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Abstract 

In this position paper, we present MEADOWS, a 
software framework that we are building at 
HKUST for modeling, emulation, and analysis of 
data of wireless sensor networks.  This project is 
motivated by the unique need of intertwining 
modeling, emulation, and data analysis in 
studying sensor databases.  We describe our 
design of basic data analysis tools along with an 
initial case study on HKUST campus.  We also 
report our progress on modeling power 
consumption for sensor databases and on 
wireless sensor network emulation for query 
processing.  Additionally, we outline our future 
directions on MEADOWS for discussion and 
feedback at the workshop.  

1.  Introduction  

Sensor networks have created exciting opportunities for 
data management [2], especially for in-network query 
processing [1][5][11][18], because these networked 
sensor nodes form a large-scale, dynamic, and distributed 
database with each node acquiring, processing and 
transmitting data simultaneously.  However, studying in-
network sensor query processing is a challenging task due 
to the unique features of sensor networks.  These unique 
features of sensor networks include: (1) each sensor node 
has limited computation, communication, and storage 
capabilities as well as limited power supply; (2) sensory 
units and communication channels are lossy and error-
prone; and (3) deployed sensor nodes are embedded in the 
physical world, are scattered geographically, and may be 
mobile.  In order to facilitate studying sensor databases in 
general and in-network query processing in specific, we 

propose MEADOWS, a software framework that we are 
building at HKUST (The Hong Kong University of 
Science and Technology) for modeling, emulation, and 
analysis of data of wireless sensor networks.   

Modeling, emulation, and data analysis for sensor 
networks is essential for studying in-network query 
processing systematically.  On one hand, studying query 
processing techniques in real sensor networks with real 
applications has been fruitful and has a high practical 
impact [11].  On the other hand, the tight integration of 
sensor networks with the physical world, the high 
uncertainty in sensory data, and the high deployment cost 
make it hard to produce general and complete results 
through field studies only.  Consequently, it is highly 
desirable to perform in-depth analysis of sensory data 
from field studies and to model and emulate sensor 
networks in controlled environments.   

Let us give a real-world example to illustrate the 
usefulness of MEADOWS.  This example is an 
experimental monitoring application that we deployed 
near a frog pond on HKUST campus in the spring of 
2004.  We used the MICA2 Motes made by Crossbow [4] 
for the sensor nodes and TinyDB [15] as well as other 
software running on the motes for collecting sensory data.  
In TinyDB, the data collection process is the execution of 
declarative, SQL-like queries, which eases application 
development and allows for optimization for performance.  
However, if we would like to answer some important 
questions about the query processor for the application, 
we find it is difficult or infeasible to obtain the answers 
through a simple field study.  Specifically, some of the 
questions are as follows: 

(1) We have only ten sensor nodes available for the 
application.  How many do we really need and what 
geographical deployment topology do we use in order to 
observe important phenomena such as trends in 
temperature, humidity, and frog croaks around the frog 
pond? Copyright 2004, held by the author(s) 
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(2) If we collect sensor readings every 30 seconds, 
what will be the status of power consumption at each 
node as time goes and when will the batteries run out? 

(3) If we change the type of sensor nodes (e.g., CPU, 
radio channel, sensing units), the routing scheme of the 
sensor network, or the data collection queries, what will 
be the new answers to questions (1) and (2)?  

In MEADOWS, we attempt to answer these questions 
through data analysis, modeling, and emulation.  We 
show that we can determine the number of sensor nodes 
needed and the geographical deployment scheme by 
performing data analysis (Section 2). We also show that 
we can estimate power consumption in various scenarios 
realistically by including real-world factors into modeling 
and emulation (Sections 3 and 4). In addition, the 
integration of data analysis, modeling, and emulation 
helps answer the questions better than merely employing 
one of the three approaches in isolation.  Our ultimate 
goal is to enable various studies on sensor databases and 
sensor query processing.  

