

DESIGN OF AN AUTONOMOUS ANTI-DDOS NETWORK (A2D2)

by

ANGELA CEARNS, B.A.

University of Western Ontario, London, Ontario, Canada, 1995

A Thesis

Submitted to the Faculty of Graduate School of the

University of Colorado at Colorado Springs

in Partial Fulfillment of the Requirements

for the Degree of

Master of Engineering

Department of Computer Science

2002

ii

 Copyright By Angela Cearns 2002

All Rights Reserved

iii

This thesis for the Master of Engineering degree by

Angela Cearns

has been approved for the

Department of Computer Science

by

Advisor: Dr. C. Edward Chow

Dr. Jugal K. Kalita

Dr. Charles M. Shub

 Date

iv

Design of an Autonomous Anti-DDoS Network (A2D2)

by

Angela Cearns

(Master of Engineering, Software Engineering)

Thesis directed by Associate Professor C. Edward Chow

Department of Computer Science

Abstract

Recent threats of Distributed Denial of Service attacks (DDoS) are mainly

directed at home and small to medium sized networks that lack the incentive,

expertise, and financial means to defend themselves. Using the Evolutionary Software

Life-Cycle model, this thesis designs an Autonomous Anti-DDoS Network (A2D2)

that integrates and improves on existing DDoS mitigation technologies. A2D2

provides an affordable and manageable solution to small and medium networks, and

enables small office and home office (SOHO) networks to take control of their own

defense within their own network boundary. Test-bed results show that A2D2 is

highly effective in ensuring Quality of Service (QoS) during bandwidth consumption

DDoS attacks. The A2D2 test-bed has demonstrated significant intrusion tolerance

against attacks of various types, including UDP, ICMP and TCP based DDoS attacks.

v

This thesis is dedicated to my best friend and soul mate,

Kevin

vi

Acknowledgements
Many people have shared their time and expertise to help me accomplish my

goal. First, I would like to sincerely thank my advisor, Dr. C. Edward Chow, for his

constant support and guidance. His worldwide around-the-clock instant responses to

my countless inquiries have been invaluable and motivational. Many thanks to Dr.

Jugal K. Kalita, who first introduced me to the concept of DDoS and whose lectures

have inspired me to choose the current research focus. Thanks to Dr. Charles M. Shub

for his reassurance at times of frustration. I am grateful to Dave Lohmann for

troubleshooting my network and providing priceless support during my testing.

Special thanks to Karen Hill, Dean Salsberg, Mary Lou and Michael Sharp, who help

edit this thesis. Also deserve much credit are my many friends, the Snort community,

Rhea, Nicole, Jim, and the staff in the Computer Science department.

I wish to pay special tributes to two much-cherished friends, Ganesh Kumar

Godavari and Kaushal S.C. Joshy, who sacrificed the lovely summer months to assist

and accompany me in the enclosed computer lab. I remain in awe with Ganesh’s

technical superiority and in deep appreciation for his willingness to share his

knowledge. Without his help, I would probably still be in the midst of learning

network programming. Thanks to Kaushal for his help on Perl programming. His

patience and “Chai” have kept me reasonably pleasant in trying times.

Finally, I need to acknowledge two very important persons in my life, my

husband Kevin and my “mom” and dearest friend - Janice L. Brittain. Without their

love, support, friendship, and faith, I will not be here today. Thank You.

vii

Contents

Chapter 1 Introduction .. 1

1.1 Denial of Service Attack (DoS).. 2

1.1.1 DoS – Consumption of Limited Resources 3

1.1.2 DoS – Destruction or Alteration of Configuration Information. 3

1.1.3 DoS – Physical Destruction or Alteration of Computer

Components.. 4

1.2 Distributed Denial of Service Attack (DDoS).. 4

1.3 Mitigation Systems Against DoS and DDoS.. 7

Chapter 2 DDoS Defense Research ... 10

2.1 Intrusion Prevention ... 10

2.1.1 General Security Policy.. 11

2.1.2 Ingress and Egress Filtering ... 11

2.2 Intrusion Detection ... 14

2.2.1 Anomaly Detection... 14

2.2.2 Misuse Detection .. 15

2.2.3 Limitations of Anomaly and Misuse Detection........................ 16

viii

2.3 Intrusion Response ... 17

2.3.1 Source Identification .. 18

2.4 Intrusion Tolerance... 19

2.4.1 Fault Tolerant ... 19

2.4.2 Quality of Service (QoS) .. 20

2.4.2.1 Intrusion Tolerant QoS Techniques........................... 20

2.4.2.2 Intrusion Tolerant QoS Systems................................ 22

Chapter 3 The Proposed Autonomous Anti-DDoS Network (A2D2) Design.. 25

3.1 Intrusion Detection ... 26

3.1.1 Snort Overview... 26

3.1.2 Snort Detection Engine... 27

3.1.3 Snort Module Plugin - Preprocessors 29

3.1.4 A2D2 Snort Module Plugin – Flood Preprocessor................... 31

3.1.4.1 Flood Threshold... 32

3.1.4.2 Flood Preprocessor Initiation 33

3.1.4.3 Flood Preprocessor Data Structure............................ 34

3.1.4.4 Subnet Flood Detection ... 37

3.1.4.5 Flood Preprocessor Logic Flow................................. 40

3.1.5 A2D2 Snort Module Plugin Add-on – Flood IgnoreHosts

Preprocessor ... 44

ix

3.2 Intrusion Responses – QoS... 46

3.2.1 Security Policy.. 47

3.2.2 Class-based Queuing (CBQ) .. 50

3.2.3 Multi-Level Rate-Limiting ... 56

3.3 Autonomy System .. 58

3.3.1 Rate-Limiting Configuration and Expiration 58

3.3.2 Snort Customization – FloodRateLimiter Preprocessor........... 61

3.3.3 Alert Interface... 64

Chapter 4 A2D2 Implementation .. 66

4.1 The Attack Network ... 66

4.1.1 Attack Network Systems Specifications 68

4.1.2 Attack Tool – StacheldrahtV4 .. 69

4.1.3 A2D2 Implementation of StacheldrahtV4................................ 70

4.1.4 Other Possible Attack Tools... 70

4.2 The Autonomous Defense Network (A2D2).. 71

4.2.1 Defense Network Systems Specifications 72

4.2.2 Defense Network Gateway Policy and CBQ Setup 72

4.2.3 Defense Network IDS and Rate-Limiting Setup 73

4.3 The client network .. 75

4.3.1 Real Clients Specifications... 76

4.3.2 Client Bandwidth Measurement Tools 76

x

Chapter 5 Performance Results and Analysis.. 78

5.1 Test Scenarios... 78

5.2 Test Data Collection ... 80

5.3 Test Results .. 82

5.4 Results Analysis ... 87

Chapter 6 A2D2 Test-bed Limitations and Future Work 100

6.1 Firewall Processing Speed.. 100

6.2 Alternate Route Technique... 101

6.3 TCP-SYN Attack.. 102

6.4 Scalability ... 103

6.5 Anomaly Detection... 103

6.6 Fault Tolerant ... 103

Chapter 7 Software Engineering Model and Lessons Learned..................... 105

7.1 The Evolutionary Software Life Cycle Model 105

7.1.1 Build 1 – Initial Linux Network Test-bed Setup 107

7.1.2 Build 2 – Initial Security Test-bed Design 108

7.1.3 Build 3 – Intermediate Security Testbed Design.................... 109

7.1.4 Build 4 – A2D2 Initial Design.. 110

7.1.5 Build 5 – A2D2 Refined Design .. 111

Chapter 8 Conclusion ... 112

xi

Bibliography .. 114

Appendix A Flood Preprocessor Logic Flowchart.. 122

Appendix B Design Evolution... 123

Appendix C A2D2 Users Manual ... 128

C.1 The A2D2 Attack Network .. 128

C.1.1 The Essential Software and Files ... 128

C.1.2 The Execution Steps ... 130

C.2 The Autonomous Defense Network (A2D2)...................................... 130

C.2.1 The Firewall Gateway (Titan) .. 131

C.2.1.1 The Essential Software and Files 131

C.2.1.2 The Execution Steps .. 132

C.2.2 The IDS (Pluto) .. 133

C.2.2.1 The essential software and files............................... 133

C.2.2.2 The Execution Steps .. 135

C.2.3 The RealServer (Pluto) ... 136

C.2.3.1 The essential software and files............................... 136

C.2.3.2 The Execution Steps .. 136

C.3 The Client Network .. 137

C.3.1 The essential software and files.. 137

C.3.2 The Execution Steps ... 138

xii

C.4 A Sample Demo Script ... 138

C.4.1 At the firewall gateway computer (Titan) 139

C.4.2 At the IDS/RealServer compuer (Pluto)................................. 139

C.4.3 At the RealPlayer Client computer (Linux)............................ 140

C.4.4 At the Attack Client “Saturn”... 141

xiii

List of Tables

Table 3.1 – Multi-Level Rate-Limiting Table ..59

Table 4.1 – Titan Multi-Level Rate-Limiting Table ..74

Table 5.1 – A2D2 Test-bed Performance Results ..84

Table 5.2 – iptables Status After A2D2 Implementation (iptables –v –L)...................99

Table C.1 – Stacheldrahtv4 Files..129

xiv

List of Figures

Figure 1.1 – A typical DDoS Architecture...6

Figure 2.1 - Illegitimate IP Spoofing..12

Figure 2.2 – Victim IP Spoofing ..12

Figure 3.1 - Flood Preprocessor Key Data Structure ...35

Figure 3.2 - DDoS IP Spoofing Each Attack Agent...38

Figure 3.3 – FloodIgnoreHosts Preprocessor Add-on Key Data Structure46

Figure 3.4 – A Typical DMZ and its IDS Placement ...48

Figure 3.5 - Bandwidth Assignment Example by CBQ ...50

Figure 3.6 - Implementing QoS using Class-Based Queuing.......................................51

Figure 3.7 – FloodRateLimiter Preprocessor Key Data Structure65

Figure 4.1 – A2D2 Implementation Test-bed...67

Figure 5.1 – QoS Experienced by A2D2 Client During Experiment Normal

Activity ...88

Figure 5.2 – QoS Experienced by A2D2 Client During 1-Minute DDoS Attack89

Figure 5.3 – QoS Experienced by A2D2 Client During Non-Stop DDoS Attack90

Figure 5.4 – QoS Experienced by A2D2 Client During Non-Stop UDP DDoS

Attack with A2D2 Firewall Policy Enabled ...91

xv

Figure 5.5 – QoS Experienced by A2D2 Client During Non-Stop ICMP DDoS

Attack with A2D2 Firewall Policy Enabled ...92

Figure 5.6 – QoS Experienced by A2D2 Client During Non-Stop ICMP DDoS Attack

with A2D2 Firewall Policy & CBQ Enabled..93

Figure 5.7 – QoS Experienced by A2D2 Client During Non-Stop TCP-SYN DDoS

Attack with A2D2 Firewall Policy & CBQ Enabled................................94

Figure 5.8 – QoS Experienced by A2D2 Client During Non-Stop TCP-SYN DDoS

Attack with A2D2 Firewall Policy, CBQ, Snort IDS, Autonomous Alert

Communication and Multi-level Rate-Limiting Enabled96

Figure 7.1 – ISO/IEC 12207 (Software Life Cycle Processes)

Evolutionary Model ..106

Figure A.1 – Flood Preprocessor Logic Flowchart ..122

Figure B.1 – Build 1 – Initial Linux Network Test-bed Set-up..................................123

Figure B.2 – Build 2 – Initial Security Test-bed Design ..124

Figure B.3 – Build 3 – Intermediate Security Test-bed Design125

Figure B.4 – Build 4 – A2D2 Initial Design ..126

Figure B.5 – A2D2 Final Design..127

Chapter 1

Introduction

Since early 2000 when a number of high profile sites such as eBay and

Yahoo.com were halted by Distributed Denial of Service (DDoS) attacks [Dit00], the

initial furor has subsided but the continual threat has ascended. The prevalence of

DDoS attacks was verified by a recent study conducted by the University of

California, San Diego (UCSD), that detected approximately 12,805 Denial of Service

(DoS) attacks against more than 5,000 targets during a three-week period in mid-2001

[MVS01]. Even CERT, the authority that warns Internet users on security threats, fell

victim to DDoS in May 2001 [ITW01]. The Computer Security Institute (CSI) and the

Federal Bureau of Investigation (FBI) reported in April 2002 that attacks had

continued to “climb for third year in a row”, with 40 percent of the 503 surveyed

corporations, government agencies and universities detecting DoS attacks in 2002

[CSI02].

The increase of DoS attacks can partly be attributed to the development of

more sophisticated and “user-friendly” tools such as Trinoo [Dit99], Trible Flood

2

Network (TFN)[Dit99], and Stacheldraht[Dit99]. Such tools have amplified the

impact of DoS attacks exponentially through distributed channels and created a new

variation of attacks called DDoS. The following sections describe the various types of

DoS attacks, how these attacks evolve into DDoS attacks and what popular products

are in the market that defend against DoS and DDoS attacks are.

1.1 Denial of Service Attack (DoS)

 One widely accepted definition of computer security is the attainment of

confidentiality, integrity, and availability in a computer system [RS91].

Confidentiality refers to the protection of information from unauthorized access.

Integrity prevents data from being altered accidentally or by malicious attempts.

Availability ensures the provision of quality resources and service to users as needed.

DoS attacks target the availability aspect of computer security and deny services or

resources to legitimate users. According to CERT, DoS attacks can be categorized into

three types:

• Consumption of scarce, limited, or non-renewable resources

• Destruction or alteration of configuration information

• Physical destruction or alteration of network components [CERT01]

3

1.1.1 DoS – Consumption of Limited Resources

The operations of computers and networks rely on the availability of various

resources such as network bandwidth, data structures, disk space, and power supply. A

consumption DoS attack may be executed against any resource. For example, a TCP

half-open attack consumes the kernel data structures involved in establishing a TCP

network connection [Comer00]. When a computer receives a TCP SYN connection

request, it responds with a SYN-ACK acknowledgement packet while keeping track of

the SYN request in the kernel data structure. Such a TCP connection is considered

half-opened and will remain open until the computer receives an ACK response from

the initiating host completing the connection. A TCP half-open attacker can initiate

enough half-open connections so that the victim machine is left with no data structure

to service additional connection requests from legitimate clients.

 In a bandwidth-consumption attack, an intruder directs a large number of

packets towards your network, thereby consuming all the available bandwidth and

stopping legitimate packets from accessing the congested network link. An attacker

can also consume other resources such as disk space by generating excessive numbers

of mail messages.

1.1.2 DoS – Destruction or Alteration of Configuration

Information

In such attacks, an intruder may modify or destroy the system configuration

information of the computer, such as the registry on a Windows NT machine or the

4

routing information of routers. Such alteration may render certain functions

unavailable, cause the systems to crash, or disable network connection by routing all

packets to the attacker’s server instead of the legitimate server.

1.1.3 DoS – Physical Destruction or Alteration of

Computer Components

Perhaps the first DoS attack in history is the physical destruction of a computer

component where an intruder disconnects power supply, slivers wires, and disables

cooling stations so that the systems cannot service the clients.

1.2 Distributed Denial of Service Attack (DDoS)

Distributed Denial of Service (DDoS) attacks are any DoS attacks where tools

are employed to rapidly “recruit” and coordinate attacks using a mass number of

conspirators from widely diverse systems around the globe. A detailed account of the

evolution of DDoS tools is provided by Dave Dittrich at the University of Washington

[Dit00]. Dave Dittrich also conducted comprehensive analyses of such DDoS tools as

Trinoo, TFN, Stacheldraht, and mstream [Dit99]. According to Dittrich, a DDoS

attack is conducted in two phases: initial intrusion (Phase 1) and the DoS attack (Phase

2) [Dit00].

 During the initial intrusion phase, the mastermind intruder identifies

compromised hosts using vulnerability-scanning tools such as nmap [Nmap02] and

whisker [Whi00]. To further distance his or her involvement, the chief intruder will

5

organize the compromised systems into various categories with different functions

assigned to them. A compromised system may be designated as an attack commander

or a “client” who contains the blue-print of the attack plan. A few compromised

systems will be defined as the “handlers” or the middlemen who coordinate the attack

agents, while a vast number of systems will take on the role as the “attack agents” who

launch the actual floods. This preliminary scanning and organization step may take

days or weeks to accomplish. Once the list of compromised systems is organized, the

intruder installs the appropriate scripts on the client, handlers, and attack agents. The

agent installation step takes approximately three to six seconds for each host. The

attack network of 2,200 systems used against the University of Minnesota in August

1999 would have taken around two to four hours to set up [Dit00].

 Phase 2 of a DDoS attack is the actual denial-of-service attack. The

mastermind intruder communicates with the client when he or she wants to instigate

an attack at a certain moment. More often, in order to conceal his or her involvement

in the attack, the mastermind intruder installs certain instructions on the client that

specify the date, time, duration of the attack and the intended victim. Based on the

attack blueprint, the client automatically commands the handlers to launch an attack

against the intended victim at the specified date and time. Upon receiving the client’s

command, the handlers coordinate the attack agents to start a traditional DoS attack

against the ultimate victim. The actual attack can be of any DoS types, such as the

ping flood bandwidth consumption attack [Dit99]. The overall attack impact is

amplified by the number of attack agents involved. A typical DDoS architecture is

6

illustrated in Figure 1.1.

Handler
(Middleman)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Handler
(Middleman)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Client
(Attack Commander)

Internet/ISP
Bandwidth

Mastermind
Intruder

www.victim.com
Bandwidth

Figure 1.1 – A typical DDoS Architecture

The distributed nature of the DDoS attack has made it extremely difficult to

trace and stop the attack. While a single DoS attacker may not be able to shut down a

large web-based commercial site such as Amazon.com, the cooperative power of a

diverse group of attack agents with various levels of resources can easily make any

network inoperable. With one DoS attacker, it is possible to trace and stop the attack.

When the attack source composes thousands of computers distributed across the

7

world, the task to trace and stop the DDoS attack instantaneously becomes

improbable. In addition, since there is no communication between the mastermind

intruder and the client during an attack, it is often impossible to trace back to the

mastermind intruder even if the agents, handlers and the client can be identified.

1.3 Mitigation Systems Against DoS and DDoS

To date, a myriad of commercial devices have been introduced to attempt to

combat DoS and DDoS attacks. Network Computing has conducted a comparative

study on some of the more promising anti-DDoS systems in the Neohaspsis labs in

Chicago and the results were released in December 2001[For01]. The anti-DDoS

devices studied vary vastly, ranging from switches, routers, to load-balancers,

firewalls, intrusion detection system (IDS) and traffic analyzers. Some devices, such

as the Mazu TrafficMaster Enforcer and the Reactive FloodGuard, were designed

solely for the purpose of handling DoS attacks. Others, such as the Foundry ServerIron

400 and Top Layer AppSwitch 3500, mitigate DDoS through their application

switching function. Products such as Captus Networks CaptIO G-2 and Radware

FireProof are firewalls that guard against DoS. While these systems provide automatic

mitigation, the cost ranges from a monthly charge that starts at $5,000 to a one-time

product purchase price of $150,000.

Other devices, such as Asta Networks’ Vantage System Enterprise and Arbor

Networks’ Peakflow DoS, do not respond to DoS attacks automatically. Instead, these

devices perform sophisticated data analysis on abnormal traffic patterns and advise the

8

administrators on appropriate mitigation actions. These systems may provide more

accurate reports of possible attacks and reduce the chances of automatically blocking

legitimate traffic during false alarms. However, like the automated mitigation systems

evaluated in the study, the cost is hefty with starting prices ranging from $8,000 to

$130,000.

Administrators interested in assembling their anti-DDoS systems do not face

cheaper alternatives. An average IDS, such as the Cisco IDS, the Dragon IDS and the

ISS RealSecure costs $7,500 to $25,000 depending on the number of nodes and

network bandwidth [Des02]. Firewall systems, such as Cisco PIX, Check Point

firewall, Nokia IP platform, Sysmaster from SysMaster Corporation, Watchguard

Firebox and Sidewinder firewall, range from around $300 to $14,000. The cost of

setting up a network against DDoS attacks can quickly sum up to tens of thousands of

dollars after adding a few routers and other network components. Despite the financial

investment, it is impossible for these devices to defend against all types of DDoS

completely due to the changing nature of the attacks.

