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Abstract - We describe the algorithm and the implementation 
and experiment for available bandwidth measurement based on 
variable speed probing and zoom-in/zoom-out [7]. We show 
that, compared with other techniques, our algorithm yields 
better performance with low overhead and fast convergence 
because it detects the change of traffic trends (through variable 
speed probing) rather than specific patterns of probing samples. 
It can also self-adapt to any bandwidth (through zoom-out) and 
respond to resolution requirement (through zoom-in). 
Therefore, no prior knowledge about bottleneck bandwidth is 
required and measurement resolution can be specified to meet 
application requirements. We focus on the implementation and 
experiment and present some results and statistics. We are 
currently conducting more experiment over live networks to 
gain more experience and to further improve the algorithm. 

I. INTRODUCTION 

The available bandwidth of a path between two hosts is an 
important network parameter for optimizing resource 
utilization in traffic engineering and for admission control in 
quality of service. Since available bandwidth is very dynamic 
that is determined by link capacity and the current traffic 
volume but necessarily by bottleneck bandwidth although it is 
capped by it, any practical measurement must keep overhead 
low while achieving reasonably good results. This is because 
available bandwidth has to be measured more often, 
especially during periods of dramatic change, to make the 
results useful. Consequently, the intervals between successive 
measurements must be dynamically adjustable to maintain 
the timeliness and usefulness of the results. This is in contrast 
to bottleneck bandwidth measurement in which the results 
can serve a relatively longer time and the specific times for 
performing the measurement can be chosen, e.g., during 
periods of low traffic volume. 

In this paper, we present a practical available bandwidth 
measurement algorithm, discuss the implementation and 
show some experiment results. Compared with previous 
work, our algorithm yields better results and fast convergence 
with lower overhead because it relies on the detection of 
traffic trends (through variable speed probing) rather than 
specific patterns of probing samples. It also self-adapts to any 
bandwidth (through zoom-out) and responds to resolution 
requirement (through zoom-in), which is unique among all 
measurement techniques. Therefore, our algorithm doesn’t 
require any prior knowledge about bottleneck bandwidth, nor 
does it need any knowledge about the current traffic. We 

substantiate our claims through a large number of 
experiments using a testbed and present the results and 
statistics obtained from the experiments in the paper. In 
particular, we compare our results with those of Cprobe [4], 
which shows that our algorithm performs better with lower 
overhead. 

The rest of the paper is organized as follows. In the next 
section, we review some previous work related to available 
bandwidth measurement. In Section III, we briefly describe 
our algorithm [7] and discuss some implementation issues. In 
Section IV, we discuss the experiment, present some results 
and statistics and compare our results with Cprobe [4]. 
Finally, we conclude this paper in Section V. 

II. RELATED WORK 

Network measurement has been the subject of numerous 
studies during the past few years. Bolot [3] analyzed end-to-
end packet delay and loss in the Internet and used a phase 
plot to characterize the phenomenon in a congested network. 
He showed that, when multiple packets are transmitted at a 
low speed, the plot for the round trip delay shows random 
distribution and, at a high speed, forms a distinctive pattern of 
distribution. The difference can be attributed to congestion 
when the packets are transmitted at high speed. NEPRI [1] is 
a bandwidth measurement tool based on this theory in which 
a phase plot is drawn after each round of probing to detect the 
pattern that corresponds to network congestion. Based on the 
current phase plot, a new probing speed is determined for the 
next round. The process continues until the pattern that 
corresponds to congestion has formed and the measurement 
result can be derived. The disadvantage is the high overhead 
because of the excessive number of packets in each round at a 
fixed speed to determine the congestion. In addition, chasing 
the movement of available bandwidth from one probing 
round to another could result in a large number of rounds 
before the measurement result can be derived. 

