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ABSTRACT
Backbone has been used extensively in various aspects (e.g., rout-
ing, route maintenance, broadcast, scheduling) for wireless net-
works. Previous methods are mostly designed to minimize the
backbone size. However, in many applications, it is desirable to
construct a backbone with small cost when each wireless node has
a cost of being in the backbone. In this paper, we first show that
previous methods specifically designed to minimize the backbone
size may produce a backbone with a large cost. We then propose
an efficient distributed method to construct a weighted sparse back-
bone with low cost. We prove that the total cost of the constructed
backbone is within a small constant factor of the optimum for ho-
mogeneous networks when either the nodes’ costs are smooth or
the network maximum node degree is bounded. We also show that
with a small modification the constructed backbone is efficient for
unicast: the total cost (or hop) of the least cost (or hop) path con-
necting any two nodes using backbone is no more than 3 (or 4)
times of the least cost (or hop) path in the original communication
graph. As a side product, we give an efficient overlay based mul-
ticast structure whose total cost is no more than 10 times of the
minimum when the network is modeled by UDG. Our theoretical
results are corroborated by our simulation studies.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topology,
Wireless communication; G.2.2 [Graph Theory]: Network prob-
lems, Graph algorithms.

General Terms
Algorithms, Design, Performance, Theory.
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Connected dominating set, clustering, weighted, localized algo-
rithm, wireless ad hoc/sensor networks.
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1. INTRODUCTION
Wireless networks draw lots of attentions in recent years due to

its potential applications in various areas. Many routing protocols
have been proposed for wireless ad hoc networks recently. The
simplest routing method is to flood the message, which not only
wastes the rare resources of wireless nodes, but also diminishes the
throughput of the network. One way to avoid flooding is to let each
node communicate with only a selected subset of its neighbors , or
to use a hierarchical structure like Internet, e.g., connected domi-
nating set (CDS) based routing [15, 30, 35, 41].

Efficient distributed algorithms for constructing connected dom-
inating sets in ad hoc wireless networks were well studied [3, 4, 5,
7, 15, 37, 41]. The notion of cluster organization has been used
for wireless ad hoc networks since their early appearance. Baker
et al. [4, 5] introduced a fully distributed linked cluster architec-
ture mainly for hierarchical routing and demonstrated its adaptivity
to the network connectivity changes. The notion of the cluster has
been revisited by Gerla et al. [18, 31] for multimedia communi-
cations with the emphasis on the allocation of resources, namely,
bandwidth and channel, to support the multimedia traffic in an ad
hoc environment. In [17], Gao, et al. proposed a randomized al-
gorithm for maintaining the discrete mobile centers, i.e., dominat-
ing sets. They showed that it approximates minimum dominating
set (MDS) within O(1) with very high probability. Recently, Al-
zoubi et al. [3, 39] proposed a method to approximate minimum
connected dominating set (MCDS) within 8 whose message com-
plexity is O(n log n) and time complexity is O(n) for wireless net-
works modeled by unit disk graphs. Alzoubi, et al. [2] continued to
propose a localized method approximating the MCDS within a con-
stant time using a linear number of messages. Existing clustering
methods first choose some nodes to act as coordinators of the clus-
tering process, i.e., clusterhead. Then a cluster is formed by asso-
ciating the clusterhead with some (or all) of its neighbors. Previous
methods differ on the criterion for the selection of the clusterhead,
which is either based on the lowest (or highest) ID among all unas-
signed nodes [4, 31], or based on the maximum node degree [18], or
based on some generic weight [7] (the node with the largest weight
will be chosen as clusterhead). In [1], the authors proposed to build
the local Delaunay graph on top of an approximated MCDS for
efficient routing. Recently, Kuhn and Wattenhofer [27] proposed a
new distributed MDS approximation algorithm based on linear pro-
gramming (LP) relaxation techniques. For an arbitrary parameter
k and maximum degree ∆, their algorithm computes a dominat-
ing set of expected size O(k∆2/k log ∆|MDS|) in O(k2) rounds
where each node has to send O(k2∆) messages of size O(log ∆).
Moreover, the authors further gave the time lower bounds for the
distributed approximation of MDS in [25]. In [26], the authors
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show how to compute a good dominating set in a harsh model in
which there is no underlying MAC layer, asynchronous wake-up,
scarce knowledge about the network topology.

All of above methods try to minimize the number of cluster-
heads, i.e., the number of nodes in the backbone. However, in many
applications of wireless ad hoc networks, minimizing the size of the
backbone is not sufficient. For example, different wireless nodes
may have different costs for serving as a clusterhead, due to de-
vice differences, power capacities, and information loads to be pro-
cessed. Therefore, in the remaining of the paper, for the succinct-
ness of our presentation, we assume that each wireless node has a
generic cost (or weight). The cost may also represent the fitness or
priority of each node to be a clusterhead. The lower cost means
the higher priority. In practice, the cost could represent the power
consumption rate of this node if a backbone with small power con-
sumption is needed; the robustness of this node if a fault-tolerant
backbone is needed; or a function of its security level if a secure
backbone is needed. We study how to construct a sparse backbone
efficiently for a set of weighted wireless nodes such that the to-
tal cost of the backbone is minimized and there is a cost (or hops)
efficient route connecting every pair of wireless nodes via the con-
structed network backbone. Here a route is cost (or hops resp.)
efficient if its cost (or hops resp.) is no more than a constant factor
of the minimum cost (or hops resp.) needed to connect the source
and the destination in the original communication graph when all
possible physical communication links are considered.

Recently, many proposed clustering algorithms [6, 7, 8, 10, 12,
13, 21, 24, 32, 34, 36, 38] also considered different weights as a
priority criterion to decide whether a node will be a clusterhead.
Notice, the ultimate goal of the majority protocols is still to mini-
mize the size of the cluster (or backbone), not the total weight of
the cluster (or backbone). For example, methods in [7, 10, 34] con-
sidered the stability or mobility of each node as the weight. They
preferred the node with high stability and low mobility to be the
clusterhead. However, the definitions of stability or the evaluation
methods used are different. In [24], authors also combined the sta-
bility with the degree of each node as the weight. The higher prior-
ity is given to relatively stable and high degree nodes. Methods in
[21, 36] considered clustering in heterogeneous sensor networks,
where each node has different energy level. Most of them used
the remaining energy or energy consumption rate as the weight.
Both [6] and [32] considered two factors in the priority: available
energy and the speed, though they used different equations to com-
bine them. In [12], Chatterjee et al. considered a combined weight
metric for their clustering algorithm, that takes into account sev-
eral system parameters like the node-degree, transmission power,
mobility and the battery power of the nodes. Similarly, Nocetti et
al. [13] also combined these four facts to be the weights for their
clustering method. A nice literature review of cluster methods can
be found in [13]. In [9], Basagni et al. also showed the perfor-
mance comparison of some proposed protocols for clustering and
backbone formation. Most of these proposed weighted clustering
algorithms applied the simple greedy algorithms where the nodes
with highest priority (lowest cost) become clusterheads. For ex-
ample, cluster method in [12] selects a node with the lowest cost
among its unchosen neighbors to serve as a clusterhead. These
greedy heuristics work well in practice, but as we will show in Sec-
tion 2 that they may generate a backbone with a high cost compared
with the optimum. Some of these methods [21, 36] are randomized
algorithms, nodes become clusterheads randomly with a weighted
election probability. In [38], Turgut proposed a genetic algorithm
to optimize cluster processing. All of these cluster methods do not
guarantee any approximation ratio of the weighed cluster (or back-

bone) compared with the optimum. Notice that, in [8], Basagni
gave an algorithm to solve maximal weighted independent set in
wireless networks, but here our solution for cluster is a distributed
approximation algorithm for maximum weighted independent set,
and minimum connected dominating set which are well-known NP-
hard problems. Li et al. [28] presented a centralized approxima-
tion algorithm for weighted maximum independent set for some
special graphs. Guha and Khuller [19] studied centralized algo-
rithms for weighted minimum connected dominating set in general
graphs, by combining a weighted set cover approximation algo-
rithm and a node-weighted Steiner tree approximation algorithm
they achieved approximation ratio 3 ln n. In [20], they further im-
proved the approximation ratio to 1.35 ln n which is the best known
ratio. In addition, any approximation algorithm with ratio α for
the unweighted (connected) dominating set problem automatically
gives ratio α · δ for the weighted version. In particular, the known
PTAS for dominating set in UDG [22] implies that weighted dom-
inating set in UDG can be approximated with ratio (1 + ε) · δ for
arbitrary ε > 0.

