays the pop-up text

“Resolver is NOT running”

3. If the Resolver is not running, start it. To do this, right-click the icon and
choose Start Resolver from its pop-up menu.

l When the Resolver starts, the icon becomes colored and placing your
mouse cursor over the icon displays “Resolver is running.”

l If the Resolver still does not start, check your log file. To do this, right-
click the Resolver icon and choose View Log from its pop-up menu.

NOTE: You can also use the resolver command to start the Resolver, as
described in the IX-API SDK Reference.

4. You can confirm that all of the compilers and related run-time libraries are
installed and running by doing the following:

a. Change directory to

SDKinstallpath/demos/BasicApp

b. Run nmake.
This runs a local makefile that compiles and links sample source code.

Verifying the Operation of the SDK under UNIX

To verify that the SDK is installed correctly in a UNIX environment:

1. Verify whether the Resolver is running. In a command shell, look for the
resolver process. For example:

ps -auxw | grep resolver

NOTE: Use the syntax appropriate to your operating system and shell
environment.

The Resolver must be running before you can run or debug an application.
When you install the IX SDK, you normally set the user profile of all SDK
developers to set the IX SDK envrionment variables and start the Resolver
automatically on startup.
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 43

Revision 2.3, May 2000

• • • • •

Compiling, Linking, and Running the Application

•
2. If the Resolver is not running, start it in a command shell. Set the SDK envi-
ronment variables, then issue the resolver command:

cd $NBPATH
. setnbenv
cd $NBPATH/bin
./resolver &

3. You can confirm that all of the compilers and related run-time libraries are
installed and running by doing the following:

cd $NBPATH/demos/BasicApp
./nmake

This runs a local makefile that compiles and links sample source code.

Compilation
Model

To create an executable application:

n Compile and link your host module using a supported C++ compiler and
linker.

n Compile your actions using the GCC compiler included with the SDK as
shown in the next section.

n You do not need to compile your NCL code; this code is downloaded as
source code to the Policy Accelerator and is compiled there at run time. The
SDK includes an NCL compiler for use in certain circumstances; this is
described in Chapter 4, “Compiling Applications.”

NOTE: Typically, you use a makefile to perform these steps. However, this
tutorial takes you through each step so that you can see how the pieces
work, as shown in the following figure:
44 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Compiling, Linking, and Running the Application
Compiling the Host Module

1. Compile and link your host module using any supported compiler.
In this sample, this creates an executable file, CountApp.exe.

Compiling the Action Code

These instructions compile your actions with debugging turned off and with
the highest level of optimization to make the code most efficient. To do this:

1. Use the following command to compile your actions file, replacing SDKin-
stallpath with your installation path:

nbgcc -c -O2 -D_BIGENDIAN -DNDEBUG \
-ISDKinstallpath/include CountActions.cpp

2. Rename the generated CountActions.o file to CountActions.nbo.

Running the
Application

To run the application:

1. Set up your Policy Accelerator so that packets are directed to and from the
interfaces.
For this example, connect the Policy Accelerator’s interface A to a packet
source.

2. In any shell window, run CountApp.exe.
This downloads the accelerator module to the Policy Accelerator and begins
counting packets.

Accelerator
module

Host
module

ASL

NCL

API
C++ Code

C++ Code

NCL Code

myapp.cpp

myActions.cpp

myRules.ncl

nbgcc

myapp.exe

myRules.ncl

myActions.nco

Supported
C++

Compiler
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 45

Revision 2.3, May 2000

• • • • •

Compiling, Linking, and Running the Application

•
Viewing
Accelerator
Module Output

The Resolver can display output from the accelerator module of your applica-
tion in windows, one for Policy Accelerator system output (sysout) and one for
standard output (the Policy Accelerator’s stdout). The way you access this
output depends on your operating system.

Viewing Output in Windows NT

To view accelerator module output:

1. Right-click on the Resolver icon in the lower right-hand corner of your
screen.

2. Choose WinReadPort from its pop-up menu.
This displays a window similar to that shown in the following figure;
PORT:11 displays stdout and PORT:12 displays sysout:

Viewing Output in UNIX

To view accelerator module output:

1. Open a command shell and execute these commands:

cd $NBPATH/bin
./readport 11

This shell displays output that is written to stdout by the accelerator
module of your application.

2. Open a second command shell and execute these commands:

cd $NBPATH/bin
./readport 12

This shell displays errors and warnings from the Policy Accelerator that are
written to sysout.
46 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Compiling, Linking, and Running the Application
If You Have
Problems

If you have problems, check your PATH environment variable. For Windows
NT, it should include all Microsoft Visual Studio bins and libs, and nmake. To
do this in Windows NT, use the Properties:Environment command from the
MyComputer menu or use a command prompt.

Consider using the vcvars32.bat batchfile from Microsoft Visual Studio’s bin
directory, which sets your PATH and does other setup for each DOS session.
Intel Confidential Chapter 2: Tutorial: Creating a Simple Application 47

Revision 2.3, May 2000

• • • • •

Compiling, Linking, and Running the Application

•
48 Chapter 2: Tutorial: Creating a Simple Application Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 3

• • • • •
Elements of an Application

The IX SDK defines an object-oriented environment that you use to develop
applications. Your application creates objects and calls their methods to
perform the policy enforcement functionality that you define.

This chapter gives an overview of the class and object framework, introduces
the IX system software that coordinates objects on the host and in Policy
Accelerator memory, and describes the error handling system.

This chapter contains the following topics:

n The Object Framework

n The Resolver and Multiple Applications

n Return Values and Error Codes

The Object Framework

Every application that uses the IX-API SDK must have the basic framework of
objects to define at least one ACE. This includes:

n An application object in the host module

n An ACE group and ACE manager object in the host module

n An ACE object in the accelerator module

An application creates additional objects to support the particular features it
uses.

An application usually defines its own subclasses of the basic host API and ASL
classes that it needs. This allows the application to add to the constructors
whichever details that it needs. For example, if the application uses calls and
message passing, the application-specific subclass of the Ace class would
contain the methods for sending upcalls and crosscalls and the methods for
handling crosscalls and downcalls. Its constructor might also create the call
objects for the accelerator module side of the ACE.
Intel Confidential Chapter 3: Elements of an Application 49

Revision 2.3, May 2000

• • • • •

The Object Framework

•
Many objects are paired—that is, objects that are defined in the host module
and reside in memory on the host have counterparts defined in the accelerator
module, which reside in memory on the Policy Accelerator. The Resolver coor-
dinates the host and Policy Accelerator memory spaces; see “The Resolver and
Multiple Applications” on page 54.

If the application needs such an object on one side, it must also create its
manager or handler on the other side. You associate the paired objects by giving
them the same dictionary name—that is, by specifying the same string value for
the name argument when you construct the two objects. (For more information
about naming, see “Naming Objects for the Resolver” on page 55.)

This section provides a basic overview of what subclasses and objects an appli-
cation must or can have, and their required relationships.

ACE

Policy Accelerator memory

Host memory

Upcall Handler
object

ACE manager
object

NBAppl
object

object Upcall
object
50 Chapter 3: Elements of an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 The Object Framework
ACE
Framework
Objects

The following table shows the classes of objects that an application must or can
create in the host module and accelerator module to support the basic frame-
work of the application ACEs. You usually define application-specific
subclasses of these types.

Message-
Sending
Framework
Objects

The following table shows the classes of objects that an application can create
in the host module and accelerator module to support message sending using
upcalls, downcalls, or crosscalls. You usually create application-specific
subclasses of the call classes. You create message objects directly, without
defining subclasses.

Host module
API class

Accelerator module
ASL class

Description

NBAppl Required. Create one object for an applica-
tion.

AceGroup Required. Create at least one object for an
application.

AceManager Ace Required. Create one pair of objects for
each ACE block. You must have at least
one ACE block.

TargetManager Target Create these object pairs if you are defin-
ing your own targets. Your own targets are
named destinations for packets other than
the default pass and drop targets. See
“Defining Targets” on page 81.

Host module
API class

Accelerator module
ASL class

Description

Downcall DowncallHandler Create one pair of objects for each
kind of downcall the host will send to
an ACE.

UpcallHandler Upcall Create one pair of objects for each
kind of upcall an ACE will send to the
host.
Intel Confidential Chapter 3: Elements of an Application 51

Revision 2.3, May 2000

• • • • •

The Object Framework

•
For more information on calls and message passing, see Chapter 8, “Communi-
cation Within an Application.”

String Search
Framework
Objects

The following table shows the classes that support the string search facility,
which you use to find strings in the data portion of packets. These are all on the
accelerator module side.

CrosscallManager Crosscall Create one pair of objects for each
kind of crosscall an ACE will send to
another ACE.

Use the NBAppl object’s link
method to associate the pair with a
crosscall handler.

CrosscallHandler
Manager

CrosscallHandler Create one pair of objects for each
kind of crosscall an ACE will receive
from another ACE.

Use the NBAppl object’s link
method to associate the pair with a
crosscall sender.

Message,
MessageBlock

Create message objects on the host to
send to the Policy Accelerator in
downcalls. You do not need to create
subclasses of these types.

Message,
MessageBlock

Create message objects on the Policy
Accelerator to send to the host in
upcalls, or to send to other ACEs in
crosscalls. You do not need to create
subclasses of these types.

Host module
API class

Accelerator module
ASL class

Description

Accelerator module
ASL class

Description

NBSearchContext Create an object of this type to keep track of a specific
string search, which can cross packet buffer bound-
aries.
52 Chapter 3: Elements of an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 The Object Framework
For more information on string searches, see Chapter 10, “Finding Strings in
Packets.”

Data Set
Framework
Objects

The following table shows the classes that support data sets and their associ-
ated searches. These classes are all on the accelerator module side. You do not
create set subclasses directly; instead, you define the sets and searches in NCL,
then use the NCL compiler to automatically generate a header file containing
the set subclass definitions. You then include the header in your action code file,
where you can extend the element subclasses as needed.

For more information on generating a header file from an NCL file, see
Chapter 4, “Compiling Applications.” For more information on defining and
using sets and searches, see Chapter 9, “Using Sets of Data to Classify Packets.”

NBStringSearchEngine Create an object of this type to send a specific packet
buffer to a specific search, as defined by a context
object. This object also keeps a list of strings for which
to find matches.

NBStringMatchReport Create an object of this type to hold reports on match-
ing strings found by a string search.

Accelerator module
ASL class

Description

Accelerator module
ASL subclass

Description

Set_setname The generated header file contains one of these sub-
classes for each defined set. You do not need to create a
further subclass. Your ACE object must contain an object
of this subclass, using the same name that you use when
defining it in NCL.

Elt_setname The generated header file contains one of these sub-
classes for each defined set. You define a further subclass
to extend the definition of a set element to contain your
application-specific data.

Create objects of this type with the new operator, to add to
the set using the insert method of a search.

setname.searchname The generated header file contains one of these sub-
classes for each defined search on a set. You do not need
to create a further subclass or object.
Intel Confidential Chapter 3: Elements of an Application 53

Revision 2.3, May 2000

• • • • •

The Resolver and Multiple Applications

•
Auxiliary
Objects

The following table shows additional ASL classes that you might use in your
application for specific purposes, such as keeping statistical data about your
traffic flow.

For more information on using these classes, see the IX-API SDK Reference.

The Resolver and Multiple Applications

The Resolver is an independent process that is normally always running in the
background on the host. The Resolver coordinates the host and Policy
Accelerator memory spaces for multiple IX applications.

When you install the IX SDK or a runtime IX application, you normally
configure the host computer to start the Resolver process automatically at
startup. If you need to start and stop the Resolver, you have the following
options:

n You can start the Resolver manually in a command shell using the resolver
command, and stop it using an operating system command, such as
Control-C, in that shell. See Chapter 7, “Command-Line Tools,” in the IX-
API SDK Reference.

n You can start and stop the Resolver process programmatically, using func-
tions defined in the operating system services layer (OSSL) library. An
example of this is provided in the Killer demo. See Appendix A, “Demon-
stration Applications.”

Accelerator module
ASL class

Description

Event
Time

Create a subclass of Event to define an event callback
that is triggered after a certain amount of time, as defined
by a Time object. This allows you to schedule future
actions.

Rate Create an object with a specific sampling period to track
event rates and bandwidths so you can watch for rates
that exceed desired values. Use Time objects to specify
sampling periods.

NBRmon The application automatically creates an object of this type
that provides access to RMON block counters for each of
the two MAC interfaces on the Policy Accelerator board.

NBInterfaceProp
NBLinkwatch

These allow you to manage properties of the MAC inter-
faces and monitor the network connection.
54 Chapter 3: Elements of an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 The Resolver and Multiple Applications
n On a Windows NT system, you can start and stop the Resolver interactively,
using the icon in the lower right corner of the desktop.
l Right-click on the icon and choose Start Resolver from the pop-up menu.

When the Resolver starts, the icon becomes colored and moving your
mouse cursor over the icon displays “Resolver is running.”

l To stop the Resolver, choose Stop Resolver from the pop-up menu. The
icon grays out, and moving your mouse cursor over the icon displays
“Resolver is NOT running.”

Starting and
Stopping
Applications

The Resolver allows you to run multiple IX applications simultaneously. To do
so, it maintains a set of application resources. However, when you stop an
application, the Resolver does not always free enough resources to restart it (or
start other applications) reliably.

If you intend to stop any application, then restart that application or start other
IX applications, it is recommended that you stop all running applications, then
stop and restart the Resolver before starting or restarting any IX application.

Naming
Objects for the
Resolver

ACEs, targets, and crosscalls are logical entities that reside partly in the host’s
application space (in manager objects) and partly in Policy Accelerator memory
(in managed objects). The Resolver coordinates the two memory spaces.

The Resolver keeps track of these distributed logical entities using the dictionary
name—the string value of the name argument that you provide when you
construct the associated objects. The dictionary names of paired objects are the
same, and that name identifies the logical entity.

For example, suppose you create a target manager object in the host module (in
the context of an existing application and ACE group) using the following code:

targetMgr1 = new MyTargetMgr (appl, this,
myAceMgr1, "Target1Name");

This binds the variable targetMgr1 to the object handle, and defines the string
“Target1Name” as the target’s dictionary name. The target belongs to the ACE
whose manager object has the handle myAceMgr1.

In the accelerator module, you define the corresponding target object in the
context of the ACE object, using the same dictionary name, as follows:

target1 = new MyTarget (id, this, "Target1Name");
Intel Confidential Chapter 3: Elements of an Application 55

Revision 2.3, May 2000

• • • • •

The Resolver and Multiple Applications

•
This binds the variable target1 to the object handle of the new Target object.
The new object is paired with the TargetManager object with the same dictio-
nary name. TargetName refers to the target entity, which comprises both
objects.

Full Name
Paths

The name of a target (for example) needs to be unique only within the ACE, and
the name of the ACE needs to be unique only within the ACE group and appli-
cation. To completely and uniquely identify an entity to the Resolver, you must
use the full name, or complete path to the entity, which includes the containing
application, ACE group, and ACE. Full names are derived from the hierarchy
of named objects as shown in the following figure:

You use the full name:

n To bind targets (using the application object’s bind method)

n To link crosscalls and their handlers (using the application object’s link
method)

n To retrieve an ACE identifier for use with the nbgdb debugger (using the
getaceid command)

The full name of an target or crosscall has the following format:

/appname/acegroupname/acename/objectname

Each of these elements is the dictionary name of the respective entity, not an
object handle.

Object classes Example object names

root

NBAppl appl1 appl2...appln

AceGroup

Ace/AceManager

Target, Crosscall, Upcall...

acegroup1 acegroup2...acegroupn

ace1 ace2... acen

target1 target2 upcall1
56 Chapter 3: Elements of an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 The Resolver and Multiple Applications
For example, suppose you define and create application, ACE group, ACE
manager, and target manager objects in the host module, using code such as the
following:

NBMyAppl::NBMyAppl (void):
NBAppl ("MyAppName", "myapp.exe")

...
//within the context of the application object
myGroup = new NBMyGroup (appl, "MyGroupName");
//within the context of the ACE group object
myAceMgr = new NBMyAceMgr (appl, this, "MyAceName");
//within the context of the ACE manager object
target1 = new NBMyTgtMgr (id, ace, "MyTgtName");

To create a binding between the Policy Accelerator interface A and this target
(associated wtih the target manager object whose handle is target1), use the
following full name in the bind method:

bind ("/nbhwpe0/FromInterface:nbhwpe0A/Interface",
"/MyAppName/MyGroup/MyAceName/MyTgtName");

System ACE
Names

Notice that the reference to the Policy Accelerator interface uses a predefined
system ACE name. These use the same format, but with predefined names that
identify the specific Policy Accelerator board (in place of the application) and
source or destination (in place of the ACE group).

The following ACEs are defined by the system to allow access to the Policy
Accelerator interfaces and to the host protocol stack :

To interface A /nbhwpe0/ToInterface:nbhwpe0A/Interface

From interface A /nbhwpe0/FromInterface:nbhwpe0A/Interface

To interface B /nbhwpe0/ToInterface:nbhwpe0A/Interface

From interface B /nbhwpe0/FromInterface:nbhwpe0B/Interface

To host stack bound
to interface A

/nbhwpe0/ToStack:nbhwpe0A/Stack

From host stack
bound to interface A

/nbhwpe0/FromStack:nbhwpe0A/Stack
Intel Confidential Chapter 3: Elements of an Application 57

Revision 2.3, May 2000

• • • • •

Return Values and Error Codes

•
NOTE: The name nbhwpe0 refers to the first Policy Accelerator installed in a
system. If you install additional cards, their names are nbhwpe1,
nbhwpe2, and so on.

There are also system-defined targets named pass and drop in each of the
system ACEs. For example:

/nbhwpe0/ToInterface:nbhwpe0A/Interface/pass

If your site has customized the drivers for a standard network interface card
(NIC) for communication with the Policy Accelerator using the ODX protocol,
you can address the NIC connection directly as interface C, using the name
nbhwpenC (where n is the number identifying the card). For more information,
see Customizing a NIC Driver Using the ODX Protocol.

For More
Information

n For more information on the names of system ACEs and targets, see
Appendix C, “Policy Accelerator Name Space,” in the IX-API SDK Reference.

n For more information on bindings, see Chapter 5, “Controlling Packet
Flow.”

n For more information on crosscalls, see Chapter 8, “Communication Within
an Application.”

n For more information on the nbgdb debugger, see Chapter 11, “Debugging
and Troubleshooting.”

Return Values and Error Codes

Return values and error codes are handled differently in the ASL and in the
host API.

n In the ASL, negative return values indicate an error. Use the IX-API SDK
debugger (nbgdb) to evaluate the problem. See Chapter 11, “Debugging and
Troubleshooting.”

n Host API functions that fail return NULL or an error code of type NBError.
Object constructors throw an exception of type NBError.

To host stack bound
to interface B

/nbhwpe0/ToStack:nbhwpe0B/Stack

From host stack
bound to interface B

/nbhwpe0/FromStack:nbhwpe0B/Stack
58 Chapter 3: Elements of an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Return Values and Error Codes
The following class represents errors in the host module:

For a host API object constructor, which throws the error rather than returning
it, use a catch statement to access the error object. For example, the following
code fragment uses the getErrorcode method in a catch routine to print out a
debugging message:

catch (NBError E) {
fprintf(stderr,

 "Demo app caught NBError 0x%X\n",
 E.getErrorcode ());

NB_ABORT (1);
}

You can add your own uniquely numbered error codes to provide information
about failed operations in the host API. Give your own error codes numbers
greater than the constant NBERROR_USER_BASE. For an example of how to define
your own error codes, see “Defining Error Codes” on page 19.

Host module
API class

Description

NBError An object of this type is returned by host API methods on failure, or
is thrown by object constructors. Use the getErrorcode method to
access the descriptive code explaining why a method failed.

The predefined error codes, defined in NBError.h, are listed and
described in the IX-API SDK Reference.
Intel Confidential Chapter 3: Elements of an Application 59

Revision 2.3, May 2000

• • • • •

Return Values and Error Codes

•
60 Chapter 3: Elements of an Application Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 4

• • • • •
Compiling Applications

Compilation tools, such as makefiles or Microsoft Visual Studio*, are the most
effective way to ensure that all of an application’s files are compiled and linked
in the correct manner and order. This chapter describes each of the compilation
steps in detail and then provides a sample set of makefiles. It contains the
following topics:

n Overview of the Compilation and Linking Process

n Compiling the Host Module

n Compiling NCL Files

n Compiling Action Code

n Code Development on a Windows NT System

n Using Makefiles for a UNIX System

n Running an Application

n Debugging an Application

Overview of the Compilation and Linking Process

There are three parts of an application that can be compiled and linked:

n Host module source code: You compile and link this with a supported
compiler to create an executable file.

n Action code for the Policy Accelerator: You compile this with a modified
version of the GNU C++ Compiler (nbgcc) provided with the IX-API SDK.
You link it only if you have more than one action code file for a specific ACE.

n Network Classification Language (NCL) code: This is compiled by the
Policy Accelerator at runtime, but you can use the NCL compiler (cecomp)
directly to generate header files that synchronize the NCL with the action
code, or to verify the syntax.
Intel Confidential Chapter 4: Compiling Applications 61

Revision 2.3, May 2000

• • • • •

Code Development on a Windows NT System

•
The following figure shows the general flow of application files through the
compilation process.

Code Development on a Windows NT System

If your application is not already a Microsoft* Visual C++ 6.0 project, you must
create such a project. You must specify build and compilation information in
the project, rather than in an exported makefile.

To obtain the proper project settings, refer to the project files for the sample
applications in SDKinstallpath/demos. Note the settings in the following
sections of the Project Setting dialog box:

n C/C++ and Link tabs, Project Options

n Custom Build tab, Commands

The options and commands are slightly different for the release and debug
versions of the applications. You must replace filenames and paths as appro-
priate for your application.

NOTE: To configure Microsoft Visual C++ 6.0 for use with the IX-API SDK,
choose Options from the Tools menu, then, in the Options dialog box
Directories tab, add the following pathname:

SDKInstallPath/include
You need to set this configuration only once. It is not necessary to do
so for each project.

Accelerator
module

Host
module

ASL

NCL

API
C++ Code

C++ Code

NCL Code

Supported
C++ app.cpp

actions.cpp

rules.ncl cecomp

nbgcc

app.exe

rules.ncl

actions.nbo

proto.h

sets.h

(nbld)

Compiler
62 Chapter 4: Compiling Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Compiling the Host Module
Compiling the Host Module

Compile and link your host module to create an executable file using a
supported C++ compiler. For the latest information on supported compilers,
refer to the document Installing the IX-API SDK or to the IX-API SDK Release
Notes. Currently, use the following:

n Windows NT: Microsoft* Visual C++ 6.0

n UNIX: BSD/OS

Compiling
With Static
Libraries for
Windows NT

Under Windows NT, you can compile the host module using either the
dynamic libraries for the host API, which is the default, or the static libraries.
You might use the static libraries to protect your executable code from changes
that might occur in dynamic libraries due to such changes as the following:

n An update or new release of the libraries

n An attempt to bypass security by modifying the libraries

To compile the host module using the static libraries:

1. Use a static versions of the IX libraries (which begin with nb). For example,
in the Link Project Options, replace nbapid.lib with nbapistatic.lib for
nondebug mode, or with nbapistaticd.lib for debug mode.

2. In the compilation command-line options (C/C++ Project Options):
l Use /MT instead of /MD or /MDd.
l Do not use /D _AFXDLL.
l Use /D _NBAPI_STATIC.

Compiling NCL Files

Classification files for the accelerator module contain rules written in NCL.
Your application loads the source NCL file directly into the Policy Accelerator,
where it is compiled at run time, so in most cases you do not need to explicitly
compile your NCL code.

NOTE: For an application that is to run in an IX environment customized for
an unsupported host using the IX SDK-E, you must specifically
compile the NCL code using cecomp and make the object file available
to the load function.
Intel Confidential Chapter 4: Compiling Applications 63

Revision 2.3, May 2000

• • • • •

Compiling NCL Files

•
You can use the NCL compiler (cecomp) as a stand-alone tool for the following
reasons:

n Check for NCL compile-time errors

n Generate protocol and set header files for inclusion in your action files

Checking f or
NCL Errors

To check for NCL compile-time errors, or to find the size of the NCL object, pass
the name of the NCL file to the NCL compiler (cecomp), and then pass the
resulting object file to the NCL linker (celink). For example:

cecomp myNCL.ncl
celink -o myNCL.exe SDKinstallpath\lib\mrt0.o myNCL.o

This creates the relocatable, executable image myNCL.exe.

Generating
Headers for
Action Files

Each NCL file is associated with exactly one action file. The action file must use
certain information that is contained in the NCL file:

n Sets and Searches: If you have defined sets and searches in the NCL file,
they must be defined in exactly the same way in C++ for the corresponding
action file. To ensure accuracy, you generate the C++ definitions directly
from the NCL definitions.
For more information on sets and searches, see Chapter 9, “Using Sets of
Data to Classify Packets.”

n Field Accessors: It is most efficient for the action code to have its own access
methods for protocol fields, so that rules do not need to pass every field
value that an action might need. The field information needed to create the
accessors is found in the protocol definition in the NCL file. Therefore, you
use the NCL compiler to generate a C++ header file for the action code,
which defines field accessors for each protocol defined in the NCL file.

Before you compile the action code so that your application can load it into the
Policy Accelerator, you must make sure that it includes these generated header
files to synchronize it with the NCL file.

To generate the action header files and include them in the action code:

1. Compile the NCL file, using the NCL compiler (cecomp) with the appro-
priate command-line options:
l The -Fs option generates base classes and objects for each of the sets and

named searches in the NCL file and defines a data structure for each set.
64 Chapter 4: Compiling Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Compiling Action Code
l The -Fa option generates a class for each defined protocol, with accessor
methods for each field. These accessors are defined to return results in
network byte order. See “Byte Order and Inter-Module Communica-
tion” in Chapter 2, “System Types and Methods,” in the IX-API SDK
Reference.

For example, to generate both header files from the source file myNCL.ncl:

cecomp -Fa proto.h -Fs sets.h myNCL.ncl

2. Move or copy the resulting C++ source header files (in this example,
proto.h and sets.h) to the action code’s standard include directory.

3. Use #include to include the header files in your action code.

NOTE: Do not modify the set header file created by the NCL compiler, because
any changes you make to it would be overwritten the next time you
generate it. To extend the set element definitions, modify the main
action source file.

