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Abstract 
 

In this paper we present the design of a Linux application level 
secure web switch, called LSWS, which is based on OpenSSL 
package. It is intended to be used a front end switch for a 
secure web server cluster. It allows flexible specification and 
dynamic update of content switch rules. Two versions of 
LSWS were implemented. One based on dynamic forking of 
child processes and other based on prefork idea similar to 
Apache. The overheads of content switching and SSL 
processing are analyzed using WebBench.  We also compare 
its performance with Intel 7280 XML director. 
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1. Introduction 
The explosion of the Internet from a small network of 

known individuals to a huge, heterogeneous anonymous 
network has brought several troubles in its wake. Right from 
the case of a mail account password being sniffed and 
acquired to credit card numbers and other confidential 
business data being observed, attacks can occur on 
transmitted information in many ways. The number of 
commercial transactions and private data transmission that 
occur and the ability of malicious elements to observe and 
manipulate data anonymously has necessitated the growth of 
security measures to protect Internet users. A need to have 
standard security protocols that are platform and network type 
independent and easily implementable, usable and secure was 
felt. 

Along with security another major issue is handling of the 
large volumes of data present in today’s networks. Many 
approaches have been devised in order to provide a solution 
to this problem. One solution to reduce the load is to have a 
paid subscription to one of the Content Delivery Network 
(CDN) providers such as Akamai [1], Speedera [2] and 
Digital Island [3]. Another approach is to distribute the large 
volume of requests among a group of servers where a master 
controller, that can be a dedicated host or a process, first 
receives the requests and delegates it to one of a group of 
servers for processing. A content switch (CS) [4] is such a 
load balancing system that distributes load based on the 

content of the received requests. A Web-switch is a content 
switch that distributes load based on Web requests. 

Consider the case of an e-commerce site with a large 
amount of traffic. The users who are accessing the site may be 
performing various functions like browsing, signing in or 
doing some profitable activity like purchasing. It makes good 
business sense to provide better and faster access to paying 
customers rather than casual surfers. One way of doing this is 
to provide some kind of preferential treatment like routing 
them to faster servers. This segregation implies that requests 
are routed to different servers based on their content. This 
kind of routing based on request content cannot be achieved 
by traditional layer4 and below switches, which route requests 
based on request characteristics like port number, or IP 
address, but not on the content of the request. A better 
approach in this direction would be to develop a mechanism, 
which can route request based on content, in other words, a 
content based switch. Some of the other functions that a 
content switch can be used for are: 

Load Balancing: As a Load Balancer, a content switch can 
segregate incoming requests based on the HTTP meta header, 
URL or even the application layer payload and route them to 
the back end servers in the server cluster. 

Firewall: As a firewall, a content switch can either allow 
or reject requests based on their content or their IP address. 

Email Filtering:  a content switch can function as an 
efficient spam guard or work as an anti virus device by 
verifying the sender and content of emails. 

E-commerce transactions normally involve the transfer of 
sensitive or private data like personal information or credit 
card numbers, which are liable to active or passive attacks 
during transmission. 

There are several approaches to provide Web security. 
The approaches are similar in the services they provide and, 
to some extent, in the mechanisms that they use, but they 
differ with respect to their scope of applicability and their 
relative location within the TCP/IP protocol stack.  

One way to provide Web security is to use IP Security or 
IPSEC [5] as it is generally called. The advantage of using 
IPSec is that it is transparent to end users and applications and 
provides a general-purpose solution. Further, IPSec includes a 
filtering capability so that only selected traffic need incur the 
overhead of IPSec processing.  
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Another relatively general-purpose solution is to 
implement security just above TCP. The foremost example of 
this approach is the Secure Sockets Layer (SSL) [6] and the 
follow-on Internet standard of SSL known as Transport Layer 
Security (TLS) [7]. At this level, there are two 
implementation choices. For full generality, SSL (or TLS) 
could be provided as part of the underlying protocol suite and 
therefore be transparent to applications. Alternatively, SSL 
can be embedded in specific packages. For example, Netscape 
[8] and Microsoft Explorer [9] browsers come equipped with 
SSL, and most Web servers have implemented the protocol.  