In this paper, we propose a novel distributed method to generate
weighted backbone with a good approximation ratio while using
small communication cost. Our methods work not only for homo-
geneous networks, but also for heterogeneous networks. We prove
that the total cost of the constructed backbone is within min(4δ +
1, 18 log(∆ + 1)) + 10 times of the optimum for homogeneous
networks when all nodes have the same transmission range. Here
δ is the maximum ratio of costs of two adjacent wireless nodes
and ∆ is the maximum node degree in the communication graph.
Notice that the advantage of our backbone is that the total cost is
small compared with the optimum when either the costs of wire-
less nodes are smooth, i.e., two neighboring nodes’ cost differ by
a small constant factor, or the maximum node degree is low. The
total number of messages of our method is O(m) for any network
composed of n wireless devices and m total pairs of nodes that can
directly receive signals from each other. We also show that with a
small modification the constructed backbone is efficient for unicast:
the total cost (or hop) of the least cost (or hop) path connecting any
two nodes using backbone is no more than 3 (or 4) times of the
least cost (or hop) path in the original communication graph. This
is significant since our backbone structure is much sparser than the
original communication graph, which significantly reduces the cost
of routing without losing much ground on the performance of uni-
cast.

The rest of the paper is organized as follows. In Section 2, we
provide preliminaries necessary for describing our new algorithms,
and show the possible bad performances of several proposed meth-
ods. Section 3 presents our new weighted backbone formation al-
gorithms, and Section 4 gives the theoretical performance analy-
sis of the proposed algorithms. In Section 5, we discuss several
possible network applications of our proposed weighted backbone
formation algorithms. Section 6 presents the experimental results.
We conclude our paper in Section 7 by pointing out some possible
future research directions.

2. PRELIMINARIES AND RELATED WORKS
In this section, we first give some definitions and notations that

will be used in our presentation later. We assume that all wireless
nodes are given as a set V of n points in a two dimensional space.
Each wireless node has an omni-directional antenna. This is attrac-
tive for a single transmission of a node can be received by all nodes
within its vicinity. Each node has some computational power. We
always assume that the nodes are almost-static in a reasonable pe-
riod of time. A communication graph G = (V, E) over a set V
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of wireless nodes has an edge uv between nodes u and v iff u and
v can communicate directly with each other, i.e., inside the trans-
mission region of each other. Hereafter, we always assume that
G is a connected graph. Let dG(u) be the degree of node u in a
graph G and ∆ be the maximum node degree of all wireless nodes
(i.e. ∆ = maxu∈V dG(u)). Notice that the average node degree is
called density of the network. We assume that each wireless node u
has a cost c(u) of being in the backbone. Here the cost c(u) could
be the value computed based on a combination of its remaining
battery power, its mobility, its node degree in the communication
graph, and so on. We will discuss several possible weight functions
for different applications in Section 5 in detail. In general, smaller
c(u) means that the node is more suitable of being in the backbone.
Let δ = maxi,j∈E c(i)/c(j), where E is the set of communication
links in the wireless network G. We call δ the cost smoothness of
the wireless networks. When δ is bounded by some small constant,
we say the node costs are smooth.

When the transmission region of every wireless node is modeled
by a unit disk centered at itself, the communication graph is often
called a unit disk graph, denoted by UDG(V ), in which there is an
edge between two nodes if and only if their distance is at most one.
We also call such wireless networks as homogeneous networks.

We call all nodes within a constant k hops of a node u in the
communication graph G as the k-local nodes or k-hop neighbors of
u, denoted by Nk(u), which includes u itself. The k-local graph of
a node u, denoted by Gk(u), is the induced graph of G on Nk(u),
i.e., Gk(u) is defined on vertex set Nk(u), and contains all edges
in G with both end-points in Nk(u).

A subset of vertices in a graph G is an independent set if for any
pair of vertices, there is no edge between them. It is a maximal
independent set if no more vertices can be added to it to generate
a larger independent set. It is a maximum independent set (MIS)
if no other independent set has more vertices. The independence
number, denoted as α(G), of a graph G is the size of the max-
imum independent set of G. The k-local independence number,
denoted by α[k](G), is defined as α[k](G) = maxu∈V α(Gk(u)).
It is well-known that for a unit disk graph, α[1](UDG) ≤ 5 and
α[2](UDG) ≤ 18.

A subset S of V is a dominating set if each node u in V is either
in S or is adjacent to some node v in S. Nodes from S are called
dominators, while nodes not in S are called dominatees. Clearly,
any maximal independent set is a dominating set. A subset C of
V is a connected dominating set (CDS) if C is a dominating set
and C induces a connected subgraph. Consequently, the nodes in
C can communicate with each other without using nodes in V −
C. A dominating set with minimum cardinality is called minimum
dominating set (MDS). A connected dominating set with minimum
cardinality is the minimum connected dominating set (MCDS).

In wireless ad hoc networks, assume that each node u has a cost
c(u). Then a connected dominating set C is called weighted con-
nected dominating set (WCDS). A subset C of V is a minimum
weighted connected dominating set (MWCDS) if C is a WCDS
with minimum total cost.

Several methods have been proposed in the literature to find a
small dominating set for homogeneous networks. Most of them
are based on greedy algorithms. Since, in this paper, we are inter-
ested in distributed methods, we will thus mainly discuss the priori
distributed greedy methods here. If we insist on applying these
distributed methods to approximate the minimum weighted domi-
nating set, they may produce a backbone that is arbitrarily worse
than the optimum. We will show by examples that three classi-
cal methods do not generate a dominating set whose cost is always
comparable with ours in the worst case.

The first method to generate a dominating set is to generate a
maximal independent set as follows [1, 12]. First, assume that
all nodes are marked as WHITE originally, which represents that
the node is not assigned any role yet. A node u sends a message
IamDominator to all its one-hop neighbors if it has the smallest
cost (ID is often used if every node has a unit cost) among all its
WHITE neighbors. Node u also marks itself Dominator. When a
node v received a message IamDominator from its one-hop neigh-
bors, node v then marks itself Dominatee. Node v then sends a
message IamDominatee to all its one-hop neighbors. Clearly, the
nodes marked with Dominator indeed form a dominating set.

