
 

  

DESIGN OF AN AUTONOMOUS ANTI-DDOS NETWORK (A2D2) 

by 

ANGELA CEARNS, B.A. 

University of Western Ontario, London, Ontario, Canada, 1995 

 

A Thesis 

Submitted to the Faculty of Graduate School of the  

University of Colorado at Colorado Springs  

in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Engineering 

Department of Computer Science 

2002 



    

  

ii 

  Copyright By Angela Cearns 2002 

All Rights Reserved 



    

  

iii 

This thesis for the Master of Engineering degree by 

Angela Cearns 

has been approved for the 

Department of Computer Science 

by 

 

_______________________________________________________ 

Advisor: Dr. C. Edward Chow 

 

_______________________________________________________ 

Dr. Jugal K. Kalita 

 

_______________________________________________________ 

Dr. Charles M. Shub 

 

 

   

 Date 



    

  

iv 

Design of an Autonomous Anti-DDoS Network (A2D2) 

by 

Angela Cearns 

(Master of Engineering, Software Engineering) 

Thesis directed by Associate Professor C. Edward Chow 

Department of Computer Science 

 

Abstract 

Recent threats of Distributed Denial of Service attacks (DDoS) are mainly 

directed at home and small to medium sized networks that lack the incentive, 

expertise, and financial means to defend themselves. Using the Evolutionary Software 

Life-Cycle model, this thesis designs an Autonomous Anti-DDoS Network (A2D2) 

that integrates and improves on existing DDoS mitigation technologies.  A2D2 

provides an affordable and manageable solution to small and medium networks, and 

enables small office and home office (SOHO) networks to take control of their own 

defense within their own network boundary. Test-bed results show that A2D2 is 

highly effective in ensuring Quality of Service (QoS) during bandwidth consumption 

DDoS attacks. The A2D2 test-bed has demonstrated significant intrusion tolerance 

against attacks of various types, including UDP, ICMP and TCP based DDoS attacks.  
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Chapter 1  

Introduction 

Since early 2000 when a number of high profile sites such as eBay and 

Yahoo.com were halted by Distributed Denial of Service (DDoS) attacks [Dit00], the 

initial furor has subsided but the continual threat has ascended. The prevalence of 

DDoS attacks was verified by a recent study conducted by the University of 

California, San Diego (UCSD), that detected approximately 12,805 Denial of Service 

(DoS) attacks against more than 5,000 targets during a three-week period in mid-2001 

[MVS01]. Even CERT, the authority that warns Internet users on security threats, fell 

victim to DDoS in May 2001 [ITW01]. The Computer Security Institute (CSI) and the 

Federal Bureau of Investigation (FBI) reported in April 2002 that attacks had 

continued to “climb for third year in a row”, with 40 percent of the 503 surveyed 

corporations, government agencies and universities detecting DoS attacks in 2002  

[CSI02].  

The increase of DoS attacks can partly be attributed to the development of 

more sophisticated and “user-friendly” tools such as Trinoo [Dit99], Trible Flood 



     

  

2 

Network (TFN)[Dit99], and Stacheldraht[Dit99]. Such tools have amplified the 

impact of DoS attacks exponentially through distributed channels and created a new 

variation of attacks called DDoS. The following sections describe the various types of 

DoS attacks, how these attacks evolve into DDoS attacks and what popular products 

are in the market that defend against DoS and DDoS attacks are. 

1.1 Denial of Service Attack (DoS)  

 One widely accepted definition of computer security is the attainment of 

confidentiality, integrity, and availability in a computer system [RS91]. 

Confidentiality refers to the protection of information from unauthorized access. 

Integrity prevents data from being altered accidentally or by malicious attempts. 

Availability ensures the provision of quality resources and service to users as needed. 

DoS attacks target the availability aspect of computer security and deny services or 

resources to legitimate users. According to CERT, DoS attacks can be categorized into 

three types:  

•  Consumption of scarce, limited, or non-renewable resources 

•  Destruction or alteration of configuration information 

•  Physical destruction or alteration of network components [CERT01] 
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1.1.1 DoS – Consumption of Limited Resources 

The operations of computers and networks rely on the availability of various 

resources such as network bandwidth, data structures, disk space, and power supply. A 

consumption DoS attack may be executed against any resource. For example, a TCP 

half-open attack consumes the kernel data structures involved in establishing a TCP 

network connection [Comer00]. When a computer receives a TCP SYN connection 

request, it responds with a SYN-ACK acknowledgement packet while keeping track of 

the SYN request in the kernel data structure. Such a TCP connection is considered 

half-opened and will remain open until the computer receives an ACK response from 

the initiating host completing the connection. A TCP half-open attacker can initiate 

enough half-open connections so that the victim machine is left with no data structure 

to service additional connection requests from legitimate clients. 

 In a bandwidth-consumption attack, an intruder directs a large number of 

packets towards your network, thereby consuming all the available bandwidth and 

stopping legitimate packets from accessing the congested network link. An attacker 

can also consume other resources such as disk space by generating excessive numbers 

of mail messages.   

1.1.2 DoS – Destruction or Alteration of Configuration 

Information 

In such attacks, an intruder may modify or destroy the system configuration 

information of the computer, such as the registry on a Windows NT machine or the 
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routing information of routers. Such alteration may render certain functions 

unavailable, cause the systems to crash, or disable network connection by routing all 

packets to the attacker’s server instead of the legitimate server.  

1.1.3 DoS – Physical Destruction or Alteration of 

Computer Components 

Perhaps the first DoS attack in history is the physical destruction of a computer 

component where an intruder disconnects power supply, slivers wires, and disables 

cooling stations so that the systems cannot service the clients. 

1.2 Distributed Denial of Service Attack (DDoS) 

Distributed Denial of Service (DDoS) attacks are any DoS attacks where tools 

are employed to rapidly “recruit” and coordinate attacks using a mass number of 

conspirators from widely diverse systems around the globe. A detailed account of the 

evolution of DDoS tools is provided by Dave Dittrich at the University of Washington 

[Dit00]. Dave Dittrich also conducted comprehensive analyses of such DDoS tools as 

Trinoo, TFN, Stacheldraht, and mstream [Dit99]. According to Dittrich, a DDoS 

attack is conducted in two phases: initial intrusion (Phase 1) and the DoS attack (Phase 

2) [Dit00]. 

 During the initial intrusion phase, the mastermind intruder identifies 

compromised hosts using vulnerability-scanning tools such as nmap [Nmap02] and 

whisker [Whi00]. To further distance his or her involvement, the chief intruder will 
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organize the compromised systems into various categories with different functions 

assigned to them. A compromised system may be designated as an attack commander 

or a “client” who contains the blue-print of the attack plan. A few compromised 

systems will be defined as the “handlers” or the middlemen who coordinate the attack 

agents, while a vast number of systems will take on the role as the “attack agents” who 

launch the actual floods. This preliminary scanning and organization step may take 

days or weeks to accomplish. Once the list of compromised systems is organized, the 

intruder installs the appropriate scripts on the client, handlers, and attack agents. The 

agent installation step takes approximately three to six seconds for each host. The 

attack network of 2,200 systems used against the University of Minnesota in August 

1999 would have taken around two to four hours to set up [Dit00]. 

 Phase 2 of a DDoS attack is the actual denial-of-service attack. The 

mastermind intruder communicates with the client when he or she wants to instigate 

an attack at a certain moment. More often, in order to conceal his or her involvement 

in the attack, the mastermind intruder installs certain instructions on the client that 

specify the date, time, duration of the attack and the intended victim. Based on the 

attack blueprint, the client automatically commands the handlers to launch an attack 

against the intended victim at the specified date and time. Upon receiving the client’s 

command, the handlers coordinate the attack agents to start a traditional DoS attack 

against the ultimate victim. The actual attack can be of any DoS types, such as the 

ping flood bandwidth consumption attack [Dit99]. The overall attack impact is 

amplified by the number of attack agents involved. A typical DDoS architecture is 
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illustrated in Figure 1.1. 
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Figure 1.1 – A typical DDoS Architecture 

 

The distributed nature of the DDoS attack has made it extremely difficult to 

trace and stop the attack. While a single DoS attacker may not be able to shut down a 

large web-based commercial site such as Amazon.com, the cooperative power of a 

diverse group of attack agents with various levels of resources can easily make any 

network inoperable. With one DoS attacker, it is possible to trace and stop the attack. 

When the attack source composes thousands of computers distributed across the 
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world, the task to trace and stop the DDoS attack instantaneously becomes 

improbable. In addition, since there is no communication between the mastermind 

intruder and the client during an attack, it is often impossible to trace back to the 

mastermind intruder even if the agents, handlers and the client can be identified. 

1.3 Mitigation Systems Against DoS and DDoS 

To date, a myriad of commercial devices have been introduced to attempt to 

combat DoS and DDoS attacks. Network Computing has conducted a comparative 

study on some of the more promising anti-DDoS systems in the Neohaspsis labs in 

Chicago and the results were released in December 2001[For01]. The anti-DDoS 

devices studied vary vastly, ranging from switches, routers, to load-balancers, 

firewalls, intrusion detection system (IDS) and traffic analyzers. Some devices, such 

as the Mazu TrafficMaster Enforcer and the Reactive FloodGuard, were designed 

solely for the purpose of handling DoS attacks. Others, such as the Foundry ServerIron 

400 and Top Layer AppSwitch 3500, mitigate DDoS through their application 

switching function. Products such as Captus Networks CaptIO G-2 and Radware 

FireProof are firewalls that guard against DoS. While these systems provide automatic 

mitigation, the cost ranges from a monthly charge that starts at $5,000 to a one-time 

product purchase price of $150,000.  

Other devices, such as Asta Networks’ Vantage System Enterprise and Arbor 

Networks’ Peakflow DoS, do not respond to DoS attacks automatically. Instead, these 

devices perform sophisticated data analysis on abnormal traffic patterns and advise the 
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administrators on appropriate mitigation actions. These systems may provide more 

accurate reports of possible attacks and reduce the chances of automatically blocking 

legitimate traffic during false alarms. However, like the automated mitigation systems 

evaluated in the study, the cost is hefty with starting prices ranging from $8,000 to 

$130,000.  

Administrators interested in assembling their anti-DDoS systems do not face 

cheaper alternatives. An average IDS, such as the Cisco IDS, the Dragon IDS and the 

ISS RealSecure costs $7,500 to $25,000 depending on the number of nodes and 

network bandwidth [Des02]. Firewall systems, such as Cisco PIX, Check Point 

firewall, Nokia IP platform, Sysmaster from SysMaster Corporation, Watchguard 

Firebox and Sidewinder firewall, range from around $300 to $14,000. The cost of 

setting up a network against DDoS attacks can quickly sum up to tens of thousands of 

dollars after adding a few routers and other network components. Despite the financial 

investment, it is impossible for these devices to defend against all types of DDoS 

completely due to the changing nature of the attacks. 

According to the research conducted by UCSD in 2001, a predominant number 

of DDoS are targeted towards home networks and to smaller and medium-sized 

businesses  [MVS01]. Since the commercial systems against DDoS are expensive and 

yet imperfect solutions, small networks may see their needs to guard against DDoS as 

a low priority and thus increase their chance of being victimized. Other home and 

medium-sized businesses may not have the resources, knowledge base, and financial 

means to implement the anti-DDoS commercial systems described above. Therefore, 
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this thesis explores an autonomous defense-architecture against DDoS that can be 

easily deployed in a small or medium sized network where administrators’ time is 

scarce and financial support is limited. Specifically, the Autonomous Anti-DDoS 

(A2D2) network proposed in this thesis aims to maximize the quality of service of the 

victim network automatically during a DDoS bandwidth consumption attack. 
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DDoS Defense Research 

In general, DDoS defense research can be roughly categorized into three areas: 

intrusion prevention, intrusion detection, and intrusion response. Intrusion prevention 

focuses on stopping attacks before attack packets reach the target victim. Intrusion 

detection explores the various techniques used to detect attack incidents as they occur. 

Intrusion response research investigates various techniques to handle an attack once 

the attack is discovered. In addition to these three research areas, intrusion tolerance, 

once a sub-field of intrusion response, is emerging as a critical research domain. 

Intrusion tolerance responds to attacks by minimizing the attack impact. This section 

reviews key research in each of these four areas.  

2.1 Intrusion Prevention 

The best mitigation strategy against any attack is if the attack never occurs. 

Research in intrusion prevention has stressed the importance of a well-defined security 
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policy. Another approach to prevent DDoS attack is to stop the attack traffic before 

it reaches the victim as presented by research on Ingress and Egress filtering. 

2.1.1 General Security Policy 

“A security policy defines the set of laws, rules, and practices that regulate 

how an organization implements, manages, protects, and distributes computing 

resources to achieve security objectives.” [CERT98].  Security policies help 

organizations to define the type of DDoS and other threats they choose to guard 

against and to incorporate various advisories to prevent these threats.   

2.1.2 Ingress and Egress Filtering  

 Many DDoS tools alter the source IP addresses of attack packets to illegitimate 

addresses in the Internet name space such as “0.4.7.28”. Tracing of the attack source 

will indicate the illegitimate IP address and the firewall therefore “effectively” blocks 

a non-existent address as shown in Figure 2.1.  
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Attack Agent
128.198.45.1

Firewall Server

Internet
Sends 1000 Packets

source ip
0.4.7.28

Block

Non-exist

 

Figure 2.1 - Illegitimate IP Spoofing 

Alternatively, the source addresses of the attack packets can be changed to that 

of a victim’s so that the real victim will be identified as the attacker. By tracing and 

blocking the source IP of such spoofed packets, the DDoS mitigation network 

essentially denies service to the real victim and achieves the denial of service that the 

master attacker intends.  

Attack Agent
128.198.45.1

Victim
207.138.51.17

Firewall Server

Internet
Sends 1000 Packets

source ip
207.138.51.17

Block

 

Figure 2.2 – Victim IP Spoofing 
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IP spoofing has made it impossible to track down the attack source. 

Research on ingress and egress filtering has targeted this “feature” of the DDoS tool 

and presented an effective way to limit the damage created by such a DDoS attack 

[Cis99, FS00]. In egress filtering, network routers will only route packets with 

addresses from its own assigned IP addresses space to the Internet [San00]. Ingress 

filtering denies all traffic with addresses nonconforming to the Internet Address space 

from entering a network. A router implementing ingress filtering can also restrict 

transit traffic that originates from a downstream network to known prefixes [IET00].  

Therefore, ingress and egress filtering can intercept an attack packet with an 

illegitimate source IP address; discard the packet; and thereby prevent the attack 

packet from reaching the Internet and the victim network. If an attack originates from 

a legitimate network, ingress filtering will not be able to filter out attack packets. 

However, since attackers are forced to use addresses from real networks, filtering can, 

at the minimum, expedite packet tracing and enable quick identification of attack 

agents.  

While egress filtering can be effectively implemented by many companies or 

organizations, it becomes difficult or almost impossible for major service providers to 

take advantage of such techniques. These service providers frequently need to forward 

legitimate traffic that is not part of its own address space. Egress filtering also 

becomes extremely complicated in situations where alternate routes are used for traffic 

traversing through various major service providers. Nonetheless, ingress and egress 
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filtering are effective ways to prevent DDoS attacks based on spoofed IP when the 

techniques are deployed close to the end user community [San00]. 

2.2 Intrusion Detection 

An intrusion detection system (IDS) can be installed on a specific host to 

detect invasion against the one host, or be positioned in a network where the IDS can 

monitor all network traffic in a promiscuous mode.  Based on the method of detection, 

both host-based and network-based IDSs can be divided into two categories: anomaly 

intrusion detection and misuse or rule-based intrusion detection [Kum95, Stal99]. 

2.2.1 Anomaly Detection 

 Anomaly detection first quantifies the ‘usual behavior’. System behavior can 

be login and session activities such as the login frequency by day, time and location, 

output quantity or session resource utilization. Behavior can also be command or 

program execution activity such as execution frequency or program resource 

utilization. Other behavior tracked can be file access activity such as file read, write, 

create, and delete frequency [Stal99]. In the case of detecting DDoS bandwidth 

consumption attacks, behavior of interest would be the bandwidth utilization of the 

server network or the session activities received by the clients.  

By observing past history and collecting data of legitimate behavior over a 

period of time, network administrators can obtain a behavior baseline of normal 

activities. Statistical science is then applied to help define the threshold level or the 
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profile that differentiates abnormal behavior from normal behavior [Stal99]. The 

statistical science applied for such differentiation purpose is well developed. Some 

techniques used are Bayesian statistics, covariance matrices, classifying schemes, 

machine learning mechanisms and neural networks [Kum95]. The IDS identifies and 

alerts activities that surpass the thresholds or deviate from the normal behavior profile 

as attack.  

2.2.2 Misuse Detection 

Misuse detection identifies well-defined patterns of known exploits and then 

looks out for the occurrences of such patterns. Intrusion patterns can be any packet 

features, conditions, arrangements and interrelationships among events that led to a 

break-in or other misuse. These patterns are defined as intrusion signatures [NCFF01]. 

In the anti-virus industry, signatures development has been an established field. Anti-

virus products provide signature identification capabilities and virus removal 

functions. Network intrusion signature development, on the other hand, has just 

emerged as a new research area. Each IDS vendor may have vastly different signature 

approaches and methodologies. A recommended approach in Network IDS signature 

development is to focus on the characteristics of the attacks, vulnerabilities and 

exploits  [Fred02]. For example, “ping commands” executed by administrators send 

out legitimate ICMP packets to checks for network connection. These ICMPs have 

small sizes around 64 bytes. In order to consume more bandwidth, attackers often send 

out a large number of ICMP packets that may be as big as 1500 bytes. Based on this 
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attack pattern, an intrusion signature can identify packets whose type is ICMP and 

the packet size is greater than 800 bytes. Such an “ICMP Large Packet” signature can 

generate false positives since ICMP packets can be of various sizes up to 1500 bytes. 

