LSWS: a Linux-based Secure Web Switch

C. Edward Chow, Ganesh Godavari and Yu Cai

Department of Computer Science,
University of Colorado at Colorado Springs,

Colorado Springs, CO 80933-7150, USA

{chow, gkgodava, ycai}@cs.uccs.edu
Tel: (719)262-3110
FAX: (719)262-3369
Abstract

In this paper we present the design of a Linux application level secure web switch, called LSWS, which is based on OpenSSL package. It is intended to be used a front end switch for a secure web server cluster. It allows flexible specification and dynamic update of content switch rules. Two versions of LSWS were implemented. One based on dynamic forking of child processes and other based on prefork idea similar to Apache. The overheads of content switching and SSL processing are analyzed using WebBench. We also compare its performance with Intel 7280 XML director.

Keywords: Content Switch, Cluster, SSL, Linux, Secure web server, Secure web switch.

1. Introduction

The explosion of the Internet from a small network of known individuals to a huge, heterogeneous anonymous network has brought several troubles in its wake. Right from the case of a mail account password being sniffed and acquired to credit card numbers and other confidential business data being observed, attacks can occur on transmitted information in many ways. The number of commercial transactions and private data transmission that occur and the ability of malicious elements to observe and manipulate data anonymously has necessitated the growth of security measures to protect Internet users. A need to have standard security protocols that are platform and network type independent and easily implementable, usable and secure was felt.

Along with security another major issue is handling of the large volumes of data present in today’s networks. Many approaches have been devised in order to provide a solution to this problem. One solution to reduce the load is to have a paid subscription to one of the Content Delivery Network (CDN) providers such as Akamai [1], Speedera [2] and Digital Island [3]. Another approach is to distribute the large volume of requests among a group of servers where a master controller, that can be a dedicated host or a process, first receives the requests and delegates it to one of a group of servers for processing. A content switch (CS) [4] is such a load balancing system that distributes load based on the content of the received requests. A Web-switch is a content switch that distributes load based on Web requests.

Consider the case of an e-commerce site with a large amount of traffic. The users who are accessing the site may be performing various functions like browsing, signing in or doing some profitable activity like purchasing. It makes good business sense to provide better and faster access to paying customers rather than casual surfers. One way of doing this is to provide some kind of preferential treatment like routing them to faster servers. This segregation implies that requests are routed to different servers based on their content. This kind of routing based on request content cannot be achieved by traditional layer4 and below switches, which route requests based on request characteristics like port number, or IP address, but not on the content of the request. A better approach in this direction would be to develop a mechanism, which can route request based on content, in other words, a content based switch. Some of the other functions that a content switch can be used for are:

Load Balancing: As a Load Balancer, a content switch can segregate incoming requests based on the HTTP meta header, URL or even the application layer payload and route them to the back end servers in the server cluster.

Firewall: As a firewall, a content switch can either allow or reject requests based on their content or their IP address.

Email Filtering: a content switch can function as an efficient spam guard or work as an anti virus device by verifying the sender and content of emails.

E-commerce transactions normally involve the transfer of sensitive or private data like personal information or credit card numbers, which are liable to active or passive attacks during transmission.

There are several approaches to provide Web security. The approaches are similar in the services they provide and, to some extent, in the mechanisms that they use, but they differ with respect to their scope of applicability and their relative location within the TCP/IP protocol stack.

One way to provide Web security is to use IP Security or IPSEC [5] as it is generally called. The advantage of using IPSec is that it is transparent to end users and applications and provides a general-purpose solution. Further, IPSec includes a filtering capability so that only selected traffic need incur the overhead of IPSec processing.

Another relatively general-purpose solution is to implement security just above TCP. The foremost example of this approach is the Secure Sockets Layer (SSL) [6] and the follow-on Internet standard of SSL known as Transport Layer Security (TLS) [7]. At this level, there are two implementation choices. For full generality, SSL (or TLS) could be provided as part of the underlying protocol suite and therefore be transparent to applications. Alternatively, SSL can be embedded in specific packages. For example, Netscape [8] and Microsoft Explorer [9] browsers come equipped with SSL, and most Web servers have implemented the protocol.