We then show by example that the produced dominating set may
be arbitrarily larger than the optimum solution. Although the in-
stance illustrated here uses UDG as communication graph, it is not
hard to extend this to general communication graph. See Figure 1
for an illustration. Assume that 3 wireless nodes u, v and w are
distributed along a line with one unit interval. The nodes’ costs
of u, v, and w are ∞, 1, and 1 − ε respectively. The dominators
selected by the first method are nodes w and u, and the total cost
of the solution is ∞. However, the optimal solution is formed by
v with a total cost 1. Our method presented later does produce a
dominating set of total cost 2 − ε.

1 wvu

8 1−ε1

1

Figure 1: An example why the first method fails to produce low
cost weighted connected dominating set.

The second method of constructing a dominating set [15, 16] is
based on minimum weighted set cover [14]. The method can be de-
scribed in a centralized way as follows: in each round, we select an
unselected node i with the minimum ratio c(i)/di, where di is the
number of nodes not covered by previously selected dominators. It
is well-known that this centralized method produces a dominating
set whose total cost is no more than log(∆ + 1) times of the op-
timum, where ∆ is the maximum original degree of all nodes. In
[3], Alzoubi et al. gave an example (as in Figure 2) with a fam-
ily of instances for which the size of the solution computed by the
second method is larger than the optimum solution by a logarithm
factor when all nodes have the same weight. Although the instance
illustrated here uses UDG as communication graph, obviously, we
can extend this to a general communication graph. In this example,
all nodes have a unit weight. For the detail of this example, see [3].
Moreover, this method is expensive to implement in a distributed
way. First, it is expensive to find the node i with the minimum ratio
c(i)/di among all unchosen nodes. Second, it is also expensive to
update di, which is the number of neighbors that are not covered
by previously selected dominators. Our method described later will
produce a dominating set whose size is no more than 5 times of the
optimum for unit weighted UDG. More importantly, our method is
a fully distributed method.

The third method to select the dominating set is proposed by
Bao and Garcia-Luna-Aceves [6]. Unlike the previous two meth-
ods, this is a fully localized method and it can be executed in 2
rounds using synchronous communication model. A node decides
to become a dominator if either one of the following two criteria
are satisfied: 1) the node has the smallest cost in its one-hop neigh-
borhood; 2) the node has the smallest cost in the one-hop neigh-
borhood of one of its one-hop neighbors. We show by an example
that the produced dominating set may be arbitrarily larger than the
optimum solution. See Figure 3 for an illustration of an instance in
UDG. Assume that 2n + 1 wireless nodes are distributed as shown
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Figure 2: An example [2] why the second method fails to pro-
duce low cost weighted connected dominating set.
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Figure 3: An example why the third method fails to produce
low cost weighted connected dominating set.

in Figure 3. The nodes’ costs of ui, vi, and w are 1, 1 − ε, and
1 − 2ε, respectively. The dominators selected by the third method
are nodes w and vi (0 ≤ i < n), the total cost of the solution
is n(1 − ε) + 1 − 2ε. However, the optimal solution formed by
node w and seven nodes from ui has total cost 8 − 2ε. It is easy to
show that seven unit disks centered at 7 nodes among some ui can
cover all ui. Our method described later will produce an optimal
dominating set in this special case.

3. EFFICIENT LOW-COST BACKBONE
FORMATION ALGORITHMS

In this section, we will propose a distributed algorithm that can
construct a low-cost backbone (weighted connected dominating set)
for a wireless ad hoc network G by assuming that each wireless
node u has a cost c(u) of being on the backbone. We will prove
that the total cost of the constructed backbone is no more than

min(α[2](G) log(∆ + 1), (α[1](G) − 1)δ + 1) + 2α[1](G)

times of the optimum solution. Here ∆ is the maximum degree of
all wireless nodes, and δ = maxi,j∈E c(i)/c(j), where E is the
set of communication links in the wireless network. Notice that,
for homogeneous wireless networks modeled by UDG, it implies
that the backbone produced by our method has a cost no more than
min(18 log(∆ + 1), 4δ + 1) + 10 times of the optimum solution.

Here, we assume that each node knows the IDs and costs of all
its 1-hop neighbors, which can be achieved by requiring each node
to broadcast its ID and cost to its 1-hop neighbors initially. This
protocol can be easily implemented using synchronous communi-
cations as did in [4, 5]. If the number of neighbors of each node is
known a priori, then this protocol can also be implemented using
asynchronous communications. Our method has the following two

phases: the first phase (clustering phase) is to find a set of wireless
nodes as the dominators1 and the second phase is to find a set of
nodes, called connector, to connect these dominators to form the
final backbone of the network. Notice that these two phases could
interleave in the actual construction method. We separate them just
for the sake of easy presentations.

3.1 Finding Dominators
We then propose our method of constructing a dominating set

whose total cost is comparable with the optimum solution. Our
method first constructs a maximal independent set (MIS) using
node weight as selection criterion. Then for each node v in MIS, we
run local greedy set cover method on local neighborhood N2(v) to
find some nodes GRDYv to cover all one-hop neighbors of v. If
GRDYv has a total cost smaller than v, then we use GRDYv to
replace v, which will further reduce the cost of MIS. Our method
works as follows.

Algorithm 1 Construct Low-cost Dominating Set
1: First assume that all nodes are originally marked WHITE.
2: A node u sends a message ItryDominator to all its one-hop

neighbors if it has the smallest cost among all its WHITE neigh-
bors. Node u also marks itself PossibleDominator.

3: When a node v received a message ItryDominator from its
one-hop neighbors, node v then marks itself Dominatee.
Node v then sends a message IamDominatee to all its one-
hop neighbors.

4: When a node w receives a message IamDominatee from its
neighbor v, node w removes node v from its list of WHITE

neighbors.
5: Each node u marked with PossibleDominator collects the

cost and ID of all of its two-hop neighbors N2(u).
6: Using the greedy method for minimum weighted set cover (like

the second method), node u selects a subset of its two hop-
neighbors to cover all the one-hop neighbors (including u) of
node u. If the cost of the selected subset, denoted by GRDYu,
is smaller than the cost of node u, then node u sends a message
YouAreDominator(w) to each node w in the selected subset.
Otherwise, node u just marks itself Dominator.

7: When a node w received a message YouAreDominator(w),
node w marks itself Dominator.

For the example illustrated by Figure 1, the MIS will be two
nodes w and u, whose cost is large. Node u is PossibleDominator
and thus performs the local set cover. Clearly N2(u) = {u, v, w}
and N1(u) = {u, v}. The local set cover will select v to cover
all nodes in N1(u) since v covers both nodes in N1(u). Note that
c(v) < c(u), so node u will let v be a dominator. The other Pos-
sibleDominator w will keep itself as a dominator since the local
set cover gets worse solution than itself. The final dominating set
is then {v, w}, which is close to optimum {v}.

3.2 Finding Connectors
The second step of weighted connected dominating set formation

is to find some connectors (also called gateways) among all the
dominatees to connect the dominators. Then the connectors and the
dominators form a connected dominating set (or called backbone).

1We will interchange the terms cluster-head and dominator. The
node that is not a cluster-head is also called ordinary node or dom-
inatee. A node is called white node if its status is yet to be decided
by the clustering algorithm. Initially, all nodes are white. The status
of a node, after the clustering method finishes, could be dominator
or dominatee.
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Several methods [1, 2, 4, 5, 18] have been proposed in the lit-
erature to find the connectors. However, all of these methods only
consider the unweighted scenario. We can show by examples that
these methods generally do not produce a weighted connected dom-
inating set with good approximation ratio.

Given a dominating set S, let V irtG be the graph connecting all
pairs of dominators u and v if there is a path in the original graph
G connecting them with at most 3 hops. It is well-known that the
graph V irtG is connected. It is natural to form a connected domi-
nating set by finding connectors to connect any pair of dominators
u and v if they are connected in V irtG. This strategy was used in
several previous methods, such as [1, 3, 4, 5, 31].

