
 1

Enhance Features and Performance of a Linux-based Content Switch

C. Edward Chow and Chandra Prakash
Department of Computer Science,

University of Colorado at Colorado Springs,
Colorado Springs, CO 80933-7150, USA

{chow, cprakash}@cs.uccs.edu
Tel: (719)262-3110

FAX: (719)262-3369

Abstract

In this paper we discuss the problems encountered in the
development of a Linux LVS-based content switch and present
their solutions. A pre-allocate server scheme is proposed to
improve the TCP delayed binding bottleneck, and performance
of its implementation is presented. The content switch rule
syntax is extended to allow the extraction of specific tag values
in the XML requests.

Keywords: Content Switch, Cluster, TCP Delayed Binding,
Load Balancing, Network Architecture

1. Introduction
The tremendous growth in World Wide Web usage has

become a double-edged sword for operators of large Web
Sites. On the one hand, increases in request volume translate
into increased subscription, advertising, and hosting revenue.
On the other hand, scaling web sites to meet this increased
demand has become more and more difficult as the number of
requests for content exceed a particular server's ability to
respond. In the best case, users will experience degraded
service, in the worst case the server can be driven to collapse
resulting in a complete loss of service.

One approach to alleviate handling of large volume of
requests is to distribute their load among a group of nearly
identical servers [1]. A master controller, that can be a
dedicated host or a process, first receives the requests and
delegates it to the appropriate real server [2,3]. This describes a
typical load balancing system. A content switch is such a front
end of a load balancing system that distributes load based on
the content of the received requests.

There are conventional ways of load balancing at the
transport layer, i.e., Layer 4 of TCP/IP. One of them is to use
the port number of the incoming request and direct it to a real
server responsible for handling the response for that specific
port. For example, if the port number in the incoming request
is 21 it can be routed to machine catering FTP requests and if
the port number is 80, it is routed to host running HTTP server.
This mechanism cannot differentiate among requests with
different content.

The web based content switch uses the content of web
request to select a real server [4,5,6,7]. For example, a content
switch can make routing decisions based on URL of incoming
web request. In electronic commerce systems, a content switch

may route the incoming request based on the purchase amount,
or the customer ID contained in the XML content of the
request. The routing decisions are typically expressed in terms
of rules where conditions classify the packets for different
routing actions.

The terms in these rule conditions can include a matching
function for checking whether the URL matches a regular
expression. For example, the rule “if (match(URL, “.gif$”) {

routeTo(imageServer)}” allows the routing decision based on the
file extension of the request. The terms can also be a relational
operation on a XML tag value. For example, rule “if

(xml.purchase/totalAmount>50000) {routeTo(highSpeedServer)}” allows
the purchase of higher amount to be treated differently. This
requires the efficient parsing of the XML document in the
payload for specific XML tags that are referenced in content
switching rule set. We have implemented a Linux LVS-based
content switch, LCS version 0.1, uses Network Address
Translation (NAT) based IP virtual service [8,9]. It allows the
specification of such rule syntax.

Since many network services are based on TCP protocol,
the web switch needs to perform three-way handshake (Sync,
Sync-Ack, Ack message exchange) with the client before it can
receive the application level content. After selecting the real
server based on the content, the content switch needs to go
through three-way handshake with the chosen real server and
then relay the application layer request. This is called TCP
delayed binding. Since the sequence numbers committed by
the content switch and that by the real server for the session are
different, the content switch needs to convert the sequence
numbers in every packet that follows. This introduces a lot of
packet processing overhead.

In this paper, we present a pre-allocate server scheme that
can reduce the TCP delay binding processing overhead. We
have also discussed the problems encountered in the
development of the LCS and presented their solutions. Based
on our experience and problems encountered during the design
and implementation of LCS, we present suggestions for better
component design and overall improvement of content
switching systems.

2. Problems and Solutions for Content Switch Design
In this section we discuss the content switch design issues

related to content processing, improving TCP delayed binding,
and client request buffering.