For example, some load balancing applications such as HP-UX systems use 1500 byte 

ICMP packets to determine the most efficient route to a host by measuring the latency 

of multiple paths [Whit01]. However an administrator may still choose to activate this 

signature for his or her network because the incident of legitimate large ICMP packets 

arriving at his or her network is extremely rare.  

2.2.3 Limitations of Anomaly and Misuse Detection 

One limitation of anomaly detection is that it is possible for an attacker to 

“train” an IDS to reclassify the once abnormal behavior as normal behavior. It is also 

difficult to determine the thresholds above which a behavior may be considered 

intrusive. In addition, legitimate users are aware of the normal network behavior, as 

their actions constitute the “normal” behavior pattern. Unauthorized access or usage 

conducted by a legitimate user is easily hidden within anomaly detection. On the other 

hand, misuse detection can identify an attack signature whether the attack is conducted 

by authorized or unauthorized personnel. However, signatures become obsolete once 

attack patterns change. New attacks can be easily created with slight modifications to 

old patterns and new signatures are required. In the event of the “ICMP Large Packet” 

signature described in Section 2.2.2, administrators are required to collect and analyze 

network data to determine the size of the common ICMP packets the network receives. 



   

  

17 

Based on this normal pattern, an administrator can then define the signature of what 

ICMP packet size is considered “large”. Therefore, to effectively detect intrusion, a 

network IDS needs to combine both the statistical anomaly part to measure aberration 

of behavior, and a misuse part that monitors the occurrence of specific patterns of 

events [Kum95, Stal99].  

2.3 Intrusion Response 

 Once an attack is identified, the immediate response is to identify the attack 

source and block its traffic accordingly. Improving attack source identification 

techniques can expedite the capture of attackers and deter other attack attempts. In a 

distributed attack as illustrated in Figure 1.1, attack agents are often disperse around 

the globe and bear no relation with one another, and handlers and clients are a few 

hops away from the attack front. All these elements prolong the time taken to trace 

and identify the real attack source. Before the master intruder can be identified, 

networks often respond to attacks by limiting the rate of certain incoming traffic or 

implement other bandwidth management techniques in hope of maintaining its quality 

of service to legitimate clients. This type of response is referred to as intrusion 

tolerance. Intrusion tolerance has emerged as an important research topic and will be 

described in Section 2.4.    
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2.3.1 Source Identification  

Source identification research investigates techniques to efficiently and 

effectively identify the attack source despite spoofing and distributed tools. Criminal 

arrests made possible by speedy and accurate source identification can be a hindrance 

to other would-be attackers.  The best-known work in this category includes ITRACE 

[IET02, BLT02, MMW+02] and DECIDUOUS [CNW+99].    

DECIDUOUS – Decentralized Source Identification for Network-Based 

Intrusions utilizes the IP Security Protocol (IPSEC) header information to trace the 

attack packet.  Authentication Header (AH) of IPSEC comes after the basic IP header 

and contains cryptographic hashes of the data and identification information, including 

source and destination information [OBSD02]. If an attack packet successfully passed 

a certain router, the router must have authenticated the packet and the router 

information will be contained in the AH of the packet. From an attack victim, a secure 

traceroute can be performed that iteratively displays the steps an attack packet has 

taken to the actual router closest to the source, regardless of what source and 

destination IP address is. 

Among traceback techniques, ITRACE – ICMP traceback and reverse 

ITRACE has been proposed as an industry standard by the Internet Engineering Task 

Force (IETF) [IET02]. In ITRACE, routers generate a “traceback message” that is sent 

along with the forwarded packet to the destination, indicating the router identity that 

the packet just transited. In reverse ITRACE, the traceback message is sent to the 

packet’s claimed source instead of destination. These traceback messages are logged 
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and analyzed by special hosts in chosen points in the network. With enough 

traceback messages from enough routers along the path, the traffic source and path can 

then be determined [IET02].  

2.4 Intrusion Tolerance 

Intrusion Tolerance research accepts the fact that it is impossible to prevent or 

stop DDoS completely. Instead of defeating DDoS, research in this category focuses 

on minimizing attack impact and maximizing the quality of its services. Many 

advances in intrusion tolerance are developed based on two other disciplines: fault 

tolerance and quality of service (QoS). 

2.4.1 Fault Tolerant  

Fault tolerant is a well-developed research area and fault tolerant designs are 

built-in in most critical infrastructures. There are three levels at which fault tolerance 

can be applied: hardware, software and system. Hardware fault tolerance represents 

the traditional fault tolerant measures where extra hardware resources are used to 

continue operations in an event of hardware faults. Software fault tolerance introduces 

mechanisms such as checkpoint restart and recovery blocks to compensate for design 

errors or data structure faults. System fault tolerance compensates failures in other 

system facilities that are not computer-based [NIST95] and ensures availability of the 

entire network and system. The fault tolerant principles of redundancy and diversity 

across the hardware, software, system and network level can be readily leveraged by 
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the intrusion tolerant community [GWW+00]. By duplicating its services and 

diversifying its access points, a network can find ways to continue its services when 

one network link is congested by flooding traffic. 

2.4.2 Quality of Service (QoS) 

 Quality of Service (QoS) describes the assurance of the ability of a network to 

deliver predictable results and services for certain types of applications or traffic 

[Comp, ZOS00]. Network elements within the scope of QoS include availability 

(uptime), bandwidth (throughput), latency (delay), and error rate (packet loss rate) 

[Comp]. Among Internet applications, video and multimedia services that require 

continuous transmission of high-bandwidth media information are particularly concern 

with QoS. Among the most standard QoS techniques used to mitigate DDoS are rate-

limiting and class-based queuing [Cis02, HMP+01]. These techniques are explained in 

Section 2.4.2.1. Often, various QoS techniques are integrated to enable a system that 

demonstrates superior intrusion tolerance and some of these systems are described in 

Section 2.4.2.2.  

2.4.2.1 Intrusion Tolerant QoS Techniques 

 Among frameworks to provide Internet QoS, Integrated Service (IntServ) and 

Differentiated Services (DiffServ) have emerged as the principal architectures 

[ZOS00]. IntServ utilizes Resource Reservation Protocol (RSVP) to coordinate the 

resources allocation along the path that a specific traffic flow will pass. The link 

bandwidth and buffer space are assured for that specific traffic flow. Unlike the per-
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flow based IntServ, DiffServ is a per-aggregate-class based discrimination 

framework. DiffServ makes use of the type-of-service (TOS) byte in the IP header and 

allocates resource based on the TOS of each packet.  

Within the two frameworks, queue management and scheduling are the two data 

operations in router that enables Internet QoS. Queue management controls the length 

of packet queues by dropping or marking packets. Scheduling determines the order by 

which packets are being sent. Queuing techniques are employed extensively to combat 

DDoS attacks. There are many queuing disciplines. The oldest and most widely 

applied queuing technique is Class-based queuing (CBQ). 

 Class-based queuing (CBQ) or traffic shaping sets up different traffic queues 

for different types of packets and for packets of different TOS. A certain amount of 

outbound bandwidth can then be assigned to each of the queues. For example, a Linux 

router can limit ICMP traffic to only 5% of the bandwidth link that connects the router 

to the web server while allowing traffic that targets the multi-media service port of the 

web server 80% of the available bandwidth. Class-based queuing has shown to 

maintain QoS during DDoS attack on clusters of web servers [KMW01, WO01].  

 While queuing or traffic shaping determines the way in which data is sent and 

manages how the outbound link is utilized, the queuing discipline has no control over 

the inbound link and how fast packets arrive. Another QoS technique rate limiting or 

traffic policing applies filters to limit the arrival rate of packets. For example, in 

response to a ping-flood DDoS attack, a system administrator can configure network 

routers to accept only 10 ICMP packets per second and discard the rest of the 
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incoming ICMP packets. Rate limiting happens at a very early stage of kernel 

processing and therefore consumes minimum CPU power in dropping packets. 

 Often, various QoS techniques are integrated to enable a system that 

demonstrates superior intrusion tolerance. However, implementation of multiple 

techniques requires significant administrative effort. For example, if multimedia traffic 

is allotted 80% of the bandwidth, all traffic targeted to the multimedia port will access 

the assigned bandwidth regardless of its source. Should attack traffic exhaust the 

assigned CBQ bandwidth, the system administrator needs to manually identify and 

rate limit possible attack sources. Once rate-limiting is applied for a certain source IP 

or certain type of packet, the rate limit will be in effect until system administrators 

manually remove the rate-limiting condition. If the intrusion detection system tends to 

produce a high frequency of false positives, the quality of service experienced by 

legitimate clients will likely be degraded for a long period of time due to rate-limiting. 

 To alleviate administrators’ workload and to minimize mitigation response 

time during an attack, an autonomous system-approach is necessary. Numerous QoS 

response techniques need to be integrated with detection mechanism so that the 

intrusion tolerant system can produce an automatic response during an attack with 

minimum human intervention.     

2.4.2.2 Intrusion Tolerant QoS Systems 

Various autonomous architectures have been proposed that demonstrated 

intrusion tolerant during DDoS bandwidth consumption attacks. Some representative 

systems are the XenoService [YEA00], the pushback mechanisms proposed by 
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Ioannidis and Bellovin [IB02], and the autonomic response architecture supported 

by The Defense Advanced Research Projects Agency (DARPA) [SDW+01]. 

The XenoService [YEA00] proposed an infrastructure of a distributed network 

of web hosts that respond to an attack on any one web site by replicating the web site 

rapidly and widely among XenoService servers, thereby allowing the attacked site to 

acquire more network connectivity to absorb a packet flood. In order to achieve 

dynamic replication, the Xeno infrastructure requires ISPs worldwide to install 

Xenoservers, which run on top of Nemesis, an operating system designed to support 

QoS. These ISPs then offer web-hosting service at a premium price. During an attack, 

the web site is then replicated to other Xenoservers among the subscribing Xeno-ISPs. 

While such infrastructure can ensure QoS during DDoS attacks, it is doubtful that a 

large number of ISPs worldwide will adopt such infrastructure quickly. Small and 

medium size businesses may not be willing to subscribe to such expensive services. 

The pushback architecture is a promising mitigation technique where routers 

instruct their upstream routers to rate limit during attacks [IB02]. While it is beneficial 

for a particular network to implement pushback within its own network boundary, the 

pushback techniques real value can only be realized when ISPs worldwide make 

agreements on how to honor pushback requests.  

DARPA has supported research on sophisticated autonomic response systems 

based on the Cooperative Intrusion Traceback and Response Architecture (CITRA) 

and the Intruder Detection and Isolation Protocol (IDIP) [SDW+01]. IDIP is a special 

protocol for reporting intrusions and coordinating attack trace-back and response 
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actions among network devices. CITRA refers to the architecture of network 

communities and network components that use IDIP. The CITRA network 

components can be IDSs, firewalls, routers, or any devices that adopts IDIP to 

cooperatively trace and block network intrusions as close to their source as possible 

[SDW+01]. Special communication protocols such as IDIP and the CITRA 

infrastructure are gaining acceptance but there is currently no standard in such 

protocol development. The specification of IDIP is not available to the public domain.  

 While it is necessary to design a system-approach where QoS techniques such 

as rate limiting and CBQ can be autonomously deployed, many current autonomous 

architectures require expensive infrastructure investment, extensive cooperation of 

different entities, or the adoption of a new protocol. A small business owner does not 

have influence over the network design or the partnerships of his or her service 

provider. Therefore, the current thesis aims to design an Autonomous Anti-DDoS 

(A2D2) network by integrating and improving existing methodologies that enable 

small and medium-sized networks to take control of their own defense within their 

own boundary. 

 



   

  

Chapter 3  

The Proposed Autonomous Anti-

DDoS Network (A2D2) Design 

This thesis proposes an autonomous anti-DDoS network design that utilizes 

existing and affordable tools and technologies. The goal of the design is to combine 

various technologies and make necessary improvements to achieve autonomous attack 

mitigation similar to that attained by elaborate expensive architectures. The A2D2 

network is specifically designed to enhance quality of service during bandwidth 

consumption DDoS attack. The A2D2 design follows four main guiding principles: 

•  Affordable 

•  Manageable  

•  Configurable  

•  Portable  
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The target audience for the A2D2 network is home networks and small to 

medium sized companies. To ensure affordability, A2D2 will make use of open source 

and existing technologies wherever possible.  In addition, the A2D2 network should 

be easily managed with minimum administrator intervention, can be quickly 

configured for networks of various sizes and readily ported to mitigate attacks other 

than DDoS.  

The design of the A2D2 network will be divided into three main areas: 

•  Intrusion Detection 

•  Intrusion Response: Intrusion Tolerance – Quality of Service  

•  Autonomy System 

3.1 Intrusion Detection  

3.1.1 Snort Overview 

 As mentioned in Section 1.3, well-known systems such as Cisco Secure 

IDS, the Dragon IDS, ISS RealSecure and Symantec NetProwler cost $7,500 to 

$25,000 depending on the number of nodes and network bandwidth [Des02, Sao02]. 

Except for the Windows-based NetProwler, all other IDSes mentioned support a 

variety of platforms such as Sun Solaris, Linux, and the Windows systems. Among all 

the well recognized and broadly deployed IDSes, Snort is the only free, open source 

lightweight intrusion detection system and is selected to be the detection component of 
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A2D2 [Sao02]. Snort's network monitoring mechanism is based on the pcap packet 

capture library, which makes Snort's code portable among various platforms that 

support libpcap. Currently Snort is run on Linux, Net/Open/FreeBSD, Solaris, SunOS 

4.1, HP-UX, AIX, IRIX, Tru64, MacOS X Server and the Win9x/NT/2000 platform 

[Snort].  

 Snort can be operated in three modes: a straight packet sniffer similar to 

tcpdump, a packet logger, or as a full-blown network intrusion detection system. As an 

IDS, Snort performs real-time protocol analysis, content searching and matching, and 

real-time alert. Attack detection is mainly based on a signature recognition detection 

engine as well as a modular plugin architecture for more sophisticated behavior 

analysis.  

3.1.2 Snort Detection Engine 

 The Snort detection engine is based on signature recognition techniques. 

Signatures are classified into different types such as DoS type or ICMP type and then 

defined in the rule files of the specific classification such as ddos.rules or icmp.rules. 

Content searching and matching functions are defined within the detection engine 

processors. The processors test an aspect of the current packet and report the findings. 

These functions are accessed from the rules file as standard rule options and may be 

called many times per packet with different arguments. Rules are checked in sequence 

according to the order the rules are specified in the rule file. 
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 Using a flexible rules language, Snort enables administrators to describe the 

type of pattern or traffic that the IDS should pay attention to. The rule, or signature 

description, can be based on packet source, destination, port numbers, tcp flags, packet 

size and other header information. Snort also decodes the application layer of a packet 

and signatures can be designed based on the contents of the packet payload. Snort 

provides a large library of rules that detect a variety of hostile activities, including 

buffer overflows, CGI attacks, SMB probes, or any other data in the packet payload 

that can be characterized as a unique attack fingerprint. Rules for new exploits are 

readily available on the Snort website. The Snort website also provides detailed 

documentations and manuals to guide administrators in creating rules that suit their 

specific security policy [Snort]. A sample Snort rule is: 

•  alert icmp any any -> 10.1.1.0/24 any (msg:"Being Pinged"; itype: 8;)  

- # alert is the rule action. There are 5 types of actions that can be 

performed when a certain rule is matched: alert, log, pass (ignore), 

activate and dynamic. The action “activate” raises an alert and also 

switches on the specified dynamic rule that in turn logs the event. 

- # the second field of a Snort rule specifies the type of protocol. In 

this rule, an alert will be generated when an ICMP packet that 

matches the rule condition arrives at the network.  

- # the third field of a Snort rule describes the source IP address. In 

this sample rule, “any” means to alert all ICMP packets initiated 

from any addresses.  
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- # the fourth field describes the source port. In this example, the 

rule looks for ICMP packets with “any” source port  

- # the destination IP is the subnet 10.1.1.0/24  

- # the destination port is “any” 

- # alert message is “Being Pinged”  

- # itype:8 checks the type field of the ICMP packet header to see if 

the field contains the number 8, indicating the ICMP packet is a 

“echo request” packet. 

3.1.3 Snort Module Plugin - Preprocessors 

 In addition to the detection engine, Snort provides a modular plugin 

architecture that enables more complex analysis on collective packet behavior and 

performs sophisticated decoding of packet contents. Module plugin preprocessors are 

not accessed through rules. Instead, raw packets are submitted to the various 

preprocessors sequentially. Each preprocessor performs some functions once for each 

packet, then evaluates the condition and alerts if a suspected attack behavior is 

observed. A preprocessor does not modify the packet information. Packets go through 

the preprocessors before being passed to the detection engine and being matched 

against Snort rules.  