Compiling Action Code

Before your application can load the action code into the Policy Accelerator,
you must compile the source code using the modified GNU C++ compiler
included with the IX-API SDK, nbgcc. The source code should include the
header files generated from the NCL part of the same ACE.

To compile the action code:

1. Ensure that the code includes the following header files:
l Generated from the corresponding NCL file (proto.h and sets.h in the

preceding example)
l ASL classes used in your application from the SDKinstall-

path/include directory (replace SDKinstallpath with your IX-API
SDK installation path)

2. Compile using the nbgcc compiler. For example:

nbgcc -c -03 -D_BIGENDIAN -ISDKinstallpath\include
myActions.cpp

This creates a file named myActions.o.

3. If you have only one action code file for an ACE, proceed to the next step. If
you have more than one action code file for a single ACE, compile them all
and then link them as in this example:

nbld -r -EB myActions1.o myActions2.o
Intel Confidential Chapter 4: Compiling Applications 65

Revision 2.3, May 2000

• • • • •

Using Makefiles for a UNIX System

•
4. Rename the resulting object file (by default a.out) to filename.nbo.
For example, rename a.out to myActions.nbo.

For more information on options available during compilation, see:

n Chapter 7, “Command-Line Tools,” in the IX-API SDK Reference

n GNU C++ compiler documentation, available in the \usr\local\docs
directory

Using Makefiles for a UNIX System

A makefile is the most effective way to ensure that all of an application’s files
are compiled and linked in the correct manner and order.

You can issue compilation and linking commands directly from the command
line in a command shell, but you typically use a makefile to compile and link
your application. Makefiles are designed to handle dependencies in compila-
tion order, such as generating protocol and set headers from your NCL for
inclusion by your action code.

The following example makefiles, based on the sample application BasicApp
(in SDKinstallpath/demos), show how you assemble all of the files needed for
an application. In this sample, the main makefile includes a definition file and
an installation file, which are defined separately.

##
Checking for must-have environment variables
NBPATH: Required. Directory where IX-API SDK installed.
SRCDIR: Optional. Location of source files for
host module, accelerator action code, and NCL;
sets to current directory if undefined.
BUILD_MODE: Optional. "debug" or "release" (default).
Sets name of directory for generated output and
determines compiler flags. Use as in:
nmake BUILD_MODE=debug, or:
make BUILD_MODE=debug
###
##

ifndef SRCDIR
SRCDIR=.

endif

ifndef BUILD_MODE
BUILD_MODE= release

endif
66 Chapter 4: Compiling Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Using Makefiles for a UNIX System
##
Determining the OS. Valid OSTYPEs are:
bsdi & cygnus32
if OSTYPE is not defined then set it to winnt (DOS Shell)
#
PLATFORM sets name of directory for generated output.
##

ifeq ($(OS), Windows_NT)
PLATFORM= $(OSTYPE)
ifndef $(OSTYPE)

PLATFORM= winnt
endif

else
ifeq ($(OSTYPE),bsdi4.0)

OSTYPE= bsdi
endif
PLATFORM= $(OSTYPE)

endif

##
Output directory, BINDIR, for all generated output
##

BINDIR= $(PLATFORM)/$(BUILD_MODE)

##
In addition to the preceding, this makefile uses
the following variables set externally
or on the command line:
HOSTMOD:Required. Name of host module C++ source file.
PEMOD: Required. Name of accelerator module C++ action
code.
NCLRULE: Required. Name of NCL file.
SETFILE: Optional. Base filename (e.g., myfile)
under SRCDIR into which the NCL compiler
should generate a set header (e.g., myfile.h)
and a static data header (e.g., myfile_def.h).
If not defined, these files are not
generated.
ACCSFILE:Optional. Filename under SRCDIR into which
the NCL compiler should generate a header
containing a class for each defined protocol, with
accessor methods for each field. If not defined,
no protocol header is generated.
##
Example:
nmake HOSTMOD=myhost.cpp PEMOD=mype.cpp
Intel Confidential Chapter 4: Compiling Applications 67

Revision 2.3, May 2000

• • • • •

Using Makefiles for a UNIX System

•
NCLRULE=myrules.ncl SETFILE=mysets
##
Note: This makefile supports up to 4 pairs of
action code/NCL; additional sets n=1,2,...:
PEMODn
NCLRULEn
SETFILEn
ACCSFILEn
##
##
##
Command and command-flag aliases:
NBLIB: location of IX-API SDK libraries
NBGCC: The IX-API SDK compiler for accelerator module
C++ code
CECOMP: IX-API SDK NCL compiler
CECOMP_FLAGS: NCL compiler flags; -w=off turns off
compiler warnings
##
##
NBLIB= $(NBPATH)/lib
NBGCC= nbgcc
LD= nbld
RM= rm -rf
CP= cp
CECOMP= cecomp
CECOMP_FLAGS= -w=off
MKDIR= mkdir -p

##
General compilation settings.
CPP: Host compiler.
CPP_FLAGS: Host compiler flags.
EXE_EXT: Host executable extension:
.exe for WinNT, nothing otherwise
LINK_OPT: Host linker options.
OBJ_EXT: Host object code extension.
LINK:
LINKFLAGS:
NB_INCLUDE: IX-API SDK include-file directories
NBGCC_FLAGS: Compiler flags for accelerator module
compiler.
NB_LIBS: IX-API SDK libraries for host module.
##
##
##
Specific Compiler Flags

68 Chapter 4: Compiling Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Using Makefiles for a UNIX System
For host module: Choose the ones
from your host compiler that you need.
This sample makefile uses the following.
##
For all compilation:
-D_ENDIAN_H_ : Byte-ordering specifier
##
For Debug mode:
-g : Generates symbol table
for use with debugger.
##
For accelerator module: Choose the ones from nbgcc that you
need,
and use required ones. This example uses the following.
##
For all compilation:
-c : Required; compile only, don’t link.
-D_BIGENDIAN : Required byte-ordering specifier.
For Debug mode:
-o0 : No optimization.
-g : Required to generate symbol table
for use with nbgdb.
For nondebug (Release) mode:
-o2 : Highest level of optimization
##
CPP= gcc
EXE_EXT=
LINK_OPT= -o $@
OBJ_EXT= .o
LINK=
LINKFLAGS=

NB_INCLUDE= -I$(NBPATH)/include -I$(NBPATH)/include/nbossl

ifeq ($(BUILD_MODE),debug)

CPP_FLAGS= -g -D_ENDIAN_H_
NBGCC_FLAGS= -c -g -D_BIGENDIAN -DNDEBUG

NB_LIBS= \
$(NBLIB)/nbapi.a \
$(NBLIB)/nbrif.a \
$(NBLIB)/nberror.a \
$(NBLIB)/libnbossl.a \
$(NBLIB)/nbdif.a

else

CPP_FLAGS= -D_ENDIAN_H_
NBGCC_FLAGS= -c -O2 -D_BIGENDIAN -DNDEBUG
Intel Confidential Chapter 4: Compiling Applications 69

Revision 2.3, May 2000

• • • • •

Using Makefiles for a UNIX System

•
NB_LIBS= \
$(NBLIB)/nbapi.a \
$(NBLIB)/nbrif.a \
$(NBLIB)/nberror.a \
$(NBLIB)/libnbossl.a \
$(NBLIB)/nbdif.a

endif

##
SETFILE and PROTOCOL FIELD ACCESS METHOD settings
##
Compile NCL code conditionally:
If action code uses sets or protocols as defined in
NCL, then NCL must be compiled:
using -Ft to generate set header file
using -Fa to generate protocol accessor header file
##

ifdef SETFILE
SRCSET= $(SRCDIR)/$(SETFILE).h
SETS= -Ft$(SRCDIR)/$(SETFILE)

ifdef ACCSFILE
SRCACCS= $(SRCDIR)/$(ACCSFILE).h

endif
endif

ifdef SETFILE1
SRCSET1= $(SRCDIR)/$(SETFILE1).h
SETS1= -Ft$(SRCDIR)/$(SETFILE1)

ifdef ACCSFILE1
SRCACCS1= $(SRCDIR)/$(ACCSFILE1).h

endif
endif

ifdef SETFILE2
SRCSET2= $(SRCDIR)/$(SETFILE2).h
SETS2= -Ft$(SRCDIR)/$(SETFILE2)

ifdef ACCSFILE2
SRCACCS2= $(SRCDIR)/$(ACCSFILE2).h

endif
endif

ifdef SETFILE3
SRCSET3= $(SRCDIR)/$(SETFILE3).h
SETS3= -Ft$(SRCDIR)/$(SETFILE3)

ifdef ACCSFILE3
70 Chapter 4: Compiling Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Using Makefiles for a UNIX System
SRCACCS3= $(SRCDIR)/$(ACCSFILE3).h
endif
endif

##
multiple accelerator module settings
Note: If PEMOD1 is defined, assume NCLRULE1 is also defined,
etc.
##

ifdef PEMOD1
PEMOD_OBJ_1 = $(BINDIR)/$(PEMOD1).nbo

 NCL1 = $(BINDIR)/$(NCLRULE1).ncl
endif

ifdef PEMOD2
PEMOD_OBJ_2 = $(BINDIR)/$(PEMOD2).nbo

 NCL2 = $(BINDIR)/$(NCLRULE2).ncl
endif

ifdef PEMOD3
PEMOD_OBJ_3 = $(BINDIR)/$(PEMOD3).nbo

 NCL3 = $(BINDIR)/$(NCLRULE3).ncl
endif

##
The Definitions of all targets
##
all: $(BINDIR)/$(HOSTMOD)$(EXE_EXT) \

$(BINDIR)/$(PEMOD).nbo $(BINDIR)/$(NCLRULE).ncl \
$(PEMOD_OBJ_1) $(NCL1) \
$(PEMOD_OBJ_2) $(NCL2) \
$(PEMOD_OBJ_3) $(NCL3) \

##
Create host module executable
##
$(BINDIR)/$(HOSTMOD): $(SRCDIR)/$(HOSTMOD).cpp

@[-d "${BINDIR}"] || $(MKDIR) "$(BINDIR)"
$(CPP) $(CPP_FLAGS) $(NB_INCLUDE) $^ $(NB_LIBS) $(LINK_OPT)

$(BINDIR)/$(HOSTMOD).exe: $(SRCDIR)/$(HOSTMOD).cpp
@[-d "${BINDIR}"] || $(MKDIR) "$(BINDIR)"
$(CPP) $(CPP_FLAGS) $(NB_INCLUDE) $^ $(NB_LIBS) $(LINK_OPT)
$(LINK) "$(NBAPILIB)" $(LINKFLAGS)

/out:$(BINDIR)/$(HOSTMOD).exe \
$(BINDIR)/$(HOSTMOD).obj

##
Intel Confidential Chapter 4: Compiling Applications 71

Revision 2.3, May 2000

• • • • •

Using Makefiles for a UNIX System

•
##
Accelerator Module:
Action & Classification code
##
Compile action code (accelerator module).
.nbo is designation for compiled Action code.
##
$(BINDIR)/$(PEMOD).nbo: $(SRCDIR)/$(PEMOD).cpp $(SRCSET)

$(NBGCC) $(NBGCC_FLAGS) $(NB_INCLUDE) -I$(SRCSET) -c
$(SRCDIR)/$(PEMOD).cpp -o $@

##
Compile NCL to generate Sets include file
Copy NCL source into output directory
##
$(SRCSET): $(SRCDIR)/$(NCLRULE).ncl

@echo building $(SETFILE).h and $(ACCSFILE).h
$(CECOMP) $(CECOMP_FLAGS) $(SETS) -Fs$(SRCSET)

$(SRCDIR)/$(NCLRULE).ncl
$(CECOMP) $(CECOMP_FLAGS) $(SETS) -Fa$(SRCACCS)

$(SRCDIR)/$(NCLRULE).ncl

$(BINDIR)/$(NCLRULE).ncl: $(SRCDIR)/$(NCLRULE).ncl
$(CP) $(SRCDIR)/$(NCLRULE).ncl $(BINDIR)/$(NCLRULE).ncl

######################
If there’s more than one accelerator module, do the 2nd:
######################
$(PEMOD_OBJ_1): $(SRCDIR)/$(PEMOD1).cpp $(SRCSET1)

$(NBGCC) $(NBGCC_FLAGS) $(NB_INCLUDE) -I$(SRCSET1) -c
$(SRCDIR)/$(PEMOD1).cpp -o $@

$(SRCSET1): $(SRCDIR)/$(NCLRULE1).ncl
@echo building $(SETFILE1).h and $(ACCSFILE1).h
$(CECOMP) $(CECOMP_FLAGS) $(SETS) -Fs$(SRCSET1)

$(SRCDIR)/$(NCLRULE1).ncl
$(CECOMP) $(CECOMP_FLAGS) $(SETS) -Fa$(SRCACCS1)

$(SRCDIR)/$(NCLRULE1).ncl

$(NCL1): $(SRCDIR)/$(NCLRULE1).ncl
$(CP) $(SRCDIR)/$(NCLRULE1).ncl $(BINDIR)/$(NCLRULE1).ncl

######################
For the 3rd accelerator module
######################
$(PEMOD_OBJ_2): $(SRCDIR)/$(PEMOD2).cpp $(SRCSET2)

$(NBGCC) $(NBGCC_FLAGS) $(NB_INCLUDE) -I$(SRCSET2) -c
$(SRCDIR)/$(PEMOD2).cpp -o $@
72 Chapter 4: Compiling Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Running an Application
$(SRCSET2): $(SRCDIR)/$(NCLRULE2).ncl
@echo building $(SETFILE2).h and $(ACCSFILE2).h
$(CECOMP) $(CECOMP_FLAGS) $(SETS) -Fs$(SRCSET2)

$(SRCDIR)/$(NCLRULE2).ncl
$(CECOMP) $(CECOMP_FLAGS) $(SETS) -Fa$(SRCACCS2)

$(SRCDIR)/$(NCLRULE2).ncl

$(NCL2): $(SRCDIR)/$(NCLRULE2).ncl
$(CP) $(SRCDIR)/$(NCLRULE2).ncl $(BINDIR)/$(NCLRULE2).ncl

######################
For the 4th accelerator module
######################
$(PEMOD_OBJ_3): $(SRCDIR)/$(PEMOD3).cpp $(SRCSET3)

$(NBGCC) $(NBGCC_FLAGS) $(NB_INCLUDE) -I$(SRCSET3) -c
$(SRCDIR)/$(PEMOD3).cpp -o $@

$(SRCSET3): $(SRCDIR)/$(NCLRULE3).ncl
@echo building $(SETFILE3).h and $(ACCSFILE3).h
$(CECOMP) $(CECOMP_FLAGS) $(SETS) -Fs$(SRCSET3)

$(SRCDIR)/$(NCLRULE3).ncl
$(CECOMP) $(CECOMP_FLAGS) $(SETS) -Fa$(SRCACCS3)

$(SRCDIR)/$(NCLRULE3).ncl

$(NCL3): $(SRCDIR)/$(NCLRULE3).ncl
$(CP) $(SRCDIR)/$(NCLRULE3).ncl $(BINDIR)/$(NCLRULE3).ncl

clean:
@rm -rf "$(PLATFORM)"

Running an Application

To run an application:

1. Ensure that the IX-API SDK Resolver is running.
See “Verifying Your Development Environment” on page 42. The resolver
command is also described in the IX-API SDK Reference.

2. Run the application’s host module executable file.
This begins executing and loads the accelerator module into the Policy
Accelerator.
Intel Confidential Chapter 4: Compiling Applications 73

Revision 2.3, May 2000

• • • • •

Debugging an Application

•
Debugging an Application

For information on debugging an application, see Chapter 11, “Debugging and
Troubleshooting.”
74 Chapter 4: Compiling Applications Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 5

• • • • •
Controlling Packet Flow

This chapter explains how packets flow into and out of the Policy Accelerator
according to both the physical connections and the logical connections, or bind-
ings. It describes the system and default targets to which you can direct packets,
and explains how to create additional targets.

This chapter contains the following topics:

n Defining Packet Flow

n Binding Targets as Packet Destinations

n Defining Targets

n Directing Packets to a Target

n Using Targets to Serialize Packet Processing

Defining Packet Flow

The flow of packets through a Policy Accelerator is determined both by the
physical connections between the Policly Accelerator interfaces and the
network, and by actions that your application takes to specify how to handle
packets moving through the physical connections.

Physical
Packet Flow

Each Policy Accelerator has two physical interfaces, named A and B, as shown
in the following diagram:

A interface B interface
Intel Confidential Chapter 5: Controlling Packet Flow 75

Revision 2.3, May 2000

• • • • •

Defining Packet Flow

•
By default, Policy Accelerators work in promiscuous mode; that is, when a
cable is connected, all packets flow through the cable to the Policy Accelerator.
It is your application that determines what happens to the packets after they
reach the Policy Accelerator, if anything.

Here are two possible ways in which you might connect the Policy Accelerator,
assuming that it is installed in the host development system on which you are
testing your application:

n The Policy Accelerator “sniffs” the packets flowing across the main
network. This kind of application looks at packets but does not pass them
on. For example, the Policy Accelerator receives copies of all packets, counts
them, and drops them. In this case, your cabling might look as follows:

The CountApp application in Chapter 2, “Tutorial: Creating a Simple Appli-
cation,” assumes this kind of connection.

n The Policy Accelerator sits between your standard network interface card
(NIC) and the main network, so packets must flow back and forth across the
Policy Accelerator the same as in a standard network connection:

Main packet flow (such as a LAN)

Network interface card

Policy Accelerator

Cable with packets
flowing flowing to and
from NIC

Cable with packets flowing
to the Policy Accelerator’s A interface
76 Chapter 5: Controlling Packet Flow Intel Confidential

Revision 2.3, May 2000

• • • •

 Defining Packet Flow
When you have this kind of physical connection, you must create logical
bindings for packet flow in both directions—that is, you must bind both the
TO and FROM system ACEs for each interface.

Logical Packet
Flow

The flow of packets through Policy Accelerators can be thought of as connec-
tions among interfaces and applications, as shown in the following figure:

These connections are called bindings. The API provides the tools for you to
bind interfaces and applications together. Packets flow through a Policy Accel-
erator only after you have created bindings.

ACEs are the entities that receive and dispose of packets. In a simple applica-
tion such as the sample in this tutorial, packets arrive at an ACE, which you
define, from a network interface and leave using another network interface.
Because these interfaces must also be represented by ACEs, the SDK includes

Main packet flow (such as a LAN)

Network interface card

Policy Accelerator

Cable with packets
flowing flowing to and
from NIC through the

Cable with packets flowing to and
from the Policy Accelerator’s A interface

Policy Accelerator’s B interface

Packet flow

Input interface Applications and modules Output interface

?

?

match: act on
not

match
not

Drop
Intel Confidential Chapter 5: Controlling Packet Flow 77

Revision 2.3, May 2000

• • • • •

Binding Targets as Packet Destinations

•
system-defined ACEs for each of the two network interfaces on the Policy
Accelerator. The interface names, from which the system ACE names are
derived, are as follows for the first Policy Accelerator installed in your system:

n nbhwpe0A

n nbhwpe0B

Binding Targets as Packet Destinations

In an ACE, packets flow in only one direction: through the ACE to a target
within the ACE. A target provides a way to connect an ACE to a destination for
packets. Each ACE can have multiple targets.

For example, destinations can be:

n Another ACE in the same application

n An ACE in a different application

n A network transmission queue

n A network interface

n A built-in service for dropping packets or for cryptography

Requirement
for Packet
Flow

For a packet to flow out of an ACE, your application must:

1. Bind a target to a destination ACE.

2. Direct the packet to the target.

NOTE: Directing a packet to a target without binding the target to a destination
ACE causes packets to be dropped, as shown in the following figure.

Network interface ACE

rule match: action
no match

rule match: action
no match

Dropped

Target 1

Target 2

Target 3

Target 4

Packet flow

Targets bound to destinations

Unbound targets

Dropped

ACE A

ACE B
78 Chapter 5: Controlling Packet Flow Intel Confidential

Revision 2.3, May 2000

• • • •

 Binding Targets as Packet Destinations
The IX-API SDK programming model requires that:

n Every source that sends packets must be represented by an ACE that
contains targets.

n Every destination must be represented by an ACE.

System-
Defined
Targets and
ACEs

Targets are represented in your action code by Target objects. Each ACE has
two default target objects:

n Target named pass

n Target named drop

NOTE: These targets are named for your convenience only; remember that
packets flow only after you have created bindings. For example, if you
bound the target named drop to a network interface, packets would not
be dropped.

In addition, the SDK includes system-defined ACEs for each of the two inter-
faces on the Policy Accelerator. The interface names, from which the system
ACE names are derived, are the following, where n indicates which Policy
Accelerator:

n nbhwpenA

n nbhwpenB

If your site has customized the drivers for a standard network interface card
(NIC) for communication with the Policy Accelerator using the ODX protocol,
you can address the NIC connection directly as interface C, using the following
name:

n nbhwpenC

Each interface can be used for one or more of the following functions:

n Input from network

n Input from host protocol stack

n Output to network

n Output to host protocol stack
Intel Confidential Chapter 5: Controlling Packet Flow 79

Revision 2.3, May 2000

• • • • •

Binding Targets as Packet Destinations

•
Each of these functions corresponds to a system ACE. For example, to pass
packets out to the network through interface A on Policy Acclerator 0, you
would bind the system-defined pass target as follows:

bind ("/MyAppl/MyAceGroup/MyAce/pass",
"/nbhwpe0/ToInterface:nbhwpe0A/Interface");

The following figure shows possible directions for packet flow:

NOTE: For details on names of interfaces and default system ACEs, see
Appendix C, “Policy Accelerator Name Space,” in the IX-API SDK
Reference.

Binding
Example

The example given in Chapter 2, “Tutorial: Creating a Simple Application,”
binds the pass target of the first Policy Accelerator interface to your CountAce
subclass for incoming packets, and then binds the default pass target in Coun-
tAce to the system ACE for the second interface:

rval = bind
("/nbhwpe0/FromInterface:nbhwpe0A/Interface/pass",
"/CountPackets/CountAceGroup/CountAce");

if (rval != NB_SUCCESS) {
NB_ABORT(rval);

}
rval = bind ("/CountPackets/CountAceGroup/CountAce/pass",

"/nbhwpe0/ToInterface:nbhwpe0B/Interface");
if (rval != NB_SUCCESS) {

NB_ABORT(rval);
}

Unbound Targets

If you attempt to pass a packet to a target that has not been explicitly bound, the
packet is passed to the drop target.

Policy Accelerator

Host protocol stack

Possible packet flows
80 Chapter 5: Controlling Packet Flow Intel Confidential

Revision 2.3, May 2000

• • • •

 Defining Targets
Defining Targets

To create your own targets within ACEs, you must:

1. Use the TargetManager class to define and create a target manager object in
the host module.

2. Use the Target class to define and create a target object in the accelerator
module, using the same dictionary name that you specified for the target
manager.

Target managers on the host manage targets, which reside in ACEs on the
Policy Accelerator. Normally, the target objects are contained within the ACE
objects—that is, the constructor for the ACE object is defined to create the
contained target objects.

Typcially, you define a subclass of TargetManager in your host module and a
subclass of Target in your accelerator module—for example, appTargetMan-
ager and appTarget. The constructor for the ACE manager and ACE object
then create instances of each for each target that you require.

For example, in an NBAppl named myApp, in myAce managed by myAceManager
within myAceGroup:

n In the host module, you create the target manager object:

myTargetManager =
new appTargetManager (myApp, myAceGroup,

myAceManager, "myTarget");

ACE Group

ACE Manager Host Module

Accelerator ModuleACE

TargetManager

Target
Intel Confidential Chapter 5: Controlling Packet Flow 81

Revision 2.3, May 2000

• • • • •

Directing Packets to a Target

•
n In the accelerator module, you create the target object. The ID of the appli-
cation and the ACE object are automatically passed from the host module.
You specify only the dictionary name of the new target:

myFirstTarget =
new appTarget (id, ace, "myTarget");

NOTE: You must give the same dictionary name string—in this case,
myTarget—to both the target manager and to its associated target.

The set of outgoing targets in an ACE represents the set of all possible packet
destinations in that ACE, across all actions. An ACE that performs a demulti-
plexing function, for example, might have multiple outgoing targets.

Directing Packets to a Target

Action functions in the accelerator module determine the path that a packet
takes through an application by specifying whether the packet has completed
processing and by directing the packet to a specific target.

Packets are represented within action code by a Buffer object.

An action function must:

1. Use one of the following methods to designate the target through which the
packet buffer is directed when the ACE’s processing is complete:
l A Target object’s take method directs the buffer to this target.
l An Ace object’s pass method directs the buffer to the default pass target.
l An Ace object’s drop method directs the buffer to the default drop target.

2. Return one of the following constant values to indicate how rule processing
should continue, if at all, on this packet buffer:
l RULE_DONE, RULE_TOOK, RULE_CONT, or RULE_DEFER

For more information on these constant values and on writing action code, see
the following:

n Chapter 7, “Acting on Packets in Your Action Code.”

n “Action Functions” on page 115 in the IX-API SDK Reference
82 Chapter 5: Controlling Packet Flow Intel Confidential

Revision 2.3, May 2000

• • • •

 Using Targets to Serialize Packet Processing
Using Targets to Serialize Packet Processing

An application can bind targets to several ACEs, possibly on different Policy
Accelerators, in order to perform serial processing on packets.

The following figure shows a simple cascade of ACEs used by a single applica-
tion. Processing occurs serially from left to right. In this example, each ACE has
a single destination. Targets 1 and 2 are bound to ACEs 1 and 2, respectively.
Target 3 is bound to a network interface in the outgoing direction.

When several Policy Accelerators are installed, ACEs can execute more effi-
ciently (using pipelining). Note, however, that after one ACE has finished
processing a packet, the packet is given to another ACE that might execute on the
same hardware resource. Thus, the number of ACEs an application employs
should be limited.

Target1 Target2 Target3

ACE1 ACE2 Output network interfaceInput network interface
Intel Confidential Chapter 5: Controlling Packet Flow 83

Revision 2.3, May 2000

• • • • •

Using Targets to Serialize Packet Processing

•
84 Chapter 5: Controlling Packet Flow Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 6

• • • • •
Classifying Packets Using NCL

This chapter describes how an ACE classifies incoming packets using its classi-
fication code, which you write in Network Classification Language (NCL).