Pathchar is a measurement tool that can be used to measure 
the bottleneck bandwidth of the links along a path [8]. During 
the measurement, a number of probing rounds with different 
packet sizes are used towards each intermediate node in the 
path until the desired destination is reached. Downey [6] did 
extensive experiment with it and showed that Pathchar could 
yield reasonably good results. However, because it is 
developed for measuring link capacity, the overhead is 



 

extremely high, which is prohibitive for available bandwidth, 
and cannot be directly applied to available bandwidth in its 
present form. Similarly, the method by Dovrolis, et al. [5] is 
primarily for bottleneck bandwidth measurement and cannot 
be directly applied to available bandwidth due to high 
overhead and long measurement time. 

In Bprobe and Cprobe [4], multiple rounds of probing are 
used to calculate the bottleneck and the available bandwidth, 
respectively. A result is computed based on all the probing 
rounds at different speeds and with different packet sizes. 
Consequently, measurement overhead is very high. 
Furthermore, always probing at the bottleneck speed in 
Cprobe incurs unnecessarily high overhead, which would 
cause severe packet delay and loss to all traffic. Also, Cprobe 
requires the knowledge about the bottleneck bandwidth, 
which requires accurate bottleneck bandwidth results before 
the measurement and, consequently, may cause unnecessary 
overhead for bottleneck bandwidth measurement to ensure 
the validity of its results. The method by Banerjee [2] for the 
estimation of available capacity by imposing a delay bound 
also suffers the problem high overhead and long latency in 
the derivation of a measurement result. 

Various studies and experiments [6] showed that, even 
with high overhead, it is very hard to produce satisfactory 
results, especially for available bandwidth due to its dynamic 
nature. This could also be caused by excessive probing traffic 
that would cause sever packet delay and loss that affect all 
types of traffic in the network, not to mention the 
impracticality due to their disturbing consequences to the 
network. Experience shows that, for available bandwidth 
measurement, high overhead resulting from a large number of 
probing rounds and excessive probing traffic don’t 
necessarily improve measurement results. Rather, algorithms 
that use a fewer probing rounds while being able to quickly 
detect the network phenomenon caused by congestion is both 
desirable and practical. In this paper, we present such an 
algorithm that can achieve the objectives of both low 
overhead and quick divergence, which makes it advantageous 
to and more practical over all the previous work. 

III. MEASUREMENT ALGORITHM AND IMPLEMENTATION 

We briefly describe the measurement algorithm and some 
of the implementation issues in this section. 

A. The Algorithm 

The algorithm for available bandwidth measurement was 
presented in details in [7] with some preliminary simulation 
results. In the algorithm, we use the active probing approach 
with the techniques of variable speed probing and zoom-
in/zoom-out. 

For variable speed probing, we send a series of probing 
packets at variable speeds, from low to high. Since they are 
sent at different speeds, the first packet and the second to the 
last define the range of the bandwidths required to carry the 
probing traffic through the path without causing congestion. 

Here, the bandwidth requirement of each packet is 
determined by the size of the packet and the time interval 
between it and the next one. Therefore, the probing packets 
will impose increasingly higher bandwidth requirements on 
the path due to the increases in speed (or decreases in packet 
intervals). When the bandwidth requirement of a packet 
exceeds the available bandwidth, congestion starts to occur so 
that we can observe different RTTs (round trip delays) before 
and after the congestion. Based on this phenomenon, we can 
derive the available bandwidth by detecting the point where 
congestion starts to occur based on the RTTs. This congestion 
point then provides us with the needed information for 
available bandwidth estimation because, before the 
congestion, all probing packets should have about the same 
RTTs and, after the congestion, although the RTTs may be 
different, the general trend will be consistent and the RTTs 
should be larger than those before the congestion due to 
additional queuing delays. Note that, in our illustration, we 
use the variable speed scheme although the variable packet 
size is equally effective in getting the different bandwidth 
requirements by the probing packets on the measured path. 
We could also use a combination of variable speeds and 
packet sizes to get the desired bandwidth requirements more 
flexibly and efficiently. 

In general, the bandwidth requirement of a probing packet 
is determined by the size of the packet S and the time interval 
t between it and the packet that immediately follows it: 

S/t. 
Assuming a fixed packet size S, if the time interval 

between packets Pi and Pi+1 is ti, 1≤i<n and ti>ti+1, the 
bandwidth requirement of packet Pi is: 

S/ti. 