There are several commercial content switches. The Alteon iSD-SSL accelerator[10] works with an Alteon Web switch to intelligently speed secure e-Commerce transactions by offloading Secure Sockets Layer (SSL) processing from local servers without imposing delays on other traffic in the same data path. F5 has long been a leader in the Internet Traffic Management space. It has an advanced web switching logic (F5 Networks Big-IP Controller 3.1[11]). Big-IP combines a strong, traditional load-balancing feature set with SSL acceleration ability. It extracts HTTP header information from the request to make traffic management decisions. Foundry (Foundry Networks ServerIronXL with Internet IronWare 7.0 [12]) equips its ServerIronXL with a strong Layer 2 and Layer 3 switching and Layer 5/7 load-balancing based on cookies and SSL session IDs. Intel provides CEA7110 [13] SSL Accelerator and CEA7280 [14] XML Director which is very close to features that our LSWS provide. It is capable to perform routing based on url and xml tag values.
2. Secure Web Switch

The SSL protocol is a security protocol that sits on top of TCP at the transport layer. In the OSI model, application layer protocols such as HTTP or IMAP handle user application tasks such as displaying Web pages or running email servers. Session layer protocols establish and maintain communications channels. Transport-layer protocols such as TCP and UDP, handle the flow of data between two hosts. Network layer protocols such as IP and ICMP provide hop-by-hop handling of data packets across the network.

SSL operates independently and transparently of other protocols so it will work with any application-layer and any transport-layer protocol. This allows clients and servers to establish secure SSL connections.

 An application layer protocol sends unencrypted data to the session layer. TLS/SSL encrypts the data and hands it down to the lower layers. When its peer receives the data at the other end, it passes it up through the layers to the session layer where TLS/SSL decrypts it and hands it to the application layer. Since the client and the server have gone through the key negotiation handshake, the symmetric key used by SSL is the same at both ends.

2.1. SSL Transactions

To illustrate how SSL works, assume a user wants to make a purchase over the Internet and needs to send a credit card number to a secure Web site [15].

[image: image7.png]Web
Browser

Secure Content Switch

content

PR
routing
decision

Figure 2.2 illustrates the steps taken during an SSL negotiation

Initially, the request for an SSL session comes from the browser to the Web server.

The Web server then sends the browser its digital certificate. The certificate contains information about the server, including the server’s public key.

Once the browser has the server’s certificate, the browser verifies that certificate is valid and that the CA is listed in the client’s list of trusted CA’s. The browser also checks the certificates expiration date and the Web server domain name.

Once a browser has determined that the server certificate is valid, the browser then generates a 48-byte master secret key. This master secret key is encrypted using server’s public key, and is then sent to the Web server.

Upon receiving the master secret from the browser, the Web server then decrypts this master secret key using the server’s private key.

As both the browser and the Web server have the same master secret key, they use this master secret to create keys for the encryption and MAC algorithms used in the bulk-data process of SSL. Since both participants use the same master key, they now have the same encryption and MAC keys.

As both the browser and Web serve have the same encryption and MAC keys, they use the SSL encryption and authentication algorithms to create an encrypted tunnel. Through this encrypted tunnel, they can now pass data securely through the Internet.

Though the authentication and encryption process may seem rather involved, it happens in less than a second. Generally, the user does not even know it is taking place. However, the user will be able to tell when the secure tunnel has been established since most SSL-enabled Web browsers will display a small closed lock at the bottom or top of their screen when the connection is secure. Users can also identify secure Web sites by looking at the Web site address; a secure Web site’s address will begin with https:// rather than the usual http://.

2.2. OpenSSL: The Open Source toolkit for SSL/TLS
OpenSSL is based on the excellent SSLeay [17] library developed by Eric A. Young and Tim J. Hudson. Open Source toolkit implements the Secure Socket Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength general-purpose cryptography library.

OpenSSL contains two important libraries:

OpenSSL SSL library implements the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols.

OpenSSL CRYPTO library implements a wide range of cryptographic algorithms used in various Internet standards. The services provided by this library are used by the OpenSSL implementations of SSL, TLS and they have also been used to implement SSH [18], OpenPGP [19], and other cryptographic standards.

In addition, the OPENSSL program is a command line tool for using the various cryptography functions of OpenSSL's crypto library from the shell. It can be used for
· Creation of RSA [20], DH [21] and DSA [22] key parameters.

· Creation of X.509 certificates [23] and Certificate Revocation List (CRL).

· Calculation of Message Digests

· Encryption and Decryption with Ciphers.