To date, modeling, emulation, and data analysis of 
sensor networks for query processing is still at an early 
stage. Our work in MEADOWS is only initial steps in this 
direction.  In this early report, we present a case study of 
preliminary sensor network data analysis in Section 2, a 
hierarchical power consumption model for sensor 
databases in Section 3, and a sensor network emulator for 
query processing in Section 4.  We draw some 
conclusions and list future directions in Section 5.  

2. Analysis of Sensor Network Data 

In this section, we focus on real-world sensory data and 
discuss a case study of collecting and analyzing the data 
from a small network of sensors deployed outdoors on the 
HKUST campus.  The purpose of this case study is to 
explore how data analysis can help answer questions 
about sensor query processors.  In addition, we aim to 
gain insights for data analysis tool design. 

2.1 Overview 

Analysis of real-world data provides realistic basis for 
modeling and emulation.  Because sensor networks are 
designed to be tightly embedded in the physical world, 
collecting and analyzing real-world sensor network data is 
both challenging and worthwhile.  Even though there have 
been a few projects on outdoor deployment of sensor 
networks [14], we have not yet seen previous studies with 
a goal of answering questions about query processors.  
Therefore, as a first step of our framework development, 
we conducted a field study with this specific goal in mind.  
The scale of the study was small due to our resource limit.  
However, it is sufficient for the purpose of producing an 
initial design of data analysis tools. 

The case study is the frog pond monitoring application 
we briefly described in the Introduction. The frog pond is 
located at the northeastern corner of the campus.  

Throughout the late spring, the frogs in the pond croak 
loudly all day long.  We chose the frog pond as it has this 
interesting phenomenon as well as other outdoor 
microclimate characteristics (e.g., close to the sea and two 
pagodas).  

We deployed a small number of sensor nodes in two 
groups near the frog pond.  We collected one-day of 
sensory data during four two-hour periods.  We pre-
processed the data by adding labels (e.g., timestamps) and 
converting data formats (e.g., from raw sensor readings to 
more human-friendly engineering units).  We analyzed 
the data by examining patterns, exceptions (outliers), and 
correlations.  Finally, we discuss our design of data 
analysis tools as well as the insights gained from the case 
study. 

2.2 The Case Study 

We deployed two groups of MICA2 motes in the two 
pagodas near the frog pond (Figures 1 and 2).  Mote 0’s of 
both groups were sink nodes connected with a laptop 
through a serial cable.  Group 1’s Motes 1-5 used the 
MTS310CA sensor boards, which detect temperature, 
light, noise level, acceleration and magnetic value.  
Group2’s Motes 1-2 used the MTS420CA weather sensor 
boards, which measure temperature, light, acceleration, 
humidity and barometric pressure.  We used TinyDB [15] 
to collect data from Group 1 and a modified Xlisten 
program from the TinyOS Sourceforge CVS directory 
[17] to collect data from Group 2, due to the applicability 
of the software to different types of sensor boards.  In 
addition, we logged battery voltage of both groups for 
data conversion and analysis. 

 

 

Figure 1: Deployment of Group 1 Motes 

It was a cloudy day and rained intermittently.  We 
collected data during the following four 2-hour periods: 
6:30-8:30, 12:30-14:30, 17:30-19:30, and 22:00-24:00. 
We set the sampling period of each reading to be 30 
seconds and collected thousands of readings per group.  
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We show three figures (Figures 3-5) as representative 
examples. 

The noise readings of all sensor nodes of Group 1 
were similar to one another at a point of time.  We picked 
two motes that differed most in the readings, Motes 1 and 
5, to show in Figure 3.  These readings captured frog 
croaks mainly.  They indicate that frogs croaked most 
actively in the early morning and were most quiet during 
noon time.  There is a gap of a few minutes in the 
morning readings, which was due to a crash of our data 
logging program and its subsequent recovery.   

 

Figure 2: Deployment of Group 2 Motes 
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Figure 3: Group 1 Noise Readings 

The humidity readings of Group 2 remained at the 
level of around 90% most of the time (Figure 4).  There 
were some readings of abnormally high humidity (larger 
than 130%) of Mote 1 at the beginning of the morning 
period.  These abnormal readings were because some rain 
drops splashed onto Mote 1 by accident when we took it 
out of a box and deployed it.  The water made the 
humidity sensor of Mote 1 malfunction and to return 
abnormally high readings.  This kind of physical problems 
for motes is common and recoverable [14].  After being 
dried, the humidity sensor returned to normal operation.   