 2

2.1. Handling request with multiple packets

If the client’s request is too big to fit in one TCP segment,

the content switch has to wait for all the segments that
comprise that request before commencing the rule matching.
This is especially true of non-idempotent HTTP requests like
PUT and POST, and for e-commerce applications with large
XML request. This further gives rise to the following sub-
problems that we had to account for:

Determine the content length

We had to determine the content length of the variable
incoming data stream in order to flag the end of client request.
The content length information of such request can be obtained
from the "Content-Length" meta-header in the HTTP request.
However, the value of the content length itself can span across
multiple segments as shown in the example below:

TCP Segment n contains:

POST /cgi-bin/cs622/purchase.pl HTTP/1.0\r\n
Referer: http://archie.uccs.edu/~acsd/lcs/xmldemo.html\r\n
Connection: Keep-Alive\r\n
User-Agent: Mozilla/4.75 [en] (X11; U; Linux 2.2.16-
22enterprise i686) \r\n
Host: viva.uccs.edu\r\n
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*\r\n
Accept-Encoding: gzip\r\n
Accept-Language: en\r\n
Accept-Charset: iso-8859-1,*,utf-8\r\n
Content-type: application/x-www-form-urlencoded\r\n
Content-length: 7

TCP Segment n+1 contains:

53\r\n
data (753 bytes)

As seen in the above example the individual bytes of the

content length are split across two consecutive TCP segments,
the first segment contains 7 and the next segment contains the
remaining two byte, i.e., 53. This is true for any field within
the HTTP request header, even for the sequence of data bytes
that form the "Content-Length" string.
Fragmentation of application level content
After the content length is determined, the content switch can
then wait for all the packets of the same request. Typically,
these packets are saved in different memory area. In Linux,
they are saved in sk_buff structures linked by double link list.
Each of these data structures contains the timestamp, TCP/IP
headers, followed by the content payload. Therefore, the actual
content is fragmented and spread out in these network buffers.
Extracting URL field in the HTTP request is easy, since it is in
the first packet. But for extracting other meta-headers and

especially the XML tag values in the content field of the HTTP
request, the fragmentation of the TCP payload content post
difficult challenging problem for the content switch designers.
One approach is to concatenate all individual non-contiguous
TCP segments back to back into one coherent buffer, that can
then be used for XML parsing, or pattern matching. Another
approach is to redesign the XML parsing or pattern matching
so that they can work with data that spread across several
segments. A specialized memory address mapping hardware
similar to the translation look-aside cache used in virtual
memory system can also help speed up the packet processing.

The first approach requires the expensive memory copying
and uses additional memory. The original TCP segments are
not released after the concatenation of their payload content,
since once the real server is selected, these TCP segments will
be modified and sent to the chosen real server. The
modification includes the destination IP address field, possibly
the TCP port field, the ACK sequence number, and very
importantly the checksum.

While buffering client data, the content switch has to send
ACK's for the segments that comprise the client request,
otherwise the client TCP will assume that the server is dead or
is very slow, and will not send subsequent packets. This is
achieved by invoking appropriate ACK sending routines from
the IP layer of the content switch.

For large sized (> 40K) client requests, we also observed
some of the relayed segments were dropped by the chosen real
sever. Further analysis indicated that the problem is due to the
segment relay by the content switch is implemented in IP
instead of TCP layer. The data sending was done continuously
from the queued buffers without considering the window
advertised by the TCP stack of the real server. This flooding of
data caused the real server to drop some of the received TCP
packets. It was observed that the acknowledgment number sent
by the real server was held constant, even though the content
switch had emptied all buffered data. The result was that there
was no response seen from the real server, as it had not
acknowledged receipt of all data. This problem was solved by
having the content switch keep track of the real server
acknowledgment number along with buffering of last packet
sent to it. When the acknowledgment sent by the real server
was less than the next sequence number of the packet to be
sent subsequently, the last sent packet was retransmitted. The
next sequence number is computed from the sequence number
of the last packet and size of data in it. This retransmission
helped alleviate packet flooding at the real server and ensure
all client data are properly received.