· SSL/TLS Client and Server Tests.

· Handling of S/MIME signed or encrypted mail
.

2.3. Software architecture of secure content switch
The following figure 2.3 shows the architecture of the current design of secure content switch.

[image: image1.png]CLIENT VEB SERVER

Figure 2.3 Architecture of secure content switch

The following steps describe the process of handling secure requests using the secure content switch.

The web browser makes a request to the secure content switch.

The dispatcher module in the secure content switch forwards the request to the secure content switch child module. In the dynamic forking version of secure content switch the dispatcher module forks a child process. In the preforking version of secure content switch the dispatcher module forwards the request to a free child.

The secure content switch child module performs the handshake with the client and reads in the request.

The secure content switch child module then sends the request to the Rule module, which performs rule matching and returns the name of the server by which the request can be served.

The real server connects to the web browser through the secure content switch child module (not shown in the picture).

2.3.1. Secure Content Switch Child Module.
The child module performs the SSL handshake with the client. This step involves establishing ciphers to use and providing certificate to the client for server-authentication. As part of the SSL Handshake request, the client may provide a current or previously created SessionID to reuse for the current connection. The Secure content switch manages the SessionID and this will be used as appropriate during the SSL Handshake. The child module receives the request for data and decrypts the data according to the negotiated SSL handshake. When the Secure content switch process determines it has fully received an HTTP request, it sends header information to the Rule Matching Module, which determines which Real Server can serve the request. The child module then establishes a connection with the Real Server and forwards the request in plain HTTP.
3. Performance Results

This section presents the performance results of the Linux application secure web switch. Fig shown below shows a block diagram of Secure Linux Application level content switch.

[image: image2.png]IP|TCP | SSL

SECURE CONTENT
SWWITCH
1P| TCP_| HTTP
REAL SERVER 1 REAL SERVER 2 REAL SERVER 3

Figure 3.1 the secure web switch test bed

Table 3.1 shows the hardware and software configuration of machines used in the test-bed.

	Machine Spec.
	IP Address
	O/S
	Web Server

	a)calvin.uccs.edu
DELL Dimension-4100, 933 MHz, 512MB
b) oblib.uccs.edu

HP Vectra VL

512 MHz, 512MB
(Content switch)
	128.198.192.184

128.198.60.195
	Redhat 7.2

 (2.4.9-21)

Redhat 7.2

 (2.4.9-21)

	Apache 1.3.22

Apache 1.3.22

	a) dilbert.uccs.edu

b) wait.uccs.edu

c) wind.uccs.edu

(Client)
	128.198.60.23

128.198.60.202

128.198.60.204

	a) Windows NT, 4.0

b), c) Windows-2000,Advanced Server
	N/A

	a) eca.uccs.edu

b) frodo.uccs.edu

c) bilbo.uccs.edu

d) odorf.uccs.edu

e) walrus.uccs.edu

f) wallace.uccs.edu

HP Kayak Machines, 233 MHz, 96MB RAM

(Real Server)
	128.198.60.188

128.198.60.183

128.198.60.182

128.198.60.196

128.198.60.197

128.198.60.208
	Redhat 7.1

 (2.4.3-12)
	Apache 1.3.19

The tests were performed using Web bench [24] and the negotiated cipher suite for these tests are DES-CBC3-SHA, SSLv3, Kx=RSA, Au=RSA Enc=3DES(168), Mac=SHA1
Figure 3.2 and Table 3.2 shows that the performance of the Dynamic forking secure content switch is better than Pre-forked secure content switch. I found out that after a while the children are created and killed immediately with out serving multiple requests. The Pre-forked server is designed to see that child SSL Processes are created ahead of time and kill them if their number exceeds a certain threshold. The reason could be that more child processes are free which implies number of requests sent by the web-bench is irregular, there by affecting the overall performance of the pre-forked secure content switch.

Figure 3.3 shows the impact of rules on the performance of the linux secure content switch. There is no major impact on the performance of our secure content switch with respect to the number of rules. This clearly shows us SSL processing is the major hurdle.

Cluster with secure content switch vs. standalone Apache web server
The performance of a dynamic forking secure content switch was pretty good when compared to a standalone apache server. Taking into fact that amount of computation overhead involved with extracting the HTTP headers and performing a rule matching on the HTTP header data, and routing the request to one of the Real Servers
4. Performance Comparison with Intel SSL accelerator and XML director.

