
Customizing a NIC
Driver Using the
ODX Protocol

• • • • •

• •
May 2000. Software Release SDK 3.0
Document Revision 1.0
Part Number A22384

This document as well as the software described in it is furnished under license and may be used or
copied only in accordance with the terms of the license. The information in this manual is furnished
for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors
or inaccuracies that may appear in this document or any software that may be provided in association
with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express permission of Intel
Corporation.

Intel Corporation might have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give any license to these patents.

Copyright © 2000 Intel Corporation. All rights reserved.

Intel and the Intel logo are registered trademarks and Internet Exchange, NetBoost, NCL, and the
NetBoost logo are trademarks of Intel Corporation in the United States and other countries.

ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.
InstallShield is a registered trademark and service mark of InstallShield Software Corporation in the
United States and/or other countries.
UNIX is a registered trademark of The Open Group in the US and other countries.
Windows NT is a registered trademark of Microsoft Corporation.

*Other third-party brands and names are the property of their respective owners.

This product includes software developed by parties other than Intel. See the back page of this
document for a list of copyrights and license agreements.
Intel Corporation
1350 Villa Street
Mountain View, CA 94041-1126
Tel: 650.567.9800
Fax: 650.567.9810
www.intel.com

Intel Confidential

Revision 1.0, May 2000

 • • •

• • • • •
Contents

About This Guide . vii
Audience vii
In This Guide viii
Other Sources of Information viii
Typographic Conventions ix

Syntax Examples ix
Installation Path ix

Contacting Intel x
Web and Internet Sites x
Customer Support Technicians x

Chapter 1 Introduction to the ODX Protocol 1
Background 1

Policy Accelerator Boards 1
IX-API SDK and IX-API 2

About the ODX Protocol 2
Connecting the NIC and the Policy Accelerator 3

One NIC for One Policy Accelerator 4
What the ODX Protocol Includes 4
How Applications Can Use the New Driver 5

Chapter 2 Customizing a NIC Driver . 7
Prerequisites 7
Customization Environment 8

Software Components 9
Implementing the ODX Functions 10

Required and Optional Functions 11
Basic Customization Steps 11
Intel Confidential Contents iii

Revision 1.0, May 2000

• • • • •

•
Initiating Communication With the Policy Accelerator 12
Concepts 12
Implementing 12
Initialization Process 14
For More Information 14

Terminating Communication With the Policy Accelerator 15
Concepts 15
Implementing 15

Termination Process 16
For More Information 17

Handling Packets 17
Concepts 17
Initiating Packet Flow 18
Receiving Packets 19
Transmitting Packets 20
For More Information 22

Reporting and Evaluating Status 23
Concepts 23
Interpreting Status from the PA-100 driver 23
Resetting Devices 23

Implementing the NIC’s Properties Functions 23
For More Information 25

Implementing the NIC’s Statistical Functions 25
For More Information 25

Installing and Testing the Driver 25
Installation/ Configuration 25
Testing 26
Sample Application 26

Chapter 3 Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and
Structures . 27
Overview 27

NBFIF Types and Structures Alphabetic Reference 28
NBFIF Types and Structures Summary 28
_NBFIF_DEV_HANDLE Type 30
_NBFIF_GET_SET_PROP_ITEM Structure 31
_NBFIF_GET_STAT_ITEM Structure 33
_NBFIF_PROP_CAP_ITEM Structure 34
_NBFIF_PROP_ITEM Structure 37
_NBFIF_PROP_RESTRICTION Enumeration 39
_NBFIF_PROP_TYPE Enumeration 40
_NBFIF_REGISTER_PARAM Structure 41
iv Contents Intel Confidential

Revision 1.0, May 2000

• • • •

_NBFIF_STAT_CAP_ITEM Structure 42
_NBFIF_STAT_CNTRL Enumeration 43
NBFIF_STATUS Type 44
_NBFIF_UNREGISTER_PARAM Structure 46

NBFIF Functions Alphabetic Reference. 47
NBFIF Functions Summary 47
NBFIF_BindRecv Function 49
NBFIF_BoundTxPacketsReady Function 51
NBFIF_ControlStatEngine Function 53
NBFIF_GetPropCapability Function 54
NBFIF_GetProperties Function 56
NBFIF_GetStatCapability Function 58
NBFIF_GetStatistics Function 60
NBFIF_PacketReady Function 62
NBFIF_Reset Function 63
NBFIF_SetProperties Function 64
NBFIF_UnbindRecv Function 65

Chapter 4 Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types,
and Structures . 67
Overview 67

NBPE Types and Structures Alphabetic Reference68
NBPE Types and Structures Summary 68
_NBPE_ANIC_RX_RING Structure 70
_NBPE_ANIC_TX_RING Structure 71
_NBPE_BIND_RECV_PARAM Structure 72
_NBPE_BUF_TYPE_DETAIL Structure 73
NBPE_DEV_HANDLE Type 74
NBPE_DEVICE_NAME Define 75
NBPE_LINK_NAME Define 76
_NBPE_PKT_READY_INFO Structure 77
_NBPE_RX_RING_INFO Structure 78
NBPE_STATUS Type 79
_NBPE_TX_RING_INFO Structure 81

NBPE Functions Alphabetic Reference 82
NBPE Functions Summary 82
IOCTL_NBOOST_FOREIGN_REGISTER Function 83
IOCTL_NBOOST_FOREIGN_UNREGISTER Function 84
NBPE_GetBufferTypes Function 85
NBPE_GetRecvPEBufRing Function 86
NBPE_GetTransmitPEBufRing Function 87
NBPE_PacketReady Function 88
Intel Confidential Contents v

Revision 1.0, May 2000

• • • • •

•
NBPE_Reset Function 89
NBPE_ReturnXmitPEBuffer Function 90

Index. . 91
vi Contents Intel Confidential

Revision 1.0, May 2000

• • • •

• • • • •
About This Guide

This guide describes the Intel® Optimal Data Exchange (ODX) Protocol and
explains how to use it. The ODX Protocol allows you to customize a driver for
a network interface card (NIC) so that an Intel Policy Accelerator can use the
NIC for packet traffic in the same way that it uses its own internal network
interfaces.

This is useful in cases where a NIC provides a different kind of cable interface
from those provided on the Policy Accelerator.

This allows packet-processing applications written using the Intel IX-API Soft-
ware Development Kit (SDK) to use the NIC’s interface in the same way that it
uses the internal Policy Accelerator interfaces.

Audience

This guide is intended for NIC driver customizers who need to modify a NIC
driver to interact with a Policy Accelerator. It assumes that you are familiar
with the following:

n C programming

n Driver code for the NIC driver to be customized

n Basic concepts of Windows NT device driver development

n The content of the Windows NT DDK help

n The Intel Internet Exchange™ API (IX-API) Software Development Kit
(SDK) sufficiently to test the NIC driver
Intel Confidential About This Guide vii

Revision 1.0, May 2000

• • • • •

In This Guide

•
In This Guide

This guide includes the following chapters:

n Chapter 1, “Introduction to the ODX Protocol,” which provides back-
ground on the Intel IX-API SDK, IX-API, and Policy Accelerator; introduces
the ODX Protocol; and explains how they are related

n Chapter 2, “Customizing a NIC Driver,” which explains the concepts
behind the ODX Protocol and lists the steps that you must take to imple-
ment the NIC driver’s half of the ODX functions

n Chapter 3, “Alphabetic Reference: NBFIF (NIC Driver) Functions, Types,
and Structures,” which contains detailed descriptions of each of the func-
tions that you must implement and of the data elements that the functions
use

n Chapter 4, “Alphabetic Reference: NBPE (PA-100 Driver) Functions,
Types, and Structures,” which contains detailed descriptions of each of the
functions that your NIC driver calls as part of its customization and of the
data elements that the functions use

Other Sources of Information

This guide is part of the Intel® IX-API SDK documentation set, which also
includes:

n IX-API SDK Reference, which describes the Intel IX-API SDK (software
development kit)

n Developing Applications Using the IX-API SDK, which provides programmers
with conceptual descriptions and instructions on writing network policy-
enforcement applications using the SDK

n IX-API SDK Release Notes, which lists information about the latest software
release

n Installing the IX-API SDK, which describes how to install both the run-time
and the development versions of the SDK

n Installing a Policy Accelerator 100 Board, which describes how to install a
Policy Accelerator PCI board into a PC

In addition, the Intel Web site provides valuable information on products,
support, and the company. See “Contacting Intel” on page x.
viii About This Guide Intel Confidential

Revision 1.0, May 2000

• • • •

 Typographic Conventions
Typographic Conventions

This document uses the following typographic conventions to help you locate
and identify information:

Syntax
Examples

The following figure shows a sample syntax notation.

Installation
Path

The following notation is a place holder for the complete pathname of the IX-
API SDK installation directory:

SDKinstallpath/

Italic text Used for new terms, emphasis, and book titles; also identifies argu-
ments in syntax descriptions.

Bold text Identifies keywords and punctuation in syntax descriptions.

Courier font Identifies file names, folder names, and text that either appears on
the screen or that you are required to type.

NOTE: Provides extra information, tips, and hints regarding the topic.

CAUTION: Identifies important information about actions that could result in
damage to or loss of data or could cause the application to behave
in unexpected ways.

 WARNING!
Identifies critical information about actions that could result in
equipment failure or bodily injury.

DWORD load (char * filename1, char * filename2)

Keywords and
required punctuation

Arguments
Intel Confidential About This Guide ix

Revision 1.0, May 2000

• • • • •

Contacting Intel

•
Contacting Intel

You can reach Intel’s automated support services 24 hours a day, every day at
no charge. The services contain the most up-to-date information about Intel
products. You can access installation instructions, troubleshooting information,
and general product information.

Web and
Internet Sites

You can use the internet to download software updates, troubleshooting tips,
installation notes, and more.

n General online support services are on the World Wide Web at:

http://support.intel.com

n Online support services for the Policy Accelerator 100 are on the World
Wide Web at:

http://support.intel.com/support/network/adapter/pa/pa100/

For specific types of information and services, go to the following Web and
internet sites:

n Corporate: http://www.intel.com

n Network Products: http://www.intel.com/network

n Intel IX Information: http://developer.intel.com/design/ixa/

n IX-API SDK: http://developer.intel.com/design/ixa/software/
index.htm

n Policy Accelerator: http://developer.intel.com/design/ixa/pa100/
index.htm

n ASIC: http://128.11.21.45/scripts/mardev/product/ixe100.asp

n FTP Host: download.intel.com

n FTP Directory: /support/network/adapter

Customer
Support
Technicians

n United States and Canada: 1-916-377-7000 (7:00 - 17:00 M-F Pacific Time)

n Worldwide Access: Intel has technical support centers worldwide. Many of
the centers are staffed by technicians who speak the local languages. For a
list of all Intel support centers, their telephone numbers, and the times they
are open, go to:

http://support.intel.com/support/9089.htm
x About This Guide Intel Confidential

Revision 1.0, May 2000

• • • •

Chapter 1

• • • • •
Introduction to the ODX Protocol

This chapter provides an overview of the Intel® Optimal Data Exchange (ODX)
Protocol, its elements, and how to use it.

It contains the following sections:

n Background

n About the ODX Protocol

n Connecting the NIC and the Policy Accelerator

n What the ODX Protocol Includes

n How Applications Can Use the New Driver

Background

The ODX Protocol allows you to customize a driver for a network interface card
(NIC) so that an Intel Policy Accelerator can use the NIC for packet traffic in the
same way that it uses its internal network interfaces.

Policy
Accelerator
Boards

The Intel Policy Accelerator is a wire-speed board designed specifically for
enforcing network policies regarding packet flow. It does this by classifying
packets, performing actions upon them, and disposing of them according to
applications that you, or other third parties, create.

A host system can contain one or more Policy Accelerators; each Policy Accel-
erator can support multiple applications.

Each Policy Accelerator contains two network interfaces, named A and B,
similar to those shown in the following diagram:
Intel Confidential Chapter 1: Introduction to the ODX Protocol 1

Revision 1.0, May 2000

• • • • •

About the ODX Protocol

•
The Policy Accelerator communicates with its host across the PCI bus.

For specifications for the Policy Accelerator and its network interfaces, see the
document Installing a Policy Accelerator 100 Board.

IX-API SDK
and IX-API

Developers of network-policy applications use the Intel Internet Exchange™
Software Development Kit (the IX-API SDK) application programming inter-
face (the IX-API) to specify the flow of packets through the Policy Accelerator
and the operations performed on them.

Such applications are known as IXA applications.

The IX-API allows applications to direct packets through the Policy Accelerator
by programmatically binding the network interfaces using their names. Packets
can flow into, out of, or in both directions through both interfaces at any time,
depending on how an application directs the packet flow.

Applications can also use the IX-API to retrieve information about an inter-
face’s properties, such as its speed or duplex mode, and to change the settings
of those properties.

About the ODX Protocol

Because the network interfaces A and B are physically part of the Policy Accel-
erator, you cannot change their physical attributes. Therefore, it might be
convenient to add an additional network interface that provides cable
connector types that are different from those offered by the internal interfaces.

The ODX Protocol allows you to develop a logical interface between a NIC
driver and a Policy Accelerator (PA-100) driver. You can use the ODX protocol
for any variety of NIC that can communicate across the PCI bus to the Policy
Accelerator.

A interface B interface
2 Chapter 1: Introduction to the ODX Protocol Intel Confidential

Revision 1.0, May 2000

• • • •

 Connecting the NIC and the Policy Accelerator
The ODX Protocol allows you to customize a driver for a network interface card
(NIC) so that the NIC behaves as an interface named C for the Policy Acceler-
ator. Any applications using the Policy Accelerator can then bind packet flow
through interface C in the same way that they bind interfaces A and B.

Because each NIC is different, the ODX Protocol consists of two parts:

n PA-100 functions: These provide the NIC driver with information about the
Policy Accelerator’s packet buffers and provide some control over the
Policy Accelerator’s related behavior.

n NIC functions: These provide the PA-100 driver with access to packets
flowing through the NIC and provide IXA applications with information
about the NIC’s status. You must implement these functions as part of your
NIC driver; ODX specifies the format that these functions must take and the
data types and structures that these functions use.

Connecting the NIC and the Policy Accelerator

The NIC and the Policy Accelerator communicate across the PCI bus to which
they are both connected. No other physical connection is required, so they do
not need to be seated near each other within the system, as shown in the
following diagram:

NIC

Policy Accelerator
Intel Confidential Chapter 1: Introduction to the ODX Protocol 3

Revision 1.0, May 2000

• • • • •

What the ODX Protocol Includes

•
In a system with a NIC driver customized using the ODX Protocol, you can
have up to three physical connections to one or more networks—the A and B
interfaces on the Policy Accelerator and the C interface on the NIC—as shown
in one possible configuration in the following diagram:

One NIC for
One Policy
Accelerator

Currently, ODX supports only a one-to-one relationship between an external
NIC and a Policy Accelerator:

n The NIC and the Policy Accelerator must be installed in the same host
because they must be able to communicate through the host’s PCI bus.

n Any specific NIC can communicate with only one Policy Accelerator at one
time.

n Each Policy Accelerator can communicate with only one external NIC at one
time.

What the ODX Protocol Includes

When you receive the ODX protocol, it includes the following:

n The nbfif.h header file; this provides the prototypes of functions that you
must implement to make your NIC driver work with the Policy Accelerator

n The nbpe.h header file provides the prototypes of Policy Accelerator (PA-
100) driver functions that your NIC driver will use as you implement the
nbfif.h functions.
The IX-API SDK libraries contain the code that implements the nbpe.h
functions

NIC

Policy Accelerator

PCI Bus

Networks

Cables

Packet flow
4 Chapter 1: Introduction to the ODX Protocol Intel Confidential

Revision 1.0, May 2000

• • • •

 How Applications Can Use the New Driver
n C-language source code for a sample (“reference”) implementation of the
driver for a specific NIC

n odxloop, a diagnostic utility

How Applications Can Use the New Driver

After you have changed your NIC driver using ODX, IXA applications can bind
Policy Accelerator packet flow through your NIC as interface C in the same
way that they use the Policy Accelerator’s A and B interfaces.

