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Abstract 

 
In this paper we discuss the problems encountered in the 
development of a Linux LVS-based content switch and present 
their solutions.  A pre-allocate server scheme is proposed to 
improve the TCP delayed binding bottleneck, and performance 
of its implementation is presented. The content switch rule 
syntax is extended to allow the extraction of specific tag values 
in the XML requests. 
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1. Introduction 
The tremendous growth in World Wide Web usage has 

become a double-edged sword for operators of large Web 
Sites. On the one hand, increases in request volume translate 
into increased subscription, advertising, and hosting revenue. 
On the other hand, scaling web sites to meet this increased 
demand has become more and more difficult as the number of 
requests for content exceed a particular server's ability to 
respond. In the best case, users will experience degraded 
service, in the worst case the server can be driven to collapse 
resulting in a complete loss of service. 

One approach to alleviate handling of large volume of 
requests is to distribute their load among a group of nearly 
identical servers [1]. A master controller, that can be a 
dedicated host or a process, first receives the requests and 
delegates it to the appropriate real server [2,3]. This describes a 
typical load balancing system. A content switch is such a front 
end of a load balancing system that distributes load based on 
the content of the received requests.  

There are conventional ways of load balancing at the 
transport layer, i.e., Layer 4 of TCP/IP. One of them is to use 
the port number of the incoming request and direct it to a real 
server responsible for handling the response for that specific 
port. For example, if the port number in the incoming request 
is 21 it can be routed to machine catering FTP requests and if 
the port number is 80, it is routed to host running HTTP server. 
This mechanism cannot differentiate among requests with 
different content.  

The web based content switch uses the content of web 
request to select a real server [4,5,6,7]. For example, a content 
switch can make routing decisions based on URL of incoming 
web request. In electronic commerce systems, a content switch 

may route the incoming request based on the purchase amount, 
or the customer ID contained in the XML content of the 
request.  The routing decisions are typically expressed in terms 
of rules where conditions classify the packets for different 
routing actions.  

The terms in these rule conditions can include a matching 
function for checking whether the URL matches a regular 
expression.  For example, the rule “if (match(URL, “.gif$”) { 

routeTo(imageServer)}” allows the routing decision based on the 
file extension of the request.  The terms can also be a relational 
operation on a XML tag value.  For example, rule “if 

(xml.purchase/totalAmount>50000) {routeTo(highSpeedServer)}” allows 
the purchase of higher amount to be treated differently. This 
requires the efficient parsing of the XML document in the 
payload for specific XML tags that are referenced in content 
switching rule set.   We have implemented a Linux LVS-based 
content switch, LCS version 0.1, uses Network Address 
Translation (NAT) based IP virtual service [8,9]. It allows the 
specification of such rule syntax.  

Since many network services are based on TCP protocol, 
the web switch needs to perform three-way handshake (Sync, 
Sync-Ack, Ack message exchange) with the client before it can 
receive the application level content. After selecting the real 
server based on the content, the content switch needs to go 
through three-way handshake with the chosen real server and 
then relay the application layer request.   This is called TCP 
delayed binding. Since the sequence numbers committed by 
the content switch and that by the real server for the session are 
different, the content switch needs to convert the sequence 
numbers in every packet that follows.  This introduces a lot of 
packet processing overhead.   

In this paper, we present a pre-allocate server scheme that 
can reduce the TCP delay binding processing overhead.  We 
have also discussed the problems encountered in the 
development of the LCS and presented their solutions. Based 
on our experience and problems encountered during the design 
and implementation of LCS, we present suggestions for better 
component design and overall improvement of content 
switching systems. 