The temperature readings of the two groups varied 
slightly within each group (21-24°C in Group 1 and 21-
23°C in Group 2).  As illustrated in Figure 5, the 
temperature measured by Group 2 motes was often 

slightly higher than that measured by Group 1 motes 
(except around noontime), even though the two pagodas 
were close to each other (within a distance of 20 meters).  
We think there are two possible reasons for this 
difference: (1) the temperature sensors of the two groups 
have different hardware characteristics since they are 
made by different companies, and (2) the microclimates in 
the two pagodas had a slight difference due to their 
different geographical locations. 
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Figure 4: Group 2 Humidity Readings 
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Figure 5: Temperature Readings of Two Groups 

2.3 Discussion 

From our data analysis, we suggest that the application 
just use one Mote per pagoda for a small-scale case study 
around the frog pond, since the readings within each 
group were similar and there were slight differences 
between the two groups that were deployed in different 
geographical locations (pagodas).  Moreover, if the 
application scenario changes and more questions about 
the query processor are asked, we need to have a set of 
general data analysis tools to answer these questions. 

Based on our experience with the frog pond case 
study, we propose the following three requirements for a 
sensory data analyzer. 

(1) The analyzer should have data acquisition 
functions that are fault-tolerant and adaptive, since the 
sensory data collection process determines the quality of 
sensory data.  The fault-tolerance requirement is because 
hardware malfunctioning is common in field studies, as 

60



we have already experienced.  It is thus desirable that a 
data collector is able to recover, to migrate the work from 
a failed node to a normal node, and to resume the work.  
The adaptivity requirement is to take advantage of the 
patterns and regularities captured in sensor readings.  For 
instance, continuous quantities such as temperature can be 
measured with a sampling frequency adapted to the 
changes in the temperature readings in order to improve 
power efficiency while keeping the quality of sensory 
data unaffected.   

(2) The analyzer should have a set of basic functions 
for data pre-processing and post-processing operations.  
Data pre-processing is to further ensure the quality of data 
for analysis.  Data post-processing is mainly for the 
presentation of analytical results.  For example, the 
function convert() converts sensor readings from raw 
ADC counts to human-friendly engineering units, the 
function calibrate() performs hard-ware-specific 
calibration of the readings, and the function plot() plots 
data points and curves together with analytical summaries 
following user-defined criteria.   

(3) As the core of the analyzer, the sensory data 
analysis functions include pattern and outlier detection, 
and correlation of multiple sensory attributes or multiple 
sensor nodes.  We further discuss these two kinds of 
functions as follows. 

First, detecting patterns and outliers in single-node 
single-attribute sensory data is the basic analytical 
operation.  For instance, given the temperature readings of 
one sensor node, the basic analytical information about 
these readings must include a summary of the range, the 
trend, and the outliers of the data.  As a result of 
measuring natural phenomena, sensory data has inherent 
patterns as well as outliers.  Moreover, outliers sometimes 
are due to real events in the environments and sometimes 
due to system errors.  It is necessary to pay special 
attention to outlier analysis. 

Second, correlation analysis gives insight into sensory 
data, because each sensor node has multiple sensory 
attributes and multiple sensor nodes work concurrently in 
a geographical region.  The inherent correlations between 
natural phenomena as well as the temporal and spatial 
correlations of sensor nodes will be useful for both sensor 
query processing and application deployment.  For 
example, when an application is detecting transient 
changes such as a sudden increase in the noise level, it 
can utilize the spatial correlation of a cluster of adjacent 
nodes to detect the noise with a high fidelity.  In other 
words, if one sensor node detects a sudden increase of 
noise level, it might be a real event as well as a system 
error.  But if multiple nearby nodes report the same event, 
the probability of a system error is much lower than that 
of a real event.   