According to the research conducted by UCSD in 2001, a predominant number

of DDoS are targeted towards home networks and to smaller and medium-sized

businesses [MVS01]. Since the commercial systems against DDoS are expensive and

yet imperfect solutions, small networks may see their needs to guard against DDoS as

a low priority and thus increase their chance of being victimized. Other home and

medium-sized businesses may not have the resources, knowledge base, and financial

means to implement the anti-DDoS commercial systems described above. Therefore,

9

this thesis explores an autonomous defense-architecture against DDoS that can be

easily deployed in a small or medium sized network where administrators’ time is

scarce and financial support is limited. Specifically, the Autonomous Anti-DDoS

(A2D2) network proposed in this thesis aims to maximize the quality of service of the

victim network automatically during a DDoS bandwidth consumption attack.

Chapter 2

DDoS Defense Research

In general, DDoS defense research can be roughly categorized into three areas:

intrusion prevention, intrusion detection, and intrusion response. Intrusion prevention

focuses on stopping attacks before attack packets reach the target victim. Intrusion

detection explores the various techniques used to detect attack incidents as they occur.

Intrusion response research investigates various techniques to handle an attack once

the attack is discovered. In addition to these three research areas, intrusion tolerance,

once a sub-field of intrusion response, is emerging as a critical research domain.

Intrusion tolerance responds to attacks by minimizing the attack impact. This section

reviews key research in each of these four areas.

2.1 Intrusion Prevention

The best mitigation strategy against any attack is if the attack never occurs.

Research in intrusion prevention has stressed the importance of a well-defined security

11

policy. Another approach to prevent DDoS attack is to stop the attack traffic before

it reaches the victim as presented by research on Ingress and Egress filtering.

2.1.1 General Security Policy

“A security policy defines the set of laws, rules, and practices that regulate

how an organization implements, manages, protects, and distributes computing

resources to achieve security objectives.” [CERT98]. Security policies help

organizations to define the type of DDoS and other threats they choose to guard

against and to incorporate various advisories to prevent these threats.

2.1.2 Ingress and Egress Filtering

 Many DDoS tools alter the source IP addresses of attack packets to illegitimate

addresses in the Internet name space such as “0.4.7.28”. Tracing of the attack source

will indicate the illegitimate IP address and the firewall therefore “effectively” blocks

a non-existent address as shown in Figure 2.1.

12

Attack Agent
128.198.45.1

Firewall Server

Internet
Sends 1000 Packets

source ip
0.4.7.28

Block

Non-exist

Figure 2.1 - Illegitimate IP Spoofing

Alternatively, the source addresses of the attack packets can be changed to that

of a victim’s so that the real victim will be identified as the attacker. By tracing and

blocking the source IP of such spoofed packets, the DDoS mitigation network

essentially denies service to the real victim and achieves the denial of service that the

master attacker intends.

Attack Agent
128.198.45.1

Victim
207.138.51.17

Firewall Server

Internet
Sends 1000 Packets

source ip
207.138.51.17

Block

Figure 2.2 – Victim IP Spoofing

13

IP spoofing has made it impossible to track down the attack source.

Research on ingress and egress filtering has targeted this “feature” of the DDoS tool

and presented an effective way to limit the damage created by such a DDoS attack

[Cis99, FS00]. In egress filtering, network routers will only route packets with

addresses from its own assigned IP addresses space to the Internet [San00]. Ingress

filtering denies all traffic with addresses nonconforming to the Internet Address space

from entering a network. A router implementing ingress filtering can also restrict

transit traffic that originates from a downstream network to known prefixes [IET00].

Therefore, ingress and egress filtering can intercept an attack packet with an

illegitimate source IP address; discard the packet; and thereby prevent the attack

packet from reaching the Internet and the victim network. If an attack originates from

a legitimate network, ingress filtering will not be able to filter out attack packets.

However, since attackers are forced to use addresses from real networks, filtering can,

at the minimum, expedite packet tracing and enable quick identification of attack

agents.

While egress filtering can be effectively implemented by many companies or

organizations, it becomes difficult or almost impossible for major service providers to

take advantage of such techniques. These service providers frequently need to forward

legitimate traffic that is not part of its own address space. Egress filtering also

becomes extremely complicated in situations where alternate routes are used for traffic

traversing through various major service providers. Nonetheless, ingress and egress

14

filtering are effective ways to prevent DDoS attacks based on spoofed IP when the

techniques are deployed close to the end user community [San00].

2.2 Intrusion Detection

An intrusion detection system (IDS) can be installed on a specific host to

detect invasion against the one host, or be positioned in a network where the IDS can

monitor all network traffic in a promiscuous mode. Based on the method of detection,

both host-based and network-based IDSs can be divided into two categories: anomaly

intrusion detection and misuse or rule-based intrusion detection [Kum95, Stal99].

2.2.1 Anomaly Detection

 Anomaly detection first quantifies the ‘usual behavior’. System behavior can

be login and session activities such as the login frequency by day, time and location,

output quantity or session resource utilization. Behavior can also be command or

program execution activity such as execution frequency or program resource

utilization. Other behavior tracked can be file access activity such as file read, write,

create, and delete frequency [Stal99]. In the case of detecting DDoS bandwidth

consumption attacks, behavior of interest would be the bandwidth utilization of the

server network or the session activities received by the clients.

By observing past history and collecting data of legitimate behavior over a

period of time, network administrators can obtain a behavior baseline of normal

activities. Statistical science is then applied to help define the threshold level or the

15

profile that differentiates abnormal behavior from normal behavior [Stal99]. The

statistical science applied for such differentiation purpose is well developed. Some

techniques used are Bayesian statistics, covariance matrices, classifying schemes,

machine learning mechanisms and neural networks [Kum95]. The IDS identifies and

alerts activities that surpass the thresholds or deviate from the normal behavior profile

as attack.

2.2.2 Misuse Detection

Misuse detection identifies well-defined patterns of known exploits and then

looks out for the occurrences of such patterns. Intrusion patterns can be any packet

features, conditions, arrangements and interrelationships among events that led to a

break-in or other misuse. These patterns are defined as intrusion signatures [NCFF01].

In the anti-virus industry, signatures development has been an established field. Anti-

virus products provide signature identification capabilities and virus removal

functions. Network intrusion signature development, on the other hand, has just

emerged as a new research area. Each IDS vendor may have vastly different signature

approaches and methodologies. A recommended approach in Network IDS signature

development is to focus on the characteristics of the attacks, vulnerabilities and

exploits [Fred02]. For example, “ping commands” executed by administrators send

out legitimate ICMP packets to checks for network connection. These ICMPs have

small sizes around 64 bytes. In order to consume more bandwidth, attackers often send

out a large number of ICMP packets that may be as big as 1500 bytes. Based on this

16

attack pattern, an intrusion signature can identify packets whose type is ICMP and

the packet size is greater than 800 bytes. Such an “ICMP Large Packet” signature can

generate false positives since ICMP packets can be of various sizes up to 1500 bytes.

For example, some load balancing applications such as HP-UX systems use 1500 byte

ICMP packets to determine the most efficient route to a host by measuring the latency

of multiple paths [Whit01]. However an administrator may still choose to activate this

signature for his or her network because the incident of legitimate large ICMP packets

arriving at his or her network is extremely rare.

2.2.3 Limitations of Anomaly and Misuse Detection

One limitation of anomaly detection is that it is possible for an attacker to

“train” an IDS to reclassify the once abnormal behavior as normal behavior. It is also

difficult to determine the thresholds above which a behavior may be considered

intrusive. In addition, legitimate users are aware of the normal network behavior, as

their actions constitute the “normal” behavior pattern. Unauthorized access or usage

conducted by a legitimate user is easily hidden within anomaly detection. On the other

hand, misuse detection can identify an attack signature whether the attack is conducted

by authorized or unauthorized personnel. However, signatures become obsolete once

attack patterns change. New attacks can be easily created with slight modifications to

old patterns and new signatures are required. In the event of the “ICMP Large Packet”

signature described in Section 2.2.2, administrators are required to collect and analyze

network data to determine the size of the common ICMP packets the network receives.

17

Based on this normal pattern, an administrator can then define the signature of what

ICMP packet size is considered “large”. Therefore, to effectively detect intrusion, a

network IDS needs to combine both the statistical anomaly part to measure aberration

of behavior, and a misuse part that monitors the occurrence of specific patterns of

events [Kum95, Stal99].

2.3 Intrusion Response

 Once an attack is identified, the immediate response is to identify the attack

source and block its traffic accordingly. Improving attack source identification

techniques can expedite the capture of attackers and deter other attack attempts. In a

distributed attack as illustrated in Figure 1.1, attack agents are often disperse around

the globe and bear no relation with one another, and handlers and clients are a few

hops away from the attack front. All these elements prolong the time taken to trace

and identify the real attack source. Before the master intruder can be identified,

networks often respond to attacks by limiting the rate of certain incoming traffic or

implement other bandwidth management techniques in hope of maintaining its quality

of service to legitimate clients. This type of response is referred to as intrusion

tolerance. Intrusion tolerance has emerged as an important research topic and will be

described in Section 2.4.

18

2.3.1 Source Identification

Source identification research investigates techniques to efficiently and

effectively identify the attack source despite spoofing and distributed tools. Criminal

arrests made possible by speedy and accurate source identification can be a hindrance

to other would-be attackers. The best-known work in this category includes ITRACE

[IET02, BLT02, MMW+02] and DECIDUOUS [CNW+99].

DECIDUOUS – Decentralized Source Identification for Network-Based

Intrusions utilizes the IP Security Protocol (IPSEC) header information to trace the

attack packet. Authentication Header (AH) of IPSEC comes after the basic IP header

and contains cryptographic hashes of the data and identification information, including

source and destination information [OBSD02]. If an attack packet successfully passed

a certain router, the router must have authenticated the packet and the router

information will be contained in the AH of the packet. From an attack victim, a secure

traceroute can be performed that iteratively displays the steps an attack packet has

taken to the actual router closest to the source, regardless of what source and

destination IP address is.

Among traceback techniques, ITRACE – ICMP traceback and reverse

ITRACE has been proposed as an industry standard by the Internet Engineering Task

Force (IETF) [IET02]. In ITRACE, routers generate a “traceback message” that is sent

along with the forwarded packet to the destination, indicating the router identity that

the packet just transited. In reverse ITRACE, the traceback message is sent to the

packet’s claimed source instead of destination. These traceback messages are logged

19

and analyzed by special hosts in chosen points in the network. With enough

traceback messages from enough routers along the path, the traffic source and path can

then be determined [IET02].

2.4 Intrusion Tolerance

Intrusion Tolerance research accepts the fact that it is impossible to prevent or

stop DDoS completely. Instead of defeating DDoS, research in this category focuses

on minimizing attack impact and maximizing the quality of its services. Many

advances in intrusion tolerance are developed based on two other disciplines: fault

tolerance and quality of service (QoS).

2.4.1 Fault Tolerant

Fault tolerant is a well-developed research area and fault tolerant designs are

built-in in most critical infrastructures. There are three levels at which fault tolerance

can be applied: hardware, software and system. Hardware fault tolerance represents

the traditional fault tolerant measures where extra hardware resources are used to

continue operations in an event of hardware faults. Software fault tolerance introduces

mechanisms such as checkpoint restart and recovery blocks to compensate for design

errors or data structure faults. System fault tolerance compensates failures in other

system facilities that are not computer-based [NIST95] and ensures availability of the

entire network and system. The fault tolerant principles of redundancy and diversity

across the hardware, software, system and network level can be readily leveraged by

20

the intrusion tolerant community [GWW+00]. By duplicating its services and

diversifying its access points, a network can find ways to continue its services when

one network link is congested by flooding traffic.

2.4.2 Quality of Service (QoS)

 Quality of Service (QoS) describes the assurance of the ability of a network to

deliver predictable results and services for certain types of applications or traffic

[Comp, ZOS00]. Network elements within the scope of QoS include availability

(uptime), bandwidth (throughput), latency (delay), and error rate (packet loss rate)

[Comp]. Among Internet applications, video and multimedia services that require

continuous transmission of high-bandwidth media information are particularly concern

with QoS. Among the most standard QoS techniques used to mitigate DDoS are rate-

limiting and class-based queuing [Cis02, HMP+01]. These techniques are explained in

Section 2.4.2.1. Often, various QoS techniques are integrated to enable a system that

demonstrates superior intrusion tolerance and some of these systems are described in

Section 2.4.2.2.

2.4.2.1 Intrusion Tolerant QoS Techniques

 Among frameworks to provide Internet QoS, Integrated Service (IntServ) and

Differentiated Services (DiffServ) have emerged as the principal architectures

[ZOS00]. IntServ utilizes Resource Reservation Protocol (RSVP) to coordinate the

resources allocation along the path that a specific traffic flow will pass. The link

bandwidth and buffer space are assured for that specific traffic flow. Unlike the per-

21

flow based IntServ, DiffServ is a per-aggregate-class based discrimination

framework. DiffServ makes use of the type-of-service (TOS) byte in the IP header and

allocates resource based on the TOS of each packet.

Within the two frameworks, queue management and scheduling are the two data

operations in router that enables Internet QoS. Queue management controls the length

of packet queues by dropping or marking packets. Scheduling determines the order by

which packets are being sent. Queuing techniques are employed extensively to combat

DDoS attacks. There are many queuing disciplines. The oldest and most widely

applied queuing technique is Class-based queuing (CBQ).

 Class-based queuing (CBQ) or traffic shaping sets up different traffic queues

for different types of packets and for packets of different TOS. A certain amount of

outbound bandwidth can then be assigned to each of the queues. For example, a Linux

router can limit ICMP traffic to only 5% of the bandwidth link that connects the router

to the web server while allowing traffic that targets the multi-media service port of the

web server 80% of the available bandwidth. Class-based queuing has shown to

maintain QoS during DDoS attack on clusters of web servers [KMW01, WO01].

 While queuing or traffic shaping determines the way in which data is sent and

manages how the outbound link is utilized, the queuing discipline has no control over

the inbound link and how fast packets arrive. Another QoS technique rate limiting or

traffic policing applies filters to limit the arrival rate of packets. For example, in

response to a ping-flood DDoS attack, a system administrator can configure network

routers to accept only 10 ICMP packets per second and discard the rest of the

22

incoming ICMP packets. Rate limiting happens at a very early stage of kernel

processing and therefore consumes minimum CPU power in dropping packets.

 Often, various QoS techniques are integrated to enable a system that

demonstrates superior intrusion tolerance. However, implementation of multiple

techniques requires significant administrative effort. For example, if multimedia traffic

is allotted 80% of the bandwidth, all traffic targeted to the multimedia port will access

the assigned bandwidth regardless of its source. Should attack traffic exhaust the

assigned CBQ bandwidth, the system administrator needs to manually identify and

rate limit possible attack sources. Once rate-limiting is applied for a certain source IP

or certain type of packet, the rate limit will be in effect until system administrators

manually remove the rate-limiting condition. If the intrusion detection system tends to

produce a high frequency of false positives, the quality of service experienced by

legitimate clients will likely be degraded for a long period of time due to rate-limiting.

 To alleviate administrators’ workload and to minimize mitigation response

time during an attack, an autonomous system-approach is necessary. Numerous QoS

response techniques need to be integrated with detection mechanism so that the

intrusion tolerant system can produce an automatic response during an attack with

minimum human intervention.

2.4.2.2 Intrusion Tolerant QoS Systems

Various autonomous architectures have been proposed that demonstrated

intrusion tolerant during DDoS bandwidth consumption attacks. Some representative

systems are the XenoService [YEA00], the pushback mechanisms proposed by

23

Ioannidis and Bellovin [IB02], and the autonomic response architecture supported

by The Defense Advanced Research Projects Agency (DARPA) [SDW+01].

The XenoService [YEA00] proposed an infrastructure of a distributed network

of web hosts that respond to an attack on any one web site by replicating the web site

rapidly and widely among XenoService servers, thereby allowing the attacked site to

acquire more network connectivity to absorb a packet flood. In order to achieve

dynamic replication, the Xeno infrastructure requires ISPs worldwide to install

Xenoservers, which run on top of Nemesis, an operating system designed to support

QoS. These ISPs then offer web-hosting service at a premium price. During an attack,

the web site is then replicated to other Xenoservers among the subscribing Xeno-ISPs.

While such infrastructure can ensure QoS during DDoS attacks, it is doubtful that a

large number of ISPs worldwide will adopt such infrastructure quickly. Small and

medium size businesses may not be willing to subscribe to such expensive services.

The pushback architecture is a promising mitigation technique where routers

instruct their upstream routers to rate limit during attacks [IB02]. While it is beneficial

for a particular network to implement pushback within its own network boundary, the

pushback techniques real value can only be realized when ISPs worldwide make

agreements on how to honor pushback requests.

DARPA has supported research on sophisticated autonomic response systems

based on the Cooperative Intrusion Traceback and Response Architecture (CITRA)

and the Intruder Detection and Isolation Protocol (IDIP) [SDW+01]. IDIP is a special

protocol for reporting intrusions and coordinating attack trace-back and response

24

actions among network devices. CITRA refers to the architecture of network

communities and network components that use IDIP. The CITRA network

components can be IDSs, firewalls, routers, or any devices that adopts IDIP to

cooperatively trace and block network intrusions as close to their source as possible

[SDW+01]. Special communication protocols such as IDIP and the CITRA

infrastructure are gaining acceptance but there is currently no standard in such

protocol development. The specification of IDIP is not available to the public domain.

 While it is necessary to design a system-approach where QoS techniques such

as rate limiting and CBQ can be autonomously deployed, many current autonomous

architectures require expensive infrastructure investment, extensive cooperation of

different entities, or the adoption of a new protocol. A small business owner does not

have influence over the network design or the partnerships of his or her service

provider. Therefore, the current thesis aims to design an Autonomous Anti-DDoS

(A2D2) network by integrating and improving existing methodologies that enable

small and medium-sized networks to take control of their own defense within their

own boundary.

Chapter 3

The Proposed Autonomous Anti-

DDoS Network (A2D2) Design

This thesis proposes an autonomous anti-DDoS network design that utilizes

existing and affordable tools and technologies. The goal of the design is to combine

various technologies and make necessary improvements to achieve autonomous attack

mitigation similar to that attained by elaborate expensive architectures. The A2D2

network is specifically designed to enhance quality of service during bandwidth

consumption DDoS attack. The A2D2 design follows four main guiding principles:

• Affordable

• Manageable

• Configurable

• Portable

26

The target audience for the A2D2 network is home networks and small to

medium sized companies. To ensure affordability, A2D2 will make use of open source

and existing technologies wherever possible. In addition, the A2D2 network should

be easily managed with minimum administrator intervention, can be quickly

configured for networks of various sizes and readily ported to mitigate attacks other

than DDoS.

The design of the A2D2 network will be divided into three main areas:

• Intrusion Detection

• Intrusion Response: Intrusion Tolerance – Quality of Service

• Autonomy System

3.1 Intrusion Detection

3.1.1 Snort Overview

 As mentioned in Section 1.3, well-known systems such as Cisco Secure

IDS, the Dragon IDS, ISS RealSecure and Symantec NetProwler cost $7,500 to

$25,000 depending on the number of nodes and network bandwidth [Des02, Sao02].

Except for the Windows-based NetProwler, all other IDSes mentioned support a

variety of platforms such as Sun Solaris, Linux, and the Windows systems. Among all

the well recognized and broadly deployed IDSes, Snort is the only free, open source

lightweight intrusion detection system and is selected to be the detection component of

27

A2D2 [Sao02]. Snort's network monitoring mechanism is based on the pcap packet

capture library, which makes Snort's code portable among various platforms that

support libpcap. Currently Snort is run on Linux, Net/Open/FreeBSD, Solaris, SunOS

4.1, HP-UX, AIX, IRIX, Tru64, MacOS X Server and the Win9x/NT/2000 platform

[Snort].

 Snort can be operated in three modes: a straight packet sniffer similar to

tcpdump, a packet logger, or as a full-blown network intrusion detection system. As an

IDS, Snort performs real-time protocol analysis, content searching and matching, and

real-time alert. Attack detection is mainly based on a signature recognition detection

engine as well as a modular plugin architecture for more sophisticated behavior

analysis.