Preprocessors are important since many attacks cannot be detected merely by 

matching a simple pattern in a packet header or payload. For example, in a 
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fragmentation attack, attackers take advantage of the fact that the IP protocol allows 

an IP packet to be broken apart into several smaller packets during transmission and 

then reassembled at the final destination. The maximum allowable size for an IP 

packet is 65,536 bytes. Through fragmentation, IP traffic can be transmitted across 

networks with different maximum packet sizes without being restricted by a particular 

network in the route that defines a very small maximum packet size. In a 

fragmentation attack, an attacker may send out a packet whose fragmented sections 

add up to more than 65,536 bytes. Many operating systems did not know what to do 

when they received an oversized IP packet, so they froze, crashed, or rebooted 

[Whatis]. With preprocessors, Snort is able to perform IP defragmentation and then 

determine if a fragmentation attack is launched. Preprocessors can also perform full 

TCP stream reassembly and then carry out stateful inspection of the TCP streams to 

detect intrusions such as portscan types and fingerprinting where attackers secretly 

attempt to learn about your systems and potential vulnerabilities.  

In some HTTP-based attack, attackers may wish to access a specific directory 

in a URL but do not wish to be detected by the IDS. Instead of naming the directory 

path in the URL, attackers uses hex encodings to represent certain characters in URLs. 

For example, an attacker may want to access the directory “scripts/../../winnt”. Instead 

of using the path “scripts/../../winnt” in the HTTP request, an attacker substitutes the 

“/” with “%5c”. Since “%5c” is the hex encoding equivalent of a backslash, the URL 

then contains “scripts/..\../winnt” which is treated the same as “scripts/../../winnt” by 

most web servers [Fred02]. Snort preprocessors can decode HTTP requests by 
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converting non-ASCII %xx character substitutions to their ASCII equivalent so that 

attackers who stealthily gain access to systems by mixing these substitutions into URL 

can be detected.    

 The preprocessor module plugin architecture also provides a channel through 

which new types of detection engines can be added. New engines may perform 

detections that cannot be supported by a Snort base detection engine. For example, 

Spade, the Statistical Packet Anomaly Detection Engine, is added to Snort through the 

preprocessor architecture to enable anomaly detection [Snort].  

3.1.4 A2D2 Snort Module Plugin – Flood Preprocessor 

  At present, Snort has not included a logic that detects generic bandwidth 

consumption flooding launched against a network. DoS and DDoS detections are 

carried out by the rule files and the base detection engine. For example, a potential 

Stacheldraht DDoS detection is based on two signatures that match message strings 

contained in communication messages sent between attack agents and their handler. 

The agents send messages to inform the handler that the agent machine is alive and 

ready to take orders. This communication message contains the word “skillz”. In turn, 

the handler commands the agents to launch attack requests with a message that 

contains the string "ficken". Two Snort rules are created to detect the presence of 

“ficken” or “skillz” in a packet payload. This example illustrates a major limitation of 

pattern and signature base detection. Attackers can easily change the payload content 

of agent-handler communication messages and new rules will need to be added.    
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 To reduce management and maintenance hassle, A2D2 is required to detect 

generic flooding attack independent of specific DDoS tools. Unlike pattern or 

signature matching, flood detection needs to be designed as a preprocessor modular 

plugin. The flood preprocessor will perform an “x packets over y time” logic 

evaluation. If x packets arrive within y seconds from the attack source, an attack alarm 

will be raised. Administrators or users can set an incoming packet rate threshold (x 

packet over y time) that deviates from their normal network traffic significantly. This 

flood threshold is set in the snort.conf file and provides a flexible configuration 

channel compatible with existing preprocessors of Snort. 

3.1.4.1 Flood Threshold 

Flood threshold differs depending on the type of services provided from the 

network, the nature of the company, the size of the network, and the time of the day. 

The flood threshold has to be determined at each network independently. The A2D2 

design allows administrator to configure the threshold to be reflective of his or her 

network traffic. Before a threshold is determined, administrators should collect 

average bandwidth usage over a period of time. This baseline evaluation should be 

conducted over a period of months at the minimum to take into account usage surges 

during specific hours in a day or specific occasions. As mentioned in Section 2.2.1 

Anomaly Detection, techniques such as Bayesian statistics, covariance matrices and 

neural networks help to define the “normal” traffic from the “abnormal” 

traffic”[Kum95]. These techniques are studied in the research domain of anomaly 
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detection and are beyond the scope of this thesis. In A2D2, the threshold will be 

determined by doubling the baseline average traffic information.  

3.1.4.2 Flood Preprocessor Initiation 

 Snort has specific directions as to how new preprocessor plugin modules can 

be incorporated. The A2D2 generic flood detection preprocessor is named spp_flood.c 

and is accompanied by the spp_flood.h header file. The followings describes the 

initiation steps required to add the spp_flood preprocessor to Snort: 

1. Add to the snort plugbase.h file 

#include “spp_flood.h”  

2. Add the following lines to the snort plugbase.c file 

 void InitPreprocessor() 

  { 

  SetupFlood(); 

  } 

3. Add the following lines to the snort.conf file 

preprocessor flood: $HOME_NET <threshold # packets> <threshold # 

time period> <logfilename> 

4. Create two flood-plugin files: 

•  spp_flood.h 

•  spp_flood.c 

 
5. In spp_flood.h, add 
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void SetupFlood(); 

void FloodInit(u_char *); 

# The FloodInit function creates the preprocessor data structure  

6. In spp_flood.c, register the preprocessors by adding the following function: 

void SetupFlood(void) 

{ 

       RegisterPreprocessor("flood", FloodInit); 

} 

3.1.4.3 Flood Preprocessor Data Structure 

 The flood preprocessor floodList maintains the packet rate utilizing a three-

dimensional double-linked list:   

•  floodList  sourceInfo (match source ip) 

•  destinationInfo (match destination ip) 

•  connectionInfo (match port info) 

The first level list sourceInfo registers the packet source address. For each source, the 

packet’s destination is recorded and counted in destinationInfo. For each source-

destination connection, the packet’s port information is recorded and incremented.  

Key data structures used for flood detection are presented below: 
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Figure 3.1 - Flood Preprocessor Key Data Structure 

(Figure Continues on Next Page) 
 
 
 

struct spp_timeval 
{ 
 time_t tv_sec; 
 time_t tv_usec; 
}; 

typedef enum_floodType 
{ 
 sNone = 0, 
 sUDP = 1, 
 sSYN = 2, 
 sSYNACK = 4, 
 sICMP = 8 
}  FloodType; 

typedef enum_log level 
{ 
 lNone = 0, 
 lFILE = 1, 
 lEXTENDED = 2, 
 lPACKET = 4, 
}  LogLevel; 
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sourceinfo 

typedef struct_floodList 
{ 
 SourceInfo *listHead; 
 SourceInfo *last Source; 
 long numberOfSources; 
}  FloodList; 

typedef struct_destinationInfo 
{ 
 struct in_addr saddr; 
 int numberOfConnections; 
 ConnectionInfo *connectionsList; 
 struct _destinationInfo *prevNode; 
 struct _destinationInfo *nextNode; 
}  DestinationInfo; 

destinationInfo 

nextNode prevNode 

null 

null 

typedef struct_connectionInfo 
{ 
 FloodType floodType; 
 int numberOfTCPConnections; 
 int numberOfUDPConnections; 
 int numberOfICMPConnections; 
 u_short sport; 
 u_short dport; 
 struct spp_timeval timestamp; 
 char tcpFlags[9]; /*8flags+a null*/ 
 u_char *packetData; 
 struct _connectionInfo *prevNode; 
 struct _connectionInfo *nextNode; 
}   ConnectionInfo; 

connectionInfo 
nextNode 

prevNode 
null 

sourceinfo 

prevNode 

destinationInfo 

typedef struct_sourceInfo 
{ 
 struct in_addr saddr; 
 int numberOfConnections; 
 int totalNumberOfDestinations; 
 int totalNumberOfTCPConnections; 
 int totalNumberOfUDPConnections; 
 struct spp_timeval firstPacketTime; 
 struct spp_timeval lastPacketTime; 
 int floodDetected; 
 struct spp_timeval reportTime; 
 DestinationInfo *destinationsList; 
 u_int32_t event_id; 
 struct _sourceInfo *prevNode; 
 struct _sourceInfo *nextNode; 
}  SourceInfo; 

nextNode 

•  
•  
•  

sourceinfo 

•  
•  
•  

•  •  •  
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3.1.4.4 Subnet Flood Detection 

This version of the flood preprocessor detects only floods launched in ICMP, 

UDP, TCP-SYN or TCP-SYN-ACK packets. These types of packets are termed 

“relevant packets” in this document. The flood preprocessor is not concerned with the 

packet contents and the packet payload will not be checked. The most basic premise of 

flood detection is that if the number of relevant packets from a particular source within 

a certain time exceeds the threshold specified in the configuration file, a flood alert is 

raised. Such logic is effective in detecting traditional floods where one attacker 

instigates the flooding from one machine with one source IP address. A simple ping 

flood attack using the command “ping –f <victim domain name or IP>” can be easily 

detected.  

Nowadays, almost all bandwidth consumption DDoS attackers spoof the 

source IP addresses of the attack machines. As mentioned in Chapter 3, widespread 

practice of ingress and egress filtering has effectively prevented spoofing of 

illegitimate IP sources or of addresses of the victim domain. Spoofing is limited to 

those addresses that reside within the same subnets of the attacker so that attack 

packets can pass through ingress and egress filtering. To make an attack more 

efficient, a DDoS attack agent can send attack packets with an array of randomly 

generated source addresses, all of them within the subnet of the attack agent. Each 

spoofed address is used in a limited number of packets to reduce suspicion. These 

spoofed DDoS attacks are illustrated in the figure below: 
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Attack Agent
128.198.45.1

Firewall Server

Internet

Sends 30 Packets
source ip

128.198.45.1

Sends 7 Packets
source ip

128.198.45.2

Sends 54 Packets
source ip

129.198.45.15

Sends 12 Packets
source ip

128.198.45.17

Sends 22 Packets
source ip

128.198.45.22
 

Figure 3.2 - DDoS IP Spoofing Each Attack Agent 

 

 To counter DDoS IP Spoofing, A2D2 is designed to detect subnet flooding as 

well as individual host flooding. The three types of generic flooding that are being 

detected are: 

•  Individual attack host against individual victim host 

•  Subnet attack agents against individual victim host 

•  Subnet attack agents against victim subnet hosts 

With current technology, it is still impossible to identify from which subnet a packet 

initiated. Therefore, certain design assumptions have been made regarding subnet 

flooding detection. For subnet flood detection, A2D2 will assume packets come from 
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a /24 network based on the Classless Inter-Domain Routing (CIDR) addressing 

scheme [RL93]. A /24 network is equivalent to a traditional Class C network with 253 

host addresses and three other addresses for network, broadcast and gateway 

identification. In this thesis, it is assumed that most attack tools will not forge source 

IP beyond the realm of the /24 network in order to ensure that attack packets will pass 

through ingress and egress filtering. 

 Considerations have been given to /22 and /16 subnet flood detection. There 

are 1021 hosts in a /22 network and 65,533 hosts in a /16 network respectively. These 

networks can legitimately generate a large amount of traffic. A /22 and /16 subnet 

flood detection adds extra reassurance but may also produce more false positives. If 

the flood threshold is set high to accommodate possible simultaneous connections 

from all 65,533 hosts in a /16 subnet, the IDS may risk a large number of false 

negatives. In practice, most existing networks are partitioned in smaller subnets with 

less than 253 hosts such as /25, /26, /27 networks. Therefore, the A2D2 design will 

assume a /24 subnet flood detection. Another assumption made in the design of A2D2 

subnet detection is that many networks are implementing ingress and egress filtering 

as described in Section 2.1.2 so that most spoof packets beyond the IP addresses of a 

/24 subnet will be discarded. 

With the assumption of a /24 subnet flood possibility, it is recommended that 

the flood threshold be set at a level that accommodates reasonable connections from 

all hosts in a /24 network. For example, an Internet Control Message Protocol (ICMP) 

is used mainly by administrators or applications to determine the state of a particular 
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server; it is highly unlikely that all 253 hosts from a subnet will send an ICMP 

packet to the server simultaneously. In a situation where all hosts are connecting to the 

server at one time, the number of reasonable packets should still remain within 256 

hosts X 2 packets (syn, syn-ack) = 512 packets within a 3-5 second period. As 

mentioned before, the actual threshold should be set only after baselining the general 

network traffic pattern. 

3.1.4.5 Flood Preprocessor Logic Flow 

  Complete features and functions of the A2D2 Snort flood preprocessor will not 

be described in detail in this document. Instead, key functions of the spp_flood.c 

module are abstracted to illustrate the flood detection logic. These functions are: 

•  void FloodPreprocFunction(Packet *p) 

•  void ExpireFloodConnections(FloodList * floodlist, struct spp_timeval 

watchPeriod, struct spp_timeval currentTime) 

•  int NewFlood(FloodList * floodList, Packet * p, FloodType floodType) 

•  int CheckSubnetIndFlood(FloodList * floodList, Packet * p, FloodType 

floodType, int *subnet) 

•  int CheckSubnetFlood(FloodList * floodList, Packet * p, FloodType 

floodType, int *subnet) 

 The main function of the flood preprocessor, void FloodPreprocFunction 

(Packet *p), controls the logic flows and other key function calls. The flowchart 



 

 

41 

depicting the logic is provided in Appendix A. The FloodPreprocFunction performs 

the following major steps: 

1. Packet checking & preparations  

•  The FloodPreprocFunction first determines the protocol, flags set 

for a TCP packet, timestamp and other relevant information of the 

incoming packet. If the packet is not a relevant packet, the function 

exits the module. 

2. Expire non-flood connections in the data structure 

•  The function void ExpireFloodConnections(FloodList * floodlist, 

struct spp_timeval watchPeriod, struct spp_timeval currentTime) is 

called. 

- Check the “flood detection” flag and the time stamp of a 

connection.  

- If currentSource is flagged as floodDetected, do not expire. 

- If currentSource is not flagged as floodDetected, check time 

stamp.  

- If (connection’s timestamp + watchPeriodTime is < 

currentTime), the function expires and removes the connection 

from the data structure. 

3. Log current packet in the data structure  
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•  The function int NewFlood(FloodList * floodList, Packe * p, 

FloodType floodType) is called. 

- Traverse through the data structure to see if the current packet 

matches a certain connection base on its source IP address, 

destination IP address and port information. If a match is found, 

increment existing connection information or packet counts of a 

certain source and destination. If a match is not found, create a 

new source or destination connection 

- The int NewFlood function returns the maximum number of 

packet counts of a source-destination connection in the data 

structure. 

4. Check flood:  individual attack host against individual victim host 

•  Check if the maximum number of packet counts in a source-

destination connection in the data structure has passed the flood 

threshold. 

•  Log, alert, and flag connections as flood detected as appropriate. 

•  If individual flood is determined, subnet flood will not be checked. 

5. Check subnet flood:  subnet attack agents against individual victim host 

•  If individual flood is not found, the function int 

CheckSubnetIndFlood(FloodList * floodList, Packet * p, 

FloodType floodType, int *subnet) is called. 
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- Traverse through the data structure and count all the 

connections that could have come from the same subnet as the 

current packet, assuming a /24 subnet mask.  

- The int CheckSubnetIndFlood function returns the maximum 

number of packets from assumed connections in the /24 

subnets. 

•  Check if the maximum packet counts has exceeded the flood 

threshold. 

•  Log, alert, and flag connections as flood detected as appropriate. 

6. Check subnet flood:  subnet attack agents against victim subnet hosts 

•  If no other flood is detected, the function int 

CheckSubnetFlood(FloodList * floodList, Packet * p, FloodType 

floodType, int *subnet) is called. 

- Count all the connections whose destination are from the same 

subnet as the current packet’s destination (assume /24 subnet) 

- Return the maximum number of packets from the current packet 

subnet source targeted to destination addresses of the same 

subnet. 

•  Check if the maximum number of packet counts from the specific 

subnet-subnet connection has exceeded the threshold 
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•  Log, alert, and flag connections as flood detected as appropriate 

7. Check if the flood has ended and clear the floodDetected flag 

accordingly  

•  Go through the data structure and evaluate the “floodDetected” 

connections  

•  Check if the floodReportTime + maxTime < currentTime 

- If the floodDetected source IP have 0 new connection during 

that period, clear the floodDetected flag. 

- Alert and log “End of Flood” as appropriate 

3.1.5 A2D2 Snort Module Plugin Add-on – Flood 

IgnoreHosts Preprocessor 

 It is common that administrators may perform bandwidth measurement tasks 

or other administrative and diagnostic functions that require sending out a large 

number of packets to the network and an IDS may identify such activities as floods. In 

other cases, a certain service may be provided to a valued-customer at a special 

occasion that will generate significantly more than “normal” connection request traffic 

from a large /16 subnet with 65,536 hosts simultaneously. To accommodate such 

situations, A2D2 IDS detection includes another preprocessor add-on 

FloodIgnoreHosts. The FloodIgnoreHosts preprocessor is added to the base 

spp_flood.c preprocessor so that Snort will ignore counting the number of packets 
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generated from a particular server IP or a particular network. The setup of the 

FloodIgnoreHosts preprocessor is similar to the setup of the flood preprocessor.  

1. Add the following in the snort plugbase.c file 

 void InitPreprocessor() 

  { 

  SetupFloodIgnoreHosts(); 

  } 

2. Add the following lines to the snort.conf file 

preprocessor flood-ignorehosts: <ip_hoststobeignored/subnetmask> 

 
3. In spp_flood.h, add 

void SetupFloodIgnoreHosts(void) 

void FloodIgnoreHostsInit(u_char *) 

# The FloodIgnoreHostsInit function creates the preprocessor data 

structure  

4. In spp_flood.c, register the preprocessors by adding the following function: 

void SetupFloodIgnoreHosts(void) 

{ 

       RegisterPreprocessor("flood-ignorehosts", 

FloodIgnoreHostsInit); 

} 
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A separate data structure is created to keep track of what servers or subnets 

the IDS should ignore: 

 
 

 

 

Figure 3.3 – FloodIgnoreHosts Preprocessor Add-on Key Data Structure 

 

The IgnoreFloodHost function int IsFloodServer(Packet *p) is called 

immediately after a packet is checked and prepared in void FloodPreprocFunction. 