In summary, analytical results from real-world sensory 
data, such as patterns, outliers, and correlations, can help 
answer questions about query processors as well as 
improve query processing.  In addition, data analysis can 

interact with modeling and emulation to better serve the 
purpose of studying query processing.  On one hand, 
analytical results serve as a realistic basis for modeling 
and emulation; on the other hand, modeling and emulation 
can be used for guiding and cross-validating data analysis. 

3 Modeling Power Consumption 

Having presented a case study of sensory data analysis, 
next we turn to modeling of sensor databases.  Due to the 
short time period (eight hours) and resource constraints 
(no oscilloscope on site) of the field study, we were 
unable to obtain detailed power consumption statistics.  
Since power efficiency is a major issue in sensor query 
processing, we examine this issue by modeling and 
emulation.  

3.1 Overview 

Power efficiency is a major issue in sensor networks, 
since sensor nodes are battery-powered and it is difficult 
or infeasible to recharge deployed sensor nodes in 
practice.  There has been work on power efficiency of 
sensor nodes [6][13], sensor networks [8][10], and senor 
query processing techniques [1][3][11][18].  However, it 
remains unclear how to evaluate power efficiency of 
sensor databases systematically.  The main reason is that 
there are many intertwined factors that affect power 
consumption in a sensor database system, for instance, 
sensor node computation, wireless transmission, and 
various query processing techniques. Therefore, we 
propose to represent these factors in a general model for 
studying power consumption of sensor databases. 

We group these factors into a three-level hierarchy 
(Figure 6): the sensor database, the sensor network, and 
the sensor node.  The sensor node model captures power 
consumption characteristics of a single sensor node and 
provides a quantitative approach to estimate the power 
consumption of a single sensor node by the operations of 
the node.  The sensor network model groups main factors 
in wireless communication that affect power consumption 
in a sensor network.  It adapts the quantitative approach 
provided by the sensor node model to a network 
environment.  The sensor database model formalizes main 
factors of database workloads that affect power 
consumption in a sensor network and further improves the 
accuracy of power consumption estimation for database 
workloads.  

As a result, our hierarchical model can estimate the 
power consumption of a sensor query processing 
workload in a unified and general way.  We can 
instantiate each level of model with specific real-world 
factors and estimate power consumption of query 
workloads realistically.  For instance, we can use the 
MICA2 hardware specification for the sensor node, a 
typical network routing scheme for the sensor network, 
and a monitoring query used in our frog pond application 
for the database workload.   
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In the remainder of this modeling section, we use 
UML (Unified Modeling Language) style illustrations for 
modeling (Figures 6-9).  A big box with a small square on 
top represents a package, e.g., “Sensor Database Model” .  
A package can contain other packages.  A dashed line 
with an arrow stands for the “uses”  relationship.  A solid 
line with an arrow stands for the “has” relationship. 
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Figure 6: Model Hierarchy 

3.2 The Model 

We show our hierarchical power consumption model in 
Figures 7, 8, and 9 and describe them briefly.  For brevity, 
all formulas are omitted and will be available in a 
technical report. 

In Figure 7, we represent the configuration of a smart 
sensor node as a package of six types of units: the 
processor, the RAM, the flash memory, the wireless 
transmission unit, the battery, and the sensing data units.  
A configuration contains the important units (in terms of 
power consumption) of a sensor node and the parameters 
for power consumption estimation of the units.  The 
parameters starting with “pc”  represent the unit power 
consumption, e.g., “pcInstruction”  of the processor stands 
for power consumption per instruction.  We define several 
operations in a sensor node (not shown in Figure 7): 
sensing (sampling), listening, sending (transmitting), 
receiving, discarding, and processing.  We estimate the 
power consumption of a sensor node during a period of 
time by summing up the power consumption of all 
operations occurred during this period.  For each 
operation, the power consumption is calculated using a 
linear battery model [13].  Clearly, our sensor node model 
accommodates a wide range of sensor nodes with various 
hardware characteristics. 