2. Problems and Solutions for Content Switch Design 
In this section we discuss the content switch design issues 

related to content processing, improving TCP delayed binding, 
and client request buffering. 
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2.1. Handling request with multiple packets 

 
If the client’s request is too big to fit in one TCP segment, 

the content switch has to wait for all the segments that 
comprise that request before commencing the rule matching. 
This is especially true of non-idempotent HTTP requests like 
PUT and POST, and for e-commerce applications with large 
XML request. This further gives rise to the following sub-
problems that we had to account for: 

 
Determine the content length 

 
We had to determine the content length of the variable 
incoming data stream in order to flag the end of client request. 
The content length information of such request can be obtained 
from the "Content-Length" meta-header in the HTTP request. 
However, the value of the content length itself can span across 
multiple segments as shown in the example below: 

  
TCP Segment n contains: 

 
POST /cgi-bin/cs622/purchase.pl HTTP/1.0\r\n  
Referer: http://archie.uccs.edu/~acsd/lcs/xmldemo.html\r\n 
Connection: Keep-Alive\r\n  
User-Agent: Mozilla/4.75 [en] (X11; U; Linux 2.2.16-
22enterprise i686) \r\n 
Host: viva.uccs.edu\r\n  
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, 
image/png, */*\r\n  
Accept-Encoding: gzip\r\n  
Accept-Language: en\r\n  
Accept-Charset: iso-8859-1,*,utf-8\r\n 
Content-type: application/x-www-form-urlencoded\r\n 
Content-length: 7 
 
TCP Segment n+1 contains: 
 
53\r\n 
data (753 bytes) 

 
As seen in the above example the individual bytes of the 

content length are split across two consecutive TCP segments, 
the first segment contains 7 and the next segment contains the 
remaining two byte, i.e., 53. This is true for any field within 
the HTTP request header, even for the sequence of data bytes 
that form the "Content-Length" string. 
Fragmentation of application level content 
After the content length is determined, the content switch can 
then wait for all the packets of the same request. Typically, 
these packets are saved in different memory area.  In Linux, 
they are saved in sk_buff structures linked by double link list. 
Each of these data structures contains the timestamp, TCP/IP 
headers, followed by the content payload. Therefore, the actual 
content is fragmented and spread out in these network buffers.  
Extracting URL field in the HTTP request is easy, since it is in 
the first packet. But for extracting other meta-headers and 

especially the XML tag values in the content field of the HTTP 
request, the fragmentation of the TCP payload content post 
difficult challenging problem for the content switch designers.  
One approach is to concatenate all individual non-contiguous 
TCP segments back to back into one coherent buffer, that can 
then be used for XML parsing, or pattern matching. Another 
approach is to redesign the XML parsing or pattern matching 
so that they can work with data that spread across several 
segments. A specialized memory address mapping hardware 
similar to the translation look-aside cache used in virtual 
memory system can also help speed up the packet processing.  

The first approach requires the expensive memory copying 
and uses additional memory.  The original TCP segments are 
not released after the concatenation of their payload content, 
since once the real server is selected, these TCP segments will 
be modified and sent to the chosen real server.  The 
modification includes the destination IP address field, possibly 
the TCP port field, the ACK sequence number, and very 
importantly the checksum.  

While buffering client data, the content switch has to send 
ACK's for the segments that comprise the client request, 
otherwise the client TCP will assume that the server is dead or 
is very slow, and will not send subsequent packets. This is 
achieved by invoking appropriate ACK sending routines from 
the IP layer of the content switch. 

For large sized (> 40K) client requests, we also observed 
some of the relayed segments were dropped by the chosen real 
sever. Further analysis indicated that the problem is due to the 
segment relay by the content switch is implemented in IP 
instead of TCP layer.  The data sending was done continuously 
from the queued buffers without considering the window 
advertised by the TCP stack of the real server. This flooding of 
data caused the real server to drop some of the received TCP 
packets. It was observed that the acknowledgment number sent 
by the real server was held constant, even though the content 
switch had emptied all buffered data. The result was that there 
was no response seen from the real server, as it had not 
acknowledged receipt of all data. This problem was solved by 
having the content switch keep track of the real server 
acknowledgment number along with buffering of last packet 
sent to it. When the acknowledgment sent by the real server 
was less than the next sequence number of the packet to be 
sent subsequently, the last sent packet was retransmitted. The 
next sequence number is computed from the sequence number 
of the last packet and size of data in it. This retransmission 
helped alleviate packet flooding at the real server and ensure 
all client data are properly received. 