Intel 7280 XML Director is configured as content switcher (named lizzie), and it directs XML content to eca and frodo respectively, according to the pre-defined rules.
We implement a software XML content switch, installed on calvin.uccs.edu. It directs XML content to eca and frodo respectively, according to the pre-defined rules.

[image: image3.png].

Client

Internet

Figure 4.1 Network topology for Intel 7280 unit

We run a perl script on testing machine. It sends XML content to lizzie (Intel 7280 XML Content Switch) and calvin (Software XML Content Switch).

By repeating the same XML requests 30 times, we get the average XML file content switch processing speed.
We then increase the XML length, by adding more content in the XML file, and see if the processing time increases or not. We do the test on both plain text request scenario and SSL request scenario.

It seems that Intel 7280 unit and Software Content Switch, both process XML data pretty fast. Amazingly enough, Intel 7280 is only a little bit faster than LSWS, and if the XML document size is not large enough, there are very little difference on performance.

For the XML data with SSL encryption, Intel 7280 process SSL request by itself, and then redirect plain text request to eca/frodo. On the other hand, the Software Content Switch process SSL request on Calvin by software, then redirect plain text request to eca/frodo too. We expect Intel 7280 should run a lot faster than the Software Content Switch. But we didn’t observe that in our test.

[image: image4.png]XML Content Switch Processing

XML Size Test with Intel 7280 and Software Content Switch

25.000

20.000

15.000

10.000

speed (second)

5.000

0000
~wwoocogoogoooo92 99
2R8888888382883888838
S2LRI8SRBRERBESES
SeR 8%
XML Size (k)
o Intel 7280 + Plain Text —=— Software Content Switch + Plain Text

~+Intel 7280 + SSL — Software Content Switch + SSL

Figure 4.2 Test result on XML content switch processing time on Intel 7280 unit and Software Content Switch

Problem encountered

When the size of XML document increases (above 500k), Intel 7280 gets very picky on the format of the XML document. We always get “403 POSTed data was not welformed” error. But actually the format of the XML document are perfectly OK. Because of this, the result curve named “Intel 7280+SSL” on the testing result chart in Fig 4.2 is incomplete.

5. Conclusion and Future Work

We have developed a web switch with the support of SSL. The software package currently uses OpenSSL version 0.6. The features of our web switch include session id reuse and high encryption strength. We have tested it on a cluster test-bed using the industry standard benchmarking software WebBench and found its performance to be satisfactory.

One of the improvements that are possible is reducing the bottleneck of SSL encryption/decryption. SSL transactions are computation intensive and hence become a drain on web server resources. In cases of web servers handling a large amount of traffic, the problem can become more significant. One way to alleviate the problem is to apply parallel processing techniques. The others is to use SSL hardware accelerator such Intel 7110. But as one ponders about a solution for this problem, we need to think about how all the web servers are going to know about the TLS/SSL session information that was negotiated by another server. There is a message in the openssl group posted by Lutz Jaenicke that talks of a future version OpenSSL 0.9.7 (not yet released) that has a new function (server side) to explicitly choose the session IDs generated (rather than random values as of now). Therefore it will be possible to include a "server ID" into the session ID so that load balancing will become easier. Once the above-mentioned version is released, a solution might be in sight.

Another performance improvement can be the caching of web pages. This aspect must be handled sensibly as most of the web documents that use SSL are dynamic in nature.

One of the ways to overcome the problem of maintaining state across multiple web processes in dealing with TLS/SSL transactions is to make the connections “sticky”. The problem with this design is that the IP addresses are constantly shifting for users coming into a site from Internet service providers that use proxy servers. So users must have a “sticky” connection to the SSL server that is independent of their IP address. This can be achieved by having a cookie which identifies which Real Server has serviced the user previously.

Another suggestion for improving the current web switch performance is to have a persistent HTTP connection between the web switch and the real servers, which can be used by all the processes, for all the requests.

Each of these solutions comes with its own combination of cost, performance, and flexibility of scale—proving once again that, when it comes to web site architecture, one size never fits all.