Our new connector selection method for weighted connected dom-
inating set is also based on this observation. First, we define two
dominators u and v as neighboring dominators if they are at most
3 hops away, i.e., they are neighbors in the graph V irtG. Let
LCP(u, v, G) denote the least cost path uv1v2 · · · vkv between ver-
tices u and v on a weighted graph G, and L(u, v, G) denote the
total cost of nodes on path LCP(u, v, G) excluding u and v, i.e.,
L(u, v, G) =

∑
1≤i≤k c(vk). For every pair of neighboring domi-

nators u and v, our method will find the shortest path with at most
3 hops to connect them. The nodes on this shortest path will be
assigned a role of connector.

Our method uses the following data structures and messages.
1. Dk(v) is the list of dominators that are k-hops away from a

node v.
2. Pk(v, u) is the least cost path from v to u using at most k-

hops. Notice u and v may be less than k-hops away.
3. OneHopDominatorList(v, D1(v)): nodes D1(v) are the dom-

inators of node v that are 1-hop from v.
4. TwoHopDominator(v, u, w, c(w)): node u is a 2-hop dom-

inator of node v and the path uwv has the least cost.

Algorithm 2 Low-cost Connector Selection
1: Every dominatee node v broadcasts to its 1-hop neighbors the

list of its one-hop dominators D1(v) using message OneHop-
DominatorList(v, D1(v)). When a node w receives OneHop-
DominatorList(v, D1(v)) from one-hop neighbor v, it puts the
dominator u ∈ D1(v) to D2(w) if u /∈ D1(w). Update the
path P3(z, u) as uvw if it has a smaller cost.

2: When a dominatee node w received messages OneHopDomi-
natorList from all its one-hop nodes, for each dominator node
u ∈ D2(w), node w sends out message TwoHopDomina-
tor(w, u, x, c(x)), where wxu is the least cost path P2(w, u).

3: When a dominator z receives a message TwoHopDomina-
tor(w, u, x, c(x)) from its neighbor w, it puts u to D3(z)
if u �∈ D2(z), and updates the path P3(w, u) as uwxz if
c(w) + c(x) has a less cost.

4: Each dominator u builds a virtual edge ũv to connect each
neighboring dominator v. The length of ũv is the cost of path
P3(u, v). Notice that here the cost of end-nodes u and v is
not included. All virtual edges forms an edge weighted virtual
graph V irtG in which all dominators are its vertices.

5: Run a distributed algorithm to build a MST on graph V irtG.
Let V MST denote MST (V irtG).

6: For any virtual edge e ∈ V MST , select each of the domina-
tees on the path corresponding to e as a connector.

The graph constructed by combining all of dominators and the
connectors selected by the above algorithm is called a weighted
connected dominating set (WCDS) graph (or backbone). Notice
that since we run MST on graph V irtG, the constructed backbone
is a sparse graph, i.e., it has only linear number of links.

4. PERFORMANCE GUARANTEE
In this section, we will first study the performances of the pro-

posed weighted backbone structure in term of the total node cost
in the backbone. Then, by a small modification of the backbone
formation algorithm, we can make our weighted backbone more
efficient for the unicast routing.

4.1 Total Cost of the Backbone
First, we would like to build a weighted backbone whose total

node cost is as less as possible. We will show that the backbone
constructed by our method is comparable to the optimum when the
network is not dense, or the costs of the nodes do not have a dra-
matic change, i.e., being smooth. Our analysis following is on the
homogeneous networks, but it can be extended to general hetero-
geneous networks without difficulty. Before describing our result,
we first review an important observation of the dominating set on
UDG, which will play an important role in our proofs later. After
clustering, one dominator node can be connected to many domina-
tees. However, it is well-known that a dominatee node can only be
connected to at most five independent nodes in the unit disk graph
model. In other words, the 1-local independence number of UDG,
α[1](UDG), is 5. Generally, it is well-known that, for each node,
there are at most a constant number (α[k](UDG)) of independent
nodes that are at most k units away. The following lemma which
bounds the number of independent nodes within k units from a
node v is proved in [1] by using a simple area argument.

LEMMA 1. For every node v, the number of independent nodes
inside the disk centered at v with radius k-units, α[k](UDG), is
bounded by a constant �k = (2k + 1)2.

The bounds on �k can be improved by a tighter analysis. In [40],
Wan et al. gave the detailed proof to show that for unit disk graph
the number of independent nodes in 2-hops neighborhood (not in-
cluding the 1-hop neighbors) is at most 13 while the number of
independent nodes in 1-hop neighborhood is at most 5. Therefore,
there are at most 18 independent nodes inside the disk centered at
a node v with radius 2, i.e., α[2](UDG) = 18.

THEOREM 2. Algorithm 1 constructs a dominating set whose
total cost is no more than min(18 log(∆ + 1), 4δ + 1) times of the
optimum for networks modeled by UDG.

PROOF. First, we prove the total cost of the maximal indepen-
dent set MIS formed by all PossibleDominator nodes is no more
than 4δ + 1 times of the optimum. Assume node u is a node
from the optimum OPT . If u is not a PossibleDominator node
then there are at most 5 PossibleDominator nodes around u. Let
vu
1 , vu

2 , · · · , vu
5 denote them. The cost of one of these five nodes

is smaller than the cost of u, otherwise node u will be selected as
a PossibleDominator node. W.l.o.g., let c(vu

1 ) ≤ c(u). We also
know that c(vu

i ) ≤ δ · c(u) for 2 ≤ i ≤ 5. Thus,
∑

1≤i≤5 c(vu
i ) ≤

(4δ + 1)c(u). If we summarize the inequations for all nodes in the
optimum dominating set OPT , we get

∑
u∈OPT

∑
1≤i≤5

c(vu
i ) ≤ (4δ + 1)

∑
u∈OPT

c(u) = (4δ + 1)c(OPT ).

Notice that every node in MIS will appear as vu
i for at least one

node u ∈ OPT since OPT is a dominating set. Thus, c(MIS) =∑
v∈MIS c(v) ≤ ∑

u∈OPT

∑
1≤i≤5 c(vu

i ). It follows that

c(MIS) ≤ (4δ + 1)c(OPT ).

Then, we prove the total cost of the nodes selected by the greedy
method in Step 6 of Algorithm 1 is no more than 18 log(∆ + 1)
times of the optimum. Assume that node u runs the greedy algo-
rithm and gets the subset as GRDYu, and the cost of the selected
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subset c(GRDYu) is at most c(u). It is well known that the dom-
inating set generated by the greedy algorithm for set cover is no
more than log f times of the optimum if every set has at most f
items. Here, we know that every dominator can cover at most ∆
dominatees, thus, c(GRDYu) ≤ log(∆ + 1) · c(LOPTu). Here
LOPTu is an optimum dominating set (using nodes from N2(u))
when the set of nodes to be covered are the 1-hop neighborhood of
u (including u). Assume that OPTu is the subset of the global op-
timum solution, denoted as OPT, for MWCDS which falls in the
2-hops neighborhood of u, i.e., OPTu = OPT

⋂
N2(u). Ob-

viously OPTu is a dominating set for N1(u). Thus, we have
c(LOPTu) ≤ c(OPTu), since LOPTu is the local optimum.
Therefore, c(GRDYu) ≤ log(∆ + 1) · c(LOPTu) ≤ log(∆ +
1) · c(OPTu). Consider all nodes in the MIS, we get

c(GRDY ) ≤
∑

u∈MIS

c(GRDYu) ≤ log(∆ + 1) ·
∑

u∈MIS

c(OPTu).

