
 1

LSWS: a Linux-based Secure Web Switch

C. Edward Chow, Ganesh Godavari and Yu Cai
Department of Computer Science,

University of Colorado at Colorado Springs,
Colorado Springs, CO 80933-7150, USA

{chow, gkgodava, ycai}@cs.uccs.edu
Tel: (719)262-3110

FAX: (719)262-3369

Abstract

In this paper we present the design of a Linux application level
secure web switch, called LSWS, which is based on OpenSSL
package. It is intended to be used a front end switch for a
secure web server cluster. It allows flexible specification and
dynamic update of content switch rules. Two versions of
LSWS were implemented. One based on dynamic forking of
child processes and other based on prefork idea similar to
Apache. The overheads of content switching and SSL
processing are analyzed using WebBench. We also compare
its performance with Intel 7280 XML director.

Keywords: Content Switch, Cluster, SSL, Linux, Secure web
server, Secure web switch.

1. Introduction
The explosion of the Internet from a small network of

known individuals to a huge, heterogeneous anonymous
network has brought several troubles in its wake. Right from
the case of a mail account password being sniffed and
acquired to credit card numbers and other confidential
business data being observed, attacks can occur on
transmitted information in many ways. The number of
commercial transactions and private data transmission that
occur and the ability of malicious elements to observe and
manipulate data anonymously has necessitated the growth of
security measures to protect Internet users. A need to have
standard security protocols that are platform and network type
independent and easily implementable, usable and secure was
felt.

Along with security another major issue is handling of the
large volumes of data present in today’s networks. Many
approaches have been devised in order to provide a solution
to this problem. One solution to reduce the load is to have a
paid subscription to one of the Content Delivery Network
(CDN) providers such as Akamai [1], Speedera [2] and
Digital Island [3]. Another approach is to distribute the large
volume of requests among a group of servers where a master
controller, that can be a dedicated host or a process, first
receives the requests and delegates it to one of a group of
servers for processing. A content switch (CS) [4] is such a
load balancing system that distributes load based on the

content of the received requests. A Web-switch is a content
switch that distributes load based on Web requests.

Consider the case of an e-commerce site with a large
amount of traffic. The users who are accessing the site may be
performing various functions like browsing, signing in or
doing some profitable activity like purchasing. It makes good
business sense to provide better and faster access to paying
customers rather than casual surfers. One way of doing this is
to provide some kind of preferential treatment like routing
them to faster servers. This segregation implies that requests
are routed to different servers based on their content. This
kind of routing based on request content cannot be achieved
by traditional layer4 and below switches, which route requests
based on request characteristics like port number, or IP
address, but not on the content of the request. A better
approach in this direction would be to develop a mechanism,
which can route request based on content, in other words, a
content based switch. Some of the other functions that a
content switch can be used for are:

Load Balancing: As a Load Balancer, a content switch can
segregate incoming requests based on the HTTP meta header,
URL or even the application layer payload and route them to
the back end servers in the server cluster.

Firewall: As a firewall, a content switch can either allow
or reject requests based on their content or their IP address.

Email Filtering: a content switch can function as an
efficient spam guard or work as an anti virus device by
verifying the sender and content of emails.

E-commerce transactions normally involve the transfer of
sensitive or private data like personal information or credit
card numbers, which are liable to active or passive attacks
during transmission.

There are several approaches to provide Web security.
The approaches are similar in the services they provide and,
to some extent, in the mechanisms that they use, but they
differ with respect to their scope of applicability and their
relative location within the TCP/IP protocol stack.

One way to provide Web security is to use IP Security or
IPSEC [5] as it is generally called. The advantage of using
IPSec is that it is transparent to end users and applications and
provides a general-purpose solution. Further, IPSec includes a
filtering capability so that only selected traffic need incur the
overhead of IPSec processing.

 2

Another relatively general-purpose solution is to
implement security just above TCP. The foremost example of
this approach is the Secure Sockets Layer (SSL) [6] and the
follow-on Internet standard of SSL known as Transport Layer
Security (TLS) [7]. At this level, there are two
implementation choices. For full generality, SSL (or TLS)
could be provided as part of the underlying protocol suite and
therefore be transparent to applications. Alternatively, SSL
can be embedded in specific packages. For example, Netscape
[8] and Microsoft Explorer [9] browsers come equipped with
SSL, and most Web servers have implemented the protocol.