6. References

[1]Akamai technologies http://www.akamai.com/

[2]Speedera http://www.speedera.com/flash_index.html

[3] Digitalisland http://www.digitalisland.com/

[4] George Apostolopoulos, David Aubespin, Vinod Peris, Prashant Pradhan, Debanjan Saha, “ Design, Implementation and Performance of a Content-Based Switch”, Proc. Infocom2000, Tel Aviv, March 26 - 30, 2000, http://www.ieee-infocom.org/2000/papers/440.ps
[5] IP Security Protocol, http://www.ietf.org/html.charters/ipsec-charter.html
[6] SSLv3 Internet Draft (obsolete). ftp://ftp.ietf.org/internet-drafts/draft-ietf-tls-ssl-version3-00.txt.

[7] RFC2246 - "The TLS Protocol Version 1.0" ftp://ftp.isi.edu/in-notes/rfc2246.txt

[8] Netscape web browser http://www.netscape.com/

[9] Microsoft Internet Explorer web browser of Microsoft Technologies http://www.microsoft.com

[10] Web switch product of nortel networks http://www.nortelnetworks.com/products/01/alteon/isdssl/index.html

[11] web switch product of F5networks http://www.f5networks.com/

[12] Foundry ServIron Installation and Configuration Guide, May 2000. http://www.foundrynetworks.com/techdocs/SI/index.html
[13] Intel NetStructure 7180 e-commerce Director http://www.intel.com/support/netstructure/commerce/index.htm

[14] Intel NetStructure 7280 XML Director http://www.intel.com/support/netstructure/director/index.htm
[15]white paper by cacheflow http://www.cacheflow.com/files/whitepapers/wp_ssl_primer.pdf
[16] OpenSSL: The Open Source toolkit for SSL/TLS (http://www.openssl.org)
[17] The SSLeay package is copyright Eric Young and is available free for commercial and non-commercial use.

[18] ssh prtocol http://www.ietf.org/html.charters/secsh-charter.html

[19] OpenPGP the most widely used email encryption standard in the world. http://www.openpgp.org/

[20] RSA algorithm invented in 1978 by Ron Rivest, Adi Shamir, and Leonard Adleman. http://www.rsasecurity.com/

[21] The Diffie-Hellman Key Agreement, http://www.hamiltonlabs.com/links.htm

[22] NIST, FIPS PUB 186, "Digital Signature Standard", May 1994.

[23] public-key infrastructure (X.509) http://www.ietf.org/html.charters/pkix-charter.html

[24] web bench is the testing tool provided by eTesting Labs Inc. http://webbench.com/

	Client
	Request Per Second Prefork NonSecure content switch
	Request Per Second Dynamic NonSecure content switch
	Request Per Second Apache NonSSL
	Request Per Second Dynamic Secure content switch
	Request Per Second Prefork Secure content switch
	Request Per Second Apache SSL

	1_client
	148.046
	82.588
	244.404
	26.992
	23.042
	37.450

	4_client
	146.542
	84.283
	241.296
	26.100
	20.858
	36.958

	8_client
	128.688
	82.642
	234.867
	26.113
	21.704
	37.479

	12_client
	145.521
	83.567
	230.183
	26.279
	20.246
	37.279

	16_client
	148.100
	82.017
	236.350
	26.425
	21.604
	37.396

	20_client
	147.946
	83.433
	241.475
	26.333
	19.462
	36.962

	24_client
	135.046
	82.642
	237.050
	26.358
	21.004
	37.833

	28_client
	148.058
	83.158
	234.037
	26.421
	20.279
	38.150

	32_client
	126.621
	82.767
	241.037
	26.275
	20.358
	38.346

	36_client
	123.542
	81.933
	242.046
	25.783
	20.275
	38.375

	40_client
	148.121
	81.575
	239.567
	25.625
	21.188
	37.892

	44_client
	129.762
	83.112
	232.988
	26.033
	20.163
	37.804

	48_client
	148.113
	83.421
	243.688
	26.304
	20.404
	37.571

	52_client
	147.850
	81.975
	244.037
	26.063
	21.446
	37.400

	56_client
	106.900
	82.254
	243.258
	26.350
	17.363
	37.063

	60_client
	128.879
	83.254
	243.554
	26.212
	15.800
	36.188

Table 3.2 showing the request/sec of different types of secure web switch

[image: image5.wmf]Overall WebBench Requests/Second

0.000

50.000

100.000

150.000

200.000

250.000

300.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests / Second

Request Per Second Prefork

NonSSLProxy

Request Per Second Dynamic

NonSSLProxy

Request Per Second Apache

NonSSL

Request Per Second Dynamic

SSLProxy

Request Per Second Prefork

SSLProxy

Request Per Second Apache

SSL

Figure 3.2. Content switching/SSL processing overhead and
performance differences between Prefork and Dynamic fork versions.

