
Published in Proceedings of ICCC’99, Tokyo, Japan, , Sept. 14-16

1

NetLobars: A Simulation System for
Web System Design and Evaluation

 C. Edward Chow Jingsha He and Tomohiko Taniguchi

 Department of Computer Science Network Computing Lab
 University of Colorado at Colorado Springs Fujitsu Laboratories of America, Inc.
 1420 Austin Bluffs Parkway 595 Lawrence Expressway

Colorado Springs, CO 80933-7150, USA Sunnyvale, CA 94086-3922, USA
TEL: +1-719-262-3110 FAX: +1-719-262-3110 TEL: +1-408-530-4576 FAX: +1-408-530-4515
 e-mail: chow@cs.uccs.edu e-mail: jhe@fla.fujitsu.com
 WWW: http://www.cs.uccs.edu/~chow ttaniguc@fla.fujitsu.com

Abstract

To evaluate the web system performance, a simulation-based design system, called NetLobars was built
with Java 1.2 based GUI for specifying network topology, web system configuration, and client request
patterns. It simulates the shortest path dynamic routing among web servers and clients. Using the discrete
event simulation, the system provides detailed analysis of various system/network delays and average end-
to-end response time for comparing different web system configurations. A simulation-driven message
animation based on Java 2D API is integrated for visualizing the web protocol processing. Methods for
identifying the web system bottlenecks are also presented. NetLobars system facilitates web system
managers and designers in evaluating web system configurations and design trade-off.

To be published in Proceedings of ICCC’99, Tokyo, Japan, Sept. 14-16.

2

NetLobars: A Simulation System for
Web System Design and Evaluation

 C. Edward Chow Jingsha He and Tomohiko Taniguchi

 Department of Computer Science Network Computing Lab
 University of Colorado at Colorado Springs Fujitsu Laboratories of America, Inc.
 1420 Austin Bluffs Parkway 595 Lawrence Expressway
 Colorado Springs, CO 80933-7150 Sunnyvale, CA 94086
 Email: chow@cs.uccs.edu jhe@fla.fujitsu.com, ttaniguc@fla.fujitsu.com
 TEL: (719) 262-3110 (408) 530-4576, (408) 530-4542
 WWW: www.cs.uccs.edu/~chow

Abstract

To evaluate the web system performance, a simulation-
based system, called NetLobars was built with Java 1.2
based GUI for specifying network topology and web system
configuration, client request patterns. It simulates the
shortest path dynamic routing among web servers and
clients. Using the discrete event simulation, the system
provides detailed analysis of various system/network delays
and average end-to-end response time for comparing
different web system configurations. A simulation-driven
message animation based Java 2D API is integrated for
visualizing the web protocol processing. Methods for
identifying the web system bottlenecks are also presented.

1. Introduction

Web systems have played an essential role in providing
information for wide variety of activities and are becoming
important vehicles for carrying out electronic commerce.
Besides the revenues of the on-line businesses, our daily life
are increasingly depending on the performance of the web
systems. Therefore it is a critical issue to improve the web
system performance. The first task to improve the web
system performance is to identify the web system
bottlenecks. Bottlenecks are defined as system components
where work in progress, information, material are being
excessively delayed.

This task is complicated by the facts that today’s web
systems are getting more complex with additional
components such as cache servers and load balancing agents.
With the increase of traffic, mirroring and caching have
been used to improve the performance of user response
time. However, currently there is no system and standard
way for guiding the selection of mirror sites. Most
techniques resort to listing the server as hyper links items
in the web page, or to rely on modified DNS [Katz94] to
return the IP address of one of a set of server. Round Robin
DNS has been used for selecting servers in LAN cluster but
there are performance problems due to name caching in
local or intermediate name server [Cola97]. Cisco
DistributedDirector deals with geographically separate
servers but maintain the centralized name resolver, which
becomes the bottleneck [Cisco96]. These techniques do
not provide or use server load and network path statistics to
guide the dynamic selection of geographically separated
replicated servers. Dynamic server selection technique
proposed in [Fei97] is the first to use server status push and
client network probe to guide name resolver to select web
servers with better server performance. However this
technique is subjected to the wide swing of congestion due
to clients’ rushing to the lightly loaded servers.

To accurately identify the web system bottlenecks, it is
our intent to take all these additional web components and
techniques into consideration.

In the proposed approach, the web system configuration
and traffic pattern are first captured. The corresponding

To be published in Proceedings of ICCC’99, Tokyo, Japan, Sept. 14-16.