2.2. Handle Different Data Encoded Methods 

 
There are two basic ways for submitting the XML-based 

request to the web server.  One is to use the form with text 
input or text area input.  The other is to use submit it as XML 
document. When submitting it with form, the XML request 
data are encoded using the x-www-form-urlencoding method 
and the “Content-Type” meta-header will have the value of  
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“x-www-form-urlencoded”. When submitting it as XML 
document, the “Content-Type” meta-header will have the value 
of  “text/xml” and the content are submitted in plain text 
without further encoding.  With the latter encoding type, all 
special characters like line feed (\n), carriage return (\r), left 
anchor (<) and right anchor (>) etc. retain their ASCII 
representation. In the former encoding type the special 
characters have encodings like "%XX", where XX is the 
hexadecimal representation of ASCII value of that special 
character. For example, for the "x-www-form-urlencoded" 
encoding type, the values for the exemplified special characters 
will be "%0A", "%0D", "%3C" and "%3E" respectively. 
Hence, the rule matching module need to correctly parse the 
XML content of the client request depending on the content 
type. 

2.3. Allow Referencing Specific XML Tags 

 
The rule specification scheme should be flexible enough to 

account for the exact tag name or rule field indicated in the 
rule specification. Here is an example that illustrates this point. 
Consider the XML document: 

 
<purchase> 
  <customerName>CCL</customerName> 
  <customerID>111222333</customerID> 
  <item> 
     <productID>309121544</productID> 
     <unitPrice>5000</unitPrice> 
     <subTotal>50000</subTotal> 
  </item> 
  <item> 
     <productID>309121538</productID> 
     <unitPrice>200</unitPrice> 
     <subTotal>2000</subTotal> 
  </item> 
  <totalAmount>52000</totalAmount> 
</purchase> 
<purchase> 
<customerName>CDL</customerName> 
  <customerID>111222444</customerID> 
  <item> 
     <productID>30913555</productID> 
     <unitPrice>3000</unitPrice> 
     <subTotal>20000</subTotal> 
  </item> 
<totalAmount>20000</totalAmount> 
 </purchase> 
 
In the above XML document, some of the  tags are 

repeated, e.g., purchase, item, totalAmount. Hence a rule 
syntax is needed to allow for selecting a particular set of tags 
in the rule set. Here is an example of a scheme that addresses 
this problem.  To specify a rule based on subTotal value 
present in the second item tag within the first purchase tag, the 
condition of the rule will be specified as  

“purchase:1.item:2.subtotal  >  5000”. As another example, 
“purchase:2.totalAmount < 15000” specifies the condition of a 
rule based on the  totalAmount tag present within the second 
purchase tag. 

2.4. Handle Long Transactions in SSL and Email network 
services 

In our Linux-based Content Switch, the content/header 
extraction and rule matching are performed in the kernel to 
avoid unnecessary copying. However, we have found that for 
network services that requires long computation and interface 
with other packages, some of the packet processing  functions 
are better handled at the application level.  For example, there 
are a lot of packages, including McAfee’s uvscan and 
AMAVis scanmail, mutt (recombine email component), for 
detecting and removing email virus, but almost all of them are 
implemented in application level and interact with the 
sendmail program. It will require significant effort to rewrite 
them as kernel modules. Same observations were derived on 
SSL processing.   

SMTP goes through long message exchange between the 
client and the server. The client sends a sequence of messages 
including  HELO, MAIL FROM, RCPT TO, Data, followed by 
the actual body of the message.  The server will respond with 
the specific code and confirmation message.  Therefore the 
important email addresses for the sender and the receiver will 
appear at different stages of the transaction.  The content 
switch needs to be able to store these messages in the buffer.  
Once the related header information is extracted and rules 
matched, these messages will be forwarded to the real mail 
server.  For spam mail removal, the sending email address is 
extracted from the MAIL FROM message.  For incoming 
email load balancing, the receiving email address is extracted 
from the RCPT TO message.  Compared with SMTP, the 
processing of IMAP or POP is much simpler, since we only 
need to wait for the login in USER message for load balancing 
rule matching, but they have the same requirement for storing 
and forwarding the message sequence to the real server. 

