
MEADOWS: Modeling, Emulation, and Analysis of Data of

Wireless Sensor Networks
Qiong Luo, Lionel M. Ni, Bingsheng He, Hejun Wu, and Wenwei Xue

Department of Computer Science

The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon

Hong Kong, China

{ luo, ni, saven, whjnn, wwxue} @cs.ust.hk

Abstract

In this position paper, we present MEADOWS, a
software framework that we are building at
HKUST for modeling, emulation, and analysis of
data of wireless sensor networks. This project is
motivated by the unique need of intertwining
modeling, emulation, and data analysis in
studying sensor databases. We describe our
design of basic data analysis tools along with an
initial case study on HKUST campus. We also
report our progress on modeling power
consumption for sensor databases and on
wireless sensor network emulation for query
processing. Additionally, we outline our future
directions on MEADOWS for discussion and
feedback at the workshop.

1. Introduction

Sensor networks have created exciting opportunities for
data management [2], especially for in-network query
processing [1][5][11][18], because these networked
sensor nodes form a large-scale, dynamic, and distributed
database with each node acquiring, processing and
transmitting data simultaneously. However, studying in-
network sensor query processing is a challenging task due
to the unique features of sensor networks. These unique
features of sensor networks include: (1) each sensor node
has limited computation, communication, and storage
capabilities as well as limited power supply; (2) sensory
units and communication channels are lossy and error-
prone; and (3) deployed sensor nodes are embedded in the
physical world, are scattered geographically, and may be
mobile. In order to facilitate studying sensor databases in
general and in-network query processing in specific, we

propose MEADOWS, a software framework that we are
building at HKUST (The Hong Kong University of
Science and Technology) for modeling, emulation, and
analysis of data of wireless sensor networks.

Modeling, emulation, and data analysis for sensor
networks is essential for studying in-network query
processing systematically. On one hand, studying query
processing techniques in real sensor networks with real
applications has been fruitful and has a high practical
impact [11]. On the other hand, the tight integration of
sensor networks with the physical world, the high
uncertainty in sensory data, and the high deployment cost
make it hard to produce general and complete results
through field studies only. Consequently, it is highly
desirable to perform in-depth analysis of sensory data
from field studies and to model and emulate sensor
networks in controlled environments.

Let us give a real-world example to illustrate the
usefulness of MEADOWS. This example is an
experimental monitoring application that we deployed
near a frog pond on HKUST campus in the spring of
2004. We used the MICA2 Motes made by Crossbow [4]
for the sensor nodes and TinyDB [15] as well as other
software running on the motes for collecting sensory data.
In TinyDB, the data collection process is the execution of
declarative, SQL-like queries, which eases application
development and allows for optimization for performance.
However, if we would like to answer some important
questions about the query processor for the application,
we find it is difficult or infeasible to obtain the answers
through a simple field study. Specifically, some of the
questions are as follows:

(1) We have only ten sensor nodes available for the
application. How many do we really need and what
geographical deployment topology do we use in order to
observe important phenomena such as trends in
temperature, humidity, and frog croaks around the frog
pond? Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN 2004),
Toronto, Canada, 2004

58

(2) If we collect sensor readings every 30 seconds,
what will be the status of power consumption at each
node as time goes and when will the batteries run out?

(3) If we change the type of sensor nodes (e.g., CPU,
radio channel, sensing units), the routing scheme of the
sensor network, or the data collection queries, what will
be the new answers to questions (1) and (2)?

In MEADOWS, we attempt to answer these questions
through data analysis, modeling, and emulation. We
show that we can determine the number of sensor nodes
needed and the geographical deployment scheme by
performing data analysis (Section 2). We also show that
we can estimate power consumption in various scenarios
realistically by including real-world factors into modeling
and emulation (Sections 3 and 4). In addition, the
integration of data analysis, modeling, and emulation
helps answer the questions better than merely employing
one of the three approaches in isolation. Our ultimate
goal is to enable various studies on sensor databases and
sensor query processing.

To date, modeling, emulation, and data analysis of
sensor networks for query processing is still at an early
stage. Our work in MEADOWS is only initial steps in this
direction. In this early report, we present a case study of
preliminary sensor network data analysis in Section 2, a
hierarchical power consumption model for sensor
databases in Section 3, and a sensor network emulator for
query processing in Section 4. We draw some
conclusions and list future directions in Section 5.

2. Analysis of Sensor Network Data

In this section, we focus on real-world sensory data and
discuss a case study of collecting and analyzing the data
from a small network of sensors deployed outdoors on the
HKUST campus. The purpose of this case study is to
explore how data analysis can help answer questions
about sensor query processors. In addition, we aim to
gain insights for data analysis tool design.