3

computer simulation model is then built and preliminary
simulation runs will then be carried out. Based on the
simulation log, the detailed server and network delay
parameters will be analyzed and bottlenecks will be
identified. In cases where there are no clear conclusions,
additional simulation runs will be carried out as attempts to
identify the bottlenecks. Finally sensitivity analysis will be
performed so that the improvement over the identified
bottlenecks can be presented.

There are commercial packages such as OPNET
Modeler [OPNET] and COMMNET Predictor
[COMMNET] for network planning, research and
development based on simulation. However, they either
provide restricted, predetermined set of network parameters
or require extensive programming on new web service
features and routing. The NetLobars system is also unique
on its Java-base GUI and portability.

For existing systems, the web system configurations can
be captured from the design blue prints or from the network
management systems. The traffic patterns can be retrieved
from the web server access logs and router logs. The
NetLobars system provides a Java-based GUI for specifying
the network topology, web system configurations, and client
traffic patterns. It can be used to build the computer
simulation model of the corresponding web systems. It is
also integrated with a discrete event simulator for simulating
the web system operations, network routing, and web
protocol processing. The discrete event simulator takes the
client traffic statistics specified by the GUI interface,
generates the corresponding server request events, and
computes the message processing time, the transmission
delay, and propagation delay along the LAN/link segments
and network devices. The simulation logs also record the
document retrieving and processing times on servers. When
the response from the server is received by the client, the
simulator computes the end-to-end response time. At the end
of the simulation run, the simulator reports the average end-
to-end response time and the system throughput in terms of
the number of requests processed.

An all nodes to all nodes shortest path algorithm based
was implemented. It was used to compute the routing table,
which is used by the network components for routing the
protocol messages. The routing table can be updated
according to certain frequency by running the shortest paths
algorithm based on the current delays in the LAN/link
segments. Therefore the NetLobars can simulate the routing
protocols such as OPSF. This enables us to simulate closer
to the real-life environment.

 In Section 2, we give an overview of the software
architecture of the NetLobars system. Section 3 discusses the
message animation features of NetLboars. Section 4

discusses the basic techniques for identifying the web system
bottlenecks. Section 5 is the conclusion.

2. Overview of the NetLobars System

Figure 1 shows the software architecture of the
NetLobars software system. Users interact with the system
through a GUI interface. The GUI then interacts with
modules in the system utility block and modules in the
component behavior block for realizing the user’s
instructions.

The Network Layout Tool provided by the GUI enables
users to select network components from a menu and to click
on the canvas window for its location. They can also
connect components, such as servers, switches, routers, and
clients with multi-access links and point-to-point links. The
Network Layout Tool calls the various component behavior
modules to interact with the user for more detailed
information, such as client request inter-departure
distribution, location, and processing speed. The resulting
network configuration can be saved as a network
configuration file for future retrieval.

After specifying the network configuration or reloading
previous network configuration file, the user can launch
network simulation through the simulation control menu. The
GUI invokes the discrete event simulator, which dispatches
events to component behavior modules. Those component
behavior modules in turn produce and insert events in the
event queues managed by the discrete event simulator. The
simulation log is created for keeping the important network
simulation information such as various delays and response
times. To ensure the correctness of the simulation data, the
percentages of the processing time in each system
components are computed as a sanity check.

The simulation starts by initiating the client behavior
modules for modeling the web client processes. When the
client process is called, it generates the size of the HTTP-
request message and a document ID with the corresponding
document size distribution, and sends the HTTP-request
message with the attached document ID to the network. It
also calculates the schedule the next client request event and
put in the event queue. The HTTP-request message size is
used to calculate the transmission delay over each network
segment based on its transmission speed. The propagation
delay is also calculated based on the distance of the network
segment and the signal propagation speed over the medium.
The switching or routing speed of routers and switches are
modeled so that the queueing delay on these components can
also be estimated. The messages are routed to their
destinations according the table generated by the shortest
path algorithms.

To be published in Proceedings of ICCC’99, Tokyo, Japan, Sept. 14-16.

4

When the message arrives at the server, the document
ID attached to the HTTP-request message is used to compute
the HTTP-response size and the document retrieval time.
The HTTP-response size is used to calculate the transmission
and switching delays on the return path.

For the cache server, the document ID is used to search
the cached document directory. The size of the cache server
is specified in the configuration time by the user.

If interested in observing or studying the message
processing, the user can select the message animation
through a menu item and then launch the simulation. In this
case, the discrete event simulator will call the Message
Animation Module with the source and destination of the
message delivery on the current LAN or link segment. Based
on the transmission speed and the distance, the message
animation module calculates the animation time for the
message label to be repeatedly redrawn along the edge of the
link.