In Figure 8, we model a sensor network with the 
canonical topology, the routing scheme, and the model 
metrics.  The canonical topology is represented as an 
undirected graph with its k-ary spanning tree.  The routing 
scheme is responsible for building the spanning tree on 
the graph.  For instance, in the flooding scheme, we can 

build the spanning tree by traversing the graph via 
Breadth-First Search.  Finally, the model metrics include 
per-node metrics (the number of neighbors per node and 
the number of children per node in the spanning tree) as 
well as network-wide metrics (expansion, resilience, and 
distortion).  Note that a node’s neighborhood is 
determined by the wireless signal transmission range in 
the deployment whereas a node’s children are determined 
by the routing tree.  Obviously, different routing schemes 
have different power consumption characteristics.  Our 
sensor network model aims to provide insights for 
designing power-efficient routing schemes. 

 

 

Figure 7: Sensor Node Package 

 

 

Figure 8: Sensor Network Package 

 

 

Figure 9: Sensor Database Package 
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In Figure 9, the sensor database model consists of the 
data model, the query model, the query plans, the 
workload model, and the model metrics.  Our data model 
is relational and our query model is TinySQL-style 
extended SQL [11] with clauses specifying sampling rate 
EPOCH and query lifetime LIFETIME. The query plans 
describe the execution plans of queries with selection, 
projection, and aggregation operators.  The model metrics 
include the number of tuples, the size of each tuple, and 
the reduction factor of each operation (selection, 
projection, or aggregation).  A reduction factor is defined 
to be the ratio of the output data size to the input data size 
of the operator.  Finally, the workload model estimates 
power consumption of the query workload in the sensor 
network.   

To estimate the power consumption of a query 
workload, we consider both the local computation cost 
and the network traffic cost, which depend on the 
complexity of the handling and the volume of data 
handled.  We have developed algorithms for estimation of 
sensor network lifetime in terms of power consumption in 
the static (the routing tree does not change as long as the 
network topology does not change) and dynamic (the 
routing tree changes dynamically) deployment 
respectively.  The algorithms estimate the power 
consumption for each node and identify the weak points in 
the sensor network.  A weak point is a node whose power 
consumption is higher than others in the sensor network.  
The algorithm for the static deployment works in the 
following steps: 

(1) Generate a k-ary spanning tree based on the 
selected routing scheme.  If it fails, the algorithm stops. 

(2) Generate the query plan of the query workload 
on the sensor network and estimate the reduction factors 
for selection, projection and aggregation as needed. 

(3) Estimate the power consumption of each node 
for this query workload as time goes, and identify the 
weakest point until it runs out of power. 

(4) Remove the dead weak point from the network 
and repeat the previous steps starting from step (1). 

For the dynamic deployment, we modify the algorithm 
for the static deployment by adding a time period round. 
At the end of each round, even though there are no nodes 
run out of battery, there will still be a router reassignment 
process. Similar to the algorithm for the static 
deployment, the algorithm for the dynamic deployment 
estimates the lifetime of the deployment until the sensor 
network is disconnected. 

3.3 Initial Validation Results 

We have validated our model using a typical sensor node 
configuration, two representative routing schemes, and a 
simple query workload.  The sensor node configuration 
followed the MICA2 [4] Motes hardware specification.  
The two representative routing schemes we compared 
were LEACH [8] and flooding (Figure 10).  LEACH 

identifies clusters of nodes and selects leader nodes of 
clusters in a round-robin fashion for packet merging (or 
called “partial aggregation”  in networking terms, but not 
the “aggregation” , e.g., SUM(), in database terms). The 
query workload we tested was a simple aggregation 
query: “ SELECT MAX(temperature), humidity FROM 
sensors GROUP BY humidity EPOCH 30 seconds” . 

The “sensors” virtual table had a schema of {humidity, 
temperature, timestamp} with a fixed length of 4 bytes per 
attribute.  We assumed each packet contained a header of 
20 bytes.  With the temperature and humidity attributes in 
the query result, each packet contained 28 bytes.  We also 
assumed that each sensor node covered an area of a circle 
with a radius of 20 feet.  The average distance between a 
sensor node and the sink node (Mote 0) was assumed to 
be 500 feet.  We used LEACH’s assumption that the unit 
power consumed in sending is proportional to the 
distance.  