3.1.2 Snort Detection Engine

 The Snort detection engine is based on signature recognition techniques.

Signatures are classified into different types such as DoS type or ICMP type and then

defined in the rule files of the specific classification such as ddos.rules or icmp.rules.

Content searching and matching functions are defined within the detection engine

processors. The processors test an aspect of the current packet and report the findings.

These functions are accessed from the rules file as standard rule options and may be

called many times per packet with different arguments. Rules are checked in sequence

according to the order the rules are specified in the rule file.

28

 Using a flexible rules language, Snort enables administrators to describe the

type of pattern or traffic that the IDS should pay attention to. The rule, or signature

description, can be based on packet source, destination, port numbers, tcp flags, packet

size and other header information. Snort also decodes the application layer of a packet

and signatures can be designed based on the contents of the packet payload. Snort

provides a large library of rules that detect a variety of hostile activities, including

buffer overflows, CGI attacks, SMB probes, or any other data in the packet payload

that can be characterized as a unique attack fingerprint. Rules for new exploits are

readily available on the Snort website. The Snort website also provides detailed

documentations and manuals to guide administrators in creating rules that suit their

specific security policy [Snort]. A sample Snort rule is:

• alert icmp any any -> 10.1.1.0/24 any (msg:"Being Pinged"; itype: 8;)

- # alert is the rule action. There are 5 types of actions that can be

performed when a certain rule is matched: alert, log, pass (ignore),

activate and dynamic. The action “activate” raises an alert and also

switches on the specified dynamic rule that in turn logs the event.

- # the second field of a Snort rule specifies the type of protocol. In

this rule, an alert will be generated when an ICMP packet that

matches the rule condition arrives at the network.

- # the third field of a Snort rule describes the source IP address. In

this sample rule, “any” means to alert all ICMP packets initiated

from any addresses.

29

- # the fourth field describes the source port. In this example, the

rule looks for ICMP packets with “any” source port

- # the destination IP is the subnet 10.1.1.0/24

- # the destination port is “any”

- # alert message is “Being Pinged”

- # itype:8 checks the type field of the ICMP packet header to see if

the field contains the number 8, indicating the ICMP packet is a

“echo request” packet.

3.1.3 Snort Module Plugin - Preprocessors

 In addition to the detection engine, Snort provides a modular plugin

architecture that enables more complex analysis on collective packet behavior and

performs sophisticated decoding of packet contents. Module plugin preprocessors are

not accessed through rules. Instead, raw packets are submitted to the various

preprocessors sequentially. Each preprocessor performs some functions once for each

packet, then evaluates the condition and alerts if a suspected attack behavior is

observed. A preprocessor does not modify the packet information. Packets go through

the preprocessors before being passed to the detection engine and being matched

against Snort rules.

Preprocessors are important since many attacks cannot be detected merely by

matching a simple pattern in a packet header or payload. For example, in a

30

fragmentation attack, attackers take advantage of the fact that the IP protocol allows

an IP packet to be broken apart into several smaller packets during transmission and

then reassembled at the final destination. The maximum allowable size for an IP

packet is 65,536 bytes. Through fragmentation, IP traffic can be transmitted across

networks with different maximum packet sizes without being restricted by a particular

network in the route that defines a very small maximum packet size. In a

fragmentation attack, an attacker may send out a packet whose fragmented sections

add up to more than 65,536 bytes. Many operating systems did not know what to do

when they received an oversized IP packet, so they froze, crashed, or rebooted

[Whatis]. With preprocessors, Snort is able to perform IP defragmentation and then

determine if a fragmentation attack is launched. Preprocessors can also perform full

TCP stream reassembly and then carry out stateful inspection of the TCP streams to

detect intrusions such as portscan types and fingerprinting where attackers secretly

attempt to learn about your systems and potential vulnerabilities.

In some HTTP-based attack, attackers may wish to access a specific directory

in a URL but do not wish to be detected by the IDS. Instead of naming the directory

path in the URL, attackers uses hex encodings to represent certain characters in URLs.

For example, an attacker may want to access the directory “scripts/../../winnt”. Instead

of using the path “scripts/../../winnt” in the HTTP request, an attacker substitutes the

“/” with “%5c”. Since “%5c” is the hex encoding equivalent of a backslash, the URL

then contains “scripts/..\../winnt” which is treated the same as “scripts/../../winnt” by

most web servers [Fred02]. Snort preprocessors can decode HTTP requests by

31

converting non-ASCII %xx character substitutions to their ASCII equivalent so that

attackers who stealthily gain access to systems by mixing these substitutions into URL

can be detected.

 The preprocessor module plugin architecture also provides a channel through

which new types of detection engines can be added. New engines may perform

detections that cannot be supported by a Snort base detection engine. For example,

Spade, the Statistical Packet Anomaly Detection Engine, is added to Snort through the

preprocessor architecture to enable anomaly detection [Snort].

3.1.4 A2D2 Snort Module Plugin – Flood Preprocessor

 At present, Snort has not included a logic that detects generic bandwidth

consumption flooding launched against a network. DoS and DDoS detections are

carried out by the rule files and the base detection engine. For example, a potential

Stacheldraht DDoS detection is based on two signatures that match message strings

contained in communication messages sent between attack agents and their handler.

The agents send messages to inform the handler that the agent machine is alive and

ready to take orders. This communication message contains the word “skillz”. In turn,

the handler commands the agents to launch attack requests with a message that

contains the string "ficken". Two Snort rules are created to detect the presence of

“ficken” or “skillz” in a packet payload. This example illustrates a major limitation of

pattern and signature base detection. Attackers can easily change the payload content

of agent-handler communication messages and new rules will need to be added.

32

 To reduce management and maintenance hassle, A2D2 is required to detect

generic flooding attack independent of specific DDoS tools. Unlike pattern or

signature matching, flood detection needs to be designed as a preprocessor modular

plugin. The flood preprocessor will perform an “x packets over y time” logic

evaluation. If x packets arrive within y seconds from the attack source, an attack alarm

will be raised. Administrators or users can set an incoming packet rate threshold (x

packet over y time) that deviates from their normal network traffic significantly. This

flood threshold is set in the snort.conf file and provides a flexible configuration

channel compatible with existing preprocessors of Snort.

3.1.4.1 Flood Threshold

Flood threshold differs depending on the type of services provided from the

network, the nature of the company, the size of the network, and the time of the day.

The flood threshold has to be determined at each network independently. The A2D2

design allows administrator to configure the threshold to be reflective of his or her

network traffic. Before a threshold is determined, administrators should collect

average bandwidth usage over a period of time. This baseline evaluation should be

conducted over a period of months at the minimum to take into account usage surges

during specific hours in a day or specific occasions. As mentioned in Section 2.2.1

Anomaly Detection, techniques such as Bayesian statistics, covariance matrices and

neural networks help to define the “normal” traffic from the “abnormal”

traffic”[Kum95]. These techniques are studied in the research domain of anomaly

33

detection and are beyond the scope of this thesis. In A2D2, the threshold will be

determined by doubling the baseline average traffic information.

3.1.4.2 Flood Preprocessor Initiation

 Snort has specific directions as to how new preprocessor plugin modules can

be incorporated. The A2D2 generic flood detection preprocessor is named spp_flood.c

and is accompanied by the spp_flood.h header file. The followings describes the

initiation steps required to add the spp_flood preprocessor to Snort:

1. Add to the snort plugbase.h file

#include “spp_flood.h”

2. Add the following lines to the snort plugbase.c file

 void InitPreprocessor()

 {

 SetupFlood();

 }

3. Add the following lines to the snort.conf file

preprocessor flood: $HOME_NET <threshold # packets> <threshold #

time period> <logfilename>

4. Create two flood-plugin files:

• spp_flood.h

• spp_flood.c

5. In spp_flood.h, add

34

void SetupFlood();

void FloodInit(u_char *);

The FloodInit function creates the preprocessor data structure

6. In spp_flood.c, register the preprocessors by adding the following function:

void SetupFlood(void)

{

 RegisterPreprocessor("flood", FloodInit);

}

3.1.4.3 Flood Preprocessor Data Structure

 The flood preprocessor floodList maintains the packet rate utilizing a three-

dimensional double-linked list:

• floodList sourceInfo (match source ip)

• destinationInfo (match destination ip)

• connectionInfo (match port info)

The first level list sourceInfo registers the packet source address. For each source, the

packet’s destination is recorded and counted in destinationInfo. For each source-

destination connection, the packet’s port information is recorded and incremented.

Key data structures used for flood detection are presented below:

35

Figure 3.1 - Flood Preprocessor Key Data Structure

(Figure Continues on Next Page)

struct spp_timeval
{
 time_t tv_sec;
 time_t tv_usec;
};

typedef enum_floodType
{
 sNone = 0,
 sUDP = 1,
 sSYN = 2,
 sSYNACK = 4,
 sICMP = 8
} FloodType;

typedef enum_log level
{
 lNone = 0,
 lFILE = 1,
 lEXTENDED = 2,
 lPACKET = 4,
} LogLevel;

 36

CI

sourceinfo

typedef struct_floodList
{
 SourceInfo *listHead;
 SourceInfo *last Source;
 long numberOfSources;
} FloodList;

typedef struct_destinationInfo
{
 struct in_addr saddr;
 int numberOfConnections;
 ConnectionInfo *connectionsList;
 struct _destinationInfo *prevNode;
 struct _destinationInfo *nextNode;
} DestinationInfo;

destinationInfo

nextNode prevNode

null

null

typedef struct_connectionInfo
{
 FloodType floodType;
 int numberOfTCPConnections;
 int numberOfUDPConnections;
 int numberOfICMPConnections;
 u_short sport;
 u_short dport;
 struct spp_timeval timestamp;
 char tcpFlags[9]; /*8flags+a null*/
 u_char *packetData;
 struct _connectionInfo *prevNode;
 struct _connectionInfo *nextNode;
} ConnectionInfo;

connectionInfo
nextNode

prevNode
null

sourceinfo

prevNode

destinationInfo

typedef struct_sourceInfo
{
 struct in_addr saddr;
 int numberOfConnections;
 int totalNumberOfDestinations;
 int totalNumberOfTCPConnections;
 int totalNumberOfUDPConnections;
 struct spp_timeval firstPacketTime;
 struct spp_timeval lastPacketTime;
 int floodDetected;
 struct spp_timeval reportTime;
 DestinationInfo *destinationsList;
 u_int32_t event_id;
 struct _sourceInfo *prevNode;
 struct _sourceInfo *nextNode;
} SourceInfo;

nextNode

•
•
•

sourceinfo

•
•
•

• • •

37

3.1.4.4 Subnet Flood Detection

This version of the flood preprocessor detects only floods launched in ICMP,

UDP, TCP-SYN or TCP-SYN-ACK packets. These types of packets are termed

“relevant packets” in this document. The flood preprocessor is not concerned with the

packet contents and the packet payload will not be checked. The most basic premise of

flood detection is that if the number of relevant packets from a particular source within

a certain time exceeds the threshold specified in the configuration file, a flood alert is

raised. Such logic is effective in detecting traditional floods where one attacker

instigates the flooding from one machine with one source IP address. A simple ping

flood attack using the command “ping –f <victim domain name or IP>” can be easily

detected.

Nowadays, almost all bandwidth consumption DDoS attackers spoof the

source IP addresses of the attack machines. As mentioned in Chapter 3, widespread

practice of ingress and egress filtering has effectively prevented spoofing of

illegitimate IP sources or of addresses of the victim domain. Spoofing is limited to

those addresses that reside within the same subnets of the attacker so that attack

packets can pass through ingress and egress filtering. To make an attack more

efficient, a DDoS attack agent can send attack packets with an array of randomly

generated source addresses, all of them within the subnet of the attack agent. Each

spoofed address is used in a limited number of packets to reduce suspicion. These

spoofed DDoS attacks are illustrated in the figure below:

38

Attack Agent
128.198.45.1

Firewall Server

Internet

Sends 30 Packets
source ip

128.198.45.1

Sends 7 Packets
source ip

128.198.45.2

Sends 54 Packets
source ip

129.198.45.15

Sends 12 Packets
source ip

128.198.45.17

Sends 22 Packets
source ip

128.198.45.22

Figure 3.2 - DDoS IP Spoofing Each Attack Agent

 To counter DDoS IP Spoofing, A2D2 is designed to detect subnet flooding as

well as individual host flooding. The three types of generic flooding that are being

detected are:

• Individual attack host against individual victim host

• Subnet attack agents against individual victim host

• Subnet attack agents against victim subnet hosts

With current technology, it is still impossible to identify from which subnet a packet

initiated. Therefore, certain design assumptions have been made regarding subnet

flooding detection. For subnet flood detection, A2D2 will assume packets come from

39

a /24 network based on the Classless Inter-Domain Routing (CIDR) addressing

scheme [RL93]. A /24 network is equivalent to a traditional Class C network with 253

host addresses and three other addresses for network, broadcast and gateway

identification. In this thesis, it is assumed that most attack tools will not forge source

IP beyond the realm of the /24 network in order to ensure that attack packets will pass

through ingress and egress filtering.

 Considerations have been given to /22 and /16 subnet flood detection. There

are 1021 hosts in a /22 network and 65,533 hosts in a /16 network respectively. These

networks can legitimately generate a large amount of traffic. A /22 and /16 subnet

flood detection adds extra reassurance but may also produce more false positives. If

the flood threshold is set high to accommodate possible simultaneous connections

from all 65,533 hosts in a /16 subnet, the IDS may risk a large number of false

negatives. In practice, most existing networks are partitioned in smaller subnets with

less than 253 hosts such as /25, /26, /27 networks. Therefore, the A2D2 design will

assume a /24 subnet flood detection. Another assumption made in the design of A2D2

subnet detection is that many networks are implementing ingress and egress filtering

as described in Section 2.1.2 so that most spoof packets beyond the IP addresses of a

/24 subnet will be discarded.

With the assumption of a /24 subnet flood possibility, it is recommended that

the flood threshold be set at a level that accommodates reasonable connections from

all hosts in a /24 network. For example, an Internet Control Message Protocol (ICMP)

is used mainly by administrators or applications to determine the state of a particular

40

server; it is highly unlikely that all 253 hosts from a subnet will send an ICMP

packet to the server simultaneously. In a situation where all hosts are connecting to the

server at one time, the number of reasonable packets should still remain within 256

hosts X 2 packets (syn, syn-ack) = 512 packets within a 3-5 second period. As

mentioned before, the actual threshold should be set only after baselining the general

network traffic pattern.

3.1.4.5 Flood Preprocessor Logic Flow

 Complete features and functions of the A2D2 Snort flood preprocessor will not

be described in detail in this document. Instead, key functions of the spp_flood.c

module are abstracted to illustrate the flood detection logic. These functions are:

• void FloodPreprocFunction(Packet *p)

• void ExpireFloodConnections(FloodList * floodlist, struct spp_timeval

watchPeriod, struct spp_timeval currentTime)

• int NewFlood(FloodList * floodList, Packet * p, FloodType floodType)

• int CheckSubnetIndFlood(FloodList * floodList, Packet * p, FloodType

floodType, int *subnet)

• int CheckSubnetFlood(FloodList * floodList, Packet * p, FloodType

floodType, int *subnet)

 The main function of the flood preprocessor, void FloodPreprocFunction

(Packet *p), controls the logic flows and other key function calls. The flowchart

41

depicting the logic is provided in Appendix A. The FloodPreprocFunction performs

the following major steps:

1. Packet checking & preparations

• The FloodPreprocFunction first determines the protocol, flags set

for a TCP packet, timestamp and other relevant information of the

incoming packet. If the packet is not a relevant packet, the function

exits the module.

2. Expire non-flood connections in the data structure

• The function void ExpireFloodConnections(FloodList * floodlist,

struct spp_timeval watchPeriod, struct spp_timeval currentTime) is

called.

- Check the “flood detection” flag and the time stamp of a

connection.

- If currentSource is flagged as floodDetected, do not expire.

- If currentSource is not flagged as floodDetected, check time

stamp.

- If (connection’s timestamp + watchPeriodTime is <

currentTime), the function expires and removes the connection

from the data structure.

3. Log current packet in the data structure

42

• The function int NewFlood(FloodList * floodList, Packe * p,

FloodType floodType) is called.

- Traverse through the data structure to see if the current packet

matches a certain connection base on its source IP address,

destination IP address and port information. If a match is found,

increment existing connection information or packet counts of a

certain source and destination. If a match is not found, create a

new source or destination connection

- The int NewFlood function returns the maximum number of

packet counts of a source-destination connection in the data

structure.

4. Check flood: individual attack host against individual victim host

• Check if the maximum number of packet counts in a source-

destination connection in the data structure has passed the flood

threshold.

• Log, alert, and flag connections as flood detected as appropriate.

• If individual flood is determined, subnet flood will not be checked.

5. Check subnet flood: subnet attack agents against individual victim host

• If individual flood is not found, the function int

CheckSubnetIndFlood(FloodList * floodList, Packet * p,

FloodType floodType, int *subnet) is called.

43

- Traverse through the data structure and count all the

connections that could have come from the same subnet as the

current packet, assuming a /24 subnet mask.

- The int CheckSubnetIndFlood function returns the maximum

number of packets from assumed connections in the /24

subnets.

• Check if the maximum packet counts has exceeded the flood

threshold.

• Log, alert, and flag connections as flood detected as appropriate.

6. Check subnet flood: subnet attack agents against victim subnet hosts

• If no other flood is detected, the function int

CheckSubnetFlood(FloodList * floodList, Packet * p, FloodType

floodType, int *subnet) is called.

- Count all the connections whose destination are from the same

subnet as the current packet’s destination (assume /24 subnet)

- Return the maximum number of packets from the current packet

subnet source targeted to destination addresses of the same

subnet.

• Check if the maximum number of packet counts from the specific

subnet-subnet connection has exceeded the threshold

44

• Log, alert, and flag connections as flood detected as appropriate

7. Check if the flood has ended and clear the floodDetected flag

accordingly

• Go through the data structure and evaluate the “floodDetected”

connections

• Check if the floodReportTime + maxTime < currentTime

- If the floodDetected source IP have 0 new connection during

that period, clear the floodDetected flag.

- Alert and log “End of Flood” as appropriate

3.1.5 A2D2 Snort Module Plugin Add-on – Flood

IgnoreHosts Preprocessor

 It is common that administrators may perform bandwidth measurement tasks

or other administrative and diagnostic functions that require sending out a large

number of packets to the network and an IDS may identify such activities as floods. In

other cases, a certain service may be provided to a valued-customer at a special

occasion that will generate significantly more than “normal” connection request traffic

from a large /16 subnet with 65,536 hosts simultaneously. To accommodate such

situations, A2D2 IDS detection includes another preprocessor add-on

FloodIgnoreHosts. The FloodIgnoreHosts preprocessor is added to the base

spp_flood.c preprocessor so that Snort will ignore counting the number of packets

45

generated from a particular server IP or a particular network. The setup of the

FloodIgnoreHosts preprocessor is similar to the setup of the flood preprocessor.

1. Add the following in the snort plugbase.c file

 void InitPreprocessor()

 {

 SetupFloodIgnoreHosts();

 }

2. Add the following lines to the snort.conf file

preprocessor flood-ignorehosts: <ip_hoststobeignored/subnetmask>

3. In spp_flood.h, add

void SetupFloodIgnoreHosts(void)

void FloodIgnoreHostsInit(u_char *)

The FloodIgnoreHostsInit function creates the preprocessor data

structure

4. In spp_flood.c, register the preprocessors by adding the following function:

void SetupFloodIgnoreHosts(void)

{

 RegisterPreprocessor("flood-ignorehosts",

FloodIgnoreHostsInit);

}

46

A separate data structure is created to keep track of what servers or subnets

the IDS should ignore:

Figure 3.3 – FloodIgnoreHosts Preprocessor Add-on Key Data Structure

The IgnoreFloodHost function int IsFloodServer(Packet *p) is called

immediately after a packet is checked and prepared in void FloodPreprocFunction.

The function returns 1 if the source address of the packet is in the “flood-ignored”

serverList and returns 0 otherwise. If a 1 is returned, the FloodPreprocFunction is

exited and the subsequent incoming packet will be passed to FloodPreprocFucntion for

processing.