If an application attempts to bind a C interface that does not exist, such as when
a customized NIC is absent, an error occurs.
Intel Confidential Chapter 1: Introduction to the ODX Protocol 5

Revision 1.0, May 2000

• • • • •

How Applications Can Use the New Driver

•
6 Chapter 1: Introduction to the ODX Protocol Intel Confidential

Revision 1.0, May 2000

• • • •

Chapter 2

• • • • •
Customizing a NIC Driver

This chapter explains how to use the Intel® Optimal Data Exchange (ODX)
Protocol to customize your network interface card’s (NIC) driver. After the
customization, your NIC will behave as a network interface for a Policy Accel-
erator, receiving and transmitting packets on behalf of the Policy Accelerator.

This chapter contains the following sections:

n Prerequisites

n Customization Environment

n Implementing the ODX Functions

n Initiating Communication With the Policy Accelerator

n Terminating Communication With the Policy Accelerator

n Handling Packets

n Reporting and Evaluating Status

n Implementing the NIC’s Properties Functions

n Implementing the NIC’s Statistical Functions

n Installing and Testing the Driver

Prerequisites

NOTE: To do the customization described in this chapter, you must be familiar
with your NIC driver, how it works, and how to modify it. See “Audience”
on page vii for more about what you need to know.

To customize your NIC driver using the ODX protocol, you need:

n The Intel IX-API software developer’s kit (SDK) installed on a host system
running the Windows NT operating system

n An Intel Policy Accelerator board installed in the same host
Intel Confidential Chapter 2: Customizing a NIC Driver 7

Revision 1.0, May 2000

• • • • •

Customization Environment

•
n The ODX header files nbfif.h and nbpe.h, delivered as part of the IX-API
SDK

To test the driver, you need:

n The diagnostic utility odxloop, located in NBinstallpath/diagnostics

n An IXA application; that is, one that uses the IX-API to move packets through
interface C (your NIC) of the Policy Accelerator, such as the demonstration
code

NOTE: The ODX protocol supports only applications that are written using the
IX-API SDK for the Windows NT operating system. It does not currently
support the IX-API SDK for other operating systems.

Customization Environment

The goal of customization is to change your NIC’s driver so that packets going
through the NIC automatically go through the Policy Accelerator, in such a way
that the NIC acts as interface C for the Policy Accelerator. ODX provides the
protocol for doing this.

This allows IXA applications to use the NIC for packet traffic.

The following diagram shows packets that normally flow through a NIC
directly to the host for processing. After an ODX customization, the packets
flow through the Policy Accelerator. The essential difference is that now appli-
cations using the IX-API SDK to handle packets on the Policy Accelerator can
also handle packets coming through the NIC interface, and the packets might
not need to be uploaded to the host at all.

This example shows an application that might direct some packets flowing
through interface B to the host for additional processing.
8 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Customization Environment
Software
Components

The following diagram shows the components involved in processing packets:

n IXA application: Written by an application developer, it can use the IX-API
to handle packets flowing into or out of the Policy Accelerator. It also can
use all standard operating system (OS) functionality.

n IX-API and Resolver: Part of the IX-API SDK, these provide a software inter-
face between an IXA application and the PA-100 drivers, which control the
Policy Accelerator.

n NIC driver: This is your driver for your NIC.

n ODK NIC driver interface: This is your implementation of the functions
described in the nbfif.h header file.

n PA-100 drivers: This includes an implementation of the functions described
in the nbpe.h header file. This might be one or more drivers that control the
operation of the Policy Accelerator and interact with the ODX NIC driver
interface.

n NIC hardware processing: Typically this is packet management at the hard-
ware level; for example, your NIC driver might identify buffer locations for
packets, and the NIC hardware fills the buffers automatically.

Network Interface

Host Operating

Card (NIC)

System

Packet flow

Before NIC driver customization

After NIC driver customization using ODX

Policy Accelerator

A interface

B interface

Network Interface

Host Operating

Card (NIC)

System

Policy Accelerator

A interface

B interface

C interface

with IX-API
application

with IX-API
application

(optional)
Intel Confidential Chapter 2: Customizing a NIC Driver 9

Revision 1.0, May 2000

• • • • •

Implementing the ODX Functions

•
n Policy Accelerator system software: Handles packets, buffers, memory, and
such on the Policy Accelerator.

Implementing the ODX Functions

Because each NIC is different, the ODX Protocol consists of two sets of func-
tions:

n PA-100 functions: These functions are provided as part of the IX-API SDK.
They are described in the nbpe.h header file along with the necessary data
types and structures that allow the NIC driver to get information about the
Policy Accelerator’s packet buffers and to have some control over the Policy
Accelerator’s related behavior.

n NIC functions: You must implement these functions as part of your NIC
driver. They are described in the nbfif.h header file. They provide the PA-
100 driver with access to packets flowing through the NIC and provide IXA
applications with information about the NIC’s status. The header file spec-
ifies the format that these functions must take and the data types and struc-
tures that these functions use, but you must provide the code to make them
work.

CAUTION: Do not modify these header files.

IX-API and ResolverStandard Operating System
Functionality

User
Level

PA-100 drivers

Policy Accelerator

NIC Driver

ODX NIC Driver
Interface

Standard IX-API SDK Components

Kernel
Level

Hardware Network Interface Card (NIC)

IXA Application

hardware processing System Software
10 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Implementing the ODX Functions
Required and
Optional
Functions

The following table lists the functions descrbed in the nbfif.h header file. You
must implement at least the required functions:

Basic
Customization
Steps

The basic steps, described in detail in the next sections, are as follows:

1. Modify your existing NIC driver code to do the following at the appropriate
times:
l Initiate communication with the PA-100 driver for the Policy Accelerator
l Use the ODX functions described in nbpe.h to transmit and receive

packets instead of using your normal code path
l Terminate communication with the PA-100 driver

Used by PA-100
driver for: Function name Implementation notes

Initialization NBFIF_BindRecv Function Required.

Packet
management

NBFIF_BoundTxPacketsRea
dy Function

Optional. If not implemented, the
PA-100 driver uses NBFIF_-
PacketReady instead.

NBFIF_PacketReady Func-
tion

Required.

Property querying
and setting

NBFIF_GetPropCapability
Function

Optional, but required if either of
the other two property functions
are implemented.

NBFIF_GetProperties
Function

Optional

NBFIF_SetProperties
Function

Optional.

Statistical
reporting

NBFIF_ControlStatEngine
Function

Optional, but might be required
for NBFIF_GetStatistics to
operate.

NBFIF_GetStatCapability
Function

Optional, but required if
NBFIF_GetStatistics is
implemented.

NBFIF_GetStatistics
Function

Optional.

Resetting NBFIF_Reset Function Optional but recommended.

Termination NBFIF_UnbindRecv Function Required.
Intel Confidential Chapter 2: Customizing a NIC Driver 11

Revision 1.0, May 2000

• • • • •

Initiating Communication With the Policy Accelerator

•
2. Implement the ODX functions described in nbfif.h and include them as
part of your NIC driver. The PA-100 driver calls these functions as needed
after your driver has initiated communication. These functions include the
following actions:
l Reset the NIC
l Provide information about the NIC’s properties and statistics to the PA-

100 driver for delivery to a querying IXA application
l Provide received packets to the Policy Accelerator

l Get packets from the Policy Accelerator for transmission

3. Install and test the NIC driver.

Initiating Communication With the Policy Accelerator

Your NIC driver must initiate communication with the Policy Accelerator’s PA-
100 driver and provide a function for the PA-100 driver to use complete the
connection.

Concepts Your NIC driver initiates communication by using a PA-100 version of the
Windows NT IOCTL command. As part of this initialization, you pass the PA-
100 driver:

n A unique handle

n Pointers to the ODX functions that you have implemented

When the PA-100 driver receives your initialization request, it calls a binding
function, defined as part of ODX, that you have implemented. It uses this call
to pass to your NIC driver:

n A unique handle

n Pointers to the ODX functions in the PA-100 driver

NOTE: After communication is established, the NIC can function as an
interface only for the Policy Accelerator, not for the host system as a
stand-alone NIC.

Implementing

NOTE: A recommended technique is to create functions like
yourdriver_OpenIXDevice and yourdriver_CloseIXDevice inside
your NIC driver to perform the initialization and termination functions.
This encapsulates the following steps, so that if the ODX protocol
12 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Initiating Communication With the Policy Accelerator
changes or your driver is eventually ported to another operating
system, you can change the details without changing the primary
function name.

Your NIC driver must:

1. Initiate a connection to the PA-100 driver and register its functions with the
PA-100 driver. To do this, use the ODX version of the standard IOCTL call,
IOCTL_NBOOST_FOREIGN_REGISTER, by passing the
_NBFIF_REGISTER_PARAM structure, which includes the following:

l A unique handle
l Pointers to your implemented functions
l Driver identifiers

NOTE: Some functions are optional. If you choose not to implement a function,
you must pass a NULL in place of the function pointer to IOCTL_-
NBOOST_FOREIGN_REGISTER.

2. Include an implementation of the NBFIF_BindRecv function.
The PA-100 driver calls this function after it receives your IOCTL call and
passes it the following:
l A unique handle, which the NIC driver will use in future calls to PA-100

driver functions
l Pointers to its functions
The NIC driver must:

a. Save these function pointers.

b. Return a status based on the success of this and any operations other
operations performed here.

NOTE: You might want to include Step 3 as part of NBFIF_BindRecv, but you
can do it elsewhere if desired.

3. Initialize packet buffers and initiate packet flow as described in “Initiating
Packet Flow” on page 18.

4. In addition, the PA-100 driver looks for the following functions during
initialization and uses them if they are implemented:
l NBFIF_GetPropCapability function as described in “Implementing the

NIC’s Properties Functions” on page 23
l NBFIF_GetStatCapability function as described in “Implementing the

NIC’s Statistical Functions” on page 25
Intel Confidential Chapter 2: Customizing a NIC Driver 13

Revision 1.0, May 2000

• • • • •

Initiating Communication With the Policy Accelerator

•
Initialization
Process

The following diagram shows what happens when your NIC driver calls
IOCTL_NBOOST_FOREIGN_REGISTER to initiate communcation:

For More
Information

l “IOCTL_NBOOST_FOREIGN_REGISTER Function” on page 83
l “NBFIF_BindRecv Function” on page 49
l “Handling Packets” on page 17
l “Reporting and Evaluating Status” on page 23

Initialization

NIC NIC driver PA-100 Drivers

Policy
Accelerator
System Software

Calls IOCTL_NBOOST_

FOREIGN_REGISTER

Saves
function pointers
and handle;
requests PA-100 driver
function pointers

PA-100 SoftwareYour NIC

Calls NBFIF_Get
PropCapabilities

provides
property capabilities

Saves
property capabilities

Provides function
pointers

Calls
NBFIF_BindRecv

saves
function pointers

with function pointers

(if implemented)

Calls NBFIF_Get
StatCapabilities

provides
statistics capabilities

Saves
statistics capabilities

(if implemented)

NBFIF_Get
PropCapabilities

NBFIF_Get
StatCapabilities

NBFIF_BindRecv
14 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Terminating Communication With the Policy Accelerator
l “Implementing the NIC’s Properties Functions” on page 23
l “Implementing the NIC’s Statistical Functions” on page 25

Terminating Communication With the Policy Accelerator

Your NIC driver is also responsible for terminating communication with the
Policy Accelerator’s PA-100 driver and for providing a function for the PA-100
driver to use to complete the termination.

Concepts Your NIC driver terminates communication by using a PA-100 version of the
Windows NT IOCTL command. As part of this termination, you pass the PA-
100 driver:

n The unique handle that the NIC driver originally passed to the PA-100
driver

n The unique handle that the PA-100 driver originally passed to the NIC
driver

When the PA-100 driver receives your termination request, it calls an
unbinding function, defined as part of ODX, that you have implemented and in
which you terminate all activity.

Implementing Your NIC driver must:

1. Terminate the connection to the PA-100 driver and unregister its functions
with the PA-100 driver. To do this, use the ODX version of the standard
IOCTL call, IOCTL_NBOOST_FOREIGN_UNREGISTER, by passing the
_NBFIF_UNREGISTER_PARAM structure, which includes the following:
l The unique handle that the NIC driver originally passed to the PA-100

driver
l The unique handle that the PA-100 driver originally passed to the NIC

driver

2. Include an implementation of the NBFIF_UnbindRecv function.
The PA-100 driver calls this function after it receives your IOCTL call and
passes it the following:
l A unique handle
This function must cleanly terminate its connection to the Policy Acceler-
ator. Recommended steps include:

a. Stop sending packets to the Policy Accelerator.

b. Free all buffers in the NIC, if any exist.
Intel Confidential Chapter 2: Customizing a NIC Driver 15

Revision 1.0, May 2000

• • • • •

Terminating Communication With the Policy Accelerator

•
c. Return all allocated buffers to the Policy Accelerator using
NBPE_ReturnXmitPEBuffers.

d. NULL the PA-100 driver function pointers that the NIC driver’s
NBFIF_BindRecv function saved.
This ensures that the PA-100 driver does not accidentally attempt to use
functions that are now invalid.

e. Stop the NIC hardware

f. Return a status based on the success of these operations.

NOTE: After the IOCTL_NBOOST_FOREIGN_UNREGISTER function completes,
the NIC driver can no longer call any of the PA-100 driver functions.

Termination
Process

The following diagram shows what happens when your NIC driver calls
IOCTL_NBOOST_FOREIGN_UNREGISTER to terminate communcation:

Termination

NIC PA-100 Driver

Policy
Accelerator
System Software

calls
NBPE_Return
XmitPEBuffer
to free transmit

PA-100 SoftwareYour NIC

Cleans up as
needed for this

Gives buffers
back to system

Calls
NBFIF_UnbindRecv

buffers

to disconnect

Puts buffers
in the free list

Calls IOCTL_
NBOOST_
FOREIGN_
UNREGISTER

connection

NIC driver

NBFIF_UnbindRecv
16 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Handling Packets
It is also possible that the PA-100 driver will initiate termination by calling
NBFIF_UnbindRecv. In this case, the process is as follows:

For More
Information

l “IOCTL_NBOOST_FOREIGN_UNREGISTER Function” on page 84
l “NBFIF_UnbindRecv Function” on page 65

Handling Packets

The goal of customizing the NIC driver using ODX is to have the NIC driver
receive and transmit packets on behalf of the Policy Accelerator, so that the NIC
acts like a network interface to the Policy Accelerator.

Concepts For both transmitting and receiving packets, the PA-100 driver provides the
NIC driver with pointers to packet buffers on the Policy Accelerator. The NIC
driver places received packets into these buffers instead of into its normal
receive buffers, and it takes packets to be transmitted from these buffers instead
of from its normal transmit buffers.

The PA-100 driver provides the packet buffers as rings of buffers, with separate
transmit and receive rings. For each ring, the PA-100 driver provides a pointer
to the beginning of the currently available buffers in the ring, to end of the
currently available buffers the ring, and a mask to apply to the pointers to
accommodate the ongoing wrap of buffers in the ring.