Remember that for each node v, the number of independent nodes
in the 2-hops neighborhood of v is bounded by 18. Therefore, each
dominator is counted at most 18 times (once for each node u ∈
MIS that selects v to GRDYu). Thus,

∑
u∈MIS c(OPTu) ≤

18c(OPT ).
For each node u in MIS, we either use u as a dominator or use

GRDYu as dominators, whichever has a smaller cost. Then, the
total weight of the final dominating set is at most

∑
u∈MIS

min(c(u), c(GRDYu))

≤ min(
∑

u∈MIS

c(u),
∑

u∈MIS

c(GRDYu))

≤ min(4δ + 1, 18 log(∆ + 1)) · c(OPT ).

This finishes our proof.

Notice that here the approximation ratio is min(18 log(∆+1), 4δ+
1). So if one of log(∆ + 1) and δ is a constant, the approximation
ratio is a constant. Our analysis is also pessimistic. As our sim-
ulation shows that the practical performance is much better than
this theoretical bound. It is easy to generalize the above result to
heterogeneous networks.

THEOREM 3. For a network modeled by a graph G, Algorithm
1 constructs a dominating set whose total cost is no more than
min(α[2](G) log(∆ + 1), (α[1](G) − 1)δ + 1) times of the op-
timum.

Now, we need to prove the total cost of connectors selected by
Algorithm 2 is also bounded. The following lemma about the re-
lationship between L(u, v, G) and L(u, v, V irtG) will be used in
the proof.

LEMMA 4. For any pair of dominators u and v,

L(u, v, V irtG) ≤ 2 · L(u, v, G).

PROOF. Notice that the original graph is node weighted while
the virtual graph V irtG is edge weighted. Here, let c(e) be the
weight of edge e = ũiuj and c(e) = L(ui, uj , G). We assume
that path uv1v2 · · · vkv is the least cost path connecting u and v in
the original graph G, as shown in Figure 4.

uk

vk

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Figure 4: L(u, v, G) ≥ 2 · L(u, v, V irtG).

For any dominatee node p in original communication graph, it
must be dominated by at least one dominator. Thus, we can assume
that node ui is node vi’s dominator as shown in Figure 4. For domi-
nators ui and ui+1, we argue that the length of ũiui+1 is at most the
summation of the cost of vi and vi+1. Notice that uivivi+1ui+1 is
a 3-hops path between ui and ui+1 whose length is c(vi)+c(vi+1).
Thus, the length of ũiui+1 is at most c(vi)+c(vi+1). Thus we have
c(ũiui+1) ≤ c(vi) + c(vi+1) for 1 ≤ i ≤ k − 1. Similarly, we
also have c(ũu1) ≤ c(v1) and c(ũkv) ≤ c(vk). Summing all these
inequalities, we get

L(u, v, V irtG) ≤ c(ũu1) + c(ṽkv) +

k−1∑
i=1

c(ũiui+1) ≤ 2
k∑

i=1

c(vi).

This finishes our proof.

In graph G, we set all dominators’ cost to 0 to obtain a new graph
G′. Assume Topt is the tree with the minimum cost that spans all
dominators selected by Algorithm 1. Following lemma shows that
there exists a tree T ′

opt whose cost equals the cost of Topt and every
dominatee node u in T ′

opt has a node degree at most α[1](G).

LEMMA 5. There exists a tree T ′
opt in G′ spanning all domina-

tors selected in Algorithm 1 and connectors in this tree has degree
at most α[1](G).

PROOF. We prove this by construction. Consider any optimum
cost tree Topt spanning all dominators. In tree Topt, assume there
exist some connectors whose degrees are greater than α[1](G). We
choose any one of them as the root. The depth of a connector is
defined as the hops from this connector to the root in Topt. We pro-
cess all connectors u in Topt whose degree is greater than α[1](G)
in an increasing order of their depths. Notice that, as we will see
later, the depth of a node does change in our construction, but it
will only increase. Assume that currently we are processing a node
u with more than α[1](G) neighbors. Clearly, there are at least two
neighbors of u in tree Topt that are connected, say p, q. Notice
either p or q’s depth is greater than u since u only has one parent.
Without loss of generality, we assume that p’s depth is bigger than
u’s depth. We then remove edge uq and add edge pq. Then, u’s de-
gree decreases by 1 while all other connectors whose depth is less
than or equal to u’s remains unchanged and p’s degree increases
by 1. Notice this will result in a new tree spanning all dominators
while keep the cost of the tree unchanged. Update the depth of node
q and all nodes of the subtree rooted at q (the depths will increase
by one). Repeat the above iteration until all nodes are processed. It
is obvious that the above process will terminate. The resulting tree
is T ′

opt.

For tree T ′
opt, we define its weight c(T ′

opt) as the sum of the
cost of all connectors. We also define c(T ) =

∑
e∈T c(e) for an

edge weighted tree T . The above lemma implies that there is an
optimum tree connecting all dominators with node degree at most
5 for networks modeled by UDG.

THEOREM 6. The connectors selected by Algorithm 2 have a
total cost no more than 2 · α[1](G) times of the optimum for net-
works modeled by G.

PROOF. Let KG be another virtual complete graph whose ver-
tices are all dominators selected in Algorithm 1 and edge length
equal the cost of least cost path between two dominators on origi-
nal graph G. Following we argue the weight of MST on graph KG

is at most α[1](G) times the weight of tree T ′
opt.

For spanning tree T ′
opt, we root it at an arbitrary node and du-

plicate every link in T ′
opt (the resulting structure is called DT ′

opt).
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Clearly, every node in DT ′
opt has an even degree now. Thus, we

can find an Euler circuit, denoted by EC(DT ′
opt), that uses every

edge of DT ′
opt exactly once, which is equivalent to say that every

edge in T ′
opt(G) is used exactly twice. Consequently, every node

vk in V (T ′
opt) is used exactly dT ′

opt
(vk) times. Here dG(v) de-

notes the degree of a node v in a graph G. Thus, the total weight of
the Euler circuit is at most α[1](G) times of c(T ′

opt), i.e.,

c(EC(DT ′
opt)) ≤ α[1](G) · c(T ′

opt).

Notice that here if a node vk appears multiple times in EC(DT ′
opt),

its weight is also counted multiple times in c(EC(DT ′
opt)).

If we walk along EC(DT ′
opt), we visit all dominators, and the

length of any subpath between dominators ui and uj is not smaller
than L(ui, uj , G). Therefore, the cost of EC(DT ′

opt) is at least
c(MST (KG)) since MST (KG) is the minimum cost tree span-
ning all dominators and the edge uiuj in MST (KG) corresponds
to the path with the least cost between ui and uj . In other words,

c(EC(DT ′
opt)) ≥ c(MST (KUDG)).

Consequently, we have

c(MST (KG)) ≤ c(EC(DT ′
opt)) ≤ α[1](G) · c(T ′

opt). (1)

Now we prove the weight of MST (V irtG) is at most two times
the weight of MST (KG). For any edge e = uiuj ∈ MST (KG),
from Lemma 4, we have

c(e) ≥ L(ui, uj , G) ≥ L(ui, uj , V irtG)

2
.