There are several commercial content switches. The 
Alteon iSD-SSL accelerator[10] works with an Alteon Web 
switch to intelligently speed secure  e-Commerce transactions 
by offloading Secure  Sockets Layer (SSL) processing from 
local servers without imposing delays on other traffic in the 
same data path. F5 has long been a leader in the Internet 
Traffic Management space. It has an advanced web switching 
logic (F5 Networks Big-IP Controller 3.1[11]). Big-IP 
combines a strong, traditional load-balancing feature set with 
SSL acceleration ability. It extracts HTTP header information 
from the request to make traffic management decisions. 
Foundry (Foundry Networks ServerIronXL with Internet 
IronWare 7.0 [12]) equips its ServerIronXL with a strong 
Layer 2 and Layer 3 switching and Layer 5/7 load-balancing 
based on cookies and SSL session IDs. Intel provides 
CEA7110 [13] SSL Accelerator and CEA7280 [14] XML 
Director which is very close to features that our LSWS 
provide. It is capable to perform routing based on url and xml 
tag values.  

2. Secure Web Switch 
The SSL protocol is a security protocol that sits on top of 

TCP at the transport layer. In the OSI model, application layer 
protocols such as HTTP or IMAP handle user application 
tasks such as displaying Web pages or running email servers. 
Session layer protocols establish and maintain 
communications channels. Transport-layer protocols such as 
TCP and UDP, handle the flow of data between two hosts. 
Network layer protocols such as IP and ICMP provide hop-
by-hop handling of data packets across the network. 

SSL operates independently and transparently of other 
protocols so it will work with any application-layer and any 
transport-layer protocol. This allows clients and servers to 
establish secure SSL connections. 

 An application layer protocol sends unencrypted data to 
the session layer. TLS/SSL encrypts the data and hands it 
down to the lower layers. When its peer receives the data at 
the other end, it passes it up through the layers to the session 
layer where TLS/SSL decrypts it and hands it to the 
application layer. Since the client and the server have gone 
through the key negotiation handshake, the symmetric key 
used by SSL is the same at both ends. 

 
2.1. SSL Transactions  

To illustrate how SSL works, assume a user wants to 
make a purchase over the Internet and needs to send a credit 
card number to a secure Web site [15].  

 

 
Figure 2.2 illustrates the steps taken during an SSL 

negotiation 
 
Initially, the request for an SSL session comes from the 

browser to the Web server. 
The Web server then sends the browser its digital 

certificate. The certificate contains information about the 
server, including the server’s public key. 

Once the browser has the server’s certificate, the browser 
verifies that certificate is valid and that the CA is listed in the 
client’s list of trusted CA’s. The browser also checks the 
certificates expiration date and the Web server domain name. 

Once a browser has determined that the server certificate 
is valid, the browser then generates a 48-byte master secret 
key. This master secret key is encrypted using server’s public 
key, and is then sent to the Web server. 

Upon receiving the master secret from the browser, the 
Web server then decrypts this master secret key using the 
server’s private key. 

As both the browser and the Web server have the same 
master secret key, they use this master secret to create keys 
for the encryption and MAC algorithms used in the bulk-data 
process of SSL. Since both participants use the same master 
key, they now have the same encryption and MAC keys. 

As both the browser and Web serve have the same 
encryption and MAC keys, they use the SSL encryption and 
authentication algorithms to create an encrypted tunnel. 
Through this encrypted tunnel, they can now pass data 
securely through the Internet. 

 
Though the authentication and encryption process may 

seem rather involved, it happens in less than a second. 
Generally, the user does not even know it is taking place. 
However, the user will be able to tell when the secure tunnel 
has been established since most SSL-enabled Web browsers 
will display a small closed lock at the bottom or top of their 
screen when the connection is secure. Users can also identify 
secure Web sites by looking at the Web site address; a secure 
Web site’s address will begin with https:// rather than the 
usual http://. 
2.2.  OpenSSL: The Open Source toolkit for SSL/TLS 
OpenSSL is based on the excellent SSLeay [17] library 
developed by Eric A. Young and Tim J. Hudson. Open 
Source toolkit implements the Secure Socket Layer (SSL 
v2/v3) and Transport Layer Security (TLS v1) protocols as 
well as a full-strength general-purpose cryptography library.  