After a simulation run, the user can select the data
analysis from a menu. The GUI will then call the Data
Analysis Module to perform network analysis on the
simulation log. The analysis results identify the potential
bottlenecks in the system and plot the performance
improvement ratio of these bottleneck components when
their capacities or speeds increase.

The user can also specify the client traffic pattern and
request the Resource Allocation Module to plan for the
location, capacity, and speed of the network servers,
switches, routers, and LAN/Links. The Resource Allocation
Module takes the client traffic pattern as input, consults with
the modules in the component behavior block, runs efficient
resource allocation algorithms (optimal algorithm if
possible). The result is a suggested network configuration,
which meets certain network design rules or quality of
service requirements. The Resource Allocation Module is
currently being implemented.

GUI
NetLayout

Discrete
Event
Simulator

Message
Animation
Module

Data
Analysis
Module

Resource
Allocation
Module

Client
Module

Web
Server
Module

Cache
Server
Module

DNS
Server
Module

LBA
Server
Module

Media
Server
Module

Multiaccess
LAN
Module

Sw itch
Module

Router
Module

Point-to-Point
LINK
Module

Traff ic
generation

Module

user
Simulation

Log

Network
Configuration

File

component behavior block

system utility block

Figure 1.Software Architecture of NetLobars System.

Published in Proceedings of ICCC’99, Tokyo, Japan, , Sept. 14-16

Figure 2. NetLayout Tool: a Front End GUI

The current NetLobars implementation is version 0.3.
It is implemented with the newest JDK 1.2 or Java 2
platform. Figure 2 show the NetLayout tool, which is the
front end GUI for the NetLobars system. From the
component menu, users can select one of the following web
components: web server, cache server, load balancing
agent, and web client, and the following network
components: cable (a generic connector), multi-access link
(for medium such as Ethernet), switch, router, and wide area
point-to-point link. Once selected, the user can click on the
canvas window and leaves an iconic symbol of the system
component.

By hitting the control-shift-p, the user can open the
property dialog box for specifying the system components.
Figure 3 shows the property dialog box of a web client. It
include the name, the X and Y screen locations, the
longitude and latitude, the related servers used by the client,
its processing power, and the statistics of the request inter-
arrival time and the request document size.

Figure 3. Web Client Property Dialog box

There is a one-to-one correspondence between the
modules in the software architecture and the Java classes
implemented in NetLobars version 0.3. For example, the
Client.java implements the I/O and event processing of
client module and the ClientProperty.java implements the
dialog window interface for collecting user’s input on the
specific client’s parameters. Net class keeps the lists of
network components, implements shortest path algorithm,
and initializes the discrete event simulation. The PTPLink
and MALink classes maintain the list of network
components connected by them. The components can be
connected by more than one of these links. The
NetLayoutFrame class is responsible for the layout and
processing of menus, canvas and status windows. The
Resource Allocation Module is being implemented.

3. Message Animation

Protocol message animation is useful for designing and
studying message exchanges of protocols implemented in

To be published in Proceedings of ICCC’99, Tokyo, Japan, Sept. 14-16.

6

network systems. In NetLobars system, the message
animation is driven by the discrete event simulator. When a
message is transmitted between two system components and
the animation flag is turned on, the Message Animation
Module is called from the discrete event simulator with
information on the distance, transmission speed, the
message type and size, and the locations of the sending and
receiving components.

The Message Animation Module is implemented with
the new JDK 2D API [Java98]. JDK 2D API greatly
simplifies the coding of animation of messages on the
canvas window. It enables us to rotate the message label at
an arbitrary angle and allows the animation to follow
exactly the transmission line in the display window.

Figure 4 shows the screendump of an animation step of
a HTTP-request message, which was sent by client7 to
server0 and being relayed from router2 to route0.

Figure 4. HTTP-request animation.

Figure 5. HTTP-response animation

Figure 5 shows the screendump of an animation step of
the corresponding HTTP-response message on the way
back to client7. It was being relayed from switch0 to
router0. To make it easy to distinguish message types, we
use cyan color for HTTP-request message label background
and pink color for that of HTTP-response message label.
The last field of the message label is the session ID
generated by the simulator.

4. Identifying web system bottlenecks

Bottlenecks are defined as system components where
work in progress, information, material are being
excessively delayed. Since the “excessively delay” is a
relative term, we must obtain data for the “normal delay”
and define the threshold over which a delay can be called
“excessive”. Putting the web system in context, there are
two basic ways we can identify the system bottlenecks. One
indirect way is to use the utilization number. The direct
way is to use the percentage of the system component delay
in the end-to-end response time.