For each edge e = uiuj ∈ MST (KG), we connect them in graph
V irtG using path LCP(ui, uj , V irtG). This constructs a con-
nected subgraph MST ′ on graph V irtG whose cost is not greater
than twice of the weight of MST (KG). Thus, we have

c(MST (V irtG)) ≤ c(MST ′) ≤ 2 · c(MST (KG)). (2)

The theorem follows from combining inequalities (1) and (2):
c(MST (V irtG)) ≤ 2c(MST (KG)) ≤ 2α[1](G) · c(T ′

opt).

Notice that Theorem 6 also implies the following side-product
result: given a group of receivers in a node weighted network,
the connectors found through VMST have total cost no more than
2α[1](G) times of the minimum cost multicast tree. For the spe-
cial case of UDG, the total cost of the connectors is no more than
10 times of the optimum multicast tree. Here we assume that the
receivers have cost 0.

Combining Theorem 3 and Theorem 6, we get the following the-
orem which is one of the main contributions of this paper.

THEOREM 7. For any communication graph G, our algorithm
constructs a weighted connected dominating set whose total cost is
no more than

min(α[2](G) log(∆ + 1), (α[1](G) − 1)δ + 1) + 2α[1](G)

times of the optimum.

Specifically, when the networks are modeled by a unit disk graph,
we have the following corollary.

COROLLARY 8. For homogeneous wireless networks, our al-
gorithm constructs a weighted connected dominating set whose to-
tal cost is no more than min(18 log(∆ + 1), 4δ + 1) + 10 times of
the optimum.

4.2 Unicast Performance
After we construct the backbone WCDS, if a node u wants to

broadcast a message, it follows the following procedure. If node u
is not a dominator, then it sends the message to one of its domina-
tors. When the message reaches the backbone, it will be broadcast
along the virtual minimal spanning tree. In previous section, we
prove that the total cost of WCDS is no more than a constant times
of the optimum, which implies that our structure is energy efficient
for broadcast.

When considering unicast routing, we can modify our backbone
formation algorithms by

1. removing steps 5, 6, and 7 (collecting 2-hop information and
running the greedy algorithm for set over) from Algorithm 1;

2. modifying PossibleDominator to Dominator in step 2 of
Algorithm 1; and

3. removing steps 5 and 6 (building VMST) from Algorithm 2.
Notice that the changes to Algorithm 1 are not necessary as will
see later. Let UWCDS be the constructed backbone. If a node u
wants to unicast a message, it follows the following procedure. If
node u is not a dominator and node v is not a neighbor of u, node
u sends the message to one of its dominators. Then the dominator
will transfer the message to the target or a dominator of the tar-
get through the backbone. Now, we prove that the backbone is a
spanner for unicast application, i.e., every route in the constructed
network topology is efficient. Remember a route is efficient if its
total cost (or total hop number) is no more than a constant factor
of the minimum total cost (or total hop number) needed to connect
the source and the destination in the original communication graph.
The constant is called cost (or hops) stretch factor.

We first prove the backbone has a bounded cost stretch factor.

THEOREM 9. For any communication graph, the cost stretch
factor of UWCDS is at most 3.

PROOF. Consider any source node s and target node t that are
not connected directly in the original communication graph G. As-
sume the least cost path LCP(s, t, G) from s to t in G is ΠGh(s, t) =
v1v2...vk, where v1 = s and vk = t, as illustrated by Figure 4. We
construct another path in UWCDS from s to t and the total cost
of this path is at most 3 times of the cost of the least cost path
LCP(s, t, G).

For any dominatee node p in original communication graph G,
we will show that there must exist one dominator q whose cost is
not greater than p’s cost. First, from our selection procedure of
the maximal independent set, node p is not selected to MIS implies
that, at some stage, there is a neighbor, say u, with smaller cost se-
lected to MIS, which will be PossibleDominator. Notice that, this
PossibleDominator node u may not appear in our final structure.
However, this node is not selected only if c(GRDYu) is smaller
than c(u). Notice that clearly, there is at least one node, say v, in
GRDYu that dominates node p since p is a one-hop neighbor of
node u and GRDYu covers all one hop neighbors of u (including
u). Clearly, all dominators in GRDYu has cost no more than c(u)
from c(GRDYu) ≤ c(u). If node u is in final structure, we set q
as u, otherwise, set q as node v. We call node q as node p’s small
dominator. Notice that q and p can be the same node.

For each node vi in the path LCP(s, t, G), let ui be its small
dominator if vi is not a dominator, else let ui be vi itself. Notice
that there is a 3-hop path uivivi+1ui+1 in the original communi-
cation graph G. Then from Algorithm 2, we know there must exist
one or two connectors connecting ui and ui+1, and also the cost
summation of these connectors is at most the cost summation of
vi and vi+1. We define a path, denoted by LCP(s, t, UWCDS),
to connect s and t in UWCDS as the concatenation of all paths
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LCP(ui, ui+1, V irtG), for 1 ≤ i ≤ k − 2, and a least cost path
(with ≤ two hops) connecting uk−1 and t. Remember that the path
LCP(ui, ui+1, V irtG) is only the least cost path among all paths
connecting ui and ui+1 using at most 3 hops.

We then show that the path LCP(s, t, UWCDS) has a cost no
more than 3 times of the path LCP(s, t, G), where LCP(s, t, G) is
the least cost path connecting s and t in the original communica-
tion graph G. Clearly,

∑k−2
i=1 L(ui, ui+1, V irtG) ≤ c(v1) + 2 ·∑k−2

i=2 c(vi) + c(vk−1). Notice that, in our unicast routing algo-
rithm, when the target node t is within two hops of the dominator
node uk−1, node uk−1 will not send the data to dominator node
uk. Instead, if target t is one hop neighbor of node uk−1, it will
directly send data to node t; otherwise, node uk−1 will find a least
cost node, say w, to connect to the target node t directly. Obvi-
ously, c(w) ≤ c(vk−1) since node vk−1 connects uk−1 and target
t. Thus, the total cost of the path in the constructed backbone is

k−2∑
i=1

L(ui, ui+1, V irtG) + L(uk−1, t, V irtG) +

k−1∑
i=1

c(ui)

≤ c(v1) + 2

k−2∑
i=2

c(vi) + c(vk−1) + c(vk−1) +

k−1∑
i=1

c(vi) < 3

k−1∑
i=1

c(vi).

This finishes our proof.

Similar with the proof in [1], we can prove that

THEOREM 10. For any communication graph (not necessarily
a UDG model), the hops stretch factor of UWCDS is at most 4.2

4.3 Message Complexity
Compared with data processing, wireless node spends more en-

ergy in data communication. Here we show that our algorithms are
efficient in term of communication complexity.

THEOREM 11. Algorithm 1 uses O(n) messages if the networks
are modeled by UDG and the geometry information of all nodes is
known.

PROOF. First, for messages ItryDominator and IamDomina-
tee, every node at most sends out once this kind of messages. Thus,
the total number of these two messages is O(n).

Second, for each PossibleDominator node, it needs to collect
the costs and IDs of all of its two hop neighbors. This step may
cost lots of communications (at most O(m) messages when no ge-
ometry information is known, where m in the number of links in
the original UDG). Recently Calinescu [11] proposed a commu-
nication efficient method (using O(n) messages) to collect N2(u)
for every node u when the geometry information is known for net-
works modeled by UDG.

Third, after applying the greedy method node u may send a mes-
sage YouAreDominator to node v, but since the number of inde-
pendent nodes u in two hops of v is bounded by a constant, the total
number of this kind of messages is also O(n).

Consequently, Algorithm 1 uses O(n) messages.