3. Design of Pre-allocate Server Scheme 

 
The content switch has to buffer application level data for 

rule matching before the selected real server can be chosen. 
This is called TCP Delayed Binding as the response is 
delivered to the client after some delay associated with the 
buffering of client data and the rule matching [2]. This is 
shown in the Figure 1.  Here we assume that the size of the http 
request can fit in one TCP payload and the request are sent in 
one IP packet.  In real networks, we have observed that a 
request got split into two IP packets even though there are less 
than 800 bytes. In Figure 1, it is also assumed that the return 
document is small and can be fit into one IP packet.  In typical 
web access, the return document is sent over multiple IP 
packets. CSEQ is the sequence number chosen by the client. 
DSEQ is the sequence number chosen by the content switch on 
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behalf of the real server. SSEQ is the sequence number chosen 
by the real server.  Note that at Step 9, the content switch needs 
to change the sequence number from the real server to 
DSEQ+1; while at Step 10, the ACK number needs to be 
changed to SSEQ.   The modification of the  sequence number 
and the IP address fields need be performed for all the 
following packets over the same session. 

We implemented a heuristic solution to this TCP delayed 
binding problem, where the client and real server mapping is 
pre-allocated and stored in a hash table with (hash) key as the 
client address. When a client sends a request to the content 
switch for the first time, there would not be any entry in the 
hash table and the request will go via normal data buffering 
and rule matching scheme, and an entry will be added to the 
pre-allocate hash table with the client IP address as key and the 
real server address as data. When the same client happens to 
send the next request, an entry will be found in the pre-allocate 
hash table and the client request will be directly forwarded to 
the real server addressed by the matching hash table entry. This 
avoids the rule matching overhead.  

Figure 2a shows the modified delay binding in the pre-
allocate  scheme, when the pre-allocate server is the right one.  
Figure 2b shows the message exchange among the pre-allocate 
server, the right server, the content switch, and the client, when 
the guess it wrong.  Note that when the guess it right, the web 
access can be complete in six steps instead of ten steps, and 
there is no need for sequence number modification for Step5 
and Step6.  When the direct routing or IP tunnel scheme is 
used instead of NAT, the return document can be sent directly 
to the client and reduce the processing overhead at the content 
switch. 
 
 For subsequent requests, when there is a matching hash table 
entry found in the pre-allocate hash table, it may happen the 
real server specified by the matching entry may not be the 
correct real server for that request. In that case the pre-allocate 
scheme degenerates to the default case, where rule matching is 
done for the client request.  The worst case scenario in the pre-
allocate scheme is where the real server specified in the 
matching hash table entry comes out to be wrong. Hence, it 
mandates that the client data be always buffered as done in the 
default scheme. 

The content switch must examine the response from the 
real server specified in the matching hash table entry, before 
applying the degenerate rule matching. If the response does not 
contain HTTP response code 200 (HTTP OK), then the content 
switch switches to the default scheme. If the response code is 
200, we free up the queued client request. 

In our implementation if the real server specified in the 
matching hash table entry and the real server selected via rule 
matching after a wrong pre-allocate guess are same, we allow 
the response from the wrongly guessed real server to be 
forwarded to the client. 

4. Performance of Pre-allocate Server Scheme 
To evaluate the performance of the pre-allocate server 

scheme, a testbed with one content switch and two real server 
was set up with the following configurations: 
 

Machine Spec IP Address OS Web Server 
viva.uccs.edu   
P5 240MHz 

128MB 
(Content Switch) 

128.198.192.192 Redhat 6.2 
running LCS0.2 
kernel based on  
Linux 2.2-16-3 

Apache 1.3.14 

ace.uccs.edu  
P5 166MHz 

64MB 
(Real Server 1) 

128.198.192.198 Redhat 6.2 
running LCS0.2 
kernel based on  
Linux 2.2-16-3 

Apache 1.3.14 

vinci.uccs.edu 
P5 240 MHz 

128MB   
(Real Server 2) 

128.198.192.183 Redhat 6.2 
running 

LCS0.2 kernel 
based on  Linux 

2.2-16-3 

Apache 1.3.14 

 
We compared the response times of various document size 

between basic TCP delayed binding scheme and the pre-
allocate scheme with the following set of series as shown in 
Figure 3: 
 

Series 1 - Basic scheme with no rule matching module 
inserted, i.e., using default IPVS. 