2.1 Overview

Analysis of real-world data provides realistic basis for
modeling and emulation. Because sensor networks are
designed to be tightly embedded in the physical world,
collecting and analyzing real-world sensor network data is
both challenging and worthwhile. Even though there have
been a few projects on outdoor deployment of sensor
networks [14], we have not yet seen previous studies with
a goal of answering questions about query processors.
Therefore, as a first step of our framework development,
we conducted a field study with this specific goal in mind.
The scale of the study was small due to our resource limit.
However, it is sufficient for the purpose of producing an
initial design of data analysis tools.

The case study is the frog pond monitoring application
we briefly described in the Introduction. The frog pond is
located at the northeastern corner of the campus.

Throughout the late spring, the frogs in the pond croak
loudly all day long. We chose the frog pond as it has this
interesting phenomenon as well as other outdoor
microclimate characteristics (e.g., close to the sea and two
pagodas).

We deployed a small number of sensor nodes in two
groups near the frog pond. We collected one-day of
sensory data during four two-hour periods. We pre-
processed the data by adding labels (e.g., timestamps) and
converting data formats (e.g., from raw sensor readings to
more human-friendly engineering units). We analyzed
the data by examining patterns, exceptions (outliers), and
correlations. Finally, we discuss our design of data
analysis tools as well as the insights gained from the case
study.

2.2 The Case Study

We deployed two groups of MICA2 motes in the two
pagodas near the frog pond (Figures 1 and 2). Mote 0’s of
both groups were sink nodes connected with a laptop
through a serial cable. Group 1’s Motes 1-5 used the
MTS310CA sensor boards, which detect temperature,
light, noise level, acceleration and magnetic value.
Group2’s Motes 1-2 used the MTS420CA weather sensor
boards, which measure temperature, light, acceleration,
humidity and barometric pressure. We used TinyDB [15]
to collect data from Group 1 and a modified Xlisten
program from the TinyOS Sourceforge CVS directory
[17] to collect data from Group 2, due to the applicability
of the software to different types of sensor boards. In
addition, we logged battery voltage of both groups for
data conversion and analysis.

Figure 1: Deployment of Group 1 Motes

It was a cloudy day and rained intermittently. We
collected data during the following four 2-hour periods:
6:30-8:30, 12:30-14:30, 17:30-19:30, and 22:00-24:00.
We set the sampling period of each reading to be 30
seconds and collected thousands of readings per group.

59

We show three figures (Figures 3-5) as representative
examples.

The noise readings of all sensor nodes of Group 1
were similar to one another at a point of time. We picked
two motes that differed most in the readings, Motes 1 and
5, to show in Figure 3. These readings captured frog
croaks mainly. They indicate that frogs croaked most
actively in the early morning and were most quiet during
noon time. There is a gap of a few minutes in the
morning readings, which was due to a crash of our data
logging program and its subsequent recovery.

Figure 2: Deployment of Group 2 Motes

Noise (ADC counts)

300

400

500

600

700

800

900

1000

4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24

Group 1 Mote 1

Group 1 Mote 5

Figure 3: Group 1 Noise Readings

The humidity readings of Group 2 remained at the
level of around 90% most of the time (Figure 4). There
were some readings of abnormally high humidity (larger
than 130%) of Mote 1 at the beginning of the morning
period. These abnormal readings were because some rain
drops splashed onto Mote 1 by accident when we took it
out of a box and deployed it. The water made the
humidity sensor of Mote 1 malfunction and to return
abnormally high readings. This kind of physical problems
for motes is common and recoverable [14]. After being
dried, the humidity sensor returned to normal operation.

The temperature readings of the two groups varied
slightly within each group (21-24°C in Group 1 and 21-
23°C in Group 2). As illustrated in Figure 5, the
temperature measured by Group 2 motes was often

slightly higher than that measured by Group 1 motes
(except around noontime), even though the two pagodas
were close to each other (within a distance of 20 meters).
We think there are two possible reasons for this
difference: (1) the temperature sensors of the two groups
have different hardware characteristics since they are
made by different companies, and (2) the microclimates in
the two pagodas had a slight difference due to their
different geographical locations.