It is easy to show that Algorithm 1 uses O(m) messages for a
general networks or the geometry information of all nodes is un-
known. For Algorithm 2, first, the number of messages in the first
three steps is at most O(m). Obviously, we can construct the min-
imum spanning tree on V irtG using O(m + n log n) number of
2Actually, the bound is 3+ 2

k
, where k is the number of hops of the

shortest hop path in the original communication graph. The basic
idea of the proof is similar with the idea used in proof of Lemma 4
and illustrated by the example in Figure 4. Since 1-hop neighbors
can directly communicate with each other, for any nodes that are at
least 2-hops away, the bound is 4.

messages. In practice, we may not need construct the minimum
spanning tree exactly: a localized approximation of the minimum
spanning tree [29] may perform well enough, which has a message
complexity only O(n). In addition, if only unicast running on the
backbone, we can ignore the MST construction, then the message
complexity is only O(m).

4.4 Time Complexity
Considering the data processing at each wireless node, we also

study the time complexity of our algorithms.
For Algorithm 1, the first four steps take at most O(n) in time.

To collect the information of two-hop neighbors, we apply the method
proposed by Calinescu [11], which also takes at most O(n) in time.
Notice that the time complexity of the greedy method in [15, 16]
(based on the set covering method in [14]) is at most O(m∆),
where m is number of nodes participating in the algorithm and
∆ is the maximum node degree. So the sixth step of Algorithm
1 takes at most O(∆2∆) where ∆2 is the maximum number of
two-hop neighbors. Since ∆2 ≤ n and ∆2 ≤ ∆2, the sixth step
takes at most O(∆3) (or O(n∆)). Therefore, the time complexity
of Algorithm 1 is O(n∆) in worst case.

For Algorithm 2, the most time consuming step is to build a MST
on V irtG. Obviously, we can construct the MST using at most
O(m + n log n) time.

5. DISCUSSIONS

5.1 Practical Applications
As we mentioned in the introduction (Section 1), the proposed

distributed algorithms can be used in wireless ad hoc networks to
form a low-cost network backbone for unicast routing or broad-
casting application. The cost which we used as the input of our
algorithms could be a generic cost, which defined by various prac-
tical applications. Here we list some possible weights maybe used
in wireless ad hoc networks.

Energy Consumption Rate: Most backbone-based unicast rout-
ing or broadcasting protocols [15, 30, 35, 41] deliver packets only
through the backbone or restrict the flooding packets in the back-
bone, thus the nodes serving as clusterheads or connectors in the
backbone consume more energy than ordinary nodes. If we use the
energy consumption rate at each node as its weight, using the pro-
posed low-cost backbone formation algorithm, we can achieve an
energy efficient backbone where the total energy consumption of
this backbone is at most constant times of the energy consumption
of the optimum. Also the unicast carried on the backbone is also
power efficient, compared with the least energy consumption path
in the original communication graph.

Another way to build energy-efficient backbone is to select nodes
with the maximum amount of remaining energy (equivalently, the
minimum amount of consumed energy if the initial energy of each
node is same).

Fault Tolerant Rate: Fault tolerance is also an important issue
in wireless ad hoc networks, since nodes are mobile and in a dy-
namic environment. If each node estimates its probability of being
fault and we treat it as the weight, we can use our algorithm to build
a fault-tolerant backbone for routing. The fault tolerant rate can be
evaluated by considering the mobility (stability, speed) of the node,
the quality of links (link failures) around the node, the interference
level at the node, or other metric. Some research along this line
have been done in [7, 10, 24, 34]. Assume that pi is the proba-
bility that the wireless node vi ∈ V will have fault in computing
or communicating with its neighbors. Two possible criteria could
be used to measure the fault-tolerant quality of a backbone (i.e., a
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CDS S ⊂ V ):
∑

vi∈S pi or Πvi∈Spi. In the first case, the cost
(or called weight) of node vi is assigned as c(vi) = pi, while in
the latter case, the cost of vi is assigned as c(vi) = log pi. Then
building most fault-tolerant backbone is equivalent to find a CDS
with the minimum total cost.

Security Level: Our algorithm can also be applied in designing
secure routing protocols. Since ad hoc networks lack a central au-
thority for authentication and key distribution, security is hard to
achieve. In [33], Liu at el. proposed a dynamic trust model for
ad hoc network. Each node has a security level by observing its
neighbor. By using the security level information got from their
method, we can apply our low-cost method to build a backbone for
routing with high security. We could assign the cost to a node using
a method analog to the case of fault-tolerance discussed above.

More different metrics can be considered as the weight in our
method, such as traffic load, signal overhead, battery level, and cov-
erage. As done in [12, 13, 38], we can also use a combined weight
function to integrate various metrics in consideration to form a
more robust and efficient backbone for wireless ad hoc networks
in general applications.

Beside forming the backbone for routing or broadcasting, our
cluster algorithm (Algorithm 1) can also be used in other applica-
tions. For example, Zheng et al. [42] studied the time indexing
problem in sensor networks. To enable time-indexed in-network
storage of sensor data, they selected a subset of sensors, i.e., ren-
dezvous points to collect, compress and store sensor data from its
neighborhood for pre-defined periods of time. To consider the en-
ergy and storage balancing, we can apply our weighted cluster al-
gorithm to select the rendezvous points. Another example, in [23],
a simple cluster algorithm is used for selecting the mobile agents
to perform intrusion detection in wireless ad hoc networks. We can
also apply our method to their intrusion detection system to achieve
more robust and power efficient agent selection.

5.2 Dynamic Update
After the generation of the weighted backbone, dynamic main-

tenance of the backbone is also an important issue, since an ad hoc
network could be highly dynamic. Two major events may cause
the backbone obsoleted: 1) topology changes due to node moving,
node joining or leaving, node failure; and 2) weight changes when
weights are assigned based on some observed status of nodes. No-
tice that some of the practical weights we discussed above change
frequently, such as battery level and quality of links. Therefore, a
dynamic update method for our backbone is needed. Usually, there
are two kinds of update methods: on-demand update or periodical
update. Most of the existing clustering algorithms are invoked pe-
riodically, while some algorithms (such as [12]) perform the updat-
ing only when it is required (i.e., on-demand). Our algorithm can
adapt and combine both of these two update methods. If no major
topology change or no remarkable weight change, no update will
be performed until some pre-set timer expires. In other words, we
perform our algorithm periodically with a pre-set time. The time
could be set quite long depending on the types of the weight and
applications. This kind of global update also insures the load bal-
ance throughout the network. But for some major topology change
(such as a clusterhead dies) or tremendous change of weights (such
as a big drop of security level), an on-demand update will be per-
formed. Notice that since our algorithm is a localized algorithm3,
the update process can be performed only in a local area where
the change occurs. However, it remains an open problem how to

3By using localized minimum spanning tree (LMST) instead of
MST, our distributed algorithm becomes a localized algorithm. We
will discus it in Section 6.1 in detail.

update the topology efficiently while preserving the approximation
quality.

6. PERFORMANCE EVALUATION
In this section, we conduct extensive simulations to study the

performances of our proposed backbone and compared them with
previously greedy algorithms.

6.1 Practical Implementation
Since the distributed construction of MST in Algorithm 2 is ex-

pensive, we implement a localized approximation of MST, local-
ized minimum spanning tree (LMST) [29]. For completeness, we
define LMST for general edge weighted graph G here.

DEFINITION 1. The k-local minimum spanning tree (LMSTk)
contains a directed edge −→uv if edge uv belongs to MST (Nk(u)).