2.2. Handle Different Data Encoded Methods

There are two basic ways for submitting the XML-based

request to the web server. One is to use the form with text
input or text area input. The other is to use submit it as XML
document. When submitting it with form, the XML request
data are encoded using the x-www-form-urlencoding method
and the “Content-Type” meta-header will have the value of

 3

“x-www-form-urlencoded”. When submitting it as XML
document, the “Content-Type” meta-header will have the value
of “text/xml” and the content are submitted in plain text
without further encoding. With the latter encoding type, all
special characters like line feed (\n), carriage return (\r), left
anchor (<) and right anchor (>) etc. retain their ASCII
representation. In the former encoding type the special
characters have encodings like "%XX", where XX is the
hexadecimal representation of ASCII value of that special
character. For example, for the "x-www-form-urlencoded"
encoding type, the values for the exemplified special characters
will be "%0A", "%0D", "%3C" and "%3E" respectively.
Hence, the rule matching module need to correctly parse the
XML content of the client request depending on the content
type.

2.3. Allow Referencing Specific XML Tags

The rule specification scheme should be flexible enough to

account for the exact tag name or rule field indicated in the
rule specification. Here is an example that illustrates this point.
Consider the XML document:

<purchase>
 <customerName>CCL</customerName>
 <customerID>111222333</customerID>
 <item>
 <productID>309121544</productID>
 <unitPrice>5000</unitPrice>
 <subTotal>50000</subTotal>
 </item>
 <item>
 <productID>309121538</productID>
 <unitPrice>200</unitPrice>
 <subTotal>2000</subTotal>
 </item>
 <totalAmount>52000</totalAmount>
</purchase>
<purchase>
<customerName>CDL</customerName>
 <customerID>111222444</customerID>
 <item>
 <productID>30913555</productID>
 <unitPrice>3000</unitPrice>
 <subTotal>20000</subTotal>
 </item>
<totalAmount>20000</totalAmount>
 </purchase>

In the above XML document, some of the tags are

repeated, e.g., purchase, item, totalAmount. Hence a rule
syntax is needed to allow for selecting a particular set of tags
in the rule set. Here is an example of a scheme that addresses
this problem. To specify a rule based on subTotal value
present in the second item tag within the first purchase tag, the
condition of the rule will be specified as

“purchase:1.item:2.subtotal > 5000”. As another example,
“purchase:2.totalAmount < 15000” specifies the condition of a
rule based on the totalAmount tag present within the second
purchase tag.

2.4. Handle Long Transactions in SSL and Email network
services

In our Linux-based Content Switch, the content/header
extraction and rule matching are performed in the kernel to
avoid unnecessary copying. However, we have found that for
network services that requires long computation and interface
with other packages, some of the packet processing functions
are better handled at the application level. For example, there
are a lot of packages, including McAfee’s uvscan and
AMAVis scanmail, mutt (recombine email component), for
detecting and removing email virus, but almost all of them are
implemented in application level and interact with the
sendmail program. It will require significant effort to rewrite
them as kernel modules. Same observations were derived on
SSL processing.

SMTP goes through long message exchange between the
client and the server. The client sends a sequence of messages
including HELO, MAIL FROM, RCPT TO, Data, followed by
the actual body of the message. The server will respond with
the specific code and confirmation message. Therefore the
important email addresses for the sender and the receiver will
appear at different stages of the transaction. The content
switch needs to be able to store these messages in the buffer.
Once the related header information is extracted and rules
matched, these messages will be forwarded to the real mail
server. For spam mail removal, the sending email address is
extracted from the MAIL FROM message. For incoming
email load balancing, the receiving email address is extracted
from the RCPT TO message. Compared with SMTP, the
processing of IMAP or POP is much simpler, since we only
need to wait for the login in USER message for load balancing
rule matching, but they have the same requirement for storing
and forwarding the message sequence to the real server.