Relative Humidity (%)

60

70

80

90

100

110

120

130

140

150

4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24

Group 2 Mote 1

Group 2 Mote 2

Figure 4: Group 2 Humidity Readings

Temperature (°C)

20.5

21

21.5

22

22.5

23

23.5

24

4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24

Group 1 Mote 1

Group 2 Mote 2

Figure 5: Temperature Readings of Two Groups

2.3 Discussion

From our data analysis, we suggest that the application
just use one Mote per pagoda for a small-scale case study
around the frog pond, since the readings within each
group were similar and there were slight differences
between the two groups that were deployed in different
geographical locations (pagodas). Moreover, if the
application scenario changes and more questions about
the query processor are asked, we need to have a set of
general data analysis tools to answer these questions.

Based on our experience with the frog pond case
study, we propose the following three requirements for a
sensory data analyzer.

(1) The analyzer should have data acquisition
functions that are fault-tolerant and adaptive, since the
sensory data collection process determines the quality of
sensory data. The fault-tolerance requirement is because
hardware malfunctioning is common in field studies, as

60

we have already experienced. It is thus desirable that a
data collector is able to recover, to migrate the work from
a failed node to a normal node, and to resume the work.
The adaptivity requirement is to take advantage of the
patterns and regularities captured in sensor readings. For
instance, continuous quantities such as temperature can be
measured with a sampling frequency adapted to the
changes in the temperature readings in order to improve
power efficiency while keeping the quality of sensory
data unaffected.

(2) The analyzer should have a set of basic functions
for data pre-processing and post-processing operations.
Data pre-processing is to further ensure the quality of data
for analysis. Data post-processing is mainly for the
presentation of analytical results. For example, the
function convert() converts sensor readings from raw
ADC counts to human-friendly engineering units, the
function calibrate() performs hard-ware-specific
calibration of the readings, and the function plot() plots
data points and curves together with analytical summaries
following user-defined criteria.

(3) As the core of the analyzer, the sensory data
analysis functions include pattern and outlier detection,
and correlation of multiple sensory attributes or multiple
sensor nodes. We further discuss these two kinds of
functions as follows.

First, detecting patterns and outliers in single-node
single-attribute sensory data is the basic analytical
operation. For instance, given the temperature readings of
one sensor node, the basic analytical information about
these readings must include a summary of the range, the
trend, and the outliers of the data. As a result of
measuring natural phenomena, sensory data has inherent
patterns as well as outliers. Moreover, outliers sometimes
are due to real events in the environments and sometimes
due to system errors. It is necessary to pay special
attention to outlier analysis.

Second, correlation analysis gives insight into sensory
data, because each sensor node has multiple sensory
attributes and multiple sensor nodes work concurrently in
a geographical region. The inherent correlations between
natural phenomena as well as the temporal and spatial
correlations of sensor nodes will be useful for both sensor
query processing and application deployment. For
example, when an application is detecting transient
changes such as a sudden increase in the noise level, it
can utilize the spatial correlation of a cluster of adjacent
nodes to detect the noise with a high fidelity. In other
words, if one sensor node detects a sudden increase of
noise level, it might be a real event as well as a system
error. But if multiple nearby nodes report the same event,
the probability of a system error is much lower than that
of a real event.

In summary, analytical results from real-world sensory
data, such as patterns, outliers, and correlations, can help
answer questions about query processors as well as
improve query processing. In addition, data analysis can

interact with modeling and emulation to better serve the
purpose of studying query processing. On one hand,
analytical results serve as a realistic basis for modeling
and emulation; on the other hand, modeling and emulation
can be used for guiding and cross-validating data analysis.

3 Modeling Power Consumption

Having presented a case study of sensory data analysis,
next we turn to modeling of sensor databases. Due to the
short time period (eight hours) and resource constraints
(no oscilloscope on site) of the field study, we were
unable to obtain detailed power consumption statistics.
Since power efficiency is a major issue in sensor query
processing, we examine this issue by modeling and
emulation.

3.1 Overview

Power efficiency is a major issue in sensor networks,
since sensor nodes are battery-powered and it is difficult
or infeasible to recharge deployed sensor nodes in
practice. There has been work on power efficiency of
sensor nodes [6][13], sensor networks [8][10], and senor
query processing techniques [1][3][11][18]. However, it
remains unclear how to evaluate power efficiency of
sensor databases systematically. The main reason is that
there are many intertwined factors that affect power
consumption in a sensor database system, for instance,
sensor node computation, wireless transmission, and
various query processing techniques. Therefore, we
propose to represent these factors in a general model for
studying power consumption of sensor databases.