For the edge weighted graph V irtG, each dominator node u
will first collect all dominator nodes that are at most k-hops away
in V irtG. Typically k is 1 or 2 in our methods. Node u then
constructs the minimum spanning tree MST (Nk(u)) and keep all
edges uv ∈ MST (Nk(u)). The union of all such selected links are
called the local minimum spanning tree, denoted by LMSTk(G).
Notice that here the weight of a link uv is the cost of the least cost
path (with ≤ 3 hops) connecting u and v in G. From the property
of the minimum spanning tree, the following lemma is obvious.

LEMMA 12. The global minimum spanning tree MST (G) is a
subgraph of the local minimum spanning tree LMSTk(G).

Unfortunately, in the worst case, the total cost of LMSTk(G)
could be arbitrarily larger than the cost of MST (G). However,
our simulations show that it is within a small constant factor on
average. The advantage of using the local minimum spanning tree
instead of the global minimum spanning tree is the significant re-
duction in the communication cost.

6.2 Performance Comparisons
We then evaluate the performance of our new distributed weighted

backbone formation algorithm by simulations on random networks.
In our experiments, we randomly generated a set V of n wire-
less nodes with random costs drawn from [1, 100] and the induced
UDG(V ), then tested the connectivity of UDG(V ). If it is con-
nected, we construct different cluster algorithms on UDG(V ) to
form dominating sets and measure the total costs of these dominat-
ing sets. Then, we apply our new method to construct the weighted
backbone. We test the total cost of the final backbone and measure
the average and maximum cost/hop spanning ratios.

In the experimental results presented here, n wireless nodes are
randomly distributed in a 500m × 500m square, and the transmis-
sion range is set to 100m. We tested all algorithms by varying n
from 50 to 275, where 50 vertex sets are generated for each case to
smooth the possible peak effects. The average and the maximum
were computed over all these 50 vertex sets. Notice, the parameter
setting of our experiments here is just for demonstrations. We have
tried other various settings, the results and performances are stable,
due to space limit, we can not present all of them here.

6.2.1 Cost of Dominators
First, we compare our algorithm with the three previous greedy

algorithms to find a dominating set. Figure 5 gives an example
of the original communication graph with node costs and different
dominating sets by different greedy methods.
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Figure 5: Different dominating sets by different greedy methods from the same original communication graph.
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Figure 6: Total cost and number of cluster-head of different greedy methods (when the number of nodes are from 50 to 275).

We plotted the performances of all methods in Figure 6. Our
method produces a dominating set whose cost is significantly less
than that produced by the MIS based method (greedy 1) and is on
the similar level with other two methods. In addition, our method
produces a dominating set whose size is significantly less than that
produced by the method in [6] (greedy 3) and is on the similar level
with other two methods. The set-cover based method (greedy 2)
is the only one that is comparable with our method for both met-
rics. However, it is a centralized method while our is a distributed
method with a small communication cost.

6.2.2 Cost of Backbone
After getting the dominating set (Figure 7(b)) by Algorithm 1,

we apply Algorithm 2 to find the connectors. Figure 7(c) shows
the backbone after adding some connectors to the dominating set.
Notice that we used the local minimum spanning tree to find the
connectors instead of the global minimum spanning tree (that is
why the graph WCDS in Figure 7(c) is not a tree). We plot the to-
tal cost and the size of the weighted backbone in Figure 8 (a) and
(b). The size of the backbone becomes stable when the network
becomes denser. However, the average total cost of the backbone
decreases over the increasing of the network density, which is due
to dense network provides more candidates for backbone with po-
tential lower costs.

6.2.3 Cost of Unicast Routing
For unicast, we can simplify Algorithm 2 by directly using VirtG

as the final backbone. Figure 7(d) illustrates such backbone. Span-
ning ratios of the final backbone are plotted in Figure 8 (c). Notice
that the average cost and hop spanning ratios are indeed small (al-
most 1). The maximum cost spanning ratio is less than 3. The

maximum hop spanning ratio is no more than 4. These maps well
to the theoretical bounds, which are 3 and 4 respectively.
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Figure 9: The life time of the network using different greedy
methods (when the number of nodes are from 50 to 275).

6.2.4 Life-time Experiments
We also conduct simple experiments to test the life time of the

network when using our proposed backbone. Using the same ran-
dom distribution and transmission range as in previous experiments,
we setup networks in a 500m × 500m square. Then, we assume
that each node in the network has total energy 200 initially. We
perform the three classical greedy cluster algorithms and our algo-
rithm to build weighted backbone for the networks and update it
periodically. To ignore the effects of methods selecting connectors,
we apply the same method used in our solutions (Algorithm 2) to
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Figure 7: Dominating set, connected dominating set and virtual backbone for unicast from the same original communication graph.
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Figure 8: Performance of backbone (when the number of nodes are from 50 to 200).

connect clusters generated by the different cluster algorithms. For
the cost of each node being backbone, we simply use the reverse
of the remaining energy at each node. At the end of each period,
we reduce the power of backbone nodes by 5, and update the back-
bone. Figure 9 shows the life time (the number of periods that the
network survives until the first node run out of energy). Again, our
method has longer life time than the MIS based method (greedy 1)
and is on the similar level with other two methods. Remember the
set-cover based method (greedy 2) is a centralized method, there-
fore it has good performance in this experiment. Notice, the third
greedy algorithm also has similar performance with our method.
The reason maybe as follows. Even the size of the dominating set
generated by greedy 3 is larger than our method (as shown in the
first experiment), after selecting the connectors the size of back-
bone is in same level with our method for a random distributed
network.

7. SUMMARY AND FUTURE WORK
In this paper, we present a new algorithm to construct a sparse

structure for network backbone in wireless ad hoc networks. A
communication efficient distributed algorithm was presented for
the construction of a weighted connected dominating set, whose
size is guaranteed to be within a small constant factor of the min-
imum (when either δ or ∆ is a constant). We also show that with
a small modification the constructed backbone is efficient for both
cost and hops (though losing the low cost property). This topology
can be constructed locally and is easy to maintain when the nodes
move around. Our simulations confirmed that our new backbone
indeed has well performances in random networks.

There are many interesting open problems left for further study.
Remember that, we use the following assumptions on wireless net-

work model: omni-directional antenna, single transmission received
by all nodes within the vicinity of the transmitter, nodes being static
for a reasonable period of time. To prove that the backbone has
low cost, we also assume that all nodes have the same transmis-
sion range. Notice that the efficiency property for unicast does not
require the communication graph to be a UDG. The problem will
become much more complicated if we relax some of these assump-
tions. Another interesting open problem is to study the dynamic
updating of the backbone efficiently when nodes are moving in a
reasonable speed although our cost function may integrate the mo-
bility of the nodes. It is interesting to see the practical performance
differences of all proposed methods such as methods by Baker et
al., Alzoubi et al., and our methods proposed here, in mobile envi-
ronment.
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[11] CǍLINESCU, G. Computing 2-hop neighborhoods in ad hoc wireless
networks. In AdHoc-Now 03 (2003).

[12] CHATTERJEE, M., DAS, S., AND TURGUT, D. WCA: A weighted
clustering algorithm for mobile ad hoc networks. Journal of Cluster
Computing 5, 2 (2002), 193–204.

[13] CHEN, G., NOCETTI, F., GONZALEZ, J., AND STOJMENOVIC, I.
Connectivity-based k-Hop clustering in wireless networks. In
Proceedings of the 35th HICSS-Volume 7 (2002), IEEE Computer
Society, p. 188.3.
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