The function returns 1 if the source address of the packet is in the “flood-ignored” 

serverList and returns 0 otherwise. If a 1 is returned, the FloodPreprocFunction is 

exited and the subsequent incoming packet will be passed to FloodPreprocFucntion for 

processing. 

3.2 Intrusion Responses – QoS 

The mitigation strategy adopted by A2D2 is based on QoS research. As 

mentioned in Section 2.4.2, Class-Based Queuing (CBQ) and rate limiting are two 

dominant QoS techniques. While setting up a solid security policy is considered a 

preventive measure rather than a QoS mitigation, a security policy is a critical aspect 

of any network. The A2D2 network design policy will described briefly in the 

following section. 

typedef struct_serverNode 
{ 
 IpAddrSet *address; 
 char ignoreFlags; 
 struct _serverNode *nextNode; 
}  ServerNode; 

serverNode 
 

serverNode 
 

nextNode 
serverList 
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3.2.1 Security Policy  

The principal security policy applied is the separation of public services from 

the private network. Indeed, the design of A2D2 centers on the design of the anti-

DDoS Demilitarized Zone (DMZ). A DMZ is a small network inserted as a "neutral 

zone" between a company's private network and the outside public network [Whatis]. 

Users of the public network outside the company can access only the hosts in DMZ. 

All public services available freely to the world, such as web services and file services 

with insensitive data, reside in DMZ servers. DMZ servers cannot initiate sessions into 

the private network. In the event that an outside user penetrated the DMZ hosts’ 

security, only the web pages and other public information might be corrupted but no 

other company information would be exposed. A typical DMZ and its IDS placement 

are illustrated below: 
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Figure 3.4 – A Typical DMZ and its IDS Placement 

 An external IDS is placed outside the firewall before any traffic enters the 

DMZ. The IDS should be configured to be least sensitive and will produce the most 

false alarms. It provides an overview for administrators to evaluate all traffic attempts 

to access the network. Administrators can use the external IDS log to shape long-term 

network security policy. An IDS is placed within the DMZ to catch possible intrusion 

that penetrated the firewall. The DMZ IDS produces less false positives and can 

reflect the effectiveness of the firewall. Depending on the type of intrusions detected 
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by DMZ IDS, alarms should be treated with caution promptly. Any traffic that 

reaches the trusted internal LAN is considered hostile unless authorized. The LAN 

IDS generates the least number of false positives and any detection alarm demands 

immediate action [Cis02-2, CR00, Lai00, San00]. 

The firewall implements a set of rules or chains based on the network security 

policy. A recommended approach is to set a deny policy where all traffic are denied 

into the DMZ. Based on the services started in the DMZ public servers, additional 

rules are applied to allow traffic to access the specific port. Examples are: 

•  /sbin/iptables – P INPUT DROP 

•  /sbin/iptables – P OUTPUT DROP 

•  /sbin/iptables – P FORWARD DROP 

•  /sbin/iptables – A INPUT  – p tcp  – – dport 80  – j ACCEPT 

The above example sets the default policy (-P) for the INPUT, OUTPU, and 

FORWARD chains to be “DROP”, meaning all packets will be discarded. The INPUT 

chain defines rules that will be applied to packets targeted for the specific computer on 

which the policy is set. The OUTPUT chain sets rules for packets that are sent out by 

the computer where the policy is set. The FORWARD chain contains rules that govern 

what actions will be carried out for packets that are passed through or routed by the 

policy computer. The last rule of the above example appends a rule (-A) to the INPUT 

chain to “ACCEPT” TCP packets (-p tcp) that are targeted to the destination port 80 (-

- dport 80). 
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3.2.2 Class-based Queuing (CBQ) 

As mentioned in Section 2.4.2.1, CBQ is an effective QoS technique for 

controlling traditional SYN and ICMP floods. Based on the user access policy, a 

certain percentage of available outbound bandwidth can be assigned to packets of 

various Types of Services (TOS). The concept of CBQ can be best illustrated by 

Figure 3.5. Assume that an administrator of a certain network analyzes the traffic 

pattern and decides that HTTP traffic should be guaranteed at least 70% of the 

available bandwidth while mail services be allowed 20% of the network link. The 

administrator then divides the remaining bandwidth between news services (5%), and 

TCP-SYN and ICMP traffic (5%).  

 

70%  HTTP / HTTPS 

20% SMTP / POP3 

5% NNTP 

5% ICMP / TCP-SYN 

 

(Graphics adapted from Figure 2, “Linux Firewall – the Traffic Shaper” by Wortelboer and Oorschot 
[WO01]) 

Figure 3.5 - Bandwidth Assignment Example by CBQ 

 Inside the Linux kernel, the bandwidth management is achieved by three 

components: the filter/classifier, the queues, and the scheduler [AV02, HMM+02].  As 

a packet arrives at the network interface, the kernel discards the packet, forwards the 

packet or marks it as a certain class to be passed on to the queuing disciplines such as 

CBQ or First-in-first-out (FIFO). If the queuing discipline supports classes, the 
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queuing discipline in turn moves the packets to the classes of queues. CBQ supports 

a maximum of eight separate queues, or classes. Each queue or class can then be 

assigned a policy that identifies the priority, bandwidth allocation, bounded, or queue 

size. A bounded queue is constricted by the assigned bandwidth but an unbounded 

queue can “borrow” bandwidth from another queue with extra bandwidth. CBQ 

queues in an order that will honor the bandwidth allocation defined by the queuing 

policies of all the queues. The scheduler visits each queue and examines the maximum 

bandwidth policies of the queues. If forwarding a packet from a particular queue will 

violate the bandwidth allocation, the scheduler will skip the packet and move to 

another queue of the same priority [AV02, HMM+02]. The implementation of CBQ is 

illustrated in Figure 3.6. 

Class-based
Queuing
(CBQ)

First-In-First-Out (FIFO)

High Priority Queue

Queue 1 (HTTP)

Queue 2 (SMTP)

Queue 3 (NNTP)

packet

UDP
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SMTP - Mark 2
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ICMP - Mark 4

Queue 4 (ICMP)

Low Priority Queue

S
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DROP

Filter/classifier
Queues based on

Queuing Disciplines Scheduler

 

Figure 3.6 - Implementing QoS using Class-Based Queuing 
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In Linux, CBQ is implemented using the mangle table of the IP filter as well 

as the traffic control (tc) program from the “iproute2” package located in the directory 

“sbin” (/sbin/tc). The mangle table enables iptables to mark and categorize packets. 

The tc program creates the different classes of queues and assigns their policies 

regarding bandwidth usage. There are 5 steps in the implementation:  

1. Enable Linux QoS and CBQ options under the “Networking Options” 

menu [HMM+02]. 

•  Change current directory to /usr/src/linux<version>/ 

•  Type “make menuconfig” at command line 

•  Choose “Networking Options” 

•  Select “QoS and/or fair queuing” 

2. Categorize, mark, and forward incoming packets using iptables 

[WO01]. 

•  /sbin/iptables – A FORWARD – p icmp – t mangle – j MARK --

set-mark 1 

- Append this rule (-A) to the FORWARD chain of the mangle 

table (-t). The mangle table allows iptables to change or modify 

packets before they are routed. In this case, a packet is marked 

with the number 1 (-j MARK --set-mark 1) for all ICMP 

packets (-p icmp).  
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•  /sbin/iptables – A FORWARD – p tcp – – syn – t mangle – j 

MARK -- set-mark 2 

- Use the mangle table to mark all TCP-SYN packets (-p tcp --

syn) with the number 2.   

•  /sbin/iptables – A FORWARD – p tcp --dport 80 – t mangle – j 

MARK – – set-mark 3 

- Use the mangle table to mark all TCP packets (-p tcp --syn) that 

target destination port 80 (-p --dport 80) with the number 3.   

3. Set up the queue (qdisc) with the specific network interface (add dev 

eth0). This step defines the queuing discipline of the qdisc (cbq) and 

the maximum bandwidth associated with such queue. Classes are 

created under a queue based on a tree structure. While setting up the 

queue, the root of the tree is named (root handle 10:). The queue also 

specifies the average size of the packets measured in bytes (avpkt) 

[AV02, HMM+02]. 

•  # Assume a 10 Mbit network link 

•  /sbin/tc qdisc add dev eth0 root handle 10: cbq bandwidth 10Mbit 

avpkt 1000  

4. After the queue is set up, the root class associated with the queue is 

created and initialized. The root class is identified (classid 10:1) and it 

is spawned from the root of the tree (parent 10:0 or parent 10:). The 
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class priority and the amount of data sent by each class are defined 

by “prio”, “allot” and “weight”. Packets will be scheduled for output 

first by priority and second by allocation. Classes using the same 

priority will be scheduled using a Weighted Packet Round Robin 

algorithm (WRR) based on the allocation values and the weight 

assigned. The weight can be any arbitrary numbers. The weights of all 

classes will be normalized to calculate the ratio. This ratio will be 

multiplied by the “allot” parameters to determine how much data will 

be sent out by the class when polled by the scheduler [AV02, 

HMM+02]. 

•  /sbin/tc class add dev eth0 parent 10:0 classid 10:1 cbq bandwidth 

10Mbit rate 64kbit allot 1514 weight 6.4kbit prio 8 maxburst 20 

avpkt 1000 bounded 

5. Create different classes of queues with different bandwidth allocation 

policies and instruct IP filter to send packets to the queue and its 

appropriate class [WO01]. The various parameters defined in these 

classes are explained in steps 3 and 4. 

•  add_class() { 

# $1=parent class $2=classid $3=hiband $4=lowband 

$5=handle $6=style 
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/sbin/tc qdisc add dev eth0 parent $2 cbq bandwidth 10Mbit 

avpkt 1000 

/sbin/tc class add dev eth0 parent $1 classid $2 cbq bandwidth 

10Mbit rate $3 allot 1514 weight $4 prio 5 maxburst 20 avpkt 

1000 $6 

/sbin/tc filter add dev eth0 protocol ip prio 3 handle $5 fw 

classid $2 

 } 

•  # Assume 5% of 10Mbit bandwidth assignment to packets that was 

marked 1 in step 2. (10240*0.05 = 5120 = 512kbit for high 

bandwidth) 

- add_class 10:1 10:100 512kbit 51.2kbit 1 bounded 

•  # Assume 5% of 10Mbit bandwidth assignment to packets that was 

marked 2 in step 2 but such packets are allowed to bandwidth from 

other queue classes if available. (10240*0.05 = 5120 = 512kbit for 

high bandwidth) 

- add_class 10:1 10:200 512kbit 51.2kbit 2  

•  # Assume 70% of 10Mbit bandwidth assignment to packets that 

was marked 3 in step 2 but such packets are allowed to bandwidth 

from other queue classes if available. (10240*0.70 = 7168 = 

7168kbit for high bandwidth) 
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- add_class 10:1 10:300 7168kbit 716.8kbit 3  

3.2.3 Multi-Level Rate-Limiting 

 On the ingress side of the network interface card, traffic can be controlled 

using netfilters. Netfilters are a component of the Linux firewall system. This firewall 

subsystem provides packet filtering functionality that permits or denies packets from 

passing through based on security policies. The firewall rules are configured through 

the netfilter packet-filtering infrastructure that is a subsystem of the Linux kernel 2.4. 

The packet-filtering rules or firewall rules are defined by the /sbin/iptables commands. 

Netfilters examine a packet header’s information including its source, destination 

addresses, ports, protocol type, any combination of the TCP flags, and MAC 

addresses. Iptables contain a function rate-limiting that can help to minimize the 

impact of DDoS attacks. For example, administrators can rate-limit a suspicious 

source to one packet per minute or control of the number of syn packets entering a 

network at any given time to ten SYN requests per second.   

•  /sbin/iptables -A INPUT -s 192.168.1.25 -m limit --limit 1/m –j 

ACCEPT 

•  /sbin/iptables -A INPUT –p TCP --syn -m limit --limit 10/s -j ACCEPT 

 If a source can be confidently identified as an attacker, it is more effective to 

drop all packets from that source. However, attack source identification is often 

difficult, especially with IP spoofing. Dropping all packets from a suspicious source 

may block a great deal of legitimate traffic. A flood mitigation mechanism that is able 
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to stop most attack traffic, while having the smallest impact on legitimate traffic, is 

considered better than a mechanism that blocks a lot of legitimate traffic [For01]. To 

maximize the efficiency of rate-limiting, A2D2 proposes a multi-level rate-limiting 

mechanism. 

 It is conceivable that a network may generate a sudden burst of connection 

traffic. Such a burst lasts for a very short period of time while the connection is 

established. Traffic from initiating network hosts taper off over time as the abundance 

of traffic should flow from the servers serving files or streaming video to the clients. A 

multi-level rate limiting mechanism imposes stricter limits as the confidence that a 

source is malicious increases.  

For example, if a source sends out 500 request packets per second, A2D2 can 

limit it to only 100 packets per second. The surge of requests is usually temporary. If 

the suspicious source continues to send out the maximum allowable rate, the firewall 

can further restrict the incoming packet rate to 50 packets per second. If the trend 

persists where a source continuously consumes the maximum allowable rate, the 

source will be blocked completely. This sample scenario can be achieved by the 

following steps:  

1. Set up rate limiting levels by adding a new rule chain with the option –

N and then adding the actual firewall rules under the chain using the –A 

option. 

•  iptables –N level2  
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•  iptables –A level 1 –match --limit 100/s -j ACCEPT 

•  iptables –N level1 

•  iptables –A level 1 –m --limit 50/s -j ACCEPT 

•  iptables –N level0 

•  iptables –A level0 –j DROP  

2. Insert firewall rules against the source IP that is suspicious 

(12.23.34.45): 

•  iptables –I FORWARD –s 12.23.34.45 -j level2 

•  iptables – I FORWARD –s 12.23.34.45 –j level0 

3.3 Autonomy System 

To enable autonomous response, communication channels need to be 

established for the various components of the A2D2 detection and response systems. 

In addition, any firewall rules need to be autonomously applied and expired without 

administrators’ intervention.  

3.3.1 Rate-Limiting Configuration and Expiration 

A rate-limiting configuration file is setup to enable administrators to define the 

basic parameters based on which rate-limiting can be automatically applied. The 
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configuration file rateif.conf (rate limiting interface configuration) specifies six 

main elements: 

1. The number of levels, the rate associated with each level, and the 

duration for which each rate level will be effective is shown in the 

following table: 

Level Rate  
(number of packets/sec) 
(Maximum level = 0) 
(Block level = -1) 

Duration 
(days:hours:mins:secs) 

L2 100 00:00:30:00 
L1 50 00:00:30:00 
L0 -1 01:12:00:00 

Table 3.1 – Multi-Level Rate-Limiting Table 

•  Administrators are allowed to configure any number of levels he or 

she intends for the network. The minimum level is L0 and the 

administrator specifies the maximum level by putting a “0” in the 

rate column. A “-1” on the rate column indicates a block level 

where all packets associated with that level will be dropped by the 

firewall. In the above example, three levels are defined. Level 2 is 

the maximum level where packets will be limited to 100 packets per 

second. Once Level 2 rate is applied, the rate limiting will be in 

effect for 30 minutes before the rate-limiting firewall rule is 

deleted. During this 30 minutes, if the IDS indicates the packet 

source is still consuming all bandwidth allowable by Level 2, Level 

1 rate limiting will be applied. Level 1 rate limiting will stay in 
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effect for another 30 minutes. Should the IDS raises another 

alert, indicating the suspicious source continues to submit 50 

packets per second, the final rate limiting level, Level 0, is applied 

and all packets from the source are blocked completely for 1 day 

and 12 hours. At the end of the period, the rate limiting rule will be 

deleted and packets will be allowed to access the network without 

limitations unless flooding is detected again. 

2. The firewall server name or IP address 

•  This option specifies the server on which the firewall is active and 

rate-limiting is applied. 

•  The syntax is: SERVER firewall.server.edu 

3. The port number at which the firewall server will listen for alerts from 

the IDS 

•  The syntax is: PORT 6779 

4. Log file name 

•  The log file name where the firewall stores the changes made to 

iptables such as the insertion and the deletion of rate-limiting 

commands.  

•  In case of accidental or intentional restarting of the firewall, the 

rate-limiting rules can be brought up-to-date by applying the 

commands in the logfile. 
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•  The syntax is: SETTINGSFILE fwfile.dat 

5. Location of iptables in the firewall system 

•  The syntax is: /sbin/iptables 

6. Time in seconds when the iptables rules are checked and updated 

•  The syntax is: ALARMTIME 1 

•  In this example, the iptables rules will be checked every second. If 

a particular rule has exceeded its effective duration, the rule will be 

deleted.  

3.3.2 Snort Customization – FloodRateLimiter 

Preprocessor 

To enable automatic rate-limiting, a FloodRateLimiter preprocessor add-on 

needs to be created for the flood preprocessor. After an attack source surpasses the 

initial flood threshold, an initial flood alert is sent to the firewall. The firewall applies 

rate-limiting as defined in the rateif.conf file against the attack source. The role of the 

FloodRateLimiter preprocessor is to keep track of the incoming packet rate of the 

presumed attack source after rate-limiting is applied. If the arrival rate of the attack 

source continues to reach the maximum allowable rate, another alert is sent to the 

firewall, which will apply a stricter rate-limiting level until the block level is reached. 