OpenSSL contains two important libraries: 
OpenSSL SSL library implements the Secure Sockets 

Layer (SSL v2/v3) and Transport Layer Security (TLS v1) 
protocols. 

OpenSSL CRYPTO library implements a wide range of 
cryptographic algorithms used in various Internet standards. 
The services provided by this library are used by the 
OpenSSL implementations of SSL, TLS and they have also 
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been used to implement SSH [18], OpenPGP [19], and other 
cryptographic standards. 

In addition, the OPENSSL program is a command line 
tool for using the various cryptography functions of 
OpenSSL's crypto library from the shell. It can be used for  

•  Creation of RSA [20], DH [21] and DSA [22] key 
parameters. 

•  Creation of X.509 certificates [23] and Certificate 
Revocation List (CRL). 

•  Calculation of Message Digests  
•  Encryption and Decryption with Ciphers. 
•  SSL/TLS Client and Server Tests. 
•  Handling of S/MIME signed or encrypted mail. 

2.3. Software architecture of secure content switch 
The following figure 2.3 shows the architecture of the 

current design of secure content switch. 
 
 
 
 
 
 
 
 
 
Figure 2.3 Architecture of secure content switch 
 
The following steps describe the process of handling 

secure requests using the secure content switch. 
The web browser makes a request to the secure content 

switch.  
The dispatcher module in the secure content switch 

forwards the request to the secure content switch child 
module. In the dynamic forking version of secure content 
switch the dispatcher module forks a child process. In the 
preforking version of secure content switch the dispatcher 
module forwards the request to a free child. 

The secure content switch child module performs the 
handshake with the client and reads in the request.  

The secure content switch child module then sends the 
request to the Rule module, which performs rule matching 
and returns the name of the server by which the request can 
be served. 

The real server connects to the web browser through the 
secure content switch child module (not shown in the picture).  
2.3.1. Secure Content Switch Child Module. 

The child module performs the SSL handshake with the 
client. This step involves establishing ciphers to use and 
providing certificate to the client for server-authentication. As 
part of the SSL Handshake request, the client may provide a 
current or previously created SessionID to reuse for the 
current connection. The Secure content switch manages the 
SessionID and this will be used as appropriate during the SSL 
Handshake. The child module receives the request for data 
and decrypts the data according to the negotiated SSL 
handshake. When the Secure content switch process 
determines it has fully received an HTTP request, it sends 
header information to the Rule Matching Module, which 
determines which Real Server can serve the request. The child 

module then establishes a connection with the Real Server 
and forwards the request in plain HTTP.  

3. Performance Results 
This section presents the performance results of the Linux 
application secure web switch. Fig shown below shows a 
block diagram of Secure Linux Application level content 
switch. 

 

Figure 3.1 the secure web switch test bed 
Table 3.1 shows the hardware and software configuration 

of machines used in the test-bed. 
 

Machine 
Spec. 

IP Address O/S Web 
Server 

a)CALVIN.uccs.edu  
DELL Dimension-
4100, 933 MHz, 
512MB 
b) oblib.uccs.edu 
HP Vectra VL 
512 MHz, 512MB 
(Content switch) 

128.198.192.184 
 
 
 
128.198.60.195 

Redhat 7.2 
 (2.4.9-21) 
 
 
Redhat 7.2 
 (2.4.9-21) 

 

Apache 
1.3.22 

 
 
Apache 
1.3.22 

 

a) dilbert.uccs.edu 
b) wait.uccs.edu 
c) wind.uccs.edu 
(Client) 

128.198.60.23 
128.198.60.202 
128.198.60.204 
 

a) Windows NT, 4.0 
b), c) Windows-
2000,Advanced 
Server 

N/A 

a) eca.uccs.edu 
b) frodo.uccs.edu 
c) bilbo.uccs.edu 
d) odorf.uccs.edu 
e) walrus.uccs.edu 
f) wallace.uccs.edu 
HP Kayak 
Machines, 233 
MHz, 96MB RAM 
(Real Server)  