There are several commercial content switches. The
Alteon iSD-SSL accelerator[10] works with an Alteon Web
switch to intelligently speed secure e-Commerce transactions
by offloading Secure Sockets Layer (SSL) processing from
local servers without imposing delays on other traffic in the
same data path. F5 has long been a leader in the Internet
Traffic Management space. It has an advanced web switching
logic (F5 Networks Big-IP Controller 3.1[11]). Big-IP
combines a strong, traditional load-balancing feature set with
SSL acceleration ability. It extracts HTTP header information
from the request to make traffic management decisions.
Foundry (Foundry Networks ServerIronXL with Internet
IronWare 7.0 [12]) equips its ServerIronXL with a strong
Layer 2 and Layer 3 switching and Layer 5/7 load-balancing
based on cookies and SSL session IDs. Intel provides
CEA7110 [13] SSL Accelerator and CEA7280 [14] XML
Director which is very close to features that our LSWS
provide. It is capable to perform routing based on url and xml
tag values.

2. Secure Web Switch
The SSL protocol is a security protocol that sits on top of

TCP at the transport layer. In the OSI model, application layer
protocols such as HTTP or IMAP handle user application
tasks such as displaying Web pages or running email servers.
Session layer protocols establish and maintain
communications channels. Transport-layer protocols such as
TCP and UDP, handle the flow of data between two hosts.
Network layer protocols such as IP and ICMP provide hop-
by-hop handling of data packets across the network.

SSL operates independently and transparently of other
protocols so it will work with any application-layer and any
transport-layer protocol. This allows clients and servers to
establish secure SSL connections.

 An application layer protocol sends unencrypted data to
the session layer. TLS/SSL encrypts the data and hands it
down to the lower layers. When its peer receives the data at
the other end, it passes it up through the layers to the session
layer where TLS/SSL decrypts it and hands it to the
application layer. Since the client and the server have gone
through the key negotiation handshake, the symmetric key
used by SSL is the same at both ends.

2.1. SSL Transactions

To illustrate how SSL works, assume a user wants to
make a purchase over the Internet and needs to send a credit
card number to a secure Web site [15].

Figure 2.2 illustrates the steps taken during an SSL

negotiation

Initially, the request for an SSL session comes from the

browser to the Web server.
The Web server then sends the browser its digital

certificate. The certificate contains information about the
server, including the server’s public key.

Once the browser has the server’s certificate, the browser
verifies that certificate is valid and that the CA is listed in the
client’s list of trusted CA’s. The browser also checks the
certificates expiration date and the Web server domain name.

Once a browser has determined that the server certificate
is valid, the browser then generates a 48-byte master secret
key. This master secret key is encrypted using server’s public
key, and is then sent to the Web server.

Upon receiving the master secret from the browser, the
Web server then decrypts this master secret key using the
server’s private key.

As both the browser and the Web server have the same
master secret key, they use this master secret to create keys
for the encryption and MAC algorithms used in the bulk-data
process of SSL. Since both participants use the same master
key, they now have the same encryption and MAC keys.

As both the browser and Web serve have the same
encryption and MAC keys, they use the SSL encryption and
authentication algorithms to create an encrypted tunnel.
Through this encrypted tunnel, they can now pass data
securely through the Internet.

Though the authentication and encryption process may

seem rather involved, it happens in less than a second.
Generally, the user does not even know it is taking place.
However, the user will be able to tell when the secure tunnel
has been established since most SSL-enabled Web browsers
will display a small closed lock at the bottom or top of their
screen when the connection is secure. Users can also identify
secure Web sites by looking at the Web site address; a secure
Web site’s address will begin with https:// rather than the
usual http://.
2.2. OpenSSL: The Open Source toolkit for SSL/TLS
OpenSSL is based on the excellent SSLeay [17] library
developed by Eric A. Young and Tim J. Hudson. Open
Source toolkit implements the Secure Socket Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols as
well as a full-strength general-purpose cryptography library.

OpenSSL contains two important libraries:
OpenSSL SSL library implements the Secure Sockets

Layer (SSL v2/v3) and Transport Layer Security (TLS v1)
protocols.

OpenSSL CRYPTO library implements a wide range of
cryptographic algorithms used in various Internet standards.
The services provided by this library are used by the
OpenSSL implementations of SSL, TLS and they have also

 3

been used to implement SSH [18], OpenPGP [19], and other
cryptographic standards.

In addition, the OPENSSL program is a command line
tool for using the various cryptography functions of
OpenSSL's crypto library from the shell. It can be used for

• Creation of RSA [20], DH [21] and DSA [22] key
parameters.

• Creation of X.509 certificates [23] and Certificate
Revocation List (CRL).

• Calculation of Message Digests
• Encryption and Decryption with Ciphers.
• SSL/TLS Client and Server Tests.
• Handling of S/MIME signed or encrypted mail.