We group these factors into a three-level hierarchy
(Figure 6): the sensor database, the sensor network, and
the sensor node. The sensor node model captures power
consumption characteristics of a single sensor node and
provides a quantitative approach to estimate the power
consumption of a single sensor node by the operations of
the node. The sensor network model groups main factors
in wireless communication that affect power consumption
in a sensor network. It adapts the quantitative approach
provided by the sensor node model to a network
environment. The sensor database model formalizes main
factors of database workloads that affect power
consumption in a sensor network and further improves the
accuracy of power consumption estimation for database
workloads.

As a result, our hierarchical model can estimate the
power consumption of a sensor query processing
workload in a unified and general way. We can
instantiate each level of model with specific real-world
factors and estimate power consumption of query
workloads realistically. For instance, we can use the
MICA2 hardware specification for the sensor node, a
typical network routing scheme for the sensor network,
and a monitoring query used in our frog pond application
for the database workload.

61

In the remainder of this modeling section, we use
UML (Unified Modeling Language) style illustrations for
modeling (Figures 6-9). A big box with a small square on
top represents a package, e.g., “Sensor Database Model” .
A package can contain other packages. A dashed line
with an arrow stands for the “uses” relationship. A solid
line with an arrow stands for the “has” relationship.

���������
	
����
�������
����

����������	
����� ����	 ������
����

����������	
����� ��������������
����

� "!�#$ %

&�' #)(�#�*

Figure 6: Model Hierarchy

3.2 The Model

We show our hierarchical power consumption model in
Figures 7, 8, and 9 and describe them briefly. For brevity,
all formulas are omitted and will be available in a
technical report.

In Figure 7, we represent the configuration of a smart
sensor node as a package of six types of units: the
processor, the RAM, the flash memory, the wireless
transmission unit, the battery, and the sensing data units.
A configuration contains the important units (in terms of
power consumption) of a sensor node and the parameters
for power consumption estimation of the units. The
parameters starting with “pc” represent the unit power
consumption, e.g., “pcInstruction” of the processor stands
for power consumption per instruction. We define several
operations in a sensor node (not shown in Figure 7):
sensing (sampling), listening, sending (transmitting),
receiving, discarding, and processing. We estimate the
power consumption of a sensor node during a period of
time by summing up the power consumption of all
operations occurred during this period. For each
operation, the power consumption is calculated using a
linear battery model [13]. Clearly, our sensor node model
accommodates a wide range of sensor nodes with various
hardware characteristics.

In Figure 8, we model a sensor network with the
canonical topology, the routing scheme, and the model
metrics. The canonical topology is represented as an
undirected graph with its k-ary spanning tree. The routing
scheme is responsible for building the spanning tree on
the graph. For instance, in the flooding scheme, we can

build the spanning tree by traversing the graph via
Breadth-First Search. Finally, the model metrics include
per-node metrics (the number of neighbors per node and
the number of children per node in the spanning tree) as
well as network-wide metrics (expansion, resilience, and
distortion). Note that a node’s neighborhood is
determined by the wireless signal transmission range in
the deployment whereas a node’s children are determined
by the routing tree. Obviously, different routing schemes
have different power consumption characteristics. Our
sensor network model aims to provide insights for
designing power-efficient routing schemes.

Figure 7: Sensor Node Package

Figure 8: Sensor Network Package

Figure 9: Sensor Database Package

62

In Figure 9, the sensor database model consists of the
data model, the query model, the query plans, the
workload model, and the model metrics. Our data model
is relational and our query model is TinySQL-style
extended SQL [11] with clauses specifying sampling rate
EPOCH and query lifetime LIFETIME. The query plans
describe the execution plans of queries with selection,
projection, and aggregation operators. The model metrics
include the number of tuples, the size of each tuple, and
the reduction factor of each operation (selection,
projection, or aggregation). A reduction factor is defined
to be the ratio of the output data size to the input data size
of the operator. Finally, the workload model estimates
power consumption of the query workload in the sensor
network.

To estimate the power consumption of a query
workload, we consider both the local computation cost
and the network traffic cost, which depend on the
complexity of the handling and the volume of data
handled. We have developed algorithms for estimation of
sensor network lifetime in terms of power consumption in
the static (the routing tree does not change as long as the
network topology does not change) and dynamic (the
routing tree changes dynamically) deployment
respectively. The algorithms estimate the power
consumption for each node and identify the weak points in
the sensor network. A weak point is a node whose power
consumption is higher than others in the sensor network.
The algorithm for the static deployment works in the
following steps:

(1) Generate a k-ary spanning tree based on the
selected routing scheme. If it fails, the algorithm stops.

(2) Generate the query plan of the query workload
on the sensor network and estimate the reduction factors
for selection, projection and aggregation as needed.