Termination

NIC PA-100 Driver

Policy
Accelerator
System Software

calls
NBPE_Return
XmitPEBuffer
to free transmit

PA-100 SoftwareYour NIC

Cleans up as
needed for this

Gives buffers
back to system

Calls
NBFIF_UnbindRecv

buffers

to disconnect

Puts buffers
in the free list

connection

NIC driver

NBFIF_UnbindRecv
Intel Confidential Chapter 2: Customizing a NIC Driver 17

Revision 1.0, May 2000

• • • • •

Handling Packets

•
When the NIC driver has received packets and placed them into the receive
ring for the Policy Accelerator to process, it notifies the PA-100 driver that
packets are ready. In reverse, when the Policy Accelerator has placed packets
for transmission into the transmit ring, the PA-100 driver notifies the NIC
driver that packets are ready.

You implement in the NIC driver:

n “NBFIF_PacketReady Function” on page 62

n “NBFIF_BoundTxPacketsReady Function” on page 51 (optional)

Your NIC driver uses the following functions

n “NBPE_GetBufferTypes Function” on page 85

n “NBPE_GetRecvPEBufRing Function” on page 86

n “NBPE_GetTransmitPEBufRing Function” on page 87

n “NBPE_PacketReady Function” on page 88

n “NBPE_ReturnXmitPEBuffer Function” on page 90

Initiating
Packet Flow

The NIC driver should set up for transmit and receive packet flow as part of the
implementation of the NBFIF_BindRecv function, described in “Initiating
Communication With the Policy Accelerator” on page 12.

1. Verify that the NIC hardware is halted and, if not, halt it.
This ensures that packets are not flowing through the NIC while the buffers
are set up.

2. Call NBPE_GetBufferTypes to get a list of buffer types that the Policy Accel-
erator supports.

3. Select the buffer type that is appropriate for your NIC.

4. Pass the buffer type to NBPE_GetRecvPEBufRing to get the location of the
Policy Accelerator’s empty packet buffer receive ring.
This function returns:
l A pointer to the beginning (base) buffer in the receive ring
l An index mask to account for wrapping around the ring
l A produce index pointer, which points to the end of the currently avail-

able buffers in the receive ring

5. Set a consume-buffer pointer to the base pointer.

6. Use this location as the NIC’s receive buffer; that is, any packet received by
the NIC should go into this receive ring.
18 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Handling Packets
7. Do any initialization required to start the NIC receiving packets into this
ring.

8. Pass the same buffer type to NBPE_GetTransmitPEBufRing to get the loca-
tion of the Policy Accelerator’s empty packet buffer transmit ring.
This function returns:
l A pointer to the beginning (base) buffer in the transmit ring
l An index mask to account for wrapping around the ring
l A produce index pointer, which points to the end of the currently avail-

able buffers in the transmit ring

9. Set a separate consume-buffer pointer to the base pointer.

10. Start the NIC hardware.

11. If all initialization has been successful, packets begin flowing.

Receiving
Packets

For each packet that the NIC receives and places into a buffer in the receive ring,
the NIC driver should do the following:

1. Notify the Policy Accelerator that a packet is ready by calling
NBPE_PacketReady.

2. Increment its received consume-buffer pointer by 1.

3. Apply the receive index mask to the consume-buffer pointer and compare
it to the value pointed to by the receive produce index.
If they are equal, then there is currently no more space in the receive buffer
ring and the NIC driver must decide how to handle additional incoming
packets, typically by dropping them.

Receive Diagram

The following diagram shows the initialization and processing of packets
received by the NIC on behalf of the Policy Accelerator.
Intel Confidential Chapter 2: Customizing a NIC Driver 19

Revision 1.0, May 2000

• • • • •

Handling Packets

•
Transmitting
Packets

For each packet that the Policy Accelerator prepares for transmittal by placing
it into a buffer in the transmit ring, the following occurs:

1. The PA-100 driver notifies the NIC driver that a packet is ready by calling
NBFIF_BoundTxPacketsReady.

2. In the NBFIF_BoundTxPacketsReady function, the NIC driver should do the
following:

a. Transmit the packet

b. Increment its transmitted consume-buffer pointer by 1.

NIC PA-100 Drivers

Policy
Accelerator
System Software

Calls NBPE_
GetRecvPEBuf
Ring to get
empty buffers

PA-100 SoftwareYour NIC

Passes available buffers
back to NIC driver

Gets a free buffer
from receive ring and

Calls
NBPE_PacketReady

for receiving Passes host
receive ring

Fills ring with
buffers

Processes the
packet descriptor

DMAs data into
free buffer

Updates the
descriptor if

Notifies that
descr is done

with filled buffer Passes the buffer
Processes
the packet

NIC driver

packets

sets up NIC’s
receive path

necessary
20 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Handling Packets
c. Apply the transmit index mask to the consume-buffer pointer and
compare it to the value pointed to by the transmit produce index.
If they are equal, then there are currently no more packets in the transmit
buffer ring; otherwise, continue with Step a. for the next packet.

Alternative Transmit Method

The preceding method is the fastest method for transmitting packets. If,
however, you want to transmit packets one at a time rather than from a ring,
such as for testing, you can do so as follows:

1. Do not call NBPE_GetTransmitPEBufRing during initialization.

2. Do not implement NBFIF_BoundTxPacketsReady; instead, pass a NULL for
this function’s pointer to the PA-100 driver in the IOCTL_NBOOST_-
FOREIGN_REGISTER function.

3. Implement NBFIF_PacketReady.
Whenever NBFIF_BoundTxPacketsReady is not implemented, the PA-100
driver calls NBFIF_PacketReady each time a packet is ready for transmit. It
passes a pointer to the packet and the length of the packet; the NIC driver
simply transmits this packet from this location.

Transmit Diagram

The following diagram shows initialization and packets flowing from the
Policy Accelerator to the NIC:
Intel Confidential Chapter 2: Customizing a NIC Driver 21

Revision 1.0, May 2000

• • • • •

Handling Packets

•
For More
Information

n “NBFIF_PacketReady Function” on page 62

n “NBFIF_BoundTxPacketsReady Function” on page 51 (optional)

n “NBPE_GetBufferTypes Function” on page 85

n “NBPE_GetRecvPEBufRing Function” on page 86

n “NBPE_GetTransmitPEBufRing Function” on page 87

n “NBPE_PacketReady Function” on page 88

n “NBPE_ReturnXmitPEBuffer Function” on page 90

NIC PA-100 Drivers

Policy
Accelerator
System Software

Calls NBPE_
GetTransmitPEBuf
Ring to get
transmit ring

PA-100 SoftwareYour NIC

Notifies NIC driver that
buffers are available by

Sets up transmit
description

Calls
NBPE_Return

information

Fills ring with
data

Processes the
packet descriptor

DMAs data out of
ring buffer

Updates the
descriptor if

Notifies that
descr is done

XmitPEBuffer to
return buffers that

Updates the transmit Reclaims the
buffers

NIC driver

and puts it into
the NIC ring

calling NBFIF_PacketReady
or NBFIF_BoundTxPacketsReady

have been transmitted

ring consumed index

necessary
22 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Reporting and Evaluating Status
Reporting and Evaluating Status

This section describes how you return status to the PA-100 driver and how the
PA-100 driver returns status to you.

Concepts Each of the functions that you implement must return a status code indicating
whether the function succeeded. The header file nbfif.h defines a UINT32
type named NBFIF_STATUS to assist with this.

NOTE: The NBFIF_STATUS type conforms to the Windows NT operating
system’s standard 32-bit error code format, as summarized in
“NBFIF_STATUS Type” on page 44. Refer to your operating system
documentation for details.

The header file also defines a small set of useful 32-bit statuses that you can
return.

NOTE: The PA-100 driver evaluates your returned status only for success or
failure; it does not take any actions based on any particular failure, but
rather simply passes the status up to the calling application if appli-
cable.

Interpreting
Status from the
PA-100 driver

Each of the PA-100 driver functions returns a status of type NBPE_STATUS.

Resetting
Devices

Each driver has the option of requesting that the other driver’s device be reset
into a known, clean state. This might be appropriate when errors of unknown
origin continue to occur. The functions are:

n “NBFIF_Reset Function” on page 63: Implement this so that the PA-100
driver can call it to set the NIC into a known, clean state.

n “NBPE_Reset Function” on page 89: Call it to set the Policy Accelerator into
a known, clean state.

Implementing the NIC’s Properties Functions

If you want applications to be able to query or set properties of your NIC—such
as its speed or its duplex mode—you can implement the property functions.
These functions allow the PA-100 driver to respond to an application that uses
the IX-API SDK to:
Intel Confidential Chapter 2: Customizing a NIC Driver 23

Revision 1.0, May 2000

• • • • •

Implementing the NIC’s Properties Functions

•
n Request a list of available properties (PA-100 driver calls the
NBFIF_GetPropCapability Function)

n Request the current settings of properties (PA-100 driver calls the
NBFIF_GetProperties Function)

n Change the settings of properties (PA-100 driver calls the
NBFIF_SetProperties Function)

These functions are optional; however, you must implement
NBFIF_GetPropCapability if you implement either of the other functions.

You define and access a NIC’s properties using the following structures:

Structure Description

_NBFIF_GET_SET_PROP_ITEM Struc-
ture

Holds the value of a property.

_NBFIF_PROP_ITEM Structure Describes a property.

_NBFIF_PROP_CAP_ITEM Structure Associates a property description with an
index number as part of a properties list.

NBFIF_PROP_CAP_ITEM
Index # of NBFIF_PROP_ITEM

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

NBFIF_GET_SET_PROP_ITEM
Index #

Size of Buffer
Pointer to Buffer

NBFIF_PROP_CAP_ITEM

Index # of NBFIF_PROP_ITEM

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

See NBFIF_PROP_TYPE

See NBFIF_PROP_RESTRICTION
24 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

 Implementing the NIC’s Statistical Functions
For More
Information

n “NBFIF_GetPropCapability Function” on page 54

n “NBFIF_GetProperties Function” on page 56

n “NBFIF_SetProperties Function” on page 64

Implementing the NIC’s Statistical Functions

If you want applications to be able to query or reset statistical information
about your NIC—such as the quantity of transmit or receive errors—you can
implement the statistics functions. These functions allow the PA-100 driver to
respond to an application that uses the IX-API SDK to:

n Request a list of available statistics (PA-100 driver calls the
NBFIF_GetStatCapability Function)

n Request the current values of statistics (PA-100 driver calls the
NBFIF_GetStatistics Function)

n Turn the NIC driver’s statistical engine on or off (PA-100 driver calls the
NBFIF_ControlStatEngine Function)

These functions are optional; however, you must implement
NBFIF_GetStatCapability—and possibly NBFIF_ControlStatEngine, if
your NIC driver allows its caller to turn the statistics calculations on and off—
to implement NBFIF_GetStatistics.

For More
Information

n Optionally, “NBFIF_GetStatCapability Function” on page 58

n Optionally, “NBFIF_GetStatistics Function” on page 60

Installing and Testing the Driver

CAUTION: Ensure that the NIC driver doesn’t start until the Resolver is started,
or unexpected results can occur.

Installation/
Configuration

The PA-100 driver is loaded automatically by the SDK when the host boots.

For the Resolver to successfully recognize the existence of an ODX NIC driver
and to start the NIC driver, you must:

n Set the registry
Intel Confidential Chapter 2: Customizing a NIC Driver 25

Revision 1.0, May 2000

• • • • •

Installing and Testing the Driver

•
Testing To test the customized NIC driver after installation:

1. Run the ODX test set-up utility, odxloop, in a command shell on the host
system that contains the Policy Accelerator and its companion NIC.
This tool configures the Policy Accelerator to reflect packets back to the NIC
for testing purposes only. The tool is in the NBInstallPath/diagnostics
directory. See the IX-API SDK Reference chapter on command-line tools for
details.

2. Send packets to the NIC.

3. Verify that all of the packets are returned to the NIC from the Policy Accel-
erator in the same order and state.

4. Reboot the host to return the Policy Accelerator to its default configuration.

Sample
Application

The product installation includes a sample IX-API SDK application that uses
the C interface made possibly by your ODX NIC driver. The demo is in the
following location:

NBInstallPath/demo/ODXFilter
26 Chapter 2: Customizing a NIC Driver Intel Confidential

Revision 1.0, May 2000

• • • •

Chapter 3

Alphabetic Reference: NBFIF (NIC Driver)

• • • • •
Functions, Types, and Structures

This chapter contains an alphabetic reference to the Intel® Optimal Data
Exchange (ODX) Protocol functions that you must implement so that the PA-
100 driver can call them, and to the types and structures that you use to assist
with the implementation.

It describes each function and data element, and explains in detail how to
implement each function.

It contains the following sections:

n “Overview” on page 27

n “NBFIF Types and Structures Alphabetic Reference” on page 28

n “NBFIF Functions Alphabetic Reference” on page 47

Overview

The nbfif.h header file provides the prototypes of NIC driver functions that
you must implement and that the PA-100 driver will call. Your driver code must
include this file.

CAUTION: Do not modify this header file.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 27

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
NBFIF Types and Structures Alphabetic Reference

NBFIF Types
and Structures
Summary

The nbfif.h header file contains the following data types and structures that
the NIC driver and the PA-100 driver use to pass information between them-
selves:

Data Element Description

_NBFIF_DEV_HANDLE Type A unique handle that the NIC driver must pro-
vide to the PA-100 driver.

_NBFIF_GET_SET_PROP_ITEM
Structure

Provides an indexed structure that the PA-
100 driver and the NIC driver can use to
exchange information about the settings of
the NIC’s properties.

_NBFIF_GET_STAT_ITEM Structure Provides an indexed structure that the PA-
100 driver and the NIC driver can use to
exchange information about the NIC’s statis-
tical values.

_NBFIF_PROP_CAP_ITEM Structure Describes properties supported by your NIC
and associates an index number with each
property.

_NBFIF_PROP_ITEM Structure Describes, for a property supported in the
NIC driver, the property’s name, its possible
values, and whether the property can be
viewed or changed.

_NBFIF_PROP_RESTRICTION Enu-
meration

Describes whether applications can view a
NIC property’s current setting, change it, or
both.

_NBFIF_PROP_TYPE Enumeration Describes the data type of the setting value of
a NIC property.

_NBFIF_REGISTER_PARAM Structure Description of the NIC’s ODX interface and
identifiers for the PA-100 drivers for use in
registering the NIC driver with the PA-100
driver.
28 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
_NBFIF_STAT_CAP_ITEM Structure Describes statistical items supported by your
NIC and associates an index number with
each item.

_NBFIF_STAT_CNTRL Enumeration Provides valid settings for turning the NIC’s
statistical calculations on and off.

NBFIF_STATUS Type A status code that each of your functions
must return, indicating the success or failure
of the function.

_NBFIF_UNREGISTER_PARAM Struc-
ture

The NIC driver’s description of its ODX inter-
face for use in unregistering itself from the
PA-100 driver.

Data Element Description
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 29

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
_NBFIF_DEV_HANDLE Type

A unique handle that the NIC driver must provide to the PA-100 driver.

typedef PVOID NBFIF_DEV_HANDLE;

Description The PA-100 driver passes a pointer of this type to each NIC driver function call
that it uses.

You can define the actual content of this type in any manner that you find
useful. For example, you could include state information for the NIC driver.

This identifies the PA-100 driver to the NIC driver of which it is making a
request. Therefore, you must define the pointer before you call the PA-100
driver’s IOCTL_NBOOST_FOREIGN_REGISTER Function, because this func-
tion calls the NBFIF_BindRecv Function, which initializes the handle.