This chapter contains the following topics:

n How ACEs Handle Packets

n What’s in the NCL Rules File

n Defining Protocols

n Defining Rules

n How Rules Are Evaluated

n What Rules Do

How ACEs Handle Packets

An ACE does three things with a packet:

n Classifies it

n Acts on it

n Disposes of it

Packets are received by the Policy Accelerator as network traffic flows through
it. A packet arrives at an ACE from the source to which it is bound as a destina-
tion target, as described in Chapter 5, “Controlling Packet Flow.” The source of
a packet could be, for example, either a network interface or another ACE
earlier in the processing chain. The ACE classifies each incoming packet
according to classification rules defined in the ACE’s NCL rules file.

As a result of the classification, NCL rules trigger actions that are defined in the
ACE’s compiled action code. Actions can act on packets by examining or
retrieving their contents, or dispose of packets by sending them to targets. An
Intel Confidential Chapter 6: Classifying Packets Using NCL 85

Revision 2.3, May 2000

• • • • •

What’s in the NCL Rules File

•
action can make a final disposition, ending the classification process for that
packet, or it can tell the ACE to continue with the classification process and
evaluate more rules.

What’s in the NCL Rules File

An ACE classifies incoming packets according to the protocol and predicate
definitions in its NCL rules file. Based on the classification,rules in the NCL
rules file trigger actions in the associated action file.

The NCL rules file has two general parts. In the first part, you define the proto-
cols and predicates that are the basis of classification. In the second part, you
define the rules, which trigger specific actions based on how a packet satisfies
the predicates. In addition to these basic elements, you can define sets and
searches in the NCL rules file.

Classification
Elements

The basic classification elements you define in the NCL rules file are rules and
protocols.

n A rule determines whether some statement is true for the current packet. If
it is, the rule specifies an action to take. The action is a function that you
defined in the action code that is part of the same ACE as the NCL rules file.

n A protocol definition describes a set of fields of particular lengths. A
protocol is usually added on as a header to one or more other nested proto-
cols. The definition states which other protocols can be nested, and where
they start.

For convenience, you can also define named predicates to use in the rules and
protocol definitions. A predicate determines whether something is true of a
current packet — for example, whether it conforms to a certain protocol, or
whether a particular field has a particular value. Predicates are named Boolean
expressions, which can contain other predicates and Boolean expressions. You
can define predicates as part of a protocol definition or separately.

Sets and
Searches

NCL and the Action Services Library (ASL) together support data tables called
sets. Sets associate application-defined data with packets. You define named
searches associated with a specific set, which determine whether the current
packet has a matching element in the set, based on the values of specified fields.

You define and name the sets and searches in the NCL rules file, then use the
compiler to generate corresponding objects in the action code. The sets are
implemented on initialization. You populate the sets with data through actions.
86 Chapter 6: Classifying Packets Using NCL Intel Confidential

Revision 2.3, May 2000

• • • •

 Defining Rules
Searchable sets define collections of packets which are associated with each
other by virtue of their contents. A set member (element) matches packets with
a specific combination of field values. If you want to form collections on struc-
tural criteria, such as “the set of all packets with IP header lengths greater than
twenty bytes,” use a classification predicate rather than a searchable set; see
“Defining Protocols” on page 88.

Sets are an efficient way to track a large number of classes of packets. They
allow you to keep state information for all packets that have the same values in
specific fields. For example, you can count the number of packets that flow
between any two specific IP address pairs, or maintain state for each TCP
stream.

For more information on sets and searches, see Chapter 9, “Using Sets of Data
to Classify Packets.”

Defining Rules

NCL rules determine what action to take, based on the classification. A rule
consists of two parts:

n A predicate part
The predicate part of a rule is a Boolean expression that describes the condi-
tions a packet must meet to have the specified action performed on it.
Predicates might include static comparisons of packet contents or compari-
sons against dynamically-created state.

n An action part
The action part of a rule is the name of an action function to be executed
when the predicate is true, along with any additional arguments the named
function expects. The action function performs some action upon the
incoming packet.

The following example shows the parts of a rule:

rule allpackets { ether } { action_all() }

NCL keyword
Name of this rule

Predicate Action
Intel Confidential Chapter 6: Classifying Packets Using NCL 87

Revision 2.3, May 2000

• • • • •

Defining Protocols

•
The predicate part of the rule can be the name of a predicate defined earlier in
the file or in an included file, or it can be a Boolean expression that can, in turn,
use named predicates. A predicate uses packet protocol elements that are
defined earlier in the NCL rules file or in an included file. You access protocol
fields using the form protocol_name.field_name; for example, ip.src. In a
predicate, the name of the protocol currently being parsed evaluates to TRUE.

The action part of the rule contains the name of an action function defined in
the compiled action code that is part of the same ACE. You can pass arguments
to the function, as required by its definition. The action is executed only when
and if the predicate part of the rule evaluates to TRUE.

Defining Protocols

A rule determines whether its predicate is true by looking at fields in the
current packet. The fields are interpreted according to the protocol definitions
in the NCL rules file.

A protocol definition names and describes a protocol. It names and describes
the header fields that make up the protocol, and describes the relationship
among multiple protocols. You generally define protocols in the first main
section of an NCL rules file, immediately after the file inclusions and constant
definitions, and before the rules.

The IX-API SDK distribution includes NCL include files that define the TCP/IP
protocol. You can include these files in your application, and also use them as
templates for defining other protocols. The sample files are located in the
following directory:

SDKinstallpath/include/NBncl

Protocols often contain other protocols. The keyword demux in a protocol defi-
nition identifies other protocols that can be nested within it. (The keyword
comes from demultiplexing, the process of extracting nested protocols from the
protocols that contain them.) When a packet arrives, the Policy Accelerator
parses the protocol definitions to classify the packet. When it reaches the demux
statement, the parser evaluates the expressions in the order in which they
appear. The first expression that evaluates to TRUE identifies the nested
protocol, and the parser continues into the indicated protocol definition.

For example, the IP protocol definition contains the following demux statement
that specifies what other protocols could be nested in an IP packet, and at what
offset they would be found:

demux {
invalid { ip_bad at 0 }
88 Chapter 6: Classifying Packets Using NCL Intel Confidential

Revision 2.3, May 2000

• • • •

 Defining Protocols
badsrc { ip_badsrc at 0 }
(proto == 1) { icmp at hlen }
(proto == 2) { igmp at hlen }
(proto == 6) { tcp at hlen }
(proto == 17) { udp at hlen }
default { ip_unknown_transport at hlen }

}

While a protocol is being parsed, the protocol’s name becomes a Boolean
expression that evaluates to TRUE. For example, if the IP protocol is currently
being parsed, the expression ip evaluates to TRUE.

The following example shows an excerpt from the NBtcpip.ncl include file.
This excerpt defines the header fields for Ethernet packets, defines a reusable
Boolean function (predicate) for the protocol, and specifies the demultiplexing
(demux) method to high-layer protocols.

NCL syntax is described in detail in the IX-API SDK Reference.

protocol ether {
 dst { ether[0:6] }
 src { ether[6:6] }
 typelen { ether[12:2] }
 snap { ether[14:6] }
 type { ether[20:2] }
predicate isnap { (typelen<=1500) && (snap==0xAAAA03000000) }

offset {4 + (issnap<<3) }
demux {

typelen == ETHER_ARPTYPE { arp at offset }
typelen == ETHER_RARPTYPE { arp at offset }
typelen == ETHER_IPTYPE { ip at offset }

issnap && (type==ETHER_ARPTYPE) { arp at offset }
issnap && (type==ETHER_RARPTYPE) { arp at offset }
issnap && (type==ETHER_IPTYPE) { ip at offset }

default { ether_bad at 0 }

 }
}

NCL protocol definition

NCL predicate description

NCL demux description

NCL field definition
Intel Confidential Chapter 6: Classifying Packets Using NCL 89

Revision 2.3, May 2000

• • • • •

How Rules Are Evaluated

•
How Rules Are Evaluated

Packets arrive at an ACE as described in earlier chapters. When each packet
arrives at the ACE, it goes through a classification phase. During classification,
the ACE evaluates the rule predicates in the order in which they appear in the
NCL rules file. When a predicate evaluates to TRUE, the rule’s action goes on a
queue to be executed. The order of actions in the execution queue is the same
as the order of the successful rules in the NCL rules file.

When all of the rules have been evaluated, the Policy Accelerator begins
executing the actions in the execution queue. When an action is executed, it
returns a value indicating whether it disposed of the packet. An action must
return this value. For more information on defining actions, see Chapter 7,
“Acting on Packets in Your Action Code.”

Disposing of a packet corresponds to taking the final desired action on the
packet for a single classification step; for example, dropping it, queuing it, or
delivering it to a target.

n If an action returns the code RULE_CONT, indicating that it did not dispose of
the packet, the ACE continues executing queued actions, starting with the
next one.

n If an action returns the code RULE_DONE, indicating that it did dispose of the
packet, the classification phase terminates. The ACE does not execute any
further actions remaining in the queue.

n If all actions are executed without disposing of the packet, the packet is
delivered to the default target of the ACE.

For more information on what actions can be taken and how to define them, see
Chapter 7, “Acting on Packets in Your Action Code.”

What Rules Do

A rule can simply check the protocol type and take an appropriate action. For
example, a VPN application might have a rule to check for an IPSec packet.
When the rule succeeds, the action decrypts the packet. The rule might look like
this:

rule check_ipsec { ipsec } { action_decrypt () }

A rule can pass field values to the action. For example, the following rule passes
the source and destination addresses:

rule check_ip { ip } { action_ip (ip.src, ip.dst) }
90 Chapter 6: Classifying Packets Using NCL Intel Confidential

Revision 2.3, May 2000

• • • •

 What Rules Do
The rule itself can check the source or destination address, or both, against a
particular address, or table of addresses.

A rule that checks a specific address might look like this:

rule check_src { ip.src == 10.10.10.30 } { action_A() }

You can use sets to keep tables of addresses, and named searches to check
incoming packet addresses against the table. For more information on sets and
searches, see Chapter 9, “Using Sets of Data to Classify Packets.”

The rule can check other fields in the packet. For example, in an intrusion detec-
tion application, a rule might check whether a TCP packet is part of an HTTP
stream. The rule might look like this:

rule check_http { tcp && (tcp.sport == 80 || tcp.dport == 80) }
{ action_scan () }

When successful, this rule passes the packet to an action function, where it is
queued, reordered, and then searched for interesting strings. If the function
finds such a string, it sends a notification to the application using an upcall.

For more information on:

n Defining action functions, see Chapter 7, “Acting on Packets in Your Action
Code.”

n String searches, see Chapter 10, “Finding Strings in Packets.”

n Upcalls, see Chapter 8, “Communication Within an Application.”
Intel Confidential Chapter 6: Classifying Packets Using NCL 91

Revision 2.3, May 2000

• • • • •

What Rules Do

•
92 Chapter 6: Classifying Packets Using NCL Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 7

• • • • •
Acting on Packets in Your Action Code

This chapter describes the action portion of an ACE. It explains what is in the
action code file, how to write it, and what kind of things it might do.

This chapter contains the following topics:

n Action Code Overview

n What Is in an Action Code File

n Initializing the Action Part of an ACE

n What Is in the Action Part of the File

n What Action Functions Do

Action Code Overview

You implement the action portion of an ACE, which consists of action code that
is compiled on the host, loaded into an ACE during initialization, and run on
the Policy Accelerator. You write action code using the following:

n The C and C++ runtime environment

n Restricted standard libraries appropriate to the Policy Accelerator execution
environment, which does not support floating-point math, file system
access, or multithreading

n The Action Services Library (ASL), which provides added functionality for
developing network applications; specifically, it provides:
l A basic class framework for representing network data packets (the

Buffer class), and for sending them to different destinations on the
network (the Target class)

l Support for the ACE structure
l Inter-module communication via upcalls, downcalls, and crosscalls
l The association of arbitrary data with packets using data sets
l Support for string searches in packet data
Intel Confidential Chapter 7: Acting on Packets in Your Action Code 93

Revision 2.3, May 2000

• • • • •

What Is in an Action Code File

•
l Support for some basic system services, including timers, statistical
counters, and memory management

l Support for action code, by means of the ASL extensions, to handle
many TCP/IP functions such as IP fragmentation and reassembly,
network address translation (NAT), and TCP connection monitoring
(including stream reconstruction)

The ASL API is described in detail in Chapter 4, “Action Services Library,” of
the IX-API SDK Reference.

What Is in an Action Code File

Each ACE contains one action file associated with one NCL rules file. Your
action code file contains two loosely defined parts:

n The initialization part creates the ACE object, and also creates and initializes
any other subclasses, objects, and structures that you will need. The entry
point is the ASL init_actions function, which acts as a main function for
the ACE.

n The action part contains the action and callback function definitions. These
are entry points that implement the behavior of your application in
response to incoming packets, messages, or other events. The action part
also contains method definitions for any methods you have created in your
subclasses.

Initializing the Action Part of an ACE

In the initialization portion of your action code file, you define all of the ASL
subclasses and other data structures that the application will need. You must
also create and initialize the ACE itself, as well as any other objects and data
you will need.

Defining ASL
Subclasses
and Objects

Each action code file is associated with one ACE, which is represented by an
object of the Ace class. Typically, the object is a member of an Ace subclass that
you define in the action file.

Your Ace subclass must contain references to objects in the ACE. These can
include:

n Communication objects. These can include Upcall, DowncallHandler,
Crosscall, and CrosscallHandler objects. For more information, see
Chapter 8, “Communication Within an Application.”
94 Chapter 7: Acting on Packets in Your Action Code Intel Confidential

Revision 2.3, May 2000

• • • •

 What Is in the Action Part of the File
n String search objects. These can include NBSearchContext, NBString-
SearchEngine, and NBStringMatchReport objects. For more information,
see Chapter 10, “Finding Strings in Packets.”
You do not usually need to create subclasses for communication and string
search objects. The constructor for the Ace subclass creates the objects as
members of the parent class.

n Data set objects. For each data set, the ACE must contain a set object of the
subclass defined in the header file generated from the NCL. The object must
have the same name that was declared for the set in NCL. (Your action code
file must also define subclasses for set elements, but the ACE need not point
to the element objects.) For more information, see Chapter 9, “Using Sets of
Data to Classify Packets.”

Your Ace subclass also typically contains methods to perform application func-
tions, such as sending messages or initiating searches, as well as callback
methods for various purposes. For more information, see “Defining Callbacks”
on page 97 and “Defining Other Methods” on page 99.

Initializing the
ACE

Your action file must contain a “main” function, init_actions(). In this func-
tion, you must create and return the Ace object for the ACE to which the code
belongs, using code such as the following:

init_actions(ModuleID id, char * name, Image* obj)
{ ...

return new MyAce(id, name, obj);
}

The Policy Accelerator calls this function immediately after receiving the NCL
and action code from the host (that is, when you call the application’s load
method in the host module). In addition to creating the ACE object, the function
can perform any other initialization your application needs. It can, for example,
create additional objects, populate sets, or initialize other data structures.

What Is in the Action Part of the File

In the action part of the action code file you define the methods and functions
that implement the behavior of your application. You can implement behavior
in any of the following ways:

n Action functions
An action function is executed when an NCL rule’s predicate is TRUE for an
incoming packet. Action functions can call methods or other functions
directly, or send messages that result in the execution of callbacks.
Intel Confidential Chapter 7: Acting on Packets in Your Action Code 95

Revision 2.3, May 2000

• • • • •

What Is in the Action Part of the File

•
n Callbacks
Callbacks are executed in response to downcalls or crosscalls, scheduled
events, or the expiration of set elements. You define a callback as a member
of your subclass of the appropriate class.

n Other subclass methods
You can provide definitions for methods you have added, or redefine
existing methods in your own subclasses. Methods are not entry points. To
execute a method, you must call it from an action function or callback.

Defining
Action
Functions

Actions are function entry points implemented according to the calling conven-
tions of the C/ C++ programming language. An action function is executed
when an NCL rule predicate is satisfied for an incoming packet. The rule must
pass any arguments that you have defined for the action function, and the
action function must return one of the disposition codes that tell the NCL
compiler whether to continue processing the rules.

NOTE: Due to limitations in the gcc compiler, it is recommended that you avoid
the use of type bool arguments in action functions. Use unsigned int
instead.

Action Function Return Values

An action function that you define must return one of the following constant
values:

Return Code Description

RULE_DONE Return RULE_DONE to terminate processing of rules and actions within
the context of the current ACE, for example, when a buffer has been
sent to a target or stored for later processing. This value does not indi-
cate whether the action has modified the packet.

RULE_TOOK Return RULE_TOOK to terminate processing of this packet within this
ACE if the action has not modified the packet starting location, size or
contents, but has designated a target for the packet to flow through.

NOTE: The pass and drop methods return this code.

RULE_CONT Return RULE_CONT if the action has only observed the buffer, and
additional rules and actions within the context of the current ACE
remain to be processed.

RULE_DEFER Return RULE_DEFER if you want to modify a packet within a buffer but
the buffer notes that the packet is currently busy elsewhere.
96 Chapter 7: Acting on Packets in Your Action Code Intel Confidential

Revision 2.3, May 2000

• • • •

 What Is in the Action Part of the File
CAUTION: If your action function does not return one of these codes, you get a
compiler warning. If you ignore this warning, your application is
corrupted when the action function returns, and the corruption may
not be detectable.

Predefined Action Functions

Two action functions are already defined in the ASL to perform simple and
common operations:

n The action_pass function routes a packet to the ACE’s pass target.

n The action_drop function routes a packet to the ACE’s drop target.

Both of these functions return the code RULE_TOOK, which halts further rule
processing for the packet. Neither takes any argument. To call one of these func-
tions in an NCL rule, use a rule like the following:

rule passip { ip } { action_pass() }

This would pass all IP packets through to the ACE’s pass target without further
processing.

For More Information

For more information on defining action functions, see “Action Functions” on
page 115 in the IX-API SDK Reference.

Defining
Callbacks

In the action part of your action code file, you define the callbacks that are
executed in response to various events. You can define the following kinds of
callbacks:

n Downcall and crosscall handler callbacks
The callback or service function for a downcall or crosscall handler imple-
ments the behavior to be executed when the downcall or crosscall is
received. In response to the Crosscall or Downcall object’s call method,
the host executes the service function specified in the associated Cross-
callHandler or DowncallHandler object, passing it the specified message.
A call handler service function takes as its argument the message passed by
the call, and returns nothing. It must be a member of a subclass of the Ace
class.
For more information on call handler callbacks, see “Defining Message
Handling Callbacks‚” in Chapter 8, “Communication Within an Applica-
tion.”
Intel Confidential Chapter 7: Acting on Packets in Your Action Code 97

Revision 2.3, May 2000

• • • • •

What Is in the Action Part of the File

•
n Message completion callbacks
The message completion callback implements behavior to be executed
when a message transfer is finished. Because message transfer is asynchro-
nous, you can use this callback to ensure that values do not change or
memory is not freed before the message transfer is complete.
This kind of callback function does not need to be a member of a subclass.
For more information on call completion callbacks, see “Creating Messages
and Message Blocks‚” in Chapter 8, “Communication Within an Applica-
tion.”

n Scheduled event callbacks
The Event class provides for execution of functions at arbitrary times in the
future. You can reschedule or cancel an event, or change the function that it
executes. The event callback method implements the behavior to be
executed at the scheduled time.
You must define an event callback method as a member of the same Event
subclass that uses it.
For more information on event callbacks, see “Event Class” on page 166 in
the IX-API SDK Reference.

n Set element expiration callbacks
When you call the expire method of a set element, you can pass a callback
function that you have defined. This function normally deletes the set
element, using the delete operator for the subclass. Elements are not auto-
matically deleted on expiration; to cause this, you must define a callback to
do it.
You must define an expiration callback method as a member of the same
Element subclass as the expire method that uses it.
For more information on expiration callbacks, see “Elt_setname Class”
on page 160 in the IX-API SDK Reference.

n String search callbacks
You must define callbacks to handle the strings found by string searches in
packet buffers. These callbacks are of two types, per-match and per-buffer,
and you define them in your action code as part of a NBStringSearchCon-
text object.
Changes of state that you make in the string search engine or context can be
delayed if a search is in progress; you can define callbacks to be invoked
when such a change actually takes place.
For more information on string searches, see Chapter 10, “Finding Strings
in Packets.”
98 Chapter 7: Acting on Packets in Your Action Code Intel Confidential

Revision 2.3, May 2000

• • • •

 What Action Functions Do
Defining Other
Methods

You can define other new methods for your subclasses, or redefine existing
methods. A method is executed when you call it from an action function, a call-
back, or another method. For example, an Ace subclass typically has a method
that creates a message and sends it to the host in an upcall.

The following is an example of a method defined in an Ace subclass. It creates
a new packet from scratch to send from an ACE. Before defining this method,
you would need to create the MyAce subclass and declare the member method.

void MyAce::SendOnePacket (void)
{

// Create a new buffer object
Buffer *pBuf = new Buffer;
if (pBuf){

// Use the append method to allocate memory in the buffer
if (pBuf->append (1024) != NULL){

// Use packetBase to get pointer to start of buffer
memset (pBuf->packetBase (), 1,

 pBuf->packetSize ());
// Use pass_.take method to pass it along
pass_.take (pBuf);
// Delete ref count to this buffer. Buffers only get
// TX when the ref count == 0
pBuf->decref ();

}
else {

// Can’t append to the buffer
// Free the buffer by decref, never ‘delete’
buffer pBuf->decref ();

} }
else{ // Can’t create a new buffer
} }

What Action Functions Do

You can define action functions to respond to the successful application of a
rule in any way you want. Actions can do any of the following:

n Pass the current packet to any target

n Modify a packet before passing it to a target

n Increment the buffer reference counter to indicate that the buffer is in use,
and decrement the reference counter when the function is finished with the
buffer

n Increment and decrement application-specific counters
Intel Confidential Chapter 7: Acting on Packets in Your Action Code 99

Revision 2.3, May 2000

• • • • •

What Action Functions Do

•
n Build and send messages using upcalls or crosscalls; for more information,
see Chapter 8, “Communication Within an Application.”

n Add or delete elements or change data in sets; for more information, see
Chapter 9, “Using Sets of Data to Classify Packets.”

n Start or continue a search for a specific string, or a string matching a pattern,
in the data portion of a packet buffer; for more information, see Chapter 10,
“Finding Strings in Packets.”

n Call other functions or methods

The following table shows some typical actions you might define for different
types of applications. Notice that, while the action is triggered by a rule that
checks a particular condition, the action itself can continue to check conditions
before deciding what to do.

Application Type Classification Action

Firewall

Controls access by maintain-
ing a set of acceptable source
addresses

If packet IP src address is
in my table of addresses
that have access to my
network

Route the packet to the
appropriate location inside
my network

Firewall

Translates packet addresses
based on a set of address
mappings

If packet IP dst address
matches a known
address for inbound traffic

Change the dst address to
the new address specified
by the matching set ele-
ment

Recompute checksums

If the packet IP src
address matches a
known address for out-
bound traffic

Change the src address
back to the original map-
ping address specified in
the matching set element

Recompute checksums
100 Chapter 7: Acting on Packets in Your Action Code Intel Confidential

Revision 2.3, May 2000

• • • •

 What Action Functions Do
Load-balancing

Redirects packets to least-
loaded servers by maintaining
a set of possible destination
servers

If the IP src and dst match
an element in the server
set

Perform address translation
(NAT) to change dst to
value from matching ele-
ment

Recompute the checksum

Send the packet to the iden-
tified server

If the IP src and dst do not
match any element in the
server set, pass the
pointer to where the
record should go to the
action

Use a load-balancing algo-
rithm to determine the
server to which the connec-
tion should go

Create a new element for
the server and add it to the
set

Perform NAT on the packet
and send it to the identified
server

Intrusion detection If the packet is part of a
TCP stream

Search the packet for inter-
esting strings

If found, notify the applica-
tion using an upcall

Network monitoring If the packet is HTTP and
has a specified IP src
address

Search the packet for the
name of the web page of
interest

If found increment a
counter called mywebpage

Application Type Classification Action
Intel Confidential Chapter 7: Acting on Packets in Your Action Code 101

Revision 2.3, May 2000

• • • • •

What Action Functions Do

•
Quality of service

Maintains higher and lower
priority queues for transmitting
traffic

If the IP destination
address equals that of the
SAP financial server

Place the packet on a high
priority queue for transmis-
sion

If the IP source address
equals that of a known
customer who buys a lot
of merchandise at your
online store

Place the packet on a high
priority queue for transmis-
sion

If the IP destination
address is the ESPN web
site and the source
address is Bob’s machine
who works in finance

Place the packet on a low
priority queue for transmis-
sion

VPN If the packet is an IPSec
packet

Decrypt the packet using
the crypto API calls.

Application Type Classification Action
102 Chapter 7: Acting on Packets in Your Action Code Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 8

• • • • •
Communication Within an Application

This chapter contains the following topics:

n Overview

n Communication Between the Host and the Policy Accelerator

n Communication among ACEs

n Creating Messages and Message Blocks

n Defining Message Handling Callbacks

n Moving Packets between the Policy Accelerator and the Host

Overview

To pass data between different parts of your application, you encapsulate the
data in a message, which you construct from message blocks. You can pass the
message to a handler function, or callback, in another part of the system, by
means of associated objects in the host module and accelerator module. One
kind of object, a call, sends the message, and another kind of object, a call
handler, receives the message and passes it to the callback for processing. Calls
are asynchronous.

You can send messages:

n From the host module to the accelerator module, using downcalls

n From the accelerator module to the host module, using upcalls

n From one ACE to another ACE, in the same or another Policy Accelerator,
using crosscalls
Intel Confidential Chapter 8: Communication Within an Application 103

Revision 2.3, May 2000

• • • • •

Communication Between the Host and the Policy Accelerator

•
Communication Between the Host and the Policy Accelerator

Upcalls and downcalls allow communication between the host and the Policy
Accelerator. You can use upcalls and downcalls in your application to share
information or to signal between the host module and the accelerator module.
For example, you can pass

n Memory blocks

n Packet contents

n Notifications

In general, you can construct and pass messages of any sort, as if you were
making asynchronous remote procedure calls.

You typically use upcalls and downcalls to send configuration or statistical
information, or control messages. You can use upcalls and downcalls to pass
individual packets, or small collections of packets, between the host and Policy
Accelerator, but it is not an efficient way to forward packets. To forward
packets or to transfer large amounts of data between the Policy Accelerator and
the host, use the host protocol stack. See “Moving Packets between the Policy
Accelerator and the Host” on page 114.