2.3. Software architecture of secure content switch
The following figure 2.3 shows the architecture of the

current design of secure content switch.

Figure 2.3 Architecture of secure content switch

The following steps describe the process of handling

secure requests using the secure content switch.
The web browser makes a request to the secure content

switch.
The dispatcher module in the secure content switch

forwards the request to the secure content switch child
module. In the dynamic forking version of secure content
switch the dispatcher module forks a child process. In the
preforking version of secure content switch the dispatcher
module forwards the request to a free child.

The secure content switch child module performs the
handshake with the client and reads in the request.

The secure content switch child module then sends the
request to the Rule module, which performs rule matching
and returns the name of the server by which the request can
be served.

The real server connects to the web browser through the
secure content switch child module (not shown in the picture).
2.3.1. Secure Content Switch Child Module.

The child module performs the SSL handshake with the
client. This step involves establishing ciphers to use and
providing certificate to the client for server-authentication. As
part of the SSL Handshake request, the client may provide a
current or previously created SessionID to reuse for the
current connection. The Secure content switch manages the
SessionID and this will be used as appropriate during the SSL
Handshake. The child module receives the request for data
and decrypts the data according to the negotiated SSL
handshake. When the Secure content switch process
determines it has fully received an HTTP request, it sends
header information to the Rule Matching Module, which
determines which Real Server can serve the request. The child

module then establishes a connection with the Real Server
and forwards the request in plain HTTP.

3. Performance Results
This section presents the performance results of the Linux
application secure web switch. Fig shown below shows a
block diagram of Secure Linux Application level content
switch.

Figure 3.1 the secure web switch test bed
Table 3.1 shows the hardware and software configuration

of machines used in the test-bed.

Machine
Spec.

IP Address O/S Web
Server

a)CALVIN.uccs.edu
DELL Dimension-
4100, 933 MHz,
512MB
b) oblib.uccs.edu
HP Vectra VL
512 MHz, 512MB
(Content switch)

128.198.192.184

128.198.60.195

Redhat 7.2
 (2.4.9-21)

Redhat 7.2
 (2.4.9-21)

Apache
1.3.22

Apache
1.3.22

a) dilbert.uccs.edu
b) wait.uccs.edu
c) wind.uccs.edu
(Client)

128.198.60.23
128.198.60.202
128.198.60.204

a) Windows NT, 4.0
b), c) Windows-
2000,Advanced
Server

N/A

a) eca.uccs.edu
b) frodo.uccs.edu
c) bilbo.uccs.edu
d) odorf.uccs.edu
e) walrus.uccs.edu
f) wallace.uccs.edu
HP Kayak
Machines, 233
MHz, 96MB RAM
(Real Server)

128.198.60.188
128.198.60.183
128.198.60.182
128.198.60.196
128.198.60.197
128.198.60.208

Redhat 7.1
 (2.4.3-12)

Apache
1.3.19

The tests were performed using Web bench [24] and the

negotiated cipher suite for these tests are DES-CBC3-SHA,
SSLv3, Kx=RSA, Au=RSA Enc=3DES(168), Mac=SHA1
Figure 3.2 and Table 3.2 shows that the performance of the
Dynamic forking secure content switch is better than Pre-
forked secure content switch. I found out that after a while the
children are created and killed immediately with out serving
multiple requests. The Pre-forked server is designed to see
that child SSL Processes are created ahead of time and kill
them if their number exceeds a certain threshold. The reason
could be that more child processes are free which implies
number of requests sent by the web-bench is irregular, there

 4

by affecting the overall performance of the pre-forked secure
content switch.

Figure 3.3 shows the impact of rules on the performance
of the linux secure content switch. There is no major impact
on the performance of our secure content switch with respect
to the number of rules. This clearly shows us SSL processing
is the major hurdle.
Cluster with secure content switch vs. standalone Apache
web server

The performance of a dynamic forking secure content
switch was pretty good when compared to a standalone
apache server. Taking into fact that amount of computation
overhead involved with extracting the HTTP headers and
performing a rule matching on the HTTP header data, and
routing the request to one of the Real Servers

4. Performance Comparison with Intel SSL accelerator
and XML director.

Intel 7280 XML Director is configured as content switcher
(named lizzie), and it directs XML content to eca and frodo
respectively, according to the pre-defined rules.
We implement a software XML content switch, installed on
calvin.uccs.edu. It directs XML content to eca and frodo
respectively, according to the pre-defined rules.

Figure 4.1 Network topology for Intel 7280 unit

We run a perl script on testing machine. It sends XML

content to lizzie (Intel 7280 XML Content Switch) and calvin
(Software XML Content Switch).