(3) Estimate the power consumption of each node
for this query workload as time goes, and identify the
weakest point until it runs out of power.

(4) Remove the dead weak point from the network
and repeat the previous steps starting from step (1).

For the dynamic deployment, we modify the algorithm
for the static deployment by adding a time period round.
At the end of each round, even though there are no nodes
run out of battery, there will still be a router reassignment
process. Similar to the algorithm for the static
deployment, the algorithm for the dynamic deployment
estimates the lifetime of the deployment until the sensor
network is disconnected.

3.3 Initial Validation Results

We have validated our model using a typical sensor node
configuration, two representative routing schemes, and a
simple query workload. The sensor node configuration
followed the MICA2 [4] Motes hardware specification.
The two representative routing schemes we compared
were LEACH [8] and flooding (Figure 10). LEACH

identifies clusters of nodes and selects leader nodes of
clusters in a round-robin fashion for packet merging (or
called “partial aggregation” in networking terms, but not
the “aggregation” , e.g., SUM(), in database terms). The
query workload we tested was a simple aggregation
query: “ SELECT MAX(temperature), humidity FROM
sensors GROUP BY humidity EPOCH 30 seconds” .

The “sensors” virtual table had a schema of {humidity,
temperature, timestamp} with a fixed length of 4 bytes per
attribute. We assumed each packet contained a header of
20 bytes. With the temperature and humidity attributes in
the query result, each packet contained 28 bytes. We also
assumed that each sensor node covered an area of a circle
with a radius of 20 feet. The average distance between a
sensor node and the sink node (Mote 0) was assumed to
be 500 feet. We used LEACH’s assumption that the unit
power consumed in sending is proportional to the
distance.

Figure 10: LEACH (left) versus Flooding (right)

Figure 11 shows the predicted average node lifetime in
a network of N (ranging from 6 to 24) nodes resulted from
our model. Our model predicts that LEACH results in 5-
times improvement on power efficiency over flooding
whereas in the original LEACH paper this factor was 8.
One major reason for this difference is that we considered
power consumption of database workloads as well as
individual sensor nodes in addition to networking.

LEACH vs Flooding

0

1

2

3

4

5

6

6 12 18 24

N

N
od

e
Li

fe
 T

im
e(

m
o

nt
h

)

LEACH

Flooding

Figure 11: Predicted Average Node Lifetime

Since the number of nodes was small and there were at
most two hops in LEACH in our study, the effect of
database-style in-network aggregation (e.g., executing
MAX() at a leader node) was insignificant. We are

63

considering more complex and larger-scale cases for
validation, in which in-network aggregation makes a
difference [1][11][18].

3.4 Discussion

As shown in the preliminary results, our modeling can
estimate power consumption of query processing
workloads fairly realistically by using real-world factors
such as sensor node hardware configuration,
representative routing schemes, and typical queries in
monitoring applications. In order to further improve our
model, we consider the following three extensions:

(1) Extend the estimation of reduction factors for
power-aware query processing. For example, our data
analysis shows that patterns and correlations are common
in sensory data. If a query processor takes advantage of
these patterns and correlations and performs pattern-
aware or correlation-aware data acquisition, we can
extend the estimation method of reduction factors for
these techniques.

(2) Extend the estimation of node neighborhood in the
sensor network model by considering synchronization
characteristics of transmission. A neighborhood of a node
is a basic topology element in a multi-hop networking
environment and transmission between nodes can be
synchronous or asynchronous. We have modeled
transmission to be synchronous as commonly assumed by
existing work. In order to achieve more accurate
estimation, we plan to cover asynchronous transmission
as well.

(3) Extend the database workload model to handle
joins. Joins are a complex operation in sensor databases,
which involves factors such as where and how to perform
the join. Using the reduction factor only seems to be
insufficient for modeling the power consumption
characteristics of a join operation.

4 Emulation for Query Processing

Modeling is useful for defining the problem space and
quantifying the effects of multiple factors, as shown in
our hierarchical power consumption model in Section 3.
Nevertheless, dynamic behaviors of programs, for
instance, parallel execution of query processing code on
multiple sensor nodes, sometimes are hard to abstract and
to model. Under such situations, emulation is useful for
observing the execution process. In this section, we
present an emulator for sensor query processing.

4.1 Overview

Currently, it is difficult to study in-network query
processing on real sensor networks, not only because the
deployment is expensive and hard to maintain, but also
because the resource constraints in a sensor network limit
the collection of detailed statistics about the system
running status. Both simulation and emulation can ease

these problems, either by representing the logical views
and actions of the target system (simulation) or by
executing the code with the same control flow as that of
the target system (emulation).