NOTE: To make applications run faster, do most of your packet processing on
the Policy Accelerator.

Calls and Call
Handlers

To send messages between the host module and the accelerator module,
construct a pair of objects: a call object on one side that sends the message, and
a handler object on the other side that receives the message.

There are two types of calls and call handlers:

n A downcall sends a message from the host module to the accelerator
module action code. You create a downcall object in the host module, and a
corresponding downcall handler object in the accelerator module.

n An upcall sends a message from the accelerator module action code to the
host module. You create an upcall object in the accelerator module and a
corresponding upcall handler object in the host module.

You associate a call object and its handler object by giving them the same dictio-
nary name when you construct them; that is, you pass the same value to each
as the name argument of the constructor.

The relationship between calls and handlers is shown in the following figure.
104 Chapter 8: Communication Within an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Communication Between the Host and the Policy Accelerator
Making
Upcalls

To make upcalls from the accelerator module to the host module:

1. In the host module, define a method in the ACE manager subclass to act as
a message handler. This is known as a callback or service function.

2. Create an Upcall object in the accelerator module, noting the name value in
the constructor.

3. Create an UpcallHandler object in the host module:
l For the name argument, specify the same value that you used for the

Upcall object in Step 2.
l For the argUpcallFunction argument, specify the name of the callback

that you defined in Step 1.

4. In the accelerator module, use the Message and MessageBlock constructors
to create a message object containing the data you want to send.

5. In the accelerator module, pass the message to the call method of the
Upcall object.

The handler object in the host module receives the message and directs it to the
callback that you supplied.

Making
Downcalls

To make downcalls from the host module to the accelerator module:

1. In the accelerator module, define a method in the ACE subclass to act as a
message handler.

2. Create a Downcall object in the host module, noting the name value in the
constructor.

Host
module

Accelerator

module ACE

ACE
manager

Downcall

Upcall

Downcall

Upcall

Handler

Handler

ActionsClassification
Intel Confidential Chapter 8: Communication Within an Application 105

Revision 2.3, May 2000

• • • • •

Communication among ACEs

•
3. Create an DowncallHandler object in the accelerator module:
l For the name argument, specify the same value that you used for the

Downcall object in Step 2.
l For the func argument, specify the name of the callback that you defined

in Step 1.

4. In the host module, use the Message and MessageBlock constructors to
create a message object containing the data you want to send.

5. In the host module, pass the message to the call method of the Downcall
object.

The handler object in the accelerator module receives the message and directs
it to the callback that you supplied.

For More
Information

For more information on downcalls, see the following sections in the IX-API
SDK Reference:

n “Downcall Class” on page 56

n “DowncallHandler Class” on page 150

For more information on upcalls, see the following sections in the IX-API SDK
Reference:

n “Upcall Class” on page 273

n “UpcallHandler Class” on page 88

Communication among ACEs

You can send messages from the action code in one ACE to the action code in
another ACE using crosscalls. The sending ACE must have a crosscall object to
send the message, and the receiving ACE must have a crosscall handler object
to receive the message and direct it to a callback.

In addition, both the crosscall and crosscall handler objects must be paired with
corresponding manager objects on the host. You associate the objects on the
accelerator module with their manager objects on the host module by giving
the paired objects the same names on creation.

To associate a crosscall with a crosscall handler in another ACE, use the link
method of the application’s NBappl object. To disassociate the two, use the
unlink method. You can associate any number of crosscalls with the same
handler. You can associate a crosscall with a handler in any ACE, whether or not
it is in the same ACE group or on the same Policy Accelerator. For example, you
106 Chapter 8: Communication Within an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Communication among ACEs
can use a single crosscall handler in one ACE to coordinate the activities of a
number of other ACEs, by linking it with a crosscall object in each of the ACEs
and sending it messages whenever those ACEs take particular actions.

The relationship between crosscalls and their handlers and managers is shown
in the following figure.

Making
Crosscalls

To make a crosscall from AceA to AceB:

1. In the host module, create a CrosscallManager object and a Crosscall-
HandlerManager object, noting the values of the name arguments.

2. In the accelerator module for AceA, create a Crosscall object, passing the
same name value you used for the CrosscallManager object in Step 1.

3. In the accelerator module for AceB, define a method in the ACE subclass to
handle the message.

4. In the accelerator module for AceB, create a CrosscallHandler object:
l For the name argument, specify the same value that you used for the

CrosscallHandlerManager object in Step 1.
l For the func argument, specify the name of the callback that you defined

in Step 3.

5. In the host module, call the link method of the NBappl object:

l For the from argument, specify the complete path to the Crosscall
object in AceA; for example, MyAppl/MyAceGroup/AceA/MyCrosscall.

l For the to argument, specify the complete path to the CrosscallHan-
dler object in AceB; for example, MyAppl/MyAceGroup/AceB/MyCross-
callHandler.

Host
module

Accelerator
module ACEs

ACE
manager

Crosscall Handler

Crosscall Handler
ManagerCrosscall Manager

Crosscall

NB Application
link method
Intel Confidential Chapter 8: Communication Within an Application 107

Revision 2.3, May 2000

• • • • •

Creating Messages and Message Blocks

•
6. In the accelerator module for AceA, create Message and MessageBlock
objects with the data you want to send to AceB.

7. In the accelerator module for AceA, pass the Message object you created in
Step 6 to the call method of the Crosscall object.

The CrosscallHandler object in AceB receives the message and passes it to the
callback you defined.

For More
Information

For more information on crosscalls, see the following sections in the IX-API
SDK Reference:

n “Crosscall Class” on page 139 and “CrosscallHandler Class” on
page 144

n “CrosscallManager Class” on page 52 and “CrosscallHandlerMan-
ager Class” on page 48

n “NBAppl Class” on page 68

Creating Messages and Message Blocks

Messages and message blocks were introduced in “Sending Messages from the
Policy Accelerator to the Host” on page 31. Message blocks specify the memory
to be used in constructing a message. They are represented by different classes
on the host and on the Policy Accelerator.

n For a downcall, you construct a message on the host using the Message and
MessageBlock classes of the host API.

n For an upcall or crosscall, you construct a message on the Policy Accelerator
using the Message and MessageBlock classes of the ASL.

These classes are similar, but not identical. In each case, you construct a
message from one or two message blocks. There are several constructors for
message blocks, which allow you to construct messages from arbitrary data or
from the packet buffer.

The memory that you use in building a message is usually freed automatically
on the calling side after the call is complete. (Because calls are asynchronous,
the completion can occur some time after you actually make the call.) To retain
the message on the calling side, or to clean up other memory associated with
the message object, specify a callback method to be executed when the call is
complete.
108 Chapter 8: Communication Within an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Creating Messages and Message Blocks
More memory is allocated for a copy of the message on the receiving side. You
are responsible for freeing this memory when you have finished processing the
message. You normally do so in the message handling callback method.

Allocating
Space for
Message Data
in ASL

Message passing is asynchronous—that is, when you make an upcall or cross-
call, the Policy Accelerator queues the message, but does not immediately send
it. Also, messages that you build in the accelerator module contain pointers to
the data to be sent, not copies of the data. This means that, by the time a
message is actually sent, it is possible for the data in the message buffer to have
changed. If the message buffer is an automatic variable (allocated on the stack),
it will probably not even exist by the time the message is sent.

You can avoid this kind of problem by creating the message from a buffer that
you specifically allocate for the purpose.

n When you are passing a small amount of fixed-length data to the host it is
most efficient to allocate memory for the message data in an object field.
For example, the simple application CountApp in Chapter sends a snap-
shot of the packet counter value to the host using an upcall. It defines fields
in the ACE subclass for both the counter (packetCounter) and a snapshot
of the current count (CntSnap). It uses the snapshot buffer to build the
message:

class CountAce: public Ace {
public:

CountAce (ModuleId id, char* name, image* obj);
int packetCounter;
nuint32 cntSnap;
...
void CountAce::showPacketCount (void){

...
cntSnap = htonl (packetCounter);
MessageBlock b ((char *) &cntSnap, sizeof (cntSnap));
Message m (b);
peekPacketUpcallHandle.call (&m);
...

}

n If you need to pass a large amount of data, or data of variable length, it is
better to dynamically allocate memory for the data on the heap.
For example:

...
char databuf[size];
...
MessageBlock mb(sizeof(databuf));
Message msg (mb);
Intel Confidential Chapter 8: Communication Within an Application 109

Revision 2.3, May 2000

• • • • •

Creating Messages and Message Blocks

•
char *PtrSnapshot = msg.msg1();
memcpy (PtrSnapshot, databuf, sizeof(databuf));
...

Constructing
Messages in
ASL

There are several different constructors for the MessageBlock class of the ASL,
for constructing messages from different kinds of data. The data pointers in the
different constructors are handled in different ways.

n Use one of the following constructors to dynamically allocate a message
area of a specified size, which is automatically released to the free pool after
the message is sent:

MessageBlock(int len)
MessageBlock(int len, int off)

After constructing the message block object in this way, write the data to the
location returned by MessageBlock.msg(). This is probably the easiest,
most generic way to send constantly changing data to an application. For
example:

void SendText(char *str)
{

int i = strlen (len);
MessageBlock m (i+1);
strcpy (m.msg (), str);

// strcpy and memcpy are not efficient on accelerator -
// a real app would not use them

msg->call (&m);
}

When you use the off argument, the message starts at a small byte offset
from the normally word-aligned allocated storage area.

n Use the following constructors to create messages from static strings or
data:

MessageBlock (char *msg)
MessageBlock (char *msg, int len)
MessageBlock (char *msg, int len, DoneFp done)

The string or data argument should be static. When the message block is
passed to Message->call, the data copy might not have happened by the
time Message->call returns. If the contents pointed to by the argument
changes, or if the argument goes out of scope (declared on the stack in a
function that returns), the data the application receives by way of the upcall
will have changed, or become invalid.
For example, suppose you have the following two arrays, one declared
static, and one not:
110 Chapter 8: Communication Within an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Creating Messages and Message Blocks
static WORD aStatic [5]={1,2,3,4,5};
WORD aChange [5]={1,2,3,4,5};

You can use construct the following message from the static string "HELLO" :

MessageBlock m1 ("HELLO");
msg->call (&m1);

Because the array is static, you can also construct a message like this:

MessageBlock m2 (&aStatic [0], sizeof (aStatic));
msg->call (&m2);

However, you cannot do the same with the dynamic variables. For example,
consider the following message construction:

MessageBlock m3 (&aChange [0], sizeof (aChange));
msg->call (&m3);
aChange [0] = 7;

This could fail because aChange might go out of scope and be invalid by the
time the message is sent. Similarly, the assignment (aChange[0] = 7) might
execute before the message reaches the application, in which case the appli-
cation would receive the array 7,2,3,4,5, rather than 1,2,3,4,5.
If you use the constructor with the DoneFp argument, the data you pass to it
must remain valid and unchanged until the callback function you specify
has been called. The callback is executed when the message has finished
being sent, not when it has been received. In the case of a crosscall, this
means that the message has been received by the host, on its way to its desti-
nation. It might not yet have been received by the crosscall handler in the
destination ACE.

n Use the following constructor to create a message block to send a network
buffer to an application:

MessageBlock(Buffer *buf)

When you construct a MessageBlock from a buffer, the method automati-
cally increments the reference count on the Buffer object to indicate that it
is in use, and decrements the count when the completion method is trig-
gered in the Message object. Use the busy method of the Buffer class in any
subsequent actions that modify the buffer, so that the modifications can be
delayed until the original data has been sent.
Intel Confidential Chapter 8: Communication Within an Application 111

Revision 2.3, May 2000

• • • • •

Creating Messages and Message Blocks

•
Constructing
Messages on
the Host

There are only two ways to construct messages in the host module. You can
create a message from a fixed-length buffer or from a NULL-terminated buffer.
Use one of the following constructors:

MessageBlock (char * argBuffer);
MessageBlock (char * argBuffer, DWORD argLen);

Omit the length argument to build a message from a NULL-terminated buffer,
such as a single string. Provide the length argument to build a message from a
fixed-length buffer, such as a list of NULL-terminated strings.

Byte Order in
Message Data

Two computers, or a computer and the network, can disagree about the order
in which the bytes of a 16-bit or 32-bit number are stored—most-significant-
byte-first or least-significant-byte-first. If the receiver of a message uses a
different byte order from the sender of the message, the content of the message
is interpreted wrongly.

Because calls go across the network, you must be careful that the byte order of
the data that you send in the calls is preserved. The sender and the receiver
could use different byte orders, and either or both could use a different byte
order from the network.

To preserve data integrity, use the ntoh and hton conversion functions
provided in the API to convert all data values to a known byte order before
creating the message, and to convert the values to the locally applicable byte
order after receiving the message. This process is known as marshalling the
arguments.

For example, the following code converts a number to network order before
creating a message from it, and sending the message to the host in an upcall:

msg = htonl (packetCounter);
MessageBlock b ((char *)&msg, sizeof (msg));
Message m (b);
peekPacketUpcallHandle.call (&m);

The following upcall handler callback is defined to receive this message. It
converts the argument back to host order from network order:

void NBBasicAce::peekPacketUpcall (Message* m)
{

NB_ASSERT (m->getLen1 () == sizeof (nuint32));
printf ("NoOfPackets: %05d\n",

ntohl (* (nuint32 *) m->getBuffer1 ()));
releaseMessage (m);

}

112 Chapter 8: Communication Within an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Defining Message Handling Callbacks
For More
Information

For more information on:

n Constructing messages on the Policy Accelerator, see the ASL’s “Message
Class” on page 180 and “MessageBlock Class” on page 184 of the IX-API
SDK Reference.

n Constructing messages on the host, see the host API’s “Message Class” on
page 62 and “MessageBlock Class” on page 66 of the IX-API SDK Refer-
ence.

n Byte order, see “Byte Order Issues” on page 10 in the IX-API SDK Reference.

Defining Message Handling Callbacks

Once you construct a message and use the call object to send it to its destination,
the call handler object receives it and directs it to a callback, or service function,
for processing. You must define this callback as a method in the proper object:

n Define an upcall handler callback as a method in the ACE manager object in
the host module. This callback processes messages sent from the accelerator
module to the host in upcalls.

n Define a downcall or crosscall handler callback as a method in the ACE
object in the accelerator module.
l A downcall handler callback processes messages sent from the host to

the accelerator module in downcalls.
l A crosscall handler callback processes messages sent from other ACEs in

crosscalls.

A message handling callback takes a pointer to a message as its only argument,
and returns nothing.

You can specify the callback method to which messages should be directed
when you create the call handler object. For downcall and crosscall handlers,
you can change the callback at any time by using the direct method of the call
handler object.

Releasing
Message
Memory

When a message is received, memory for it is allocated locally. In the case of
upcalls, unless you want to keep the received message for further processing,
the callback should release the memory allocated to the message when it has
finished.
Intel Confidential Chapter 8: Communication Within an Application 113

Revision 2.3, May 2000

• • • • •

Defining Message Handling Callbacks

•
An upcall handler callback releases message memory using the releaseMes-
sage method. For example:

void NBBasicAce::peekPacketUpcall (Message* m) {
NB_ASSERT (m->getLen1 () == sizeof (nuint32));
printf ("NoOfPackets: %05d\n",

ntohl (* (nuint32 *) m->getBuffer1 ()));
releaseMessage (m);

}

In the case of messages received by the Policy Accelerator in downcalls and
crosscalls, the call handler receives a pointer to a message that is owned by the
system. The Policy Accelerator takes care of releasing the message pointer after
the call is received. However, you are responsible for releasing the data blocks
within the message. You must do this in the callback, after you have finished
processing the message data.

A downcall or crosscall handler callback must release message block memory
using the message’s done method. For example:

void myHandler (Message *m)
{
/* find the primary data block */

char *msg1 = m->msg1 ();
size_t len1 = m->len1 ();

/* find the secondary data block */
char *msg2 = m->msg2 ();
size_t len2 = m->len2 ();

/* XXX- put code here to take action on the data blocks */

/* Get here when we no longer need the original data blocks. */
/* Trigger the appropriate callbacks to recycle them. */

m->done ();
/* the caller still owns the Message object itself,
** so DO NOT use "delete m" here.*/
}

The Message object’s done method triggers the completion callbacks for the
message block or blocks, as appropriate to the call. If you specified a completion
callback when constructing the message, it is called if needed.

For More
Information

For more information on call handler callbacks, see the following sections in the
IX-API SDK Reference:

n “UpcallHandler Class” on page 88

n “DowncallHandler Class” on page 150
114 Chapter 8: Communication Within an Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Moving Packets between the Policy Accelerator and the Host
n “CrosscallHandler Class” on page 144

Moving Packets between the Policy Accelerator and the Host

Upcalls and downcalls are not an efficient way to forward packets. Instead, use
the host protocol stack to forward packets from the host to the Policy Acceler-
ator or from the Policy Accelerator to the host.

The following ACEs are defined by the system to allow access to the host
protocol stack:

Each of these system ACEs (like all ACEs) contains predefined targets named
pass and drop.

n To transfer packets from the Policy Accelerator to the host, bind the stack
ACE pass targets and pass the packets to them. The host treats packets
received on the stack like any other data arriving on the network.

n To transfer packets from the host to the Policy Accelerator, use your oper-
ating system’s standard data transfer tools (such as sockets on UNIX, or
WINSOCK on NT) to transfer the packets to the host protocol stack. The
packets arrive at the corresponding ACE in the Policy Accelerator.

For more information on system-defined ACEs, see “Naming Objects for the
Resolver” on page 55.

To host stack bound to interface A /nbhwpe0/ToStack:nbhwpe0A/Stack

From host stack bound to interface B /nbhwpe0/FromStack:nbhwpe0B/Stack
Intel Confidential Chapter 8: Communication Within an Application 115

Revision 2.3, May 2000

• • • • •

Moving Packets between the Policy Accelerator and the Host

•
116 Chapter 8: Communication Within an Application Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 9

• • • • •
Using Sets of Data to Classify Packets

This chapter describes sets and searches, which you can use to classify packets
based on their contents; that is, the values of fields. Sets are an efficient way to
track a large number of classes of packets.

This chapter contains the following topics:

n Overview of Sets and Searches

n When to Use Sets

n Defining Sets and Searches

n Initializing and Populating Sets

n How to Use Sets and Searches

Overview of Sets and Searches

You can define data tables called sets that associate any arbitrary application-
defined data with packets. For each set, you define one or more named searches
that determine whether the current packet has a matching element in the set,
based on the values of specified fields.

A set is a collection of elements where each element has a header of one or more
keys, followed by any arbitrary data that you define. A search matches the key
values in the header with the values of specific fields in an incoming packet.
When all the values match, you can take an action with regard to the matching
element; for example, add to a counter, or access and save another field value
in the packet.

When a search does not match any element with the incoming packet, you have
the option of adding a new element to the set.
Intel Confidential Chapter 9: Using Sets of Data to Classify Packets 117

Revision 2.3, May 2000

• • • • •

When to Use Sets

•
When to Use Sets

You use sets to define collections of packets that are associated with each other
by virtue of their contents. They allow you to keep state information for all
packets that have the same values in specific fields. If you want to form collec-
tions on structural criteria, such as “the set of all packets with IP header lengths
greater than twenty bytes,” use a classification predicate rather than a search-
able set.

You can take any kind of action you want as a result of the set classification. For
example, you can count packets going to or from each address, keeping the
counters as set data. You can set targets for packets based on their set member-
ship, add members to or delete members from the set, or create messages from
the packets or the set data and pass them to the host or other ACEs using
upcalls and crosscalls.

You can use sets to associate existing data with packets. For example, you can
initialize a set with a list of interesting addresses, in order to classify all packets
that come from or go to those addresses. One search might compare the ip.src
field of packets to the elements of the set, to identify any packets that come from
one of the addresses. Another search could compare the ip.dest field to the
addresses, to identify packets that are going to them.

You can also use sets to collect new data about packet flow. For example, you
can start with an empty set, and, for each incoming packet that does not already
have a matching set element, create a new set element using its ip.src value,
and add it to the set. When an incoming packet does match, you can increment
a counter in the matching element. In this way, you can keep track of the
sources of all packets coming through the ACE.

Defining Sets and Searches

You define and name the sets and searches in the NCL file, then use the
compiler to generate corresponding objects in the action code. The sets are
implemented on initialization. You populate the sets with data through actions.

You use NCL to declare the existence and suggest the size of a set, and to define
the searches that evaluate set membership. You use the NCL compiler to
generate corresponding ASL objects in a header file that you include in your
action code. The set is implemented as a data table in the Policy Accelerator,
and is created on initialization.

You modify the contents of sets using actions. Actions can retrieve data from a
set or place data in a set, based on the results of searches.
118 Chapter 9: Using Sets of Data to Classify Packets Intel Confidential

Revision 2.3, May 2000

• • • •

 Defining Sets and Searches
The NCL Side Use the set keyword to declare, name, and define a set in NCL. You provide
the number of keys, and suggest a size for the set. For each set, you can define
any number of searches, using the search keyword. Each search is associated
with one and only one set, and you name it using the form setname.search-
name. You specify a requires clause in the search. If this Boolean expression
succeeds, the search is executed, and if it fails the search is not executed.

Each search definition specifies the exact number of keys that you specified for
the set, and associates each key with a protocol field. When the search is
executed, the Policy Accelerator compares the value of the specified protocol
field in the current packet to the value of the corresponding key for each
element in the set. If all of the field values in the packet match the key values in
an element, the search succeeds, and keeps a pointer to the matching element.

You can use a search in a rule or an action, referring to it by the name,
setname.searchname. When you refer to it by name, you are actually referring
to the result of the search, which the Policy Accelerator obtains when it parses
the search definition for an incoming packet. A search can have one of the
following results:

n The search did not run because the requirements were not met.

n The search ran and found a matching element.

n The search ran and did not find a matching element.

Example

The following NCL example defines a set named Stream that has 4 keys, and
two searches in that set that compare each of the keys to fields in the IP or TCP
protocol. The searches are only executed for TCP packets.

n The search Stream.fwd identifies a set element where the first two keys
match the IP source and destination, and the second two keys match the
TCP source and destination ports. A matching element would keep data for
packets travelling from the first address to the second.

n The search Stream.back looks at the same field values, but matches them
to keys in a different order. It identifies a set element where the first key
matches the IP destination, rather than the source. The element found by
this search would keep data for packets travelling in the opposite direction.

A rule passes the search result of Stream.fwd to an action function named
fTCPSTream. The rule also succeeds only for TCP packets.

set Stream<4>
{ size_hint{1024} }

search Stream.fwd (ip.src, ip.dst, tcp.sport, tcp.dport)
Intel Confidential Chapter 9: Using Sets of Data to Classify Packets 119

Revision 2.3, May 2000

• • • • •

Defining Sets and Searches

•
{ requires { tcp } }

search Stream.back (ip.dst, ip.src, tcp.dport, tcp.sport)
{ requires { tcp } }

rule tcpstream {tcp}
{ fTCPStream(ip, tcp ,Stream.fwd) }

For More Information

For more information on defining sets and searches in NCL, see “Sets and
Named Searches” on page 403 in the IX-API SDK Reference.

The ASL Side When you use the NCL compiler to generate the ASL set and search objects in
a header file, it produces base classes to represent each set, its elements, and the
results of each named search. For each set, the header file defines:

n A subclass of Set named Set_setname.

n A subclass of Element named Elt_setname. This is a base class whose
constructor creates an element with the proper keys, as defined for the set.
You create a subclass of this base class, modifying the constructor to define
the data for the set elements.

n An instance of the Search class for each search, named setname.search-
name. This object contains the result of the search and points to the found
element or to a location where an action can insert an element in the set.

To use the sets and searches that you define in NCL, you must do the following
things in your action code:

l Include the generated header file containing the set, element, and search
class definitions.

l Extend those class definitions in further subclasses to add the function-
ality you want. It is best to do this in a file other than the generated
header file, as the header file will be overwritten if you regenerate it.

l Create an object of the customized set subclass as part of the ACE object.

For More Information

For more information on creating and using ASL set objects, see the following
sections of the IX-API SDK Reference:

n “Synchronizing NCL with Action Code” on page 411

n “Set Management Classes” on page 101
120 Chapter 9: Using Sets of Data to Classify Packets Intel Confidential

Revision 2.3, May 2000

• • • •

 Initializing and Populating Sets
Initializing and Populating Sets

The generated header file defines the data structure that implements the set.
You must include this header file in your action code. For example:

#include "CONNactSet.h"

Extending the
Set Element
Class

The generated header file contains a skeleton definition for set elements that
has the number of keys you specified for the set, but contains no actual data
definitions. You must extend this basic definition in a further subclass to define
the kind of data you want to keep in the set. Do this in a file other than the
header file, since the header file will be overwritten if you regenerate it.

The following example extends the generated element class for the nets set
(Elt_nets) to contain specific net address data:

class NetAddr : public Elt_nets
{
public:

NetAddr(int ip)
: Elt_nets(ip),
 rx_pkts(0), tx_pkts(0), rx_bytes(0), tx_bytes(0)

{}

int rx_pkts, tx_pkts;
int rx_bytes, tx_bytes;

};

Creating a Set
Object

The ACE object for the ACE that is using a set must contain the set object. When
you define the ACE subclass, include an object of the type Set_setname, and in
the constructor for the ACE subclass, create an object of that type.

For example, the following ACE subclass definition declares two set objects:

class CONNAce : public Ace {
public:

CONNAce (ModuleId id, char* name, Image* obj);
~CONNAce ();
Set_nets nets;
Set_conns conns;

}

The constructor then creates the set objects:

CONNAce::CONNAce (ModuleId id, char* name, Image* obj):
Ace (id, name, obj)
Intel Confidential Chapter 9: Using Sets of Data to Classify Packets 121

Revision 2.3, May 2000

• • • • •

Initializing and Populating Sets

•
,nets (id, this, "nets")
,conns (id, this, "conns")

{}

Populating a
Set

Creating the set object does not generate any element instances with which to
populate it. To create an element, use the new operator, sending the arguments
that you specified in the constructor for your element subclass.

You can populate a set with an initial set of elements, then later add or delete
elements using actions, or you can populate it entirely through actions.

Populating a Set on Initialization

To populate a set during initialization:

1. Gather the data in the host module and build a message from it.

2. After the ACE is created, send the message in a downcall to the accelerator
module.

3. In the downcall handler function, loop through the data items. For each
item:

a. Create a set element using the new operator of the set element subclass.

b. Call the set object’s locate method to initiate a search.

c. Insert the new element using the search result object’s insert method.