The setup of the FloodRateLimiter preprocessor is similar to that of the 

FloodIgnoreHosts preprocessor described in Section 3.1.5.  
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1. Add the following lines to the Snort plugbase.c file 

 void InitPreprocessor() 

  { 

  SetupFloodRateLimiter(); 

  } 

2. Add the following lines to the snort.conf file 

preprocessor flood-ratelimiter: <report time in sec> <rate-limiting 

level[n] threshold> <rate-limiting level[n-1] threshold> <rate-limiting 

level0 threshold> 

# This configuration option allows administrators to specify the rate-

limiting threshold after the initial flood alert is raised. In the following 

example, the IDS will check for the rate for 10 seconds, and see if the 

first rate-limiting threshold of 100 packets has arrived within these 10 

seconds. Another alert is raised and sent to the firewall if the condition 

is met. Then the IDS will check if the server receives 50 packets in the 

10 seconds after the 2nd alert is raised and the stricter rate-limiting level 

is applied. 

#preprocessor flood-ratelimiter: 10 100 50 

#The configuration of these numbers should correspond with the rate-

limiting levels set on the rateif.conf file 

3. In spp_flood.h, add 

void SetupFloodRateLimiter(void) 
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void FloodRateLimiterInit(u_char *) 

# The FloodRateLimiterInit function creates the preprocessor data 

structure  

4. In spp_flood.c, register the preprocessors by adding the following function: 

void SetupFloodRateLimiter(void) 

{ 

       RegisterPreprocessor("flood-ratelimiter", 

FloodRateLimiterInit); 

} 

 A separate data structure is created to keep track of the connections that 

have passed the initial flood threshold as described in  

Figure 3.7. The FloodRateLimiter preprocessor follows similar logic as the Flood 

Preprocessor described in Section 3.1.4.5 on page 40. The FloodRateLimiter 

preprocessor is called by the FloodPreprocFunction after the initial flood threshold is 

passed and a flood alert is raised. The FloodRateLimiter preprocessor then takes over 

surveillance of the flood connection until the flooding is ended. Some key functions 

related to the FloodRateLimiter logic are also similar to those of the flood 

preprocessor explained on page 40. These functions are: 

•  RateList *CreateRateList(void) 

•  void ExpireRateConnections(RateList *ratelist, struct spp_timeval 

watchPeriod, struct spp_timeval currentTime) 



 

 

64 

•  int updateRateLimiterConnection(RateList *rateList, Packe *p, 

FloodType floodType) 

•  void 

ClearRateConnectionInfoFromFloodSource(RateLimiterSourceInfo 

*currentSource); 

3.3.3 Alert Interface 

Snort has a real-time alerting capability as well, incorporating alerting 

mechanisms for syslog, a user specified file, a UNIX socket, or WinPopup messages 

to Windows clients using Samba's smbclient program. For A2D2, Snort is directed to 

send alert messages to a UNIX socket using the command ./snort –A UNSOCK. 

An interface program, report.c is written to accept the Snort’s alert messages 

on the Snort hosts and to send the messages to the specific port of the firewall 

machine. The report.c program also logs the messages to a log file specified by users 

for the administrators’ evaluation.  

Another program, rateif.pl, resides in the firewall server and listens to 

messages sent by the Snort host to the firewall server’s designated port. Once the 

message is received, the alert message is parsed for the source IP address of the attack 

host or subnet. Multi-level rate-limiting is then applied to the IP address based on the 

rateif.conf configuration file.    
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Figure 3.7 – FloodRateLimiter Preprocessor Key Data Structure

struct enum_rateModule 
{ 
 oN = 1, 
 oFF = 0 
}  RateModule; 

typedef struct_rateList 
{ 
 RateLimiterInfo *listHead; 
 RateLimiterInfo *last Source; 
 long numberOfSources; 
} RateList; 

typedef struct_rateLimiterInfo 
{ 
 FloodType floodType; 
 int numberOfConnections; 
 struct in_addr saddr; 
 int totalNumberOfTCPConnections; 
 int totalNumberOfUDPConnections; 
 int totalNumberOfICMPConnections; 
 int numberOfDestination; 
 RateLimiterDestinationInfo 
  *destinationsList; 
 int floodDetected; 
 int subnet; 
 int packetThreshold; 
 struct spp_timeval firstPacketTime; 
 struct spp_timeval lastPacetTime; 
 struct spp_timeval reportTime; 
 u_int32_t event_id; 
 struct _sourceInfo *prevNode; 
 struct _sourceInfo *nextNode; 
}  RateLimiterInfo; 
 

rateLimiterInfo 
 

RI 
 

prevNode 

prevNode 
null 

typedef struct_rateLimiterDestinationInfo 
{ 
 struct in_addr daddr; 
 int numberOfTCPConnections; 
 int numberOfUDPConnections; 
 int numberOfICMPConnections; 
 struct _rateLimiterDestinationInfo  
  *prevNode; 
 struct _rateLimiterDestinationInfo  
  *nextNode; 
} RateLimiterDestinationInfo; 
 

raetLimiterDestinationInfo 
 
 

raetLimiterDestinationInfo 
 

null 

nextNode 

nextNode 

•  •  •  

•  •  •  



 

  

 

 

Chapter 4  

A2D2 Implementation 

 A test-bed is setup based on the A2D2 design presented in Chapter 3. As 

presented in Figure 4.1 on page 67, the A2D2 implementation test-bed is divided into 

three zones: 

•  The attack network 

•  The autonomous defense network (A2D2) 

•  The client network  

4.1 The Attack Network 

The attack network is made up of five Red Hat Linux machines. The DDoS 

tool chosen in the test-bed is Stacheldraht version 4.0. One computer in the attack 

network (Saturn) serves the dual-role of the “Master Client” and the handler. The 

other four computers are the agents. These four computers are connected to the A2D2
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Figure 4.1 – A2D2 Implementation Test-bed 
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DMZ through two 100  Mpbs  switches that emulate  the  role of  the Internet.  Such 

a setup allows us to isolate the test-bed traffic from the actual Internet and ensure no 

attack traffic can leak into the Internet during preliminarily testing.  

4.1.1 Attack Network Systems Specifications 

The computer “Saturn” is used for attack coordination. Saturn assumes the 

dual roles of the “Master client” and “Handler”. The system specifications for Saturn 

are: 

•  Model: HP Vectra VL 

•  CPU: Intel Pentium III 501.143 MHz 

•  RAM: 255 MB 

•  Hard Drive: 8455 MB 

•  Network Interface: 3com 100 Mb 

•  OS: Red Hat Linux 7.3 2.96-110 

•  Linux Kernel Version: 2.4.18-10 

Four attack agents are used as described in Figure 4.1. The system 

specifications for Alpha, Beta, Gamma and Delta are: 

•  Model: HP Kayark XA 

•  CPU: Intel Pentium II 233.344 MHz 

•  RAM: 93 MB 
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•  Hard Drive: 2564 MB 

•  Network Interface: 3com 100 Mb 

•  OS: Red Hat Linux 7.1 2.96-98 for Alpha and 7.1 2.96-85 for the other 

3 agents 

•  Linux Kernel Version: 2.4.9-21 for Alpha and 2.4.3-12 for the other 3 

agents 

4.1.2 Attack Tool – StacheldrahtV4 

 The attack tool chosen for the A2D2 test-bed is Stacheldraht version 4.0. 

Common DDoS attack tools such as Trinoo, Trible Flood Network (TFN), Trible 

Flood Network 2000 (TFN2K), mstream and Stacheldraht are similar to one another 

[Dit99]. Among DDoS tools, StacheldrahtV4 is considered stable and sophisticated 

and is able to launch attacks in ICMP, UDP and TCP protocols. Stacheldraht can be 

downloaded freely from the Internet [ASTA00]. Most DDoS tools obtained from the 

Internet have been slightly altered to justify the posting as “for education purpose” 

instead of for attack distribution. These alterations in the attack tools source code 

generally involve the following aspects: 

•  Communication ports among master client servers, handlers and agents 

•  IP addresses of the master client servers and handlers 

•  Login passwords and encryption 

•  Payload contents between the master client servers and the handlers 
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•  Payload contents between the handlers and agents 

4.1.3 A2D2 Implementation of StacheldrahtV4 

In the A2D2 test-bed attack network, all Stacheldraht source files are extracted 

under the main folder “Stacheldrahtv4” in Saturn. The handler and agent source files 

reside directly under the “Stacheldrahtv4” main directory. Two additional folders 

“leaf” and “telnetc” are created under the main directory. The folder “leaf” contains 

the source files for agents while the master server client files are stored under 

“telnetc”. The main files for master server client, handler and agents are “client.c”, 

“mserv.c” and “td.c” respectively. These file names constitute the executable file 

names after compilation. To make the system distributed, the “td” executable is saved 

in all DDoS agents in the test-bed, namely host “Alpha”, “Beta”, “Gamma” and 

“Delta”. The agent process is then started with the command “./td”. Since Saturn 

serves as both the master client server and the handler, the handler process has to be 

started in Saturn with “./mserv”. Then, the DDoS attack can be launched by the client. 

In the “Stacheldrahtv4/telnec” directory in Saturn, the command “./client <handler 

servername>” is executed. After successful login, the “client” program can command 

the handler to coordinate various attacks through the agents.  

4.1.4 Other Possible Attack Tools 

The attack network setup can easily support DDoS attacks using other DDoS 

and DoS tools. For example, Trinoo and TFN2K have identical architecture as 
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StaheldrahtV4 and their client and handler programs can be installed in Saturn 

while their agent executables can be installed in the four agent computers: Alpha, 

Beta, Gamma, and Delta.  A large variety of basic DoS attack tools can be easily 

downloaded from the Internet [ASTA00]. Some examples of DoS tools are ipsyn.c, 

udpf.c, pepsi.c (UDP flooder) and synack.c. Each of them launches a type of DoS 

attack as indicated by its file name. As mentioned in Section 1.2 on page 4, DDoS 

attacks are simply DoS attacks being launched from a number of clients instead of 

from one host. Within the A2D2 test-bed, these DoS attacks can be made “distributed” 

by installing the executable of such DoS tools as ipsyn and udpf in the four “agent” 

computers and starting the DoS attack from each agent.   

4.2 The Autonomous Defense Network (A2D2) 

A simple DMZ is set up with two Linux computers to represent the A2D2 

design described in Chapter 3. The gateway computer “Titan” is configured as a Linux 

router and serves as the firewall at the entry of the DMZ. Packets that successfully 

pass through the firewall enter the private DMZ subnet 192.168.0. Inside the private 

subnet, one server “Pluto” is installed with the RealServer application and the web 

server “Apache”. The RealServer connects to Titan through a 10 Mbps hub inside the 

private network. Ideally, the IDS can be placed in a separate host in the subnet and 

monitor internal traffic in a promiscuous mode. For simplicity, the open source IDS 

Snort is also configured in Pluto in this test-bed. 
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4.2.1 Defense Network Systems Specifications 

The firewall gateway (Titan) and the RealServer/IDS (Pluto) use identical 

computer models: 

•  Model: HP Vectra VL 

•  CPU: Intel Pentium III 501.143 MHz 

•  RAM: 255 MB 

•  Hard Drive: 8455 MB 

•  Network Interface: 3com 100 Mb 

•  OS: Red Hat Linux 7.3 2.96-110 

•  Linux Kernel Version: 2.4.18-10 

•  Network Monitoring Tool: IPTraf Version 2.5.0  

•  (Pluto) IDS: Snort 1.8.6 

•  (Pluto) Media Streaming System: RealServer 8 

•  (Pluto) WebServer: Apache-1.3.23 

4.2.2 Defense Network Gateway Policy and CBQ Setup 

The firewall (Titan) practices the deny security policy and only routes TCP and 

UDP external traffic that is targeted to specific service ports on Pluto. Allowable 

protocol and destination ports are [IANA02]:  
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•  TCP/UDP-port 21, 22 and 23 for FTP, SSH, and Telnet services 

•  TCP/UDP-port 25 for SMTP services 

•  TCP/UDP- port 42 for DNS services 

•  TCP/UDP-port 80, 8080 for HTTP and RealPlayer traffic 

•  Other ports opened for remote administration of RealServer, Snort and 

other applications. 

•  For testing purpose, iptables are also configured to allow ICMP 

packets.  

Class-Based Queuing is implemented on Titan to manage outbound traffic into 

the private network. Seventy percent of the internal link bandwidth is allocated to 

HTTP and RealPlayer traffic, SMTP is allowed 15% of the bandwidth, SSH, Telnet 

and FTP have 10% of the bandwidth and SYN and ICMP traffic is bounded to 5% of 

the network link bandwidth. In addition, the rateif.pl program in Titan opens the port 

6779 to listen for alerts from the IDS.  

4.2.3 Defense Network IDS and Rate-Limiting Setup 

The flood preprocessor, flood-ignorhosts preprocessor, and the flood-

ratelimiter preprocessor are compiled with Snort in Pluto. When Snort identifies any 

intrusion such as a flood attack or a portscan attempt, Snort sends an alert to port 6779 

of Pluto. Upon receipt of the alert, Titan will implement the multi-level rate limiting. 

The rate.conf file in Titan specifies five levels:  
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Level Rate  
(number of packets/sec) 
(Maximum level = 0) 
(Block level = -1) 

Duration 
(days:hours:mins:secs) 

L4 0 02:00:00:00 
L3 100 00:00:30:00 
L2 50 00:01:00:00 
L1 -1 00:06:30:00 
L0 -1 01:12:00:00 

Table 4.1 – Titan Multi-Level Rate-Limiting Table 

Five levels of rate-limiting are defined with the “maximum” level being Level 

4. The “maximum” level is technically not a “rate-limiting” level, but a log level. IP 

addresses that have reached the strictest level (L0) and have subsequently been cleared 

as an attack source will be logged as L4 for the specified period of time (For example, 

two days according to Table 4.1). Source assigned with L4 have full access through 

the firewall and no rate limiting is applied to them. However, if the IDS raises an alert 

related to a L4 source address within the 2-day period, the level of this source address 

will be immediately dropped to L0. This source address will then be blocked for 1 day 

and 12 hours without going through L3 to L1.  

When the IDS raises the first alert regarding an attack source, the source will 

be assigned with the level L3 and be limited to a rate of 100 packets per second. The 

IDS will check if the attack source is still sending packets at the fullest rate as defined 

by L3. If the L3 rate is used to its fullest extent by the source, the IDS will raise 

another alert that drops the attack source to L2. However, if the number of packets 

sent by the attack source is lower than the maximum allowable L3 rate, the rate 

limiting will expire for the source in 30 minutes. Similar checks and mitigation 
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processes are applied for each rate-limiting level. In L1, the source is blocked for 6 

hours and 30 minutes. After the blocking expires, another alert for this source will 

drop the attack source to L0 that will block the attack source for a longer period of 

time than L1. 

The multi-level rate limiting technique can ensure the highest level of service 

to legitimate traffic during a possible attack. A source identified as malicious is given 

plenty of opportunities to prove its innocence. A mitigation system that is able to stop 

most attack traffic while having the smallest impact on legitimate traffic is considered 

a better design than devices that block a lot of attack traffic along with legitimate 

traffic [For01]. In fact, Forristal [For01] describes one flood mitigation method called 

the floodgate approach. In the floodgate method, the firewall blocks all traffic from 

potential attackers but occasionally lets small amounts of traffic pass through for a 

short period of time. The assumption is that the small amount of traffic allowed 

through is likely to consist of both legitimate and attack traffic. The goal is to keep the 

target system from being overloaded while accommodating some legitimate traffic. 

The multi-level rate-limiting design implemented in the A2D2 test-bed provides a 

sophisticated means to ensure maximum QoS experienced by legitimate clients even 

in situations where false alerts are raised.     

4.3 The client network  

The client network of the A2D2 test-bed consists of three RealPlayer clients 

from three different networks. These clients access the RealServer (Pluto), which 
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resides in the A2D2 DMZ. To show QoS experienced by the A2D2 clients, testing 

tools are installed in the client computers to measure the packets received by the 

RealPlayer clients during a multimedia session. During a DDoS attack, a successful 

autonomous mitigation carried out by A2D2 will enable the clients to enjoy a 

continuous, uninterrupted packet flow serviced by the RealServer. 

4.3.1 Real Clients Specifications 

Any computer can be used as a Real Client to the A2D2 network. In this test-

bed, two Linux hosts and one Windows 2000 system are used as clients. All clients 

use RealPlayer 8 as their media player. All Real Clients connect to the RealServer 

Pluto to access the video clip “simpsons.rm”. The video clip is located in the 

“Content” folder under the main “Realsystem” directory and is played by the clients 

for about 10 minutes   

4.3.2 Client Bandwidth Measurement Tools 

A bandwidth measurement program “plot.pl” is written and installed in the 

Linux clients to capture bandwidth usage information. The “plot.pl” program extracts 

information from the “/proc/net/dev” file of the Linux system. The “/proc/net/dev” file 

provides real-time interface activities such as the number of packets and the amount of 

bytes received and transmitted by the network interface. The information is parsed and 

displayed in a graphical format using the drawing tool gnuplot version 3.7.1 
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[Gnuplot]. In addition to the plot.pl and gnuplot programs, IPTraf Version 2.5.0 is 

also used in Linux clients to monitor network activities. 