We propose an emulation environment, VMN (Virtual
Mote Network), for studying sensor query processing. It
is a mix of simulation and emulation. We use TinyOS
[16] modules to emulate the application execution
environment in each VM (Virtual Mote). We simulate the
radio channel and the sensing units of each VM following
the MICA2 [4] hardware specification. The sensory data,
which is fed into the virtual sensing units as the input of
VMN, is generated from real-life data such as data
collected in our frog pond monitoring application (Section
2). Finally, the execution of query processing code on
each VM and the network topology are emulated on
networked PCs.

Our VMN is different from the two existing sensor
network simulators, TOSSIM [9] and EMStar [7], in that
VMN utilizes networked PCs to emulate networked motes
in parallel and has execution time and power consumption
models for query processing applications. Other
simulators such as ns-2 [12] and Sensorsim [13] or
emulators such as EMPOWER [19] lack the execution
environment of smart sensor nodes.

4.2 The Emulator

Our VMN (Figure 12) emulates a real network of MICA2
motes running TinyOS. PC 0 acts as the virtual base
station, which runs VM 0 to emulate the sink node (Mote
0) in the real sensor network and runs the real application
client (in this case, the TinyDB GUI) to communicate
with VM 0. Each of the PCs 1 to n emulates multiple
virtual motes except VM 0. Virtual motes communicate
with one other through the virtual channel, which is
implemented on top of UDP (User Datagram Protocol) on
a LAN (Local Area Network) and simulates a real radio
channel with bit errors and delays.

PC 0

PC n

…

Application
Client

VMN
Manager

V
irtual C

hannel

Application
TinyOS
Virtual

Hardware

VMm

…

…

Application
TinyOS
Virtual

Hardware

VMm+1

Application
TinyOS
Virtual

Hardware

VMm+2

Application
TinyOS
Virtual

Hardware

VM0

Figure 12: Architecture of a VMN

Each VM (Figure 13) emulates a MICA2 mote
running TinyOS. We partition a VM into the upper layer

64

and the lower layer. The upper layer includes (i) the
application, (ii) the senders and receivers of Active
Messages (AM), UART (Universal Asynchronous
Receiver/Transmitter, or RS232 serial communication)
packets and radio packets, and (iii) the VM manager for
emulation control and statistics collection on the node.
The lower layer consists of (i) various types of virtual
sensors, the virtual UART (for Mote 0 only), and the
virtual RFM (Radio Frequency Monolithic), (ii) the
virtual drivers for (a), and (iii) the virtual clock. This
partitioning scheme is to identify the components that are
pertinent to program execution and then to put these
components into the upper layer. Consequently, it is
solely the task of the upper layer to emulate the
environment such that the real code of a query processing
application for a real sensor mote runs on a VM as if it
runs on the real mote.

Virtual Mote
Application

Virtual Sensor
Driver

Active Message Sender / Receiver

Virtual
Temperature

Sensor

Virtual
Light

Sensor

Virtual
Clock

Virtual
RFM

Radio Packet
Sender /Receiver

TinyOS V
M

 M
anager

Virtual Radio
Driver

Virtual
UART

UART Packet
Sender /Receiver

Virtual
UART
Driver

Upper Layer

Lower
Layer

Figure 13: Architecture of a VM

Connecting multiple VMs, the virtual channel
simulates wireless network effects using three software
modules: the bit error module, the collision module and
the delay module (shown in Figure 14).

The bit error module uses an experiential radio signal
error data model to generate the bit error rate. The error
rate is defined as (number of error bits received by the
receiver) / (number of total bits sent by the sender). The
module maintains a table of two attributes: distance and
bit error rate, and generates bit errors randomly at a rate
that the table specifies.

The collision module simulates radio signal collision
by performing two operations: carrier sense and collision.
Both operations need information about the virtual time
(the time in the emulated world) and the data transmission
status of all VMs. This information is kept in the VMN
Manager.

In the carrier sense operation, the collision module
asks the network manager whether if a sending VM can
hear any VMs that are transmitting data. If so, the
sending VM will wait a period of time whose length is
defined by the network protocols. In the collision
operation, the collision module destroys the current bit to
be sent on one of the two conditions: (1) another VM is

transmitting and the sender of this current bit can hear that
transmitting VM, or (2) another VM is sending to the
same destination as this sender.

Finally, the transmission delay module adds a delay to
the virtual time of each packet to be sent.