See Also n “IOCTL_NBOOST_FOREIGN_REGISTER Function” on page 83
30 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
_NBFIF_GET_SET_PROP_ITEM Structure

Provides an indexed structure that the PA-100 driver and the NIC driver can
use to exchange information about the settings of the NIC’s properties.

typedef struct _NBFIF_GET_SET_PROP_ITEM {
 UINT32 propIndx;
 UINT32 bufSizeInBytes;
 PVOID pValueBuf;

} NBFIF_GET_SET_PROP_ITEM, *PNBFIF_GET_SET_PROP_ITEM;

Element Definition

propIndx The index number of the desired property within the table of
properties. The PA-100 driver specifies this index number from
the valid property indexes that the NIC driver provided in
NBFIF_PROP_CAP_ITEM.

bufSizeInBytes The size of the pValueBuf buffer, specified by the PA-100
driver.

pValueBuf A buffer provided by the PA-100 driver to contain the value of
a property. When the PA-100 driver calls
NBFIF_GetProperties, the NIC driver must place the value
of the specified property into this buffer. When the PA-100
driver calls NBFIF_SetProperties, it places the desired
value into this buffer and the NIC driver must use it to set the
specified NIC property.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 31

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
Description

See Also n “Implementing the NIC’s Properties Functions” on page 23

n “NBFIF_GetProperties Function” on page 56

n “NBFIF_SetProperties Function” on page 64

n “_NBFIF_PROP_CAP_ITEM Structure” on page 34

n “_NBFIF_PROP_ITEM Structure” on page 37

NBFIF_PROP_CAP_ITEM
Index # of NBFIF_PROP_ITEM

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

NBFIF_GET_SET_PROP_ITEM
Index #

Size of Buffer
Pointer to Buffer

NBFIF_PROP_CAP_ITEM

Index # of NBFIF_PROP_ITEM

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

NBFIF_GET_SET_PROP_ITEM
Index #

Size of Buffer
Pointer to Buffer
32 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
_NBFIF_GET_STAT_ITEM Structure

Provides an indexed structure that the PA-100 driver and the NIC driver can
use to exchange information about the NIC’s statistical values.

typedef struct _NBFIF_GET_STAT_ITEM {
UINT32 statIndx;
UINT32 statValue;

} NBFIF_GET_STAT_ITEM, *PNBFIF_GET_STAT_ITEM;

Description

See Also n “Implementing the NIC’s Statistical Functions” on page 25

n “NBFIF_GetStatistics Function” on page 60

Element Definition

statIndx The index number of the statistic within the table of statistics.
The PA-100 driver specifies this index number from the valid
property indexes that the NIC driver provided in
NBFIF_PROP_CAP_ITEM.

statValue Value of an individual statistic.

NBFIF_GET_STAT_ITEM
Index #

Space for statistical value

Provided to NIC driver by PA-100 driver

NIC driver fills in

NBFIF_GET_STAT_ITEM
Index #

Space for statistical value

Provided to NIC driver by PA-100 driver

NIC driver fills in
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 33

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
_NBFIF_PROP_CAP_ITEM Structure

Describes properties supported by your NIC and associates an index number
with each property.

typedef struct _NBFIF_PROP_CAP_ITEM {
UINT32 propIndx; /* corresponding index */
NBFIF_PROP_ITEM propItem;

} NBFIF_PROP_CAP_ITEM, *PNBFIF_PROP_CAP_ITEM;

Description You implement NBFIF_GetPropCapability to fill in this table to describe the
properties supported by your NIC. For example, this structure looks as follows
for a NIC with two properties:

Element Definition

propIndx The index number of the property within the table of proper-
ties. The NIC driver can use any arbitrary numbering scheme
for this index. For your convenience, ODX includes some
optional predefined index values.

propItem Information about an individual property. See
“_NBFIF_PROP_ITEM Structure” on page 37.

NBFIF_PROP_CAP_ITEM
Index # of NBFIF_PROP_ITEM

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

NBFIF_PROP_CAP_ITEM
Index # of NBFIF_PROP_ITEM

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

See NBFIF_PROP_TYPE

See NBFIF_PROP_RESTRICTION
34 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
Predefined Index Values

You can use the following C-language defines as index numbers for the prop-
erties, or you can use your own index numbers. The PA-100 driver does not
evaluate or use the index numbers in any manner; it simply passes the informa-
tion up to the calling application if applicable. These defines appear in nbfif.h
as in the following example:

#define NBFIF_PROP_GET_LINK_SPEED 0xFE000000L

NOTE: For your convenience in the Windows NT operating system, these
property indexes map directly to NDIS defined object identifiers. You
can use these index values, or not, as appropriate.

Property Index Predefined Values Definition

NBFIF_PROP_GET_LINK_SPEED 0xFE000000L

NBFIF_PROP_SET_LINK_SPEED 0xFE000001L

NBFIF_PROP_GET_DUPLEX_MODE 0xFE000002L

NBFIF_PROP_SET_DUPLEX_MODE 0xFE000003L

NBFIF_PROP_GET_LINK_STATUS 0xFE000004L

NBFIF_PROP_ENABLE_INTERFACE 0xFE000005L

NBFIF_PROP_DISABLE_INTERFACE 0xFE000006L

NBFIF_PROP_ENABLE_UNICAST_PROMISCUOUS_OPS 0xFE000007L

NBFIF_PROP_DISABLE_UNICAST_PROMISCUOUS_OPS 0xFE000008L

NBFIF_PROP_ENABLE_MULTICAST_PROMISCUOUS_OPS 0xFE000009L

NBFIF_PROP_DISABLE_MULTICAST_PROMISCUOUS_OPS 0xFE000010L

NBFIF_PROP_GET_UNICAST_MAC_ADDR 0xFE000011L

NBFIF_PROP_SET_UNICAST_MAC_ADDR 0xFE000012L

NBFIF_PROP_GET_MULTICAST_FILTER_LIST 0xFE000013L

NBFIF_PROP_ADD_MULTICAST_ADDR 0xFE000014L

NBFIF_PROP_DEL_MULTICAST_ADDR 0xFE000015L
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 35

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
See Also n “Implementing the NIC’s Properties Functions” on page 23

n “NBFIF_GetPropCapability Function” on page 54

n “_NBFIF_GET_SET_PROP_ITEM Structure” on page 31

n “_NBFIF_PROP_ITEM Structure” on page 37

n “_NBFIF_PROP_TYPE Enumeration” on page 40

n “_NBFIF_PROP_RESTRICTION Enumeration” on page 39

NBFIF_PROP_GET_MAX_FRAME_SIZE 0xFE000016L

NBFIF_PROP_SET_MAX_FRAME_SIZE 0xFE000017L

NBFIF_PROP_GET_INTERFACE_TYPE 0xFE000018L

NBFIF_PROP_GET_MEDIA_TYPE 0xFE000019L

Property Index Predefined Values Definition
36 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
_NBFIF_PROP_ITEM Structure

Describes, for a property supported in the NIC driver, the property’s name, its
possible values, and whether the property can be viewed or changed.

typedef struct _NBFIF_PROP_ITEM {
CHAR propName [NBFIF_MAX_NAME];
NBFIF_PROP_TYPE propType;
INT32 range;
NBFIF_PROP_RESTRICTION restriction;

} NBFIF_PROP_ITEM, *PNBFIF_PROP_ITEM;

Description The _NBFIF_PROP_CAP_ITEM Structure associates one or more of these struc-
tures with unique indexes for use by the NBFIF_GetPropCapability Func-
tion.

Element Definition

propName A name of your choice that describes a property.

propType Describes the data type of the property’s setting. See
“_NBFIF_PROP_TYPE Enumeration” on page 40.

range The upper limit of the range of valid values for this property. A
value of -1 means that this property has no upper limit, or an
upper limit does not apply. Otherwise, this element’s meaning
depends on propType as follows:

n Integer and Integer Array: The property’s maximum valid
value, where zero (0) is always the minimum valid value.
For an array, this applies to each element of the array.

n Ether_addr: The maximum quantity of Ethernet addresses
allowed for this property.

n Str_list: The maximum number of strings allowed in the list
that defines this property.

n Boolean: Not relevant. Ignored if provided.

n Mask: Not relevant. Ignored if provided.

restriction Describes whether applications can view the property’s cur-
rent setting, change it, or both. See
“_NBFIF_PROP_RESTRICTION Enumeration” on page 39.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 37

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
See Also n “Implementing the NIC’s Properties Functions” on page 23

n “NBFIF_GetPropCapability Function” on page 54

n “_NBFIF_PROP_CAP_ITEM Structure” on page 34

n “_NBFIF_PROP_RESTRICTION Enumeration” on page 39

n “_NBFIF_PROP_TYPE Enumeration” on page 40

NBFIF_PROP_CAP_ITEM
Index # of NBFIF_PROP_ITEM

NBFIF_PROP_ITEM
Name

Type
Range
Restrictions

See NBFIF_PROP_TYPE

See NBFIF_PROP_RESTRICTION
38 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
_NBFIF_PROP_RESTRICTION Enumeration

Describes whether applications can view a NIC property’s current setting,
change it, or both.

typedef enum _NBFIF_PROP_RESTRICTION {
NBFIF_RESTR_READ_ONLY,
NBFIF_RESTR_WRITE_ONLY,
NBFIF_RESTR_READ_WRITE

} NBFIF_PROP_RESTRICTION;

See Also n “Implementing the NIC’s Properties Functions” on page 23

n “_NBFIF_PROP_ITEM Structure” on page 37

Element Definition

NBFIF_RESTR_READ_ONLY The NIC driver allows applications to view a specified
property’s current setting, but not to change it.

NBFIF_RESTR_WRITE_ONLY The NIC driver allows applications to change the prop-
erty’s setting, but not to view its current setting.

NBFIF_RESTR_READ_WRITE The NIC driver allows applications to view and to
change the property’s setting.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 39

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
_NBFIF_PROP_TYPE Enumeration

Describes the data type of the setting value of a NIC property.

typedef enum _NBFIF_PROP_TYPE {
NBFIF_PROP_INTEGER,
NBFIF_PROP_INTEGER_ARRAY,
NBFIF_PROP_ETHER_ADDR,
NBFIF_PROP_STR_LIST,
NBFIF_PROP_MASK,
NBFIF_PROP_BOOLEAN

} NBFIF_PROP_TYPE;

Description

See Also n “Implementing the NIC’s Properties Functions” on page 23

n “_NBFIF_PROP_ITEM Structure” on page 37

Element Definition

NBFIF_PROP_INTEGER

NBFIF_PROP_INTEGER_ARRAY

NBFIF_PROP_ETHER_ADDR

NBFIF_PROP_STR_LIST

NBFIF_PROP_MASK

NBFIF_PROP_BOOLEAN
40 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
_NBFIF_REGISTER_PARAM Structure

Description of the NIC’s ODX interface and identifiers for the PA-100 drivers
for use in registering the NIC driver with the PA-100 driver.

typedef struct _NBFIF_REGISTER_PARAM {
 NBFIF_DEV_HANDLE hDev;

UINT32 peId;
 UINT32 ifId;

/* Actual function pointers */
NBFIF_RESET NBFIF_Reset;

 NBFIF_BIND_RECV NBFIF_BindRecv;
 NBFIF_UNBIND_RECV NBFIF_UnbindRecv;
 NBFIF_BOUND_TX_PACKETS_READY NBFIF_BoundTxPacketsReady;
 NBFIF_PACKET_READY NBFIF_PacketReady;
 NBFIF_GET_PROP_CAP NBFIF_GetPropCapability;
 NBFIF_GET_PROP NBFIF_GetProperties;
 NBFIF_SET_PROP NBFIF_SetProperties;
 NBFIF_GET_STAT_CAP NBFIF_GetStatCapability;
 NBFIF_GET_STAT NBFIF_GetStatistics;
 NBFIF_CNTRL_STAT NBFIF_ControlStatEngine;
} NBFIF_REGISTER_PARAM, *PNBFIF_REGISTER_PARAM;

Description Use this structure when calling IOCTL_NBOOST_FOREIGN_REGISTER.

See Also n “IOCTL_NBOOST_FOREIGN_REGISTER Function” on page 83

n “Initiating Communication With the Policy Accelerator” on page 12

Element Definition

hDev See “_NBFIF_DEV_HANDLE Type” on page 30.

peId

ifId

list of function pointers Pointers to your implemented functions. If you choose not to
implement any one or more of the optional functions, you must
pass NULL instead of that function’s pointer.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 41

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
_NBFIF_STAT_CAP_ITEM Structure

Describes statistical items supported by your NIC and associates an index
number with each item.

typedef struct _NBFIF_STAT_CAP_ITEM {
CHAR statName [NBFIF_MAX_NAME];
UINT32 statIndx;

} NBFIF_STAT_CAP_ITEM, *PNBFIF_STAT_CAP_ITEM;

Description Fill in this table to describe the statistical items supported by your NIC. For
example, this structure looks as follows for three statistical items:

See Also n “Implementing the NIC’s Statistical Functions” on page 25

n “NBFIF_GetStatCapability Function” on page 58

Element Definition

statName A name of your choice that describes a statistical item.

statIndx An index number for the statistical item within the table of
items. The NIC driver can use any arbitrary numbering
scheme for this index.

NBFIF_STAT_CAP_ITEM

Index #

NAME

NBFIF_STAT_CAP_ITEM

Index #

NAME

NBFIF_STAT_CAP_ITEM

Index #

NAME
42 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
_NBFIF_STAT_CNTRL Enumeration

Provides valid settings for turning the NIC’s statistical calculations on and off.

typedef enum _NBFIF_STAT_CNTRL {
NBFIF_STAT_ON,
NBFIF_STAT_OFF

} NBFIF_STAT_CNTRL;

Description This enumeration applies only to the NBFIF_ControlStatEngine Function.

See Also n “Implementing the NIC’s Statistical Functions” on page 25

n “NBFIF_ControlStatEngine Function” on page 53

Element Definition

NBFIF_STAT_ON Turns statistics on.

NBFIF_STAT_OFF Turns statistics off.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 43

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
NBFIF_STATUS Type

A status code that each of your functions must return, indicating the success or
failure of the function.

typedef UINT32 NBFIF_STATUS;

#define NBFIF_STATUS_SUCCESS 0x00000000L
#define NBFIF_INVALID_HANDLE 0xE000F001L
#define NBFIF_OUT_OF_MEMORY 0xE000F002L
#define NBFIF_BUFFER_TYPE_NOT_SUPPORTED 0xE000F003L
#define NBFIF_HARDWARE_NOT_READY 0xE000F004L
#define NBFIF_OUT_OF_HARDWARE_RESOURCE 0xE000F005L
#define NBFIF_BUFFER_OUT_OF_RANGE 0xE000F006L
#define NBFIF_1_OR_MORE_PROPERTIES_INVALID 0xE000F007L
#define NBFIF_OUT_OF_RX_BUFFER 0xE000F008L

Description Each of the functions that you implement must return a status code indicating
whether the function succeeded. The header file nbfif.h defines a UINT32
type named NBFIF_STATUS to assist with this.

NOTE: The PA-100 driver evaluates your returned status only for success or
failure; it does not take any actions based on any particular failure, but
rather simply passes the status up to the calling application if appli-
cable.

NOTE: The NBFIF_STATUS type conforms to the Windows NT operating
system’s standard 32-bit error code format. Refer to your operating
system documentation for details. The information here is provided as
a summary of that information.

Windows NT Error Code Format

The Windows NT error code format contains 32 bits as follows:

Severity
Cust.
code Rsvd Facility code
flag

Facility’s status code

Bit number:

31 30 29 28 27 16 15 0
44 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Types and Structures Alphabetic Reference
Predefined Status Values

The header file also defines a small set of useful 32-bit statuses, as shown in the
syntax, that you can return. You do not have to use any of these values; you can
define your own.

See Also n “Reporting and Evaluating Status” on page 23

Starting
Bit

Length Content Description

31 2 Severity The severity of the status message being reported:

n 0: Success

n 1: Informational; the calling code can ignore this
message

n 2: Warning

n 3: Error

29 1 Customer code flag

28 1 Reserved

27 12 Facility code

15 16 Facility status code
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 45

Revision 1.0, May 2000

• • • • •

NBFIF Types and Structures Alphabetic Reference

•
_NBFIF_UNREGISTER_PARAM Structure

The NIC driver’s description of its ODX interface for use in unregistering itself
from the PA-100 driver.