 

 



 

  

Chapter 5  

Performance Results and Analysis 

5.1 Test Scenarios 

Eight groups of test scenarios are conducted with the A2D2 test-bed and 

results are compiled. For each scenario, a minimum of three test runs is executed to 

verify performance consistency. Since the results are relatively consistent, only the last 

set of performance results are presented in this section. The eight test scenarios are: 

1. Baseline 

•  Data is collected for “normal” A2D2 network activities where three 

RealClients are accessing the RealServer. The network is not 

experiencing any DDoS attack and no mitigation strategy is 

applied. This data is considered to be the A2D2 baseline traffic. 
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2. Short 1-minute attack with no mitigation strategy 

•  DDoS attacks are launched for one minute to show the effect of the 

attack on the QoS of the RealClient. The attack protocols used are 

UDP, TCP and ICMP. 

3. Non-stop attack with no mitigation strategy 

•  DDoS attacks are launched for the entire duration of the test case to 

show the effect of a non-stop attack on the QoS of the RealClient. 

The attack protocols used are UDP, TCP and ICMP. 

4. Non-stop UDP attack with security policy 

•  The security policy of A2D2 is applied for this test scenario. Only 

traffic that targets the active UDP and TCP service ports at the 

RealServer is allowed to pass through the firewall. The RealClient’s 

QoS is evaluated during a non-stop UDP attack against the A2D2 

network. The security policy is expected to stop most attack tools 

that generate random destination ports for their attack traffic. 

5. Non-stop ICMP attack with security policy 

•  Since A2D2 does not implement any policy to block ICMP packets, 

a test run is conducted to show the effect of a non-stop ICMP 

packet even when the firewall security policy script is applied. The 

hypothesis is that the QoS experienced by RealClient will suffer. 
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6. Non-stop ICMP attack with security policy and CBQ 

•  The goal of this test scenario is to show the effectiveness of CBQ 

against attacks that cannot be countered by basic firewall policy. 

7. Non-stop TCP-SYN attack with security policy and CBQ 

•  This test scenario verifies that the A2D2 security policy and CBQ 

can also mitigate attacks based on protocols other than UDP and 

ICMP.  

8. Non-stop TCP-SYN attack with security policy, CBQ, and autonomous 

multi-level rate-limiting 

•  This final test scenario demonstrates the intrusion tolerance of the 

A2D2 network and how all mitigation techniques collaborate with 

one another within the A2D2 network. 

5.2 Test Data Collection 

Performance data are collected from a Linux A2D2 client, the A2D2 gateway 

firewall and the A2D2 RealServer. The tools used for data collection at these hosts are 

IPTraf. At the Linux A2D2 client, the “plot.pl” program mentioned in Section 4.3.2 is 

executed and the gnuplot utility is used to graph the network activity. If unusual traffic 

is observed, “ethereal” is employed to identify the source and activity of the traffic 

pattern that deviates from baseline and cannot be accounted for by the test scenarios. 
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The information collected at the Linux A2D2 client, A2D2 gateway firewall and the 

A2D2 RealServer is: 

•  Peak total activity in number of packets per second 

•  Peak incoming rate in number of packets per second 

•  Peak outgoing rate in number of packets per second 

•  Average rate total in number of packets per second 

•  Average Incoming rate in number of packets per second 

•  Average Outgoing rate in number of packets per second 

In addition to the above parameters, the following information is registered at 

the Linux A2D2 RealClient: 

•  The number of packets received per second at the A2D2 client 

including RealPlayer traffic and non-RealPlayer traffic 

•  RealPlayer Statistics: The total number of packets received by the 

RealPlayer when playing the simpsons.rm video clip for about 10 

minutes. 

•  RealPlayer Statistics: The total number of packets recovered (received 

after retransmission requests were sent) by the RealPlayer for the 

duration of each test run. 

•  RealPlayer Statistics: The total number of packets lost by the 

RealPlayer for the duration of each test run. 
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•  RealPlayer Statistics: The total number of retransmission requests 

made by the RealPlayer during each test scenario. 

•  RealPlayer Statistics: The total number of retransmissions received by 

the RealPlayer during each test scenario. 

•  RealPlayer connection time-out conditions and screen quality. 

5.3  Test Results 

The test results collected by IPTraf and RealPlayer Statistics for each test 

scenario are presented in Table 5.1. As mentioned in Section 5.1, the 1-minute attack 

and the non-stop DDoS attack scenarios were launched using TCP, UDP, and ICMP 

packets. The effect of the attack is similar regardless the protocol used. Therefore, data 

collected from the UDP attack test runs is presented in this report as representative 

results for the 1-minute and non-stop attack scenarios. 

The data collected at the A2D2 Firewall Gateway computer (Titan) is provided 

in Table 5.1 but should be considered as unreliable. IPTraf logging process is 

resource-intensive. Two IPTraf logging processes are started, one for eth0, the 

network interface card (NIC) connected to the Internet interface, and one for eth1, the 

NIC connected to the internal DMZ network. In addition to IPTraf logging, the 

firewall gateway (Titan) is also responsible for packet filtering, policy enforcement, 

network address translation, packet classifying, scheduling, and forwarding, as well as 

performing multi-level rate limiting. The gateway computer is also the target of the 
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DDoS attacks. During testing, the firewall gateway often “hung” and became non-

responsive to mouse and keyboard inputs. However, the firewall functions, including 

that of rate limiting, firewall policy enforcement, and CBQ are carried out accurately, 

as indicated by the packets routed to the A2D2 RealServer (Pluto) and the A2D2 

clients. Therefore, the data presented by the IPTraf logs for eth0 and eth1 of the 

firewall should be viewed with caution. Instead, the analysis of the performance 

results should mainly rely on information collected at the A2D2 RealServer (Pluto) 

and the A2D2 RealPlayer clients.      
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Network Environment 
 Baseline Attack Scenario 

Attack Protocol N/A UDP UDP UDP ICMP ICMP TCP-SYN TCP-SYN 
Attack Duration N/A 1 minute Non-stop Non-stop Non-stop Non-stop Non-stop Non-stop 
         

A2D2 Mitigation 
Techniques N/A N/A N/A Policy Policy Policy 

CBQ 
Policy 
CBQ 

Policy 
CBQ 
Rate 

         
A2D2 Client RealPlayer Statistics 

Received (packets) 23445 17869 8039 23407 7127 23438 22179 23444 
Recovered (packets) 0 121 35 0 4 0 2641 40 
Lost (packets) 0 1808 2557 0 2101 0 1449 9 
Retransmission 
Requests 

0 1929 2592 0 2105 0 4090 49 

Retransmission 
Received 

0 121 35 0 4 0 2641 40 

Connection  
Time-out 

N/A Screens 
frozen but 
recovered  

All clients 
timed-out 

around 100 
seconds 
into the 

attack 

N/A All clients 
timed-out 

around 100 
seconds 
into the 

attack 

N/A No frozen 
screen or 

timed-out.  
Noticeable 

inferior 
screen 
quality 

N/A 

Table 5.1 – A2D2 Test-bed Performance Results 
(Table Continues on Next Page)
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Network Environment 

 Baseline Attack Scenario 
Attack Protocol N/A UDP UDP UDP ICMP ICMP TCP-SYN TCP-SYN 
Attack Duration N/A 1 minute Non-stop Non-stop Non-stop Non-stop Non-stop Non-stop 
         

A2D2 Mitigation 
Techniques N/A N/A N/A Policy Policy Policy 

CBQ 
Policy 
CBQ 

Policy 
CBQ 
Rate 

         
A2D2 Client IPTraf Statistics (packets/second) 

Peak Total Activity  103.40  376.40 300.80 111.6 216.60 104.00 103.20 102.8 
Peak Incoming Rate 102.40 102.00 102.00 106.40 102.20 102.00 102.20 101.40 
Peak Outgoing Rate 5.40 295.40 239.80 5.40 181.00 5.40 15.60 7.20 
Average Rate Total 40.87 42.02 21.51 41.68 21.07 41.36 45.47 41.30 
Avg Incoming Rate 39.40 34.96 17.37 40.23 14.96 39.95 37.49 39.76 
Avg Outgoing Rate 1.47 7.06 4.14 1.45 6.11 1.42 7.98 1.54 

A2D2 RealServer/IDS IPTraf Statistics (packets/second) 
Peak Total Activity  295.80 1241.20 1238.80 297.00 1125.40 296.00 1132.80 1096.40 
Peak Incoming Rate 6.40 1059.40 1129.60 50.80 1124.40 100.60 503.20 495.80 
Peak Outgoing Rate 292.80 348.801 446.40 294.00 343.80 293.00 634.60 600.60 
Average Rate Total 113.04 185.13 788.74 170.45 575.39 211.53 705.21 129.66 
Avg Incoming Rate 3.13 98.80 715.92 31.19 505.25 53.87 299.34 10.87 
Avg Outgoing Rate 109.91 86.33 72.81 139.25 70.14 157.66 405.87 118.79 

Table 5.1 Continued – A2D2 Test-bed Performance Results 
(Table Continues on Next Page)
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Network Environment 
 Baseline Attack Scenario 

Attack Protocol N/A UDP UDP UDP ICMP ICMP TCP-SYN TCP-SYN 
Attack Duration N/A 1 minute Non-stop Non-stop Non-stop Non-stop Non-stop Non-stop 
         

A2D2 Mitigation 
Techniques N/A N/A N/A Policy Policy Policy 

CBQ 
Policy 
CBQ 

Policy 
CBQ 
Rate 

         
A2D2 Firewall/Gateway eth0 IPTraf Statistics (packets/second) 

Peak Total Activity  298.20 305.60 575.80 1435.20 6629.40 5980.60 199.60 5344.20 
Peak Incoming Rate 7.00 303.60 574.60 1410.40 6611.60 5812.80 25.20 5339.00 
Peak Outgoing Rate 293.80 294.80 294.40 282.80 294.40 295.20 197.00 294.20  
Average Rate Total 116.33 84.08 95.37 835.61 2927.18 3603.20 21.99 2735.57 
Avg Incoming Rate 4.00 16.07 63.93 787.46 2883.08 3482.80 1.08 2702.47 
Avg Outgoing Rate 112.34 67.38 31.44 48.15 44.10 120.4 20.91 33.09 

A2D2 Firewall/Gateway eth1 IPTraf Statistics (packets/second) 
Peak Total Activity  297.80 296.20 295.40 297.20 1123.60 297.00 199.00 290.60 
Peak Incoming Rate 294.40 293.20 292.40 294.00 294.20 293.60 197.00 287.00 
Peak Outgoing Rate 7.40 29.20 26.00 7.40 1123.60 88.00 6.60 11.40 
Average Rate Total 115.17 70.54 39.32 41.38 440.99 143.78 18.46 43.75 
Avg Incoming Rate 111.98 67.07 30.84 39.77 42.45 109.03 17.93 42.30 
Avg Outgoing Rate 3.19 3.47 8.48 1.61 398.54 34.74 0.53 1.44 

Table 5.1 Continued – A2D2 Test-bed Performance Results 
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5.4 Results Analysis 

The test results presented in Section 5.3 show that the RealPlayer application 

of the A2D2 Linux client should receive around 23,000 packets from the RealServer 

during the 10-minute video clip. The exact number of packets received can ranged 

from 23,445 to 23,438 for scenarios where complete QoS was ensured and no packets 

were lost. This is due to the fact the video clips were stopped at around 10 minute 

playing time. The exact stopped time may deviate slightly in seconds from scenario to 

scenario. In addition to the total packet received, a complete transmission is indicated 

by the number of packet recovered, number of packet lost, the number of 

retransmission requests and the number of retransmission received (recovered).  The 

peak number of incoming packets received by the A2D2 client should be just over 100 

packets per second while the average incoming rate was around 39 to 40 packets per 

second. The normal traffic pattern experienced by the A2D2 clients is graphically 

presented in Figure 5.1. 

Figure 5.2 shows the histogram of traffic at A2D2 clients during the 1-minute 

attack test scenario. The initial traffic pattern of the A2D2 clients resembled the 

baseline pattern presented in Figure 5.1. However, packet reception was completely 

interrupted during the 1-minute attack. Minimum packets were received and Figure 

5.2 showed a slight burst of traffic around 180 seconds attempting to refill the 

RealPlayer buffer.  
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Figure 5.1 – QoS Experienced by A2D2 Client  

During Experiment Normal Activity 

IPTraf results presented in Table 5.1 indicated that a large number of packets 

were being sent out from A2D2 clients with the peak outgoing rate reaching close to 

300 packets per second. The considerable increase in outgoing packets represented the 

retransmission requests generated by RealPlayer that totaled 1,929 requests during the 

1-minute attack. Unfortunately, only 121 packets were recovered out of the 1,929 

requests. The video quality was significantly impacted and frozen screen shots were 

observed. However, as the attack stopped around 230 seconds into the experiment, 

packet reception resumed and the quality of screen shots recovered. 
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Figure 5.2 – QoS Experienced by A2D2 Client During 1-Minute DDoS Attack 

 

 During a non-stop DDoS attack, all RealPlayer clients were timed out due to 

the substantial loss of packets. A total of about 8000 packets were received by the 

RealPlayer as opposed to the 23,000 packets received during normal network activity. 

Only 35 packets were recovered out of 2,592 retransmission requests. The average 

incoming rate of the RealPlayer dropped to 17.37 packets compared to the average 

rate of 39 to 40 packets received during normal operations.  The severely degraded 

QoS experienced by the RealPlayer client can be observed from Figure 5.3. 
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Figure 5.3 – QoS Experienced by A2D2 Client During Non-Stop DDoS Attack 

 The effectiveness of the A2D2 security policy is evidenced by the fourth test 

scenario where an UDP DDoS attack was launched against the A2D2 with a tight 

UDP policy enabled. Only port 22, 8080, 7070 and a few administrative ports were 

opened for UDP traffic. The base firewall policy was set as “DENY”. Since 

Stacheldraht generated UDP packets with random destination ports, any UDP attack 

packets that did not target the valid ports were discarded by the firewall and never 

reached the RealServer. As shown in Figure 5.4, the A2D2 client enjoys QoS similar 

to that of the baseline scenario. In fact, the RealPlayer received around 23,000 packets 

in total for the 10-minute video clip, sent out no retransmission requests and 

experienced no packet loss. 
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Figure 5.4 – QoS Experienced by A2D2 Client During  

Non-Stop UDP DDoS Attack with A2D2 Firewall Policy Enabled 

 Although firewall policy is effective, administrators may not be able to foresee 

all possible attacks and set up policies accordingly. In an event where the security 

policy is incomplete or where attack traffic targets the open service ports, the firewall 

gateway will still forward the attack traffic onto the DMZ. The fifth test scenario 

launched an ICMP DDoS attack against the A2D2. Since the A2D2 did not have a 

specific policy governing ICMP packets, the ICMP DDoS attack interrupted the A2D2 

QoS entirely as shown in Figure 5.5. In fact, the effect is similar to that of test scenario 

3 where a non-stop DDoS attack was launched against a network with no mitigation 

technique. During the ICMP Stacheldraht attack, a total of 7127 packets are received 
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by the RealPlayer instead of the 23,000 packets normally transmitted for the entire 

10-minute video clip. Only four packets were recovered out of the 2,105 

retransmission requests sent. 

 

Figure 5.5 – QoS Experienced by A2D2 Client During  

Non-Stop ICMP DDoS Attack with A2D2 Firewall Policy Enabled 

 By enabling CBQ, the QoS experienced by A2D2 RealClient was returned to 

that of the baseline condition as showed in Figure 5.6. The A2D2 RealClient was able 

to receive all 23,000 packets related to the video clip without retransmission requests. 
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Figure 5.6 – QoS Experienced by A2D2 Client During Non-Stop  

ICMP DDoS Attack with A2D2 Firewall Policy & CBQ Enabled 

 To ensure that A2D2 can mitigate a large variety of DDoS attacks known to 

date, a TCP-SYN DDoS attack was launched with Stacheldraht against A2D2 with 

Firewall Policy and CBQ enabled. The A2D2 Client QoS was evaluated. Figure 5.7 

did not indicate severe QoS degradation but showed slight fluctuations in packet 

reception. The streamed video was played continuously without freezing or timing-

out. However, the screen quality was noticeably inferior by observation. For example, 

a couple of frames in a screen shot might be frozen while the rest of the screen 

refreshed. RealPlayer statistics showed that a total of 22,179 packets were received for 

the 10-minute video clip, slightly smaller than the baseline total of around 23,000 
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packets. A large number of retransmission requests were sent out (4,090 requests). 

At the same time, a large number of packets are recovered (2,641 packets) leaving 

about 1,449 lost packets.   

 

Figure 5.7 – QoS Experienced by A2D2 Client During Non-Stop  

TCP-SYN DDoS Attack with A2D2 Firewall Policy & CBQ Enabled 

 It is unclear why the TCP-SYN DDoS attack launched by Stacheldraht would 

result in slight degrades of QoS for a network with a firewall policy and CBQ enabled. 

One explanation could be that more TCP ports are opened to provide such services as 

telnet and ssh. Nine TCP ports were opened in the firewall policy while only four 

UDP ports were configured to accept packets. Another reason could be that TCP-SYN 

attacks consume the kernel data structure of the RealServer. Information about the 
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SYN packets is stored in the data structure until the connection requests are closed 

by the SYN-ACK packets. Since DDoS SYN attack packets contained spoofed 

addresses, the connection requests remain open and continue to occupy the kernel data 

structure. As a result, the RealServer might slow down its response to the RealPlayer 

requests.    