Having described the three network effect modules,
we then describe the transmission process of data on a
virtual channel from/to a VM: When outgoing bits are
sent from the Virtual Radio Frequency Module (VRFM)
of the VM to the virtual channel, they pass through the
three modules and stay in a buffer for wrapping (in the
lower right corner of Figure 14). When all bits of a packet
arrive in the buffer, the virtual channel wraps them into a
packet and sends out the packet via UDP. When an
incoming UDP packet arrives at the virtual channel, it is
put into a queue (lower left of Figure 14) and is
decomposed into bits to be sent to the VRFM of the VM
via another buffer (on the left of Figure 14).

 To VRFM From VRFM Collision signal

to VRFM

Delay

Module

Bit error

Module

Collision

Module

Bits

Control messages To/From

Network Manager (NM)
UDP packet from other

VMs via LAN

UDP packet to other

VMs via LAN
Queue

Figure 14. Virtual Channel

Because VMs run simultaneously, synchronization is
needed to ensure that the messages and the operations of
VMs are in the same order with that of the target sensor
network. The synchronization procedure is as follows: at
the startup time, the network manager initializes its table
of network status information including the total number
of VMs n and the value of the virtual clock of each VM:
vt0, vt1… vtn-1. Whenever the VMs run for a predefined
interval T, which is called the synchronization interval,
they pause and report to the network manager. After
every VM has reported to the network manager that its
virtual clock has advanced by T, the network manager
sends out a broadcast message to inform the VMs to
resume running. In addition, the UDP packets on the
virtual channel are put in a queue and sorted by their
virtual time in the ascending order. With the queue and
the synchronization interval, the order of operations and
messages are ensured to be the same as that on the real
network.

4.3 Preliminary Evaluation Results

We have done preliminary evaluation of the VMN with a
small number of nodes running a simple query on TinyDB
and validated the results of running the query on real
MICA2 motes. The query was to report temperature

65

readings of all motes for every epoch of 960ms. This
short sampling rate was used to measure the electric
currents on real motes at a fine granularity, because the
HP 4155A oscilloscope we used was able to measure
electric currents at a scale of milliseconds for a period of
time of up to 2 seconds. The 2 seconds were sufficient for
studying the processing of the query, because we
observed two epochs in each measurement.

We measured the power consumption of this query on
a 4-node real mote network using an oscilloscope (HP
4155A) during the query execution (Figure 15). We then
ran the query on a 4-node VMN and estimated the power
consumption of the query (Figure 16). In our power
consumption emulation, we divided the query execution
time into several power modes with different operations.
These operations are: “Sleeping” , “Processing” ,
“Listening” , “Sampling” and “Transmitting” . Two
different operations can occur in one mode, e.g.,
Processing & Transmitting. The measured electric current
in a mode was nearly constant (the range was within +/-
0.3 mA in our experiments).

Figure 15 shows our measurements of four power
modes during the query processing in the 4-node real
mote network, which were “Listening” , “Processing &
Transmitting” , “Processing & Listening” , and
“Sampling” . Because the sampling rate was short
(960ms), the motes did not run into sleeping. In other
experiments with a longer sampling rate (>10s), we
measured that the average current in sleeping was about
0.0162 mA. All of these results are consistent with the
data sheet of MICA2 Motes [4]. These results are also
similar to those reported by Madden et al. [11] except one
difference is that we did not get the “Snoozing” mode
with an average electric current of 4 mA. We are
investigating this issue further.

Figure 15: Measured Power Consumption of a MICA2
Mote

Figure 16 shows the estimated power consumption
and the estimated query execution time in the 4-node
VMN. Compared with the results in Figure 15, the error
on query execution time estimation was 1.4-1.34 = 0.06
seconds or 0.06/1.34 = 4.4%. We calculated the power

consumption by the sum of (current * running-time),
because the number of measurement points was different
in the real mote network than in the VMN. The sum of
the real measurement was 27.38 mA*seconds, and that of
VMN was 28.68 mA*seconds, which resulted in an error
rate of 4.72%.

Figure 16: Estimated Power Consumption of a VM

5 Conclusion and Future Work

We have proposed a software framework, MEADOWS,
for modeling, emulation, and data analysis of wireless
sensor networks. We have reported a case study of real-
world data collection and analysis and proposed a
preliminary design of data analysis functions for detecting
patterns, outliers, and correlations. We have also
presented our initial work on a hierarchical power
consumption model for sensor databases and on a sensor
network emulator using networked PCs. We find that this
framework is useful for answering questions about sensor
query processing. In addition, the integration of
modeling, emulation, and data analysis creates synergy
for studying sensor query processing.