 

  

Figure 10: LEACH (left) versus Flooding (right) 

Figure 11 shows the predicted average node lifetime in 
a network of N (ranging from 6 to 24) nodes resulted from 
our model.  Our model predicts that LEACH results in 5-
times improvement on power efficiency over flooding 
whereas in the original LEACH paper this factor was 8.  
One major reason for this difference is that we considered 
power consumption of database workloads as well as 
individual sensor nodes in addition to networking.   
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Figure 11: Predicted Average Node Lifetime 

Since the number of nodes was small and there were at 
most two hops in LEACH in our study, the effect of 
database-style in-network aggregation (e.g., executing 
MAX() at a leader node) was insignificant.  We are 
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considering more complex and larger-scale cases for 
validation, in which in-network aggregation makes a 
difference [1][11][18].   

3.4 Discussion 

As shown in the preliminary results, our modeling can 
estimate power consumption of query processing 
workloads fairly realistically by using real-world factors 
such as sensor node hardware configuration, 
representative routing schemes, and typical queries in 
monitoring applications.  In order to further improve our 
model, we consider the following three extensions: 

(1) Extend the estimation of reduction factors for 
power-aware query processing.  For example, our data 
analysis shows that patterns and correlations are common 
in sensory data.  If a query processor takes advantage of 
these patterns and correlations and performs pattern-
aware or correlation-aware data acquisition, we can 
extend the estimation method of reduction factors for 
these techniques. 

(2) Extend the estimation of node neighborhood in the 
sensor network model by considering synchronization 
characteristics of transmission.  A neighborhood of a node 
is a basic topology element in a multi-hop networking 
environment and transmission between nodes can be 
synchronous or asynchronous.  We have modeled 
transmission to be synchronous as commonly assumed by 
existing work.  In order to achieve more accurate 
estimation, we plan to cover asynchronous transmission 
as well.  

(3) Extend the database workload model to handle 
joins.  Joins are a complex operation in sensor databases, 
which involves factors such as where and how to perform 
the join.  Using the reduction factor only seems to be 
insufficient for modeling the power consumption 
characteristics of a join operation.   

4 Emulation for Query Processing 

Modeling is useful for defining the problem space and 
quantifying the effects of multiple factors, as shown in 
our hierarchical power consumption model in Section 3.  
Nevertheless, dynamic behaviors of programs, for 
instance, parallel execution of query processing code on 
multiple sensor nodes, sometimes are hard to abstract and 
to model.  Under such situations, emulation is useful for 
observing the execution process.  In this section, we 
present an emulator for sensor query processing. 

4.1 Overview 

Currently, it is difficult to study in-network query 
processing on real sensor networks, not only because the 
deployment is expensive and hard to maintain, but also 
because the resource constraints in a sensor network limit 
the collection of detailed statistics about the system 
running status. Both simulation and emulation can ease 

these problems, either by representing the logical views 
and actions of the target system (simulation) or by 
executing the code with the same control flow as that of 
the target system (emulation). 

We propose an emulation environment, VMN (Virtual 
Mote Network), for studying sensor query processing.  It 
is a mix of simulation and emulation.  We use TinyOS 
[16] modules to emulate the application execution 
environment in each VM (Virtual Mote).  We simulate the 
radio channel and the sensing units of each VM following 
the MICA2 [4] hardware specification.  The sensory data, 
which is fed into the virtual sensing units as the input of 
VMN, is generated from real-life data such as data 
collected in our frog pond monitoring application (Section 
2).  Finally, the execution of query processing code on 
each VM and the network topology are emulated on 
networked PCs.   

Our VMN is different from the two existing sensor 
network simulators, TOSSIM [9] and EMStar [7], in that 
VMN utilizes networked PCs to emulate networked motes 
in parallel and has execution time and power consumption 
models for query processing applications.  Other 
simulators such as ns-2 [12] and Sensorsim [13] or 
emulators such as EMPOWER [19] lack the execution 
environment of smart sensor nodes.  