3.2 Intrusion Responses – QoS

The mitigation strategy adopted by A2D2 is based on QoS research. As

mentioned in Section 2.4.2, Class-Based Queuing (CBQ) and rate limiting are two

dominant QoS techniques. While setting up a solid security policy is considered a

preventive measure rather than a QoS mitigation, a security policy is a critical aspect

of any network. The A2D2 network design policy will described briefly in the

following section.

typedef struct_serverNode
{
 IpAddrSet *address;
 char ignoreFlags;
 struct _serverNode *nextNode;
} ServerNode;

serverNode

serverNode

nextNode
serverList

47

3.2.1 Security Policy

The principal security policy applied is the separation of public services from

the private network. Indeed, the design of A2D2 centers on the design of the anti-

DDoS Demilitarized Zone (DMZ). A DMZ is a small network inserted as a "neutral

zone" between a company's private network and the outside public network [Whatis].

Users of the public network outside the company can access only the hosts in DMZ.

All public services available freely to the world, such as web services and file services

with insensitive data, reside in DMZ servers. DMZ servers cannot initiate sessions into

the private network. In the event that an outside user penetrated the DMZ hosts’

security, only the web pages and other public information might be corrupted but no

other company information would be exposed. A typical DMZ and its IDS placement

are illustrated below:

48

 LAN

DMZInternet

Firewall

Router

External IDS DMZ IDS

Router
Only permits traffic to and responses from DMZ

No traffic initiation from DMZ

Web Server

DNS Server

Multi-Media Server

Internal LAN IDS

Workstation Workstation Workstation

Figure 3.4 – A Typical DMZ and its IDS Placement

 An external IDS is placed outside the firewall before any traffic enters the

DMZ. The IDS should be configured to be least sensitive and will produce the most

false alarms. It provides an overview for administrators to evaluate all traffic attempts

to access the network. Administrators can use the external IDS log to shape long-term

network security policy. An IDS is placed within the DMZ to catch possible intrusion

that penetrated the firewall. The DMZ IDS produces less false positives and can

reflect the effectiveness of the firewall. Depending on the type of intrusions detected

49

by DMZ IDS, alarms should be treated with caution promptly. Any traffic that

reaches the trusted internal LAN is considered hostile unless authorized. The LAN

IDS generates the least number of false positives and any detection alarm demands

immediate action [Cis02-2, CR00, Lai00, San00].

The firewall implements a set of rules or chains based on the network security

policy. A recommended approach is to set a deny policy where all traffic are denied

into the DMZ. Based on the services started in the DMZ public servers, additional

rules are applied to allow traffic to access the specific port. Examples are:

• /sbin/iptables – P INPUT DROP

• /sbin/iptables – P OUTPUT DROP

• /sbin/iptables – P FORWARD DROP

• /sbin/iptables – A INPUT – p tcp – – dport 80 – j ACCEPT

The above example sets the default policy (-P) for the INPUT, OUTPU, and

FORWARD chains to be “DROP”, meaning all packets will be discarded. The INPUT

chain defines rules that will be applied to packets targeted for the specific computer on

which the policy is set. The OUTPUT chain sets rules for packets that are sent out by

the computer where the policy is set. The FORWARD chain contains rules that govern

what actions will be carried out for packets that are passed through or routed by the

policy computer. The last rule of the above example appends a rule (-A) to the INPUT

chain to “ACCEPT” TCP packets (-p tcp) that are targeted to the destination port 80 (-

- dport 80).

50

3.2.2 Class-based Queuing (CBQ)

As mentioned in Section 2.4.2.1, CBQ is an effective QoS technique for

controlling traditional SYN and ICMP floods. Based on the user access policy, a

certain percentage of available outbound bandwidth can be assigned to packets of

various Types of Services (TOS). The concept of CBQ can be best illustrated by

Figure 3.5. Assume that an administrator of a certain network analyzes the traffic

pattern and decides that HTTP traffic should be guaranteed at least 70% of the

available bandwidth while mail services be allowed 20% of the network link. The

administrator then divides the remaining bandwidth between news services (5%), and

TCP-SYN and ICMP traffic (5%).

70% HTTP / HTTPS

20% SMTP / POP3

5% NNTP

5% ICMP / TCP-SYN

(Graphics adapted from Figure 2, “Linux Firewall – the Traffic Shaper” by Wortelboer and Oorschot
[WO01])

Figure 3.5 - Bandwidth Assignment Example by CBQ

 Inside the Linux kernel, the bandwidth management is achieved by three

components: the filter/classifier, the queues, and the scheduler [AV02, HMM+02]. As

a packet arrives at the network interface, the kernel discards the packet, forwards the

packet or marks it as a certain class to be passed on to the queuing disciplines such as

CBQ or First-in-first-out (FIFO). If the queuing discipline supports classes, the

51

queuing discipline in turn moves the packets to the classes of queues. CBQ supports

a maximum of eight separate queues, or classes. Each queue or class can then be

assigned a policy that identifies the priority, bandwidth allocation, bounded, or queue

size. A bounded queue is constricted by the assigned bandwidth but an unbounded

queue can “borrow” bandwidth from another queue with extra bandwidth. CBQ

queues in an order that will honor the bandwidth allocation defined by the queuing

policies of all the queues. The scheduler visits each queue and examines the maximum

bandwidth policies of the queues. If forwarding a packet from a particular queue will

violate the bandwidth allocation, the scheduler will skip the packet and move to

another queue of the same priority [AV02, HMM+02]. The implementation of CBQ is

illustrated in Figure 3.6.

Class-based
Queuing
(CBQ)

First-In-First-Out (FIFO)

High Priority Queue

Queue 1 (HTTP)

Queue 2 (SMTP)

Queue 3 (NNTP)

packet

UDP

Other
packet type

Filter: iptables

packet

HTTP - Mark 1

SMTP - Mark 2

NNTP - Mark 3

ICMP - Mark 4

Queue 4 (ICMP)

Low Priority Queue

S
ch

ed
ul

er

DROP

Filter/classifier
Queues based on

Queuing Disciplines Scheduler

Figure 3.6 - Implementing QoS using Class-Based Queuing

52

In Linux, CBQ is implemented using the mangle table of the IP filter as well

as the traffic control (tc) program from the “iproute2” package located in the directory

“sbin” (/sbin/tc). The mangle table enables iptables to mark and categorize packets.

The tc program creates the different classes of queues and assigns their policies

regarding bandwidth usage. There are 5 steps in the implementation:

1. Enable Linux QoS and CBQ options under the “Networking Options”

menu [HMM+02].

• Change current directory to /usr/src/linux<version>/

• Type “make menuconfig” at command line

• Choose “Networking Options”

• Select “QoS and/or fair queuing”

2. Categorize, mark, and forward incoming packets using iptables

[WO01].

• /sbin/iptables – A FORWARD – p icmp – t mangle – j MARK --

set-mark 1

- Append this rule (-A) to the FORWARD chain of the mangle

table (-t). The mangle table allows iptables to change or modify

packets before they are routed. In this case, a packet is marked

with the number 1 (-j MARK --set-mark 1) for all ICMP

packets (-p icmp).

53

• /sbin/iptables – A FORWARD – p tcp – – syn – t mangle – j

MARK -- set-mark 2

- Use the mangle table to mark all TCP-SYN packets (-p tcp --

syn) with the number 2.

• /sbin/iptables – A FORWARD – p tcp --dport 80 – t mangle – j

MARK – – set-mark 3

- Use the mangle table to mark all TCP packets (-p tcp --syn) that

target destination port 80 (-p --dport 80) with the number 3.

3. Set up the queue (qdisc) with the specific network interface (add dev

eth0). This step defines the queuing discipline of the qdisc (cbq) and

the maximum bandwidth associated with such queue. Classes are

created under a queue based on a tree structure. While setting up the

queue, the root of the tree is named (root handle 10:). The queue also

specifies the average size of the packets measured in bytes (avpkt)

[AV02, HMM+02].

• # Assume a 10 Mbit network link

• /sbin/tc qdisc add dev eth0 root handle 10: cbq bandwidth 10Mbit

avpkt 1000

4. After the queue is set up, the root class associated with the queue is

created and initialized. The root class is identified (classid 10:1) and it

is spawned from the root of the tree (parent 10:0 or parent 10:). The

54

class priority and the amount of data sent by each class are defined

by “prio”, “allot” and “weight”. Packets will be scheduled for output

first by priority and second by allocation. Classes using the same

priority will be scheduled using a Weighted Packet Round Robin

algorithm (WRR) based on the allocation values and the weight

assigned. The weight can be any arbitrary numbers. The weights of all

classes will be normalized to calculate the ratio. This ratio will be

multiplied by the “allot” parameters to determine how much data will

be sent out by the class when polled by the scheduler [AV02,

HMM+02].

• /sbin/tc class add dev eth0 parent 10:0 classid 10:1 cbq bandwidth

10Mbit rate 64kbit allot 1514 weight 6.4kbit prio 8 maxburst 20

avpkt 1000 bounded

5. Create different classes of queues with different bandwidth allocation

policies and instruct IP filter to send packets to the queue and its

appropriate class [WO01]. The various parameters defined in these

classes are explained in steps 3 and 4.

• add_class() {

$1=parent class $2=classid $3=hiband $4=lowband

$5=handle $6=style

55

/sbin/tc qdisc add dev eth0 parent $2 cbq bandwidth 10Mbit

avpkt 1000

/sbin/tc class add dev eth0 parent $1 classid $2 cbq bandwidth

10Mbit rate $3 allot 1514 weight $4 prio 5 maxburst 20 avpkt

1000 $6

/sbin/tc filter add dev eth0 protocol ip prio 3 handle $5 fw

classid $2

 }

• # Assume 5% of 10Mbit bandwidth assignment to packets that was

marked 1 in step 2. (10240*0.05 = 5120 = 512kbit for high

bandwidth)

- add_class 10:1 10:100 512kbit 51.2kbit 1 bounded

• # Assume 5% of 10Mbit bandwidth assignment to packets that was

marked 2 in step 2 but such packets are allowed to bandwidth from

other queue classes if available. (10240*0.05 = 5120 = 512kbit for

high bandwidth)

- add_class 10:1 10:200 512kbit 51.2kbit 2

• # Assume 70% of 10Mbit bandwidth assignment to packets that

was marked 3 in step 2 but such packets are allowed to bandwidth

from other queue classes if available. (10240*0.70 = 7168 =

7168kbit for high bandwidth)

56

- add_class 10:1 10:300 7168kbit 716.8kbit 3

3.2.3 Multi-Level Rate-Limiting

 On the ingress side of the network interface card, traffic can be controlled

using netfilters. Netfilters are a component of the Linux firewall system. This firewall

subsystem provides packet filtering functionality that permits or denies packets from

passing through based on security policies. The firewall rules are configured through

the netfilter packet-filtering infrastructure that is a subsystem of the Linux kernel 2.4.

The packet-filtering rules or firewall rules are defined by the /sbin/iptables commands.

Netfilters examine a packet header’s information including its source, destination

addresses, ports, protocol type, any combination of the TCP flags, and MAC

addresses. Iptables contain a function rate-limiting that can help to minimize the

impact of DDoS attacks. For example, administrators can rate-limit a suspicious

source to one packet per minute or control of the number of syn packets entering a

network at any given time to ten SYN requests per second.

• /sbin/iptables -A INPUT -s 192.168.1.25 -m limit --limit 1/m –j

ACCEPT

• /sbin/iptables -A INPUT –p TCP --syn -m limit --limit 10/s -j ACCEPT

 If a source can be confidently identified as an attacker, it is more effective to

drop all packets from that source. However, attack source identification is often

difficult, especially with IP spoofing. Dropping all packets from a suspicious source

may block a great deal of legitimate traffic. A flood mitigation mechanism that is able

57

to stop most attack traffic, while having the smallest impact on legitimate traffic, is

considered better than a mechanism that blocks a lot of legitimate traffic [For01]. To

maximize the efficiency of rate-limiting, A2D2 proposes a multi-level rate-limiting

mechanism.

 It is conceivable that a network may generate a sudden burst of connection

traffic. Such a burst lasts for a very short period of time while the connection is

established. Traffic from initiating network hosts taper off over time as the abundance

of traffic should flow from the servers serving files or streaming video to the clients. A

multi-level rate limiting mechanism imposes stricter limits as the confidence that a

source is malicious increases.

For example, if a source sends out 500 request packets per second, A2D2 can

limit it to only 100 packets per second. The surge of requests is usually temporary. If

the suspicious source continues to send out the maximum allowable rate, the firewall

can further restrict the incoming packet rate to 50 packets per second. If the trend

persists where a source continuously consumes the maximum allowable rate, the

source will be blocked completely. This sample scenario can be achieved by the

following steps:

1. Set up rate limiting levels by adding a new rule chain with the option –

N and then adding the actual firewall rules under the chain using the –A

option.

• iptables –N level2

58

• iptables –A level 1 –match --limit 100/s -j ACCEPT

• iptables –N level1

• iptables –A level 1 –m --limit 50/s -j ACCEPT

• iptables –N level0

• iptables –A level0 –j DROP

2. Insert firewall rules against the source IP that is suspicious

(12.23.34.45):

• iptables –I FORWARD –s 12.23.34.45 -j level2

• iptables – I FORWARD –s 12.23.34.45 –j level0

3.3 Autonomy System

To enable autonomous response, communication channels need to be

established for the various components of the A2D2 detection and response systems.

In addition, any firewall rules need to be autonomously applied and expired without

administrators’ intervention.

3.3.1 Rate-Limiting Configuration and Expiration

A rate-limiting configuration file is setup to enable administrators to define the

basic parameters based on which rate-limiting can be automatically applied. The

59

configuration file rateif.conf (rate limiting interface configuration) specifies six

main elements:

1. The number of levels, the rate associated with each level, and the

duration for which each rate level will be effective is shown in the

following table:

Level Rate
(number of packets/sec)
(Maximum level = 0)
(Block level = -1)

Duration
(days:hours:mins:secs)

L2 100 00:00:30:00
L1 50 00:00:30:00
L0 -1 01:12:00:00

Table 3.1 – Multi-Level Rate-Limiting Table

• Administrators are allowed to configure any number of levels he or

she intends for the network. The minimum level is L0 and the

administrator specifies the maximum level by putting a “0” in the

rate column. A “-1” on the rate column indicates a block level

where all packets associated with that level will be dropped by the

firewall. In the above example, three levels are defined. Level 2 is

the maximum level where packets will be limited to 100 packets per

second. Once Level 2 rate is applied, the rate limiting will be in

effect for 30 minutes before the rate-limiting firewall rule is

deleted. During this 30 minutes, if the IDS indicates the packet

source is still consuming all bandwidth allowable by Level 2, Level

1 rate limiting will be applied. Level 1 rate limiting will stay in

60

effect for another 30 minutes. Should the IDS raises another

alert, indicating the suspicious source continues to submit 50

packets per second, the final rate limiting level, Level 0, is applied

and all packets from the source are blocked completely for 1 day

and 12 hours. At the end of the period, the rate limiting rule will be

deleted and packets will be allowed to access the network without

limitations unless flooding is detected again.

2. The firewall server name or IP address

• This option specifies the server on which the firewall is active and

rate-limiting is applied.

• The syntax is: SERVER firewall.server.edu

3. The port number at which the firewall server will listen for alerts from

the IDS

• The syntax is: PORT 6779

4. Log file name

• The log file name where the firewall stores the changes made to

iptables such as the insertion and the deletion of rate-limiting

commands.

• In case of accidental or intentional restarting of the firewall, the

rate-limiting rules can be brought up-to-date by applying the

commands in the logfile.

61

• The syntax is: SETTINGSFILE fwfile.dat

5. Location of iptables in the firewall system

• The syntax is: /sbin/iptables

6. Time in seconds when the iptables rules are checked and updated

• The syntax is: ALARMTIME 1

• In this example, the iptables rules will be checked every second. If

a particular rule has exceeded its effective duration, the rule will be

deleted.

3.3.2 Snort Customization – FloodRateLimiter

Preprocessor

To enable automatic rate-limiting, a FloodRateLimiter preprocessor add-on

needs to be created for the flood preprocessor. After an attack source surpasses the

initial flood threshold, an initial flood alert is sent to the firewall. The firewall applies

rate-limiting as defined in the rateif.conf file against the attack source. The role of the

FloodRateLimiter preprocessor is to keep track of the incoming packet rate of the

presumed attack source after rate-limiting is applied. If the arrival rate of the attack

source continues to reach the maximum allowable rate, another alert is sent to the

firewall, which will apply a stricter rate-limiting level until the block level is reached.

The setup of the FloodRateLimiter preprocessor is similar to that of the

FloodIgnoreHosts preprocessor described in Section 3.1.5.

62

1. Add the following lines to the Snort plugbase.c file

 void InitPreprocessor()

 {

 SetupFloodRateLimiter();

 }

2. Add the following lines to the snort.conf file

preprocessor flood-ratelimiter: <report time in sec> <rate-limiting

level[n] threshold> <rate-limiting level[n-1] threshold> <rate-limiting

level0 threshold>

This configuration option allows administrators to specify the rate-

limiting threshold after the initial flood alert is raised. In the following

example, the IDS will check for the rate for 10 seconds, and see if the

first rate-limiting threshold of 100 packets has arrived within these 10

seconds. Another alert is raised and sent to the firewall if the condition

is met. Then the IDS will check if the server receives 50 packets in the

10 seconds after the 2nd alert is raised and the stricter rate-limiting level

is applied.

#preprocessor flood-ratelimiter: 10 100 50

#The configuration of these numbers should correspond with the rate-

limiting levels set on the rateif.conf file

3. In spp_flood.h, add

void SetupFloodRateLimiter(void)

63

void FloodRateLimiterInit(u_char *)

The FloodRateLimiterInit function creates the preprocessor data

structure

4. In spp_flood.c, register the preprocessors by adding the following function:

void SetupFloodRateLimiter(void)

{

 RegisterPreprocessor("flood-ratelimiter",

FloodRateLimiterInit);

}

 A separate data structure is created to keep track of the connections that

have passed the initial flood threshold as described in

Figure 3.7. The FloodRateLimiter preprocessor follows similar logic as the Flood

Preprocessor described in Section 3.1.4.5 on page 40. The FloodRateLimiter

preprocessor is called by the FloodPreprocFunction after the initial flood threshold is

passed and a flood alert is raised. The FloodRateLimiter preprocessor then takes over

surveillance of the flood connection until the flooding is ended. Some key functions

related to the FloodRateLimiter logic are also similar to those of the flood

preprocessor explained on page 40. These functions are:

• RateList *CreateRateList(void)

• void ExpireRateConnections(RateList *ratelist, struct spp_timeval

watchPeriod, struct spp_timeval currentTime)

64

• int updateRateLimiterConnection(RateList *rateList, Packe *p,

FloodType floodType)

• void

ClearRateConnectionInfoFromFloodSource(RateLimiterSourceInfo

*currentSource);

3.3.3 Alert Interface

Snort has a real-time alerting capability as well, incorporating alerting

mechanisms for syslog, a user specified file, a UNIX socket, or WinPopup messages

to Windows clients using Samba's smbclient program. For A2D2, Snort is directed to

send alert messages to a UNIX socket using the command ./snort –A UNSOCK.

An interface program, report.c is written to accept the Snort’s alert messages

on the Snort hosts and to send the messages to the specific port of the firewall

machine. The report.c program also logs the messages to a log file specified by users

for the administrators’ evaluation.

Another program, rateif.pl, resides in the firewall server and listens to

messages sent by the Snort host to the firewall server’s designated port. Once the

message is received, the alert message is parsed for the source IP address of the attack

host or subnet. Multi-level rate-limiting is then applied to the IP address based on the

rateif.conf configuration file.