By repeating the same XML requests 30 times, we get the
average XML file content switch processing speed.
We then increase the XML length, by adding more content in
the XML file, and see if the processing time increases or not.
We do the test on both plain text request scenario and SSL
request scenario.

It seems that Intel 7280 unit and Software Content Switch,
both process XML data pretty fast. Amazingly enough, Intel
7280 is only a little bit faster than LSWS, and if the XML
document size is not large enough, there are very little
difference on performance.

For the XML data with SSL encryption, Intel 7280
process SSL request by itself, and then redirect plain text
request to eca/frodo. On the other hand, the Software Content
Switch process SSL request on Calvin by software, then
redirect plain text request to eca/frodo too. We expect Intel
7280 should run a lot faster than the Software Content Switch.
But we didn’t observe that in our test.

Figure 4.2 Test result on XML content switch

processing time on Intel 7280 unit and Software Content
Switch

Problem encountered

When the size of XML document increases (above 500k),
Intel 7280 gets very picky on the format of the XML
document. We always get “403 POSTed data was not
welformed” error. But actually the format of the XML
document are perfectly OK. Because of this, the result curve
named “Intel 7280+SSL” on the testing result chart in Fig 4.2
is incomplete.

5. Conclusion and Future Work
We have developed a web switch with the support of SSL.

The software package currently uses OpenSSL version 0.6.
The features of our web switch include session id reuse and
high encryption strength. We have tested it on a cluster test-
bed using the industry standard benchmarking software
WebBench and found its performance to be satisfactory.

One of the improvements that are possible is reducing the
bottleneck of SSL encryption/decryption. SSL transactions
are computation intensive and hence become a drain on web
server resources. In cases of web servers handling a large
amount of traffic, the problem can become more significant.
One way to alleviate the problem is to apply parallel
processing techniques. The others is to use SSL hardware
accelerator such Intel 7110. But as one ponders about a
solution for this problem, we need to think about how all the
web servers are going to know about the TLS/SSL session
information that was negotiated by another server. There is a
message in the openssl group posted by Lutz Jaenicke that
talks of a future version OpenSSL 0.9.7 (not yet released) that
has a new function (server side) to explicitly choose the
session IDs generated (rather than random values as of now).
Therefore it will be possible to include a "server ID" into the
session ID so that load balancing will become easier. Once
the above-mentioned version is released, a solution might be
in sight.

Another performance improvement can be the caching of
web pages. This aspect must be handled sensibly as most of
the web documents that use SSL are dynamic in nature.

 5

One of the ways to overcome the problem of maintaining
state across multiple web processes in dealing with TLS/SSL
transactions is to make the connections “sticky”. The problem
with this design is that the IP addresses are constantly shifting
for users coming into a site from Internet service providers
that use proxy servers. So users must have a “sticky”
connection to the SSL server that is independent of their IP
address. This can be achieved by having a cookie which
identifies which Real Server has serviced the user previously.

Another suggestion for improving the current web switch
performance is to have a persistent HTTP connection between
the web switch and the real servers, which can be used by all
the processes, for all the requests.

Each of these solutions comes with its own combination
of cost, performance, and flexibility of scale—proving once
again that, when it comes to web site architecture, one size
never fits all.

6. References

[1]Akamai technologies http://www.akamai.com/
[2]Speedera http://www.speedera.com/flash_index.html
[3] Digitalisland http://www.digitalisland.com/
[4] George Apostolopoulos, David Aubespin, Vinod Peris,

Prashant Pradhan, Debanjan Saha, “ Design,
Implementation and Performance of a Content-Based
Switch”, Proc. Infocom2000, Tel Aviv, March 26 - 30,
2000, http://www.ieee-infocom.org/2000/papers/440.ps

[5] IP Security Protocol,
http://www.ietf.org/html.charters/ipsec-charter.html

[6] SSLv3 Internet Draft (obsolete).
ftp://ftp.ietf.org/internet-drafts/draft-ietf-tls-ssl-version3-
00.txt.