 To test the intrusion tolerance of the A2D2 network, the final test scenario 

enabled all features of the A2D2 network, including firewall policy, CBQ, Snort IDS 

detection, autonomous alert communication between IDS and firewall and multi-level 

rate-limiting. Figure 5.8 showed that the fully equipped A2D2 network further 

improved QoS during TCP-SYN attacks. A total of 23,444 packets were received by 

the A2D2 RealPlayer Client similar to those received by the baseline test scenario.  

Although there was no observable service degrades, RealPlayer indicated that 

there were 49 retransmission requests of which 40 packets were recovered and nine 

were lost. The test was repeated five times and each showed similar results where the 

total packets received are similar, no service degrades were observed and the graphical 

presentation of the packet reception activity at RealPlayer Client resembled that of the 

baseline. However, in each run, there are retransmission requests and packet recovery. 

The number of retransmission requests varied from 49 to 1376 and packet recovery 

rate ranged from 40 to 776 while around 9 to 600 were lost. Despite the retransmission 

requests, the QoS is significantly improved in the fully featured A2D2 network 

compared to the network where only firewall policy and CBQ were implemented. The 

number of retransmission requests is considerably fewer in the fully featured A2D2 
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network than the policy-CBQ only network that consistently sent out more than 

4000 retransmission requests. The number of packets lost by the fully featured A2D2 

network recorded was more than 1,000 packets fewer than that of the policy-CBQ 

network.  

 

Figure 5.8 – QoS Experienced by A2D2 Client During Non-Stop TCP-SYN DDoS 

Attack with A2D2 Firewall Policy, CBQ, Snort IDS, Autonomous Alert 

Communication and Multi-level Rate-Limiting Enabled 

One observation is that the number of retransmission requests and packets lost 

experienced by clients of the fully featured A2D2 network depend on the delay time 

between the start of the attack and when rate-limiting rules were applied. At some test 

runs, rate-limiting rules were applied immediately after Snort IDS sent out the alerts. 
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In other cases, the IDS alerts seem to have problems connecting to the firewall 

gateway computer (Titan). A number of “Failed to Connect to Rate-Limiter” messages 

were observed. As mentioned in Section 5.3, the firewall gateway computer may 

“hang” during an TCP-SYN attack, most probably due to the lack of processing power 

in handling the various resource-intensive processes. While the firewall gateway may 

not respond to keyboard or mouse inputs, it consistently accepted IDS alerts and 

applied rate limiting rules accordingly even though rule application may be delayed. In 

every test run, after the attack was stopped, the iptables status was checked using the 

command “iptables –v –L”.  A representative output of the iptables status is presented 

in Table 5.2. 

As shown by Table 5.2, a large number of packets were rate-limited or dropped 

in each of the rate-limiting levels L3, L2, and L1. The IDS identified the subnet flood 

128.198.61.0/24.  The rate-limiter identified packets coming from this subnet and 

applied rate-limiting rules accordingly.  At the completion of the test run, 

approximately 6,523,000 packets with 261,000,000 bytes coming from 

128.198.61.0/24 were passed to rate-limiting level 1 from the INPUT, FORWARD, 

and OUTPUT chains and were dropped. Before level 1 rate-limiting was applied, 

about 33,505 packets were passed to rate-limiting level 3 of which 33,234 were 

dropped and 271 were accepted. Approximately 1,159 packets were marked level 2 of 

which 1,132 were dropped and 27 were accepted. 

Additional evidence to prove the effectiveness of the multi-level rate-limiting 

technique is shown by the A2D2 RealServer (Pluto) statistics presented in Table 5.1. 
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During normal network activities, the average incoming rate of packets is 3.13 

packets per second. During DDoS attacks, the average incoming rate of packets ranges 

from 31.19 packets per second to 505.25 packets per second depending on the duration 

of the attack, the type of attack and mitigation techniques employed. The fully 

featured A2D2 recorded an average incoming rate of 10.87 packets per second, the 

closest to the baseline value. The 10.87 packets-per-second-rate is especially 

noteworthy when compared to the 299.34 packets per second rate experienced by the 

RealServer during an identical TCP-SYN attack with just CBQ and policy enabled. 
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Chain INPUT (policy DROP 0 packets, 0 bytes) 
 pkts bytes target     prot opt in     out     source               destination          
6336K  253M level1     all  --  any    any     128.198.61.0/24      anywhere            
    0     0 ACCEPT     udp  --  any    any     anywhere             anywhere           udp dpt:domain  
2760K  111M ACCEPT     all  --  any    any     anywhere             anywhere            
 
Chain FORWARD (policy DROP 0 packets, 0 bytes) 
 pkts bytes target     prot opt in     out     source               destination          
 186K 7454K level1     all  --  any    any     128.198.61.0/24      anywhere            
 139K   60M ACCEPT     all  --  eth1   any     anywhere             anywhere            
88701 3630K ACCEPT     all  --  any    any     anywhere             anywhere            
 
Chain OUTPUT (policy DROP 0 packets, 0 bytes) 
 pkts bytes target     prot opt in     out     source               destination          
    2   142 ACCEPT     udp  --  any    any     anywhere             anywhere           udp dpt:domain  
2742K  110M ACCEPT     all  --  any    any     anywhere             anywhere            
 
Chain level0 (0 references) 
 pkts bytes target     prot opt in     out     source               destination          
    0     0 DROP       all  --  any    any     anywhere             anywhere            
 
Chain level1 (2 references)  
 pkts bytes target     prot opt in     out     source               destination          
6523K  261M DROP       all  --  any    any     anywhere             anywhere            
 
Chain level2 (0 references) 
 pkts bytes target     prot opt in     out     source               destination          
   27  1080 ACCEPT     all  --  any    any     anywhere             anywhere limit: avg 50/sec burst 5  
 1132 45280 DROP       all  --  any    any     anywhere             anywhere            
 
Chain level3 (0 references) 
 pkts bytes target     prot opt in     out     source               destination          
  271 10840 ACCEPT     all  --  any    any     anywhere             anywhere limit: avg 151/sec burst 5  
33234 1330K DROP       all  --  any    any     anywhere             anywhere     
 

Table 5.2 – iptables Status After A2D2 Implementation (iptables –v –L) 



 

  

Chapter 6  

A2D2 Test-bed Limitations and 

Future Work 

6.1 Firewall Processing Speed 

One of the main limitations of the A2D2 test-bed is the processing speed of the 

firewall computer (Titan). This computing power limitation poses two important 

issues as explained in Sections 5.3 and 5.4: 

•  The accuracy of the IPTraf log data for the two network interfaces of 

the firewall computer (Titan). 

•  The delay between the time when a flood alert is raised and the time 

when the rate-limiting rule is applied. 

Although the effectiveness of the A2D2 network can be inferred from 

information collected from the A2D2 RealPlayer Clients and the A2D2 RealServer 
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(Pluto), the IPTraf information from the firewall (Titan) can provide a complete 

picture of all activities related to the operations of the A2D2 network. 

Perhaps a more important reason to upgrade the processing power of the 

firewall computer is the potential QoS enhancements the A2D2 can provide to its 

clients. The sooner the rate-limiting rules are applied, the faster attack packets are 

blocked at the firewall gateway and the better the A2D2 can serve its clients within the 

scope of available bandwidth. As mentioned in Section 5.4, the number of 

retransmission requests can range from 49 to over 1000 depending on when the rate-

limiting rules are applied. Therefore, it will be beneficial to re-run the tests using a 

faster computer as the firewall gateway in the A2D2 network. 

In addition, the current test-bed did not measure the actual delay time between 

when an alert was raised and when the rate-limiting rules were applied. The delays are 

observed on screens. When the IDS sent an alert to the firewall, the alert was printed 

on the screen. Similarly, screen output was provided when the rate-limiting rules were 

applied. To facilitate better empirical analysis, future researchers should resort to 

mathematical means to measure and calculate the actual rate-limiting response time. 

6.2 Alternate Route Technique 

  Since the speed at which rate-limiting rules is applied directly impacts the QoS 

experienced by the A2D2 clients, it is worthwhile to explore various techniques that 

may facilitate communications between the IDS and firewall. Currently, the IDS often 

reported a “Failed to Connect to Rate-Limiter” message during DDoS attacks. Based 
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on such messages and simple observation, in addition to the processing power of 

the firewall computer, another possible reason is that the network link between IDS 

and firewall may be congested by attack traffic. Therefore, it is important to explore 

techniques and designs where a separate “reserved” link is used for communications 

among A2D2 hosts during an attack.  

 The “reserved” link idea can be expanded to include a private network link that 

is used for communications between the A2D2 DMZ and the A2D2 clients during an 

attack. Such a technique requires multi-paths capability where packets arrive at the 

A2D2 from the A2D2 clients through the gateway computer but response packets are 

routed through the backend private links following a different path.   

6.3 TCP-SYN Attack 

While ICMP and UDP bandwidth consumption attacks can be completely 

countered by the A2D2 firewall policy and CBQ, TCP-SYN attack requires 

autonomous multi-level rate limiting to achieve a similar level of QoS. Section 5.4 

hypothesizes that the mitigation requirements and results difference is due to the 

nature of the TCP-SYN attack. While ICMP and UDP are attacks that strictly congest 

a network link by consuming all available bandwidth, a TCP-SYN attack includes an 

extra element of overloading the server’s kernel connection session data structure. The 

intrusion tolerance capability of A2D2 can be further verified by studying additional 

DDoS attacks of various types and natures using the A2D2 test-bed.  
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6.4 Scalability 

The current study of the A2D2 test-bed focuses on the QoS provided by the 

streaming video RealServer. However, the A2D2 CBQ configuration has taken into 

account of the common services available in a generic DMZ set-up, such as telnet, ssh, 

www, and smtp services. Additional tests can be performed to fine-tune the intrusion 

tolerance of the A2D2 network with respects to other services. Three A2D2 clients 

were used in the existing A2D2 implementation. The number of A2D2 clients can also 

be increased for future studies. 

6.5 Anomaly Detection 

The study of anomaly detection is beyond the scope of this thesis. Nonetheless, 

flood detection with the Snort IDS is a critical component of the A2D2 design. The 

current A2D2 design provides administrators with a flexible way to define the flood 

thresholds for their specific network. Adding an anomaly detection feature to the flood 

detection will be one valuable enhancement to the A2D2 and can assist administrators 

in determining a more accurate flood threshold.  

6.6 Fault Tolerant 

The design of the A2D2 network targets the QoS aspect of intrusion tolerance. 

Section 2.4.1 also introduced another key area of intrusion tolerance: fault tolerant. 

The current A2D2 design does not incorporate fault tolerant principles of replication 
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and duplication. Intruders can potentially aim at shutting down the A2D2 firewall 

gateway or the IDS host, thereby rendering the autonomous nature of the A2D2 

network futile. The A2D2 design can be significantly refined by encompassing fault 

tolerant features. 

 



 

  

Chapter 7  

Software Engineering Model  

and Lessons Learned 

7.1 The Evolutionary Software Life Cycle Model 

The development of the A2D2 network follows the Evolutionary model of the 

Software Life Cycle Processes as defined by the “Information Technology – Guide for 

ISO/IEC 12207 [ISO95]. The Evolutionary model develops a system in builds. Unlike 

the Incremental model that develops systems in a series of builds with defined 

requirements, the Evolutionary model acknowledges that requirements are not fully 

understood and cannot be defined initially. Development starts immediately even if 

the initial requirements are vague and partially defined. Requirements are refined in 

successive builds as the system evolves [Pig96]. 

The Evolutionary model, as illustrated in Appendix B [ISO95], is particularly 

suitable for a research project such as this thesis. At the start of a research project, 
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researchers often explore many knowledge areas of a research domain before 

deciding on the specific topic. During the course of a research, the research will often 

change directions due to new insights of the subject areas or unforeseen obstacles. 

 

Figure 7.1 – ISO/IEC 12207 (Software Life Cycle Processes) Evolutionary Model 

 The design and development of the A2D2 network has gone through roughly 

five builds. Concrete and definite thesis requirements were elucidated only at the end 

of Build 3, at which point the thesis proposal was presented to the committee members 

Build 1 D C/T I/AS R1 

R2 
D C/T I/AS 

R3 D C/T I/AS 

 
Rn D C/T I/AS 

Build 2 

Build 3 

Build n 

R: Requirements I/AS: Installation and Acceptance Support 
D: Design   
C/T: Coding and Testing 

Information Flow (Refinements) 
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for approval. The approved requirements then served as the base requirements for 

Build 4. The five builds are: 

•  Build 1 – Initial Linux Network Test-bed Set-up 

•  Build 2 – Initial Security Test-bed Design 

•  Build 3 – Intermediate Security Test-bed Design 

•  Build 4 – A2D2 Initial Design 

•  Build 5 – A2D2 Refined Design 

7.1.1 Build 1 – Initial Linux Network Test-bed Setup 

The process of requirements gathering was started at the end of January 2002, 

approximately four months before Build 1 was initiated on May 27, 2002. Initial 

requirements gathering provided a thorough overview of the problem domain and 

identified that a more in-depth study of the problem domain was required before 

further analysis. Therefore, the goal of Build 1 was to set up a basic Linux network so 

that DDoS scenarios can be studied. Instead of an anti-DDoS network, Build 1 focused 

on the set-up of a Linux network that could route traffic from a private subnet to the 

public domain. The initial Linux Network Test-bed set-up is presented in Appendix B. 

The main lesson learned during this build was Linux router configuration. IP 

Forwarding and Masquerading are enabled through the Network Address Translation 

table (nat) and the following steps are taken: 
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•  iptables --table nat --append POSTROUTING --out-interface eth0 -

j MASQUERADE 

•  iptables --append FORWARD --in-interface eth1 –j ACCEPT 

•  echo 1 > /proc/sys/net/ipv4/ip_forward              

7.1.2 Build 2 – Initial Security Test-bed Design 

Build 2 investigated a test-bed design that facilitates the study of a simple DoS 

attack from one host. The design is provided in Appendix B. In addition to the 

behavior of DoS, the network also enables the study of some DoS mitigation 

techniques such as rate limiting. One main obstacle encountered during this build is 

the testing of the firewall policies and rate-limiting rules. Considerable time was spent 

to find out why the rate-limiting rules for SYN flood were ineffective while the rules 

for ICMP flood produced accurate results. A simple SYN flood was started by “namp 

–sS –0 –P0 hostname” while an ICMP flood was executed by “ping –f”. Rate limiting 

rules for TCP are applied as follows: 

•  iptables - A INPUT -p tcp --syn -m -limit --limit 1/s --limit_burst 5 -j 

ACCEPT 

•  iptables - A INPUT -p tcp DROP  

 
Rate limiting rules for ICMP are applied as follows: 
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•  iptables - A INPUT -p icmp --syn -m -limit --limit 1/s --limit_burst 

5 -j ACCEPT 

•  iptables - A INPUT -p icmp DROP  

When the “ping” attack was stopped, the command line displayed the statistics 

related to the attack including the percentage of packets lost and received. Ethereal 

was used to capture packet information to verify whether the SYN rate-limiting rules 

were effective. However, analysis on ethereal data showed that all packets targeted at 

the host were received.  

It was later determined that the testing methodology was flawed. Ethereal 

operated on the physical level and displayed statistics of all incoming packets that 

reached the physical layer. The firewall policies and rate limiting rules were executed 

by the “iptables” command that operated on the IP layer. Therefore, information for all 

packets was captured by ethereal before the rate limiting and firewall rules were 

applied. To accurately evaluate firewall and rate limiting rules, the network-

monitoring tool IPTraf was used to monitor traffic from both the external and internal 

network interfaces, eth0 and eth1. IPTraf was used continuously for future builds.  

7.1.3 Build 3 – Intermediate Security Testbed Design 

The requirements of Build 3 were to extend Build 2 capabilities so that the 

behavior of DDoS could be evaluated and additional mitigation techniques could be 

examined. The design of the Intermediate Security Test-bed is presented in Appendix 

B. Stacheldraht was chosen to be the DDoS attack tool used in the test-bed and other 
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DoS tools such as ipsyn, udpf were also evaluated. In addition, various IDS were 

examined and Snort was chosen to be the detection component of the test-bed. 

Additional DDoS mitigation techniques such as CBQ were also explored.  

Due to the experience gained from the flawed testing methodology used during 

Build 2, special attention was paid to the networking layer at which each test-bed 

components operated. At Build 3, the IDS Snort was placed at the firewall gateway 

computer. It was then determined that the Snort IDS analyzes packets at the physical 

layer while the firewall rules were applied at the IP layer. As a result, the IDS would 

continue to raise intrusion alerts even when appropriate rate limiting or firewall rules 

were applied to block the particular intrusion. Therefore, a more efficient design was 

needed to incorporate the various components of the security test-bed.   

7.1.4 Build 4 – A2D2 Initial Design  

Starting at Build 4, the requirements analysis was shifted from the problem 

domain to the solution domain. Based on the lessons learned from the previous builds, 

the appropriate mitigation channels were identified, the required software 

development and improvements were defined and the A2D2 design was introduced. 

The initial A2D2 design is illustrated in Appendix B. The dominant processes in Build 

4 were the design, coding and testing phases as opposed to the previous builds where 

requirements analysis, installation and testing were the key processes. Some major 

accomplishments at this build include the design of the A2D2 network, the set-up of 
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the A2D2 DMZ, and the design and implementation of the Snort flood detection 

preprocessor. 

7.1.5 Build 5 – A2D2 Refined Design 

One promising feature of the A2D2 network identified at Build 4 was the 

provision of a private alternate route that could substitute the front-end gateway during 

a DDoS attack. However, the amount of work involved in the design and 

implementation of the Snort flood detection preprocessor required the thesis scope to 

be scaled down. Build 5 also focused on the design and implementation of multi-level 

rate limiting as well as the autonomous cooperation among all A2D2 components. The 

refined A2D2 design, shown in Appendix B, has demonstrated a high level of 

intrusion tolerance during various types of DDoS attacks. 