 65

Figure 3.7 – FloodRateLimiter Preprocessor Key Data Structure

struct enum_rateModule
{
 oN = 1,
 oFF = 0
} RateModule;

typedef struct_rateList
{
 RateLimiterInfo *listHead;
 RateLimiterInfo *last Source;
 long numberOfSources;
} RateList;

typedef struct_rateLimiterInfo
{
 FloodType floodType;
 int numberOfConnections;
 struct in_addr saddr;
 int totalNumberOfTCPConnections;
 int totalNumberOfUDPConnections;
 int totalNumberOfICMPConnections;
 int numberOfDestination;
 RateLimiterDestinationInfo
 *destinationsList;
 int floodDetected;
 int subnet;
 int packetThreshold;
 struct spp_timeval firstPacketTime;
 struct spp_timeval lastPacetTime;
 struct spp_timeval reportTime;
 u_int32_t event_id;
 struct _sourceInfo *prevNode;
 struct _sourceInfo *nextNode;
} RateLimiterInfo;

rateLimiterInfo

RI

prevNode

prevNode
null

typedef struct_rateLimiterDestinationInfo
{
 struct in_addr daddr;
 int numberOfTCPConnections;
 int numberOfUDPConnections;
 int numberOfICMPConnections;
 struct _rateLimiterDestinationInfo
 *prevNode;
 struct _rateLimiterDestinationInfo
 *nextNode;
} RateLimiterDestinationInfo;

raetLimiterDestinationInfo

raetLimiterDestinationInfo

null

nextNode

nextNode

• • •

• • •

Chapter 4

A2D2 Implementation

 A test-bed is setup based on the A2D2 design presented in Chapter 3. As

presented in Figure 4.1 on page 67, the A2D2 implementation test-bed is divided into

three zones:

• The attack network

• The autonomous defense network (A2D2)

• The client network

4.1 The Attack Network

The attack network is made up of five Red Hat Linux machines. The DDoS

tool chosen in the test-bed is Stacheldraht version 4.0. One computer in the attack

network (Saturn) serves the dual-role of the “Master Client” and the handler. The

other four computers are the agents. These four computers are connected to the A2D2

67

Attack

Attack Attack

Private Subnet
192.168.0

Attack Network
128.198.61

IP: 128.198.61.12
NM: 255.255.255.128

GW: 128.198.61.1

eth0

Pluto

Titan

DMZ

Multi-Level
Rate Limiting

Class-Based
Queuing

(CBQ)

as Linux Router

Firewall
(iptables)

Security Policy

IP: 192.168.0.1
NM: 255.255.0.0

GW: 128.198.61.12

eth1

RealServer

R
e

a
lS

e
rv

e
r

T
ra

ff
ic

ID
S

 A
le

rt
s

tr
ig

g
e

r
M

u
lti

-L
e

ve
l

R
a

te
-L

im
iti

n
g

IDS

7
0

%
 H

T
T

P
,

R
e

a
lP

la
ye

r

1

5
%

 S
M

T
P

,
P

O
P

3

1

0
%

 S
S

H
,

S
F

T
P

5

%
 S

Y
N

,
IC

M
P

,
D

N
S

10 Mbps Hub

eth0

IP: 192.168.0.2
NM: 255.255.0.0
GW: 192.168.0.1

Public Network
128.198

Internet

Alpha
128.198.61.15

DDoS
Agent

Gamma
128.198.61.17

DDoS
Agent

Beta
128.198.61.16

DDoS
Agent

Delta
128.198.61.18

DDoS
Agent

Simulated
Internet

100Mpbs Switch

Master Client
& Handler

DDoS

Saturn
128.198.61.11

NM: 255.255.255.128
GW: 128.198.61.1

Autonomous Anti-DDoS Network
(A2D2)

Client1
128.198.a.195

Real Player Client

Client2
128.198.b.82

Real Player Client

Client3
128.198.c.31

Real Player Client

100Mpbs Switch

Figure 4.1 – A2D2 Implementation Test-bed

68

DMZ through two 100 Mpbs switches that emulate the role of the Internet. Such

a setup allows us to isolate the test-bed traffic from the actual Internet and ensure no

attack traffic can leak into the Internet during preliminarily testing.

4.1.1 Attack Network Systems Specifications

The computer “Saturn” is used for attack coordination. Saturn assumes the

dual roles of the “Master client” and “Handler”. The system specifications for Saturn

are:

• Model: HP Vectra VL

• CPU: Intel Pentium III 501.143 MHz

• RAM: 255 MB

• Hard Drive: 8455 MB

• Network Interface: 3com 100 Mb

• OS: Red Hat Linux 7.3 2.96-110

• Linux Kernel Version: 2.4.18-10

Four attack agents are used as described in Figure 4.1. The system

specifications for Alpha, Beta, Gamma and Delta are:

• Model: HP Kayark XA

• CPU: Intel Pentium II 233.344 MHz

• RAM: 93 MB

69

• Hard Drive: 2564 MB

• Network Interface: 3com 100 Mb

• OS: Red Hat Linux 7.1 2.96-98 for Alpha and 7.1 2.96-85 for the other

3 agents

• Linux Kernel Version: 2.4.9-21 for Alpha and 2.4.3-12 for the other 3

agents

4.1.2 Attack Tool – StacheldrahtV4

 The attack tool chosen for the A2D2 test-bed is Stacheldraht version 4.0.

Common DDoS attack tools such as Trinoo, Trible Flood Network (TFN), Trible

Flood Network 2000 (TFN2K), mstream and Stacheldraht are similar to one another

[Dit99]. Among DDoS tools, StacheldrahtV4 is considered stable and sophisticated

and is able to launch attacks in ICMP, UDP and TCP protocols. Stacheldraht can be

downloaded freely from the Internet [ASTA00]. Most DDoS tools obtained from the

Internet have been slightly altered to justify the posting as “for education purpose”

instead of for attack distribution. These alterations in the attack tools source code

generally involve the following aspects:

• Communication ports among master client servers, handlers and agents

• IP addresses of the master client servers and handlers

• Login passwords and encryption

• Payload contents between the master client servers and the handlers

70

• Payload contents between the handlers and agents

4.1.3 A2D2 Implementation of StacheldrahtV4

In the A2D2 test-bed attack network, all Stacheldraht source files are extracted

under the main folder “Stacheldrahtv4” in Saturn. The handler and agent source files

reside directly under the “Stacheldrahtv4” main directory. Two additional folders

“leaf” and “telnetc” are created under the main directory. The folder “leaf” contains

the source files for agents while the master server client files are stored under

“telnetc”. The main files for master server client, handler and agents are “client.c”,

“mserv.c” and “td.c” respectively. These file names constitute the executable file

names after compilation. To make the system distributed, the “td” executable is saved

in all DDoS agents in the test-bed, namely host “Alpha”, “Beta”, “Gamma” and

“Delta”. The agent process is then started with the command “./td”. Since Saturn

serves as both the master client server and the handler, the handler process has to be

started in Saturn with “./mserv”. Then, the DDoS attack can be launched by the client.

In the “Stacheldrahtv4/telnec” directory in Saturn, the command “./client <handler

servername>” is executed. After successful login, the “client” program can command

the handler to coordinate various attacks through the agents.

4.1.4 Other Possible Attack Tools

The attack network setup can easily support DDoS attacks using other DDoS

and DoS tools. For example, Trinoo and TFN2K have identical architecture as

71

StaheldrahtV4 and their client and handler programs can be installed in Saturn

while their agent executables can be installed in the four agent computers: Alpha,

Beta, Gamma, and Delta. A large variety of basic DoS attack tools can be easily

downloaded from the Internet [ASTA00]. Some examples of DoS tools are ipsyn.c,

udpf.c, pepsi.c (UDP flooder) and synack.c. Each of them launches a type of DoS

attack as indicated by its file name. As mentioned in Section 1.2 on page 4, DDoS

attacks are simply DoS attacks being launched from a number of clients instead of

from one host. Within the A2D2 test-bed, these DoS attacks can be made “distributed”

by installing the executable of such DoS tools as ipsyn and udpf in the four “agent”

computers and starting the DoS attack from each agent.

4.2 The Autonomous Defense Network (A2D2)

A simple DMZ is set up with two Linux computers to represent the A2D2

design described in Chapter 3. The gateway computer “Titan” is configured as a Linux

router and serves as the firewall at the entry of the DMZ. Packets that successfully

pass through the firewall enter the private DMZ subnet 192.168.0. Inside the private

subnet, one server “Pluto” is installed with the RealServer application and the web

server “Apache”. The RealServer connects to Titan through a 10 Mbps hub inside the

private network. Ideally, the IDS can be placed in a separate host in the subnet and

monitor internal traffic in a promiscuous mode. For simplicity, the open source IDS

Snort is also configured in Pluto in this test-bed.

72

4.2.1 Defense Network Systems Specifications

The firewall gateway (Titan) and the RealServer/IDS (Pluto) use identical

computer models:

• Model: HP Vectra VL

• CPU: Intel Pentium III 501.143 MHz

• RAM: 255 MB

• Hard Drive: 8455 MB

• Network Interface: 3com 100 Mb

• OS: Red Hat Linux 7.3 2.96-110

• Linux Kernel Version: 2.4.18-10

• Network Monitoring Tool: IPTraf Version 2.5.0

• (Pluto) IDS: Snort 1.8.6

• (Pluto) Media Streaming System: RealServer 8

• (Pluto) WebServer: Apache-1.3.23

4.2.2 Defense Network Gateway Policy and CBQ Setup

The firewall (Titan) practices the deny security policy and only routes TCP and

UDP external traffic that is targeted to specific service ports on Pluto. Allowable

protocol and destination ports are [IANA02]:

73

• TCP/UDP-port 21, 22 and 23 for FTP, SSH, and Telnet services

• TCP/UDP-port 25 for SMTP services

• TCP/UDP- port 42 for DNS services

• TCP/UDP-port 80, 8080 for HTTP and RealPlayer traffic

• Other ports opened for remote administration of RealServer, Snort and

other applications.

• For testing purpose, iptables are also configured to allow ICMP

packets.

Class-Based Queuing is implemented on Titan to manage outbound traffic into

the private network. Seventy percent of the internal link bandwidth is allocated to

HTTP and RealPlayer traffic, SMTP is allowed 15% of the bandwidth, SSH, Telnet

and FTP have 10% of the bandwidth and SYN and ICMP traffic is bounded to 5% of

the network link bandwidth. In addition, the rateif.pl program in Titan opens the port

6779 to listen for alerts from the IDS.

4.2.3 Defense Network IDS and Rate-Limiting Setup

The flood preprocessor, flood-ignorhosts preprocessor, and the flood-

ratelimiter preprocessor are compiled with Snort in Pluto. When Snort identifies any

intrusion such as a flood attack or a portscan attempt, Snort sends an alert to port 6779

of Pluto. Upon receipt of the alert, Titan will implement the multi-level rate limiting.

The rate.conf file in Titan specifies five levels:

74

Level Rate
(number of packets/sec)
(Maximum level = 0)
(Block level = -1)

Duration
(days:hours:mins:secs)

L4 0 02:00:00:00
L3 100 00:00:30:00
L2 50 00:01:00:00
L1 -1 00:06:30:00
L0 -1 01:12:00:00

Table 4.1 – Titan Multi-Level Rate-Limiting Table

Five levels of rate-limiting are defined with the “maximum” level being Level

4. The “maximum” level is technically not a “rate-limiting” level, but a log level. IP

addresses that have reached the strictest level (L0) and have subsequently been cleared

as an attack source will be logged as L4 for the specified period of time (For example,

two days according to Table 4.1). Source assigned with L4 have full access through

the firewall and no rate limiting is applied to them. However, if the IDS raises an alert

related to a L4 source address within the 2-day period, the level of this source address

will be immediately dropped to L0. This source address will then be blocked for 1 day

and 12 hours without going through L3 to L1.

When the IDS raises the first alert regarding an attack source, the source will

be assigned with the level L3 and be limited to a rate of 100 packets per second. The

IDS will check if the attack source is still sending packets at the fullest rate as defined

by L3. If the L3 rate is used to its fullest extent by the source, the IDS will raise

another alert that drops the attack source to L2. However, if the number of packets

sent by the attack source is lower than the maximum allowable L3 rate, the rate

limiting will expire for the source in 30 minutes. Similar checks and mitigation

75

processes are applied for each rate-limiting level. In L1, the source is blocked for 6

hours and 30 minutes. After the blocking expires, another alert for this source will

drop the attack source to L0 that will block the attack source for a longer period of

time than L1.

The multi-level rate limiting technique can ensure the highest level of service

to legitimate traffic during a possible attack. A source identified as malicious is given

plenty of opportunities to prove its innocence. A mitigation system that is able to stop

most attack traffic while having the smallest impact on legitimate traffic is considered

a better design than devices that block a lot of attack traffic along with legitimate

traffic [For01]. In fact, Forristal [For01] describes one flood mitigation method called

the floodgate approach. In the floodgate method, the firewall blocks all traffic from

potential attackers but occasionally lets small amounts of traffic pass through for a

short period of time. The assumption is that the small amount of traffic allowed

through is likely to consist of both legitimate and attack traffic. The goal is to keep the

target system from being overloaded while accommodating some legitimate traffic.

The multi-level rate-limiting design implemented in the A2D2 test-bed provides a

sophisticated means to ensure maximum QoS experienced by legitimate clients even

in situations where false alerts are raised.

4.3 The client network

The client network of the A2D2 test-bed consists of three RealPlayer clients

from three different networks. These clients access the RealServer (Pluto), which

76

resides in the A2D2 DMZ. To show QoS experienced by the A2D2 clients, testing

tools are installed in the client computers to measure the packets received by the

RealPlayer clients during a multimedia session. During a DDoS attack, a successful

autonomous mitigation carried out by A2D2 will enable the clients to enjoy a

continuous, uninterrupted packet flow serviced by the RealServer.

4.3.1 Real Clients Specifications

Any computer can be used as a Real Client to the A2D2 network. In this test-

bed, two Linux hosts and one Windows 2000 system are used as clients. All clients

use RealPlayer 8 as their media player. All Real Clients connect to the RealServer

Pluto to access the video clip “simpsons.rm”. The video clip is located in the

“Content” folder under the main “Realsystem” directory and is played by the clients

for about 10 minutes

4.3.2 Client Bandwidth Measurement Tools

A bandwidth measurement program “plot.pl” is written and installed in the

Linux clients to capture bandwidth usage information. The “plot.pl” program extracts

information from the “/proc/net/dev” file of the Linux system. The “/proc/net/dev” file

provides real-time interface activities such as the number of packets and the amount of

bytes received and transmitted by the network interface. The information is parsed and

displayed in a graphical format using the drawing tool gnuplot version 3.7.1

77

[Gnuplot]. In addition to the plot.pl and gnuplot programs, IPTraf Version 2.5.0 is

also used in Linux clients to monitor network activities.

Chapter 5

Performance Results and Analysis

5.1 Test Scenarios

Eight groups of test scenarios are conducted with the A2D2 test-bed and

results are compiled. For each scenario, a minimum of three test runs is executed to

verify performance consistency. Since the results are relatively consistent, only the last

set of performance results are presented in this section. The eight test scenarios are:

1. Baseline

• Data is collected for “normal” A2D2 network activities where three

RealClients are accessing the RealServer. The network is not

experiencing any DDoS attack and no mitigation strategy is

applied. This data is considered to be the A2D2 baseline traffic.

79

2. Short 1-minute attack with no mitigation strategy

• DDoS attacks are launched for one minute to show the effect of the

attack on the QoS of the RealClient. The attack protocols used are

UDP, TCP and ICMP.

3. Non-stop attack with no mitigation strategy

• DDoS attacks are launched for the entire duration of the test case to

show the effect of a non-stop attack on the QoS of the RealClient.

The attack protocols used are UDP, TCP and ICMP.

4. Non-stop UDP attack with security policy

• The security policy of A2D2 is applied for this test scenario. Only

traffic that targets the active UDP and TCP service ports at the

RealServer is allowed to pass through the firewall. The RealClient’s

QoS is evaluated during a non-stop UDP attack against the A2D2

network. The security policy is expected to stop most attack tools

that generate random destination ports for their attack traffic.

5. Non-stop ICMP attack with security policy

• Since A2D2 does not implement any policy to block ICMP packets,

a test run is conducted to show the effect of a non-stop ICMP

packet even when the firewall security policy script is applied. The

hypothesis is that the QoS experienced by RealClient will suffer.

80

6. Non-stop ICMP attack with security policy and CBQ

• The goal of this test scenario is to show the effectiveness of CBQ

against attacks that cannot be countered by basic firewall policy.

7. Non-stop TCP-SYN attack with security policy and CBQ

• This test scenario verifies that the A2D2 security policy and CBQ

can also mitigate attacks based on protocols other than UDP and

ICMP.

8. Non-stop TCP-SYN attack with security policy, CBQ, and autonomous

multi-level rate-limiting

• This final test scenario demonstrates the intrusion tolerance of the

A2D2 network and how all mitigation techniques collaborate with

one another within the A2D2 network.

5.2 Test Data Collection

Performance data are collected from a Linux A2D2 client, the A2D2 gateway

firewall and the A2D2 RealServer. The tools used for data collection at these hosts are

IPTraf. At the Linux A2D2 client, the “plot.pl” program mentioned in Section 4.3.2 is

executed and the gnuplot utility is used to graph the network activity. If unusual traffic

is observed, “ethereal” is employed to identify the source and activity of the traffic

pattern that deviates from baseline and cannot be accounted for by the test scenarios.

81

The information collected at the Linux A2D2 client, A2D2 gateway firewall and the

A2D2 RealServer is:

• Peak total activity in number of packets per second

• Peak incoming rate in number of packets per second

• Peak outgoing rate in number of packets per second

• Average rate total in number of packets per second

• Average Incoming rate in number of packets per second

• Average Outgoing rate in number of packets per second

In addition to the above parameters, the following information is registered at

the Linux A2D2 RealClient:

• The number of packets received per second at the A2D2 client

including RealPlayer traffic and non-RealPlayer traffic

• RealPlayer Statistics: The total number of packets received by the

RealPlayer when playing the simpsons.rm video clip for about 10

minutes.

• RealPlayer Statistics: The total number of packets recovered (received

after retransmission requests were sent) by the RealPlayer for the

duration of each test run.

• RealPlayer Statistics: The total number of packets lost by the

RealPlayer for the duration of each test run.

82

• RealPlayer Statistics: The total number of retransmission requests

made by the RealPlayer during each test scenario.

• RealPlayer Statistics: The total number of retransmissions received by

the RealPlayer during each test scenario.

• RealPlayer connection time-out conditions and screen quality.

5.3 Test Results

The test results collected by IPTraf and RealPlayer Statistics for each test

scenario are presented in Table 5.1. As mentioned in Section 5.1, the 1-minute attack

and the non-stop DDoS attack scenarios were launched using TCP, UDP, and ICMP

packets. The effect of the attack is similar regardless the protocol used. Therefore, data

collected from the UDP attack test runs is presented in this report as representative

results for the 1-minute and non-stop attack scenarios.

The data collected at the A2D2 Firewall Gateway computer (Titan) is provided

in Table 5.1 but should be considered as unreliable. IPTraf logging process is

resource-intensive. Two IPTraf logging processes are started, one for eth0, the

network interface card (NIC) connected to the Internet interface, and one for eth1, the

NIC connected to the internal DMZ network. In addition to IPTraf logging, the

firewall gateway (Titan) is also responsible for packet filtering, policy enforcement,

network address translation, packet classifying, scheduling, and forwarding, as well as

performing multi-level rate limiting. The gateway computer is also the target of the

83

DDoS attacks. During testing, the firewall gateway often “hung” and became non-

responsive to mouse and keyboard inputs. However, the firewall functions, including

that of rate limiting, firewall policy enforcement, and CBQ are carried out accurately,

as indicated by the packets routed to the A2D2 RealServer (Pluto) and the A2D2

clients. Therefore, the data presented by the IPTraf logs for eth0 and eth1 of the

firewall should be viewed with caution. Instead, the analysis of the performance

results should mainly rely on information collected at the A2D2 RealServer (Pluto)

and the A2D2 RealPlayer clients.