Assuming n probing packets {P1, P2, …, Pn} of size S but 
decreasing time intervals, the bandwidth requirement of the 
packets on the measured path increases as the packets travel 
to the server and return to the client or the probing agent. 
After collecting the RTTs for the probing packets by the 
probing agent, we use curve matching between the one for 
sending the probing packets (the sending curve) and the one 
for receiving the acknowledgement packets (the receiving 
curve) to detect congestion and derive available bandwidth. 
Please refer to [7] for details about the curve matching. 

One way to calculate the time intervals is to assume that 
the intervals decrease linearly in equal amount in time. Then, 
with S, n and (BL, BH), BL>0 and BH>BL, we can compute the 
time intervals using the formula: 

  

We can assume other relationships between the time 
intervals and use the same technique to compute them. One 
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such a method is to assume that the intervals decrease linearly 
in equal amount in bandwidth. We are also studying other 
probing packet patterns and distributions that can yield better, 
or optimized, performance in terms of measurement results 
and overheads as an optimization problem. 

The zoom-in technique is used when the measurement 
detects the congestion but the result doesn’t meet the required 
resolution. Therefore, if (BL, BH) is set too large, the 
resolution will be poorer with a fixed number of probing 
packets. To improve the resolution, we use zoom-in to initiate 
an additional round of probing with a smaller (BL, BH) around 
where the congestion occurred. With the new (BL, BH), a new 
set of time intervals ti, 1≤i≤n-1, will be computed. This 
process will continue until a measurement result is obtained 
that meets the specified resolution. That is, our algorithm will 
automatically determine whether zoom-in is needed after 
each round of probing. The number of probing rounds is then 
determined by the number of probing packets n, the packet 
size S, the resolution requirement, the initial (BL, BH) and the 
fluctuation of the traffic. The zoom-in process is a necessary 
step for the improvement of the measurement result. 

Zoom-out is the opposite of zoom-in and is used for the 
detection of congestion when the current round cannot 
identify one. This is possible when the probing speed is too 
slow (curves with total matching) or too fast (curves without 
any matching). Since we don’t have any knowledge about 
link capacity, we don’t know what the highest bandwidth 
should be set. Even if we know, we don’t want to 
unconditionally probe at the highest bandwidth for its 
disruptive consequence. Therefore, this technique will try to 
dynamically expand the bandwidth range to automatically 
adapt to any bandwidth in a gentle manner. Zoom-out 
enlarges the bandwidth range (BL, BH). It could also move the 
bandwidth range downward if the previous probing is too fast 
or upward if too slow. The enlargement and mo vement of the 
bandwidth range could also be used together. Similar to 
zoom-in, a single zoom-out may still fall short. Therefore, the 
algorithm would automatically determine if zoom-out is 
needed and, if yes, an additional probing round is initiated 
with a new bandwidth range and corresponding time 
intervals. The zoom-out process is a necessary step for the 
detection of congestion. 

Note that zoom-in and zoom-out will be interchangeably 
invoked and there is not a general rule regarding which one 
would be used first and in what order; their invocation is only 
determined by the current measurement result. It may also be 
affected by the volatility of the traffic. Depending on the 
starting bandwidth range and the selection for the next round, 
the number of rounds of zoom-in and zoom-out could differ 
significantly. 

The algorithm that combines the techniques of variable 
speed probing and zoom-in/zoom-out is thus summarized as 
follows: 

(1) Using n probing packets of size S and picking a 
bandwidth range based on past measurement results or 
other knowledge or heuristics, invoke the basic variable 
speed probing technique and curve matching to detect 
congestion. The selection of the initial bandwidth range 
is not essential but a better selection could result in fewer 
rounds of probing and, consequently, lower overhead. 