Populating a Set through Actions

To populate a set through actions:

1. Pass the search name from the rule to the action function. The argument
points to the search result object when the action code is executed.

2. In the action function:

a. Create a new element using the new operator of the set element subclass.

b. Use the search object’s insert method to insert the new element into the
set.

For example, suppose you use a set to keep track of all addresses from which
you are receiving packets. When a search fails to find a packet’s source address
in the set, the action function creates a new element, with the packet’s source
address as a key, then inserts the new element in the set using the search result
object’s insert method. The following action function creates a net address
element (NetAddr) and adds it to the net set:
122 Chapter 9: Using Sets of Data to Classify Packets Intel Confidential

Revision 2.3, May 2000

• • • •

 How to Use Sets and Searches
ACTNF add_net_addr (Buffer* buf, CONNAce* ace,
Search net_srch, int flag,
unsigned ip_addr)

{
// Create a new set element object
NetAddr *new_addr = new NetAddr(ip_addr);
if (new_addr == 0) {
printf ("\nERROR while creating a new NET entry \n");
}
// Insert at appropriate location pointed by Search object
net_srch.insert (new_addr);
return RULE_CONT;

}

How to Use Sets and Searches

The Policy Accelerator executes searches when it parses the NCL file for an
incoming packet. For each incoming packet, the Policy Accelerator tries every
search defined in the NCL file. If the requires clause succeeds, the Policy
Accelerator executes the search and stores the result in the corresponding ASL
Search object.

You can also use the Set_setname object’s locate method to initiate a search
anywhere in your action code. For example, you might want to initiate a search
in response to an event or a message.

Using
Searches in
Rules

You can refer to a search by name on either side of a rule. How it is used
depends on which side of the rule it is on.

n When used on the left side of a rule as part of the predicate, the search name
acts as a Boolean expression. It succeeds when the search was executed and
found a matching record in the set. If the search was not executed because
the requirements were not met, or if it was executed but failed to find a
matching element, the expression evaluates to FALSE.

n When you pass a search name as an action argument on the right side of a
rule, the action can use the search result object to obtain a pointer. When the
search has succeeded, call the toElement method to get a pointer to the
matching record in the set. When it has failed, call the insert method to
insert a new element in the set at the location where a matching element
would have been found.
Intel Confidential Chapter 9: Using Sets of Data to Classify Packets 123

Revision 2.3, May 2000

• • • • •

How to Use Sets and Searches

•
Setting and
Comparing
Key Values

Keys are stored as network-byte-ordered 32-bit integers (nuint32). Because the
protocol field accessors generated from NCL code are defined to return results
in network byte order, you can set or compare key values directly to protocol
field values.

If you are passing data in a downcall that will be used to create a new set
element or search for an existing one, it is a good idea to store items in your
message as nuint32. In general, use nuint16 and nuint32 when sending
multibyte values in upcalls and downcalls, in order to preserve the byte order
of the data.

For more information, see “Byte Order Issues” on page 10 of the IX-API SDK
Reference.

Using Actions
to Modify Sets

You can take actions based on the fact of a search succeeding or failing, without
regard for the data portion of the set element. For example, an action can simply
set the target for the packet based on whether one of the searches succeeds.

An action function can also modify a set element by changing its data. For
example, when you have identified a packet that is coming from one of the
interesting addresses, you can increment a counter in the matching element.

You can look at or copy the data in a matching element, and take actions based
on that data. For example, after a packet comes in from a particular address and
you have incremented the counter in the matching element, you can check
whether the counter has reached a certain value. If it has, you can build a
message from it and send it to the host application in an upcall.

An action function can create a new set element, using the search result object’s
insert method. It can also delete a set element, directly or after a delay. To
delay an action on an element, you can call its expire method. The action you
specify in an expiration callback is then executed after an amount of time that
you specify.

Setting
Element
Expiration

Set elements can expire. The Elt_setname subclass has an expire method that
sets an expiration time and a callback function to be executed after that amount
of time has elapsed. Typically, the expiration callback function deletes the
element from the set, using the delete operator for the Elt_setname subclass.

An action function can call the expire method to delay the action, or to make
it provisional. For example, you might want to delete the element only if no
more matching packets come in within a certain amount of time. If another
matching packet comes in, the action can cancel or reset the expiration timer.
124 Chapter 9: Using Sets of Data to Classify Packets Intel Confidential

Revision 2.3, May 2000

• • • •

 How to Use Sets and Searches
The meaning of expiration is up to you. Deletion is not automatic, but occurs
only if you call the delete method in the callback you define to handle the expi-
ration. You can provide more than one expiration callback, and specify a new
one when you call the expire method.

The time of an expiration is always interpreted as an amount of time elapsed
after the method is called. You cannot specify an absolute time.

For more information on expiration, see the description of the “Elt_setname
Class” on page 160 in the IX-API SDK Reference.

Deleting Sets Before you delete a set, you should delete any remaining elements. The Set
class contains iteration methods, first and next, which you can use to walk
through all elements of the set.

You can define the destructor of your customized set subclass to use the iterator
functions to clean up set elements. For example, the following code fragment
would be part of the destructor of a set subclass named Set_myset, with
elements that belong to the subclass Elt_myelement.

Elt_myelement * scan;
Elt_myelement * next;
...
scan = first();
while (scan != NULL) {

next = scan->next();
delete scan;
scan = next;

}

If the set is defined as part of the ACE, perform this cleanup in the destructor
of the Ace subclass. In this case, you must use an object reference for the first
method:

Elt_myelement * scan;
Elt_myelement * next;
...
scan = Set_myset.first();
while (scan != NULL) {

next = scan->next();
delete scan;
scan = next;

}

Intel Confidential Chapter 9: Using Sets of Data to Classify Packets 125

Revision 2.3, May 2000

• • • • •

How to Use Sets and Searches

•
126 Chapter 9: Using Sets of Data to Classify Packets Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 10

• • • • •
Finding Strings in Packets

This chapter describes the string search facility, which you can use to find
specific strings or string patterns in the data portion of packets.

This chapter contains the following topics:

n Overview of String Searches

n Setting Up a String Search

n Initiating and Continuing Searches

n Changing Search Parameters

n Acting on Search Results

n Disposing of Packet Buffers After a String Search

Overview of String Searches

The ASL provides a high-performance string search facility that allows you to
search for strings contained in the data portion of packets:

n You can search for occurances of a constant string, or for strings that match
a regular expression.

n You can search for matches to several search strings at once. You use a tag
or identifier to determine which of several search strings matches a found
string.

n You can continue a search for a particular string or set of strings across
packet boundaries, to find a string that is contained in more than one packet.

There are two ASL classes that control a string search:

n The search engine object (NBStringSearchEngine) contains the list of
strings or patterns for which to search. It also contains the method Search-
Buffer that initiates a search or sends a new packet buffer to an ongoing
search.
Intel Confidential Chapter 10: Finding Strings in Packets 127

Revision 2.3, May 2000

• • • • •

Setting Up a String Search

•
n The context object (NBSearchContext) keeps track of ongoing searches. It
contains the callbacks that you define to respond to the search results.

A third class, NBStringStringMatchReport, contains search result informa-
tion. You can use this class in your callback function to find and act on the
strings found by your search.

For details of the string search classes and their methods, see “String Search
Classes” on page 98 of the IX-API SDK Reference.

NOTE: To use the string search classes, include the following header file in
your code:

#include <NBaction/NBStringSearch.h>

Setting Up a String Search

When you plan to use the string search facility in an ACE, your application
must do the following:

n Specify the ACE_STRINGSEARCH flag in the argAceMode argument when you
construct the AceManager object in the host module for that ACE.

n Include a reference to the string search context and engine objects in the
ACE object in the PE module.

n Create at least one engine object to contain the list of search strings and
initiate string searches in specific packet buffers.

n Create a search context object for each search. For example, for a string
search in a TCP stream, you would create two context objects, one for each
direction of the stream.
A search associated with a particular context object can be continued into
multiple packets. When a search is completed, you can reset and reuse the
context object for another search.

For example, the following ACE subclass definition includes references to
string context and engine objects:

class CGetPkt : public Ace {
public:

MyStrEngine str_engine;
MyStrSearchCtx *test_search_obj;

// a function to add a search string
void AddStringToEngine(char *string, int user_id);

};
128 Chapter 10: Finding Strings in Packets Intel Confidential

Revision 2.3, May 2000

• • • •

 Initiating and Continuing Searches
The constructor for the ACE creates the engine object:

CGetPkt::CGetPkt (ModuleId id, char* name, Image* obj):
Ace (id, name, obj)
,str_engine(this)
{...}

In this example, the string search is initiated as part of a set search, so the set
element class has a method for creating the context object:

StreamElt::StreamElt (CGetPkt *ace, nuint32 k1, nuint32 k2,
nuint32 k3, nuint32 k4,
IP4Datagram *dgram)

: Elt_Stream(k1, k2, k3, k4)
{ ...

search_obj = new MyStrSearchCtx (ace, this);
...}

Initiating and Continuing Searches

To create a new string search:

1. Create a new context object (or reset an existing context object).

2. Set the options for the new search using the context object’s SetOpt method.
l Set the NBS_OPT_PERSTR option if you have defined a per-match callback

to deal with each matching string that is found. See “Acting on Search
Results” on page 131.

l Set the NBS_OPT_SIMPLE option if you want to search in only one packet.

3. Add the string or strings you want to search for to the list in the search
engine object. Use its AddString and DeleteString methods to maintain
this list. The engine must be in maintenance mode to do this; see “Changing
Search Parameters” on page 130.

4. Put the search engine object into search mode by calling the ChangeOpMode
method.

5. Start the new search by calling the SearchBuffer method of the search
engine object. Pass the current packet buffer along with the new or reset
context object. Typically, an action function calls this method.
If the NBS_OPT_SIMPLE option is false (0), the context object will maintain
the search state when the search reaches the end of the packet buffer, and
you can send additional packets to the same search. You would do this to
find a string that might cross packet boundaries, starting in the data portion
of one packet and continuing into the data portion of the next packet.
Intel Confidential Chapter 10: Finding Strings in Packets 129

Revision 2.3, May 2000

• • • • •

Changing Search Parameters

•
6. To continue the search into a new packet, call the SearchBuffer method of
the search engine object again, passing the next packet buffer along with the
context object for the search.

You can maintain multiple searches simultaneously, as long as each search is
associated with its own context object.

To end an ongoing search, delete or reset its context object.

n To delete a context object, call its SchedDelete method.

n To reset a context object, call its SchedReset method.

The search engine completes any search currently in progress using that context
before it takes the requested action.

Changing Search Parameters

To make sure that the list of search strings does not change while a search is in
progress, the search engine has a maintenance mode and a search mode. You
can only change search parameters when the engine is in maintenance mode.

Before you try to set or change any search parameters:

1. Determine the current operating mode by calling the engine object’s OpMode
method. (When you first create the object, it is in maintenance mode.)

2. If the engine is in search mode, request maintenance mode by calling the
engine object’s ChangeOpMode method.
It may take some time to complete any current search and change the oper-
ating mode. If it is not yet safe to change the mode, the method schedules
the change and returns NB_PENDING. When the action is completed, the
engine notifies the application by invoking the callback function you
provide with the method call.

3. Once the engine is in maintenance mode, use the AddString and
DeleteString methods to change the list of search strings.

4. When you have finished making changes, restore the search mode by
calling the engine object’s ChangeOpMode method again.
130 Chapter 10: Finding Strings in Packets Intel Confidential

Revision 2.3, May 2000

• • • •

 Acting on Search Results
Acting on Search Results

You provide callback functions to act on the results of the search, to be invoked
each time a matching string is found or each time a search is completed for a
buffer. There are two ways to act on the search results:

n If you set the per-match option, the search engine invokes the per-match
callback every time it finds a matching string. You provide a per-match call-
back function to take whatever actions you want on each matching string as
it is found.

n You can create a match report object, that collects all of the matching strings
found in a particular packet buffer. When the search is complete in that
buffer, your per-buffer callback can retrieve the matching strings from the
match report object and take whatever actions you want on them.

Per-Match
Callbacks

To handle matching strings on a per-match basis:

1. Set the per-match option by calling the context object’s SetOpt method.

2. Define a per-match callback function to handle each matching string as it is
found.

3. Associate the callback function with the context by calling the context
object’s SetPerMatchCallback method.

The search engine passes information about the matching string to the callback
function. The callback returns a value that tells the search engine whether to
continue finding and reporting string matches in the current packet buffer, or
to quit searching in the current packet buffer.

The following example shows a per-match callback that identifies which search
string was matched, adds to a counter of matches for that search string, and
adds the length of the matching string to another counter. This example returns
the value NBS_CONT, which tells the search engine to continue.

int MyStrSearchCtx::OnEveryMatch (void *ace, void *elt1,
 Buffer *buf,
 NBStringID sid,
 void *stringtag,
 int endoffset,
 int matchlen,
 char *payload)

{
int host_id = ((int) stringtag);
// update the global report
((CGetPkt*)ace)->report.stringidcount++;
// update for this string id stream
Intel Confidential Chapter 10: Finding Strings in Packets 131

Revision 2.3, May 2000

• • • • •

Disposing of Packet Buffers After a String Search

•
((CGetPkt*)ace)->report.stringidfound[host_id]++;
((CGetPkt*)ace)->report.totalbytesmatched += matchlen;
return NBS_CONT;

}

Per-Buffer
Callbacks and
Match Reports

If you choose to handle all of the matching strings in a packet buffer at one time,
you must create a match report object to hold the information about the
matching strings, so that you can access it in your per-buffer callback function.

To handle matching strings on a per-buffer basis:

1. Create an NBStringMatchReport object.

2. Define a per-buffer callback function that accesses matching string informa-
tion by using the methods of the match report object.

3. Associate the callback function with the context by calling the context
object’s SetPerBufCallback method.

4. Pass the match report object to the search engine object’s SearchBuffer
method when you initiate the search (or send the current buffer to an
ongoing search).

When you start a string search with a match report object, the search engine
generates a match report for each match that it finds, and stores it in an array in
the report object.

When the search is complete for the packet buffer, the search engine passes the
match report object back to the per-buffer callback. The object points to the
string match report array. Your callback function can retrieve information about
a particular matching string by indexing into the array. The first match found is
at index 0.

The information you can get about a matching string using the match report
object is the same information that is passed to the per-match callback, such as
the identifier for the search string that was matched, the number of bytes in the
matching string, and its location in the packet buffer.

Disposing of Packet Buffers After a String Search

The string search engine always invokes the per-buffer callback when it
completes a string search in a particular packet buffer. Regardless of which
method you choose for handling the matching strings, your per-buffer callback
should at least determine how to dispose of the buffer. If other parts of your
132 Chapter 10: Finding Strings in Packets Intel Confidential

Revision 2.3, May 2000

• • • •

 Disposing of Packet Buffers After a String Search
application are also interested in the packet, the per-buffer callback is the place
to decrement the reference counter, to indicate that this part of the code is
finished with the buffer.

The following example shows a per-buffer callback function that disposes of
the packet buffer by sending it to the default drop target, and adds to a count
of packet buffers that have been searched. In addition, if a global value indi-
cates that the buffer was reference-counted (and thus possibly being used else-
where), this function decrements the reference count.

void MyStrSearchCtx::OnEveryBuffer (void *ace, void *elt,
Buffer *buf,
NBStringMatchReport *rp)

{
((CGetPkt*)ace)->drop (buf); //get rid of buffer
((CGetPkt*)ace)->report.gotback++;

#ifdef REFCOUNT
 buf->decref();
#endif }
Intel Confidential Chapter 10: Finding Strings in Packets 133

Revision 2.3, May 2000

• • • • •

Disposing of Packet Buffers After a String Search

•
134 Chapter 10: Finding Strings in Packets Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 11

• • • • •
Debugging and Troubleshooting

This chapter provides information on debugging your code. It contains the
following topics:

n Debugging Host Module Code

n Using the IX-API SDK Debugger

n Debugging Action Code

n Runtime Troubleshooting Hints

Debugging Host Module Code

You can use fprintf and trace functions to display debugging messages in
the host module of your application.

Using Tracing
in Your Host
Application

Use the function nb_trace_verbose to turn on tracing in your host application.
The function takes a single argument, mode, which is either 1 to turn tracing on,
or 0 to turn it off:

nb_trace_verbose (mode)

This function prints to STDOUT, displaying the code currently being executed in
the same window where the application is running.

If the application hangs, you can refer to the trace to find the last function that
was executed. You can then use the debugger to step through that function.

The following code fragment employs nb_trace_verbose:

void main (int argc, char** argv) {
nb_trace_verbose (1);
...

}

Intel Confidential Chapter 11: Debugging and Troubleshooting 135

Revision 2.3, May 2000

• • • • •

Using the IX-API SDK Debugger

•
The nberror.h file provides additional functions and macros for tracing in the
host module code. You can insert trace macros in the code to print particular
messages when that line is reached.

Debugging
Short-Running
Applications

Normally, applications run continuously. However, if you must debug the host
side of an application that completes execution quickly, you must insert a pause
into the application logic. You can, for example, insert something like the
following code to halt the application’s execution until the user presses a key:

static int count = 0;
if (count == 0)
{

char key[127];
key[0] = ’\0’;
printf("hit any key to continue...\n");
gets(key);
count = 1;

}

Using the IX-API SDK Debugger

The IX-API SDK provides a debugger that you can use to debug your action
code. The debugger (nbgdb) is a version of the GNU debugger (gdb) that has
been customized for use with the Policy Accelerator. Use it to debug action
code written in C++, C, or StrongARM 110 assembly that runs on the Policy
Accelerator.

NOTE: To use nbgdb, you must have a IX-API SDK debug daughter card
attached to your Policy Accelerator. In addition, you must have the
entire SDK installed on the computer on which you are running the
debugger.

This section contains information supplementary to the GDB User’s Guide.
Refer to the GDB User’s Guide in the /usr/local/docs directory for documen-
tation on supported debugging commands.

The following gdb commands are not supported in nbgdb:

n run, load, and related commands

n Commands related to watchpoints and tracepoints

n Thread- and task-related commands

To use the debugger, you must compile all action code with the gcc debug
option (-g), and start the Resolver in verbose mode using the -v switch.
136 Chapter 11: Debugging and Troubleshooting Intel Confidential

Revision 2.3, May 2000

• • • •

 Using the IX-API SDK Debugger
CAUTION: With optimizations of any level turned on, the debugging information
generated by the compiler might be inaccurate. Turn optimization off
during the early stages of development and debugging of an
application.

Makefile
Debugging
Flag

If you use the demonstration makefiles, you can set all the appropriate flags
and libraries for both the host module and the accelerator module using the
BUILD_MODE variable as follows for debug mode:

For Windows NT: nmake BUILD_MODE=Debug
For UNIX: make BUILD_MODE=Debug

or as follows for nondebug mode:

For Windows NT: nmake BUILD_MODE=Release
For UNIX: make BUILD_MODE=Release

Review the comments about debug mode in the makefile in Chapter 4,
“Compiling Applications.”

Debugging
Tools

You can set debugging flags when compiling code and when starting the IX-
API SDK software with the resolver command. In addition, you can use
command-line debugging tools.

n To debug host module application code, use the standard GNU debugger,
gdb. For information on using gdb, see the GDB User’s Guide in the
/usr/local/docs directory.

n To debug action functions in the accelerator module, the IX-API SDK
provides a customized version of the GNU debugger, nbgdb. You use a
command-line utility, getaceid, to create a standalone version of the
executable for an ACE on which to run the debugger.

Producing a
Debugger
Executable

The debugger runs on your host system, while an ACE normally runs on the
Policy Accelerator. You do not have direct access to the Policy Accelerator from
a command shell. To run the debugger on a particular ACE, you need a
debugger executable for that ACE that you can run on the host from a
command shell.

To produce a debugger executable for an ACE, use the utility getaceid. In
addition to finding and returning the ID for an ACE, it produces a debugger
executable for that ACE in the current directory. You can run the debugger on
this file to step through the action functions as if it were really running in the
Policy Accelerator.
Intel Confidential Chapter 11: Debugging and Troubleshooting 137

Revision 2.3, May 2000

• • • • •

Debugging Action Code

•
The getaceid command takes the following arguments:

getaceid ACEpathname actionfile_basename

n The first argument, ACEpathname, is the complete path to the ACE you
want to debug. You can find this path in the bind function of your applica-
tion code (appname.cpp). (See “Naming Objects for the Resolver” on
page 55.)

n The second argument, actionfile_basename, is the file name of the
compiled action code for the ACE (without its extension, .nbo).

The command displays the ACE’s ID (an integer) and also creates a file
ACEname.exe in the current directory. To run the debugger on this file, execute
a command such as the following in that directory:

nbgdb myace.exe

You must then connect to the target ACE, using the ID returned by getaceid.
For example:

(nbgdb) target remote com1:11

If you encounter any unexpected problems while using nbgdb to debug your
application, restart the Resolver, your application, and nbgdb.

Stepping
through Action
Functions

Because you run the debugger on a debugger executable on the host, rather
than on the Policy Accelerator itself, debugging information is available only
for action functions, which are invoked as rules are applied to packets received.
The vast majority of processing time in an application is normally spent in the
Policy Accelerator system code, not in these asynchronous action functions.

When single-stepping through action code, you must take care not to single-
step past the end of any action function, out of the scope of the action. Instead,
always use the continue command of nbgdb at the end of an action function.

NOTE: The SDK does not support debugging of the action code initialization
function, init_actions. Do not introduce a breakpoint or other pause
into this function.

Debugging Action Code

This section describes how to start and stop the debugger and illustrates what
a debugging session might look like. The sample LoopApp test application is
used as an example.
138 Chapter 11: Debugging and Troubleshooting Intel Confidential

Revision 2.3, May 2000

• • • •

 Debugging Action Code
Connect the
Debug
Daughter Card

1. Power down your PC.

2. Attach the debug card and a free COM port on the PC using a DB9 null
modem cable and a flat DB9 serial cable (as supplied by Intel).

3. Turn on your PC.

For more detailed information on connecting the debug card to your
computer’s COM port, see Installing a Policy Accelerator 100 Board.

Prepare the
LoopApp
Application

The LoopApp application normally runs just one loop with 256 repetitions and
it finishes too quickly for you to run the debugger and to establish a breakpoint.
However, you can modify it to wait for a keystroke before starting the loop,
giving you a chance to start the debugger and to set breakpoints. To do this:

1. Locate the LoopApp source code in the SDKinstall-
path/demos/LoopApp/source directory.

2. Open the action code file for the application, loopact.cpp.

3. Add the following code at the begining of the function NBloopAce::pack-
etUpcall:

static int count = 0;
if (count == 0)
{

char key[1];
key[0] = ’\0’;

printf("Go get the Ace ID(getaceid) now,
then hit return to continue...\n");

gets(key);
count = 1;

}

4. Save the file.

5. Make the debug version of the application file. To do this, open a command
shell, go to the LoopApp/ directory, and invoke the makefile as required by
your operating system.
Under Windows NT:

c:\> cd \SDKinstallpath\demos\LoopApp
c:\> nmake BUILD_MODE=Debug

Under UNIX:

% cd /SDKinstallpath/demos/LoopApp
% make BUILD_MODE=Debug
Intel Confidential Chapter 11: Debugging and Troubleshooting 139

Revision 2.3, May 2000

• • • • •

Debugging Action Code

•
This compiles the code with the nbgcc debug option (-g) and without optimi-
zation options and writes the compiled file to the new Debug subdirectory.

Start your
Debugging
Session

1. In a command shell, start the resolver in verbose mode:

c:\TEMP> resolver -v

2. In another command shell, go to the directory where the application objects
reside:

c:\> cd \SDKinstallpath\demos\LoopApp\Debug

3. Start the application:

c:\SDKinstallpath\demos\LoopApp\Debug> loopapp

A prompt appears in this shell and waits for a keystroke to continue.

4. In another command shell, use the utility getaceid in the same directory:

c:\> cd \SDKinstallpath\demos\LoopApp
c:\SDKinstallpath\demos\LoopApp> getaceid \

/NBloopAppl/NBloopAceGroup/NBloopAce loopact

Specify the ACE using its full name, as in your application. Here the ACE’s
full name is /NBloopAppl/NBloopAceGroup/NBloopAce. The command
returns the ID of the ACE in the command shell, and also produces a
debugger executable file (in this case loopact.exe) in the same directory.

5. Run the debugger, nbgdb, on the debugger executable file generated by
getaceid:

c:\SDKinstallpath\demos\LoopApp> nbgdb loopact.exe

6. Connect to the target ACE using the ID returned by getaceid:

(nbgdb) target remote com1:11

Here, com1 refers to the COM port on the host that is connected by null
modem cable to the debugger card. The number 11 is the ID returned by
getaceid.

Step through
Code

After you have started the debugger and connected to the ACE, use the stan-
dard debugging commands to set breakpoints and step through your code. For
example, you might use the following sequence of commands:

1. Set a breakpoint:

(nbgdb) break action_all
140 Chapter 11: Debugging and Troubleshooting Intel Confidential

Revision 2.3, May 2000

• • • •

 Runtime Troubleshooting Hints
2. Use the next command to proceed to the next statement:

(nbgdb) n

3. In the application’s command shell, press a key to restart the application
and run the loop.

4. In the debugger’s commad shell, use the step command to step into the
next function:

(nbgdb) s

5. Use the continue command to continue execution when you reach the end
of an action function:

(nbgdb) c

Shut down the
Debugger

When you have finished stepping through your code, use the following
sequence of commands to shut down the debugger:

1. Use the delete command to delete all breakpoints:

(nbgdb) delete

NOTE: You must delete breakpoints before detaching.

2. When you have deleted all breakpoints, use the detach command to detach
from the system:

(nbgdb) detach

3. Use the quit command to end your debugger session and complete execu-
tion of nbgdb:

(nbgdb) quit

Runtime Troubleshooting Hints

This section describes some common coding errors which can result in runtime
exceptions or failures that can be difficult to interpret.

Problems with
Paired Object
Naming

Paired objects, such as upcalls and upcall handlers or targets and target
managers, must have the same dictionary name. Errors in naming do not cause
compilation errors, but do cause runtime errors when the system uses the
dictionary to try to find the related object.
Intel Confidential Chapter 11: Debugging and Troubleshooting 141

Revision 2.3, May 2000

• • • • •

Runtime Troubleshooting Hints

•
NOTE: Paired object dictionary names are case-sensitive. Be sure that paired
objects have identically spelled and capitalized dictionary names.