 84

Network Environment
 Baseline Attack Scenario

Attack Protocol N/A UDP UDP UDP ICMP ICMP TCP-SYN TCP-SYN
Attack Duration N/A 1 minute Non-stop Non-stop Non-stop Non-stop Non-stop Non-stop

A2D2 Mitigation
Techniques N/A N/A N/A Policy Policy Policy

CBQ
Policy
CBQ

Policy
CBQ
Rate

A2D2 Client RealPlayer Statistics

Received (packets) 23445 17869 8039 23407 7127 23438 22179 23444
Recovered (packets) 0 121 35 0 4 0 2641 40
Lost (packets) 0 1808 2557 0 2101 0 1449 9
Retransmission
Requests

0 1929 2592 0 2105 0 4090 49

Retransmission
Received

0 121 35 0 4 0 2641 40

Connection
Time-out

N/A Screens
frozen but
recovered

All clients
timed-out

around 100
seconds
into the

attack

N/A All clients
timed-out

around 100
seconds
into the

attack

N/A No frozen
screen or

timed-out.
Noticeable

inferior
screen
quality

N/A

Table 5.1 – A2D2 Test-bed Performance Results
(Table Continues on Next Page)

 85

Network Environment

 Baseline Attack Scenario
Attack Protocol N/A UDP UDP UDP ICMP ICMP TCP-SYN TCP-SYN
Attack Duration N/A 1 minute Non-stop Non-stop Non-stop Non-stop Non-stop Non-stop

A2D2 Mitigation
Techniques N/A N/A N/A Policy Policy Policy

CBQ
Policy
CBQ

Policy
CBQ
Rate

A2D2 Client IPTraf Statistics (packets/second)

Peak Total Activity 103.40 376.40 300.80 111.6 216.60 104.00 103.20 102.8
Peak Incoming Rate 102.40 102.00 102.00 106.40 102.20 102.00 102.20 101.40
Peak Outgoing Rate 5.40 295.40 239.80 5.40 181.00 5.40 15.60 7.20
Average Rate Total 40.87 42.02 21.51 41.68 21.07 41.36 45.47 41.30
Avg Incoming Rate 39.40 34.96 17.37 40.23 14.96 39.95 37.49 39.76
Avg Outgoing Rate 1.47 7.06 4.14 1.45 6.11 1.42 7.98 1.54

A2D2 RealServer/IDS IPTraf Statistics (packets/second)
Peak Total Activity 295.80 1241.20 1238.80 297.00 1125.40 296.00 1132.80 1096.40
Peak Incoming Rate 6.40 1059.40 1129.60 50.80 1124.40 100.60 503.20 495.80
Peak Outgoing Rate 292.80 348.801 446.40 294.00 343.80 293.00 634.60 600.60
Average Rate Total 113.04 185.13 788.74 170.45 575.39 211.53 705.21 129.66
Avg Incoming Rate 3.13 98.80 715.92 31.19 505.25 53.87 299.34 10.87
Avg Outgoing Rate 109.91 86.33 72.81 139.25 70.14 157.66 405.87 118.79

Table 5.1 Continued – A2D2 Test-bed Performance Results
(Table Continues on Next Page)

 86

Network Environment
 Baseline Attack Scenario

Attack Protocol N/A UDP UDP UDP ICMP ICMP TCP-SYN TCP-SYN
Attack Duration N/A 1 minute Non-stop Non-stop Non-stop Non-stop Non-stop Non-stop

A2D2 Mitigation
Techniques N/A N/A N/A Policy Policy Policy

CBQ
Policy
CBQ

Policy
CBQ
Rate

A2D2 Firewall/Gateway eth0 IPTraf Statistics (packets/second)

Peak Total Activity 298.20 305.60 575.80 1435.20 6629.40 5980.60 199.60 5344.20
Peak Incoming Rate 7.00 303.60 574.60 1410.40 6611.60 5812.80 25.20 5339.00
Peak Outgoing Rate 293.80 294.80 294.40 282.80 294.40 295.20 197.00 294.20
Average Rate Total 116.33 84.08 95.37 835.61 2927.18 3603.20 21.99 2735.57
Avg Incoming Rate 4.00 16.07 63.93 787.46 2883.08 3482.80 1.08 2702.47
Avg Outgoing Rate 112.34 67.38 31.44 48.15 44.10 120.4 20.91 33.09

A2D2 Firewall/Gateway eth1 IPTraf Statistics (packets/second)
Peak Total Activity 297.80 296.20 295.40 297.20 1123.60 297.00 199.00 290.60
Peak Incoming Rate 294.40 293.20 292.40 294.00 294.20 293.60 197.00 287.00
Peak Outgoing Rate 7.40 29.20 26.00 7.40 1123.60 88.00 6.60 11.40
Average Rate Total 115.17 70.54 39.32 41.38 440.99 143.78 18.46 43.75
Avg Incoming Rate 111.98 67.07 30.84 39.77 42.45 109.03 17.93 42.30
Avg Outgoing Rate 3.19 3.47 8.48 1.61 398.54 34.74 0.53 1.44

Table 5.1 Continued – A2D2 Test-bed Performance Results

87

5.4 Results Analysis

The test results presented in Section 5.3 show that the RealPlayer application

of the A2D2 Linux client should receive around 23,000 packets from the RealServer

during the 10-minute video clip. The exact number of packets received can ranged

from 23,445 to 23,438 for scenarios where complete QoS was ensured and no packets

were lost. This is due to the fact the video clips were stopped at around 10 minute

playing time. The exact stopped time may deviate slightly in seconds from scenario to

scenario. In addition to the total packet received, a complete transmission is indicated

by the number of packet recovered, number of packet lost, the number of

retransmission requests and the number of retransmission received (recovered). The

peak number of incoming packets received by the A2D2 client should be just over 100

packets per second while the average incoming rate was around 39 to 40 packets per

second. The normal traffic pattern experienced by the A2D2 clients is graphically

presented in Figure 5.1.

Figure 5.2 shows the histogram of traffic at A2D2 clients during the 1-minute

attack test scenario. The initial traffic pattern of the A2D2 clients resembled the

baseline pattern presented in Figure 5.1. However, packet reception was completely

interrupted during the 1-minute attack. Minimum packets were received and Figure

5.2 showed a slight burst of traffic around 180 seconds attempting to refill the

RealPlayer buffer.

88

Figure 5.1 – QoS Experienced by A2D2 Client

During Experiment Normal Activity

IPTraf results presented in Table 5.1 indicated that a large number of packets

were being sent out from A2D2 clients with the peak outgoing rate reaching close to

300 packets per second. The considerable increase in outgoing packets represented the

retransmission requests generated by RealPlayer that totaled 1,929 requests during the

1-minute attack. Unfortunately, only 121 packets were recovered out of the 1,929

requests. The video quality was significantly impacted and frozen screen shots were

observed. However, as the attack stopped around 230 seconds into the experiment,

packet reception resumed and the quality of screen shots recovered.

89

Figure 5.2 – QoS Experienced by A2D2 Client During 1-Minute DDoS Attack

 During a non-stop DDoS attack, all RealPlayer clients were timed out due to

the substantial loss of packets. A total of about 8000 packets were received by the

RealPlayer as opposed to the 23,000 packets received during normal network activity.

Only 35 packets were recovered out of 2,592 retransmission requests. The average

incoming rate of the RealPlayer dropped to 17.37 packets compared to the average

rate of 39 to 40 packets received during normal operations. The severely degraded

QoS experienced by the RealPlayer client can be observed from Figure 5.3.

90

Figure 5.3 – QoS Experienced by A2D2 Client During Non-Stop DDoS Attack

 The effectiveness of the A2D2 security policy is evidenced by the fourth test

scenario where an UDP DDoS attack was launched against the A2D2 with a tight

UDP policy enabled. Only port 22, 8080, 7070 and a few administrative ports were

opened for UDP traffic. The base firewall policy was set as “DENY”. Since

Stacheldraht generated UDP packets with random destination ports, any UDP attack

packets that did not target the valid ports were discarded by the firewall and never

reached the RealServer. As shown in Figure 5.4, the A2D2 client enjoys QoS similar

to that of the baseline scenario. In fact, the RealPlayer received around 23,000 packets

in total for the 10-minute video clip, sent out no retransmission requests and

experienced no packet loss.

91

Figure 5.4 – QoS Experienced by A2D2 Client During

Non-Stop UDP DDoS Attack with A2D2 Firewall Policy Enabled

 Although firewall policy is effective, administrators may not be able to foresee

all possible attacks and set up policies accordingly. In an event where the security

policy is incomplete or where attack traffic targets the open service ports, the firewall

gateway will still forward the attack traffic onto the DMZ. The fifth test scenario

launched an ICMP DDoS attack against the A2D2. Since the A2D2 did not have a

specific policy governing ICMP packets, the ICMP DDoS attack interrupted the A2D2

QoS entirely as shown in Figure 5.5. In fact, the effect is similar to that of test scenario

3 where a non-stop DDoS attack was launched against a network with no mitigation

technique. During the ICMP Stacheldraht attack, a total of 7127 packets are received

92

by the RealPlayer instead of the 23,000 packets normally transmitted for the entire

10-minute video clip. Only four packets were recovered out of the 2,105

retransmission requests sent.

Figure 5.5 – QoS Experienced by A2D2 Client During

Non-Stop ICMP DDoS Attack with A2D2 Firewall Policy Enabled

 By enabling CBQ, the QoS experienced by A2D2 RealClient was returned to

that of the baseline condition as showed in Figure 5.6. The A2D2 RealClient was able

to receive all 23,000 packets related to the video clip without retransmission requests.

93

Figure 5.6 – QoS Experienced by A2D2 Client During Non-Stop

ICMP DDoS Attack with A2D2 Firewall Policy & CBQ Enabled

 To ensure that A2D2 can mitigate a large variety of DDoS attacks known to

date, a TCP-SYN DDoS attack was launched with Stacheldraht against A2D2 with

Firewall Policy and CBQ enabled. The A2D2 Client QoS was evaluated. Figure 5.7

did not indicate severe QoS degradation but showed slight fluctuations in packet

reception. The streamed video was played continuously without freezing or timing-

out. However, the screen quality was noticeably inferior by observation. For example,

a couple of frames in a screen shot might be frozen while the rest of the screen

refreshed. RealPlayer statistics showed that a total of 22,179 packets were received for

the 10-minute video clip, slightly smaller than the baseline total of around 23,000

94

packets. A large number of retransmission requests were sent out (4,090 requests).

At the same time, a large number of packets are recovered (2,641 packets) leaving

about 1,449 lost packets.

Figure 5.7 – QoS Experienced by A2D2 Client During Non-Stop

TCP-SYN DDoS Attack with A2D2 Firewall Policy & CBQ Enabled

 It is unclear why the TCP-SYN DDoS attack launched by Stacheldraht would

result in slight degrades of QoS for a network with a firewall policy and CBQ enabled.

One explanation could be that more TCP ports are opened to provide such services as

telnet and ssh. Nine TCP ports were opened in the firewall policy while only four

UDP ports were configured to accept packets. Another reason could be that TCP-SYN

attacks consume the kernel data structure of the RealServer. Information about the

95

SYN packets is stored in the data structure until the connection requests are closed

by the SYN-ACK packets. Since DDoS SYN attack packets contained spoofed

addresses, the connection requests remain open and continue to occupy the kernel data

structure. As a result, the RealServer might slow down its response to the RealPlayer

requests.

 To test the intrusion tolerance of the A2D2 network, the final test scenario

enabled all features of the A2D2 network, including firewall policy, CBQ, Snort IDS

detection, autonomous alert communication between IDS and firewall and multi-level

rate-limiting. Figure 5.8 showed that the fully equipped A2D2 network further

improved QoS during TCP-SYN attacks. A total of 23,444 packets were received by

the A2D2 RealPlayer Client similar to those received by the baseline test scenario.

Although there was no observable service degrades, RealPlayer indicated that

there were 49 retransmission requests of which 40 packets were recovered and nine

were lost. The test was repeated five times and each showed similar results where the

total packets received are similar, no service degrades were observed and the graphical

presentation of the packet reception activity at RealPlayer Client resembled that of the

baseline. However, in each run, there are retransmission requests and packet recovery.

The number of retransmission requests varied from 49 to 1376 and packet recovery

rate ranged from 40 to 776 while around 9 to 600 were lost. Despite the retransmission

requests, the QoS is significantly improved in the fully featured A2D2 network

compared to the network where only firewall policy and CBQ were implemented. The

number of retransmission requests is considerably fewer in the fully featured A2D2

96

network than the policy-CBQ only network that consistently sent out more than

4000 retransmission requests. The number of packets lost by the fully featured A2D2

network recorded was more than 1,000 packets fewer than that of the policy-CBQ

network.

Figure 5.8 – QoS Experienced by A2D2 Client During Non-Stop TCP-SYN DDoS

Attack with A2D2 Firewall Policy, CBQ, Snort IDS, Autonomous Alert

Communication and Multi-level Rate-Limiting Enabled

One observation is that the number of retransmission requests and packets lost

experienced by clients of the fully featured A2D2 network depend on the delay time

between the start of the attack and when rate-limiting rules were applied. At some test

runs, rate-limiting rules were applied immediately after Snort IDS sent out the alerts.

97

In other cases, the IDS alerts seem to have problems connecting to the firewall

gateway computer (Titan). A number of “Failed to Connect to Rate-Limiter” messages

were observed. As mentioned in Section 5.3, the firewall gateway computer may

“hang” during an TCP-SYN attack, most probably due to the lack of processing power

in handling the various resource-intensive processes. While the firewall gateway may

not respond to keyboard or mouse inputs, it consistently accepted IDS alerts and

applied rate limiting rules accordingly even though rule application may be delayed. In

every test run, after the attack was stopped, the iptables status was checked using the

command “iptables –v –L”. A representative output of the iptables status is presented

in Table 5.2.

As shown by Table 5.2, a large number of packets were rate-limited or dropped

in each of the rate-limiting levels L3, L2, and L1. The IDS identified the subnet flood

128.198.61.0/24. The rate-limiter identified packets coming from this subnet and

applied rate-limiting rules accordingly. At the completion of the test run,

approximately 6,523,000 packets with 261,000,000 bytes coming from

128.198.61.0/24 were passed to rate-limiting level 1 from the INPUT, FORWARD,

and OUTPUT chains and were dropped. Before level 1 rate-limiting was applied,

about 33,505 packets were passed to rate-limiting level 3 of which 33,234 were

dropped and 271 were accepted. Approximately 1,159 packets were marked level 2 of

which 1,132 were dropped and 27 were accepted.

Additional evidence to prove the effectiveness of the multi-level rate-limiting

technique is shown by the A2D2 RealServer (Pluto) statistics presented in Table 5.1.

98

During normal network activities, the average incoming rate of packets is 3.13

packets per second. During DDoS attacks, the average incoming rate of packets ranges

from 31.19 packets per second to 505.25 packets per second depending on the duration

of the attack, the type of attack and mitigation techniques employed. The fully

featured A2D2 recorded an average incoming rate of 10.87 packets per second, the

closest to the baseline value. The 10.87 packets-per-second-rate is especially

noteworthy when compared to the 299.34 packets per second rate experienced by the

RealServer during an identical TCP-SYN attack with just CBQ and policy enabled.

 99

Chain INPUT (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
6336K 253M level1 all -- any any 128.198.61.0/24 anywhere
 0 0 ACCEPT udp -- any any anywhere anywhere udp dpt:domain
2760K 111M ACCEPT all -- any any anywhere anywhere

Chain FORWARD (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 186K 7454K level1 all -- any any 128.198.61.0/24 anywhere
 139K 60M ACCEPT all -- eth1 any anywhere anywhere
88701 3630K ACCEPT all -- any any anywhere anywhere

Chain OUTPUT (policy DROP 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 2 142 ACCEPT udp -- any any anywhere anywhere udp dpt:domain
2742K 110M ACCEPT all -- any any anywhere anywhere

Chain level0 (0 references)
 pkts bytes target prot opt in out source destination
 0 0 DROP all -- any any anywhere anywhere

Chain level1 (2 references)
 pkts bytes target prot opt in out source destination
6523K 261M DROP all -- any any anywhere anywhere

Chain level2 (0 references)
 pkts bytes target prot opt in out source destination
 27 1080 ACCEPT all -- any any anywhere anywhere limit: avg 50/sec burst 5
 1132 45280 DROP all -- any any anywhere anywhere

Chain level3 (0 references)
 pkts bytes target prot opt in out source destination
 271 10840 ACCEPT all -- any any anywhere anywhere limit: avg 151/sec burst 5
33234 1330K DROP all -- any any anywhere anywhere

Table 5.2 – iptables Status After A2D2 Implementation (iptables –v –L)

Chapter 6

A2D2 Test-bed Limitations and

Future Work

6.1 Firewall Processing Speed

One of the main limitations of the A2D2 test-bed is the processing speed of the

firewall computer (Titan). This computing power limitation poses two important

issues as explained in Sections 5.3 and 5.4:

• The accuracy of the IPTraf log data for the two network interfaces of

the firewall computer (Titan).

• The delay between the time when a flood alert is raised and the time

when the rate-limiting rule is applied.

Although the effectiveness of the A2D2 network can be inferred from

information collected from the A2D2 RealPlayer Clients and the A2D2 RealServer

101

(Pluto), the IPTraf information from the firewall (Titan) can provide a complete

picture of all activities related to the operations of the A2D2 network.

Perhaps a more important reason to upgrade the processing power of the

firewall computer is the potential QoS enhancements the A2D2 can provide to its

clients. The sooner the rate-limiting rules are applied, the faster attack packets are

blocked at the firewall gateway and the better the A2D2 can serve its clients within the

scope of available bandwidth. As mentioned in Section 5.4, the number of

retransmission requests can range from 49 to over 1000 depending on when the rate-

limiting rules are applied. Therefore, it will be beneficial to re-run the tests using a

faster computer as the firewall gateway in the A2D2 network.

In addition, the current test-bed did not measure the actual delay time between

when an alert was raised and when the rate-limiting rules were applied. The delays are

observed on screens. When the IDS sent an alert to the firewall, the alert was printed

on the screen. Similarly, screen output was provided when the rate-limiting rules were

applied. To facilitate better empirical analysis, future researchers should resort to

mathematical means to measure and calculate the actual rate-limiting response time.

6.2 Alternate Route Technique

 Since the speed at which rate-limiting rules is applied directly impacts the QoS

experienced by the A2D2 clients, it is worthwhile to explore various techniques that

may facilitate communications between the IDS and firewall. Currently, the IDS often

reported a “Failed to Connect to Rate-Limiter” message during DDoS attacks. Based

102

on such messages and simple observation, in addition to the processing power of

the firewall computer, another possible reason is that the network link between IDS

and firewall may be congested by attack traffic. Therefore, it is important to explore

techniques and designs where a separate “reserved” link is used for communications

among A2D2 hosts during an attack.

 The “reserved” link idea can be expanded to include a private network link that

is used for communications between the A2D2 DMZ and the A2D2 clients during an

attack. Such a technique requires multi-paths capability where packets arrive at the

A2D2 from the A2D2 clients through the gateway computer but response packets are

routed through the backend private links following a different path.

6.3 TCP-SYN Attack

While ICMP and UDP bandwidth consumption attacks can be completely

countered by the A2D2 firewall policy and CBQ, TCP-SYN attack requires

autonomous multi-level rate limiting to achieve a similar level of QoS. Section 5.4

hypothesizes that the mitigation requirements and results difference is due to the

nature of the TCP-SYN attack. While ICMP and UDP are attacks that strictly congest

a network link by consuming all available bandwidth, a TCP-SYN attack includes an

extra element of overloading the server’s kernel connection session data structure. The

intrusion tolerance capability of A2D2 can be further verified by studying additional

DDoS attacks of various types and natures using the A2D2 test-bed.

103

6.4 Scalability

The current study of the A2D2 test-bed focuses on the QoS provided by the

streaming video RealServer. However, the A2D2 CBQ configuration has taken into

account of the common services available in a generic DMZ set-up, such as telnet, ssh,

www, and smtp services. Additional tests can be performed to fine-tune the intrusion

tolerance of the A2D2 network with respects to other services. Three A2D2 clients

were used in the existing A2D2 implementation. The number of A2D2 clients can also

be increased for future studies.

6.5 Anomaly Detection

The study of anomaly detection is beyond the scope of this thesis. Nonetheless,

flood detection with the Snort IDS is a critical component of the A2D2 design. The

current A2D2 design provides administrators with a flexible way to define the flood

thresholds for their specific network. Adding an anomaly detection feature to the flood

detection will be one valuable enhancement to the A2D2 and can assist administrators

in determining a more accurate flood threshold.

6.6 Fault Tolerant

The design of the A2D2 network targets the QoS aspect of intrusion tolerance.

Section 2.4.1 also introduced another key area of intrusion tolerance: fault tolerant.

The current A2D2 design does not incorporate fault tolerant principles of replication

104

and duplication. Intruders can potentially aim at shutting down the A2D2 firewall

gateway or the IDS host, thereby rendering the autonomous nature of the A2D2

network futile. The A2D2 design can be significantly refined by encompassing fault

tolerant features.