Our future work on MEADOWS include (1)
implementing our proposed data analysis functions and
using the results to cross-validate with our modeling and
emulation work, (2) conducting extensive, more complex
case studies for our sensor database power consumption
model and extending the model, and (3) increasing the
scale of sensor network emulation and adding node
mobility emulation.

Acknowledgement

We collaborated with Pei Zheng at Arcadia University,
USA on sensor network emulation. The design of data
analysis functions was influenced by discussions with our
collaborators at Peking University, China. We thank Jeff
Naughton for his helpful comments on the paper.
Funding for this work was from Grants HKUST6158/03E,
HKUST6161/03E provided by the Hong Kong Research
Grant Council (RGC).

���
���
���
���
���
�	�
��

���

� �
�����
�������	���
��� � ���������������	�

Running Time(second)

E
le

ct
ri

c
C

ur
re

nt
 (

m
A

)

Listening Processing &
Transmitting

Processing
& Listening

Sampling

���
�
�
���
�
�
�
�
���
�
�
�

�!�
"	�#�
"	�$�
"	 #�
"�% �&��"	�'��"�����"	
 Running Time(second)

E
st

im
at

ed
 E

le
ct

ri
c

C
ur

re
nt

 (
m

A
)

 .

Listening Processing &
Transmitting

Processing
& Listening

Sampling

66

References

[1] Jonathan Beaver, Mohamed A. Sharaf, Alexandros
Labrinidis, and Panos K. Chrysanthis. Power-
Aware In-Network Query Processing for Sensor
Data. The 2nd Hellenic Data Management
Symposium, 2003.

[2] Philippe Bonnet, Johannes Gehrke, and Praveen
Seshadri. Towards Sensor Database Systems. The
2nd International Conference on Mobile Data
Management (MDM), 2001.

[3] Ugur Cetintemel, Andrew Flinders, and Ye Sun.
Power-Aware Data Dissemination in Wireless
Sensor Networks. The 3rd ACM International
Workshop on Data Engineering for Wireless and
Mobile Access, 2003.

[4] Crossbow Corp. http://www.xbow.com
[5] Amol Deshpande, Suman Nath, Phillip B.

Gibbons, and Srinivasan Seshan. Cache-and-Query
for Wide Area Sensor Network. SIGMOD
Conference 2003.

[6] Laura Marie Feeney. An Energy Consumption
Model for Performance Analysis of Routing
Protocols for Mobile Ad-hoc Networks. Mobile
Networks and Applications, 2001.

[7] Lewis Girod, Jeremy Elson, Alberto Cerpa,
Thanos Stathopoulos, Nithya Ramanathan, and
Deborah Estrin. EmStar: a Software Environment
for Developing and Deploying Wireless Sensor
Networks. USENIX 2004.

[8] Wendi Heinzelman, Anantha Chandrakasan, and
Hari Balakrishnan. Energy-fficient
Communication Protocol for Wireless Microsensor
Networks. The 33rd hawaii International
Conference on System Sciences, 2000.

[9] Philip Levis, Nelson Lee, Matt Welsh, David
Culler. TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications. The 1st
International Conference on Embedded Networked
Sensor Systems, 2003.

[10] Erran Li and Joseph Halpern. Mimimum-Energy
Mobile Wireless Networks Revisited. ICC 2001.

[11] Samuel Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. The Design of an
Acquisitional Query Processor for Sensor
Networks. SIGMOD Conference 2003.

[12] NS2. http://www.isi.edu/nsnam/ns/.

[13] Sung Park, Andreas SAvvides, and Mani B.
Srivstava. Sensorsim: A Simulation Framework
for Sensor Networks. MSWIM, 2000.

[14] Robert Szewczyk, Joseph Polastre, Alan
Mainwaring, and David Culler. Lessons from a
Sensor Network Expedition. In Proceedings of the
1st European Workshop on Wireless Sensor
Networks (EWSN), 2004.

[15] TinyDB. http://telegraph.cs.berkeley.edu/tinydb/.

[16] TinyOS. http://www.tinyos.net.

[17] Xlisten Program.
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos
-1.x/contrib/xbow/tools/src/xlisten/.

[18] Yong Yao and Johannes Gehrke. Query Processing
for Sensor Networks. CIDR 2003.

[19] Pei Zheng and Lionel M. Ni. EMPOWER: A
Network Emulator for Wireless and Wired
Networks. INFOCOM 2003.

67