For example, if you spell or capitalize the dictionary name of an upcall differ-
ently than that of its associated upcall handler, the constructor for the upcall
does not fail. An Upcall object is created with the misspelled name. You cannot
detect the problem until you issue the related call. When you issue the call at
run time, the mismatched names cannot be resolved, and the call fails.

Problems with
Sets

The ACE object for an ACE that uses a set must contain the set object. The set
object must have the same name that was assigned to the set when it was
defined in the NCL file. If a properly named set object does not exist, you will
see errors similar to the following:

fixce: ace ’/CONN/CONNAceGroup/CONNAce’ has no Set called ’nets’
fixce: unable to resolve relocation for ’__NB_Set_nets’

For a description and example of the correct way to create a set object and avoid
such errors, see “Creating a Set Object” on page 121.

Problems with
Action
Function
Return Values

If an action function you have defined does not return an acceptable action
function return value, you get a compiler warning. If you ignore this warning,
your application is corrupted when the function returns, and the corruption
may not be detectable. See “Defining Action Functions” on page 96 for more
information.

Problems with
Action
Function
Arguments

Due to limitations in the gcc compiler, it is recommended that you avoid the
use of type bool arguments in action functions. Use unsigned int instead.
Passing a Boolean argument to an action function can cause a runtime align-
ment exception.

Reading
Output from
the
Accelerator
Module

To see messages printed to stdout and stderr from the accelerator module of
your application, use the provided I/O utility appropriate to your operating
system:

n On a UNIX system, use the command-line utility readport, in the directory
$NBPATH/bin. Execute the command in a command shell, specifying the
port number (11 or 12).
l When an accelerator module sends output to stdout from commands

such as fprintf, read the results on port 11.
l Read system output from the Policy Accelerator, such as error and

warning messages, on port 12.
142 Chapter 11: Debugging and Troubleshooting Intel Confidential

Revision 2.3, May 2000

• • • •

 Runtime Troubleshooting Hints
n On a Windows NT system, use the utility WinReadPort to display output
from both ports in a window. Invoke this utility from the IX-API SDK
system menu.

Starting and
Stopping
Applications

The Resolver allows you to run multiple IX applications simultaneously. To do
so, it maintains a set of application resources. However, when you stop an
application, the Resolver does not always free enough resources to restart it (or
start other applications) reliably.

If you intend to stop any application, then restart that application or start other
IX applications, it is recommended that you stop all running applications, then
stop and restart the Resolver before starting or restarting any IX application.
Intel Confidential Chapter 11: Debugging and Troubleshooting 143

Revision 2.3, May 2000

• • • • •

Runtime Troubleshooting Hints

•
144 Chapter 11: Debugging and Troubleshooting Intel Confidential

Revision 2.3, May 2000

• • • •

Chapter 12

• • • • •
Delivering Applications

This chapter describes how to package the IX-API SDK run-time files to deliver
to your end users along with your applications for the Policy Accelerator.

NOTE: This chapter describes run-time files for Windows NT. There is currently
no run-time-only installation for UNIX. The run-time files are included in
the SDK installation.

Overview

For your Policy Accelerator application to run, the IX-API SDK run-time files
must be installed on the same system. You must decide how you want your end
users to receive and run the IX-API SDK run-time installer:

n You can invoke it from your application’s installer

n You can deliver it separately from your application’s installer and direct the
end user to run it

n You can direct the end user to download it from the Intel Web site

Installing the Run-Time Files From Your Own Media

This section describes how to include the run-time installer on your own media,
such as CD-ROMs.

The media that you used when installing the IX-API SDK software on your
system includes the following directory structure:

IX SDK Runtime Install/
Install Files/
Doc Files/

frame/
pdf/
Intel Confidential Chapter 12: Delivering Applications 145

Revision 2.3, May 2000

• • • • •

Installation Results

•
To include the run-time installer on your media:

1. Include all files and subdirectories from the Install Files/ subdirectory.
You can place these files together in any location; they do not have to be in
a directory named Install Files/.

2. Adjust your application’s installer, or direct the end user, to run the
following file from the set of included files.
This is an Install Shield script that installs all other files from the subdirec-
tory into a directory named, by default, NetBoost/ at the system’s root
directory:

setup.exe

NOTE: Your application’s installer must install—or verify the existence of—
mfc42.dll.

3. Provide instructions for running the setup.exe program.
To do this, either:
l Include the Doc Files/pdf/*.pdf file(s). PDF files can be viewed using

Adobe Acrobat Reader1.
l Modify the FrameMaker source files, included in Doc Files/frame/,

for your own purposes and include a readable version of the revised
instructions, such as PDF or hardcopy.

You can, and in most cases will, provide all files without modification. If
instructions on customizing the installer are available, they will be on the Intel
Web site, www.intel.com.

Installation Results

This section describes the directories and files that are created on your end
user’s system by the installer.

1. Adobe, Acrobat Reader, and FrameMaker are trademarks of Adobe Systems
Incorporated.
146 Chapter 12: Delivering Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Installation Results
IX-API SDK
Run-Time Tree

The basic directory structure is shown in the following figure and table:

Environment
Variables

The installer prompts the user for where to install the product and sets the
following environment variables based on that response:

Directory bin The bin directory contains the following files:

Directory Description

bin Contains all the basic executable files and tools that run on the host.

drivers Contains all the files needed to install the Policy Accelerator drivers.

hpex Contains all the basic executable files and tools that run on the Policy
Accelerator.

include Contains all the IX-API SDK standard protocol files.

lib Contains libraries used on the host and libraries used on the Policy Accel-
erator.

<install dir>/

bin/
drivers/
hpex/
include/
lib/

Variable Description

NBCONFIG Points to the path of the filename containing the configuration informa-
tion for the Resolver.

NBPATH Points to the IX-API SDK tree root.

The default on a Windows NT system is C:\IXSDK

Category File Description

NCL compiler cecomp.exe Network Classification Language (NCL)
compiler front end

celink.exe Microcode linker

cemasm.exe Microcode assembler for NCL

concat.exe Concatenate .masm files

hext.exe Produce hexadecimal representation of
microcode binary
Intel Confidential Chapter 12: Delivering Applications 147

Revision 2.3, May 2000

• • • • •

Installation Results

•
Directory
drivers

The drivers directory contains the following files:

IX-API SDK
system
management

resolver.exe IX-API SDK resource manager (Resolver)

NBControlService.
exe

Resolver control service

NBInstallResolver
Svc.dll

Resolver installation

NBLauncherSvc.exe Resolver application launcher

NBUninstDrv.exe IX-API SDK driver removal

Console
control

readport.exe Display Policy Accelerator console output

writeport.exe Console input program

WinReadPort.exe Console display for multiple Policy Acceler-
ators

Debugger nbgdb.exe Action code debugger

Category File Description

Category File Description

Installation NBDC.exe Installation applets

Oemsetup.inf Driver installation description

Drivers nbether.sys Network driver interface specification (NDIS)
driver for the Policy Accelerator

nbhwpe.sys Kernel driver for the Policy Accelerator

nboost.sys API driver for the Policy Accelerator
148 Chapter 12: Delivering Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Installation Results
Directory hpex The hpex directory contains the following files, which support the Policy Accel-
erator hardware, including its classification engine and StrongARM2 compo-
nents:

2. StrongARM is a registered trademark of ARM Limited.

Category File Description

Policy Accelerator
system software
loading tools

NBChkRev.exe Check Policy Accelerator hard-
ware Revision

Policy Accelerator
system initialization

arminit-nc.img

arminit.img Basic StrongARM initialization
code

Code for Policy
Accelerator sys-
tem services

ha_ctl.armeb-coff.nbo ARM object for control
Action/Classification Engine
(ACE)

ha_istk.armeb-coff.nbo ARM object for input stack ACE

ha_ostk.armeb-coff.nbo ARM object for output stack ACE

ha_rxa.armeb-coff.nbo ARM object for receive interface
ACE A

ha_rxb.armeb-coff.nbo ARM object for receive interface
ACE B

ha_txa.armeb-coff.nbo ARM object for transmit interface
ACE A

ha_txb.armeb-coff.nbo ARM object for transmit interface
ACE B

stringsearchactions.ar
meb-coff.nbo

ARM object code for string-
search engine
Intel Confidential Chapter 12: Delivering Applications 149

Revision 2.3, May 2000

• • • • •

Installation Results

•
Directory
include

The include directory contains the following files:

Policy Accelerator
system software

hPEx.exe Policy Accelerator system object
for hardware Revision 2

hPEx.img

symtbl.img Policy Accelerator Action Ser-
vices Library (ASL) symbol table
for hardware Revision 2

hPEx_rev1.exe Policy Accelerator system object
for hardware Revision 1

hPEx_rev1.img

symtbl_rev1.img Policy Accelerator ASL symbol
table for hardware Revision 1

Microcode nocecode.ncl Microcode for idle classification
engines (CEs)

nxrt0.img Microcode for CE0 when in plain
NIC mode

nxrt1.img Microcode for CE1 when in plain
NIC mode

nxrt2.img Microcode for CE2 when in plain
NIC mode

nxrt3.img Microcode for CE3 when in plain
NIC mode

Power-on self test Post.img Power-on self-test image

Debugger support stalker-data.img Debugger stub data image

stalker-text.img Debugger stub text image

Category File Description

Category File Description

Protocol
include files

NBNcl/NBbase.ncl IX-API SDK base protocol NCL specifica-
tion

NBNcl/NBtcpip.ncl TCP/IP NCL specification
150 Chapter 12: Delivering Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Installation Results
Directory lib The lib directory contains the following files:

Category File Description

NCL compiler cecomp.dll NCL compiler

celink.dll Microcode linker

cemasm.dll Microcode assembler

ncldrvr.dll NCL compiler driver

Cygwin
support library

cygwin1.dll Cygwin support library

Boot support boot.dll Policy Accelerator boot support

Microcode ipchksum.o IP checksum microcode

tcp_udp_chksum.o TCP, UDP checksum microcode

keylibIndex.o Shared set microcode

keylibCommon.[1-7].o Common set microcode for each
supported number of set keys: 1 to 7

keylibEntry.[1-7].[10-
16].o

Set entry microcode for each sup-
ported number of set keys and each
hash table size:

n Keys: 1 to 7

n Hash table size: 210 to 216

keylibInline.[1-
7].[10-16].o

Set main microcode for each sup-
ported number of set keys and each
hash table size:

n Keys: 1 to 7

n Hash table size: 210 to 216

mrt[0-3].masm Classification engine (CE) run-time
microcode for each CE, 0 to 3

mrt[0-3].o CE run-time microcode object for
each CE, 0 to 3

Host API
(NBAPI)
support

nbapi.dll Main host API library

nbapid.dll Main host API library, debug mode

nbconfig.dll Library to read config file
Intel Confidential Chapter 12: Delivering Applications 151

Revision 2.3, May 2000

• • • • •

Installation Results

•
152 Chapter 12: Delivering Applications Intel Confidential

Revision 2.3, May 2000

• • • •

Appendix A

• • • • •
Demonstration Applications

This appendix describes the sample applications that are included in the IX-API
SDK distribution. The following table briefly describes the techniques and
concepts demonstrated by each of the sample applications. Each of the applica-
tions is described in more detail in the following sections.

Sample Application Description

BasicApp Shows how to construct the basic components of any applica-
tion. Creates a single ACE that counts packets and uses an
upcall to report the number of packets observed.

Simple Shows how to use rules to classify packets of different types or
with specific source or destination addresses.

FilterApp Shows how to construct a simple MAC address packet filter. An
extension of BasicApp, in which only packets with a specific
MAC destination address are forwarded. The ACE accepts
packets from one MAC interface and forwards those that pass
the filter criteria to the other MAC interface.

ODXFilter Shows how to transfer packets to and from a NIC whose driver
has been customized using the Optimal Data Exchange (ODX)
Protocol for PCI. Extends FilterApp to filter packets according to
protocol before sending them to the NIC or dropping them.

EventAppl Shows how to use the Event class to schedule an activity that
is not associated with a data set.

TwoAceApp Shows how to create and use an application with multiple ACEs.
Extends BasicApp by making two separate ACEs in the same
application that keep different counts.

FilterNic Shows how to emulate a network interface card (NIC) in soft-
ware. Each of the two ACEs accepts packets from one of the
MAC interfaces, filters them, and sends those that pass the filter
criteria to the host.
Intel Confidential Appendix A: Demonstration Applications 153

Revision 2.3, May 2000

• • • • •

Building the Sample Applications

•
Building the Sample Applications

The sample applications are included in the IX-API SDK distribution in the
directory SDKinstallpath/demos. The directory contains:

n Three makefiles that are used to build the sample applications:
l A master makefile, Makefile.inc, builds an application. This file is

included by the individual makefiles for each sample.
l Makefile.dist builds the entire set of samples by calling the individual

makefiles for each.
l Makefile does a master build for all sample applications. It calls Make-

file.dist to build all of the samples, then installs the compiled files.

n A number of subdirectories that contain the applications. Each application
directory contains:
l A source directory with the source code and header files for the appli-

cation. These generally include a host module source file (.cpp), related
header files (.h), an action source file for each ACE (.cpp), and a classi-
fication source file for each ACE (.ncl).

Tap Shows how to construct a tap, in which the ACE “sniffs” a con-
nection, looking at packets as they go by without redirecting
them. In this case, the ACE keeps statistics about the packet
flow.

IPPairs Shows how to use sets and searches to maintain a database
about packet traffic. The application maintains a set of source–
destination address pairs for IP packets that it has seen recently,
and counts additional packets that match any known pair.

Killer Shows how to construct an application that starts and stops the
Resolver automatically. Only one such application can run on a
Policy Accelerator at one time.

LoopApp Shows how to construct a test to ensure that the IX-API SDK
operating environment is configured correctly.

Firewall Shows how to construct a real firewall application that deter-
mines which packets should be allowed into and out of the local
area network, based on criteria that a user can set.

Crosscall Shows how to communicate between ACEs using crosscalls.

StringSearch Shows how to search for a string in packet data.

Sample Application Description
154 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 BasicApp
l A makefile specific to the application that specifies which actual files
and directories to use for this specific application. This file includes
Makefile.inc. Running this makefile creates the compiled files from
the source code.

BasicApp

This sample demonstrates how to construct the basic components of an appli-
cation. It is a simple packet-counting application. The ACE object in the accel-
erator module maintains a counter that it increments as packets arrive, before
it forwards them to the default pass target. When it counts a packet, it also
sends an upcall to the host module, which displays a message showing the
current packet count.

The application contains the following source files in the directory
demos/BasicApp/source:

Source File Contains

basicApp.h Error constants and subclass definitions for the host
module.

basicApp.cpp The main function for the host module, object construc-
tors and destructors, and utility functions, which include
the upcall handler callback. The constructor for the
application object creates the bindings.

basicAppActions.cpp The initialization and action function for the accelerator
module; ACE subclass declaration, constructor, and
destructor; and the ACE method that counts packets,
constructs a message, and sends an upcall.

basicAppRules.ncl The classification rules for the accelerator module; in
this case, a single rule that passes all packets to the sin-
gle action function.
Intel Confidential Appendix A: Demonstration Applications 155

Revision 2.3, May 2000

• • • • •

Simple

•
Simple

This sample is similar to BasicApp, extending it to show the use of a number of
classification rules.

Like BasicApp, the ACE object in the accelerator module maintains a counter
that it increments as packets arrive, before forwarding them on to the default
pass target. When it counts a packet, it sends an upcall to the host module,
which displays a message showing the current packet count.

In this case, however, before a packet reaches the rule that sends the upcall, it is
submitted to a series of rules that determine what type of packet it is and check
for specific source and destination addresses. Each time the packet satisfies the
rule predicate, that rule’s action function displays a simple message saying
which rule matched, then passes the packet along to the next rule.

The application contains the following source files in the directory
demos/Simple/source:

Source File Contains

simple.h Error constants and subclass definitions for the host
module.

simple.cpp The main function for the host module, object construc-
tors and destructors, and the upcall handler callback
that displays the packet count. The constructor for the
application object creates the bindings.

simpleactions.cpp The initialization and action functions for the accelerator
module; ACE subclass declaration, constructor and
destructor; and the ACE method that counts packets,
constructs a message from the count, and sends an
upcall.

simplerules.ncl The classification rules for the accelerator module; in
this case, several rules that classify the packet accord-
ing to its type and source or destination address, as well
as the final rule that passes all packets to the counter
action function.
156 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 FilterApp
FilterApp

This sample is similar to BasicApp, but extends it slightly to apply a filter to
incoming packets. Like BasicApp, the accelerator module maintains a packet
count, but counts only those packets that meet the filter criteria—in this case,
packets with a specific MAC destination. It reports the count to the host module
using an upcall. Rather than reporting every packet, it reports only when the
count is divisible by 100. When it receives the upcall, the host module displays
a message showing the current count.

The ACE also filters the matching packets out of the traffic flow by sending
them to the default drop target. Its sends all other packets to the pass target.
This filtering function is controlled by a flag, which you can turn off by sending
a downcall from the host. When the flag is on, matching packets are dropped.
When it is off, all packets are passed.

In this application, all packets are received on interface A, and the pass target is
bound to interface B.

Interface A

Host module

Pass filter criteria?

No, discard

Drop

Accelerator module

Display packet count

Yes, count and pass
On 100th send upcall

Interface B
Intel Confidential Appendix A: Demonstration Applications 157

Revision 2.3, May 2000

• • • • •

ODXFilter

•
The application contains the following source files in the directory
demos/FilterApp/source:

ODXFilter

This sample demonstrates the C interface, which represents a NIC whose driver
has been customized for communication with the Policy Accelerator using the
Optimal Data Exchange (ODX) Protocol for PCI. The application ACE’s pass
target is bound to the system ACE for the C interface, and the C interface pass
target is bound to the application ACE.

This application is similar to FilterApp, but extends it to filter incoming packets
according to protocol. An action function for each type of protocol maintains a
packet count, and forwards undamaged packets to the NIC. The ACE filters
bad packets out of the traffic flow by sending them to the default drop target,
after counting and reporting on them.

Source File Contains

filterApp.h Error constants and subclass definitions for the host
module.

filterApp.cpp The main function for the host module, object construc-
tors and destructors, the upcall handler callback, and an
ACE manager method that creates a message and
sends a downcall.

The constructor for the application object binds the in
and out targets to the two MAC interfaces.

filterAppActions.cpp The initialization and two action functions for the accel-
erator module; ACE subclass declaration, constructor,
and destructor; the ACE method that constructs a mes-
sage and sends an upcall; and the downcall handler
callback.

filterAppRules.ncl The classification rules for the accelerator module; in
this case, protocol definitions for base and ether, and
two rules. One sends packets that match the filter crite-
ria to the action function action_match. The other
sends all packets to action_other.
158 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 EventAppl
NOTE: This is a usage demonstration and is not intended to test your
customized NIC driver. A diagnostic utility to test the NIC driver custom-
ization is included in the installation at the following location:

SDKinstallpath/diagnostics/odxloop

The application contains the following source files in the directory
demos/ODXFilter/source:

EventAppl

This sample, like SimpleApp, counts and reports on packets of different types.
It uses an Event object to schedule the reporting function to occur every six
seconds (rather than every 100 packets, as in FilterApp). As in SimpleApp, the
rules classify packets of different types, and send them to action functions that
count them. The counters are kept in the Event object, which, when the time is
up, reports the packet counts to the host using an upcall. The host, upon
receiving the upcall, displays the packet count information using standard
output.

This sample shows how to use the Event class to schedule events that are not
associated with data sets. This is much more efficient than, for example,
creating a data set element for the sole purpose of having it expire.

Source File Contains

ODXFilterAppl.cpp The main function for the host module, subclass defini-
tions and object constructors and destructors.

The constructor for the application object binds the in
and out targets to the C interface.

ODXFilterActions.cpp The initialization and action functions for the accelerator
module; ACE subclass declaration, constructor, and
destructor.

ODXFilterRules.ncl The classification rules for the accelerator module;
includes the predefined TCP/IP protocol definitions.
Rules send packets to the action functions according to
their protocols.
Intel Confidential Appendix A: Demonstration Applications 159

Revision 2.3, May 2000

• • • • •

TwoAceApp

•
The application contains the following source files in the directory
demos/Events/source:

TwoAceApp

This sample combines the functions of BasicApp and FilterApp into one appli-
cation with two ACEs. One ACE counts and forwards all packets and periodi-
cally reports the count in an upcall. The other ACE counts and forwards only
those packets with a specific MAC destination, reporting the count periodically
in an upcall.

This application differs from the BasicApp and FilterApp in that each ACE also
has a variable reporting period, which the application can change by sending a
new value in a downcall.

Source File Contains

eventsAppl.h Error constants and subclass definitions for the host
module.

eventsAppl.cpp The main function for the host module, object construc-
tors and destructors, and the upcall handler callback
acts on the message by displaying the count.

The constructor for the application object binds the in
and out targets to the two MAC interfaces.

eventsACT.cpp The initialization and action functions for the accelerator
module; ACE and Event subclass declarations, con-
structors, and destructors.

Creates and initializes the event object, which contains
the counters, the countdown timer, and a pointer to the
upcall object. The Event object also contains the event
callback method which, when the six seconds are up,
constructs a message and sends it in an upcall, then
reinitializes the counters and timer.

eventsNCL.ncl The classification rules for the accelerator module.
Includes the predefined TCP protocol definitions.
Defines rules to classify packets of different types,
sending each to an action function that counts that type
of packet.
160 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 TwoAceApp
In this case, the host module defines two different upcall handlers and call-
backs, to display messages for the two different kinds of upcall it can receive.
The host module also defines the downcalls that the application can use to reset
the reporting period and filtering flag. Each ACE defines corresponding down-
call handlers.

The application contains the following source files in the directory
demos/TwoAceApp/source:

Source File Contains

twoAceApp.h Error constants and subclass definitions for the host
module.

twoAceApp.cpp The main function for the host module, object construc-
tors and destructors, the upcall handler callback, and an
ACE manager method that creates a message and
sends a downcall.

The constructor for the application object creates the
bindings, even though this application has a factory and
you could create the bindings with the Plumber.

aceOneActions.cpp The initialization and two action functions for the first
ACE’s accelerator module; ACE subclass declaration,
constructor, and destructor; the ACE method that con-
structs a message and sends an upcall; and the downcall
handler object and callback.

aceOneRules.ncl The classification rules for the first ACE’s accelerator
module; in this case, a single rule that passes all ether
packets to the single action function.

aceTwoActions.cpp The initialization and action function for the second
ACE’s accelerator module; ACE subclass declaration,
constructor, and destructor; the ACE method that con-
structs a message and sends an upcall; and two down-
call handler objects and callbacks.

aceTwoRules.ncl The classification rules for the second ACE’s accelerator
module; in this case, a single rule that passes all packets
to the single action function.
Intel Confidential Appendix A: Demonstration Applications 161

Revision 2.3, May 2000

• • • • •

FilterNic

•
FilterNic

This sample is similar to FilterApp, but uses different bindings to demonstrate
software emulation of a network interface card (NIC). The application defines
two ACE groups, each containing two ACEs. One ACE acts as a filter between
packets arriving on a MAC interface and the host. The other filters packets
going out from the stack to the interface.

The ACEs in group A filter packets between interface A and stack A. The ACEs
in group B filter packets between interface B and stack B.

Like FilterApp, the ACE filters non-matching packets out of the traffic flow by
sending them to the default drop target. It sends all other packets to the pass
target, which in this case is bound to a host stack for incoming packets, or to the
Policy Accelerator interface for outgoing packets.

This sample illustrates the bindings that allow this type of filtering, but does
not do any actual filtering. The rules pass all IP packets. You can define rules to
set criteria for either acceptance or rejection. That is, you can pass packets that
match the criteria and drop those that fail, or drop packets that match and pass
all others.

Interface A

Host module

Host stack A

Pass filter criteria?

No, discard

Accelerator module

Yes, pass

Pass filter criteria?

No, discard

Drop
Yes, pass

ACE group A
162 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Tap
The application contains the following source files in the directory
demos/FilterNic/source:

Tap

This sample watches traffic flow without redirecting packets. In this case, the
application retrieves buffers after the packets have been forwarded to their
destination in order to gather statistics on the traffic flow. Retrieving the buffer
avoids additional overhead that would result from copying the packet. This
technique can also be used for tasks such as intrusion detection.

This application defines only one ACE, but is designed for a system with two
Policy Accelerators. The application binds the system ACEs of the first Policy
Accelerator directly to one another, binding the from interface in each to the to
interface in the other. It then binds each from interface’s pass target to the ACE
in the second Policy Accelerator.

Source File Contains

filternic.h Error constants and subclass definitions for the host
module.

filternic.cpp The main function for the host module, object construc-
tors and destructors. There are four ACEs, with two in
each ACE group.

The constructor for the application object binds the from
target of one ACE in each group to one of the MAC
interfaces, and its pass target to the corresponding host
stack ACE. For the other ACE in the group, the from tar-
get is bound to the stack and the pass target to the inter-
face.

filternicactions.cpp The initialization and two action functions for the accel-
erator module; ACE subclass declaration, constructor,
and destructor.

filternicrules.ncl The classification rules for the accelerator module; in
this case, the predefined protocol definitions for TCP/IP
and two rules. One sends packets that match the filter
criteria to the action function action_accept. The
other sends packets to action_reject. (In this exam-
ple, no packets are rejected.)
Intel Confidential Appendix A: Demonstration Applications 163

Revision 2.3, May 2000

• • • • •

Tap

•
The system ACEs forward packets directly between the from and to interfaces
without processing. After the packet has gone, the system ACE sends the same
buffer to the pass target, where it is processed on the second Policy Accelerator.
The processing does not interfere with the speed of traffic, since it takes place
after the packet has gone, nor does it take extra time to copy the buffer.

The ACE simply counts packets, and sends an upcall to the host to report every
1000th packet. The host’s upcall handler displays the current packet count.

The application contains the following source files in the directory
demos/Tap/source:

Interface A

Accelerator module 0

Interface B

Tap ACE

Accelerator module 1

Source File Contains

tap.cpp Error constants and subclass definitions for the host
module.