Series 2 - Basic scheme with the rule matching module 
inserted. 

Series 3 - Pre-allocate scheme with all hits, i.e., where all 
pre-allocate guesses were correct. 

Series 4 - Pre-allocate scheme with all misses, i.e., where 
all pre-allocate guesses were wrong. 

 
 

Plot of response time vs document size
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 Figure 3. Performance of Pre-allocate Server Scheme  
The response time represents the time difference between 

the time when the first packet for the request was seen at CS 
and the time when first packet of response of "correct" real 
server seen at CS. The document size represents the size of 
different set of HTTP POST requests used. As shown in the 
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Figure 3 the pre-allocate server scheme with all hits has almost 
constant response time whereas with all misses the response 
time is somewhat poorer than basic non-pre-allocate schemes. 
This is due to extra processing done in hash table lookup and 
delay associated with examining the response from the initial 
wrongly guessed real server. If we take the average case 
scenario to be somewhere between pre-allocate best case and 
pre-allocate worst case, we can see the improved performance 
in pre-allocate scheme. 

The comparison between series 1 and series 2 obviously 
shows the overhead of rule matching. 

The present version of content switch does not handle 
multiple requests in a Keep-Alive connection. It passes only 
the first request in a connection for rule matching.  All 
subsequent requests, following the first request, in a given 
connection are routed to the (same) real server chosen via rule 
matching from the first request. Hence, a "true" content switch 
must be able to schedule all HTTP requests in a given 
connection via rule matching and must treat all requests 
uniformly. This will add processing overhead, as all requests in 
a given connection need to be examined. 

In addition to the pre-allocate scheme we have 
implemented two other schemes and compare there 
performance. These two schemes are based on the premise that 
virtual server need not be the sole decision making component 
in a content switching system. If we distribute tasks between 
all working components in the content switching system, we 
can have better resource allocation and hence better 
throughput. This is manifested in the schemes described below. 

The first scheme transfers the sequence number translation 
of the server response at the real server's end, instead of the 
virtual server. The data are queued, and delayed binding and 
the rule matching are the same as in the basic scheme, but once 
the real server is selected, it will be sent information about the 
sequence number expected by the client TCP. The real server 
in this scheme will directly send its response to client without 
virtual server being the default gateway. Hence, in this case the 
real server is aware of the virtual server unlike the basic 
scheme. A new layer were implemented between TCP and IP 
stack of each real server, which will translate the sequence 
number of response data as that expected by the client in 
forward path. In the reverse path, i.e., for ACKs sent by client 
for the response data, this intermediate layer will serve to 
translate the ACK sequence number sent by client to ACK 
sequence number expected by the real server. As evident in 
this approach, the virtual server is freed up from having to deal 
with translating server and client sequence numbers. 

The second scheme, called filtering, transfers both rule 
matching and sequence number translation to the real server. 
The client request will be multicast to all real servers. Until the 
appropriate real server is chosen, the virtual server TCP will 
send ACK to client like the basic scheme, but there will be no 
data buffering at the virtual server. Each real server will 
respond with a response code indicating its alacrity for the 
client request. The real server may also send some load 
balancing information to assist real server selection at the 

virtual server. The virtual server will use the response code 
from each of the real server to issue a final "voting" decision as 
to who will serve the client request. The selected real server 
will be allowed to send its response and information about 
client expected sequence number will be sent to it. A TCP reset 
will be sent to the rejected real servers. The real server will 
send its response to client directly in this case too. 

5. Conclusion 
We have discussed the problems encountered in the design 

and implementation of Linux LVS-based Content Switch and 
presented our solutions to these problems.  A pre-allocate 
server scheme for improving the TCP delayed binding 
performance is proposed and implemented. The performance 
results of the content switch with the basic TCP delayed 
binding and that of pre-allocate server scheme are presented.  It 
shows that the pre-allocate server scheme improves the 
average performance of a web based content switch. 
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Figure 1. TCP Delayed Binding. 
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