/*
 * This is the input parameter for calling
IOCTL_NBOOST_FOREIGN_UNREGISTER
 * as defined in nbpe.h
 */
typedef struct _NBFIF_UNREGISTER_PARAM
{
 NBFIF_DEV_HANDLE hFifDev;
 NBPE_DEV_HANDLE hNbpeDev;
} NBFIF_UNREGISTER_PARAM, *PNBFIF_UNREGISTER_PARAM;

Description Use this structure when calling IOCTL_NBOOST_FOREIGN_UNREGISTER.

See Also n “IOCTL_NBOOST_FOREIGN_UNREGISTER Function” on page 84

n “Terminating Communication With the Policy Accelerator” on page 15

Element Definition

hFifDev

hNbpeDev
46 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
NBFIF Functions Alphabetic Reference

NBFIF
Functions
Summary

The nbfif.h header file contains prototypes in the C language for the
following functions, which you must implement:

Function Description

NBFIF_BindRecv Function Required. Implement this function to bind a Policy
Accelerator to receive packet traffic from the NIC
and to start the NIC.

NBFIF_BoundTxPacketsReady
Function

Optional. Implement this optional function to
transmit all buffers from the PA-100 driver’s buffer
ring.

NBFIF_ControlStatEngine
Function

Optional. Implement this optional function to turn
the NIC’s hardware statistics calculations on or
off.

NBFIF_GetPropCapability
Function

Optional. Implement this optional function to list
which properties your NIC driver supports.

NBFIF_GetProperties Func-
tion

Optional Implement this optional function to pro-
vide the current settings of the requested NIC
properties to the PA-100 driver.

NBFIF_GetStatCapability
Function

Optional. Implement this optional function to list
which statistical items your NIC driver supports.

NBFIF_GetStatistics Func-
tion

Optional. Implement this optional function to pro-
vide the requested statistical information about
the NIC to the PA-100 driver.

NBFIF_PacketReady Function Required. Implement this required function to
allow the PA-100 driver to tell the NIC driver that
there is a packet ready for transfer from the Policy
Accelerator to the NIC and provide a packet
buffer.

NBFIF_Reset Function Optional but recommended. Implement this
optional function to reset the NIC driver and NIC.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 47

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
NBFIF_SetProperties Func-
tion

Optional. Implement this optional function to set
values for a specified set of NIC properties.

NBFIF_UnbindRecv Function Required. Implement this required function to stop
the NIC from sending packets to the Policy Accel-
erator.

Function Description
48 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
NBFIF_BindRecv Function

Implement this function to bind a Policy Accelerator to receive packet traffic
from the NIC and to start the NIC.

NBFIF_STATUS NBFIF_BindRecv (
NBFIF_DEV_HANDLE hDev,
PNBPE_BIND_RECV_PARAM pNBPE);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function after the NIC driver registers itself using
IOCTL_NBOOST_FOREIGN_REGISTER.

The primary purpose of this function is to get the PA-100 driver function
pointers to use later. Therefore, in you NIC driver, you must implement this
function so that it does the following:

1. Save for future use the function pointers passed to it by the PA-100 driver in
the pNBPE argument.

2. Return a status based on the success of this function.

In addition, this can be a logical place to do such things as to redirect traffic
from the NIC’s receiving buffers to the Policy Accelerator’s buffers and to
restart the NIC. So, for example, you could also do the following in this func-
tion:

1. Verify that the NIC hardware is halted and, if not, halt it.

2. Redirect traffic from the NIC’s buffers to the Policy Accelerator’s buffers as
follows:

a. Call NBPE_GetBufferTypes to get a list of valid buffer types.

b. Select the buffer type that is appropriate for your NIC.

Argument Description

hDev The handle for the current connection between the NIC driver and the PA-
100 driver. See “_NBFIF_DEV_HANDLE Type” on page 30.

pNBPE A set of pointers to the functions in the PA-100 driver. The PA-100 driver
returns these pointers based on the specific Policy Accelerator to which
the NIC driver has initiated communication. See
“_NBPE_BIND_RECV_PARAM Structure” on page 72.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 49

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
c. Call NBPE_GetRecvPEBufRing to get the location of the Policy Acceler-
ator’s empty packet buffers.

d. Do any initialization required to start the packet flow.

3. Start the NIC hardware.
If all initialization has been successful, packets begin flowing.

NOTE: You do not need to set up buffers in NBFIF_BindRecv, but you must do
it at some point to enable the NIC to receive buffers on behalf of the
Policy Accelerator.

See Also n “Initiating Communication With the Policy Accelerator” on page 12

n “NBFIF_UnbindRecv Function” on page 65

n “NBPE_GetRecvPEBufRing Function” on page 86

n “_NBPE_BIND_RECV_PARAM Structure” on page 72

n “NBPE_STATUS Type” on page 79
50 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
NBFIF_BoundTxPacketsReady Function

Implement this optional function to transmit all buffers from the PA-100
driver’s buffer ring.

NBFIF_STATUS NBFIF_BoundTxPacketsReady (
NBFIF_DEV_HANDLE hDev);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description This function transmits packets from the Policy Accelerator through the NIC
using the PA-100 driver’s transmit ring buffer rather than transmitting packets
from the Policy Accelerator one at a time.

NOTE: If you choose not to implement this function, you must pass a NULL in
place of a pointer to this function when calling IOCTL_NBOOST_-
FOREIGN_REGISTER.

NOTE: This is one of two functions that allow the Policy Accelerator to transmit
packets through the NIC. This is the faster function, but it is optional. If
your NIC driver does not implement this function, the PA-100 driver
uses NBFIF_PacketReady.

The PA-100 driver calls this function to notify the NIC driver that the Policy
Accelerator’s transmit buffer ring contains packets that are ready to be trans-
mitted.

In your NIC driver, you must implement this function so that it does the
following:

1. Transmits packets from the transmit buffer ring.

2. Return a status based on the success of these operations.

See Also n “Initiating Communication With the Policy Accelerator” on page 12

n “Handling Packets” on page 17

Argument Description

hDev The handle for the current connection between the NIC driver and the
PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “_NBFIF_DEV_HANDLE Type” on page 30.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 51

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
n “NBFIF_PacketReady Function” on page 62

n “NBPE_STATUS Type” on page 79
52 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
NBFIF_ControlStatEngine Function

Implement this optional function to turn the NIC’s hardware statistics calcula-
tions on or off.

NBFIF_STATUS NBFIF_ControlStatEngine (
NBFIF_DEV_HANDLE hDev,
NBFIF_STAT_CNTRL cntrl);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function when an application requests that the NIC
collect or stop collecting statistical information. Statistical information might
include such items as the quantity of transmit or receive errors; the availability
of statistical items depends entirely on the features of your NIC and your
implementation of the statistics functions in this library.

NOTE: If you choose not to implement this function, you must pass a NULL in
place of a pointer to this function when calling IOCTL_NBOOST_-
FOREIGN_REGISTER.
In this case, the PA-100 drivers assume that statistical calculations are
always off.

If your NIC driver is capable of providing statistical information, implement
this function so that it does the following:

1. If your NIC driver allows statistical calculations to be turned on and off,
turn the NIC’s hardware statistics engine on or off based on the requested
setting of cntrl. If statistics cannot be turned off, simply return a success
indicator in the following step.

2. Return a status based on the success of these operations.

See Also n “Implementing the NIC’s Statistical Functions” on page 25

n “NBPE_STATUS Type” on page 79

Argument Description

hDev The handle for the current connection between the NIC driver and the PA-
100 driver as initialized by IOCTL_NBOOST_FOREIGN_REGISTER.
See “_NBFIF_DEV_HANDLE Type” on page 30.

cntrl The PA-100 driver uses this to specify whether to turn the statistics on or
off, as described in “_NBFIF_STAT_CNTRL Enumeration” on page 43.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 53

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
NBFIF_GetPropCapability Function

Implement this optional function to list which properties your NIC driver
supports.

NBFIF_STATUS NBFIF_GetPropCapability (
NBFIF_DEV_HANDLE hDev,
UINT32 *pNumProp,
PNBFIF_PROP_CAP_ITEM pPropCapList);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description This function provides a table that lists, for each property supported in the NIC
driver, the property’s name, a corresponding property index, its possible
values, and whether the property can be viewed or changed.

NOTE: If you choose not to implement this function, you must pass a NULL in
place of a pointer to this function when calling IOCTL_NBOOST_-
FOREIGN_REGISTER.

The PA-100 driver calls this function during initialization to determine what
properties are available in the NIC for viewing and setting by an IXA applica-
tion. The PA-100 driver itself does not use any of the property information.

In your NIC driver, you must implement this function so that it does the
following:

Argument Description

hDev The handle for the current connection between the NIC driver and
the PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “_NBFIF_DEV_HANDLE Type” on page 30.

pNumProp A count, provided by your NIC driver, of the quantity of supported
properties.

pPropCapList A table in which your NIC driver provides information about all sup-
ported NIC properties. See “_NBFIF_PROP_CAP_ITEM Structure”
on page 34. If the PA-100 driver does not need this information, it
passes a NULL.
54 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
1. Provide information about supported properties as follows:
l Return in pNumProp the count of the properties that the NIC driver

supports.
l If pPropCapList is NULL, do nothing else, otherwise, fill in the pProp-

CapList table as described in “_NBFIF_PROP_CAP_ITEM Structure”
on page 34.
You provide a table that lists, for each property of the NIC driver, the
property’s name and a corresponding index number.

2. Return a status based on the success of this operation.

See Also n “Implementing the NIC’s Properties Functions” on page 23

n “NBPE_STATUS Type” on page 79
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 55

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
NBFIF_GetProperties Function

Implement this optional function to provide the current settings of the
requested NIC properties to the PA-100 driver.

NBFIF_STATUS NBFIF_GetProperties (
NBFIF_DEV_HANDLE hDev,
UINT32 numProp,
PNBFIF_GET_SET_PROP_ITEM pGetPropList);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function when an IXA application requests infor-
mation about the current settings of one or more of the NIC’s properties.

NOTE: If you choose not to implement this function, you must pass a NULL in
place of a pointer to this function when calling IOCTL_NBOOST_-
FOREIGN_REGISTER.

In your NIC driver, you must implement this function so that it does the
following:

1. Provide the current settings for the requested properties.
For example, the following diagram shows a table containing two property
indexes and space in which you provide the properties’ values:

Argument Description

hDev The handle for the current connection between the NIC driver and
the PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “_NBFIF_DEV_HANDLE Type” on page 30.

numProp Provided by the PA-100 driver. The quantity of properties that the PA-
100 driver has included in pGetPropList.

pGetPropList A pointer to a table that contains one or more property indexes, as
defined by the “NBFIF_GetPropCapability Function” on page 54,
about which the PA-100 driver is requesting information, and space
in which the NIC driver should return the properties’ current settings.
See “_NBFIF_GET_SET_PROP_ITEM Structure” on page 31.
56 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
2. Return a status based on the success of these operations.
For example, if any of the index numbers are invalid, you could return the
predefined status value NBFIF_1_OR_MORE_PROPERTIES_INVALID.

See Also n “Implementing the NIC’s Properties Functions” on page 23

n “_NBFIF_GET_SET_PROP_ITEM Structure” on page 31

n “NBPE_STATUS Type” on page 79

NBFIF_GET_SET_PROP_ITEM
First Index #

Size of First Buffer
Pointer to First Buffer

Buffer

Information provided by PA-100 driver Information that the NIC driver provides

NBFIF_GET_SET_PROP_ITEM
Second Index #

Size of Second Buffer
Pointer to Second Buffer

Buffer
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 57

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
NBFIF_GetStatCapability Function

Implement this optional function to list which statistical items your NIC driver
supports.

NBFIF_STATUS NBFIF_GetStatCapability (
NBFIF_DEV_HANDLE hDev,
UINT32 *pNumStat,
PNBFIF_STAT_CAP_ITEM pStatCapList);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function when an IXA application requests what
statistical items are available in the NIC for viewing by the application. The PA-
100 driver itself does not use any of the statistical information.

NOTE: If you choose not to implement this function, you must pass a NULL in
place of a pointer to this function when calling IOCTL_NBOOST_-
FOREIGN_REGISTER.

In your NIC driver, you must implement this function so that it does the
following:

1. Provide information about supported statistical items as follows:
l Return in pNumStat the count of the statistical items that the NIC driver

supports.
l If pStatCapList is NULL, do nothing else, otherwise, fill in the pStat-

CapList table as described in “_NBFIF_STAT_CAP_ITEM Structure” on
page 42.

Argument Description

hDev The handle for the current connection between the NIC driver and the
PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “_NBFIF_DEV_HANDLE Type” on page 30.

pNumStat A count, provided by your NIC driver, of the quantity of supported sta-
tistical items.

pStatCapList A table in which your NIC driver provides information about all sup-
ported NIC statistical items. See “_NBFIF_STAT_CAP_ITEM Struc-
ture” on page 42. If the PA-100 driver does not need this information,
it passes a NULL.
58 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
You provide a table that lists, for each statistical measurement supported
in the NIC driver, the statistic’s name and a corresponding index
number.

2. Return a status based on the success of these operations.

See Also n “Implementing the NIC’s Statistical Functions” on page 25

n “_NBFIF_STAT_CAP_ITEM Structure” on page 42

n “NBFIF_ControlStatEngine Function” on page 53

n “NBPE_STATUS Type” on page 79
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 59

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
NBFIF_GetStatistics Function

Implement this optional function to provide the requested statistical informa-
tion about the NIC to the PA-100 driver.

NBFIF_STATUS NBFIF_GetStatistics (
NBFIF_DEV_HANDLE hDev,
UINT32 numStat,
PNBFIF_GET_STAT_ITEM pGetStatList);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function when an IXA application requests statis-
tical information about the NIC.

NOTE: If you choose not to implement this function, you must pass a NULL in
place of a pointer to this function when calling IOCTL_NBOOST_-
FOREIGN_REGISTER.

In your NIC driver, you must implement this function so that it does the
following:

1. Provide the current settings for the requested statistics.
For example, the following diagram shows a table containing two statistic
indexes and space in which you provide the statistics’ values:

Argument Description

hDev The handle for the current connection between the NIC driver and
the PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “_NBFIF_DEV_HANDLE Type” on page 30.

numStat Provided by the PA-100 driver. The quantity of statistical items that
the PA-100 driver has included in pGetStatList.

pGetStatList A table containing one or more statistical indexes, as set by the
“NBFIF_GetStatCapability Function” on page 58, and space in which
the NIC driver should return the statistics’ current values. See
“_NBFIF_GET_STAT_ITEM Structure” on page 33.
60 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
2. Return a status based on the success of these operations.

This function fills in the counter value of each interested statistic items in the
input array. Upon receiving this call, the NIC driver reads the current statistic
count out of the NIC card and fills in the appropriate array entry.

See Also n “Implementing the NIC’s Statistical Functions” on page 25

n “_NBFIF_GET_STAT_ITEM Structure” on page 33

n “NBPE_STATUS Type” on page 79

NBFIF_GET_STAT_ITEM
First Index #

Space for first statistical value

Provided to NIC driver by PA-100 driver

NIC driver fills in

NBFIF_GET_STAT_ITEM
Second Index #

Space for second statistical value

Provided to NIC driver by PA-100 driver

NIC driver fills in
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 61

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
NBFIF_PacketReady Function

Implement this required function to allow the PA-100 driver to tell the NIC
driver that there is a packet ready for transfer from the Policy Accelerator to the
NIC and provide a packet buffer.