 

 



 

  

Chapter 8  

Conclusion  

Many advances have been made by security professionals in the past few years 

to counter the mass disruptions created by powerful DDoS tools. Nonetheless, the 

number of DDoS victims continues to increase every year as new DDoS tools are 

easily shared among curious intruders.  Accepting the fact that it is still impossible to 

completely stop or prevent DDoS attacks, many researchers have focused on intrusion 

tolerance techniques that maximize quality of service during DDoS attacks. Most 

promising intrusion tolerance research has taken a macro approach that recruits such 

major players as Internet Service Providers (ISP) and protocol designers to adopt a 

collaborative intrusion trace back, detection and push back mechanism. While 

researchers are searching for an ultimate global solution, a vast number of individual 

Internet users become DDoS victims. These users of small and medium sized 

networks often lack the influence and knowledge to set up an elaborate collaborative 

infrastructure.  Nor  do  these  SOHO  users  have  the incentive to spend thousands of   
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dollars on commercial products that are designed to alleviate this one type of 

intrusion. 

The design of A2D2 provides a micro approach where individual Internet users 

can address the DDoS problems in relatively manageable and affordable ways. The 

A2D2 network allows SOHO users to utilize existing and free technologies and to take 

control of their own defense within their own network boundary. A2D2 effectively 

combines firewall policy, CBQ, multi-level rate-limiting and DDoS flood detection in 

an autonomous architecture. Test-bed results clearly show that the A2D2 design 

demonstrates tolerance against bandwidth consumption attacks of various types, 

including UDP, ICMP and TCP-based DDoS attacks. When one type of mitigation 

technique, such as a firewall policy, fails to completely handle an attack, another 

technique such as CBQ or rate-limiting will automatically provide added protection. 

Regardless of the types of DDoS attacks, A2D2 clients enjoy QoS similar to the level 

of service they experience during normal network activities. 

To further improve the intrusion tolerance of the A2D2 network, fault tolerant 

principles of duplication and diversification of services should be applied. Additional 

features can be added to enable alternative routes should the gateway link become 

congested. Anomaly flood detection can further assist administrators in configuring 

the A2D2 network. It is hopeful that with continual enhancements, the proposed A2D2 

network design can be deployed in mass numbers among small and medium-sized 

networks, thereby improving the overall Internet security against DDoS bandwidth 

consumption attacks. 
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Appendix A Flood Preprocessor Logic Flowchart 

Figure A.1 – Flood Preprocessor Logic Flowchart
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Appendix B Design Evolution 
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Figure B.1 – Build 1 – Initial Linux Network Test-bed Set-up 
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Figure B.2 – Build 2 – Initial Security Test-bed Design 
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Figure B.3 – Build 3 – Intermediate Security Test-bed Design 
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Figure B.4 – Build 4 – A2D2 Initial Design 
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Figure B.5 – A2D2 Final Design 
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Appendix C A2D2 Users Manual 
  

The A2D2 network is easily configured to guide against various types of 

DDoS attacks. This users manual explains the steps required to configure and start the 

A2D2 network. The A2D2 setup is assumed to resemble that illustrated in Appendix 

Figure B.5.  A sample demonstration script is also provided as a step-by-step guide on 

how a DDoS attack is detected and controlled. The set up of the A2D2 test-bed 

includes three main components: 

•  The attack network 

•  The autonomous defense network (A2D2) 

•  The client network  

C.1 The A2D2 Attack Network 

The attack network consists of any number of clients, handlers and agents. 

Before configurations, users have to first identify the computers involved and their 

respective roles. 

C.1.1 The Essential Software and Files 

Users need to identify all essential files related to an attack tool. DDoS tools 

can be easily located in the Internet [ASTA00]. Each tool contains different files but 

the file structures are similar among DDoS tools. Users need to identify the files for 

clients, handlers and agents of their chosen tools.  For StacheldrahtV4, the files are: 
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Client 
Stacheldrahtv4/telnetc/ 

Handler 
Stacheldrahtv4/ 

Agent 
Stacheldrahtv4/leaf/ 

Encryption 
Stacheldrahtv4/ 

Bf_tab.h 
Client.c 
makefile 
 

Telnetc 
Bf_tab.h 
Config.h 
Makefile 
Mserv.c 
Tubby.h 

Bf:tab.h 
Config.h 
Config.h.in 
Control.h 
Icmp.c 
Makefile 
Sysn.c 
Td.c 
Tubby.h 
Udp.c 

Blowfish.c 
Blowfish.h 

Executable 
Client mserv td N/A 

Table C.1 – Stacheldrahtv4 Files 

 Before compilation, the following steps need to be taken: 

1. Ensure the client and handler share the same communication port 

number 

•  in client.c (#define MASTERSERVERPORT 1234) 

•  in mserv.c (#define MSERVERPORT 1234) 

2. Define the IP address of the handler 

•  in mserv.c (#define LOCALIP “5.6.7.8”) 

3. Define the password for communications with the handler 

•  in mserv.c (#define SALT “zAeaLAzwZ7Eng”) 

•  //encrypted password for “manager” 

4. Ensure the agents know who their handler is 

•  in td.c (#define MSERVER1 “5.6.7.8”) 

5. Ensure the handler and agents share the same communication port 

number 
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•  in mserv.c (#define COMMANPORT 9000) 

•  in td.c (#define COMMANPORT 9000) 

C.1.2 The Execution Steps  

1. Place the executable of “Client”, “mserv” and “td” on machines that are 

designated as clients, handlers, and agents respectively. 

2. At Client, execute the command “./Client handlerIPaddress”. 

3. Type in the password “manager” when prompted.  

4. Upon successful login, the DDoS manager will indicate the number of 

“alive” agents and “dead” agents at the command prompt. In an 

example where there are four “alive” agents and zero “dead” agent, the 

command prompt <a4! d0!> will be shown. 

5. Users can then execute the various command specified in “.help”. 

6. For example, user can launch a UDP attack against a victim with the 

following command “.mudp victim.target.edu”. Other available attacks 

are .micmp and .msyn. 

7. To end the attack, execute the command “.mstop all”. 

8. To exit Stacheldraht, type .quit. 

C.2 The Autonomous Defense Network (A2D2) 

There are three main components in the A2D2 DMZ: the firewall gateway, the 

IDS and the server that provides video streaming service. In the A2D2 test-bed setup, 

the IDS and the RealServer reside in the same machine, Pluto.  In a more elaborate 
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setup, the IDS and the RealServer should be separated into different hosts. The 

following sections describe the procedures to configure and execute each of the three 

components.  

C.2.1 The Firewall Gateway (Titan) 

C.2.1.1 The Essential Software and Files 

The firewall polices and CBQ implementations are contained in three shell 

scripts: 

•  noudp-policy.sh 

•  nocbq.sh 

•  cbq.sh 

The noudp-policy.sh contains simple TCP policies and network address 

translation (NAT) rules so that packets can be routed from the internal private network 

to the public domain. The nocbq.sh file implements TCP and UDP policies while the 

cbq.sh script adds CBQ implementation to the basic firewall policies. In addition to 

the policy script and the CBQ script, rate-limiting files are contained in the “rateif” 

directory. Four files are contained within the “rateif” directory that enable autonomous 

mutli-level rate-limiting. 

•  rateif.conf 

•  rateif.pl 

•  logfile 
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•  rulefile 

The “rateif.conf” file is the rate-limiting interface configuration file. Users can 

define six sets of parameters: 

•  The number of rate-limiting levels and the rate and expiration times 

associated with each level. Details of how to configure the various rate 

parameters in the rateif.conf file are described in Section 4.2.3. 

•  The server name on which the rate-limiting rules are applied 

•  The port number at which the rate limiter will listen for the IDS alert 

•  The filename that log all the rate rules that are being applied 

•  The location of where the iptables program is at the firewall server 

•  The alarm time interval at which the rate-limiting rules will be checked 

for their expiration. 

The “ratief.pl” file is the main program that accepts the IDS alert and limits 

packet rate accordingly. The “logfile” is the file that is being used by the “rateif.pl” 

program internally to calculate expiration time. The rulefile is the log file that contains 

all rate limiting rules that are being applied.  

C.2.1.2 The Execution Steps  

1. Make sure the deprecated ipchains redhat packet manager (rpm) does 

not exist in the systems. The ipchains rpm conflicts with the iptables 

rpm if both are installed in the same system.  

•  rpm –qa | grep ipchains 
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•  rpm –e ipchains*.rpm 

2. Flush all firewall rules to ensure no hidden policies are applied without 

users’ knowledge. This can be achieved by: 

•  rebooting the system 

•  sh <anyscriptname.sh> stop (e.g. sh cbq.sh stop) 

3. Make sure the rate.conf file is configured with values appropriate to the 

user’s network. 

4. Run the rate limiting program by executing the command ./rateif.pl 

5. Start the firewall script  

•  sh <anyscriptname.sh> start (e.g. sh cbq.sh start) 

•  It is important not to run the “restart” command (sh 

<anyscriptname.sh> restart) since the “restart” command will first 

stop the firewall and flush all chains (rules) including those created 

by the rateif.pl file. 

6. If users have root access and would like to monitor network traffic 

activities at any interface, the IPTraf program can be run.  

•  iptraf 

C.2.2 The IDS (Pluto) 

C.2.2.1 The essential software and files 

The essential files related to the IDS system are the Snort IDS files which can 

be downloaded from the Snort website [Snort]. The version of Snort deployed in the 
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A2D2 test-bed illustrated in Appendix Figure B.5 is Snort 1.8.6 for Linux. One of 

the essential files within the Snort 1.8.6 files provided by Snort is the snort.conf 

configuration file. Two additional files: spp_flood.c and spp_flood.h, are created for 

the flood preprocessor. 

•  snort-1.8.6.tar.gz (include snort.conf) 

•  spp_flood.c 

•  spp_flood.h 

In addition to the Snort files, a group of files are created to send the Snort 

alerts to the rate-limiter firewall gateway. These files reside in the “alert” directory 

and include the following: 

•  Makefile 

•  alert 

•  misc.h 

•  msock.h 

•  report.c 

•  report.o 

The main program file is “report.c” where users define the following 

parameters: 

•  #define HOSTNAME “the hostname of the firewall gateway 

computer on which the rate-limiting will applied” (e.g. 

“titan.uccs.edu”) 

•  #define PORTNO 6779  
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- This port number corresponds with the port number defined 

in the rateif.conf file. The rate limiter listens for the IDS alert at 

this port number 

•  #define LOGFILE “/var/log/snort/alert.log”  

C.2.2.2 The Execution Steps  

1. Extract the Snort files downloaded from the snort website  

•  tar –xzvf snort-1.8.6.tar.gz 

2. Configure the snort.conf files according to the instructions provided in 

the snort web site. 

•  Specifically, define the network that the IDS will monitor: var 

HOME_NET <IP address and subnet mask>  

3. Place the spp_flood.c and spp_flood.h files in the snort-1.8.6 main 

directory 

4. Integrate the flood preprocessor with the snort base programs as 

described in detail in Sections 3.1.4.2, 3.1.5 and 3.3.2. 

5. Run snort: ./snort –A UNSOCK 

6. Change directory to the alert directory and verify that the report.c file is 

configured with correct parameters for the rate-limiter 

7. Compile the report.c program using “Makefile” that creates the output 

executable: alert 

8. Start the alert system with ./alert –h <rate-limiter-firewall-hostname> 
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C.2.3 The RealServer (Pluto) 

C.2.3.1 The essential software and files 

The main files for the RealServer host are the Realsystems files downloaded 

from the RealNetworks website http://www.realnetworks.com/products/. The products 

provided by RealNetworks are upgraded constantly. Users should refer to the 

RealNetworks website for information on upgraded products. In the A2D2 test-bed 

implementation described in Appendix Figure B.5, RealServer 8 is used and its latest 

user documentation is available at:  

•  http://service.real.com/help/library/guides/server8/realsrvr.htm 

After extraction of the RealServer files, users should verify that such 

configuration information as port number and password in the “rmserver.cfg” file is 

correct. Video files being served by the RealServer should be saved in the “Content” 

directory under the main “Realsystems” directory. 

C.2.3.2 The Execution Steps  

1. Place video files in the “Content” directory of the “Realsystems” main 

folder. 

2. Change directory to the “Realsystems” main folder and start 

RealServer: 

•  ./Bin/rmserver rmserver.cfg 

3. Change directory to the  “snort-1.8.6” folder 

4. Start snort by the command: ./snort – A UNSOCK 
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5. Change directory to the “alert” directory placed under the “snort-

1.8.6” folder and start the rate-limiting alert interface. 

•  ./alert –h <rate-limiter firewall hostname> 

C.3 The Client Network 

•  Any host running the RealPlayer application can be an A2D2 client. 

However, only Linux hosts can be used to monitor traffic impact during 

DDoS attacks.  

C.3.1 The essential software and files 

The latest version of the RealPlayer software can be downloaded from the 

RealNetworks website: http://www.realnetworks.com/products/. At the Linux clients, 

the network-graphing files can be installed to illustrate the number of packets received 

by the client when accessing the RealServer. The network graphing files are contained 

in the “plot-final-0928” directory: 

•  input.sh 

•  plot.pl 

•  data.txt 

•  runplot.sh 

The main program that enables the graphing of network activities is “plot.pl”. 

The program “plot.pl” extracts the “number of packets received” data from the 

“/proc/net/dev” Linux file. The extracted information is saved in the “data.txt” file. 

The data in the “data.txt” file is then projected by the Linux graphing utility “gnuplot”. 
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The “input.sh” script contains graphing parameters that “gnuplot” uses, such as the 

units for the X-axis and Y-axis and the title of the graph. The “runplot.sh” shell script 

runs the “plot.pl” program. For the “plot.pl” program to execute correctly, users need 

to ensure that the Linux computer contains the Perl package “time::hires”.  

C.3.2 The Execution Steps  

1. Start the RealPlayer and access the following link, assuming the gateway 

computer is “titan.uccs.edu”. 

•  http://titan.uccs.edu:8080/ramgen/videoname.rm?usehostname 

2. From a Linux host, change directory to “plot-final-0928” 

3. Execute the “plot.pl” program using the following command: 

•  sh runplot.sh <time-interval-in-sec> <interface> (e.g. sh runplot.sh 1 

eth0) 

4. From another Linux terminal, change directory to “plot-final-0928” 

5. Execute gnuplot: 

•  gnuplot input.sh 

C.4 A Sample Demo Script 

A sample demo script is provided here to demonstrate how a Stacheldraht 

TCP-SYN flood can be launched, how the A2D2 network responses to the attack and 

what the QoS experienced by the A2D2 client is. It is assumed that the setup of the 

A2D2 network is identical to that described in Appendix Figure B.5. IPTraf can be 

used on any Linux computer at which users have root access. It is recommended that 
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IPTraf be used in the RealServer computer (Pluto) and the Linux RealPlayer client 

computer. The steps to be taken at each host are as follows: 

C.4.1 At the firewall gateway computer (Titan) 

1. Open 2 terminals on Titan 

2. At terminal 1, change directory to “final” 

3. Verify no firewall policy is active 

•  sh cbq.sh stop 

4. At terminal 2, change directory to “rateif” 

5. Run rate-limiting program 

•  ./rateif.pl 

6. At terminal 1 “final” directory, execute the CBQ script 

•  sh cbq.sh start 

7. To terminate rate-limiting, type “Clt+C” 

8. To terminate CBQ, execute “sh cbq.sh stop” 

C.4.2 At the IDS/RealServer compuer (Pluto) 

1. Open 3 terminals on Pluto 

2. At terminal 1, change directory to “realsystems” 

3. Start RealServer 
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•  ./Bin/rmserver rmserver.cfg 

4. At terminal 2, change directory to “snort-1.8.6” 

5. Start Snort 

•  ./snort –A UNSOCK 

6. At terminal 3, change directory to “snort-1.8.6/alert” 

7. Start the “alert” program 

•  ./alert –h titan.uccs.edu 

8. To monitor network interface activities, start a new terminal and type 

“iptraf” at the command prompt 

9. To terminate RealServer, Snort, or the “alert” program, type “Clt+C” at 

their respective terminals 

10. To view log files, change directory to /var/log/snort/  

C.4.3 At the RealPlayer Client computer (Linux) 

1. Open 2 terminals  

2. At terminal 1, change directory to “plot-final-0928” 

3. To start plotting the number of packets received by network interface 

eth0 at 1-second interval, execute the command:  

•  sh runplot.sh 1 eth0 

4. At terminal 2, change directory to “plot-final-0928” 
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5. Start the graphing utility “gnuplot”: 

•  gnuplot input.sh 

6. To monitor network interface activities, start a new terminal and type 

“iptraf” at the command prompt 

7. To terminate the plotting programs “runplot.sh” and “gnuplot”, type 

“Clt+C” at their respective terminals 

C.4.4 At the Attack Client “Saturn” 

1. Change directory to “Stacheldrahtv4” 

2. Verify that the process “mserv” is active using “ps –e”. If the “mserv” 

process does not exsit, start mserv: 

•  ./mserv 

3. Change directory to “Stacheldrahtv4/telnec” 

4. Start the attack management program “Client”: 

•  ./Client saturn.uccs.edu 

5. Type in the password when prompted: manager 

6. Launch an attack 

•  .msyn titan.uccs.edu  

7. Terminate the attack 

•  .mstop all 
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8. Exit Stacheldraht 

•  .quit 