The main function for the host module, object construc-
tors and destructors, and the upcall handler callback

The constructor for the application object binds the from
and to interfaces of the system ACEs in the first Policy
Accelerator directly to one another, then binds each
from interface’s pass target to the Tap ACE on the sec-
ond Policy Accelerator.
164 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 IPPairs
IPPairs

This sample demonstrates the use of sets and searches to keep data. In this case,
the set collects source–destination address pairs of all IP packets that come
through, and keeps a count of how many additional packets come through for
each pair. A search determines whether a current packet has an address pair
matching any existing set element. If there is no match, the action function
creates an element and adds it to the set. If a matching element exists, the action
function increments the counter for that element.

To keep the size of the set manageable, an expiration timeout is set for each
element and reset each time a matching packet comes through. If no matching
packet is seen within the timeout period, the element expires and the expiration
callback deletes it from the set.

The application contains the following source files in the directory
demos/IPPairs/source:

tapactions_stats.cpp The initialization function and single action function for
the accelerator module; ACE subclass declaration, con-
structor, and destructor.

The ACE contains an upcall, and a method that con-
structs a message and sends it in an upcall.

taprules_stats.ncl The classification rules for the accelerator module; in
this case, the predefined TCP/IP definitions, and a sin-
gle rule that passes all packets.

Source File Contains

Source File Contains

tellmsg.h A data structure definition to use in creating messages.

IPAppl.cpp The main function for the host module. Error constants and
subclass definitions for the host module. Object constructors
and destructors, and utility functions, which include an upcall
handler callback.

The constructor for the application object creates the bind-
ings.
Intel Confidential Appendix A: Demonstration Applications 165

Revision 2.3, May 2000

• • • • •

Killer

•
Killer

This sample is the same as SimpleApp, except that it starts and stops the
Resolver automatically by using the operating system services layer (OSSL).
After starting the Resolver process and the application, the main function
allows the user to interrupt the application and kill the Resolver by pressing
any key.

The OSSL is a utility that allows you to control processes independently of the
operating system. It defines a class, OSSLProcess, to represent a process. This
application shows how to create the Resolver process as an object of this class.
You can use the object’s methods to manipulate the process. Deleting the object
kills the process.

The application contains the following source files in the directory
demos/Killer/source:

IPActions.cpp The initialization and action function for the accelerator mod-
ule; ACE subclass declaration, constructor, and destructor;
global variables and utility routines, including the expiration
callback and a function that creates a message and sends an
upcall.

Includes the set header file created with the NCL compiler,
and modifies the set element subclass to add data fields to it.

IPRules.ncl The set and search definitions and the classification rules for
the accelerator module. A single rule passes all IP packets to
the single action function.

Source File Contains

Source File Contains

killer.h Error constants and subclass definitions for the host module.

killer.cpp The main function for the host module, which starts the
Resolver by creating an OSSL process object. When the user
presses Return, the main function stops the Resolver process
by deleting the process object.

Object constructors and destructors and utility functions,
which include an upcall handler callback.
166 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 LoopApp
LoopApp

This sample runs a simple test to show that the IX-API SDK operating environ-
ment is configured correctly. To use this test, you must connect a 10/100 BT
crossover cable between the two interfaces of the Policy Accelerator.

When the NBappl object is constructed, it creates a packet that contains a
counter and sends it to the ACE in a downcall. Each time the ACE receives the
packet in a downcall, it adds some information and forwards the packet to the
default pass target, the B interface. Because the interfaces are connected by a
cable, this causes the packet to be received again by the accelerator module, on
the A interface.

When the ACE receives a packet from interface A, it creates a message from it,
which it sends back to the host module in an upcall. It then forwards the orig-
inal packet to the default drop target.

Each time the host module receives the packet back in an upcall, it decrements
the counter in the packet and sends it back to the ACE in a downcall, where it
starts on the loop again. When the counter reaches 0 (after 255 repetitions), it
displays a message that the test is successful.

killeractions.cpp The initialization and action functions for the accelerator mod-
ule; ACE subclass declaration, constructor, and destructor.

The ACE contains an upcall and a method that counts pack-
ets, constructs a message from the count, and sends it in an
upcall.

killerrules.ncl The classification rules for the accelerator module; in this
case, several rules that classify the packet according to its
type and source or destination address, as well as the final
rule that passes all packets to the counter action function.

nbossl.h Error handling and subclass definitions for the operating sys-
tem service layer (OSSL).

nbossl.cpp Function and method definitions for the OSSL, which provide
OS-independent process handling.

Source File Contains
Intel Confidential Appendix A: Demonstration Applications 167

Revision 2.3, May 2000

• • • • •

LoopApp

•
The application contains the following source files in the directory
demos/LoopApp/source:

Source File Contains

loopapp.cpp The main function for the host module, subclass definitions,
object constructors and destructors, and the upcall handler call-
back that decrements a counter in the packet and sends it in a
downcall.

loopact.cpp The initialization and action function for the accelerator module;
ACE subclass declaration, constructor and destructor; and the
downcall handler callback that adds information to the packet it
receives and forwards it to the pass target.

The action function constructs a message from a packet
received on the interface and sends it in an upcall.

loopncl.ncl The classification rule for the accelerator module. A single rule
passes all packets to the single action function.

Interface A

Host module

Interface B

Build msg, send upcall
Discard original

Drop

Accelerator module

Add info
 Pass

Decrement counter
 Send downcall

Create and send
 original packet

Cable
168 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Firewall
Firewall

This more complex and complete sample is an example of how to construct a
firewall application.

The application contains two ACEs, Input and Output. Each ACE intercepts
traffic in one direction between two interfaces, one connected to the external
network and the other to the internal network. The ACEs accept or reject
packets based on whether their port or address information matches values in
the ipdeny and tcpallow data sets.

The host module allows the user to manage the criteria used by the ACEs to
accept or reject packets. The main function runs a loop (DoMenu) that displays a
menu of options for the user, looks for the user’s keyboard input, and sends the
result to the accelerator module in a downcall.

A downcall handler callback in each ACE interprets the command received in
the downcall and responds accordingly. Depending on the command, it can:

n Adjust the contents of the data sets of allowed and denied addresses and
ports.

Interface A

Host module

Pass filter criteria?

No, discard

Drop

Accelerator module

Manage criteria

Yes, pass

Interface B
Traffic from outside Traffic from inside

Input ACE

Pass filter criteria?

No, discard
Yes, pass

Output ACE

Collect user input
Send to accelerator
in downcall
Intel Confidential Appendix A: Demonstration Applications 169

Revision 2.3, May 2000

• • • • •

Firewall

•
n Send an upcall to the host module with requested information. In the host
module, an upcall handler unpacks and displays the message.

The example menu allows the user to issue the following commands:

The application contains the following source files in the directory
demos/Firewall/source:

Command Action

f Read rules from a file (an example file, rules.txt, is provided)

i Show input firewall rules

a Add IP address to denied incoming hosts

d Delete IP address from denied incoming hosts

p Add port to list of accepted incoming ports

r Remove port from list of accepted incoming ports

o Add host IP address to list of denied outside hosts

n Remove host IP address from list of denied outside hosts

q Quit

Source File Contains

firewallAppl.h The data structure defining the commands the user can
issue.

firewallAppl.cpp The main function for the host module, subclass definitions,
object constructors and destructors, and method definitions.

Each ACE manager contains an upcall handler with its call-
back method, a downcall, and a method to send a downcall.

The constructor for the application object runs a loop that
displays a menu, waits for keyboard input, then interprets
and acts on the command received.

The main function creates the application object, whose con-
structor runs the menu loop.
170 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 Firewall
InputACT.cpp The initialization and action functions for the accelerator
module of the Input ACE; subclass declarations, construc-
tors and destructors; and method definitions.

The ACE object contains a downcall handler with its callback
and a method to send an upcall. The downcall handler
responds to the commands it receives by modifying the sets
of addresses to be accepted or rejected.

The two action functions simply pass or drop packets.

InputNCL.ncl The classification rules for the accelerator module of the
Input ACE. The rules determine whether to accept (pass) or
reject (drop) packets, based on whether their port and
address values match members of the ipdeny or tcpal-
low sets. They also reject packets that exhibit various error
conditions; however, this example does not handle all cases.

OutputACT.cpp The initialization and action functions for the accelerator
module of the Output ACE; subclass declarations, construc-
tors, and destructors; and method definitions.

The ACE object contains a downcall handler with its callback
and a method to send an upcall. The downcall handler
responds to the commands it receives by modifying the sets
of addresses to be accepted or rejected.

The two action functions simply pass or drop packets.

OutputNCL.ncl The classification rules for the accelerator module of the
Output ACE. The rules determine whether to accept (pass)
or reject (drop) packets, based on whether the destination
address values match members of the ipdeny set. They
also reject packets that exhibit various error conditions; how-
ever, this example does not handle all cases.

rules.txt An example of a file containing a set of firewall rules that the
application can read in directly.

Source File Contains
Intel Confidential Appendix A: Demonstration Applications 171

Revision 2.3, May 2000

• • • • •

Crosscall

•
Crosscall

This sample demonstrates the use of crosscalls for communication between
ACEs, using the same basic format and bindings as the Firewall application.

The host module allows the user to initiate a crosscall from either ACE with a
keystroke. The main function runs a loop (DoMenu) that displays a menu of
options for the user, looks for the user’s keyboard input, and sends the result to
the accelerator module in a downcall.

When the accelerator module receives the downcall, the ACE’s downcall
handler sends a response in an upcall. In the host module, the ACE manager’s
upcall handler unpacks and displays the message. If the ACE receives the
proper code, it also sends a crosscall to the other ACE. The other ACE receives
the crosscall and its crosscall handler unpacks and displays the message.

The application contains the following source files in the directory
demos/Crosscall/source:

Source File Contains

crosscallAppl.h The data structure used for sending messages between the
host and accelerator modules.

crosscallAppl.cpp The main function for the host module, subclass definitions,
object constructors and destructors, and method definitions.

Each ACE manager contains a downcall, crosscall manager,
and crosscall handler manager object, as well as an upcall
handler with its callback method and a method to send a
downcall.

In addition to creating the bindings, the application object
constructor creates the crosscall links, connecting each
crosscall to the crosscall handler in the other ACE.

The main function runs a menu loop.

InputACT.cpp The initialization and action functions for the accelerator
module of the Input ACE; subclass declarations, construc-
tors, and destructors; and method definitions.

The ACE contains a downcall handler with its callback and a
method to send an upcall.

The ACE also contains a crosscall, a method to send the
crosscall, and a crosscall handler with its callback.

The two action functions simply pass or drop packets.
172 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

 StringSearch
StringSearch

This sample demonstrates how to search for strings within packets, using a
format similar to the Firewall application.

The host module allows the user to add or remove strings for which to search.
The main function runs a loop (DoMenu) that displays a menu of options for the
user, looks for the user’s keyboard input, and sends the result to the accelerator
module in a downcall.

When the accelerator module receives the downcall, the ACE’s downcall
handler interprets the command received and responds accordingly.
Depending on the command, it takes one of the following actions:

n Sends an acknowledgement to the host module in an upcall. In the host
module, an upcall handler unpacks and displays the message.

n Initializes the search context and engine objects, using the string passed in
the downcall.

A single rule passes all packets to the action_pass action function. Once a
search has been set up for a particular string, the action function passes each
incoming buffer to the string search before disposing of it. In this example, the
results of the search do not affect the disposition of the packet; all packets are
sent to the pass target.

InputNCL.ncl The classification rules for the accelerator module of the
Input ACE. The single rule passes all packets.

OutputACT.cpp The initialization and action functions for the accelerator
module of the Output ACE; subclass declarations, construc-
tors, and destructors; and method definitions.

The ACE contains a downcall handler with its callback and a
method to send an upcall.

The ACE also contains a crosscall, a method to send the
crosscall, and a crosscall handler with its callback.

The two action functions simply pass or drop packets.

OutputNCL.ncl The classification rules for the accelerator module of the
Output ACE. The single rule passes all packets.

Source File Contains
Intel Confidential Appendix A: Demonstration Applications 173

Revision 2.3, May 2000

• • • • •

StringSearch

•
The accelerator module defines two string search callbacks:

n The per-match callback, GotString, is executed each time a search finds a
matching string. In this example, the callback displays information about
the matching string, and instructs the search to terminate for the current
buffer.

n The per-buffer callback, AfterBuffer, is executed when the search is
complete for the buffer, whether or not it found a matching string. In this
example, the callback simply displays a message. In a real application, it
might make a decision about what to do with the buffer based on the result
of the search and transmit that decision back to the calling action function.

The application contains the following source files in the directory
demos/StringSearch/source:

.

Source File Contains

strsrchAppl.cpp The main function for the host module, subclass definitions,
object constructors and destructors.

The ACE manager contains an upcall handler with its call-
back and a method that sends a downcall.

The main function runs a menu loop.

strsrchACT.cpp The initialization and action functions for the accelerator
module; subclass declarations, constructors and destruc-
tors; and method definitions.

The ACE contains a downcall handler with its callback, and
a method to send an upcall.

The ACE also contains string search engine and context
objects, and a method to initialize them. The context object
contains the search response callbacks.

The action_pass action function sends each buffer to the
string search before sending it to the pass target.

strsrchNCL.ncl The classification rules for the accelerator module. In this
case, the single rule passes all packets to the action_pass
function.
174 Appendix A: Demonstration Applications Intel Confidential

Revision 2.3, May 2000

• • • •

E(1)
Appendix B

• • • • •
Packet-Counting Application

This appendix includes the complete source for the packet-counting applica-
tion created in Chapter 2, “Tutorial: Creating a Simple Application.” You can
also view the code online.

Host Module Header (CountApp.h)

// include system interface header files

#include “NBswap.h”
#include “NBapi/nbappl.h”

// user-defined error codes

#define NBERROR_COUNT_BASE (NBERROR_USER_BASE + 0x1000)
#define NBERROR_COUNT_ERRCODE (x) (NBERROR_COUNT_BASE + (x))

#define NBERROR_COUNT_CANNOTCREATEGROUP NBERROR_COUNT_ERRCOD
#define NBERROR_COUNT_CANNOTCREATEACE NBERROR_COUNT_ERRCODE(2)
#define NBERROR_COUNT_CANNOTCREATEUPCALL
NBERROR_COUNT_ERRCODE(3)
#define NBERROR_COUNT_CANNOTLOADCODE NBERROR_COUNT_ERRCODE(4)

// AceManager subclass declaration
class CountAceManager: public AceManager
{
 public:

CountAceManager (NBAppl* appl, AceGroup* acegroup, char*
name);

~CountAceManager();
// showPacketCount method
void showPacketCount (Message* m);
// pointer to UpcallHandler object
UpcallHandler* showPacketCountUpcallHandler;

}

Intel Confidential Appendix B: Packet-Counting Application 175

Revision 2.3, May 2000

• • • • •

Host Module (CountApp.cpp)

•
// AceGroup subclass declaration
class CountAceGroup: public AceGroup {

public:
CountAceGroup (NBAppl* appl, NBFactory* nbf, char* name,

NBStringList* list);
~CountAceGroup();
// pointer to AceManager subclass object
protected:
 CountAceManager* countAceManager;

}

// NBAppl subclass declaration

class CountAppl: public NBAppl {
public:

CountAppl (char* name, char* curdir, char* cmdLine);
~CountAppl();
// pointer to AceGroup subclass object
protected:
 CountAceGroup* countAceGroup;

};

Host Module (CountApp.cpp)

#ifdef Win32
#include <iostream.h>
#include <direct.h>

#else
#include <unistd.h>
#include <stdlib.h>

#endif

#include CountApp.h

// NBAppl subclass definition

CountAppl::CountAppl (char* name, char* cwd, char* cmd):
NBAppl (name, cwd, cmd)

{
// AceGroup subclass instantiation
try {

countAceGroup = new CountAceGroup (this, NULL,
“CountAceGroup”, NULL);
176 Appendix B: Packet-Counting Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Host Module (CountApp.cpp)
}
catch (NBError&) {

throw NBError (NB_ERROR
(NBERROR_COUNT_CANNOTCREATEGROUP));

}
// Network interface bindings
uint32 rval;
rval = bind

(“/nbhwpe0/FromInterface:nbhwpe0A/Interface/pass”,
“/CountPackets/CountAceGroup/CountAce”);

if (rval != NB_SUCCESS) {
NB_ABORT(rval);

}
rval = bind (“/CountPackets/CountAceGroup/CountAce/pass”,

“/nbhwpe0/ToInterface:nbhwpe0B/Interface”);
if (rval != NB_SUCCESS) {

NB_ABORT(rval);
}
}

CountAppl::~CountAppl()
{
// delete AceGroup subclass
delete countAceGroup;
}

// AceGroup subclass definition

CountAceGroup::CountAceGroup (NBAppl* appl, NBFactory* nbf,
char* name, NBStringList* list) :
AceGroup (appl, nbf, name, list)

// AceManager subclass instantiation
{

try {
countAceManager = new CountAceManager (appl, this,

“CountAce”);
}
catch (NBError&) {

throw
NBError(NB_ERROR(NBERROR_COUNT_CANNOTCREATEACE));

}
}

CountAceGroup::~CountAceGroup()
{

// delete AceManager subclass
delete countAceManager;

}

Intel Confidential Appendix B: Packet-Counting Application 177

Revision 2.3, May 2000

• • • • •

Host Module (CountApp.cpp)

•
// AceManager subclass definition

CountAceManager::CountAceManager (NBAppl* appl, AceGroup*
acegroup, char* name):
// constructor
AceManager (appl, acegroup, name)
{

// UpcallHandler class instantiation
try {
#ifdef WIN32
 showPacketCountUpcallHandler =

new UpcallHandler (appl, acegroup, this,
“showPacketCount”,

 (UpcallFp) showPacketCount);
#else
 showPacketCountUpcallHandler =

new UpcallHandler (appl, acegroup, this,
“showPacketCount”,

 (UpcallFp)&showPacketCount);
#endif

 }
catch (NBError&) {

throw NBError (NB_ERROR
(NBERROR_COUNT_CANNOTCREATEUPCALL));

}

// load accelerator module into Policy Accelerator
int errorcode;
if ((errorcode = load (“CountRules”, // NCL (.ncl) file

“CountActions”)) // action (.nbo) code
!= NB_SUCCESS)

{
throw NBError (NB_ERROR(NBERROR_COUNT_CANNOTLOADCODE));

}
}
// showPacketCount method definition
void CountAceManager::showPacketCount (Message* m)
{

NB_ASSERT (m->getLen1() == sizeof(nuint32));
printf (“Packet Counter: 0x%08x\n”, ntohl (*(nuint32 *)m-

>getBuffer1()));
releaseMessage (m); // Message passed here, dispose of it.

}
// destructor
CountAceManager::~CountAceManager()
{

// delete UpcallHandler
delete showPacketCountUpcallHandler;
178 Appendix B: Packet-Counting Application Intel Confidential

Revision 2.3, May 2000

• • • •

 PE Module (CountActions.cpp)
}

// application main function

void main (int argc, char** argv) {
nb_trace_verbose(1);

// NBAppl subclass instantiation
CountAppl* appl;

try {
appl = new CountAppl (“CountPackets”, NULL, NULL);

}
catch (NBError&) {

fprintf(stderr, “CountAppl creation failed!\n”);
exit(2);

}

// main loop
while(1)

#ifdef Win32
_sleep(999999);

#else
sched_yield();

#endif
}

PE Module (CountActions.cpp)

// include system interface header files

#include “NBaction/NBAction.h”

// Ace subclass declaration

class CountAce: public Ace {
public:

CountAce (ModuleId id, char* name, image* obj);
// showPacketCount method
void showPacketCount (void);
// packet counter declaration
int packetCounter;
// packet counter snapshot for message
nuint32 countSnapshot;
// upcall declaration
protected:
 Upcall showPacketCountUpcall;
Intel Confidential Appendix B: Packet-Counting Application 179

Revision 2.3, May 2000

• • • • •

PE Module (CountActions.cpp)

•
}

// Ace subclass definition

CountAce::CountAce (ModuleId id, char* name, Image* obj) :
Ace (id, name, obj), // note ending comma (declaration
incomplete)

// Upcall subclass instantiation
showPacketCountUpcall (id, this, “showPacketCount”)
// initialize packet counter

{
packetCounter = 0;

};
// showPacketCount method definition

void CountAce::showPacketCount (void)
{

// increment counter
packetCounter++;
if (!((packetCounter-1)%0x20)) // Don’t do upcall for every

packet;
// could overwhelm the driver

{
// take snapshot of count with known byte order
countSnapshot = htonl(packetCounter);
// create message
MessageBlock b ((char *) &countSnapshot, sizeof

(countSnapshot));
Message msg (mb);
// invoke upcall
if (showPacketCountUpcall.call(&msg) != 0)

printf(“Upcall failed.\n”);
}

}

// action function entry point (sends packet count)

ACTNF action_all (Buffer* buf, CountAce* ace)
{

ace->showPacketCount ();
return RULE_CONT;

}

// main-equivalent (init_actions)
180 Appendix B: Packet-Counting Application Intel Confidential

Revision 2.3, May 2000

• • • •

 Rules (CountRules.ncl)
INITF init_actions (void* id, char* name, Image* obj)
{

// instantiate and return Ace subclass
return new CountAce (id, name, obj);

}

Rules (CountRules.ncl)

// rule to invoke action for all packets

rule all_packets { 1 } { action_all() }
Intel Confidential Appendix B: Packet-Counting Application 181

Revision 2.3, May 2000

• • • • •

Rules (CountRules.ncl)

•
182 Appendix B: Packet-Counting Application Intel Confidential

Revision 2.3, May 2000

• • • •

• • • • •
Index

A
accelerator module 7, 49

ACE as primary part of 8
action code part 93
classification part 85
data set objects 53
debugging 19, 136
definition 7
loading into Policy Accelerator 28
overview 8
paired objects in 50
reading output 142
receiving messages from host 105
rules 8, 87
sending messages to host module 31–38, 104,

105
string search objects 52

accelerator, see accelerator module
accelerator, see Policy Accelerators
ACE 8, 49

and applications 49
as part of accelerator module 8
block 9, 23
classification of packets by 85
communicating with ACE managers 10
communicating with other ACEs 106, 172
creating 29
creating object in accelerator module 94
defining subclass 94
definition 8
evaluating rule predicates 90
groups, see ACE groups
handling of packets by 85
implementing 28

managers, see ACE managers
object framework for 51
packet flow out of 78
targets in 78
using to receive packets 39, 77

ACE groups 49
creating 24
sequence of creation 26

ACE managers 49
communicating with ACEs 10
creating 25
introduction 9
sequence of creation 26
using to initialize string searches 128
using to load accelerator module 28

action code 93
action functions 95
callbacks 96
compiling 65
debugging 136
file contents 94
initializing 94
requirements for sets and searches 120
subclasses 96
see also actions, action functions

action functions 41, 95
Boolean arguments to 142
predefined 97
return values 96
stepping through while debugging 138
troubleshooting 142
using to create set elements 124
using to delete set elements 124
what they do 99
Intel Confidential 183

Revision 2.3, May 2000

• • • • •

 Index

•
see also actions, action code
Action Services Library, see ASL
Action/Classification Engines, see ACE
action_drop function 97
action_pass function 97
actions 40, 41

and protocol fields 64
compiling 45
connecting with NCL rules 28
executing 90
location 8
use of 96
using to direct packets 82
using to modify sets 118, 124
using to populate sets 122
see also action code, action functions

API 6, 7
components 6
definition 6
overview 5
using to construct an ACE 8
see also host API, ASL, NCL

applications 49
and ACEs 49
basic components, example 155
communicating within 103
compiling 61
creating executables of 44
creating, tutorial 13–47
delivering to end users 145
demos and samples 153–174
event class, example 159
extended example 169
inserting pauses into 136
linking 61
main function 21, 29
managing 6
modules in 7
object framework 51
objects in 49
packet-counting, source code 175–181
performance overview 3
policy-enforcement 2
prerequisites to compiling and running 42
Resolver must be running 42
running 45, 73
using for string searching 128
using to force serial processing of packets 83
viewing output from 46

ASL 7, 93
contents 93
definition 7
error codes 58
predefined action functions in 97
return values 58
see also classes
subclasses and objects 94
using to construct messages 110–111
writing action code in 8, 93

B
BasicApp sample application 155
bin directory 147
bind method (NBAppl) 38, 75
binding 77

definition 39, 77
example 80
full names of targets 55
targets 78
unbound targets 80

boards, see Policy Accelerators
Boolean arguments in action functions 142
byte order 33, 112

and data for sets 124
and message data 112
hton conversion function 112
ntoh conversion function 112

C
C interface 58, 79
C interface, using 158
call handlers 103
callbacks 96, 103

crosscall handler 97
defining 97–98
downcall handler 97
for upcalls, downcalls and crosscalls 113
message completion 98
message handling 113
scheduled event 98
set element expiration 98
string search 98

calls 103
and call handlers 104

cards, see debug daughter cards, Policy Accelerators
cecomp, see NCL compiler
C-language interface, see API
184 Index Intel Confidential

Revision 2.3, May 2000

• • • •

 Index
classes 49
application framework 51
auxiliary 54
communication framework 51
data set framework 53, 120
defining subclasses 49
see also API, ASL
string search 52, 127

classification 40–42, 85
definition 2
example application 156
role of protocol definition 88
rule evaluation 90
rules 87

classifying packets 40–42
using protocol and predicate definitions 86

communicating 103
among ACEs 106
among ACEs, basic example 172
between host and accelerator modules 103
see also messages

communication
with a NIC 58, 79

compiling 62, 66
actions 45
host module 45, 63
NCL 63
using makefiles 66
using static or dynamic libraries 63

constructors, defining 49
contacting Intel xv
conventions, typographical xiv
CountActions.cpp source code 179
CountApp.cpp source code 176
CountApp.h source code 175
countdown timer, example 159
CountRules.ncl source code 181
Crosscall sample application 172
crosscalls 103

associating with handlers 107
defining callbacks for 113
example application 172
freeing memory after 114
full names of 55
objects to send and receive 51
receiving 97
using to send messages between ACEs 106

customer support xv

D
data sets, see sets
data types for message data 112, 124
debug daughter cards 136

connecting 139
debugging 136

accelerator module 19
acceleratorE module 136
action code 136, 138–141
and optimizations 137
debug daughter card 136
host module code 19, 135
preparing the Loopback application 139
producing a debugger executable 137
SDK must be installed 136
shutting down the debugger 141
starting the debugger 140
stepping through action functions 138
stepping through code 140
tracing 135
using command-line debugging tools 137
using the SDKt debugger 136

default targets 79
defining methods for subclasses 99
defining searches in sets 118
defining sets 118
demo applications 153–174

building 154
see also sample applications

destinations 78
developer tools 5, 61, 135
dictionary names of objects 50, 55
disposing of packets 90
distributed objects 50
downcalls 103, 104

defining callbacks for 113
freeing memory after 114
limitations of for moving packets 114
objects to send and receive 51
passing set data 124
receiving 97
sending 105
sending multibyte values in 112, 124
see also messages

drivers directory 148
drop target 79
dropping packets 78
Intel Confidential Index 185