NBFIF_STATUS NBFIF_PacketReady (
NBFIF_DEV_HANDLE hDev,
PHY_ADDR *pPacket,
UINT32 sizeInBytes);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function to transmit a packet out through the NIC.

NOTE: This is one of two functions that allow the Policy Accelerator to transmit
packets out through the NIC. This is the default, slower function. If your
NIC driver implements the NBFIF_BoundTxPacketsReady function, the
PA-100 driver uses that function instead of NBFIF_PacketReady.

In your NIC driver, you must implement this function so that it does the
following:

1. Transmit the packet.

2. Return a status based on the success of these operations.

See Also n “Handling Packets” on page 17

n “NBPE_STATUS Type” on page 79

Argument Description

hDev The handle for the current connection between the NIC driver and the
PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “_NBFIF_DEV_HANDLE Type” on page 30.

pPacket The PA-100 driver passes this pointer to the packet that is ready for
transmission.

sizeInBytes The PA-100 driver passes the size of the packet.
62 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
NBFIF_Reset Function

Implement this optional function to reset the NIC driver and NIC.

VOID NBFIF_Reset (NBFIF_DEV_HANDLE hDev);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function when it needs to reset the NIC and NIC
driver to a known, clean state.

This function is optional, but implementation is recommended.

NOTE: If you choose not to implement this function, you must pass a NULL in
place of a pointer to this function when calling IOCTL_NBOOST_-
FOREIGN_REGISTER.

In your NIC driver, you must implement this function so that it does the
following:

1. Reset the NIC driver.

2. Reset the NIC

3. Abort all ongoing transmission and receiving of packets.

4. Return a status based on the success of these operations.

See Also n “Initiating Communication With the Policy Accelerator” on page 12

n “NBPE_STATUS Type” on page 79

Argument Description

hDev The handle for the current connection between the NIC driver and the PA-
100 driver as initialized by IOCTL_NBOOST_FOREIGN_REGISTER. See
“_NBFIF_DEV_HANDLE Type” on page 30.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 63

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
NBFIF_SetProperties Function

Implement this optional function to set values for a specified set of NIC prop-
erties.

NBFIF_STATUS NBFIF_SetProperties (
NBFIF_DEV_HANDLE hDev,
UINT32 numProp,
PNBFIF_GET_SET_PROP_ITEM pSetPropList);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function when an IXA application requests a
change in the settings of one or more of the NIC’s properties.

NOTE: If you choose not to implement this function, you must pass a NULL in
place of a pointer to this function when calling IOCTL_NBOOST_-
FOREIGN_REGISTER.

In your NIC driver, you must implement this function so that it does the
following:

1. Change the settings of the indicated properties.

2. Return a status based on the success of these operations.
For example, if any of the index numbers are invalid, you could return the
predefined status value NBFIF_1_OR_MORE_PROPERTIES_INVALID.

See Also n “Implementing the NIC’s Properties Functions” on page 23

n “NBPE_STATUS Type” on page 79

Argument Description

hDev The handle for the current connection between the NIC driver and
the PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “_NBFIF_DEV_HANDLE Type” on page 30.

numProp Provided by the PA-100 driver. The quantity of properties that the PA-
100 driver has included in pSetPropList.

pSetPropList A table containing one or more property indexes, as set by the
“NBFIF_GetPropCapability Function” on page 54, and the values
that the NIC driver should use to change the properties’ settings. See
“_NBFIF_GET_SET_PROP_ITEM Structure” on page 31.
64 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBFIF Functions Alphabetic Reference
NBFIF_UnbindRecv Function

Implement this required function to stop the NIC from sending packets to the
Policy Accelerator.

NBFIF_STATUS NBFIF_UnbindRecv (NBFIF_DEV_HANDLE hDev);

Returns If successful, return the predefined status value NBFIF_STATUS_SUCCESS. If the
NIC driver cannot complete the operation, you can return any error code.

Description The PA-100 driver calls this function to stop receiving packet traffic from the
NIC.

This function must cleanly terminate its connection to the Policy Accelerator.
Recommended steps include:

1. Stop sending packets to the Policy Accelerator.

2. Free all buffers in the NIC, if any exist.

3. Return all allocated buffers to the Policy Accelerator using
NBPE_ReturnXmitPEBuffers.

4. NULL the PA-100 driver function pointers that the NIC driver’s
NBFIF_BindRecv function saved.
This ensures that the PA-100 driver does not accidentally attempt to use
functions that are now invalid.

5. Stop the NIC hardware

6. Return a status based on the success of these operations.

NOTE: After the PA-100 driver calls this function, the NIC driver can no longer
call any of the PA-100 driver functions.

See Also n “Terminating Communication With the Policy Accelerator” on page 15

n “NBPE_STATUS Type” on page 79

Argument Description

hDev The handle for the current connection between the NIC driver and the PA-
100 driver as initialized by IOCTL_NBOOST_FOREIGN_REGISTER. See
“_NBFIF_DEV_HANDLE Type” on page 30.
Intel Confidential Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures 65

Revision 1.0, May 2000

• • • • •

NBFIF Functions Alphabetic Reference

•
66 Chapter 3: Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

Chapter 4

Alphabetic Reference: NBPE (PA-100 Driver)

• • • • •
Functions, Types, and Structures

This chapter contains an alphabetic reference to the Intel® Optimal Data
Exchange (ODX) Protocol for PCI functions that your NIC driver uses to
communicate with the PA-100 driver, and to the types and structures that you
use within those functions.

It describes each function and data element, and explains in detail how to use
each function as part of your NIC driver customization.

It contains the following sections:

n “Overview” on page 67

n “NBPE Types and Structures Alphabetic Reference” on page 68

n “NBPE Functions Alphabetic Reference” on page 82

Overview

The nbpe.h header file provides the prototypes of Policy Accelerator driver
functions that your NIC driver will use. Your driver code must include this file.

CAUTION: Do not modify this header file.
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 67

Revision 1.0, May 2000

• • • • •

NBPE Types and Structures Alphabetic Reference

•
NBPE Types and Structures Alphabetic Reference

NBPE Types
and Structures
Summary

The nbpe.h header file contains the following data types and structures that the
NIC driver and the PA-100 driver use to pass information between themselves:

Data Element Description

_NBPE_ANIC_RX_RING Structure Provides the location of the packet buffer that
is available for the NIC to place packets into
that it receives on behalf of the Policy Accel-
erator.

_NBPE_ANIC_TX_RING Structure Provides the location and size of the packet
ring buffer that contains packets for the NIC to
transmit on behalf of the Policy Accelerator.

_NBPE_BIND_RECV_PARAM Structure Description of the PA-100 driver’s ODX inter-
face for use in establishing the connection
between the NIC driver and the PA-100
driver.

_NBPE_BUF_TYPE_DETAIL Structure Describes the types of packet buffers that the
Policy Accelerator supports.

NBPE_DEV_HANDLE Type A unique handle.

NBPE_DEVICE_NAME Define Hard-coded device name for the PA-100
driver.

NBPE_LINK_NAME Define Link name for the PA-100 driver.

_NBPE_PKT_READY_INFO Structure Describes the packets that the NIC has
received on behalf of the Policy Accelerator
and that are ready for the Policy Accelerator.

_NBPE_RX_RING_INFO Structure Describes the packet buffer ring that is avail-
able for the NIC to place packets that it
receives on behalf of the Policy Accelerator.
68 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Types and Structures Alphabetic Reference
NBPE_STATUS Type A status code that each of the PA-100 func-
tions returns, indicating the success or failure
of the function.

_NBPE_TX_RING_INFO Structure Describes the packet buffer ring that contains
packets for the NIC to transmit on behalf of
the Policy Accelerator.

Data Element Description
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 69

Revision 1.0, May 2000

• • • • •

NBPE Types and Structures Alphabetic Reference

•
_NBPE_ANIC_RX_RING Structure

Provides the location of the packet buffer that is available for the NIC to place
packets into that it receives on behalf of the Policy Accelerator.

typedef struct _NBPE_ANIC_RX_RING {
ULONG bufAddr;

} NBPE_ANIC_RX_RING, *PNBPE_ANIC_RX_RING;

See Also n “_NBPE_RX_RING_INFO Structure” on page 78

n “NBPE_GetRecvPEBufRing Function” on page 86

Element Definition

bufAddr The address on the Policy Accelerator of ring buffer space for
packets that the NIC receives. This address points to the
Ethernet header of the packet and is in appropriate format for
the platform on which the drivers are running.
70 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Types and Structures Alphabetic Reference
_NBPE_ANIC_TX_RING Structure

Provides the location and size of the packet ring buffer that contains packets for
the NIC to transmit on behalf of the Policy Accelerator.

typedef struct _NBPE_ANIC_TX_RING{
ULONG bufAddr;
ULONG byteLen;

} NBPE_ANIC_TX_RING, *PNBPE_ANIC_TX_RING;

See Also n “_NBPE_TX_RING_INFO Structure” on page 81

n “NBPE_GetTransmitPEBufRing Function” on page 87

Element Definition

bufAddr The address on the Policy Accelerator of ring buffer space for
a packet that is available for the NIC to transmit. This address
points to the Ethernet header of the first available packet and
is in appropriate format for the platform on which the drivers
are running.

byteLen The quantity of bytes in a packet.

Not including CRC
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 71

Revision 1.0, May 2000

• • • • •

NBPE Types and Structures Alphabetic Reference

•
_NBPE_BIND_RECV_PARAM Structure

Description of the PA-100 driver’s ODX interface for use in establishing the
connection between the NIC driver and the PA-100 driver.

typedef struct _NBPE_BIND_RECV_PARAM {
 NBPE_DEV_HANDLE hDev;

/* Actual function pointers */
NBPE_RESET NBPE_Reset;

 NBPE_GET_BUF_TYPES NBPE_GetBufferTypes;
 NBPE_GET_RX_PE_BUF_RING NBPE_GetRecvPEBufRing;
 NBPE_GET_TX_PE_BUF_RING NBPE_GetTransmitPEBufRing;
 NBPE_RETURN_XMIT_BUF NBPE_ReturnXmitPEBuffer;
 NBPE_PACKET_READY NBPE_PacketReady;
} NBPE_BIND_RECV_PARAM, *PNBPE_BIND_RECV_PARAM;

See Also n “NBFIF_BindRecv Function” on page 49

n “NBPE_GetBufferTypes Function” on page 85

Element Definition

hDev See “NBPE_DEV_HANDLE Type” on page 74.

list of function pointers Pointers to the PA-100 driver functions. Your driver must save
these pointers.
72 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Types and Structures Alphabetic Reference
_NBPE_BUF_TYPE_DETAIL Structure

Describes the types of packet buffers that the Policy Accelerator supports.

typedef struct _NBPE_BUF_TYPE_DETAIL{
UINT32 bufType;
PHY_ADDR validAddrMask;
UINT32 bufAlign;
UINT32 packetStartOffset;
UINT32 maxPacketSize; /

} NBPE_BUF_TYPE_DETAIL, *PNBPE_BUF_TYPE_DETAIL;

Description The buffer location before and after the offset and the maximum payload are
reserved values; the NIC driver must not use them.

See Also n “NBPE_GetBufferTypes Function” on page 85

Element Definition

bufType A unique identifier for this buffer type.

The NIC driver uses this in the NBPE_GetRecvPEBufRing
Function and NBPE_GetTransmitPEBufRing Function.

validAddrMask Mask to the address that determines whether the buffer is
within range.

bufAlign The alignment of the buffer in number of bytes; for example,
2048 for a 2-KB-aligned buffer. /

packetStartOffset Byte offset from beginning of the aligned buffer that the Ether-
net packet must start from.

maxPacketSize The maximum payload allowed in this buffer type, in bytes.
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 73

Revision 1.0, May 2000

• • • • •

NBPE Types and Structures Alphabetic Reference

•
NBPE_DEV_HANDLE Type

A unique handle.

Description The PA-100 driver uses the pointer only to identify the NIC driver from which
it is receiving a request. Therefore, you must use the same pointer in successive
calls to other PA-100 driver functions.
74 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Types and Structures Alphabetic Reference
NBPE_DEVICE_NAME Define

Hard-coded device name for the PA-100 driver.

#define NBPE_DEVICE_NAME L"\\Device\\nboost"
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 75

Revision 1.0, May 2000

• • • • •

NBPE Types and Structures Alphabetic Reference

•
NBPE_LINK_NAME Define

Link name for the PA-100 driver.

#define NBPE_LINK_NAME L"\\DosDevices\\nboost"
76 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Types and Structures Alphabetic Reference
_NBPE_PKT_READY_INFO Structure

Describes the packets that the NIC has received on behalf of the Policy Acceler-
ator and that are ready for the Policy Accelerator.

typedef struct _NBPE_PKT_READY_INFO {
union _rxInfo

{ struct _layout
{ UINT16 pktLen;

UINT16 tcpCheckSum;
} layout;

UINT32 rxInfoWord;
} rxInfo;

} NBPE_PKT_READY_INFO, *PNBPE_PKT_READY_INFO;

See Also n “NBPE_PacketReady Function” on page 88

Element Definition

pktLen

tcpCheckSum

rxInfoWord
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 77

Revision 1.0, May 2000

• • • • •

NBPE Types and Structures Alphabetic Reference

•
_NBPE_RX_RING_INFO Structure

Describes the packet buffer ring that is available for the NIC to place packets
that it receives on behalf of the Policy Accelerator.

typedef struct _NBPE_RX_RING_INFO {
PNBPE_ANIC_RX_RING pRingBase;
UINT32 indxMask;
UINT32 *pProdIndx;

}NBPE_RX_RING_INFO, *PNBPE_RX_RING_INFO;

See Also n “_NBPE_ANIC_RX_RING Structure” on page 70

n “NBPE_GetRecvPEBufRing Function” on page 86

Element Definition

pRingBase The location on the Policy Accelerator of the buffer ring.

indxMask Apply this mask to the produce index to ensure that wraps
through the ring buffer are accounted for.

pProdIndx The produce index; that is, the address on the Policy Acceler-
ator of where the NIC can place packets. This address is in
appropriate format for the platform on which the drivers are
running.
78 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Types and Structures Alphabetic Reference
NBPE_STATUS Type

A status code that each of the PA-100 functions returns, indicating the success
or failure of the function.

typedef UINT32 NBFIF_STATUS;

#define NBPE_STATUS_SUCCESS 0x00000000L
#define NBPE_INVALID_HANDLE 0xE000E001L
#define NBPE_NOT_ENOUGH_BUFFERS 0xE000E002L
#define NBPE_RETURN_BUFFER_OUT_OF_SEQUENCE 0xE000E003L
#define NBPE_BUF_TYPE_NOT_SUPPORTED 0xE000e004L

Description Each of the PA-100 functions that your NIC driver calls returns a status code
indicating whether the function succeeded. The header file nbpe.h defines a
UINT32 type named NBPE_STATUS.

NOTE: The NBPE_STATUS type conforms to the Windows NT operating
system’s standard 32-bit error code format. Refer to your operating
system documentation for details. The information here is provided as
a summary of that information.

Windows NT Error Code Format

The Windows NT error code format contains 32 bits as follows:

Severity
Cust.
code Rsvd Facility code
flag

Facility’s status code

Bit number:

31 30 29 28 27 16 15 0
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 79

Revision 1.0, May 2000

• • • • •

NBPE Types and Structures Alphabetic Reference

•
Predefined Status Values

The header file also defines a small set of useful 32-bit statuses, as shown in the
syntax, that might be returned to your NIC driver.