128.198.60.188 
128.198.60.183 
128.198.60.182 
128.198.60.196 
128.198.60.197 
128.198.60.208 

Redhat 7.1 
 (2.4.3-12) 

Apache 
1.3.19 
 

 
The tests were performed using Web bench [24] and the 

negotiated cipher suite for these tests are DES-CBC3-SHA, 
SSLv3, Kx=RSA, Au=RSA  Enc=3DES(168), Mac=SHA1 
Figure 3.2 and Table 3.2 shows that the performance of the 
Dynamic forking secure content switch is better than Pre-
forked secure content switch. I found out that after a while the 
children are created and killed immediately with out serving 
multiple requests. The Pre-forked server is designed to see 
that child SSL Processes are created ahead of time and kill 
them if their number exceeds a certain threshold. The reason 
could be that more child processes are free which implies 
number of requests sent by the web-bench is irregular, there 
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by affecting the overall performance of the pre-forked secure 
content switch. 

Figure 3.3 shows the impact of rules on the performance 
of the linux secure content switch.  There is no major impact 
on the performance of our secure content switch with respect 
to the number of rules. This clearly shows us SSL processing 
is the major hurdle. 
Cluster with secure content switch vs. standalone Apache 
web server 

The performance of a dynamic forking secure content 
switch was pretty good when compared to a standalone 
apache server. Taking into fact that amount of computation 
overhead involved with extracting the HTTP headers and 
performing a rule matching on the HTTP header data, and 
routing the request to one of the Real Servers 

4. Performance Comparison with Intel SSL accelerator 
and XML director. 

 
Intel 7280 XML Director is configured as content switcher 
(named lizzie), and it directs XML content to eca and frodo 
respectively, according to the pre-defined rules. 
We implement a software XML content switch, installed on 
calvin.uccs.edu. It directs XML content to eca and frodo 
respectively, according to the pre-defined rules.  

 
Figure 4.1 Network topology for Intel 7280 unit 
 
We run a perl script on testing machine. It sends XML 

content to lizzie (Intel 7280 XML Content Switch) and calvin 
(Software XML Content Switch).  

By repeating the same XML requests 30 times, we get the 
average XML file content switch processing speed.  
We then increase the XML length, by adding more content in 
the XML file, and see if the processing time increases or not. 
We do the test on both plain text request scenario and SSL 
request scenario. 

It seems that Intel 7280 unit and Software Content Switch, 
both process XML data pretty fast. Amazingly enough, Intel 
7280 is only a little bit faster than LSWS, and if the XML 
document size is not large enough, there are very little 
difference on performance. 

For the XML data with SSL encryption, Intel 7280 
process SSL request by itself, and then redirect plain text 
request to eca/frodo. On the other hand, the Software Content 
Switch process SSL request on Calvin by software, then 
redirect plain text request to eca/frodo too. We expect Intel 
7280 should run a lot faster than the Software Content Switch. 
But we didn’t observe that in our test. 

 
 
Figure 4.2 Test result on XML content switch 

processing time on Intel 7280 unit and Software Content 
Switch 

 
Problem encountered  

When the size of XML document increases (above 500k), 
Intel 7280 gets very picky on the format of the XML 
document. We always get “403 POSTed data was not 
welformed” error. But actually the format of the XML 
document are perfectly OK. Because of this, the result curve 
named “Intel 7280+SSL” on the testing result chart  in Fig 4.2 
is incomplete. 

5. Conclusion and Future Work 
We have developed a web switch with the support of SSL. 

The software package currently uses OpenSSL version 0.6. 
The features of our web switch include session id reuse and 
high encryption strength. We have tested it on a cluster test-
bed using the industry standard benchmarking software 
WebBench and found its performance to be satisfactory.   