3. Design of Pre-allocate Server Scheme

The content switch has to buffer application level data for

rule matching before the selected real server can be chosen.
This is called TCP Delayed Binding as the response is
delivered to the client after some delay associated with the
buffering of client data and the rule matching [2]. This is
shown in the Figure 1. Here we assume that the size of the http
request can fit in one TCP payload and the request are sent in
one IP packet. In real networks, we have observed that a
request got split into two IP packets even though there are less
than 800 bytes. In Figure 1, it is also assumed that the return
document is small and can be fit into one IP packet. In typical
web access, the return document is sent over multiple IP
packets. CSEQ is the sequence number chosen by the client.
DSEQ is the sequence number chosen by the content switch on

 4

behalf of the real server. SSEQ is the sequence number chosen
by the real server. Note that at Step 9, the content switch needs
to change the sequence number from the real server to
DSEQ+1; while at Step 10, the ACK number needs to be
changed to SSEQ. The modification of the sequence number
and the IP address fields need be performed for all the
following packets over the same session.

We implemented a heuristic solution to this TCP delayed
binding problem, where the client and real server mapping is
pre-allocated and stored in a hash table with (hash) key as the
client address. When a client sends a request to the content
switch for the first time, there would not be any entry in the
hash table and the request will go via normal data buffering
and rule matching scheme, and an entry will be added to the
pre-allocate hash table with the client IP address as key and the
real server address as data. When the same client happens to
send the next request, an entry will be found in the pre-allocate
hash table and the client request will be directly forwarded to
the real server addressed by the matching hash table entry. This
avoids the rule matching overhead.

Figure 2a shows the modified delay binding in the pre-
allocate scheme, when the pre-allocate server is the right one.
Figure 2b shows the message exchange among the pre-allocate
server, the right server, the content switch, and the client, when
the guess it wrong. Note that when the guess it right, the web
access can be complete in six steps instead of ten steps, and
there is no need for sequence number modification for Step5
and Step6. When the direct routing or IP tunnel scheme is
used instead of NAT, the return document can be sent directly
to the client and reduce the processing overhead at the content
switch.

 For subsequent requests, when there is a matching hash table
entry found in the pre-allocate hash table, it may happen the
real server specified by the matching entry may not be the
correct real server for that request. In that case the pre-allocate
scheme degenerates to the default case, where rule matching is
done for the client request. The worst case scenario in the pre-
allocate scheme is where the real server specified in the
matching hash table entry comes out to be wrong. Hence, it
mandates that the client data be always buffered as done in the
default scheme.

The content switch must examine the response from the
real server specified in the matching hash table entry, before
applying the degenerate rule matching. If the response does not
contain HTTP response code 200 (HTTP OK), then the content
switch switches to the default scheme. If the response code is
200, we free up the queued client request.

In our implementation if the real server specified in the
matching hash table entry and the real server selected via rule
matching after a wrong pre-allocate guess are same, we allow
the response from the wrongly guessed real server to be
forwarded to the client.

4. Performance of Pre-allocate Server Scheme
To evaluate the performance of the pre-allocate server

scheme, a testbed with one content switch and two real server
was set up with the following configurations:

Machine Spec IP Address OS Web Server
viva.uccs.edu
P5 240MHz

128MB
(Content Switch)

128.198.192.192 Redhat 6.2
running LCS0.2
kernel based on
Linux 2.2-16-3

Apache 1.3.14

ace.uccs.edu
P5 166MHz

64MB
(Real Server 1)

128.198.192.198 Redhat 6.2
running LCS0.2
kernel based on
Linux 2.2-16-3

Apache 1.3.14

vinci.uccs.edu
P5 240 MHz

128MB
(Real Server 2)

128.198.192.183 Redhat 6.2
running

LCS0.2 kernel
based on Linux

2.2-16-3

Apache 1.3.14

We compared the response times of various document size

between basic TCP delayed binding scheme and the pre-
allocate scheme with the following set of series as shown in
Figure 3:

Series 1 - Basic scheme with no rule matching module
inserted, i.e., using default IPVS.

Series 2 - Basic scheme with the rule matching module
inserted.

Series 3 - Pre-allocate scheme with all hits, i.e., where all
pre-allocate guesses were correct.

Series 4 - Pre-allocate scheme with all misses, i.e., where
all pre-allocate guesses were wrong.