[image: image6.wmf]Overall Impact of Rules on Requests/Second

0.000

5.000

10.000

15.000

20.000

25.000

30.000

1_client

8_client

16_client

24_client

32_client

40_client

48_client

56_client

Clients

Requests/Second

SSL Requests Per Second

for 250 Rules

SSL Requests Per Second

for 300 Rules

SSL Requests Per Second

for 500 Rules

SSL Requests Per Second

for 1000 Rules

SSL Requests Per Second

for 2000 Rules

SSL Requests Per Second

for 5000 Rules

Figure 3.3. Impact of # of content switching rules over performance.

6

_1081771429

_1093979935

_1094996164.xls
Chart1

		1_client		1_client		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client		60_client		60_client

Request Per Second Prefork NonSSLProxy

Request Per Second Dynamic NonSSLProxy

Request Per Second Apache NonSSL

Request Per Second Dynamic SSLProxy

Request Per Second Prefork SSLProxy

Request Per Second Apache SSL

Clients

Requests / Second

Overall WebBench Requests/Second

148.046

82.588

244.404

26.992

23.042

37.45

146.542

84.283

241.296

26.1

20.858

36.958

128.688

82.642

234.867

26.113

21.704

37.479

145.521

83.567

230.183

26.279

20.246

37.279

148.1

82.017

236.35

26.425

21.604

37.396

147.946

83.433

241.475

26.333

19.462

36.962

135.046

82.642

237.05

26.358

21.004

37.833

148.058

83.158

234.037

26.421

20.279

38.15

126.621

82.767

241.037

26.275

20.358

38.346

123.542

81.933

242.046

25.783

20.275

38.375

148.121

81.575

239.567

25.625

21.188

37.892

129.762

83.112

232.988

26.033

20.163

37.804

148.113

83.421

243.688

26.304

20.404

37.571

147.85

81.975

244.037

26.063

21.446

37.4

106.9

82.254

243.258

26.35

17.363

37.063

128.879

83.254

243.554

26.212

15.8

36.188

Sheet1

		

		Client		Request Per Second Prefork NonSSLProxy		Request Per Second Dynamic NonSSLProxy		Request Per Second Apache NonSSL		Request Per Second Dynamic SSLProxy		Request Per Second Prefork SSLProxy		Request Per Second Apache SSL

		1_client		148.046		82.588		244.404		26.992		23.042		37.450

		4_client		146.542		84.283		241.296		26.100		20.858		36.958

		8_client		128.688		82.642		234.867		26.113		21.704		37.479

		12_client		145.521		83.567		230.183		26.279		20.246		37.279

		16_client		148.100		82.017		236.350		26.425		21.604		37.396

		20_client		147.946		83.433		241.475		26.333		19.462		36.962

		24_client		135.046		82.642		237.050		26.358		21.004		37.833

		28_client		148.058		83.158		234.037		26.421		20.279		38.150

		32_client		126.621		82.767		241.037		26.275		20.358		38.346

		36_client		123.542		81.933		242.046		25.783		20.275		38.375

		40_client		148.121		81.575		239.567		25.625		21.188		37.892

		44_client		129.762		83.112		232.988		26.033		20.163		37.804

		48_client		148.113		83.421		243.688		26.304		20.404		37.571

		52_client		147.850		81.975		244.037		26.063		21.446		37.400

		56_client		106.900		82.254		243.258		26.350		17.363		37.063

		60_client		128.879		83.254		243.554		26.212		15.800		36.188

Sheet1

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

Request Per Second Prefork NonSSLProxy

Request Per Second Dynamic NonSSLProxy

Request Per Second Apache NonSSL

Request Per Second Dynamic SSLProxy

Request Per Second Prefork SSLProxy

Request Per Second Apache SSL

Clients

Requests / Second

Overall WebBench Requests/Second

Sheet2

		

		Client		Throughput (Bytes/Sec)Prefork NonSSLProxy		Throughput (Bytes/Sec)Dynamic NonSSLProxy		Throughput (Bytes/Sec) Apache NonSSL		Throughput (Bytes/Sec) Dynamic SSLProxy		Throughput (Bytes/Sec) Prefork SSLProxy		Throughput (Bytes/Sec) Apache SSLProxy