(2) If congestion is detected, calculate the result and 
determine its resolution. If the resolution requirement is 
met, the algorithm concludes and the result is reported as 
the measured available bandwidth. In our experiment, the 
available bandwidth is the average of the bandwidth 
requirements of the probing packets immediately before 
and after the congestion. The available bandwidth could 
also be computed based on more than one packet around 
the area of congestion to neutralize the effect of traffic 
volatility and noise during the measurement. 

(3) If congestion is detected but the resolution requirement is 
not met, the zoom-in procedure is invoked in which a 
smaller bandwidth range (BL,  BH) is used for the next 
round. The algorithm continues with (1). 

(4) If congestion is not detected, the zoom-out procedure is 
invoked in which a larger or a different bandwidth range 
(BL, BH) is picked through the examination of the current 
measurement. The algorithm continues with (1). 

It is therefore clear that higher overhead could result from 
higher resolution requirement and from the flexibility of 
automatic adaptation of the algorithm to any bandwidth, both 
of which are desirable features in any measurement 
algorithm. Without the resolution requirement, zoom-in could 
be avoided. So could zoom-out without self-adaptation to any 
bandwidth. No previous work can achieve the same 
functionality and flexibility as the zoom-in and zoom-out. In 
terms of completeness and performance, we believe that our 
algorithm is superior to all the previous work, which we have 
validated through simulation [7] and experiment that is 
presented later in the next section. 

B. The Implementation 

First of all, it may seem to be straightforward to implement 
the algorithm. However, since the performance of the 
algorithm relies on accurate timing of the probing packets for 
detecting congestion and for computing the result, it would be 
difficult without controlling the behavior of the underlying 
kernel. One difficulty is that most general-purpose operating 
systems provide little real-time support. Consequently, it is 
difficult to ensure that a packet departs at the specified time 
and is stamped with accurate receiving time. Another 
difficulty is that, due to the inherent variance nature of 
network in handling packet forwarding, the real sending 
curve and receiving curve may not exactly match with each 
other. Therefore, we have to tolerate certain time variances in 
the implementation accordingly. In this section, we briefly 
describe how we deal with the difficulties. 



 

B. 1. Timing in Sending and Receiving Probing Packets 

General-purpose operating systems provide little support 
for real-time operations. Therefore, during the measurement, 
other processes could share the same CPU and cause 
uncontrollable context switching. Consequently, accuracy of 
timing cannot easily be achieved. For example, we found that 
the difference between ideal and real packet departure times 
can vary up to 80ms. If packets of 1000 bytes are transmitted 
at the rate of 10Mbps, the departure gap should be 800us. 
Therefore, the 80ms time gap caps the departure speed at 
only 100Kbps. 

Fortunately, although the standard Linux is not designed 
for real-time applications, it provides some real-time support 
since Kernel 1.2 that we have taken advantage of to serve our 
purpose. The support includes the dynamic change of the 
scheduling policies and process priorities. Specifically, we 
made use of the SCHED_RR among the three scheduling 
policies offered: SCHED_OTHER for the default time-
sharing scheduling while SCHED_RR and SCHED_FIFO for 
time-critical applications that need more precise control over 
the execution of processes. In the implementation, we switch 
the scheduler to SCHED_RR just before the probing and 
switch it back right after the receipt of the final 
acknowledgment packet with timeout control. After extensive 
testing, we found that the timing gap is greatly improved 
within a few microseconds. Since most of Unix platforms 
support POSIX API, this implementation can be easily ported 
to other platforms. 

Another factor for inaccurate timing is the conflict between 
sending and receiving probing packets because both can 
happen at the same time. Although the most obvious way of 
the implementation is to create two processes handling 
sending and receiving separately, if there is only one CPU, 
context switching between these two processes could affect 
timing accuracy. To avoid such context switching, we 
combined the two activities into one process. By using TCP 
select function to get the receiving status, the probing agent 
will constantly check the packet departure time and the 
receiving status in turns. If one condition becomes true, the 
corresponding operation is performed. Extensive testing 
showed that the timing accuracy has been greatly improved 
with this solution. 