See Also n “Reporting and Evaluating Status” on page 23

Starting
Bit

Length Content Description

31 2 Severity The severity of the status message being reported:

n 0: Success

n 1: Informational; the calling code can ignore this
message

n 2: Warning

n 3: Error

29 1 Customer code flag

28 1 Reserved

27 12 Facility code

15 16 Facility status code
80 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Types and Structures Alphabetic Reference
_NBPE_TX_RING_INFO Structure

Describes the packet buffer ring that contains packets for the NIC to transmit
on behalf of the Policy Accelerator.

typedef struct _NBPE_TX_RING_INFO {
PNBPE_ANIC_TX_RING pRingBase;
UINT32 indxMask;
UINT32 *pProdIndx;

}NBPE_TX_RING_INFO, *PNBPE_TX_RING_INFO;

See Also n “_NBPE_ANIC_TX_RING Structure” on page 71

n “NBPE_GetTransmitPEBufRing Function” on page 87

Element Definition

pRingBase The location on the Policy Accelerator of the buffer ring.

indxMask Apply this mask to the produce index to ensure that wraps
through the ring buffer are accounted for.

pProdIndx The produce index; that is, the address on the Policy Acceler-
ator of the end point of where in the buffer ring the Policy
Accelerator has placed packets. This address is in appropriate
format for the platform on which the drivers are running.
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 81

Revision 1.0, May 2000

• • • • •

NBPE Functions Alphabetic Reference

•
NBPE Functions Alphabetic Reference

NBPE
Functions
Summary

The nbhwpe.h header file contains prototypes for the following functions,
which your driver might/must call:

Function Description

IOCTL_NBOOST_FOREIGN_REGISTER
Function

Use this function to open communication
between your NIC driver and the PA-100
drivers.

IOCTL_NBOOST_FOREIGN_UNREGISTER
Function

Use this function to disconnect the NIC
driver from the PA-100 driver.

NBPE_GetBufferTypes Function Use this function to receive a list of the
types of packet buffers that the Policy
Accelerator supports.

NBPE_GetRecvPEBufRing Function Use this function to determine the location
of a buffer ring in which to put packets that
the NIC receives on behalf of the Policy
Accelerator.

NBPE_GetTransmitPEBufRing Func-
tion

Use this function to determine the location
of a buffer ring for packets that the NIC will
transmit on behalf of the Policy Accelera-
tor.

NBPE_PacketReady Function Use this function to notify the PA-100
driver that received packets are ready in
the buffer ring.

NBPE_Reset Function Use this function to reset the Policy Accel-
erator.

NBPE_ReturnXmitPEBuffer Function Use this function to return transmitted
buffers to the Policy Accelerator.
82 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Functions Alphabetic Reference
IOCTL_NBOOST_FOREIGN_REGISTER Function

Use this function to open communication between your NIC driver and the PA-
100 drivers.

#define FILE_DEVICE_NBOOST 0x000083001
#define NBOOST_FUNC_FOREIGN_REG 0x0964
#define NBOOST_FUNC_FOREIGN_UNREG 0x0965

IOCTL_NBOOST_FOREIGN_REGISTER
CTL_CODE (FILE_DEVICE_NBOOST,

NBOOST_FUNC_FOREIGN_REG,
METHOD_BUFFERED,
FILE_ANY_ACCESS)

Description Your NIC driver must call this function before it can call any other PA-100
(NBPE) functions. It opens the Policy Accelerator identified by the device
defines.

This is the first command that NIC driver must call. It opens the chosen PA-100
device. The NIC driver calls this IOCTL command with a set of function
pointers described in “_NBFIF_REGISTER_PARAM Structure” on page 41.

Upon receiving this IOCTL command, the PA-100 driver registers the NIC
driver into the system. In return, the PA-100 driver returns status success or
failure to the caller.

Everything is standard Windows NT IOCTL stuff otherwise.

See Also n “Initiating Communication With the Policy Accelerator” on page 12

Argument Description

FILE_DEVICE_
NBOOST

NBOOST_FUNC_
FOREIGN_REG

 These functions are strictly used by the NIC connection only. These
number SHOULD NOT be changed because the same definition is
mirrored in the internal .h file.

FILE_DEVICE_NBOOST is the PA-100 driver.
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 83

Revision 1.0, May 2000

• • • • •

NBPE Functions Alphabetic Reference

•
IOCTL_NBOOST_FOREIGN_UNREGISTER Function

Use this function to disconnect the NIC driver from the PA-100 driver.

#define FILE_DEVICE_NBOOST 0x000083001
#define NBOOST_FUNC_FOREIGN_UNREG 0x0965

#define IOCTL_NBOOST_FOREIGN_UNREGISTER
CTL_CODE(FILE_DEVICE_NBOOST, \

NBOOST_FUNC_FOREIGN_UNREG, \
METHOD_BUFFERED, \
FILE_ANY_ACCESS)

Description The NIC driver must call this function to disconnect itself from the PA-100
driver. In return, the PA-100 driver calls NBFIF_UnbindRecv.

All PA-100 driver exported functions become inaccessible and the function
pointers invalid. Moreover, the previously assigned handle is deleted.

See Also n “Terminating Communication With the Policy Accelerator” on page 15

n “NBFIF_UnbindRecv Function” on page 65
84 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Functions Alphabetic Reference
NBPE_GetBufferTypes Function

Use this function to receive a list of the types of packet buffers that the Policy
Accelerator supports.

NBPE_STATUS NBPE_GetBufferTypes (
IN NBPE_DEV_HANDLE hDev,
OUT UINT32 *pNumTypes,
OUT PNBPE_BUF_TYPE_DETAIL pBufTypeList);

Description This function returns a table that lists, for each buffer type supported by the
Policy Accelerator, such information as the buffer’s alignment, the offset into
the buffer at which the Ethernet packet must start, and the maximum payload
allowed in the buffer.

Your NIC driver must call this function during initialization to determine a
suitable buffer type to use for passing packets between itself and the Policy
Accelerator. Pass that buffer type to the NBPE_GetRecvPEBufRing Function
and to the NBPE_GetTransmitPEBufRing Function.

See Also n “Handling Packets” on page 17

n “_NBPE_BUF_TYPE_DETAIL Structure” on page 73

Argument Description

hDev The handle for the current connection between the NIC driver and
the PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “NBPE_DEV_HANDLE Type” on page 74.

pNumTypes A count, provided by the PA-100 driver, of the quantity of supported
buffer types.

pBufTypeList A table in which the PA-100 driver provides information about all sup-
ported buffer types. See “_NBPE_BUF_TYPE_DETAIL Structure”
on page 73. If you do not need this information, pass a NULL.
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 85

Revision 1.0, May 2000

• • • • •

NBPE Functions Alphabetic Reference

•
NBPE_GetRecvPEBufRing Function

Use this function to determine the location of a buffer ring in which to put
packets that the NIC receives on behalf of the Policy Accelerator.

NBPE_STATUS NBPE_GetRecvPEBufRing (
IN NBPE_DEV_HANDLE hDev,
IN UINT32 bufType,
OUT PNBPE_RX_RING_INFO pRxRingInfo);

Description Your NIC driver must call this function at initialization to get the receive buffer
ring. The PA-100 driver uses this ring to provide the NIC driver with empty
receive buffers.

The NIC driver must maintain its own consume index to this ring, while this
function provides the produce index. After the NIC driver consumes a buffer,
it must increment the index by one. No additional adjustment is needed for the
wraparound case. However, to get the buffer pointer, the index must always be
masked with the index mask provided before using it. The Produce index
minus the consumed index gives the number of entries actually available.

See Also n “Initiating Communication With the Policy Accelerator” on page 12

n “_NBPE_RX_RING_INFO Structure” on page 78

n “NBPE_GetRecvPEBufRing Function” on page 86

Argument Description

hDev The handle for the current connection between the NIC driver and the
PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “NBPE_DEV_HANDLE Type” on page 74.

bufType The NIC driver specifies the type of packet buffer that it wants to use;
it determines this value using the NBPE_GetBufferTypes Function.

pRxRingInfo The PA-100 driver returns a description of the assigned buffer ring in
this structure.

See “_NBPE_RX_RING_INFO Structure” on page 78.
86 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Functions Alphabetic Reference
NBPE_GetTransmitPEBufRing Function

Use this function to determine the location of a buffer ring for packets that the
NIC will transmit on behalf of the Policy Accelerator.

NBPE_STATUS NBPE_GetTransmitPEBufRing (
IN NBPE_DEV_HANDLE hDev,
IN UINT32 bufType,
OUT PNBPE_TX_RING_INFO pTxRingInfo);

Description The NIC driver must call this function at initialization to get the transmit buffer
ring. The Policy Accelerator uses this ring to provide the bounded instance of
the PA-100 driver’s transmit ring. The NIC driver can choose whether to
provide a direct transmit mechanism using this ring. See
NBFIF_BoundTxPacketsReady for more detail.

To access this ring, the NIC driver must maintain its own consume index to this
ring, while this function provides the produce index. After the NIC driver
consumes a buffer, it must increment the index by one. No additional adjust-
ment is need for the wraparound case. However, to get the buffer pointer, the
NIC driver must always mask the index with the index mask provided before
using it. The Produce index minus the consumed index gives the number of
entries actually available.

See Also n “Initiating Communication With the Policy Accelerator” on page 12

n “_NBPE_TX_RING_INFO Structure” on page 81

n “NBPE_GetTransmitPEBufRing Function” on page 87

Argument Description

hDev The handle for the current connection between the NIC driver and
the PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “NBPE_DEV_HANDLE Type” on page 74.

bufType The NIC driver specifies the type of packet buffer that it wants to use;
it determines this value using the NBPE_GetBufferTypes Func-
tion.

pTxRingInfo

See “_NBPE_TX_RING_INFO Structure” on page 81.
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 87

Revision 1.0, May 2000

• • • • •

NBPE Functions Alphabetic Reference

•
NBPE_PacketReady Function

Use this function to notify the PA-100 driver that received packets are ready in
the buffer ring.

NBPE_STATUS NBPE_PacketReady (
IN NBPE_DEV_HANDLE hDev,
IN PNBPE_PKT_READY_INFO pPacketInfo,
IN PHY_ADDR *pPacket);

Description The NIC driver must use this function to tell the Policy Accelerator that a
received buffer is ready. The Policy Accelerator address of the data buffer and
other information that the Policy Accelerator needs to construct the media inde-
pendent base header must be passed in as input arguments.

See Also n “Handling Packets” on page 17

n “_NBPE_PKT_READY_INFO Structure” on page 77

Argument Description

hDev The handle for the current connection between the NIC driver and the
PA-100 driver as initialized by IOCTL_NBOOST_FOREIGN_-
REGISTER. See “NBPE_DEV_HANDLE Type” on page 74.

pPacketInfo

See “_NBPE_PKT_READY_INFO Structure” on page 77.

pPacket
88 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

 NBPE Functions Alphabetic Reference
NBPE_Reset Function

Use this function to reset the Policy Accelerator.

VOID NBPE_Reset (IN NBPE_DEV_HANDLE hDev);

Description The NIC driver can use this function to reset the Policy Accelerator (Processing
Engine) and go back to the initial state. Both on-going transmitting and
receiving packets to the NIC device are aborted. Moreover, all Policy Acceler-
ator buffers regardless of their states are given back to Policy Accelerator.

See Also n “Initiating Communication With the Policy Accelerator” on page 12

Argument Description

hDev The handle for the current connection between the NIC driver and the PA-
100 driver as initialized by IOCTL_NBOOST_FOREIGN_REGISTER. See
“NBPE_DEV_HANDLE Type” on page 74.
Intel Confidential Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures 89

Revision 1.0, May 2000

• • • • •

NBPE Functions Alphabetic Reference

•
NBPE_ReturnXmitPEBuffer Function

Use this function to return transmitted buffers to the Policy Accelerator.

NBPE_STATUS NBPE_ReturnXmitPEBuffer (
IN NBPE_DEV_HANDLE hDev,
IN UINT32 numBuf,
IN PHY_ADDR *pXmitBuf);

Description Your NIC driver must use this function to return the transmitted buffers to
thePolicy Accelerator.

If NBFIF_BoundTxPacketsReady is used, there is a fast return mechanism avail-
able for the bounded instance. When the NIC driver calls this function with
numBuf set to 0 and pXmitBuf set to NULL, this function returns all buffers in
the transmit buffer ring to the Policy Accelerator. When only pXmitBuf is
NULL, this function treats the numBuf of buffers returned to be buffers returned
sequentially on the transmit buffer ring and acts accordingly.

See Also n “Handling Packets” on page 17

Argument Description

hDev The handle for the current connection between the NIC driver and the PA-
100 driver as initialized by IOCTL_NBOOST_FOREIGN_REGISTER.
See “NBPE_DEV_HANDLE Type” on page 74.

numBuf

pXmitBuf
90 Chapter 4: Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures Intel Confidential

Revision 1.0, May 2000

• • • •

• • • • •
Index

B
bus 3

C
caution, explanation of ix
communication between NIC and Policy Accelerator

3
connecting the NIC and the Policy Accelerator 3
contacting Intel x
conventions, typographical ix
customer support x

D
data elements 10

for calling PA-100 functions 68
for NIC implementation 28

diagnostic utility 8, 26
driver 1

customizing 7
installing and testing 25
ODX as an interface 2

F
functions

for calling PA-100 driver 82
for NIC implementation 47
list to be implemented 10

I
installation directory notation ix
Intel, contacting x
interface, see network interface

IOCTL_NBOOST_FOREIGN_REGISTER function
83

where used 13
IOCTL_NBOOST_FOREIGN_UNREGISTER

function 84
where used 15

IXA application, definition 2
IX-API SDK, definition 2
IX-API, definition 2

N
names of network interfaces 1
nbfif.h header file 4

files and types 27
implementing 10
purpose 12

NBFIF_BindRecv function 49
where used 13

NBFIF_BoundTxPacketsReady function 51
where used 20

NBFIF_ControlStatEngine function 53
where used 25

NBFIF_DEV_HANDLE type 30
NBFIF_GET_SET_PROP_ITEM structure 31
NBFIF_GET_STAT_ITEM structure 33
NBFIF_GetPropCapability function 54

where used 13, 23
NBFIF_GetProperties function 56

where used 23
NBFIF_GetStatCapability function 58

where used 13, 25
NBFIF_GetStatistics function 60

where used 25
Intel Confidential 91

Revision 1.0, May 2000

• • • • •

 Index

•
NBFIF_PacketReady function 62
where used 21

NBFIF_PROP_CAP_ITEM structure 34
NBFIF_PROP_ITEM structure 37
NBFIF_PROP_RESTRICTION enumeration 39
NBFIF_PROP_TYPE enumeration 40
NBFIF_REGISTER_PARAM structure 41

where used 13
NBFIF_Reset function 63

where used 23
NBFIF_SetProperties function 64

where used 23
NBFIF_STAT_CAP_ITEM structure 42
NBFIF_STAT_CNTRL enumeration 43
NBFIF_STATUS type 44

where used 23
NBFIF_UnbindRecv function 65

where used 15
NBFIF_UNREGISTER_PARAM structure 46

where used 15
NBinstallpath meaning ix
nbpe.h header file 4

functions and types 67
purpose 11

NBPE_ANIC_TX_RING structure 71
NBPE_ANIX_RX_RING structure 70
NBPE_BIND_RECV_PARAM structure 72
NBPE_BUF_TYPE_DETAIL structure 73
NBPE_DEV_HANDLE type 74
NBPE_DEVICE_NAME define 75
NBPE_GetBufferTypes function 85

where used 18
NBPE_GetRecvPEBufRing function 86

where used 18
NBPE_GetTransmitPEBufRing function 87

where used 18
NBPE_LINK_NAME define 76
NBPE_PacketReady function 88

where used 19
NBPE_PKT_READY_INFO structure 77
NBPE_Reset function 89

where used 23
NBPE_ReturnXmitPEBuffer function 90
NBPE_RX_RING_INFO structure 78
NBPE_STATUS type 79
NBPE_TX_RING_INFO structure 81
network interface A and B 1

supplementing with ODX 2
using in applications 5

network interface C 2
illustration of flow 8
using in applications 5

network interface names 1
NIC 1

driver, see driver
properties, see properties of a NIC
quantity for each Policy Accelerator 4
resetting 63

note, explanation of ix

O
ODX 1

included items 4
purpose 2

odxloop diagnostic utility 26
location 8, 26

Optimal Data Exchange 1

P
packet flow 17

before and after customization 8
capabilities 2
initializing 18
receiving 19
transmitting 20

PCI bus 3
Policy Accelerator 1

quantity served by a NIC 4
resetting 89

properties of a NIC 23
implementing 23
read-write enumeration 39
returning values 56
setting values 64
specifying supported 54
structure for describing one 37
structure for describing several 34
structure for requesting 31
type enumeration 40

R
reference, explanation of ix
resetting 23

NIC 63
Policy Accelerator 89
92 Index Intel Confidential

Revision 1.0, May 2000

• • • •

 Index
S
statistics 25

implementing 25
on-off control 53
on-off enumeration 43
returning values 60
specifying supported 58
structure for describing several 42
structure for requesting 33

status 23
evaluating and using 23
NBFIF_STATUS type 44
NBPE_STATUS type 79

type that you return 44
support for Intel x
symbols ix

T
types 10

for calling PA-100 functions 68
for NIC implementation 28

typographical conventions ix

WXYZ
warning, explanation of ix
Intel Confidential Index 93

Revision 1.0, May 2000

• • • • •

 Index

•
94 Index Intel Confidential

Revision 1.0, May 2000

• • • •

IX SDK Software Developer’s Kit License Agreement
IMPORTANT: You (the “licensee”) are consenting to be bound by this agreement if you do any of the following:
n Click on the “accept” button
n Install or use the software
n Otherwise exercise any rights provided below to use the accompanying Intel™ IX API Software Developer’s Kit (the “Intel SDK”)
Or, if applicable, you are bound by a currently effective written agreement regarding the use of the Intel SDK and signed by an authorized agent of you and by an
officer of Intel.