		1_client		460286.906		184372.484		789596.375		85114.172		78864.953		116308.336

		4_client		457049.719		190094.813		775454.813		80555.852		69268.008		122499.266

		8_client		401102.250		187670.453		746146.125		86348.070		65776.078		118133.617

		12_client		449760.750		186760.578		731111.000		86811.633		63843.492		117699.695

		16_client		456938.000		183693.078		751419.938		83621.742		66725.078		122711.133

		20_client		458651.688		185482.547		774384.188		86180.789		62424.828		120067.820

		24_client		420043.375		184816.563		756966.563		85356.867		66262.789		121543.781

		28_client		457065.594		187896.828		748501.875		84752.164		65857.180		118165.078

		32_client		391589.313		182406.859		760663.375		86087.992		64590.730		119707.023

		36_client		383675.063		186311.953		763130.188		82312.445		65836.164		123210.070

		40_client		457712.219		181700.203		759762.375		79577.102		67281.219		119948.469

		44_client		402532.844		187520.313		743303.938		80657.883		64754.262		119254.148

		48_client		461619.656		186482.500		770601.688		81699.172		68547.289		123118.133

		52_client		463979.625		186189.016		769859.063		83400.344		70043.289		119558.883

		56_client		337335.219		186350.313		775373.250		83762.344		56770.445		117718.984

		60_client		407150.594		186253.734		777664.313		79303.898		51429.477		118968.945

Sheet2

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

Throughput (Bytes/Sec)Prefork NonSSLProxy

Throughput (Bytes/Sec)Dynamic NonSSLProxy

Throughput (Bytes/Sec) Apache NonSSL

Throughput (Bytes/Sec) Dynamic SSLProxy

Throughput (Bytes/Sec) Prefork SSLProxy

Throughput (Bytes/Sec) Apache SSLProxy

Clients

Throughput (Bytes / Second)

Overall WebBench Throughput (Bytes/Second)

Sheet3

		

_1082551584.xls
Chart1

		1_client		1_client		1_client		1_client		1_client		1_client

		4_client		4_client		4_client		4_client		4_client		4_client

		8_client		8_client		8_client		8_client		8_client		8_client

		12_client		12_client		12_client		12_client		12_client		12_client

		16_client		16_client		16_client		16_client		16_client		16_client

		20_client		20_client		20_client		20_client		20_client		20_client

		24_client		24_client		24_client		24_client		24_client		24_client

		28_client		28_client		28_client		28_client		28_client		28_client

		32_client		32_client		32_client		32_client		32_client		32_client

		36_client		36_client		36_client		36_client		36_client		36_client

		40_client		40_client		40_client		40_client		40_client		40_client

		44_client		44_client		44_client		44_client		44_client		44_client

		48_client		48_client		48_client		48_client		48_client		48_client

		52_client		52_client		52_client		52_client		52_client		52_client

		56_client		56_client		56_client		56_client		56_client		56_client

		60_client		60_client		60_client		60_client		60_client		60_client

SSL Requests Per Second for 250 Rules

SSL Requests Per Second for 300 Rules

SSL Requests Per Second for 500 Rules

SSL Requests Per Second for 1000 Rules

SSL Requests Per Second for 2000 Rules

SSL Requests Per Second for 5000 Rules

Clients

Requests/Second

Overall Impact of Rules on Requests/Second

27.096

26.879

27.025

22.896

26.917

26.917

26.183

26.65

25.975

22.85

25.171

26.063

26.45

26.275

26.058

21.654

26.329

26.163

26.346

26.696

26.3

25.863

26.012

24.254

26.496

25.808

26.529

25.904

26.354

26.163

26.529

22.579

26.021

25.75

26.15

25.779

26.538

24.929

25.908

26.592

25.871

26.208

26.512

25.512

18.654

26.4

26.558

26.167

26.629

26.108

23.262

24.254

26.313

25.996

26.488

25.504

26.367

22.229

26.517

25.342

26.521

25.725

26.608

23.85

26.429

26.188

26.258

25.967

25.792

26.363

26.113

26.087

26.554

26.004

26.571

25.833

26.225

26.017

26.304

25.792

26.288

25.746

25.529

25.954

21.804

25.683

23.025

26.421

26.208

26.046

22.087

26

22.392

26.317

26.083

25.8

Sheet1

		