Plot of response time vs document size

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000
220000
240000
260000
280000
300000
320000
340000
360000
380000
400000
420000
440000
460000
480000
500000

0 10000 20000 30000 40000

bytes

m
ic

ro
se

co
n

d
s

Series1

Series2

Series3

Series4

 Figure 3. Performance of Pre-allocate Server Scheme
The response time represents the time difference between

the time when the first packet for the request was seen at CS
and the time when first packet of response of "correct" real
server seen at CS. The document size represents the size of
different set of HTTP POST requests used. As shown in the

 5

Figure 3 the pre-allocate server scheme with all hits has almost
constant response time whereas with all misses the response
time is somewhat poorer than basic non-pre-allocate schemes.
This is due to extra processing done in hash table lookup and
delay associated with examining the response from the initial
wrongly guessed real server. If we take the average case
scenario to be somewhere between pre-allocate best case and
pre-allocate worst case, we can see the improved performance
in pre-allocate scheme.

The comparison between series 1 and series 2 obviously
shows the overhead of rule matching.

The present version of content switch does not handle
multiple requests in a Keep-Alive connection. It passes only
the first request in a connection for rule matching. All
subsequent requests, following the first request, in a given
connection are routed to the (same) real server chosen via rule
matching from the first request. Hence, a "true" content switch
must be able to schedule all HTTP requests in a given
connection via rule matching and must treat all requests
uniformly. This will add processing overhead, as all requests in
a given connection need to be examined.

In addition to the pre-allocate scheme we have
implemented two other schemes and compare there
performance. These two schemes are based on the premise that
virtual server need not be the sole decision making component
in a content switching system. If we distribute tasks between
all working components in the content switching system, we
can have better resource allocation and hence better
throughput. This is manifested in the schemes described below.

The first scheme transfers the sequence number translation
of the server response at the real server's end, instead of the
virtual server. The data are queued, and delayed binding and
the rule matching are the same as in the basic scheme, but once
the real server is selected, it will be sent information about the
sequence number expected by the client TCP. The real server
in this scheme will directly send its response to client without
virtual server being the default gateway. Hence, in this case the
real server is aware of the virtual server unlike the basic
scheme. A new layer were implemented between TCP and IP
stack of each real server, which will translate the sequence
number of response data as that expected by the client in
forward path. In the reverse path, i.e., for ACKs sent by client
for the response data, this intermediate layer will serve to
translate the ACK sequence number sent by client to ACK
sequence number expected by the real server. As evident in
this approach, the virtual server is freed up from having to deal
with translating server and client sequence numbers.

The second scheme, called filtering, transfers both rule
matching and sequence number translation to the real server.
The client request will be multicast to all real servers. Until the
appropriate real server is chosen, the virtual server TCP will
send ACK to client like the basic scheme, but there will be no
data buffering at the virtual server. Each real server will
respond with a response code indicating its alacrity for the
client request. The real server may also send some load
balancing information to assist real server selection at the

virtual server. The virtual server will use the response code
from each of the real server to issue a final "voting" decision as
to who will serve the client request. The selected real server
will be allowed to send its response and information about
client expected sequence number will be sent to it. A TCP reset
will be sent to the rejected real servers. The real server will
send its response to client directly in this case too.

5. Conclusion
We have discussed the problems encountered in the design

and implementation of Linux LVS-based Content Switch and
presented our solutions to these problems. A pre-allocate
server scheme for improving the TCP delayed binding
performance is proposed and implemented. The performance
results of the content switch with the basic TCP delayed
binding and that of pre-allocate server scheme are presented. It
shows that the pre-allocate server scheme improves the
average performance of a web based content switch.

6. References

1. High Performance Cluster Computing: Architectures and
Systems, Vol. 1&2, by Rajkumar Buyya (Editor), May 21,
1999, Prentice Hall.