Revision 2.3, May 2000

• • • • •

 Index

•
E
elements

deleting 125
elements, see set elements
endianness, see byte order
error checking in host API 19
error codes 58

defining new 19
errors in NCL 64
EventAppl sample application 159
example code 153
expiration of set elements 124–125

F
field accessors 64
FilterApp sample application 157
FilterNIC sample application 162
firewall applications 2

sample application 169
freeing memory after processing messages 113
full names 55
functions, see API

G
gdb (GNU debugger) 136
getaceid command 137

example 140
GNU debugger 136

H
handlers for upcalls, downcalls, and crosscalls 113
header files, generating from NCL 64
hierarchy of named objects 56
host 6

moving packet to Policy Accelerator 115
overview 6

host API 7
error checking 19
error codes 58
overview 7
return values 58
use by host module 8

host module 7, 49
compiling 45, 63
constructing messages on 111
debugging 19
debugging code in 135

definition 7
linking 63
overview 8
paired objects in 50
recieving messages from accelerator module

105
sending messages to accelerator module 31–38,

104, 105
tracing in 135
use of ACE manager 9

hpex directory 149
hton conversion function 112

I
I/O 46
I/O utiltities 142
icons, Resolver 42
include directory 150
include files, see header files
initializing action code 94
installation

creating for application delivery 145
verifying 42

Intel, contacting xv
interfaces

C interface for NIC connection 58, 79
intrusion detection applications 2
IPPairs sample application 165

K
key point, explanation of xiv
keys, set 119

associating with protocol fields 119
byte order in 124
definition 117

Killer sample application 166

L
lib directory 151
libraries, run-time 5
libraries, static or dynamic 63
linking 62

full names of crosscalls 55
linking host module 63
load balancing 2
loading the accelerator module into the Policy

Accelerator 28
186 Index Intel Confidential

Revision 2.3, May 2000

• • • •

 Index
Loopback sample application 167
debugging mode 139

M
main function 21, 29

creating 30
makefiles 66
management applications 6
memory, freeing after processing messages 108, 113
message blocks 108
message completion callbacks 98
message handling callbacks 113
messages 103

byte order in 112
constructing in ASL 110–111
constructing in host API 111
creating 108
freeing memory after processing 108
message blocks 108
message completion callback 98
MessageBlock class 32
sending between host module and accelerator

module 31–38, 104
using objects to send 51
using to pass large numbers of packets 35
see also crosscalls,downcalls, upcalls

methods, defining 99
multibyte values in messages 112
multiple ACEs, basic example 160

N
named searches 86
names

full 55
of paired objects 50

nbapid.lib 63
nbapistatic.lib 63
nbgcc command examples 45, 65
nbgdb 136

shutting down 141
starting 140

.nbo file 28
creating 66
creating with optimization 45

NCL 7, 85
compiling 63
connecting with action code 28
defining sets in 64

definition 7
errors 64
generating header files from 64
using to declare sets 118–120
using to define sets and searches 86
writing rules in 8

network byte order 33
Network Classification Language, see NCL
network performance issues 3
NIC PCI interface, using 158
note, explanation of xiv
ntoh conversion function 112

O
object files, see .nbo file
objects 49

application framework 51
auxiliary 54
communication framework 51
data set framework 53, 120
defining subclasses for 49
full names 55
hierarchy of named objects 56
naming 50
object name syntax 56–??
pairing of 50
string search 52, 127

ODX protocol 58, 79
ODXFilter sample application 158
operating system for Policy Accelerator, see system

software
optimizations and debugging 137
output from accelerator module 142
output, viewing 46

P
packets 2

accelerator, see Policy Accelerators
ACE actions on 9
classification by ACEs 85
classification overview 2
classifying 40–42
counting 30, 34
defining packet flow 39–40, 77–??
directing to a target 82
direction of flow 80
disposing of 2, 90
dropping 78
Intel Confidential Index 187

Revision 2.3, May 2000

• • • • •

 Index

•
filtering, basic example 157
filtering, further example 158
flow 85
flowing out of ACEs 78
forcing serial processing of 83
handling by ACEs 85
moving efficiently 114
moving from host to Policy Accelerator 115
moving from Policy Accelerator to host 115
role of protocol definitions in classifying 88
searching for strings in 127
sending large numbers of using upcalls 35
sets of 87
using an ACE to receive 39, 77
using set searches to check addresses of 91
using targets with 78

paired objects 50
troubleshooting 141

pass target 79
pauses, inserting into applications 136
PC, see host
per-buffer callback function 132–133
performance issues 3
per-match callback function 131
policies 1
Policy Accelerators 4

Action Services Library (ASL) 7
and bindings 77
limitations of execution environment 93
moving packets to host 115
Network Classification Language (NCL) 7
overview 4
Resolver resource manager 42
system software 5

policy-enforcement applications 2
and network performance issues 3
examples of 2

policy-enforcement networking 1–3
definition 2

populating sets 122
predicates 40

contents 87
definition 86
evaluating 90

prerequisites to compiling and running applications
42

printing from accelerator module 142
printing from applications 46

processes, starting and stopping programmatically
166

programming interface, see API 5
protocol definitions 88

definition 86
role in packet classification 88
TCP/IP 88
using to classify packets 86

protocol fields 86
accessing in action code 64
associating with keys 119

Q
quality of service (QoS) applications 2

R
ReadPort 46
readport utility 142
reference, explanation of xiv
Resolver 42, 55

icon 42
menu commands 42
running under UNIX 43
running under Windows NT 42
starting and stopping programmatically 166

return values 58
action functions 96

RMON statistical monitoring applications 2
rules 8, 85

action functions in 87
basic example 156
components of 87
connecting with action code 28
definition 86, 87
evaluating 90
location 8
NCL 8
predicates 87
using set searches in 123
using to classify packets 40
using to trigger actions 86
what they do 90

running applications 45, 73
run-time errors, debugging 141
run-time files, delivering with an application 145
run-time libraries 5
188 Index Intel Confidential

Revision 2.3, May 2000

• • • •

 Index
S
sample applications 153–174

BasicApp 155
building 154
Crosscall 172
EventAppl 159
FilterApp 157
FilterNIC 162
Firewall 169
IPPairs 165
Killer 166
Loopback 167
ODXFilter 158
Simple 156
StringSearch 173
TwoAceApp 160

scheduled event callbacks 98
scheduling events 159
SDK 5

components 7
description 5
header files 18
verifying correct installation 42

SDK debugger 136
compared to GNU debugger 136
shutting down 141
starting 140

searches in sets 86
action code requirements 120
defining 118
example application 165
how to use 123–125
in action code 120
overview 117
results 119
using in rules 123
using to check incoming packet addresses 91

searching for strings, see string searches
security using static libraries 63
serial processing of packets 83
set elements 121

creating 122
deleting 124
expiration callbacks 98
skeleton definitions for 121

set keys 119
associating with protocol fields 119
byte order in 124

sets 86

action code requirements 120
compared to classification predicates 118
creating elements using action functions 124
declaring using NCL 118–120
defining 118
delaying actions on elements 124
deleting 125
deleting elements using action functions 124
example application 165
generating action header files for 64
how to use 123–125
in action code 120
objects in ASL 53
overview 117
populating 122
set object 121
setting element expiration 124–125
troubleshooting 142
using actions to modify 118, 124
using to associate existing data with packets 118
using to collect new data about packet flow 118
using to keep tables of addresses 91
when to use 118

Simple sample application 156
Software Developer’s Kit, see SDK
software development tools 5, 61, 135
statistical monitoring (RMON) applications 2
stdout 46
stdout and stderr 142
stepping through code in the SDK debugger 140
string searches 127

acting on results 131–132
ASL classes and objects 52, 127
callbacks 98
changing search parameters 130
creating 129
disposing of packet buffers after 132
example application 173
in multiple packets 129
initializing 128
maintenance mode 130
overview 127
per-buffer option 132–133
per-match option 131
search mode 130

StringSearch sample application 173
subclasses 51

defining for accelerator module 94
defining methods for 99
Intel Confidential Index 189

Revision 2.3, May 2000

• • • • •

 Index

•
for communication classes 51
for data sets 53
for set elements 121

support for Intel xv
symbols xiv
Syntax example xiv
sysout 46
system software 5
system testing 167
system, see host, Policy Accelerators

T
targets 81

binding 78
creating 81–82
default 79
defining 81–82
directing packets to 82
drop 79
full names of 55
naming 82
pass 79
unbound 80

TCP/IP protocol 88
testing the ASK operating environment 167
timer, example 159
tools for developers 5, 61, 135
tracing in host module 135
troubleshooting 141

action function return values 142
paired objects 141
sets 142

tutorial 13

creating applications 13–47
source code 175–181
source code location 14
using Acrobat Reader 14

TwoAceApp sample application 160
typographical conventions xiv

U
unbound targets 80
upcalls 103, 104

creating 35
defining callbacks for 113
freeing memory after 113
limitations of for moving packets 114
objects to send and receive 51
receiving 36
sending 105
sending multibyte values in 112, 124
upcall handlers 36
using to send large numbers of packets 35
see also messages

V
verifying system operation 167
viewing output from applications 46
Visual Studio 62

WXYZ
warning, explanation of xiv
WinReadPort 46
WinReadPort utility 142
190 Index Intel Confidential

Revision 2.3, May 2000

• • • •

IX SDK Software Developer’s Kit License Agreement
IMPORTANT: You (the “licensee”) are consenting to be bound by this agreement if you do any of the following:
n Click on the “accept” button
n Install or use the software
n Otherwise exercise any rights provided below to use the accompanying Intel™ IX API Software Developer’s Kit (the “Intel SDK”)
Or, if applicable, you are bound by a currently effective written agreement regarding the use of the Intel SDK and signed by an authorized agent of you and by an
officer of Intel.

If you do not agree to the terms of this agreement or such signed agreement, as applicable, then do not use or copy the Intel SDK, and
contact the place from which you obtained it, if any of these terms are considered an offer, acceptance is expressly limited to these terms.
This Agreement sets forth the terms and conditions of your use of the accompanying Intel SDK, together with documentation provided to you by Intel. Any third
party software that is provided with the Intel SDK with such third party’s license agreement (in either electronic or printed form), and your use of such third party
software, shall be governed by such third party’s license agreement in addition to this Agreement. As used in this Agreement, Intel shall mean Intel Corporation, its
affiliates, or its subsidiaries.
Users of the Intel SDK pursuant to this Agreement must either be individuals using the license on their own behalf or be employees or contractors of a corporation
or other entity which has accepted the terms of this Agreement and on behalf of which the Intel SDK is being used, in which case the term “Licensee” in this
Agreement refers to you and such entity.

1. Grant of License.
a. Subject to the terms of this Agreement, Intel grants to Licensee a worldwide, nonexclusive, nontransferable, nonassignable, nonsublicensable license (the “License”)
under Intel’s copyrights to (i) copy the Intel SDK and associated documentation for internal use to integrate Applications for use with Intel Products, and (ii) to make
and distribute as many copies of the integrated applications containing the Intel SDK as necessary. “Intel Products” means approved Intel Hardware listed in the
datasheet provided with this Intel SDK. “Applications” means Licensee’s current and future expected applications that will use the Intel SDK.
b. Accompanying the Intel SDK is specific source code (“Intel Source”) such as ARM Compiler, ARM Debugger, Include Files, and reference applications that Licensee
may incorporate into Applications during the integration process using the Intel SDK. Subject to the terms of this Agreement, Intel grants to Licensee a worldwide,
nonexclusive copyright license to reproduce, distribute, and sublicense to third parties the Intel Source in Licensee’s Applications for use with Intel Products. Licensee
recognizes that when it uses the Intel SDK to create or compile Applications, a portion of the Intel SDK, the Intel Source, will be compiled and linked into or with the
Applications.

2. Ownership of the Intel SDK. As between the parties, Intel retains title to and ownership of, and all proprietary rights with respect to, the Intel SDK, the Intel
Source, and all copies and portions thereof, whether or not incorporated into or with other Software. The License does not constitute a sale of the Intel SDK, the
Intel Source, or any portion or copy of it.

3. Restrictions; Licensee Obligations.
a. Any redistribution or duplication of any software, code, and or application derived from the Intel SDK shall require that the Intel InstallShield installation program
be used for installation or Licensee agrees to incorporate the Intel file license.txt in its entirety into Licensee’s install program. The Intel-provided file license.txt
includes all relevant copyright notices, trademark notices, and any other notices. Except as specified in the applicable user documentation provided by Intel, Licensee
shall not (and shall not allow any third party to) (i) decompile, disassemble, or otherwise reverse engineer or attempt to reconstruct or discover any source code or
underlying ideas or algorithms of the Intel SDK by any means whatsoever, (ii) remove any product identification, copyright or other notices, (iii) retarget any Intel
SDK to interoperate with products other than Intel Products, or (iv) provide, lease, lend, use for timesharing or service burea u purposes, or otherwise use or allow
others to use the Intel SDK to or for the benefit of third parties.
Confidential information disclosed under this license agreement, including the existence and content of this Agreement, shall be considered “Confidential
Information.” Use and disclosure of such Confidential Information shall be governed by the terms of the Corporate Single Use Nondisclosure Agreement or other
Nondisclosure Agreement, signed between the parties and incorporated into this Agreement by reference.

4. Termination of License for Cause. This agreement will remain in effect unless Intel terminates it due to a breach of its terms. Upon termination, Licensee will
cease all use of the Intel SDK and promptly destroy or return to Intel all printed materials and copies of the Intel SDK and all portions thereof (whether or not
modified or incorporated with or into other software) and so certify to Intel. Except for the License and except as otherwise expressly provided herein, the terms of
this Agreement shall survive termination. Termination is not an exclusive remedy, and all other remedies will be available whether or not the License or the
Agreement is terminated.

5. Limited Warranty and Disclaimer. The Intel SDK is provided “as is” without warranty of any kind including, without limitation, any
warranty of merchantability or fitness for a particular purpose or noninfringement. Further, Intel does not warrant, guarantee, or make
any representations regarding the use, or the results of the use, of the Intel SDK or written materials in terms of correctness, accuracy,
reliability, or otherwise. Licensee understands that Intel is not responsible for and will have no liability for hardware, software, or other items or any services
provided by any person or entity other than Intel.

6. Export Restrictions. Licensee agrees to fully comply with all applicable United States and EEC or other countries regulations and laws in effect now and
hereinafter, including compliance with the U.S. Foreign Corrupt Practices Act and all export laws, restrictions, national security controls and regulations on the
distribution or dissemination of Applications or Intel Products, technology, and information related to and/or exchanged under this Agreement. Licensee agrees
not to export or reexport, or allow the export or reexport of the Intel SDK or any Intel Product, Intel Proprietary Information, or any direct product thereof in
violation of any such restrictions, laws or regulations, or without all required licenses and proper authorizations, to Cuba, Libya, North Korea, Iran, Iraq, or
Rwanda or to any Group D:1 or E:2 country (or national of such country) specified in the then current Supplement No. 1 to Part 740 of the U.S. Export
Administration Regulations (or any successor supplement or regulations).

7. Government Contracts. The Intel SDK is provided with RESTRICTED RIGHTS. If Licensee is the Government or a Government contractor, use, duplication or
disclosure by the Government is subject to the restrictions as set forth in subparagraph (c)(1)(ii) or the Rights in Technical Data and Computer Software Clause as
DFARS 252.227-7013 and FAR 52.227-19, as applicable. Manufacturer is Intel Corporation, 1350 Villa Street, Mountain View, California 94041-1126.

8. Limitation of Remedies and Damages. To the maximum extent allowed by law, Intel shall not be responsible or liable with respect to any
subject matter of this agreement under any contract, negligence, strict liability, or other theory: (a) for loss or inaccuracy of data or cost
of procurement of substitute goods, services or technology; (b) for any special, indirect, incidental, or consequential damages including,
but not limited to, loss of profits; or (c) for any matter beyond its reasonable control.
Intel Confidential 191

Revision 2.3, May 2000

• • • • •

• • • • •

• •
Distribution of the Intel SDK is also subject to the following limitations: Licensees (i) are solely responsible to your customers for any update or support
obligation or other liability that may arise from the distribution, (ii) do not make any statement that your product is “certified,” or that its performance
is guaranteed, by Intel, (iii) do not use Intel’s name or trademarks to market your product without written permission, (iv) shall prohibit disassembly
and reverse engineering, and (v) shall indemnify, hold harmless, and defend Intel and its suppliers from and against any claims or lawsuits, including
attorney’s fees, that arise or result from your distribution of any product.

9. Transfer; Successors. Licensee shall not assign this agreement or any part of it except with Intel’s prior written consent.

10. General. This Agreement shall be governed by and construed under the laws of the State of Delaware and the United States without regard to
conflicts of laws provisions thereof and without regard to the United Nations Convention on Contracts for the International Sale of Goods. In any
action or proceeding to enforce rights under this Agreement, the prevailing party shall be entitled to recover costs and attorneys’ fees. If any
provision of this Agreement is held by a court of competent jurisdiction to be illegal, invalid or unenforceable, that provision shall be limited or
eliminated to the minimum extent necessary so that this Agreement shall otherwise remain in full force and effect and enforceable. No rights or
licenses with respect to the Intel SDK or Intel Products are granted, other than those rights expressly and unambiguously granted in this Agreement.
This Agreement constitutes the entire agreement between the parties relating to the subject matter hereof.
Copyrights and Trademark Notification
Intel: Copyright ©1998–2000 Intel Corporation. All Rights reserved. Trademark. Intel is a trademark of Intel Corporation.
*Other products and company names mentioned herein may be the trademarks of their respective owners.
UCB: Contains Software from The Regents of the University of California. Copyright ©1982, 1986, 1993, 1997-2000 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistribution of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment: This product includes software
developed by the University of California, Berkeley, Network Research Group at Lawrence Berkeley National Laboratory and its contributors.

4. Neither the name of the University nor the Laboratory nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

This software is provided by the Regents and contributors ‘‘as is’’ and any express or implied warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose, are disclaimed. In no event shall the
Regents or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in
any way out of the use of this software, even if advised of the possibility of such damage.
LCC: LCC Source Code from Addison Wesley Longman (“Licensor”) from Christopher W. Fraser and David R. Hanson (“Authors”). LCC Source Code
Copyright © 1995–2000 by David R. Hanson and AT&T. Reproduced by permission.

No warranty is made by Intel, the Licensor or the Authors of the LCC source code software, either express or implied, regarding
the absence of defects in the LCC software, or its merchantability or fitness for a particular purpose. Intel, Licensor, and the
Authors shall have no liability for damages of any nature arising out of any use, distribution, or modification of the LCC
software, even if Intel, Licensor, or the Authors have been advised of the possibility of such damages.
GNU: Software coded using ARM Debugger and Compiler. Copyright ©1998–2000 Intel Corporation. All Rights reserved.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave., Cambridge, MA 02139, USA.
Intel Corporation
1350 Villa Street
Mountain View, CA 94041-1126
Tel: 650.567.9800
Fax: 650.567.9810
www.netboost.com

Revision 2.3, May 2000

• • •

	Contents
	About This Guide
	Audience
	In This Guide
	Other Sources of Information
	Typographic Conventions
	Syntax Example

	Contacting Intel
	Web and Internet Sites
	Customer Support Technicians

	Introducing the IX-API SDK
	Policy-Enforcement Networking
	Policies
	Policy- Enforcement Applications
	Packet Classification
	Policy Management
	Performance Issues

	The Policy Accelerator Solution
	Product Components
	Policy Accelerator Boards
	Software Developer’s Kit (IX-API SDK)

	Your Host System

	The Application Programming Interface
	API Components
	Structure of an Application
	The Host Module
	The Accelerator Module

	Enforcing Policy by Classifying and Acting on Packets
	Action/ Classification Engines (ACEs)
	Managing ACEs
	Messages Between the Host and the Policy Accelerator

	Developing Applications

	Tutorial: Creating a Simple Application
	Overview of the Tutorial
	Using the Tutorial
	Different Platforms
	Complete Source Code

	Creating Source File Outlines
	C++ Classes for Tutorial
	Files Required
	Your Development Environment
	Creating the Source Files
	Using the SDK Header Files

	Turning On Debugging
	Host Module Debugging
	Accelerator Module Debugging

	Preparing for Error Handling
	Defining Error Codes

	Creating the Primary Application Object (NBAppl)
	About the Main Function
	Creating the NBAppl Object

	Creating ACE Objects in the Host Module
	About ACE Objects
	Creating an ACE Group
	Creating an ACE Manager
	Cascading Instantiations

	Loading and Initializing the Policy Accelerator
	Loading the Accelerator Module
	Implementing an ACE
	Creating the Initialization Function for the Accelerator Module

	Creating an ACE Method
	Sending Messages from the Policy Accelerator to the Host
	Creating a Message
	Using a Network-Byte- Ordered Integer
	Sending a Message with an Upcall
	Receiving a Message with an Upcall Handler

	Defining Packet Flow
	Physical Packet Flow
	Logical Packet Flow
	Binding the Interfaces

	Classifying and Acting on Packets
	About Rules
	About Action Functions
	Adding a Rule and an Action

	Compiling, Linking, and Running the Application
	Verifying Your Development Environment
	Prerequisites
	Verifying the Operation of the SDK under Windows NT
	Verifying the Operation of the SDK under UNIX

	Compilation Model
	Compiling the Host Module
	Compiling the Action Code

	Running the Application
	Viewing Accelerator Module Output
	Viewing Output in Windows NT
	Viewing Output in UNIX

	If You Have Problems

	Elements of an Application
	The Object Framework
	ACE Framework Objects
	Message- Sending Framework Objects
	String Search Framework Objects
	Data Set Framework Objects
	Auxiliary Objects

	The Resolver and Multiple Applications
	Starting and Stopping Applications
	Naming Objects for the Resolver
	Full Name Paths
	System ACE Names
	For More Information

	Return Values and Error Codes

	Compiling Applications
	Overview of the Compilation and Linking Process
	Code Development on a Windows NT System
	Compiling the Host Module
	Compiling With Static Libraries for Windows NT

	Compiling NCL Files
	Checking f or NCL Errors
	Generating Headers for Action Files

	Compiling Action Code
	Using Makefiles for a UNIX System
	Running an Application
	Debugging an Application

	Controlling Packet Flow
	Defining Packet Flow
	Physical Packet Flow
	Logical Packet Flow

	Binding Targets as Packet Destinations
	Requirement for Packet Flow
	System- Defined Targets and ACEs
	Binding Example
	Unbound Targets

	Defining Targets
	Directing Packets to a Target
	Using Targets to Serialize Packet Processing

	Classifying Packets Using NCL
	How ACEs Handle Packets
	What’s in the NCL Rules File
	Classification Elements
	Sets and Searches

	Defining Rules
	Defining Protocols
	How Rules Are Evaluated
	What Rules Do

	Acting on Packets in Your Action Code
	Action Code Overview
	What Is in an Action Code File
	Initializing the Action Part of an ACE
	Defining ASL Subclasses and Objects
	Initializing the ACE

	What Is in the Action Part of the File
	Defining Action Functions
	Action Function Return Values
	Predefined Action Functions
	For More Information

	Defining Callbacks
	Defining Other Methods

	What Action Functions Do

	Communication Within an Application
	Overview
	Communication Between the Host and the Policy Accelerator
	Calls and Call Handlers
	Making Upcalls
	Making Downcalls
	For More Information

	Communication among ACEs
	Making Crosscalls
	For More Information

	Creating Messages and Message Blocks
	Allocating Space for Message Data in ASL
	Constructing Messages in ASL
	Constructing Messages on the Host
	Byte Order in Message Data
	For More Information

	Defining Message Handling Callbacks
	Releasing Message Memory
	For More Information

	Moving Packets between the Policy Accelerator and the Host

	Using Sets of Data to Classify Packets
	Overview of Sets and Searches
	When to Use Sets
	Defining Sets and Searches
	The NCL Side
	Example
	For More Information

	The ASL Side
	For More Information

	Initializing and Populating Sets
	Extending the Set Element Class
	Creating a Set Object
	Populating a Set
	Populating a Set on Initialization
	Populating a Set through Actions

	How to Use Sets and Searches
	Using Searches in Rules
	Setting and Comparing Key Values
	Using Actions to Modify Sets
	Setting Element Expiration
	Deleting Sets

	Finding Strings in Packets
	Overview of String Searches
	Setting Up a String Search
	Initiating and Continuing Searches
	Changing Search Parameters
	Acting on Search Results
	Per-Match Callbacks
	Per-Buffer Callbacks and Match Reports

	Disposing of Packet Buffers After a String Search

	Debugging and Troubleshooting
	Debugging Host Module Code
	Using Tracing in Your Host Application
	Debugging Short-Running Applications

	Using the IX-API SDK Debugger
	Makefile Debugging Flag
	Debugging Tools
	Producing a Debugger Executable
	Stepping through Action Functions

	Debugging Action Code
	Connect the Debug Daughter Card
	Prepare the LoopApp Application
	Start your Debugging Session
	Step through Code
	Shut down the Debugger

	Runtime Troubleshooting Hints
	Problems with Paired Object Naming
	Problems with Sets
	Problems with Action Function Return Values
	Problems with Action Function Arguments
	Reading Output from the Accelerator Module
	Starting and Stopping Applications

	Delivering Applications
	Overview
	Installing the Run-Time Files From Your Own Media
	Installation Results
	IX-API SDK Run-Time Tree
	Environment Variables
	Directory bin
	Directory drivers
	Directory hpex
	Directory include
	Directory lib

	Demonstration Applications
	Building the Sample Applications
	BasicApp
	Simple
	FilterApp
	ODXFilter
	EventAppl
	TwoAceApp
	FilterNic
	Tap
	IPPairs
	Killer
	LoopApp
	Firewall
	Crosscall
	StringSearch

	Packet-Counting Application
	Host Module Header (CountApp.h)
	Host Module (CountApp.cpp)
	PE Module (CountActions.cpp)
	Rules (CountRules.ncl)

	Index