		Client		SSL Requests Per Second for 250 Rules		SSL Requests Per Second for 300 Rules		SSL Requests Per Second for 500 Rules		SSL Requests Per Second for 1000 Rules		SSL Requests Per Second for 2000 Rules		SSL Requests Per Second for 5000 Rules

		1_client		27.096		26.879		27.025		22.896		26.917		26.917

		4_client		26.183		26.650		25.975		22.850		25.171		26.063

		8_client		26.450		26.275		26.058		21.654		26.329		26.163

		12_client		26.346		26.696		26.300		25.863		26.012		24.254

		16_client		26.496		25.808		26.529		25.904		26.354		26.163

		20_client		26.529		22.579		26.021		25.750		26.150		25.779

		24_client		26.538		24.929		25.908		26.592		25.871		26.208

		28_client		26.512		25.512		18.654		26.400		26.558		26.167

		32_client		26.629		26.108		23.262		24.254		26.313		25.996

		36_client		26.488		25.504		26.367		22.229		26.517		25.342

		40_client		26.521		25.725		26.608		23.850		26.429		26.188

		44_client		26.258		25.967		25.792		26.363		26.113		26.087

		48_client		26.554		26.004		26.571		25.833		26.225		26.017

		52_client		26.304		25.792		26.288		25.746		25.529		25.954

		56_client		21.804		25.683		23.025		26.421		26.208		26.046

		60_client		22.087		26.000		22.392		26.317		26.083		25.800

Sheet1

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

SSL Requests Per Second for 250 Rules

SSL Requests Per Second for 300 Rules

SSL Requests Per Second for 500 Rules

SSL Requests Per Second for 1000 Rules

SSL Requests Per Second for 2000 Rules

SSL Requests Per Second for 5000 Rules

Clients

Requests/Second

Overall Impact of Rules on Requests/Second

Sheet2

		

		Client		SSL Throughput (Bytes/Sec) for 250 Rules		SSL Throughput (Bytes/Sec) for 300 Rules		SSL Throughput (Bytes/Sec) for 500 Rules		SSL Throughput (Bytes/Sec) for 1000 Rules		SSL Throughput (Bytes/Sec) for 2000 Rules		SSL Throughput (Bytes/Sec) for 5000 Rules

		1_client		89005.688		88920.219		84677.695		68804.680		88611.602		90414.641

		4_client		87817.195		86213.609		79603.297		71706.867		82284.938		81894.695

		8_client		84612.625		81345.359		81723.727		69119.406		82607.359		82854.125

		12_client		83365.867		83555.477		80861.391		83483.305		82180.867		80197.188

		16_client		86141.156		83086.594		81769.094		81108.516		83100.055		84186.508

		20_client		84260.398		71500.797		83274.898		81827.594		81537.742		82821.391

		24_client		85468.625		78297.938		81511.352		83763.578		81685.945		83387.039

		28_client		86600.500		82567.336		59202.426		83307.836		83470.281		82751.008

		32_client		83631.164		85092.633		74595.047		77160.742		88014.484		82594.555

		36_client		83288.039		82786.297		80541.523		74923.703		82392.328		81496.766

		40_client		85215.031		84915.602		84272.461		78466.352		83061.672		83090.328

		44_client		84520.797		79851.281		81618.742		83417.695		81451.023		81362.359

		48_client		82893.070		81934.352		83479.031		83569.844		85485.469		81665.125

		52_client		82930.148		87111.781		82578.680		82278.453		81018.820		84537.492

		56_client		66551.414		81528.313		72944.250		88565.703		89212.320		87343.641

		60_client		70822.289		82417.648		71443.602		85731.906		84129.188		83254.094

Sheet2

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

		0		0		0		0		0		0

SSL Throughput (Bytes/Sec) for 250 Rules

SSL Throughput (Bytes/Sec) for 300 Rules

SSL Throughput (Bytes/Sec) for 500 Rules

SSL Throughput (Bytes/Sec) for 1000 Rules

SSL Throughput (Bytes/Sec) for 2000 Rules

SSL Throughput (Bytes/Sec) for 5000 Rules

Clients

Throughput(Bytes/Sec)

Overall Impact of Rules on ThroughPut

Sheet3

		

_1079515695