Chapter 7

Software Engineering Model

and Lessons Learned

7.1 The Evolutionary Software Life Cycle Model

The development of the A2D2 network follows the Evolutionary model of the

Software Life Cycle Processes as defined by the “Information Technology – Guide for

ISO/IEC 12207 [ISO95]. The Evolutionary model develops a system in builds. Unlike

the Incremental model that develops systems in a series of builds with defined

requirements, the Evolutionary model acknowledges that requirements are not fully

understood and cannot be defined initially. Development starts immediately even if

the initial requirements are vague and partially defined. Requirements are refined in

successive builds as the system evolves [Pig96].

The Evolutionary model, as illustrated in Appendix B [ISO95], is particularly

suitable for a research project such as this thesis. At the start of a research project,

106

researchers often explore many knowledge areas of a research domain before

deciding on the specific topic. During the course of a research, the research will often

change directions due to new insights of the subject areas or unforeseen obstacles.

Figure 7.1 – ISO/IEC 12207 (Software Life Cycle Processes) Evolutionary Model

 The design and development of the A2D2 network has gone through roughly

five builds. Concrete and definite thesis requirements were elucidated only at the end

of Build 3, at which point the thesis proposal was presented to the committee members

Build 1 D C/T I/AS R1

R2
D C/T I/AS

R3 D C/T I/AS

Rn D C/T I/AS

Build 2

Build 3

Build n

R: Requirements I/AS: Installation and Acceptance Support
D: Design
C/T: Coding and Testing

Information Flow (Refinements)

107

for approval. The approved requirements then served as the base requirements for

Build 4. The five builds are:

• Build 1 – Initial Linux Network Test-bed Set-up

• Build 2 – Initial Security Test-bed Design

• Build 3 – Intermediate Security Test-bed Design

• Build 4 – A2D2 Initial Design

• Build 5 – A2D2 Refined Design

7.1.1 Build 1 – Initial Linux Network Test-bed Setup

The process of requirements gathering was started at the end of January 2002,

approximately four months before Build 1 was initiated on May 27, 2002. Initial

requirements gathering provided a thorough overview of the problem domain and

identified that a more in-depth study of the problem domain was required before

further analysis. Therefore, the goal of Build 1 was to set up a basic Linux network so

that DDoS scenarios can be studied. Instead of an anti-DDoS network, Build 1 focused

on the set-up of a Linux network that could route traffic from a private subnet to the

public domain. The initial Linux Network Test-bed set-up is presented in Appendix B.

The main lesson learned during this build was Linux router configuration. IP

Forwarding and Masquerading are enabled through the Network Address Translation

table (nat) and the following steps are taken:

108

• iptables --table nat --append POSTROUTING --out-interface eth0 -

j MASQUERADE

• iptables --append FORWARD --in-interface eth1 –j ACCEPT

• echo 1 > /proc/sys/net/ipv4/ip_forward

7.1.2 Build 2 – Initial Security Test-bed Design

Build 2 investigated a test-bed design that facilitates the study of a simple DoS

attack from one host. The design is provided in Appendix B. In addition to the

behavior of DoS, the network also enables the study of some DoS mitigation

techniques such as rate limiting. One main obstacle encountered during this build is

the testing of the firewall policies and rate-limiting rules. Considerable time was spent

to find out why the rate-limiting rules for SYN flood were ineffective while the rules

for ICMP flood produced accurate results. A simple SYN flood was started by “namp

–sS –0 –P0 hostname” while an ICMP flood was executed by “ping –f”. Rate limiting

rules for TCP are applied as follows:

• iptables - A INPUT -p tcp --syn -m -limit --limit 1/s --limit_burst 5 -j

ACCEPT

• iptables - A INPUT -p tcp DROP

Rate limiting rules for ICMP are applied as follows:

109

• iptables - A INPUT -p icmp --syn -m -limit --limit 1/s --limit_burst

5 -j ACCEPT

• iptables - A INPUT -p icmp DROP

When the “ping” attack was stopped, the command line displayed the statistics

related to the attack including the percentage of packets lost and received. Ethereal

was used to capture packet information to verify whether the SYN rate-limiting rules

were effective. However, analysis on ethereal data showed that all packets targeted at

the host were received.

It was later determined that the testing methodology was flawed. Ethereal

operated on the physical level and displayed statistics of all incoming packets that

reached the physical layer. The firewall policies and rate limiting rules were executed

by the “iptables” command that operated on the IP layer. Therefore, information for all

packets was captured by ethereal before the rate limiting and firewall rules were

applied. To accurately evaluate firewall and rate limiting rules, the network-

monitoring tool IPTraf was used to monitor traffic from both the external and internal

network interfaces, eth0 and eth1. IPTraf was used continuously for future builds.

7.1.3 Build 3 – Intermediate Security Testbed Design

The requirements of Build 3 were to extend Build 2 capabilities so that the

behavior of DDoS could be evaluated and additional mitigation techniques could be

examined. The design of the Intermediate Security Test-bed is presented in Appendix

B. Stacheldraht was chosen to be the DDoS attack tool used in the test-bed and other

110

DoS tools such as ipsyn, udpf were also evaluated. In addition, various IDS were

examined and Snort was chosen to be the detection component of the test-bed.

Additional DDoS mitigation techniques such as CBQ were also explored.

Due to the experience gained from the flawed testing methodology used during

Build 2, special attention was paid to the networking layer at which each test-bed

components operated. At Build 3, the IDS Snort was placed at the firewall gateway

computer. It was then determined that the Snort IDS analyzes packets at the physical

layer while the firewall rules were applied at the IP layer. As a result, the IDS would

continue to raise intrusion alerts even when appropriate rate limiting or firewall rules

were applied to block the particular intrusion. Therefore, a more efficient design was

needed to incorporate the various components of the security test-bed.

7.1.4 Build 4 – A2D2 Initial Design

Starting at Build 4, the requirements analysis was shifted from the problem

domain to the solution domain. Based on the lessons learned from the previous builds,

the appropriate mitigation channels were identified, the required software

development and improvements were defined and the A2D2 design was introduced.

The initial A2D2 design is illustrated in Appendix B. The dominant processes in Build

4 were the design, coding and testing phases as opposed to the previous builds where

requirements analysis, installation and testing were the key processes. Some major

accomplishments at this build include the design of the A2D2 network, the set-up of

111

the A2D2 DMZ, and the design and implementation of the Snort flood detection

preprocessor.

7.1.5 Build 5 – A2D2 Refined Design

One promising feature of the A2D2 network identified at Build 4 was the

provision of a private alternate route that could substitute the front-end gateway during

a DDoS attack. However, the amount of work involved in the design and

implementation of the Snort flood detection preprocessor required the thesis scope to

be scaled down. Build 5 also focused on the design and implementation of multi-level

rate limiting as well as the autonomous cooperation among all A2D2 components. The

refined A2D2 design, shown in Appendix B, has demonstrated a high level of

intrusion tolerance during various types of DDoS attacks.

Chapter 8

Conclusion

Many advances have been made by security professionals in the past few years

to counter the mass disruptions created by powerful DDoS tools. Nonetheless, the

number of DDoS victims continues to increase every year as new DDoS tools are

easily shared among curious intruders. Accepting the fact that it is still impossible to

completely stop or prevent DDoS attacks, many researchers have focused on intrusion

tolerance techniques that maximize quality of service during DDoS attacks. Most

promising intrusion tolerance research has taken a macro approach that recruits such

major players as Internet Service Providers (ISP) and protocol designers to adopt a

collaborative intrusion trace back, detection and push back mechanism. While

researchers are searching for an ultimate global solution, a vast number of individual

Internet users become DDoS victims. These users of small and medium sized

networks often lack the influence and knowledge to set up an elaborate collaborative

infrastructure. Nor do these SOHO users have the incentive to spend thousands of

113

dollars on commercial products that are designed to alleviate this one type of

intrusion.

The design of A2D2 provides a micro approach where individual Internet users

can address the DDoS problems in relatively manageable and affordable ways. The

A2D2 network allows SOHO users to utilize existing and free technologies and to take

control of their own defense within their own network boundary. A2D2 effectively

combines firewall policy, CBQ, multi-level rate-limiting and DDoS flood detection in

an autonomous architecture. Test-bed results clearly show that the A2D2 design

demonstrates tolerance against bandwidth consumption attacks of various types,

including UDP, ICMP and TCP-based DDoS attacks. When one type of mitigation

technique, such as a firewall policy, fails to completely handle an attack, another

technique such as CBQ or rate-limiting will automatically provide added protection.

Regardless of the types of DDoS attacks, A2D2 clients enjoy QoS similar to the level

of service they experience during normal network activities.

To further improve the intrusion tolerance of the A2D2 network, fault tolerant

principles of duplication and diversification of services should be applied. Additional

features can be added to enable alternative routes should the gateway link become

congested. Anomaly flood detection can further assist administrators in configuring

the A2D2 network. It is hopeful that with continual enhancements, the proposed A2D2

network design can be deployed in mass numbers among small and medium-sized

networks, thereby improving the overall Internet security against DDoS bandwidth

consumption attacks.

114

Bibliography

[ASTA00] Astalavista Network Library Archive.

http://www.astalavista.com/archive/index.asp?dir=ddos

[AV02] Arul Anand & Vanitha. QoS Implementation in Linux - A White paper.

ViSolve.com. Feb 04,2002.

http://squid.visolve.com/white_papers/qos.htm

 [BLG+99] Andrew Barkley, Steve Liu, Quoc Thong Le Gia, Matt Dingfield and

Yashodhan Gokhale. A Testbed for Study of Distributed Denial of

Service Attacks (WA 2.4). Proceedings of the 2000 IEEE Workshop on

Information Assurance and Security. United States Military Academy,

West Point, NY, 6-7 June, 2000.

[BLT02] Steve Bellovin, Marcus Leech, and Tom Taylor. ICMP Traceback

Messages. Internet Draft: draft-ieft-itrace-01.txt. Expires April 2002

[CERT98] CERT Coordination Center. “Determine contractor ability to comply

with your organization's security policy”. http://www.cert.org/security-

improvement/practices/p019.html

[CERT01] CERT Coordination Center. Denial of Service Attacks.

http://www.cert.org/tech_tips/denial_of_service.html

[Cis99] Cisco Systems. Unicast Reverse Path Forwarding. Cisco IOS

Documentation, May 1999.

115

[Cis02] Cisco Systems. Policing and Shaping Overview. Cisco IOS Release

12.0 Quality of Service Solutions Configuration Guide.

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr

/qos_c/

[Cis02-2] Cisco Systems. White Paper. Building a Perimeter Security Solution

with the Cisco Secure Integrated Software. September 6, 2002.

http://www.cisco.com/warp/public/cc/pd/iosw/ioft/iofwft/tech/firew_wp.

htm

[CNW+99] H.Y. Chang, R. Narayan, S.F. Wu, B.M. Vetter, X. Wang, M. Brown, J.J.

Yuill, C. Sargor, F. Jou, and F. Gong. Deciduous: Decentralized Source

Identification for Network-Based Intrusion. 6th IFIP/IEEE International

Symposium on Integrated Network Management, IEEE Communications

Society Press, May 1999.

http://www.silicondefense.com/research/itrex/archive/tracing-

papers/chang99deciduos.pdf

[Comer00] Douglas Comer. Internetworking with TCP/IP Vol.1: Principles,

Protocols, and Architecture (4th Edition). Prentice Hall. January 18, 2000

[Comp] Computer Networking Glossary.

http://compnetworking.about.com/library/glossary/bldef-

qos.htm?terms=QoS

[CR00] Matt Curtin and Marcus J. Ranum. Internet Firewalls: Frequently Asked

Questions. December 1, 2000

116

[CSI02] Computer Security Institute. “Cyber Crime Bleeds U.S. Corporations,

Survey Shows; Financial Losses from Attacks Climb for Third Year in a

Row”. http://www.gocsi.com/press/20020407.html

[Des02] Paul Desmond. Cisco, Enterasys Deliver New IDS Products.

boston.internet.com. May 16. 2002.

http://boston.internet.com/news/article.php/2371_1135921

[Dit99] David Dittrich. The "stacheldraht" distributed denial of service attack

tool. The DoS Project's "trinoo" distributed denial of service attack tool.

 The "Tribe Flood Network" distributed denial of service attack tool

 The "mstream" distributed denial of service attack tool

 http://www.washington.edu/People/dad/

[Dit00] David Dittrich. “Usenix Security Symposium 2000 DDoS – Is there

Really a Threat”. http://staff.washington.edu/dditrich/talks/sec2000/

[Dit02] David Dittrich. Distributed Denial of Service Attacks/Tools.

http://staff.washington.edu/dittrich/misc/ddos/

[For01] Jeff Forristal. Fireproofing Against DoS Attacks. Network Computing.

December 10, 2001.

http://www.networkcomputing.com/1225/1225f3.html

[Fred02] Karen Kent Frederick. Evaluating Network Intrusion Detection

Signatures. Part I. SecurityFocus Online. September 10, 2002.

117

[FS00] P. Fergusion and D. Senie. Network Ingress Filtering: Defeating

Denial of Service Attacks Which Employ IP Source Address Spoofing.

RFC 2827. May 2000.

[Gnuplot] Gnuplot Central. http://www.gnuplot.info/

[GWW+00] Katerina Goseva-Popstojanova, Feiyi Wang, Rong Wang, Fengmin

Gong, Kalyanaraman Vaidyanathan, Kishor Trivedi, Balamurugan

Muthusamy. Charaterizing Intrusion Tolerant Systems Using a State

Transition Model. Duke University, MCNC Research Triangle Park,

Vitesse Corp. 2000.

[HMM+02] Bert Hubert, Gregory Maxwell, Remco van Mook, Martijn van

Oosterhout, Paul B Schroeder, and Jasper Spaans. Linux Advanced

Routing & Traffic Control HOWTO. DocBook Edition.

http://www.kiarchive.ru/pub/linux/docs/HOWTO/Adv-Routing-HOWTO

[HMP+01] Allen Householder, Art Manion, Linda Pesante, George M. Weaver, Rob

Thomas. Managing the Threat of Denial-of-Service Attacks. CERT

Coordination Center. October 2001.

http://www.cert.org/archive/pdf/Managing_DoS.pdf

[IANA02] Internet Assigned Numbers Authority.

http://www.iana.org/assignments/port-numbers

[IB02] John Ioannidis and Steve M. Bellovin. Implementing Pushback: Router-

Based Defense Against DDoS Attacks. AT & T Research Lab. 2002.

http://citeseer.nj.nec.com/ioannidis02implementing.html

118

[IET00] IETF – Internet Engineering Task Force. Request for Comments:

2827. Network Ingress Filtering: Defeating Denial of Service Attacks

which employ IP Source Address Spoofing. May 2000.

http://www.ietf.org/rfc/rfc2827.txt.

[IET02] IETF – Internet Engineering Task Force. ICMP Traceback (itrace)

Charter. Last modified: March 28, 2002.

http://www.ietf.org/html.charters/itrace-charter.html

[ISO95] ISO/IEC. 1995. Information Technology – Guide for ISO/IEC 12207

(Software Life Cycle Processes). Draft Technical Report.

[ITW01] ITWorld.com. CERT hit by DDoS attack for a third day. May 24, 2001.

http://www.itworld.com/Sec/3834/IDG010524CERT2/

[KMW01] Frank Kargl, Joern Maier, and Michael Weber. “Protecting Web Servers

from Distributed Denial of Service Attacks”. University of Ulm

Germany, May 2001. http://citeseer.nj.nec.com/444367.html

[Kum95] Sandeep Kumar. Classification and Detection of Computer Intrusions.

Ph.D. Dissertation. Purdue University. August 1995.

[Lai00] Brian Laing. How To Guide: Intrusion Detection Systems. Internet

Security Systems.

http://gd.tuwien.ac.at/infosys/security/oldsnort/docs/iss-placement.pdf

[Lin02] “Network Intrusion Detection Using Snort”

http://www.linuxsecurity.com/feature_storeis/feature_story-49.html

119

[MMW+02] Dan Massey, Allison Mankin, C. L. Wu, X. L. Zhao, Felix Wu, W.

Huang, and Lixia Zhang. Intention-Driven ICMP Trace-Back. Internet

Draft: draft-ietf-itrace-intention-00.txt. Expires May 2002.

[MVS01] David Moore, Geoffrey M. Voelker and Stefan Savage. Inferring Internet

Denial-of-Service Activity. 2001

http://www.cs.ucsd.edu/~savage/papers/UsenixSec01.pdf.

[NCFF01] Stephen Northcutt, Mark Cooper, Matt Fearnow, Karen Frederick.

Intrusion Signatures and Analysis. Indiana: New Riders. January 2001.

[NIST95] National Institute of Standards and Technology. A Conceptual

Framework for System Fault Tolerance. 1995.

http://hissa.nist.gov/chissa/SEI_Framework/framework_1.html

[Nmap02] Nmap: Network Mapper. http://www.insecure.org/nmap/index.html.

[OBSD02] OpenBSD. Using IPsec (IP Security Protocol).

http://www.openbsd.org/faq/faq13.html#What.

[Pig96] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for

Managing Your Software Investment. NY: Wiley Computer Publishing.

1996.

[RL93] Y. Rekhter and T. Li. RFC 1518: An Architecture for IP Address

Allocation with CIDR. September 1993.

[RS91] Deborah Russell and G. T. Gangemi Sr. Computer Security Basics.

O’Reilly & Associates, Inc., Sebastopol, California, December 1991.

120

[San00] Scott C. Sanchez. IDS Zone Theory Diagram. 2000.

http://www.snort.org/docs/scott_c_sanchez_cissp-ids-zone-theory-

diagram.pdf

[SANS00] SANS Institute – Global Incident Analysis Center. Egress Filtering v 0.2.

http://www.sans.org/y2k/egress.htm

[Sao02] Greg Saoutine et al. Barbarians at the Gate. Microsoft Professional

Magazine. September 29, 2002.

[SDW+01] Dan Sterne, Kelly Djahandari, Brett Wilson, Bill Babson, Dan

Schnackenberg, Harley Holliday, and Travis Reid. “Autonomic Response

to Distributed Denial of Service Attacks”. Recent Advances in Intrusion

Detection. 4th International Symposium, RAID 2001 Davis, CA, USA,

October 10-12, 2001 Proceedings.

http://www.cse.ogi.edu/~wuchang/cse581_winter2002/papers/22120134.

pdf

[Snort] Snort. The Open Source Network Intrusion System.

http://www.snort.org.

[Stal99] William Stallings. Cryptography and Networks Security: Principles and

Practice. Second Edition. New Jersey: Prentice Hall. 1999.

[Whatis] Whatis?com. http://whatis.techtarget.com/definition/

[Whi00] Whisker. http://sourceforge.net/projects/whisker/

[Whit01] Whithats, Inc. arachnids – The Intrusion Event Database. IDS246/DOS-

LARGE-ICMP.