4.2 The Emulator 

Our VMN (Figure 12) emulates a real network of MICA2 
motes running TinyOS.  PC 0 acts as the virtual base 
station, which runs VM 0 to emulate the sink node (Mote 
0) in the real sensor network and runs the real application 
client (in this case, the TinyDB GUI) to communicate 
with VM 0. Each of the PCs 1 to n emulates multiple 
virtual motes except VM 0.  Virtual motes communicate 
with one other through the virtual channel, which is 
implemented on top of UDP (User Datagram Protocol) on 
a LAN (Local Area Network) and simulates a real radio 
channel with bit errors and delays. 
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Figure 12: Architecture of a VMN 

Each VM (Figure 13) emulates a MICA2 mote 
running TinyOS.  We partition a VM into the upper layer 
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and the lower layer.  The upper layer includes (i) the 
application, (ii) the senders and receivers of Active 
Messages (AM), UART (Universal Asynchronous 
Receiver/Transmitter, or RS232 serial communication) 
packets and radio packets, and (iii) the VM manager for 
emulation control and statistics collection on the node.  
The lower layer consists of (i) various types of virtual 
sensors, the virtual UART (for Mote 0 only), and the 
virtual RFM (Radio Frequency Monolithic), (ii) the 
virtual drivers for (a), and (iii) the virtual clock.  This 
partitioning scheme is to identify the components that are 
pertinent to program execution and then to put these 
components into the upper layer.  Consequently, it is 
solely the task of the upper layer to emulate the 
environment such that the real code of a query processing 
application for a real sensor mote runs on a VM as if it 
runs on the real mote. 
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Figure 13: Architecture of a VM 

Connecting multiple VMs, the virtual channel 
simulates wireless network effects using three software 
modules: the bit error module, the collision module and 
the delay module (shown in Figure 14).  

The bit error module uses an experiential radio signal 
error data model to generate the bit error rate.  The error 
rate is defined as (number of error bits received by the 
receiver) / (number of total bits sent by the sender).  The 
module maintains a table of two attributes: distance and 
bit error rate, and generates bit errors randomly at a rate 
that the table specifies. 

The collision module simulates radio signal collision 
by performing two operations: carrier sense and collision.  
Both operations need information about the virtual time 
(the time in the emulated world) and the data transmission 
status of all VMs.  This information is kept in the VMN 
Manager.  

In the carrier sense operation, the collision module 
asks the network manager whether if a sending VM can 
hear any VMs that are transmitting data.  If so, the 
sending VM will wait a period of time whose length is 
defined by the network protocols. In the collision 
operation, the collision module destroys the current bit to 
be sent on one of the two conditions: (1) another VM is 

transmitting and the sender of this current bit can hear that 
transmitting VM, or (2) another VM is sending to the 
same destination as this sender.  

Finally, the transmission delay module adds a delay to 
the virtual time of each packet to be sent. 

Having described the three network effect modules, 
we then describe the transmission process of data on a 
virtual channel from/to a VM: When outgoing bits are 
sent from the Virtual Radio Frequency Module (VRFM) 
of the VM to the virtual channel, they pass through the 
three modules and stay in a buffer for wrapping (in the 
lower right corner of Figure 14). When all bits of a packet 
arrive in the buffer, the virtual channel wraps them into a 
packet and sends out the packet via UDP.  When an 
incoming UDP packet arrives at the virtual channel, it is 
put into a queue (lower left of Figure 14) and is 
decomposed into bits to be sent to the VRFM of the VM 
via another buffer (on the left of Figure 14). 
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Figure 14. Virtual Channel 

Because VMs run simultaneously, synchronization is 
needed to ensure that the messages and the operations of 
VMs are in the same order with that of the target sensor 
network. The synchronization procedure is as follows: at 
the startup time, the network manager initializes its table 
of network status information including the total number 
of VMs n and the value of the virtual clock of each VM: 
vt0, vt1… vtn-1.  Whenever the VMs run for a predefined 
interval T, which is called the synchronization interval, 
they pause and report to the network manager.  After 
every VM has reported to the network manager that its 
virtual clock has advanced by T, the network manager 
sends out a broadcast message to inform the VMs to 
resume running.  In addition, the UDP packets on the 
virtual channel are put in a queue and sorted by their 
virtual time in the ascending order.  With the queue and 
the synchronization interval, the order of operations and 
messages are ensured to be the same as that on the real 
network. 