If you do not agree to the terms of this agreement or such signed agreement, as applicable, then do not use or copy the Intel SDK, and
contact the place from which you obtained it, if any of these terms are considered an offer, acceptance is expressly limited to these terms.
This Agreement sets forth the terms and conditions of your use of the accompanying Intel SDK, together with documentation provided to you by Intel. Any third
party software that is provided with the Intel SDK with such third party’s license agreement (in either electronic or printed form), and your use of such third party
software, shall be governed by such third party’s license agreement in addition to this Agreement. As used in this Agreement, Intel shall mean Intel Corporation, its
affiliates, or its subsidiaries.
Users of the Intel SDK pursuant to this Agreement must either be individuals using the license on their own behalf or be employees or contractors of a corporation
or other entity which has accepted the terms of this Agreement and on behalf of which the Intel SDK is being used, in which case the term “Licensee” in this
Agreement refers to you and such entity.

1. Grant of License.
a. Subject to the terms of this Agreement, Intel grants to Licensee a worldwide, nonexclusive, nontransferable, nonassignable, nonsublicensable license (the “License”)
under Intel’s copyrights to (i) copy the Intel SDK and associated documentation for internal use to integrate Applications for use with Intel Products, and (ii) to make
and distribute as many copies of the integrated applications containing the Intel SDK as necessary. “Intel Products” means approved Intel Hardware listed in the
datasheet provided with this Intel SDK. “Applications” means Licensee’s current and future expected applications that will use the Intel SDK.
b. Accompanying the Intel SDK is specific source code (“Intel Source”) such as ARM Compiler, ARM Debugger, Include Files, and reference applications that Licensee
may incorporate into Applications during the integration process using the Intel SDK. Subject to the terms of this Agreement, Intel grants to Licensee a worldwide,
nonexclusive copyright license to reproduce, distribute, and sublicense to third parties the Intel Source in Licensee’s Applications for use with Intel Products. Licensee
recognizes that when it uses the Intel SDK to create or compile Applications, a portion of the Intel SDK, the Intel Source, will be compiled and linked into or with the
Applications.

2. Ownership of the Intel SDK. As between the parties, Intel retains title to and ownership of, and all proprietary rights with respect to, the Intel SDK, the Intel
Source, and all copies and portions thereof, whether or not incorporated into or with other Software. The License does not constitute a sale of the Intel SDK, the
Intel Source, or any portion or copy of it.

3. Restrictions; Licensee Obligations.
a. Any redistribution or duplication of any software, code, and or application derived from the Intel SDK shall require that the Intel InstallShield installation program
be used for installation or Licensee agrees to incorporate the Intel file license.txt in its entirety into Licensee’s install program. The Intel-provided file license.txt
includes all relevant copyright notices, trademark notices, and any other notices. Except as specified in the applicable user documentation provided by Intel, Licensee
shall not (and shall not allow any third party to) (i) decompile, disassemble, or otherwise reverse engineer or attempt to reconstruct or discover any source code or
underlying ideas or algorithms of the Intel SDK by any means whatsoever, (ii) remove any product identification, copyright or other notices, (iii) retarget any Intel
SDK to interoperate with products other than Intel Products, or (iv) provide, lease, lend, use for timesharing or service burea u purposes, or otherwise use or allow
others to use the Intel SDK to or for the benefit of third parties.
Confidential information disclosed under this license agreement, including the existence and content of this Agreement, shall be considered “Confidential
Information.” Use and disclosure of such Confidential Information shall be governed by the terms of the Corporate Single Use Nondisclosure Agreement or other
Nondisclosure Agreement, signed between the parties and incorporated into this Agreement by reference.

4. Termination of License for Cause. This agreement will remain in effect unless Intel terminates it due to a breach of its terms. Upon termination, Licensee will
cease all use of the Intel SDK and promptly destroy or return to Intel all printed materials and copies of the Intel SDK and all portions thereof (whether or not
modified or incorporated with or into other software) and so certify to Intel. Except for the License and except as otherwise expressly provided herein, the terms of
this Agreement shall survive termination. Termination is not an exclusive remedy, and all other remedies will be available whether or not the License or the
Agreement is terminated.

5. Limited Warranty and Disclaimer. The Intel SDK is provided “as is” without warranty of any kind including, without limitation, any
warranty of merchantability or fitness for a particular purpose or noninfringement. Further, Intel does not warrant, guarantee, or make
any representations regarding the use, or the results of the use, of the Intel SDK or written materials in terms of correctness, accuracy,
reliability, or otherwise. Licensee understands that Intel is not responsible for and will have no liability for hardware, software, or other items or any services
provided by any person or entity other than Intel.

6. Export Restrictions. Licensee agrees to fully comply with all applicable United States and EEC or other countries regulations and laws in effect now and
hereinafter, including compliance with the U.S. Foreign Corrupt Practices Act and all export laws, restrictions, national security controls and regulations on the
distribution or dissemination of Applications or Intel Products, technology, and information related to and/or exchanged under this Agreement. Licensee agrees
not to export or reexport, or allow the export or reexport of the Intel SDK or any Intel Product, Intel Proprietary Information, or any direct product thereof in
violation of any such restrictions, laws or regulations, or without all required licenses and proper authorizations, to Cuba, Libya, North Korea, Iran, Iraq, or
Rwanda or to any Group D:1 or E:2 country (or national of such country) specified in the then current Supplement No. 1 to Part 740 of the U.S. Export
Administration Regulations (or any successor supplement or regulations).

7. Government Contracts. The Intel SDK is provided with RESTRICTED RIGHTS. If Licensee is the Government or a Government contractor, use, duplication or
disclosure by the Government is subject to the restrictions as set forth in subparagraph (c)(1)(ii) or the Rights in Technical Data and Computer Software Clause as
DFARS 252.227-7013 and FAR 52.227-19, as applicable. Manufacturer is Intel Corporation, 1350 Villa Street, Mountain View, California 94041-1126.

8. Limitation of Remedies and Damages. To the maximum extent allowed by law, Intel shall not be responsible or liable with respect to any
subject matter of this agreement under any contract, negligence, strict liability, or other theory: (a) for loss or inaccuracy of data or cost
of procurement of substitute goods, services or technology; (b) for any special, indirect, incidental, or consequential damages including,
but not limited to, loss of profits; or (c) for any matter beyond its reasonable control.
Distribution of the Intel SDK is also subject to the following limitations: Licensees (i) are solely responsible to your customers for any update or support obligation
or other liability that may arise from the distribution, (ii) do not make any statement that your product is “certified,” or that its performance is guaranteed, by Intel,
(iii) do not use Intel’s name or trademarks to market your product without written permission, (iv) shall prohibit disassembly and reverse engineering, and (v) shall
indemnify, hold harmless, and defend Intel and its suppliers from and against any claims or lawsuits, including attorney’s fees, that arise or result from your
distribution of any product.
Intel Confidential 95

Revision 1.0, May 2000

• • • • •

• • • • •

• •
9. Transfer; Successors. Licensee shall not assign this agreement or any part of it except with Intel’s prior written consent.

10. General. This Agreement shall be governed by and construed under the laws of the State of Delaware and the United States without regard to
conflicts of laws provisions thereof and without regard to the United Nations Convention on Contracts for the International Sale of Goods. In any
action or proceeding to enforce rights under this Agreement, the prevailing party shall be entitled to recover costs and attorneys’ fees. If any
provision of this Agreement is held by a court of competent jurisdiction to be illegal, invalid or unenforceable, that provision shall be limited or
eliminated to the minimum extent necessary so that this Agreement shall otherwise remain in full force and effect and enforceable. No rights or
licenses with respect to the Intel SDK or Intel Products are granted, other than those rights expressly and unambiguously granted in this Agreement.
This Agreement constitutes the entire agreement between the parties relating to the subject matter hereof.
Copyrights and Trademark Notification
Intel: Copyright ©1998–2000 Intel Corporation. All Rights reserved. Trademark. Intel is a trademark of Intel Corporation.
*Other products and company names mentioned herein may be the trademarks of their respective owners.
UCB: Contains Software from The Regents of the University of California. Copyright ©1982, 1986, 1993, 1997-2000 The Regents of the University of
California. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistribution of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment: This product includes software
developed by the University of California, Berkeley, Network Research Group at Lawrence Berkeley National Laboratory and its contributors.

4. Neither the name of the University nor the Laboratory nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

This software is provided by the Regents and contributors ‘‘as is’’ and any express or implied warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose, are disclaimed. In no event shall the
Regents or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in
any way out of the use of this software, even if advised of the possibility of such damage.
LCC: LCC Source Code from Addison Wesley Longman (“Licensor”) from Christopher W. Fraser and David R. Hanson (“Authors”). LCC Source Code
Copyright © 1995–2000 by David R. Hanson and AT&T. Reproduced by permission.

No warranty is made by Intel, the Licensor or the Authors of the LCC source code software, either express or implied, regarding
the absence of defects in the LCC software, or its merchantability or fitness for a particular purpose. Intel, Licensor, and the
Authors shall have no liability for damages of any nature arising out of any use, distribution, or modification of the LCC
software, even if Intel, Licensor, or the Authors have been advised of the possibility of such damages.
GNU: Software coded using ARM Debugger and Compiler. Copyright ©1998–2000 Intel Corporation. All Rights reserved.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave., Cambridge, MA 02139, USA.
Intel Corporation
1350 Villa Street
Mountain View, CA 94041-1126
Tel: 650.567.9800
Fax: 650.567.9810
www.netboost.com

Revision 1.0, May 2000

• • •

	Contents
	About This Guide
	Audience
	In This Guide
	Other Sources of Information
	Typographic Conventions
	Syntax Examples
	Installation Path

	Contacting Intel
	Web and Internet Sites
	Customer Support Technicians

	Introduction to the ODX Protocol
	Background
	Policy Accelerator Boards
	IX-API SDK and IX-API

	About the ODX Protocol
	Connecting the NIC and the Policy Accelerator
	One NIC for One Policy Accelerator

	What the ODX Protocol Includes
	How Applications Can Use the New Driver

	Customizing a NIC Driver
	Prerequisites
	Customization Environment
	Software Components

	Implementing the ODX Functions
	Required and Optional Functions
	Basic Customization Steps

	Initiating Communication With the Policy Accelerator
	Concepts
	Implementing
	Initialization Process
	For More Information

	Terminating Communication With the Policy Accelerator
	Concepts
	Implementing
	Termination Process
	For More Information

	Handling Packets
	Concepts
	Initiating Packet Flow
	Receiving Packets
	Receive Diagram

	Transmitting Packets
	Alternative Transmit Method
	Transmit Diagram

	For More Information

	Reporting and Evaluating Status
	Concepts
	Interpreting Status from the PA-100 driver
	Resetting Devices

	Implementing the NIC’s Properties Functions
	For More Information

	Implementing the NIC’s Statistical Functions
	For More Information

	Installing and Testing the Driver
	Installation/ Configuration
	Testing
	Sample Application

	Alphabetic Reference: NBFIF (NIC Driver) Functions, Types, and Structures
	Overview
	NBFIF Types and Structures Alphabetic Reference
	NBFIF Types and Structures Summary
	_NBFIF_DEV_HANDLE Type
	_NBFIF_GET_SET_PROP_ITEM Structure
	_NBFIF_GET_STAT_ITEM Structure
	_NBFIF_PROP_CAP_ITEM Structure
	Predefined Index Values

	_NBFIF_PROP_ITEM Structure
	_NBFIF_PROP_RESTRICTION Enumeration
	_NBFIF_PROP_TYPE Enumeration
	_NBFIF_REGISTER_PARAM Structure
	_NBFIF_STAT_CAP_ITEM Structure
	_NBFIF_STAT_CNTRL Enumeration
	NBFIF_STATUS Type
	Windows NT Error Code Format
	Predefined Status Values

	_NBFIF_UNREGISTER_PARAM Structure

	NBFIF Functions Alphabetic Reference
	NBFIF Functions Summary
	NBFIF_BindRecv Function
	NBFIF_BoundTxPacketsReady Function
	NBFIF_ControlStatEngine Function
	NBFIF_GetPropCapability Function
	NBFIF_GetProperties Function
	NBFIF_GetStatCapability Function
	NBFIF_GetStatistics Function
	NBFIF_PacketReady Function
	NBFIF_Reset Function
	NBFIF_SetProperties Function
	NBFIF_UnbindRecv Function

	Alphabetic Reference: NBPE (PA-100 Driver) Functions, Types, and Structures
	Overview
	NBPE Types and Structures Alphabetic Reference
	NBPE Types and Structures Summary
	_NBPE_ANIC_RX_RING Structure
	_NBPE_ANIC_TX_RING Structure
	_NBPE_BIND_RECV_PARAM Structure
	_NBPE_BUF_TYPE_DETAIL Structure
	NBPE_DEV_HANDLE Type
	NBPE_DEVICE_NAME Define
	NBPE_LINK_NAME Define
	_NBPE_PKT_READY_INFO Structure
	_NBPE_RX_RING_INFO Structure
	NBPE_STATUS Type
	Windows NT Error Code Format
	Predefined Status Values

	_NBPE_TX_RING_INFO Structure

	NBPE Functions Alphabetic Reference
	NBPE Functions Summary
	IOCTL_NBOOST_FOREIGN_REGISTER Function
	IOCTL_NBOOST_FOREIGN_UNREGISTER Function
	NBPE_GetBufferTypes Function
	NBPE_GetRecvPEBufRing Function
	NBPE_GetTransmitPEBufRing Function
	NBPE_PacketReady Function
	NBPE_Reset Function
	NBPE_ReturnXmitPEBuffer Function

	Index