121

http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids246&view=

event

[WO01] Jeroen Wortelboer and Jan Van Oorschot. Linux Firewall – the Traffic

Shaper. January 15, 2001. http://online.securityfocus.com/infocus/1285

[YEA00] Jianxin Yan, Stephen Early, Ross Anderson. “The XenoService – A

Distributed Defeat for Distributed Denial of Service. Proceedings of ISW

2000. http://citeseer.nj.nec.com/376606.html

[ZOS00] Weibin Zhao, David Olshefski and Henning Schulzrinne. Internet Quality

of Service: an Overview. Columbia University. 2000.

http://citeseer.nj.nec.com/zhao00internet.html

122

Appendix A Flood Preprocessor Logic Flowchart

Figure A.1 – Flood Preprocessor Logic Flowchart

Check Flood

IsFloodIgnoreServer

Check Individual Flood
1 Attacker 1 victim

int CheckSubnetIndFlood
Subnet Attacker 1 vic

packet

No

N

Exit

Not TCP SYN,
SYN-ACK,
UDP, ICMP

Yes

FloodList
Data
Structure

Update

Add

Update

Remove

Packet checking &
Preparations

void ExpireFloodConnections

int NewFlood
Update Data Structure

Return: Max Connection

void FloodPreprocFunction

log, alert

Rate-
Limiter List
Data
Structure

Rate Limiter
Rate-Limiting

Thresholds

Update

Add

Yes

N

Yes

Yes

Check “End of Flood”
Clear floodDetected Flag

int CheckSubnetFlood
Subnet Attacker

Subnet victim

N

123

Appendix B Design Evolution

Initial Linux Network Test-bed Setup (Version 1)
Thursday June 8, 2002

Titan (C2)
128.198.61.12

Saturn (C1)
128.198.61.11

Pluto (C3)
128.198.61.13

as Linux Router
+ Victim Server

as Linux Router
+ Attackers

100Mpbs Switch

IDS & Defense

10Mbps Hub

192.168.0 192.168.1

VMWare VMWare Development

SSH
telnet

ftp
web server

TCPdump Utility
DDoS Attack Tools

SSH
telnet

ftp
web server

TCPdump Utility

SSH
telnet

ftp
web server

TCPdump Utility
Development

IDS Tools
(Snort / LIDS)

Attack Agent VictimMaster

Titan (C2) Saturn (C1) Pluto (C3)
128.198.61.13

as Linux Routeras Linux Router

100Mpbs Switch

Initial Linux Network Test-bed Set-up (Version 1b)
Monday, July 1, 2002

10Mbps Hub

Subnet
192.168.0

Subnet
192.168.1

as Linux Router

IP: 128.198.61.12
NM: 255.255.255.128

GW: 128.198.61.1

IP: 192.168.0.1
NM: 255.255.0.0

GW: 128.198.61.12

IP: 192.168.0.2
NM: 255.255.0.0
GW: 192.168.0.1

IP: 192.168.1.2
NM: 255.255.0.0
GW: 128.198.1.1

IP: 192.168.1.1
NM: 255.255.0.0

GW: 128.198.61.13

IP: 128.198.61.13
NM: 255.255.255.128

GW: 128.198.61.1

V1Tina
192.168.0.5

Internet

Figure B.1 – Build 1 – Initial Linux Network Test-bed Set-up

124

rate limiting

Titan (C2)

Pluto (C3)

as Linux Router

as Linux Router

100Mpbs Switch

Private Subnet
192.168.1

IP: 128.198.61.12
NM: 255.255.255.128

GW: 128.198.61.1

IP: 192.168.1.1
NM: 255.255.1.0

GW: 128.198.61.13

IP: 128.198.61.13
NM: 255.255.255.128

GW: 128.198.61.1

eth0

eth1

eth0

Public
Network

128.198.61

Attack

Attack

iptables Firewall
rate limiting

Figure B.2 – Build 2 – Initial Security Test-bed Design

125

rate limiting rate limiting

Attack

Titan (C2) Saturn (C1)

Pluto (C3)

as Linux Router

as Linux Router

100Mpbs Switch

Network Security Testbed (Intermediate Version)
Thursday July 11, 2002

10Mbps Hub

Private Subnet
192.168.0

Private Subnet
192.168.1

as Linux Router

IP: 128.198.61.12
NM: 255.255.255.128

GW: 128.198.61.1

IP: 192.168.0.1
NM: 255.255.0.0

GW: 128.198.61.12

IP: 192.168.0.2
NM: 255.255.0.0
GW: 192.168.0.1

IP: 192.168.1.2
NM: 255.255.1.0
GW: 128.198.1.1

IP: 192.168.1.1
NM: 255.255.1.0

GW: 128.198.61.13

IP: 128.198.61.13
NM: 255.255.255.128

GW: 128.198.61.1

eth0 eth1

eth1

eth1 eth0

eth0

Public
Network

128.198.61

Attack Attack

Attack

RealPlayer Server

Real Player Client

Snort
iptables Firewall

rate limiting

Figure B.3 – Build 3 – Intermediate Security Test-bed Design

 126

Normal
Output
route

Attack

Attack

Attack

rate limiting

Access
RealServer

100Mpbs Switch
Private Subnet

192.168.0

Public
Network

128.198.61

RealPlayer Server

Computer B

Computer C

Computer D

IP: 128.198.61.12
NM: 255.255.255.128

GW: 128.198.61.1

eth0

Pluto (C3)

as Linux Router

IP: 192.168.0.1
NM: 255.255.0.0

GW: 128.198.61.12

eth1

Titan (C2)
iptables firewall

rate limiting

as Linux Router

eth1

100Mpbs Switch

IP: 128.198.61.13
NM: 255.255.255.128

GW: 128.198.61.1

eth0

Saturn (C1)

as Linux Router

Real Player Client

Computer A

Internet

IP: 128.198.61.11
NM: 255.255.255.128

GW: 128.198.61.1

eth0

100Mpbs Switch

Internet

DMZ

Alternate
output
route

during
attack

Detect attack not
filtered by firewall,
instruct firewall to
start rate limiting
against specific

DDoS attack

Access
RealServer

Normal
Output
route

IP: 192.168.0.2
NM: 255.255.0.0

GW: 128.198.61.13

Figure B.4 – Build 4 – A2D2 Initial Design

 127

Attack

Attack Attack

Private Subnet
192.168.0

Attack Network
128.198.61

IP: 128.198.61.12
NM: 255.255.255.128

GW: 128.198.61.1

eth0

Pluto

Titan

DMZ

Multi-Level
Rate Limiting

Class-Based
Queuing

(CBQ)

as Linux Router

Firewall
(iptables)

Security Policy

IP: 192.168.0.1
NM: 255.255.0.0

GW: 128.198.61.12

eth1

RealServer

R
e

a
lS

e
rv

e
r

T
ra

ff
ic

ID
S

 A
le

rt
s

tr
ig

g
e

r
M

u
lti

-L
e

ve
l

R
a

te
-L

im
iti

n
g

IDS

7
0

%
 H

T
T

P
,

R
e

a
lP

la
ye

r

1

5
%

 S
M

T
P

,
P

O
P

3

1

0
%

 S
S

H
,

S
F

T
P

5

%
 S

Y
N

,
IC

M
P

,
D

N
S

10 Mbps Hub

eth0

IP: 192.168.0.2
NM: 255.255.0.0
GW: 192.168.0.1

Public Network
128.198

Internet

Alpha
128.198.61.15

DDoS
Agent

Gamma
128.198.61.17

DDoS
Agent

Beta
128.198.61.16

DDoS
Agent

Delta
128.198.61.18

DDoS
Agent

Simulated
Internet

100Mpbs Switch

Master Client
& Handler

DDoS

Saturn
128.198.61.11

NM: 255.255.255.128
GW: 128.198.61.1

Autonomous Anti-DDoS Network
(A2D2)

Client1
128.198.a.195

Real Player Client

Client2
128.198.b.82

Real Player Client

Client3
128.198.c.31

Real Player Client

100Mpbs Switch

Figure B.5 – A2D2 Final Design

128

Appendix C A2D2 Users Manual

The A2D2 network is easily configured to guide against various types of

DDoS attacks. This users manual explains the steps required to configure and start the

A2D2 network. The A2D2 setup is assumed to resemble that illustrated in Appendix

Figure B.5. A sample demonstration script is also provided as a step-by-step guide on

how a DDoS attack is detected and controlled. The set up of the A2D2 test-bed

includes three main components:

• The attack network

• The autonomous defense network (A2D2)

• The client network

C.1 The A2D2 Attack Network

The attack network consists of any number of clients, handlers and agents.

Before configurations, users have to first identify the computers involved and their

respective roles.

C.1.1 The Essential Software and Files

Users need to identify all essential files related to an attack tool. DDoS tools

can be easily located in the Internet [ASTA00]. Each tool contains different files but

the file structures are similar among DDoS tools. Users need to identify the files for

clients, handlers and agents of their chosen tools. For StacheldrahtV4, the files are:

129

Client
Stacheldrahtv4/telnetc/

Handler
Stacheldrahtv4/

Agent
Stacheldrahtv4/leaf/

Encryption
Stacheldrahtv4/

Bf_tab.h
Client.c
makefile

Telnetc
Bf_tab.h
Config.h
Makefile
Mserv.c
Tubby.h

Bf:tab.h
Config.h
Config.h.in
Control.h
Icmp.c
Makefile
Sysn.c
Td.c
Tubby.h
Udp.c

Blowfish.c
Blowfish.h

Executable
Client mserv td N/A

Table C.1 – Stacheldrahtv4 Files

 Before compilation, the following steps need to be taken:

1. Ensure the client and handler share the same communication port

number

• in client.c (#define MASTERSERVERPORT 1234)

• in mserv.c (#define MSERVERPORT 1234)

2. Define the IP address of the handler

• in mserv.c (#define LOCALIP “5.6.7.8”)

3. Define the password for communications with the handler

• in mserv.c (#define SALT “zAeaLAzwZ7Eng”)

• //encrypted password for “manager”

4. Ensure the agents know who their handler is

• in td.c (#define MSERVER1 “5.6.7.8”)

5. Ensure the handler and agents share the same communication port

number

130

• in mserv.c (#define COMMANPORT 9000)

• in td.c (#define COMMANPORT 9000)

C.1.2 The Execution Steps

1. Place the executable of “Client”, “mserv” and “td” on machines that are

designated as clients, handlers, and agents respectively.

2. At Client, execute the command “./Client handlerIPaddress”.

3. Type in the password “manager” when prompted.

4. Upon successful login, the DDoS manager will indicate the number of

“alive” agents and “dead” agents at the command prompt. In an

example where there are four “alive” agents and zero “dead” agent, the

command prompt <a4! d0!> will be shown.

5. Users can then execute the various command specified in “.help”.

6. For example, user can launch a UDP attack against a victim with the

following command “.mudp victim.target.edu”. Other available attacks

are .micmp and .msyn.

7. To end the attack, execute the command “.mstop all”.

8. To exit Stacheldraht, type .quit.

C.2 The Autonomous Defense Network (A2D2)

There are three main components in the A2D2 DMZ: the firewall gateway, the

IDS and the server that provides video streaming service. In the A2D2 test-bed setup,

the IDS and the RealServer reside in the same machine, Pluto. In a more elaborate

131

setup, the IDS and the RealServer should be separated into different hosts. The

following sections describe the procedures to configure and execute each of the three

components.

C.2.1 The Firewall Gateway (Titan)

C.2.1.1 The Essential Software and Files

The firewall polices and CBQ implementations are contained in three shell

scripts:

• noudp-policy.sh

• nocbq.sh

• cbq.sh

The noudp-policy.sh contains simple TCP policies and network address

translation (NAT) rules so that packets can be routed from the internal private network

to the public domain. The nocbq.sh file implements TCP and UDP policies while the

cbq.sh script adds CBQ implementation to the basic firewall policies. In addition to

the policy script and the CBQ script, rate-limiting files are contained in the “rateif”

directory. Four files are contained within the “rateif” directory that enable autonomous

mutli-level rate-limiting.

• rateif.conf

• rateif.pl

• logfile

132

• rulefile

The “rateif.conf” file is the rate-limiting interface configuration file. Users can

define six sets of parameters:

• The number of rate-limiting levels and the rate and expiration times

associated with each level. Details of how to configure the various rate

parameters in the rateif.conf file are described in Section 4.2.3.

• The server name on which the rate-limiting rules are applied

• The port number at which the rate limiter will listen for the IDS alert

• The filename that log all the rate rules that are being applied

• The location of where the iptables program is at the firewall server

• The alarm time interval at which the rate-limiting rules will be checked

for their expiration.

The “ratief.pl” file is the main program that accepts the IDS alert and limits

packet rate accordingly. The “logfile” is the file that is being used by the “rateif.pl”

program internally to calculate expiration time. The rulefile is the log file that contains

all rate limiting rules that are being applied.

C.2.1.2 The Execution Steps

1. Make sure the deprecated ipchains redhat packet manager (rpm) does

not exist in the systems. The ipchains rpm conflicts with the iptables

rpm if both are installed in the same system.

• rpm –qa | grep ipchains

133

• rpm –e ipchains*.rpm

2. Flush all firewall rules to ensure no hidden policies are applied without

users’ knowledge. This can be achieved by:

• rebooting the system

• sh <anyscriptname.sh> stop (e.g. sh cbq.sh stop)

3. Make sure the rate.conf file is configured with values appropriate to the

user’s network.

4. Run the rate limiting program by executing the command ./rateif.pl

5. Start the firewall script

• sh <anyscriptname.sh> start (e.g. sh cbq.sh start)

• It is important not to run the “restart” command (sh

<anyscriptname.sh> restart) since the “restart” command will first

stop the firewall and flush all chains (rules) including those created

by the rateif.pl file.

6. If users have root access and would like to monitor network traffic

activities at any interface, the IPTraf program can be run.

• iptraf

C.2.2 The IDS (Pluto)

C.2.2.1 The essential software and files

The essential files related to the IDS system are the Snort IDS files which can

be downloaded from the Snort website [Snort]. The version of Snort deployed in the

134

A2D2 test-bed illustrated in Appendix Figure B.5 is Snort 1.8.6 for Linux. One of

the essential files within the Snort 1.8.6 files provided by Snort is the snort.conf

configuration file. Two additional files: spp_flood.c and spp_flood.h, are created for

the flood preprocessor.

• snort-1.8.6.tar.gz (include snort.conf)

• spp_flood.c

• spp_flood.h

In addition to the Snort files, a group of files are created to send the Snort

alerts to the rate-limiter firewall gateway. These files reside in the “alert” directory

and include the following:

• Makefile

• alert

• misc.h

• msock.h

• report.c

• report.o

The main program file is “report.c” where users define the following

parameters:

• #define HOSTNAME “the hostname of the firewall gateway

computer on which the rate-limiting will applied” (e.g.

“titan.uccs.edu”)

• #define PORTNO 6779

135

- This port number corresponds with the port number defined

in the rateif.conf file. The rate limiter listens for the IDS alert at

this port number

• #define LOGFILE “/var/log/snort/alert.log”

C.2.2.2 The Execution Steps

1. Extract the Snort files downloaded from the snort website

• tar –xzvf snort-1.8.6.tar.gz

2. Configure the snort.conf files according to the instructions provided in

the snort web site.

• Specifically, define the network that the IDS will monitor: var

HOME_NET <IP address and subnet mask>

3. Place the spp_flood.c and spp_flood.h files in the snort-1.8.6 main

directory

4. Integrate the flood preprocessor with the snort base programs as

described in detail in Sections 3.1.4.2, 3.1.5 and 3.3.2.

5. Run snort: ./snort –A UNSOCK

6. Change directory to the alert directory and verify that the report.c file is

configured with correct parameters for the rate-limiter

7. Compile the report.c program using “Makefile” that creates the output

executable: alert

8. Start the alert system with ./alert –h <rate-limiter-firewall-hostname>

136

C.2.3 The RealServer (Pluto)

C.2.3.1 The essential software and files

The main files for the RealServer host are the Realsystems files downloaded

from the RealNetworks website http://www.realnetworks.com/products/. The products

provided by RealNetworks are upgraded constantly. Users should refer to the

RealNetworks website for information on upgraded products. In the A2D2 test-bed

implementation described in Appendix Figure B.5, RealServer 8 is used and its latest

user documentation is available at:

• http://service.real.com/help/library/guides/server8/realsrvr.htm

After extraction of the RealServer files, users should verify that such

configuration information as port number and password in the “rmserver.cfg” file is

correct. Video files being served by the RealServer should be saved in the “Content”

directory under the main “Realsystems” directory.

C.2.3.2 The Execution Steps

1. Place video files in the “Content” directory of the “Realsystems” main

folder.

2. Change directory to the “Realsystems” main folder and start

RealServer:

• ./Bin/rmserver rmserver.cfg

3. Change directory to the “snort-1.8.6” folder

4. Start snort by the command: ./snort – A UNSOCK

137

5. Change directory to the “alert” directory placed under the “snort-

1.8.6” folder and start the rate-limiting alert interface.

• ./alert –h <rate-limiter firewall hostname>

C.3 The Client Network

• Any host running the RealPlayer application can be an A2D2 client.

However, only Linux hosts can be used to monitor traffic impact during

DDoS attacks.

C.3.1 The essential software and files

The latest version of the RealPlayer software can be downloaded from the

RealNetworks website: http://www.realnetworks.com/products/. At the Linux clients,

the network-graphing files can be installed to illustrate the number of packets received

by the client when accessing the RealServer. The network graphing files are contained

in the “plot-final-0928” directory:

• input.sh

• plot.pl

• data.txt

• runplot.sh

The main program that enables the graphing of network activities is “plot.pl”.

The program “plot.pl” extracts the “number of packets received” data from the

“/proc/net/dev” Linux file. The extracted information is saved in the “data.txt” file.

The data in the “data.txt” file is then projected by the Linux graphing utility “gnuplot”.

138

The “input.sh” script contains graphing parameters that “gnuplot” uses, such as the

units for the X-axis and Y-axis and the title of the graph. The “runplot.sh” shell script

runs the “plot.pl” program. For the “plot.pl” program to execute correctly, users need

to ensure that the Linux computer contains the Perl package “time::hires”.

C.3.2 The Execution Steps

1. Start the RealPlayer and access the following link, assuming the gateway

computer is “titan.uccs.edu”.

• http://titan.uccs.edu:8080/ramgen/videoname.rm?usehostname

2. From a Linux host, change directory to “plot-final-0928”

3. Execute the “plot.pl” program using the following command:

• sh runplot.sh <time-interval-in-sec> <interface> (e.g. sh runplot.sh 1

eth0)

4. From another Linux terminal, change directory to “plot-final-0928”

5. Execute gnuplot:

• gnuplot input.sh

C.4 A Sample Demo Script

A sample demo script is provided here to demonstrate how a Stacheldraht

TCP-SYN flood can be launched, how the A2D2 network responses to the attack and

what the QoS experienced by the A2D2 client is. It is assumed that the setup of the

A2D2 network is identical to that described in Appendix Figure B.5. IPTraf can be

used on any Linux computer at which users have root access. It is recommended that

139

IPTraf be used in the RealServer computer (Pluto) and the Linux RealPlayer client

computer. The steps to be taken at each host are as follows:

C.4.1 At the firewall gateway computer (Titan)

1. Open 2 terminals on Titan

2. At terminal 1, change directory to “final”

3. Verify no firewall policy is active

• sh cbq.sh stop

4. At terminal 2, change directory to “rateif”

5. Run rate-limiting program

• ./rateif.pl

6. At terminal 1 “final” directory, execute the CBQ script

• sh cbq.sh start

7. To terminate rate-limiting, type “Clt+C”

8. To terminate CBQ, execute “sh cbq.sh stop”

C.4.2 At the IDS/RealServer compuer (Pluto)

1. Open 3 terminals on Pluto

2. At terminal 1, change directory to “realsystems”

3. Start RealServer

140

• ./Bin/rmserver rmserver.cfg

4. At terminal 2, change directory to “snort-1.8.6”

5. Start Snort

• ./snort –A UNSOCK

6. At terminal 3, change directory to “snort-1.8.6/alert”

7. Start the “alert” program

• ./alert –h titan.uccs.edu

8. To monitor network interface activities, start a new terminal and type

“iptraf” at the command prompt

9. To terminate RealServer, Snort, or the “alert” program, type “Clt+C” at

their respective terminals

10. To view log files, change directory to /var/log/snort/

C.4.3 At the RealPlayer Client computer (Linux)

1. Open 2 terminals

2. At terminal 1, change directory to “plot-final-0928”

3. To start plotting the number of packets received by network interface

eth0 at 1-second interval, execute the command:

• sh runplot.sh 1 eth0

4. At terminal 2, change directory to “plot-final-0928”

141

5. Start the graphing utility “gnuplot”:

• gnuplot input.sh

6. To monitor network interface activities, start a new terminal and type

“iptraf” at the command prompt

7. To terminate the plotting programs “runplot.sh” and “gnuplot”, type

“Clt+C” at their respective terminals

C.4.4 At the Attack Client “Saturn”

1. Change directory to “Stacheldrahtv4”

2. Verify that the process “mserv” is active using “ps –e”. If the “mserv”

process does not exsit, start mserv:

• ./mserv

3. Change directory to “Stacheldrahtv4/telnec”

4. Start the attack management program “Client”:

• ./Client saturn.uccs.edu

5. Type in the password when prompted: manager

6. Launch an attack

• .msyn titan.uccs.edu

7. Terminate the attack

• .mstop all

142

8. Exit Stacheldraht

• .quit