One of the improvements that are possible is reducing the 
bottleneck of SSL encryption/decryption. SSL transactions 
are computation intensive and hence become a drain on web 
server resources. In cases of web servers handling a large 
amount of traffic, the problem can become more significant. 
One way to alleviate the problem is to apply parallel 
processing techniques. The others is to use SSL hardware 
accelerator such Intel 7110. But as one ponders about a 
solution for this problem, we need to think about how all the 
web servers are going to know about the TLS/SSL session 
information that was negotiated by another server. There is a 
message in the openssl group posted by Lutz Jaenicke that 
talks of a future version OpenSSL 0.9.7 (not yet released) that 
has a new function (server side) to explicitly choose the 
session IDs generated (rather than random values as of now). 
Therefore it will be possible to include a "server ID" into the 
session ID so that load balancing will become easier. Once 
the above-mentioned version is released, a solution might be 
in sight. 

Another performance improvement can be the caching of 
web pages. This aspect must be handled sensibly as most of 
the web documents that use SSL are dynamic in nature. 
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One of the ways to overcome the problem of maintaining 
state across multiple web processes in dealing with TLS/SSL 
transactions is to make the connections “sticky”. The problem 
with this design is that the IP addresses are constantly shifting 
for users coming into a site from Internet service providers 
that use proxy servers. So users must have a “sticky” 
connection to the SSL server that is independent of their IP 
address. This can be achieved by having a cookie which 
identifies which Real Server has serviced the user previously. 

Another suggestion for improving the current web switch 
performance is to have a persistent HTTP connection between 
the web switch and the real servers, which can be used by all 
the processes, for all the requests.  

Each of these solutions comes with its own combination 
of cost, performance, and flexibility of scale—proving once 
again that, when it comes to web site architecture, one size 
never fits all.  
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Client 

Request 
Per Second 
Prefork 
NonSecure  
content 
switch 

Request Per 
Second Dynamic 
NonSecure  
content switch 

Request 
Per Second 
Apache 
NonSSL 

Request Per 
Second Dynamic 
Secure  content 
switch 

Request 
Per Second 
Prefork 
Secure  
content 
switch 

Request 
Per Second 
Apache SSL 

1_client 148.046 82.588 244.404 26.992 23.042 37.450 

4_client 146.542 84.283 241.296 26.100 20.858 36.958 

8_client 128.688 82.642 234.867 26.113 21.704 37.479 

12_client 145.521 83.567 230.183 26.279 20.246 37.279 

16_client 148.100 82.017 236.350 26.425 21.604 37.396 

20_client 147.946 83.433 241.475 26.333 19.462 36.962 

24_client 135.046 82.642 237.050 26.358 21.004 37.833 

28_client 148.058 83.158 234.037 26.421 20.279 38.150 

32_client 126.621 82.767 241.037 26.275 20.358 38.346 

36_client 123.542 81.933 242.046 25.783 20.275 38.375 

40_client 148.121 81.575 239.567 25.625 21.188 37.892 
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44_client 129.762 83.112 232.988 26.033 20.163 37.804 

48_client 148.113 83.421 243.688 26.304 20.404 37.571 

52_client 147.850 81.975 244.037 26.063 21.446 37.400 

56_client 106.900 82.254 243.258 26.350 17.363 37.063 

60_client 128.879 83.254 243.554 26.212 15.800 36.188 
 

Table 3.2 showing the request/sec of different types of secure web switch 
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Figure 3.2. Content switching/SSL processing overhead and  

performance differences between Prefork and Dynamic fork versions. 
 

Overall Impact of Rules on Requests/Second

0.000

5.000

10.000

15.000

20.000

25.000

30.000

1_
cli

en
t

8_
cli

en
t

16
_c

lie
nt

24
_c

lie
nt

32
_c

lie
nt

40
_c

lie
nt

48
_c

lie
nt

56
_c

lie
nt

Clients

R
eq

u
es

ts
/S

ec
o

n
d

SSL Requests Per Second
for 250 Rules

SSL Requests Per Second
for 300 Rules

SSL Requests Per Second
for 500 Rules

SSL Requests Per Second
for 1000 Rules

SSL Requests Per Second
for 2000 Rules

SSL Requests Per Second
for 5000 Rules

 
Figure 3.3. Impact of  # of content switching rules over performance. 

 