[7] RFC2246 - "The TLS Protocol Version 1.0"
ftp://ftp.isi.edu/in-notes/rfc2246.txt

[8] Netscape web browser http://www.netscape.com/
[9] Microsoft Internet Explorer web browser of Microsoft

Technologies http://www.microsoft.com

[10] Web switch product of nortel networks
http://www.nortelnetworks.com/products/01/alteon/isdssl
/index.html

[11] web switch product of F5networks
http://www.f5networks.com/

[12] Foundry ServIron Installation and Configuration Guide,
May 2000.
http://www.foundrynetworks.com/techdocs/SI/index.html

[13] Intel NetStructure 7180 e-commerce Director
http://www.intel.com/support/netstructure/commerce/ind
ex.htm

[14] Intel NetStructure 7280 XML Director
http://www.intel.com/support/netstructure/director/index.
htm

[15]white paper by cacheflow
http://www.cacheflow.com/files/whitepapers/wp_ssl_pri
mer.pdf

[16] OpenSSL: The Open Source toolkit for SSL/TLS
(http://www.openssl.org)

[17] The SSLeay package is copyright Eric Young and is
available free for commercial and non-commercial use.

[18] ssh prtocol http://www.ietf.org/html.charters/secsh-
charter.html

[19] OpenPGP the most widely used email encryption
standard in the world. http://www.openpgp.org/

[20] RSA algorithm invented in 1978 by Ron Rivest, Adi
Shamir, and Leonard Adleman.
http://www.rsasecurity.com/

[21] The Diffie-Hellman Key Agreement,
http://www.hamiltonlabs.com/links.htm

[22] NIST, FIPS PUB 186, "Digital Signature Standard", May
1994.

[23] public-key infrastructure (X.509)
http://www.ietf.org/html.charters/pkix-charter.html

[24] web bench is the testing tool provided by eTesting Labs
Inc. http://webbench.com/

Client

Request
Per Second
Prefork
NonSecure
content
switch

Request Per
Second Dynamic
NonSecure
content switch

Request
Per Second
Apache
NonSSL

Request Per
Second Dynamic
Secure content
switch

Request
Per Second
Prefork
Secure
content
switch

Request
Per Second
Apache SSL

1_client 148.046 82.588 244.404 26.992 23.042 37.450

4_client 146.542 84.283 241.296 26.100 20.858 36.958

8_client 128.688 82.642 234.867 26.113 21.704 37.479

12_client 145.521 83.567 230.183 26.279 20.246 37.279

16_client 148.100 82.017 236.350 26.425 21.604 37.396

20_client 147.946 83.433 241.475 26.333 19.462 36.962

24_client 135.046 82.642 237.050 26.358 21.004 37.833

28_client 148.058 83.158 234.037 26.421 20.279 38.150

32_client 126.621 82.767 241.037 26.275 20.358 38.346

36_client 123.542 81.933 242.046 25.783 20.275 38.375

40_client 148.121 81.575 239.567 25.625 21.188 37.892

 6

44_client 129.762 83.112 232.988 26.033 20.163 37.804

48_client 148.113 83.421 243.688 26.304 20.404 37.571

52_client 147.850 81.975 244.037 26.063 21.446 37.400

56_client 106.900 82.254 243.258 26.350 17.363 37.063

60_client 128.879 83.254 243.554 26.212 15.800 36.188

Table 3.2 showing the request/sec of different types of secure web switch

Overall WebBench Requests/Second

0.000

50.000

100.000

150.000

200.000

250.000

300.000

1_
cl

ie
nt

4_
cl

ie
nt

8_
cl

ie
nt

12
_c

lie
nt

16
_c

lie
nt

20
_c

lie
nt

24
_c

lie
nt

28
_c

lie
nt

32
_c

lie
nt

36
_c

lie
nt

40
_c

lie
nt

44
_c

lie
nt

48
_c

lie
nt

52
_c

lie
nt

56
_c

lie
nt

60
_c

lie
nt

Clients

R
eq

u
es

ts
 /

S
ec

o
n

d Request Per Second Prefork
NonSSLProxy

Request Per Second Dynamic
NonSSLProxy

Request Per Second Apache
NonSSL

Request Per Second Dynamic
SSLProxy

Request Per Second Prefork
SSLProxy

Request Per Second Apache
SSL

Figure 3.2. Content switching/SSL processing overhead and

performance differences between Prefork and Dynamic fork versions.

Overall Impact of Rules on Requests/Second

0.000

5.000

10.000

15.000

20.000

25.000

30.000

1_
cli

en
t

8_
cli

en
t

16
_c

lie
nt

24
_c

lie
nt

32
_c

lie
nt

40
_c

lie
nt

48
_c

lie
nt

56
_c

lie
nt

Clients

R
eq

u
es

ts
/S

ec
o

n
d

SSL Requests Per Second
for 250 Rules

SSL Requests Per Second
for 300 Rules

SSL Requests Per Second
for 500 Rules

SSL Requests Per Second
for 1000 Rules

SSL Requests Per Second
for 2000 Rules

SSL Requests Per Second
for 5000 Rules

Figure 3.3. Impact of # of content switching rules over performance.