B. 2. Detection of Congestion 

Since there are many factors in packet transmission, we 
cannot always get accurate RTTs, among which are: 
(1) Internal transmission. This is generally related to the IP 

protocol stack. As a packet traverses through the stack, 
interrupts may occur that causes the current process to be 
suspended and the CPU preempted to handle the 
interrupts. This could introduce timing variance. 

(2) Conflict with cross-traffic. Even when traffic is light, it is 
still possible that a probing packet collide with the cross-
traffic packets. Consequently, the probing packet will 

have to wait in a queue until all the packets in front of it 
are transmitted. This could introduce timing variance. 

(3) Server response. ICMP processing in the server may also 
cause timing variance due to the internal transmission 
discussed above and due to the time it takes the server to 
process the packet and return a reply. Some machines 
may impose a limit on the rate for ICMP processing. 
Consequently, the probing packets may not be handled 
consistently. This could introduce timing variance. 

Therefore, it can be seen that, due to timing variance, the 
determination of congestion becomes very challenging. Our 
solution is to rely on more points in the detection of 
congestion and in the computation of the result. We call these 
consecutive points a window and take the median of the 
RTTs in the window as the window's RTT. More specifically, 
when detecting the congestion, we put next three points in a 
window and use the window’s RTT in the computation. 
Then, the next packet to look at in the analysis is the packet 
after the window. In addition, were more than one congestion 
point be identified, the final result would be the weighted 
average of such window’s available bandwidth. The weight 
of each available bandwidth is determined by the duration of 
that window to the next. 

IV. EXPERIMENT AND RESULTS 

We set up a testbed to measure the available bandwidth of 
a dedicated link, i.e., the measured link. With the testbed 
environment, we are able to control the traffic volume and 
type over the measured link, apply the algorithm and compare 
the measurement results with the real available bandwidth 
numbers to evaluate the performance and conduct various 
other experiments. The testbed is depicted in Fig. 1 in which, 
in addition to the probing agent and the server, there are three 
other components: the traffic generator, the traffic captor and 
a display. The traffic generator is used to send a specified 
type and volume of traffic to the server and only the 
generated traffic and the probing traffic go over the measured 
link. Thus, the measurement algorithm can be evaluated with 
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Fig. 1. Testbed environment
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different types of traffic. The traffic captor is used to capture 
all the traffic to the server over the measured link and to 
calculate the real available bandwidth by subtracting the total 
traffic captured from the link capacity of the measured link. 
The results are then sent to the display and plotted along with 
the measurement results sent from the probing agent for 
comparison and evaluation. 

We conducted many experiments using different types of 
traffic. The following figure shows the traffic type that 
resembles a sine curve and the measurement results along the 
curve for the real available bandwidth results in which we 
used 30 packets with the size of 600 bytes for each packet. 

We did the experiment to find the relationship between the 
overhead in terms of number of probing rounds and 
measurement resolutions. The following figure shows the 
relationship for 10 packets and 20 packets, respectively. It 
also shows that more packets used in each probing round 
would reduce the number of rounds needed. 

Finally, we evaluated our algorithm and compared it with 
Cprobe [4]. The following figure demonstrates that our 
algorithm performs better than Cprobe with lower overhead. 
In terms of measurement results, three quarters, i.e., 75%, of 
our measurement results are within 30% of the actual 
available bandwidth values vs. 64% for Cprobe. In terms of 
overhead, we injected 10K bytes data into the network for 
probing vs. 24K for Cprobe during the measurement. 

V. CONCLUSION 

We presented an algorithm for available bandwidth 
measurement using the techniques of variable speed probing 
and zoom-in/zoom-out. By systemically collecting and 
comparing the arrival times of the probing packets, we can 
detect whether network congestion occurs and compute the 
measurement results accordingly. The algorithm can self-
adapt to any bandwidth and respond to measurement 
resolution requirements through zoom-out and zoom-in, 
respectively. We also discussed some implementation issues, 
presented some experiment results and statistics and 
compared our results with some previous work. We are 
currently moving the experiment effort to a live network to 
gain more experience and to further validate and improve the 
algorithm and the implementation. 
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