4.3 Preliminary Evaluation Results 

We have done preliminary evaluation of the VMN with a 
small number of nodes running a simple query on TinyDB 
and validated the results of running the query on real 
MICA2 motes.  The query was to report temperature 
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readings of all motes for every epoch of 960ms.  This 
short sampling rate was used to measure the electric 
currents on real motes at a fine granularity, because the 
HP 4155A oscilloscope we used was able to measure 
electric currents at a scale of milliseconds for a period of 
time of up to 2 seconds. The 2 seconds were sufficient for 
studying the processing of the query, because we 
observed two epochs in each measurement.   

We measured the power consumption of this query on 
a 4-node real mote network using an oscilloscope (HP 
4155A) during the query execution (Figure 15).  We then 
ran the query on a 4-node VMN and estimated the power 
consumption of the query (Figure 16).  In our power 
consumption emulation, we divided the query execution 
time into several power modes with different operations. 
These operations are: “Sleeping” , “Processing” , 
“Listening” , “Sampling”  and “Transmitting” . Two 
different operations can occur in one mode, e.g., 
Processing & Transmitting. The measured electric current 
in a mode was nearly constant (the range was within +/- 
0.3 mA in our experiments).   

Figure 15 shows our measurements of four power 
modes during the query processing in the 4-node real 
mote network, which were “Listening” , “Processing & 
Transmitting” , “Processing & Listening” , and 
“Sampling” . Because the sampling rate was short 
(960ms), the motes did not run into sleeping.  In other 
experiments with a longer sampling rate (>10s), we 
measured that the average current in sleeping was about 
0.0162 mA. All of these results are consistent with the 
data sheet of MICA2 Motes [4].  These results are also 
similar to those reported by Madden et al. [11] except one 
difference is that we did not get the “Snoozing”  mode 
with an average electric current of 4 mA.  We are 
investigating this issue further.  

 

Figure 15: Measured Power Consumption of a MICA2 
Mote 

Figure 16 shows the estimated power consumption 
and the estimated query execution time in the 4-node 
VMN.  Compared with the results in Figure 15, the error 
on query execution time estimation was 1.4-1.34 = 0.06 
seconds or 0.06/1.34 = 4.4%.  We calculated the power 

consumption by the sum of (current *  running-time), 
because the number of measurement points was different 
in the real mote network than in the VMN.  The sum of 
the real measurement was 27.38 mA*seconds, and that of 
VMN was 28.68 mA*seconds, which resulted in an error 
rate of 4.72%.  

 

Figure 16: Estimated Power Consumption of a VM 

5 Conclusion and Future Work 

We have proposed a software framework, MEADOWS, 
for modeling, emulation, and data analysis of wireless 
sensor networks.  We have reported a case study of real-
world data collection and analysis and proposed a 
preliminary design of data analysis functions for detecting 
patterns, outliers, and correlations.  We have also 
presented our initial work on a hierarchical power 
consumption model for sensor databases and on a sensor 
network emulator using networked PCs.  We find that this 
framework is useful for answering questions about sensor 
query processing.  In addition, the integration of 
modeling, emulation, and data analysis creates synergy 
for studying sensor query processing. 

Our future work on MEADOWS include (1) 
implementing our proposed data analysis functions and 
using the results to cross-validate with our modeling and 
emulation work, (2) conducting extensive, more complex 
case studies for our sensor database power consumption 
model and extending the model, and (3) increasing the 
scale of sensor network emulation and adding node 
mobility emulation. 
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