2. George Apostolopoulos, David Aubespin, Vinod Peris,
Prashant Pradhan, Debanjan Saha, “ Design,
Implementation and Performance of a Content-Based
Switch”, Proc. Infocom2000, Tel Aviv, March 26 - 30,
2000, http://www.ieee-infocom.org/2000/papers/440.ps

3. Linux Virtual Server (LVS) documentation,
http://linuxvirtualserver.org/Documents.html.

4. “Foundry ServIron Installation and Configuration Guide,”
May 2000.rhttp://www.foundrynetworks.com/techdocs/SI/
index.htm.

5. “Intel IXA API SDK 4.0 for Intel PA
100,”http://www.intel.com/design/network/products/softw
are/ixapi.htm and
http://www.intel.com/design/ixa/whitepapers/ixa.htm#IX
A_SDK.

6. F5 BIG IP,
http://www.f5.com/f5products/bigip/bigipwhitepapers.htm
l.

7. CISCO Content Services Switch Configuration guide,
http://www.cisco.com/univercd/cc/td/doc/product
/webscale/css/css_410/advcfggd/index.htm.

8. C. Edward Chow and Weihong Wang, “Design and
Implementation of a Linux-based Content switch,” to be
published in Proceeding of International Conference on
Parallel and Distributed Computing, Applications,
andTechniques (PDCAT) 2001, Taipei, Taiwan.

9. C. Edward Chow Ganesh Godavari, and Jianhua Xie,
“Content Switch Rules and their Conflict Detection,” to be
published in Proceeding of International Conference on
Parallel and Distributed Computing, Applications,
andTechniques (PDCAT) 2001, Taipei, Taiwan.

 6

client Content switch server

step1

step2

step3

step4

step5

step6

step7

step8

step9

step10

SYN(CSEQ)

SYN(DSEQ)
ACK(CSEQ+1)

ACK(DSEQ+1)

DATA(CSEQ+1)
ACK(DSEQ+1)

SYN(CSEQ)

SYN(SSEQ)
ACK(CSEQ+1)

ACK(SSEQ+1)

DATA(CSEQ+1)
ACK(SSEQ+1)

DATA(SSEQ+1)
ACK(CSEQ+lenR+1)

DATA(DSEQ+1)
ACK(CSEQ+lenR+1)

ACK(SSEQ+lenD+1)ACK(DSEQ+lenD+1)

lenR:size of http request
lenD:size of return document

Figure 1. TCP Delayed Binding.

Client Content Switch Pre-allo cat e S erv er

step 1

step 2

step 3

step 5

step 6

SYN(SSEQ)
ACK(CSEQ+1)

SYN(CSEQ)

ACK(SSEQ+1)

DATA(CSEQ+1)
ACK(SSEQ+1)

SYN(CSEQ)

SYN(SSEQ)
ACK(CSEQ+1)

ACK(SSEQ+1)

DATA(SS EQ+1)
ACK(CSEQ+LenR+1)

DATA(SS EQ+1)

ACK(CSEQ+lenR+1)

ACK(SSEQ+lenD+1) ACK(SSEQ+LenD+1)

lenR: size of http request

lenD: size of return document

step 4 DATA(CSEQ+1)
ACK(SSEQ+1)

Figure 2a. Pre-allocate server scheme w hen guess it right.

Client Content Switch Pre-allo cat e S erv er

step 4

SYN(SSEQ)
ACK(CSEQ+1)

SYN(CSEQ)

ACK(SSEQ+1)

DATA(CSEQ+1)
ACK(SSEQ+1)

step 1

step 2

step 3

SYN(CSEQ)

SYN(SSEQ)
ACK(CSEQ+1)

ACK(SSEQ+1)

lenR: size of http request

lenD: size of return document

FIN (CSEQ+1)

step 9

step 10

DATA(RSEQ+1)
ACK(CSEQ+LenR+1)

DATA(RSEQ+1)
ACK(CSEQ+lenR+1)

ACK(RSEQ+lenD+1) ACK(RSEQ+LenD+1)

Right Server

step 5

step 6

step 7

SYN(CSEQ)

SYN(RSEQ)
ACK(CSEQ+1)

ACK(RSEQ+1)

Figure 2b. Pre-allocate server scheme w hen guess it w rong.

step 8 DATA(CSEQ+1)
ACK(RSEQ+1)