The former is to start by defining or collecting the
capacity or peak rate of each system component. We then
measure the utilization, a 0 to 1 number, of those capacities.
The utilization is defined to be the ratio of the used capacity
over the total capacity. For example, if the average used

To be published in Proceedings of ICCC’99, Tokyo, Japan, Sept. 14-16.

7

bandwdith of a 10Mbps line is 3Mbps, the utilization is 0.3.
If a web server capable of 10000 connections per seconds is
measured to serve 8000 connections per seconds, the
utilization is 0.8. From queueing theory, we know there is
strong relation between the utilization and the delay. It is
generally true that the higher the utilization, the longer the
delay. As a practical approach, we can keep track the
utilization numbers of the system components during the
simulation run. The heavily utilized system components
tend to be the system bottlenecks.

In real system, it is very difficult to compute the
percentages of various system component delays over the
end-to-end response time. In simulation however, we can
accumulate these delays as part of the simulation record
along the simulation of web access processing. When the
HTTP response is received by the client, the simulation
record attached to the simulated HTTP response message
will have all the delays of the web access processing. The
component with the highest percentage will be the system
bottleneck for this particular session.

Since there are many clients and many requests from
each client, the system bottleneck on one session may not be
the bottleneck on other sessions. One simple approach will
be to provide a ranking system where the component with
the highest delay in a session is given a high number, says
100, the second one with 99, and so on. Each component in
the simulation model maintains a counter, which
accumulates the ranking number value. Since the
components used by different sessions may not overlap, the
components such as the web server will have more overlap
and result in higher counter value. To avoid the bias, we
add a second variable, frequency, to the ranking structure
variable, with the counter variable as the first field of the
ranking structure variable. The frequency variable will be
incremented by 1, each time it is accessed. The final ranking
value will be the counter value divided by the frequency. At
the end of the simulation runs, the final ranking numbers
will be calculated among all the system components and
sorted. The components with higher-ranking numbers will
be the system bottlenecks.

5. Conclusion

We have presented the design of a simulation-based
web system planning tool, called NetLobars, for web system
design and evaluation. Techniques for evaluating the web
system bottlenecks are also presented.

We have found it very useful in providing quantitative
numbers for comparing different web system
configurations. As an example, for the web system
presented in Section 2, with all clients retrieving document
from web server0. the average end-to-end user response
time is 2.30 seconds. With the addition of two cache servers
in the two remote subnets, the average end-to-end user
response time becomes 1.38 seconds. It improves by 66%
for the same assumed client traffic pattern. This type of
quantitative data help web system managers in their cost-
performance trade-off and system upgrade decisions.

The NetLobars system is also useful in system
evolution case. It can simulate the system performance
when the client traffic is increased by certain percentage.
For the same example in Section 2 with two cache servers in
the remote subnets, after increasing the client traffic five
times, says after 5 years, the simulator estimates average the
end-to-end response time will be degraded from 1.38 to
32.73 seconds.

The animation feature provides designers with some
insight on how the web protocol works and serves as a very
effective learning and training tool for the emerging web
system techniques. It is also instrumental in the design of a
distributed load balancing protocol.

We are currently implementing the Resource
Allocation Module for suggesting optimal or efficient
network resource placement and allocation.

6. References

[Cisco96] Cisco Distributed Director,
http://www.cisco.com/warp/public/751/dist
dir/dd_pa.htm

[Cola97] Colajanni, M.; Yu, P.S.; Dias, D.M.,
Scheduling algorithms for distributed Web servers.
Proceedings of the 17th International Conference
on Distributed Computing Systems, p. xvii+596,
169-76, 1997.

 [Dias96] D. M. Dias, W. Kish, R. Mukherjee, and R.
Tewari, “ A Scalable and Highly Available Web
Server,” Proc. 41st IEEE computer Society Intl. Conf.
(COMPCON) , pp.85-92, Feb. 1996.

 [Fei97] Z. Fei, et al, “A Novel Server Selection Technique
for Improving the Response Time of a Replicated
Service,” Georgia Institute of Technology, Tech
Report, GIT-CC-97-24. Http://www.cc.gatech.edu/
tech_reports/

To be published in Proceedings of ICCC’99, Tokyo, Japan, Sept. 14-16.

8

 [Java98] Sun Microsystems, “JDK 1.2”,
Http://java.sun.com/ products/jdk/1.2/index.html

 [Katz94] E.D. Katz, M. Butler, and R. McCrath, “A
Scalable HTTP Server: the NCSA Prototype,” Comp.
Net. And ISDN Systems, Vol. 27, 1994, pp. 155-164.

[Opnet] Modeler for Network Research and Development,
http://www.mil3.com/products/modeler/home.html.

[COMNET] COMMENT III and COMMNET Predictor,
http://www.caciasl.com/comnet.html.

